o N

Bounded Model Generation for
|sabelle/HOL

and Related Applications of SAT Solversin
| nteractive Theorem Proving

Tjark Weber

webert) @n.tum de
TECHNISCHE
UNIVERSITAT
MUNCHEN

Winterhitte, Marz 2005

Bounded Model Generation for Isabelle/HOL — p.1/19

|sabelle

-

Isabelle is a generic proof assistant:
Highly flexible

Interactive

Automatic proof procedures
Advanced user interface
Readable proofs

© o o o 0

Large theories of formal mathematics

\

e
B

Bounded Model Generation for Isabelle/HOL — p.2/19

Bounded Model Generation

-

Theorem proving: from formulae to proofs
Bounded model generation: from formulae to models

no
Input valid?
formula
yes i
Proof Counter—
model

Finding counterexamples to false conjectures

Applications:

Showing the consistency of a specification
Solving open mathematical problems
Guiding resolution-based provers J

& Bounded Model Generation for Isabelle/HOL — p.3/19

|sabelle/HOL

. -

HOL: higher-order logic based on Church’s simple theory o
types (1940)

Simply-typed \-calculus:

® Types.oc::=B|la|loc—o0o

® Terms: t, = a5 | (tor—oto)o | Aoy toy)oy—om

Two logical constants:

®» —B BBy —c—0c—B

% .

Bounded Model Generation for Isabelle/HOL — p.4/19

|sabelle/HOL

. -

HOL: higher-order logic based on Church’s simple theory o
types (1940)

Simply-typed \-calculus:

® Types.oc::=B|la|loc—o0o

® Terms: t, = a5 | (tor—oto)o | Aoy toy)oy—om

Two logical constants:

®» —B BBy —c—0c—B

Other constants, e.g.
True |False || AV V]I
are definable.

& Bounded Model Generation for Isabelle/HOL — p.4/19

-

The Semantics of HOL

Set-theoretic semantics:
Types denote certain sets.
® Terms denote elements of these sets.

The Semantics of HOL
-

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable o a
non-empty set D,,.

Semantics of types:

®» D(B)={T, L1}

® D(a)=D,

® D(01 — 03) = D(02)"\V

% .

Bounded Model Generation for Isabelle/HOL — p.5/19

The Semantics of HOL (2)

o N

A variable assignment A maps each variable =, to an
element A(x,) In D(o).

Semantics of terms:

® [z,]h = Alz,)

8 [(tor—oto)olp = [to—olp([to])

® [(\z,,. t@)gﬁ@]]é IS the function that sends each d In
D(o) to [[t@]]g[x"ﬁd]

® —p 5 B, —»_o_p. iImplication, equality

Hence the semantics of a term is an element of the set
denoted by the term’s type.

% .

Bounded Model Generation for Isabelle/HOL — p.6/19

Overview

-

Input: HOL formula ¢

Output: either a model for ¢, or “no model found”

eH
e\ 0L

a%'

Bounded Model Generation for Isabelle/HOL — p.7/19

Overview

o N

Input: HOL formula ¢

1. Fix a finite environment D.

2. Translate ¢ into a Boolean formula that is satisfiable iff
[[gb}]é — T for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for ¢, or “no model found”

& Bounded Model Generation for Isabelle/HOL — p.7/19

Fixing a Finite Environment

o N

Fix a positive integer for every type variable that occurs in
the typing of ¢.

Every type then has a finite size:
o Bl =2
|«o] IS given by the environment

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.

% .

Bounded Model Generation for Isabelle/HOL — p.8/19

The SAT Solver

o N

Several external SAT solvers (zChaff, BerkMin, Jerusat,
...) are supported.

o Efficiency
#® Advances in SAT solver technology are “for free”

% .

Bounded Model Generation for Isabelle/HOL — p.9/19

The SAT Solver

o N

Several external SAT solvers (zChaff, BerkMin, Jerusat,
..) are supported.

o Efficiency
#® Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.
Easy installation

#» Compatibility

Fast enough for small examples

eH
e\ OL

e

Bounded Model Generation for Isabelle/HOL — p.9/19

Some Extensions

-

Sets are interpreted as characteristic functions.
®» o0 set 20— B

®» reP=Px

® {r.Px}=P

Non-recursive datatypes can be interpreted in a finite
model.

k

® (ay,...,an)0u=Crof...00 |...|Croy...0k

k i
® [(a1,...,on)0| =37 TTZ

Examples: option, sum, product types

aé-\

% .

Bounded Model Generation for Isabelle/HOL — p.10/19

Some Extensions

fRecursive datatypes are restricted to initial fragments. T
Examples: nat, o i st, | anbdat erm
» nat'!={0}, nat?={0,1}, nat 3 ={0,1,2},...
This works for datatypes that occur only positively.

Datatype constructors and recursive functions can be
Interpreted as partial functions.

> Examp|931 Sucnat—mat; +nat—nat—nats @Jlist—>alist—>alist

3-valued logic: true, false, unknown

Axiomatic type classes introduce additional axioms that
must be satisfied by the model.

L» Records and inductively defined sets can be treated as weIIJ
P

Bounded Model Generation for Isabelle/HOL — p.11/19

Soundness and Completeness

-

Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

-

If the SAT solver is sound/complete, we have ...

#® Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Minimality: The model found is a smallest model for the
given formula.

|

Bounded Model Generation for Isabelle/HOL — p.12/19

(2 HQL

M3
qiﬂ'

“No Model Found”

| sabelle

I nput

DIMACS CNF

zChaff

~N

Preprocessin
formula v 9

Assignment

satisfiable?

yes no

Counterexample) =

? <

|

Bounded Model Generation for Isabelle/HOL — p.13/19

Unsatisfiability — Helpful at All?

o N

|[f the Boolean formula is unsatisfiable, the HOL formula
¢ does not have a model of a certain size.

If ¢ has the finite model property, we can test all models
up to the required size.

If no model is found, —¢ must be provable.

Difficult to implement ... let’s only look at Boolean formulae
for now.

% .

Bounded Model Generation for Isabelle/HOL — p.14/19

Deciding Boolean Formulae with zChaff

| sabelle

DIMACSCNF

zChaff

(N\
I nput I
/ formula /L><Preprocng

Assignment

yes

™~

Counterexample) =

Trace

VMM

no

Pr oof
Theorem reconstruction
g J

a

-

|

Bounded Model Generation for Isabelle/HOL — p.15/19

The Algorithm

o N

Preprocessing:

No conversion from HOL is necessary, only from
Boolean logic into CNF.

But the conversion must be proof-generating, i.e. return
a theorem ¢ = ocnp.

\

B

Bounded Model Generation for Isabelle/HOL — p.16/19

The Algorithm

o N

Preprocessing:

No conversion from HOL is necessary, only from
Boolean logic into CNF.

But the conversion must be proof-generating, I.e. return
a theorem ¢ = ocnp.

Proof reconstruction:

zChaff returns a resolution-style proof of unsatisfiability.

#® The proof is replayed in Isabelle/HOL to derive —¢.

eH
e\ OL

e

Bounded Model Generation for Isabelle/HOL — p.16/19

Performance

o N

Isabelle is several orders of magnitude slower than
zverify df.

® However, zChaff vs. auto/blast/fast . ..

s 42 propositional problems in TPTP, v2.6.0

s 19 “easy” problems, solved in less than a second
each by auto, blast, fast, and zchaff tac
s 23 harder problems

% .

Bounded Model Generation for Isabelle/HOL — p.17/19

(2 H()L

M3
qi‘}t.,’-'

Performance

Problem Status auto blast fast zChaff
MSCO007-1.008 unsat. X X X 726.5
NUM285-1 sat. X X X 0.2
PUZ013-1 unsat. 0.5 X 5.0 0.1
PUZ014-1 unsat. 1.4 X 6.1 0.1
PUZ015-2.006 unsat. X X X 10.5
PUZ016-2.004 sat. X X X 0.3
PUZ016-2.005 unsat. X X X 1.6
PUZ030-2 unsat. X X X 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYNOO1-1.005 unsat. X X X 0.4
SYNO0O03-1.006 unsat. 0.9 X 1.6 0.1
SYNO0O04-1.007 unsat. 0.3 822.2 2.8 0.1
SYNO010-1.005.005 | unsat. X X X 0.4
SYNO086-1.003 sat. X X X 0.1
SYNO087-1.003 sat. X X X 0.1
SYNO090-1.008 unsat. 13.8 X X 0.5
SYNO091-1.003 sat. X X X 0.1
SYNO092-1.003 sat. X X X 0.1
SYNO093-1.002 unsat. | 1290.8 16.2 1126.6 0.1
SYNO094-1.005 unsat. X X X 0.8
SYNO097-1.002 unsat. X 19.2 X 0.2
SYNO098-1.002 unsat. X X X 0.4
SYN302-1.003 sat. X X X 0.4

|

Bounded Model Generation for Isabelle/HOL — p.18/19

Conclusions and Future Work

o N

Finite countermodels for HOL formulae
A fast decision procedure for Boolean formulae

Further optimizations, benchmarks
A SAT-based decision procedure for a fragment of HOL
Integration of external model generators

© o o o

¢ Ho
;ae\\
& { Bounded Model Generation for Isabelle/HOL — p.19/19

	Isabelle
	Bounded Model Generation
	Isabelle/HOL
	The Semantics of HOL
	The Semantics of HOL (2)
	Overview
	Fixing a Finite Environment
	The SAT Solver
	Some Extensions
	Some Extensions
	Soundness and Completeness
	{``}No Model Found{''}
	Unsatisfiability~-- Helpful at All?
	Deciding Boolean Formulae with zChaff
	The Algorithm
	Performance
	Performance
	Conclusions and Future Work

