Bounded Model Generation for Isabelle/HOL

and Related Applications of SAT Solvers in Interactive Theorem Proving

Tjark Weber

webertj@in.tum.de

Winterhütte, März 2005

Bounded Model Generation for Isabelle/HOL - p.1/19

Isabelle

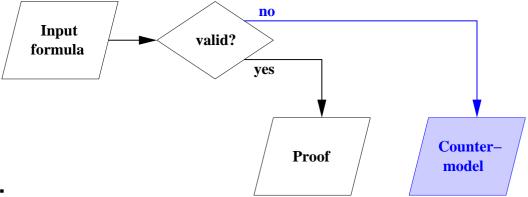
Isabelle is a generic proof assistant:

- Highly flexible
- Interactive
- Automatic proof procedures
- Advanced user interface
- Readable proofs
- Large theories of formal mathematics

Bounded Model Generation

Theorem proving: from formulae to proofs

Bounded model generation: from formulae to models



Applications:

- Finding counterexamples to false conjectures
- Showing the consistency of a specification
- Solving open mathematical problems
- Guiding resolution-based provers

Isabelle/HOL

HOL: higher-order logic based on Church's simple theory of types (1940)

Simply-typed λ -calculus:

- **•** Types: $\sigma ::= \mathbb{B} \mid \alpha \mid \sigma \to \sigma$
- Terms: $t_{\sigma} ::= x_{\sigma} \mid (t_{\sigma' \to \sigma} t_{\sigma'})_{\sigma} \mid (\lambda x_{\sigma_1} \cdot t_{\sigma_2})_{\sigma_1 \to \sigma_2}$

Two logical constants:

 $\implies_{\mathbb{B}\to\mathbb{B}\to\mathbb{B}}, =_{\sigma\to\sigma\to\mathbb{B}}$

Isabelle/HOL

HOL: higher-order logic based on Church's simple theory of types (1940)

Simply-typed λ -calculus:

- **•** Types: $\sigma ::= \mathbb{B} \mid \alpha \mid \sigma \to \sigma$

Two logical constants:

 $\implies_{\mathbb{B} \to \mathbb{B} \to \mathbb{B}}, =_{\sigma \to \sigma \to \mathbb{B}}$

Other constants, e.g.

True | False | \neg | \land | \lor | \forall | \exists | \exists !

are definable.

The Semantics of HOL

Set-theoretic semantics:

- Types denote certain sets.
- Terms denote elements of these sets.

The Semantics of HOL

Set-theoretic semantics:

- Types denote certain sets.
- Terms denote elements of these sets.

An *environment* D assigns to each type variable α a non-empty set D_{α} .

Semantics of types:

- $D(\mathbb{B}) = \{\top, \bot\}$
- $D(\alpha) = D_{\alpha}$

$$D(\sigma_1 \to \sigma_2) = D(\sigma_2)^{D(\sigma_1)}$$

The Semantics of HOL (2)

A *variable assignment* A maps each variable x_{σ} to an element $A(x_{\sigma})$ in $D(\sigma)$.

Semantics of terms:

- $\ \ \, \bullet \ \ \, \left[(t_{\sigma' \to \sigma} t_{\sigma'})_{\sigma} \right]_D^A = \left[t_{\sigma' \to \sigma} \right]_D^A (\left[t_{\sigma'} \right]_D^A)$
- $[(\lambda x_{\sigma_1}, t_{\sigma_2})_{\sigma_1 \to \sigma_2}]_D^A$ is the function that sends each d in $D(\sigma_1)$ to $[t_{\sigma_2}]_D^{A[x_{\sigma_1} \mapsto d]}$
- $\implies_{\mathbb{B}\to\mathbb{B}\to\mathbb{B}}, =_{\sigma\to\sigma\to\mathbb{B}}: \text{ implication, equality}$

Hence the semantics of a term is an element of the set denoted by the term's type.

Overview

Input: HOL formula ϕ

Output: either a model for ϕ , or "no model found"

Bounded Model Generation for Isabelle/HOL - p.7/19

Overview

Input: HOL formula ϕ

- 1. Fix a finite environment D.
- 2. Translate ϕ into a Boolean formula that is satisfiable iff $\llbracket \phi \rrbracket_D^A = \top$ for some variable assignment *A*.
- 3. Use a SAT solver to search for a satisfying assignment.
- 4. If a satisfying assignment was found, compute from it the variable assignment *A*. Otherwise repeat for a larger environment.

Output: either a model for ϕ , or "no model found"

Fixing a Finite Environment

Fix a positive integer for every type variable that occurs in the typing of ϕ .

Every type then has a finite size:

- $|\alpha|$ is given by the environment
- $|\sigma_1 \to \sigma_2| = |\sigma_2|^{|\sigma_1|}$

Finite model generation is a generalization of satisfiability checking, where the search tree is not necessarily binary.

The SAT Solver

Several *external* SAT solvers (zChaff, BerkMin, Jerusat, ...) are supported.

- Efficiency
- Advances in SAT solver technology are "for free"

The SAT Solver

Several *external* SAT solvers (zChaff, BerkMin, Jerusat, ...) are supported.

- Efficiency
- Advances in SAT solver technology are "for free"
- Simple *internal* solvers are available as well.
- Easy installation
- Compatibility
- Fast enough for small examples

Some Extensions

Sets are interpreted as characteristic functions.

- $\textbf{\textit{s} et} \cong \sigma \to \mathbb{B}$
- $I \{x. P x\} \cong P$

Non-recursive datatypes can be interpreted in a finite model.

$$(\alpha_1, \ldots, \alpha_n) \sigma ::= C_1 \sigma_1^1 \ldots \sigma_{m_1}^1 | \ldots | C_k \sigma_1^k \ldots \sigma_{m_k}^k$$

$$|(\alpha_1, \dots, \alpha_n)\sigma| = \sum_{i=1}^k \prod_{j=1}^{m_i} |\sigma_j^i|$$

Examples: option, sum, product types

Some Extensions

Recursive datatypes are restricted to initial fragments.

- Examples: nat, σ list, lambdaterm
- nat¹ = {0}, nat² = {0,1}, nat³ = {0,1,2},...
- This works for datatypes that occur only positively.

Datatype *constructors* and *recursive functions* can be interpreted as partial functions.

- Examples: $Suc_{nat\rightarrow nat}$, $+_{nat\rightarrow nat\rightarrow nat}$, $@_{\sigma list\rightarrow \sigma list\rightarrow \sigma list}$
- 3-valued logic: true, false, unknown

Axiomatic type classes introduce additional axioms that must be satisfied by the model.

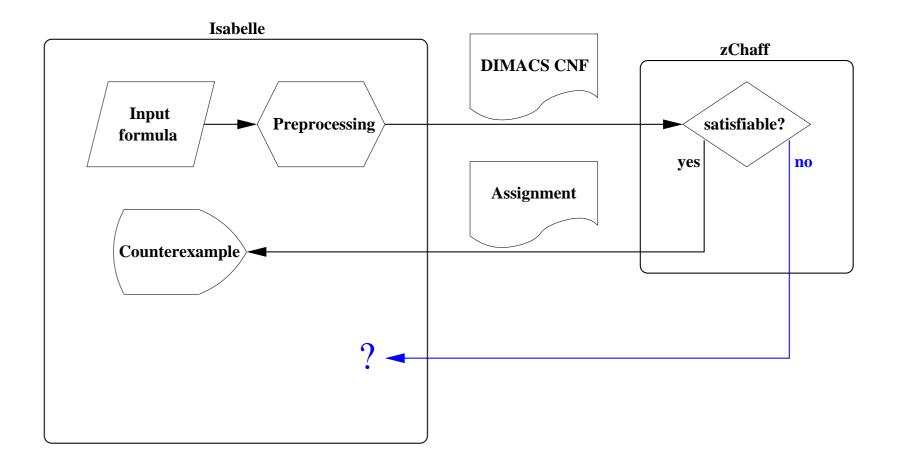
Records and inductively defined sets can be treated as well.

Soundness and Completeness

If the SAT solver is sound/complete, we have ...

- Soundness: The algorithm returns "model found" only if the given formula has a finite model.
- Completeness: If the given formula has a finite model, the algorithm will find it (given enough time).
- Minimality: The model found is a smallest model for the given formula.

"No Model Found"

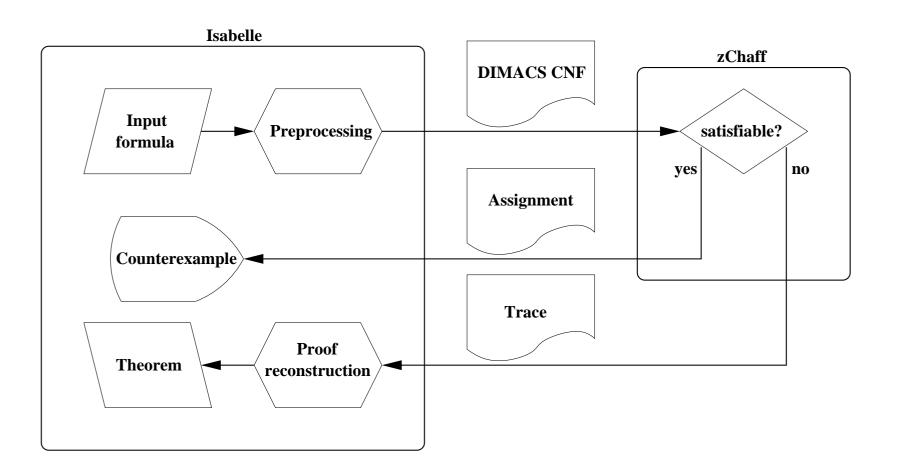


Unsatisfiability – Helpful at All?

- If the Boolean formula is unsatisfiable, the HOL formula ϕ does not have a model of a certain size.
- If ϕ has the finite model property, we can test all models up to the required size.
- If no model is found, $\neg \phi$ must be provable.

Difficult to implement ... let's only look at *Boolean formulae* for now.

Deciding Boolean Formulae with zChaff



The Algorithm

Preprocessing:

- No conversion from HOL is necessary, only from Boolean logic into CNF.
- But the conversion must be *proof-generating*, i.e. return a theorem $\phi = \phi_{CNF}$.

The Algorithm

Preprocessing:

- No conversion from HOL is necessary, only from Boolean logic into CNF.
- But the conversion must be *proof-generating*, i.e. return a theorem $\phi = \phi_{\text{CNF}}$.

Proof reconstruction:

- zChaff returns a resolution-style proof of unsatisfiability.
- The proof is replayed in Isabelle/HOL to derive $\neg \phi$.

Performance

- Isabelle is several orders of magnitude slower than zverify_df.
- However, zChaff vs. auto/blast/fast ...
 - 42 propositional problems in TPTP, v2.6.0
 - 19 "easy" problems, solved in less than a second each by auto, blast, fast, and zchaff_tac
 - 23 harder problems

Performance

Problem	Status	auto	blast	fast	zChaff
MSC007-1.008	unsat.	X	X	X	726.5
NUM285-1	sat.	X	X	X	0.2
PUZ013-1	unsat.	0.5	X	5.0	0.1
PUZ014-1	unsat.	1.4	X	6.1	0.1
PUZ015-2.006	unsat.	X	X	X	10.5
PUZ016-2.004	sat.	X	X	X	0.3
PUZ016-2.005	unsat.	X	X	X	1.6
PUZ030-2	unsat.	X	X	X	0.7
PUZ033-1	unsat.	0.2	6.4	0.1	0.1
SYN001-1.005	unsat.	X	X	X	0.4
SYN003-1.006	unsat.	0.9	X	1.6	0.1
SYN004-1.007	unsat.	0.3	822.2	2.8	0.1
SYN010-1.005.005	unsat.	X	X	X	0.4
SYN086-1.003	sat.	X	X	X	0.1
SYN087-1.003	sat.	X	X	X	0.1
SYN090-1.008	unsat.	13.8	X	X	0.5
SYN091-1.003	sat.	X	X	X	0.1
SYN092-1.003	sat.	X	X	X	0.1
SYN093-1.002	unsat.	1290.8	16.2	1126.6	0.1
SYN094-1.005	unsat.	X	X	X	0.8
SYN097-1.002	unsat.	X	19.2	X	0.2
SYN098-1.002	unsat.	X	X	X	0.4
SYN302-1.003	sat.	X	X	X	0.4

Conclusions and Future Work

- Finite countermodels for HOL formulae
- A fast decision procedure for Boolean formulae

- Further optimizations, benchmarks
- A SAT-based decision procedure for a fragment of HOL
- Integration of external model generators

