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Isabelle

Isabelle is a generic proof assistant:

Highly flexible

Interactive

Automatic proof procedures

Advanced user interface

Readable proofs

Large theories of formal mathematics
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Bounded Model Generation

Theorem proving: from formulae to proofs

Bounded model generation: from formulae to models

Input
formula

valid?

yes

no

Proof
Counter−
model

Applications:

Finding counterexamples to false conjectures

Showing the consistency of a specification

Solving open mathematical problems

Guiding resolution-based provers
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Isabelle/HOL

HOL: higher-order logic based on Church’s simple theory of
types (1940)

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2

Two logical constants:

=⇒ �

→

�

→

� , =σ→σ→

�

Other constants, e.g.
True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!

are definable.
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The Semantics of HOL

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable α a
non-empty set Dα.

Semantics of types:

D(B) = {>,⊥}

D(α) = Dα

D(σ1 → σ2) = D(σ2)
D(σ1)
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The Semantics of HOL (2)

A variable assignment A maps each variable xσ to an
element A(xσ) in D(σ).

Semantics of terms:

[[xσ]]AD = A(xσ)

[[(tσ′→σ tσ′)σ]]AD = [[tσ′→σ]]AD([[tσ′ ]]AD)

[[(λxσ1
. tσ2

)σ1→σ2
]]AD is the function that sends each d in

D(σ1) to [[tσ2
]]
A[xσ1

7→d]
D

=⇒ �

→

�

→

� ,=σ→σ→

� : implication, equality

Hence the semantics of a term is an element of the set
denoted by the term’s type.
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Overview

Input: HOL formula φ

1. Fix a finite environment D.

2. Translate φ into a Boolean formula that is satisfiable iff
[[φ]]AD = > for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for φ, or “no model found”
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Fixing a Finite Environment

Fix a positive integer for every type variable that occurs in
the typing of φ.

Every type then has a finite size:

|B| = 2

|α| is given by the environment

|σ1 → σ2| = |σ2|
|σ1|

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.
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The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat,
. . . ) are supported.

Efficiency

Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.

Easy installation

Compatibility

Fast enough for small examples
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Some Extensions

Sets are interpreted as characteristic functions.

σ set ∼= σ → B

x ∈ P ∼= P x

{x. P x} ∼= P

Non-recursive datatypes can be interpreted in a finite
model.

(α1, . . . , αn)σ ::= C1 σ1
1 . . . σ1

m1
| . . . |Ck σk

1 . . . σk
mk

|(α1, . . . , αn)σ| =
∑k

i=1

∏mi

j=1 |σ
i
j |

Examples: option, sum, product types
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Some Extensions

Recursive datatypes are restricted to initial fragments.

Examples: nat, σ list, lambdaterm

nat1 = {0}, nat2 = {0, 1}, nat3 = {0, 1, 2}, . . .

This works for datatypes that occur only positively.

Datatype constructors and recursive functions can be
interpreted as partial functions.

Examples: Sucnat→nat, +nat→nat→nat, @σlist→σlist→σlist

3-valued logic: true, false, unknown

Axiomatic type classes introduce additional axioms that
must be satisfied by the model.

Records and inductively defined sets can be treated as well.
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Soundness and Completeness

If the SAT solver is sound/complete, we have ...

Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Minimality : The model found is a smallest model for the
given formula.
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“No Model Found”

Input
formula

Preprocessing

DIMACS CNF

Assignment

Counterexample

zChaff

yes no

Isabelle

?

satisfiable?
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Unsatisfiability – Helpful at All?

If the Boolean formula is unsatisfiable, the HOL formula
φ does not have a model of a certain size.

If φ has the finite model property, we can test all models
up to the required size.

If no model is found, ¬φ must be provable.

Difficult to implement . . . let’s only look at Boolean formulae
for now.
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Deciding Boolean Formulae with zChaff

Input
formula

Preprocessing

Theorem reconstruction
Proof

Trace

satisfiable?

DIMACS CNF

Assignment

Counterexample

zChaff

yes no

Isabelle
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The Algorithm

Preprocessing:

No conversion from HOL is necessary, only from
Boolean logic into CNF.

But the conversion must be proof-generating, i.e. return
a theorem φ = φCNF.

Proof reconstruction:

zChaff returns a resolution-style proof of unsatisfiability.

The proof is replayed in Isabelle/HOL to derive ¬φ.
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Performance

Isabelle is several orders of magnitude slower than
zverify_df.

However, zChaff vs. auto/blast/fast . . .

42 propositional problems in TPTP, v2.6.0
19 “easy” problems, solved in less than a second
each by auto, blast, fast, and zchaff_tac
23 harder problems
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Performance

Problem Status auto blast fast zChaff
MSC007-1.008 unsat. x x x 726.5
NUM285-1 sat. x x x 0.2
PUZ013-1 unsat. 0.5 x 5.0 0.1
PUZ014-1 unsat. 1.4 x 6.1 0.1
PUZ015-2.006 unsat. x x x 10.5
PUZ016-2.004 sat. x x x 0.3
PUZ016-2.005 unsat. x x x 1.6
PUZ030-2 unsat. x x x 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYN001-1.005 unsat. x x x 0.4
SYN003-1.006 unsat. 0.9 x 1.6 0.1
SYN004-1.007 unsat. 0.3 822.2 2.8 0.1
SYN010-1.005.005 unsat. x x x 0.4
SYN086-1.003 sat. x x x 0.1
SYN087-1.003 sat. x x x 0.1
SYN090-1.008 unsat. 13.8 x x 0.5
SYN091-1.003 sat. x x x 0.1
SYN092-1.003 sat. x x x 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. x x x 0.8
SYN097-1.002 unsat. x 19.2 x 0.2
SYN098-1.002 unsat. x x x 0.4
SYN302-1.003 sat. x x x 0.4
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Conclusions and Future Work

Finite countermodels for HOL formulae

A fast decision procedure for Boolean formulae

Further optimizations, benchmarks

A SAT-based decision procedure for a fragment of HOL

Integration of external model generators

. . .
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