
λ →

∀
=Isa

be
lle

β
α

HOL

Bounded Model Generation for
Isabelle/HOL

and Related Applications of SAT Solvers in
Interactive Theorem Proving

Tjark Weber

webertj@in.tum.de

Winterhütte, März 2005

Bounded Model Generation for Isabelle/HOL – p.1/19

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle

Isabelle is a generic proof assistant:

Highly flexible

Interactive

Automatic proof procedures

Advanced user interface

Readable proofs

Large theories of formal mathematics

Bounded Model Generation for Isabelle/HOL – p.2/19

λ →

∀
=Isa

be
lle

β
α

HOL

Bounded Model Generation

Theorem proving: from formulae to proofs

Bounded model generation: from formulae to models

Input
formula

valid?

yes

no

Proof
Counter−
model

Applications:

Finding counterexamples to false conjectures

Showing the consistency of a specification

Solving open mathematical problems

Guiding resolution-based provers

Bounded Model Generation for Isabelle/HOL – p.3/19

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle/HOL

HOL: higher-order logic based on Church’s simple theory of
types (1940)

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2

Two logical constants:

=⇒ �

→

�

→

� , =σ→σ→

�

Other constants, e.g.
True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!

are definable.

Bounded Model Generation for Isabelle/HOL – p.4/19

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle/HOL

HOL: higher-order logic based on Church’s simple theory of
types (1940)

Simply-typed λ-calculus:

Types: σ ::= B | α | σ → σ

Terms: tσ ::= xσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2

Two logical constants:

=⇒ �

→

�

→

� , =σ→σ→

�

Other constants, e.g.
True | False | ¬ | ∧ | ∨ | ∀ | ∃ | ∃!

are definable.

Bounded Model Generation for Isabelle/HOL – p.4/19

λ →

∀
=Isa

be
lle

β
α

HOL

The Semantics of HOL

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable α a
non-empty set Dα.

Semantics of types:

D(B) = {>,⊥}

D(α) = Dα

D(σ1 → σ2) = D(σ2)
D(σ1)

Bounded Model Generation for Isabelle/HOL – p.5/19

λ →

∀
=Isa

be
lle

β
α

HOL

The Semantics of HOL

Set-theoretic semantics:

Types denote certain sets.

Terms denote elements of these sets.

An environment D assigns to each type variable α a
non-empty set Dα.

Semantics of types:

D(B) = {>,⊥}

D(α) = Dα

D(σ1 → σ2) = D(σ2)
D(σ1)

Bounded Model Generation for Isabelle/HOL – p.5/19

λ →

∀
=Isa

be
lle

β
α

HOL

The Semantics of HOL (2)

A variable assignment A maps each variable xσ to an
element A(xσ) in D(σ).

Semantics of terms:

[[xσ]]AD = A(xσ)

[[(tσ′→σ tσ′)σ]]AD = [[tσ′→σ]]AD([[tσ′]]AD)

[[(λxσ1
. tσ2

)σ1→σ2
]]AD is the function that sends each d in

D(σ1) to [[tσ2
]]
A[xσ1

7→d]
D

=⇒ �

→

�

→

� ,=σ→σ→

� : implication, equality

Hence the semantics of a term is an element of the set
denoted by the term’s type.

Bounded Model Generation for Isabelle/HOL – p.6/19

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

Input: HOL formula φ

1. Fix a finite environment D.

2. Translate φ into a Boolean formula that is satisfiable iff
[[φ]]AD = > for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for φ, or “no model found”

Bounded Model Generation for Isabelle/HOL – p.7/19

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

Input: HOL formula φ

1. Fix a finite environment D.

2. Translate φ into a Boolean formula that is satisfiable iff
[[φ]]AD = > for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for φ, or “no model found”

Bounded Model Generation for Isabelle/HOL – p.7/19

λ →

∀
=Isa

be
lle

β
α

HOL

Fixing a Finite Environment

Fix a positive integer for every type variable that occurs in
the typing of φ.

Every type then has a finite size:

|B| = 2

|α| is given by the environment

|σ1 → σ2| = |σ2|
|σ1|

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.

Bounded Model Generation for Isabelle/HOL – p.8/19

λ →

∀
=Isa

be
lle

β
α

HOL

The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat,
. . .) are supported.

Efficiency

Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.

Easy installation

Compatibility

Fast enough for small examples

Bounded Model Generation for Isabelle/HOL – p.9/19

λ →

∀
=Isa

be
lle

β
α

HOL

The SAT Solver

Several external SAT solvers (zChaff, BerkMin, Jerusat,
. . .) are supported.

Efficiency

Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.

Easy installation

Compatibility

Fast enough for small examples

Bounded Model Generation for Isabelle/HOL – p.9/19

λ →

∀
=Isa

be
lle

β
α

HOL

Some Extensions

Sets are interpreted as characteristic functions.

σ set ∼= σ → B

x ∈ P ∼= P x

{x. P x} ∼= P

Non-recursive datatypes can be interpreted in a finite
model.

(α1, . . . , αn)σ ::= C1 σ1
1 . . . σ1

m1
| . . . |Ck σk

1 . . . σk
mk

|(α1, . . . , αn)σ| =
∑k

i=1

∏mi

j=1 |σ
i
j |

Examples: option, sum, product types

Bounded Model Generation for Isabelle/HOL – p.10/19

λ →

∀
=Isa

be
lle

β
α

HOL

Some Extensions

Recursive datatypes are restricted to initial fragments.

Examples: nat, σ list, lambdaterm

nat1 = {0}, nat2 = {0, 1}, nat3 = {0, 1, 2}, . . .

This works for datatypes that occur only positively.

Datatype constructors and recursive functions can be
interpreted as partial functions.

Examples: Sucnat→nat, +nat→nat→nat, @σlist→σlist→σlist

3-valued logic: true, false, unknown

Axiomatic type classes introduce additional axioms that
must be satisfied by the model.

Records and inductively defined sets can be treated as well.

Bounded Model Generation for Isabelle/HOL – p.11/19

λ →

∀
=Isa

be
lle

β
α

HOL

Soundness and Completeness

If the SAT solver is sound/complete, we have ...

Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

Minimality : The model found is a smallest model for the
given formula.

Bounded Model Generation for Isabelle/HOL – p.12/19

λ →

∀
=Isa

be
lle

β
α

HOL

“No Model Found”

Input
formula

Preprocessing

DIMACS CNF

Assignment

Counterexample

zChaff

yes no

Isabelle

?

satisfiable?

Bounded Model Generation for Isabelle/HOL – p.13/19

λ →

∀
=Isa

be
lle

β
α

HOL

Unsatisfiability – Helpful at All?

If the Boolean formula is unsatisfiable, the HOL formula
φ does not have a model of a certain size.

If φ has the finite model property, we can test all models
up to the required size.

If no model is found, ¬φ must be provable.

Difficult to implement . . . let’s only look at Boolean formulae
for now.

Bounded Model Generation for Isabelle/HOL – p.14/19

λ →

∀
=Isa

be
lle

β
α

HOL

Deciding Boolean Formulae with zChaff

Input
formula

Preprocessing

Theorem reconstruction
Proof

Trace

satisfiable?

DIMACS CNF

Assignment

Counterexample

zChaff

yes no

Isabelle

Bounded Model Generation for Isabelle/HOL – p.15/19

λ →

∀
=Isa

be
lle

β
α

HOL

The Algorithm

Preprocessing:

No conversion from HOL is necessary, only from
Boolean logic into CNF.

But the conversion must be proof-generating, i.e. return
a theorem φ = φCNF.

Proof reconstruction:

zChaff returns a resolution-style proof of unsatisfiability.

The proof is replayed in Isabelle/HOL to derive ¬φ.

Bounded Model Generation for Isabelle/HOL – p.16/19

λ →

∀
=Isa

be
lle

β
α

HOL

The Algorithm

Preprocessing:

No conversion from HOL is necessary, only from
Boolean logic into CNF.

But the conversion must be proof-generating, i.e. return
a theorem φ = φCNF.

Proof reconstruction:

zChaff returns a resolution-style proof of unsatisfiability.

The proof is replayed in Isabelle/HOL to derive ¬φ.

Bounded Model Generation for Isabelle/HOL – p.16/19

λ →

∀
=Isa

be
lle

β
α

HOL

Performance

Isabelle is several orders of magnitude slower than
zverify_df.

However, zChaff vs. auto/blast/fast . . .

42 propositional problems in TPTP, v2.6.0
19 “easy” problems, solved in less than a second
each by auto, blast, fast, and zchaff_tac
23 harder problems

Bounded Model Generation for Isabelle/HOL – p.17/19

λ →

∀
=Isa

be
lle

β
α

HOL

Performance

Problem Status auto blast fast zChaff
MSC007-1.008 unsat. x x x 726.5
NUM285-1 sat. x x x 0.2
PUZ013-1 unsat. 0.5 x 5.0 0.1
PUZ014-1 unsat. 1.4 x 6.1 0.1
PUZ015-2.006 unsat. x x x 10.5
PUZ016-2.004 sat. x x x 0.3
PUZ016-2.005 unsat. x x x 1.6
PUZ030-2 unsat. x x x 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYN001-1.005 unsat. x x x 0.4
SYN003-1.006 unsat. 0.9 x 1.6 0.1
SYN004-1.007 unsat. 0.3 822.2 2.8 0.1
SYN010-1.005.005 unsat. x x x 0.4
SYN086-1.003 sat. x x x 0.1
SYN087-1.003 sat. x x x 0.1
SYN090-1.008 unsat. 13.8 x x 0.5
SYN091-1.003 sat. x x x 0.1
SYN092-1.003 sat. x x x 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. x x x 0.8
SYN097-1.002 unsat. x 19.2 x 0.2
SYN098-1.002 unsat. x x x 0.4
SYN302-1.003 sat. x x x 0.4

Bounded Model Generation for Isabelle/HOL – p.18/19

λ →

∀
=Isa

be
lle

β
α

HOL

Conclusions and Future Work

Finite countermodels for HOL formulae

A fast decision procedure for Boolean formulae

Further optimizations, benchmarks

A SAT-based decision procedure for a fragment of HOL

Integration of external model generators

. . .

Bounded Model Generation for Isabelle/HOL – p.19/19

	Isabelle
	Bounded Model Generation
	Isabelle/HOL
	The Semantics of HOL
	The Semantics of HOL (2)
	Overview
	Fixing a Finite Environment
	The SAT Solver
	Some Extensions
	Some Extensions
	Soundness and Completeness
	{``}No Model Found{''}
	Unsatisfiability~-- Helpful at All?
	Deciding Boolean Formulae with zChaff
	The Algorithm
	Performance
	Performance
	Conclusions and Future Work

