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|sabelle

-

Isabelle is a generic proof assistant:
# Highly flexible

Interactive

Automatic proof procedures
Advanced user interface
Readable proofs

© o o o 0

Large theories of formal mathematics
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Bounded Model Generation

-

Theorem proving: from formulae to proofs
Bounded model generation: from formulae to models

no
Input valid?
formula
yes i
Proof Counter—
model

# Finding counterexamples to false conjectures

Applications:

# Showing the consistency of a specification
# Solving open mathematical problems
# Guiding resolution-based provers J
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|sabelle/HOL

. -

HOL: higher-order logic based on Church’s simple theory o
types (1940)

Simply-typed \-calculus:

® Types.oc::=B|la|loc—o0o

® Terms: t, = a5 | (tor—oto)o | Aoy toy)oy—om

Two logical constants:

®» —B BBy —c—0c—B
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|sabelle/HOL

. -

HOL: higher-order logic based on Church’s simple theory o
types (1940)

Simply-typed \-calculus:

® Types.oc::=B|la|loc—o0o

® Terms: t, = a5 | (tor—oto)o | Aoy toy)oy—om

Two logical constants:

®» —B BBy —c—0c—B

Other constants, e.g.
True |False || AV V]I
are definable.
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-

The Semantics of HOL

Set-theoretic semantics:
# Types denote certain sets.
® Terms denote elements of these sets.



The Semantics of HOL
-

Set-theoretic semantics:

# Types denote certain sets.

# Terms denote elements of these sets.

An environment D assigns to each type variable o a
non-empty set D,,.

Semantics of types:

®» D(B)={T, L1}

® D(a)=D,

® D(01 — 03) = D(02)"\V

% .
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The Semantics of HOL (2)

o N

A variable assignment A maps each variable =, to an
element A(x,) In D(o).

Semantics of terms:

® [z,]h = Alz,)

8 [(tor—oto)olp = [to—olp([to] )

® [(\z,,. t@)gﬁ@]]é IS the function that sends each d In
D(o) to [[t@]]g[x"ﬁd]

® —p 5 B, —»_o_p. iImplication, equality

Hence the semantics of a term is an element of the set
denoted by the term’s type.

% .

Bounded Model Generation for Isabelle/HOL — p.6/19



Overview

-

Input: HOL formula ¢

Output: either a model for ¢, or “no model found”

eH
e\ 0L
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Overview

o N

Input: HOL formula ¢

1. Fix a finite environment D.

2. Translate ¢ into a Boolean formula that is satisfiable iff
[[gb}]é — T for some variable assignment A.

3. Use a SAT solver to search for a satisfying assignment.

4. If a satisfying assignment was found, compute from it
the variable assignment A. Otherwise repeat for a
larger environment.

Output: either a model for ¢, or “no model found”
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Fixing a Finite Environment

o N

Fix a positive integer for every type variable that occurs in
the typing of ¢.

Every type then has a finite size:
o Bl =2
# |«o] IS given by the environment

Finite model generation is a generalization of satisfiability
checking, where the search tree is not necessarily binary.

% .
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The SAT Solver

o N

Several external SAT solvers (zChaff, BerkMin, Jerusat,
...) are supported.

o Efficiency
#® Advances in SAT solver technology are “for free”

% .
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The SAT Solver

o N

Several external SAT solvers (zChaff, BerkMin, Jerusat,
.. ) are supported.

o Efficiency
#® Advances in SAT solver technology are “for free”

Simple internal solvers are available as well.
# Easy installation

#» Compatibility

# Fast enough for small examples

eH
e\ OL

e

Bounded Model Generation for Isabelle/HOL — p.9/19



Some Extensions

-

Sets are interpreted as characteristic functions.
®» o0 set 20— B

®» reP=Px

® {r.Px}=P

Non-recursive datatypes can be interpreted in a finite
model.

k

® (ay,...,an)0u=Crof...00 |...|Croy...0k

k i
® [(a1,...,on)0| =37 TTZ

# Examples: option, sum, product types

aé-\
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Some Extensions

fRecursive datatypes are restricted to initial fragments. T
# Examples: nat, o i st, | anbdat erm
» nat'!={0}, nat?={0,1}, nat 3 ={0,1,2},...
# This works for datatypes that occur only positively.

Datatype constructors and recursive functions can be
Interpreted as partial functions.

> Examp|931 Sucnat—mat; +nat—nat—nats @Jlist—>alist—>alist

# 3-valued logic: true, false, unknown

Axiomatic type classes introduce additional axioms that
must be satisfied by the model.

L» Records and inductively defined sets can be treated as weIIJ
P
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Soundness and Completeness

-

# Soundness: The algorithm returns “model found” only if
the given formula has a finite model.

-

If the SAT solver is sound/complete, we have ...

#® Completeness: If the given formula has a finite model,
the algorithm will find it (given enough time).

# Minimality: The model found is a smallest model for the
given formula.

|
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(2 HQL

M3
qiﬂ'

“No Model Found”

| sabelle

I nput

DIMACS CNF

zChaff

~N

Preprocessin
formula v 9

Assignment

satisfiable?

yes no

Counterexample) =

? <

|
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Unsatisfiability — Helpful at All?

o N

# |[f the Boolean formula is unsatisfiable, the HOL formula
¢ does not have a model of a certain size.

# If ¢ has the finite model property, we can test all models
up to the required size.

# If no model is found, —¢ must be provable.

Difficult to implement ... let’s only look at Boolean formulae
for now.

% .
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Deciding Boolean Formulae with zChaff

| sabelle

DIMACSCNF

zChaff

( N\
I nput I
/ formula /L><Preprocng

Assignment

yes

™~

Counterexample) =

Trace

VMM

no

Pr oof
Theorem reconstruction
g J

a

-

|
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The Algorithm

o N

Preprocessing:

# No conversion from HOL is necessary, only from
Boolean logic into CNF.

# But the conversion must be proof-generating, i.e. return
a theorem ¢ = ocnp.

\

B
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The Algorithm

o N

Preprocessing:

# No conversion from HOL is necessary, only from
Boolean logic into CNF.

# But the conversion must be proof-generating, I.e. return
a theorem ¢ = ocnp.

Proof reconstruction:

# zChaff returns a resolution-style proof of unsatisfiability.

#® The proof is replayed in Isabelle/HOL to derive —¢.

eH
e\ OL

e
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Performance

o N

# Isabelle is several orders of magnitude slower than
zverify df.

® However, zChaff vs. auto/blast/fast . ..

s 42 propositional problems in TPTP, v2.6.0

s 19 “easy” problems, solved in less than a second
each by auto, blast, fast, and zchaff tac
s 23 harder problems

% .

Bounded Model Generation for Isabelle/HOL — p.17/19



(2 H()L

M3
qi‘}t.,’-'

Performance

Problem Status auto blast fast zChaff
MSCO007-1.008 unsat. X X X 726.5
NUM285-1 sat. X X X 0.2
PUZ013-1 unsat. 0.5 X 5.0 0.1
PUZ014-1 unsat. 1.4 X 6.1 0.1
PUZ015-2.006 unsat. X X X 10.5
PUZ016-2.004 sat. X X X 0.3
PUZ016-2.005 unsat. X X X 1.6
PUZ030-2 unsat. X X X 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYNOO1-1.005 unsat. X X X 0.4
SYNO0O03-1.006 unsat. 0.9 X 1.6 0.1
SYNO0O04-1.007 unsat. 0.3 822.2 2.8 0.1
SYNO010-1.005.005 | unsat. X X X 0.4
SYNO086-1.003 sat. X X X 0.1
SYNO087-1.003 sat. X X X 0.1
SYNO090-1.008 unsat. 13.8 X X 0.5
SYNO091-1.003 sat. X X X 0.1
SYNO092-1.003 sat. X X X 0.1
SYNO093-1.002 unsat. | 1290.8 16.2 1126.6 0.1
SYNO094-1.005 unsat. X X X 0.8
SYNO097-1.002 unsat. X 19.2 X 0.2
SYNO098-1.002 unsat. X X X 0.4
SYN302-1.003 sat. X X X 0.4

|
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Conclusions and Future Work

o N

# Finite countermodels for HOL formulae
# A fast decision procedure for Boolean formulae

Further optimizations, benchmarks
A SAT-based decision procedure for a fragment of HOL
Integration of external model generators

© o o o
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