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Interactive Theorem Proving

Interactive theorem proving allows to verify complex systems
with respect to strong specifications.



Some Landmark Formalizations

Kepler conjecture

Four color theorem

I Odd order theorem

I . . .

OS kernel (seL4)

ML compiler (CakeML)

I C compiler (CompCert)

I . . .



Proof Assistants

Proof assistants are software tools that assist with the
development of formal (machine-readable) models and proofs.

ACL2 Agda Coq HOL4

Isabelle Lean Mizar PVS

. . . and many others



Who Guards the Guardians?

Proof assistants are the guardians of truth. But who guards the
guardians?

If you could prove False in your favorite proof assistant, you could
prove anything.



Inconsistency Club

I Coq 8.4pl2 (Maxime Dénès and Daniel Scheple, 2013)

Hypothesis Heq : (False → False) = True.
Fixpoint contradiction (u : True) : False := contradiction

( match Heq in ( = T) return T with | eq refl =>
fun f : False ⇒ match f with end end ).

Lemma foo : provable prop extensionality → False .
<four-line proof>

I Isabelle 2013-2 (Onďrej Kunčar, 2014)

consts c :: bool
typedef T = {True, c} by blast
defs c bool def : c :: bool ≡ ¬(∀(x :: T) y . x = y)

lemma aux: (∀(x :: T) y . x = y) ←→ c
<one-line proof>

theorem False
<one-line proof>

(Examples courtesy of Andrei Popescu.)



Does (In)Consistency Matter?

Maybe not all that much:

Honest users don’t exploit inconsistencies in proofs.

Bugs that allow to prove False are usually easily patched.

But:

Automated provers know nothing about honesty.

The trust story for proof assistants becomes complicated.

I am [...] part of the team that attempts to get a
common criteria (CC EAL5) evaluation for PikeOS
through, where the models and proofs were done
with Isabelle. [...] I had a lengthy debate with Eval-
uators [...] which became aware [of a proof of False].

Burkhart Wolff



Threats to Consistency

I Implementation bugs in the user interface or tool layer

I Implementation bugs in the logical kernel

I Logical flaws

I Axioms

I Inference rules

I Definitional mechanism
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The Definitional Mechanism



Introducing New Symbols

I The user asserts axioms that describe properties of the new
symbols.

I Unchecked by the proof assistant
I Very flexible
I Users frequently (inadvertently) write inconsistent axioms

I The user states definitions of the new symbols.

I Checked by the proof assistant
I Cannot introduce inconsistencies (or can they?)
I Less expressive than arbitrary axioms



The Definitional Mechanism

Users are strongly encouraged to work definitionally, rather than
axiomatically. Popular proof assistants strive to make the
definitional mechanism as expressive and convenient as possible.

Example

datatype ’a list = Nil | Cons ’a ’a list

fun append :: ’a list ⇒ ’a list ⇒ ’a list
where

append Nil ys = ys
| append (Cons x xs) ys = Cons x (append xs ys)



Overloading

Isabelle/HOL implements higher-order logic with overloading.
Users can declare (polymorphic) constants, and later define
different instances.

Example

consts size :: ’a → nat

overloading size prod ≡ size :: ’a×’b → nat
size list ≡ size :: ’a list → nat

begin
fun size prod where size prod (a ,b) = size a + size b
fun size list where size list xs = sum list (map size xs)

end

Overloading enables Haskell-style type classes.



Checks for (Overloaded) Definitions

1. Definitions must be orthogonal, i.e., must not have a common
instance.

Example (BAD)

overloading size boolpair ≡ size :: bool× ’a → nat
size pairbool ≡ size :: ’a × bool → nat

2. There must be no cyclic dependencies between symbols.

Example (BAD)

consts c :: bool
typedef T = {True, c} by blast
defs c bool def : c :: bool ≡ ¬(∀(x :: T) y . x = y)

Here, cbool  T cbool.

Are these two checks sufficient to guarantee consistency (and
stronger properties, e.g., conservativity)?
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Results



Model-theoretic Conservativity

Theorem

Let T , T ′ be definitional theories with T ⊆ T ′. Let U be the set
of symbols defined in T ′ \ T .
Every model M of T can be extended to a model M′ of T ′ such
that M and M′ agree on the interpretation of all symbols in FU .

[LSFA’17]

Corollary (Kunčar and Popescu, ITP 2015)

Every definitional theory has a model.

Corollary

Every definitional theory is consistent.
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The Independent Fragment

Definition

Let U be a set of symbols. The U-independent fragment is

FU := Symb \ {x | ∃u ∈ U, ρ. x ↓
∗
ρ(u)}

FU contains all symbols that do not depend on an instance of a
symbol in U.

Example

Consider the theory {cα ≡ dα, dbool ≡ True} and U = {dbool}:
I dbool /∈ FU because dbool ↓

∗
dbool

I cbool /∈ FU because cbool  ↓ dbool because cα  dα

I cbool→bool ∈ FU because cbool→bool�
�� ↓
∗

dbool
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Proof-theoretic Conservativity

Theorem

Let T , T ′ be definitional theories with T ⊆ T ′. Let U be the set
of symbols defined in T ′ \ T .
For any formula ϕ whose symbols are from FU , we have

T ` ϕ ⇐⇒ T ′ ` ϕ

Definitions are not required to prove statements that do not
depend on the newly defined symbols.

[ICTAC’20]

Example (Consistency)

Consider any definitional theory T ′. Then

∅ ` False ⇐⇒ T ′ ` False

(and since ∅ 6` False, it follows that T ′ 6` False).
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Conclusion

I For HOL with overloading, extensions by definitions are
model- and proof-theoretically conservative.

I We have generalized the model-theoretic conservativity result
to constant specifications, and mechanized it in HOL4.

[LPAR’20] [LFMTP’20]

Future work:

I A formally verified algorithm to check orthogonality of
definitions and acyclicity of the dependency relation



Thank you!

We are recruiting a 2-year post-doc to apply formal methods to
cybersecurity:

https://uu.varbi.com/se/what:job/jobID:398570/

Application deadline: May 28

https://uu.varbi.com/se/what:job/jobID:398570/
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