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Abstract. This paper describes an integration of Satis-
fiability Modulo Theories (SMT) solvers with the HOL4
theorem prover. Proof obligations are passed from the
interactive HOL4 prover to the SMT solver, which can
often prove them automatically. This makes state-of-
the-art SMT solving techniques available to users of the
HOL4 system, thereby increasing the degree of automa-
tion for a substantial fragment of its logic. We compare
a translation to Yices’s native input format with a trans-
lation to SMT-LIB format.

1 Introduction

Interactive theorem proving is a well-established approach
for formal verification of hardware and software. It can
show system correctness with mathematical certainty,
thereby providing extremely high reliability assurances.
Interactive theorem provers such as Coq [5], HOL4 [33],
Isabelle [26] and PVS [30] typically support rich speci-
fication languages, e.g., higher-order logic or dependent
type theory, enriched with facilities to define algebraic
data types, record types, recursive functions, etc. [28]
Unfortunately, interactive theorem proving is notoriously
labor intensive, thus costly and limited in its industrial
application.

On the other hand, much research has been devoted
to the development of automated reasoning algorithms.
Once considered the holy grail of artificial intelligence,
practically successful automated theorem provers are now
available for a variety of logics, perhaps most notably
for first-order [34] and propositional logic [37]. Conse-
quently, researchers have on many occasions proposed
to integrate automated provers with interactive theorem
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provers [19,31,36], thereby increasing the degree of au-
tomation available in interactive theorem proving and
ultimately enhancing its applicability.

In the past years, automated theorem provers have
emerged that support fragments of first-order logic with
equality and combinations of various (usually decidable)
background theories, e.g., linear arithmetic or theories of
data structures such as lists, arrays and bit vectors [21].
These provers are called Satisfiability Modulo Theories
(SMT) solvers. SMT solvers such as Yices [12] have nu-
merous applications, e.g., in model checking, scheduling
and compiler optimization. They are also of particular
value in formal verification, where specifications and ver-
ification conditions can often be expressed as SMT for-
mulas.

We present an integration of SMT solvers with the
HOL4 theorem prover. Proof obligations that arise in
HOL4 are translated from higher-order logic (see Sect. 2)
into the SMT solver’s input language. We have imple-
mented translations into Yices and SMT-LIB 1.2 [32]
format. In particular the Yices translation can handle
a substantial fragment of higher-order logic, including
propositional connectives, uninterpreted functions, vari-
ous arithmetic and bit-vector operations, but also quan-
tifiers and λ-terms. The SMT-LIB translation is more
restrictive, but provides support for a large number of
SMT solvers, e.g., CVC3 [3] and Z3 [11]. Both transla-
tions are described in detail in Sect. 3. We briefly present
some experiments in Sect. 4, before discussing related
work in Sect. 5. Section 6 concludes.

2 Background

The HOL4 system is an interactive theorem prover. Like
Isabelle/HOL [26], HOL Light [15], and several other
theorem provers for higher-order logic, it is based on
Church’s simple theory of types [8]. Thus, its logic is
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typed. Types σ are given by the following grammar:

σ ::= α | (σ1, . . . , σn)c

Here α ranges over an infinite set of type variables, and
c ranges over type constructors (of arity n ≥ 0). Type
constructors include bool (of arity 0) and the function
space constructor → (of arity 2). The latter is usually
written in infix notation and associates to the right: e.g.,
α→ β → γ is short for (α, (β, γ)→)→.

Terms t are explicitly typed. They are given by the
following grammar:

t ::= xσ | cσ | (tσ→σ′ tσ)σ′ | (λxσ. tσ′)σ→σ′

Thus, a term is either an (explicitly typed) variable, a
constant, an application, or a λ-abstraction. Constants
include equality, propositional connectives, quantifiers,
etc. We frequently omit type annotations and unneces-
sary parentheses when they can be deduced from the
context, and we assume that application is left-associa-
tive: e.g., f x y is short for ((f x) y).

The HOL4 system is implemented in Standard ML,
a typed functional programming language with an ad-
vanced module system [24]. Types and terms of higher-
order logic are implemented as Standard ML data types.1

Formulas are simply terms of type bool.
Formulas are stated as conjectures by the user. They

become proof obligations that are then proved through a
series of tactic invocations. Tactics are functions written
in Standard ML that, when applied to a proof obligation,
yield a (possibly empty) list of new proof obligations.
Thus, proving ` ϕ ∧ ψ, for instance, can be reduced to
proving ` ϕ and proving ` ψ. Of course tactics can be
much more powerful than this trivial example shows,
implementing complex decision procedures or rewriting
strategies.

Users of the HOL4 system can define their own tac-
tics. This paper describes a tactic that, given a proof
obligation ϕ in HOL4, translates ¬ϕ into the input lan-
guage of an SMT solver, invokes the solver, and if the
SMT solver determines the negation to be unsatisfiable,
establishes ϕ as a theorem in HOL4. The overall archi-
tecture is shown in Fig. 1. Communication with the SMT
solver is via files. Several leading SMT solvers provide
C APIs that could be used for a more direct integra-
tion, but only at the cost of portability: foreign function
interface libraries like Huelsbergen’s [18] that achieve in-
teroperability between Standard ML and C are compiler-
specific.

The resulting theorem is tagged with an “oracle”
string to indicate that its derivation was not checked by
HOL4’s own inference kernel. The HOL4 system stands
in the tradition of Milner’s LCF theorem prover [14] and

1 Extending the shown term grammar, HOL4 internally uses
de Bruijn indexes and explicit substitutions to represent λ-terms.
Externally, however, the interface is to a name-carrying syntax.

implements theorems as an abstract data type. New the-
orems can be obtained only through a fixed set of op-
erations on this data type, corresponding to the axiom
schemata and inference rules of higher-order logic. This
design greatly reduces the trusted code base: potentially
complex decision procedures cannot derive inconsistent
theorems, provided the theorem data type itself is im-
plemented correctly.

In contrast, the SMT-based tactic presented here re-
quires that one trusts the SMT solver and our interface
code to produce correct results. A bug in the SMT solver
(or in the interface) could potentially lead to inconsistent
theorems in the HOL4 system—tagged, however, with
said oracle string. More recently, we have addressed this
issue by implementing proof reconstruction [6,7]: proofs
of unsatisfiability found by the SMT solver Z3 are trans-
lated into HOL4 inferences, thereby eliminating the or-
acle tag and deriving a theorem with the same degree
of confidence that is attributed to any other theorem
proved in the HOL4 system proper.

3 Translation

HOL4 supports higher-order logic, whereas SMT solvers
typically support (fragments of) first-order logic over
various background theories, e.g., linear arithmetic, ar-
rays, bit vectors. Thus, proof obligations from the HOL4
system must be translated into the input language of
the SMT solver. We have implemented translations into
Yices’s native input format [12], and into SMT-LIB for-
mat [32]. Their description constitutes the main part of
this paper. We use italics for variables of higher-order
logic, sans-serif for specific type constructors and con-
stants, and typewriter font for SMT solver input.

The translations are comparatively simple. We only
aim to support the fragment of higher-order logic that
is directly backed by SMT solvers. No sophisticated en-
coding of higher-order into first-order logic is performed,
and since SMT solvers support sorted first-order logic,
no encoding of type information into terms is neces-
sary. Thus, many of the complications that are dealt
with in Meng’s and Paulson’s integration of first-order
provers with Isabelle/HOL [23] do not arise. However,
the translations are not quite as trivial as the gram-
mars for types and terms given in Sect. 2—with just two
and four cases, respectively—might suggest. Our goal
is to translate HOL4’s types and constants to seman-
tically corresponding types and constants in the SMT
world. Therefore, different type constructors and con-
stants cannot be treated uniformly. Also, there is the
difficulty of translating polymorphism, which is not sup-
ported by Yices or SMT-LIB: we use a technique known
as monomorphization (see Sect. 3.3.8).
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3.1 Abstraction

Both our Yices and our SMT-LIB translation employ ab-
straction as a means of dealing with terms and types that
are not supported by the respective target format. This
technique, called uninterpretation in [13], replaces all
offending sub-terms by uninterpreted constants (of the
same type as the sub-term). Likewise, offending types
are replaced by type variables. These are translated as
new “basic” (i.e., uninterpreted) types in Yices, and as
“extra sorts” in the SMT-LIB format.

As a very simple example, consider Pα→bool xα, where
P and x are variables, and α is a type variable: after
negation, this formula is translated as

(define-type a)
(define P::(-> a bool))
(define x::a)
(assert (not (P x)))

in Yices, and as

:extrasorts (a)
:extrafuns ((x a))
:extrapreds ((P a))
:formula (not (P x))

in SMT-LIB format.2 The resulting problem is easily
determined to be satisfiable by Yices; thus, no theorem
is derived in this case.

Multiple occurrences of a term (or type) are of course
replaced by the same uninterpreted constant (or sort,
respectively) each time. To this end, two dictionaries
are built during the translation that map types and
terms to their abstraction. Terms are treated modulo
α-equivalence.

The original formula is an instance of its abstraction.
Therefore, unsatisfiability of the abstracted formula im-
plies unsatisfiability of the original. Hence abstraction
is sound, in the sense that it does not lead to inconsis-
tent theorems. However, it introduces incompleteness:

2 We omit additional header data from the presentation that is
required to obtain a syntactically valid SMT-LIB file.

the SMT solver may fail to prove certain theorems and
return spurious countermodels. This is true of Yices any-
way when the input contains λ-expressions or quanti-
fiers, so we consider it a minor issue for the time being.

3.2 SMT-LIB

The SMT-LIB language [2,32] is the de facto standard
for the input format of SMT solvers. It is supported
by all major SMT solvers. Benchmarks used for the an-
nual Satisfiability Modulo Theories Competition (SMT-
COMP) are encoded in SMT-LIB format.

The SMT-LIB benchmark collection is structured in
a modular fashion, based on various theories and logics
that share a common Lisp-like syntax, but differ in their
signatures (i.e., built-in sorts, functions and predicates)
and axiomatizations, as well as in syntactic restrictions.
The SMT-LIB format is significantly less expressive than
the native input formats of various SMT solvers: e.g.,
data types and λ-terms are not supported directly, and
we make no attempt to encode them. On the other hand,
the SMT-LIB format provides support for a vast number
of SMT solvers at once.

We translate to a logic called AUFLIRA: closed linear
formulas with free function and predicate symbols over a
theory of arrays of arrays (i.e., two-dimensional arrays)
of integer index and real value.3 Clearly, one could also
implement translations to other SMT-LIB sublogics, or
dynamically choose an appropriate logic (and transla-
tion) based on the input formula.

The SMT-LIB language is first-order. Moreover, SMT-
LIB 1.2 makes a clear distinction between terms and for-
mulas. In HOL4, formulas are themselves terms (of type
bool); in SMT-LIB 1.2, this is not the case. Our trans-
lation therefore employs two functions: one to translate
formulas, another one to translate terms. These func-
tions are mutually recursive according to the produc-
tion rules of the SMT-LIB grammar. (Very recently, ver-
sion 2.0 of the SMT-LIB language was released [2]. It no

3 In our translation, we do not make use of arrays yet.
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longer makes this distinction between terms and formu-
las in its grammar, although it is still first-order. While
we are currently updating our implementation to target
SMT-LIB 2.0, this paper still describes the SMT-LIB 1.2
translation. Most translation challenges remain the same
between the two versions of the SMT-LIB language.)

3.2.1 Types

The only supported types are int and real. They are
translated to their SMT-LIB counterparts Int and Real,
respectively. All other types are left uninterpreted, i.e.,
declared as extra sorts. This also applies to type bool
when it is used as the type of a term that (according to
the SMT-LIB grammar) is not a formula.

3.2.2 Basics

The propositional constants T, F and connectives ⇐⇒ ,
=⇒ , ∨, ∧ and ¬ are translated to their SMT-LIB coun-
terparts, as is equality. (⇐⇒ and = are the same constant
in HOL4, distinguished just by their type: the former is
equality on type bool.) HOL4’s if-then-else constructs
if c then t1 else t2 and bool case t1 t2 c are translated as
if then else c t1 t2 if they occur at the formula level
(with t1 and t2 of type bool), and as ite c t1 t2 if they
occur as a term.

The Lisp-like syntax of SMT-LIB generally allows for
a simple recursive structure of our translation. A curried
application f x1 . . . xn is typically translated by look-
ing up the SMT-LIB function f corresponding to the
HOL operator f , translating each argument term xi, and
then putting the results together to obtain a single string
f x1 . . . xn. This works well for most propositional and
arithmetic operators. We perform η-expansion to elimi-
nate partial applications where necessary.

3.2.3 Arithmetic

Integer and real-number numerals are translated into
SMT-LIB notation, as are negation, addition, subtrac-
tion, multiplication on integers and reals. Comparison
operators <, ≤, >, ≥ on these types are also supported.

For certain other functions, e.g., min, max and abs,
which are not available in SMT-LIB directly, we intro-
duce suitable definitions. For instance, the proof obliga-
tion abs xint ≥ 0 is translated as

:extrafuns ((hol_int_abs Int Int) (x Int))
:assumption (forall (?x Int)

(= (hol_int_abs ?x)
(ite (< ?x 0) (- 0 ?x) ?x)))

:formula (not (>= (hol_int_abs x) 0))

This is readily determined to be unsatisfiable by several
SMT solvers.

3.2.4 Quantifiers

HOL4’s quantifiers, ∀ and ∃, are translated to their SMT-
LIB counterparts, forall and exists. For instance, the
“drinker paradox”, ∃xα. (P x =⇒ ∀yα. P y), is trans-
lated as

:extrasorts (a)
:extrapreds ((P a))
:formula (not (exists (?x a)

(implies (P ?x) (forall (?y a) (P ?y)))))

which is of course unsatisfiable. Only first-order quan-
tification is supported; higher-order quantification is ab-
stracted away.

The treatment of bound variables requires some care.
Unlike other variables that occur in the input formula,
they must not be declared as (nullary) extra functions.
Their types, however, must be declared as extra sorts,
and last not least, their names must begin with a ques-
tion mark in concrete SMT-LIB syntax.

Simultaneous quantification over several variables,
as in ∀xα yβ . P x y, in HOL4 is just syntactic sugar for
nested quantifiers, i.e., ∀xα.∀yβ . P x y. Nevertheless we
translate this formula by making use of a corresponding
feature in SMT-LIB (and likewise in Yices) that allows
simultaneous quantification.

3.2.5 Let expressions

Let expressions, e.g., let x = 1 in x > 0, in HOL4 are
syntactic sugar for LET (λx. x > 0) 1, where LET is a
polymorphic constant of type (α → β) → α → β. Let
expressions at the formula level are translated to their
SMT-LIB counterparts: e.g., the above becomes

:formula (not (let (?x 1) (> ?x 0)))

When the abbreviated expression is of type bool, SMT-
LIB’s flet construct is used instead.

Note that SMT-LIB, unlike HOL4, does not support
let expressions inside terms. Therefore, we compile the
latter away: LETM N in HOL4, by definition, is M N
(i.e., M applied to N). This is followed by β-reduction if
possible. Alternatively, one could lift let expressions out-
ward: ϕ(let x = e in t) is equivalent to let x = e in ϕ(t),
provided e does not contain any variables bound in ϕ
and x does not occur in ϕ except in t.

3.2.6 Anonymous and Higher-Order Functions

The SMT-LIB format does not support λ-abstractions.
They are therefore replaced by uninterpreted constants,
as described in Sect. 3.1, if they are not eliminated by
β-reduction. Moreover, higher-order functions or pred-
icates are not supported. Therefore, even the function
space constructor, →, is subject to abstraction when it
occurs in the argument type of a function or predicate.
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3.3 Yices

We chose Yices because it is one of the leading SMT
solvers [1], with an expressive and well-documented in-
put language. Yices has been developed cognizant of de-
duction in PVS, and its input language contains fea-
tures (e.g., λ-abstraction) not found in most other SMT
solvers. We use version 1.0.23 of Yices, its latest release
at the time of writing.

3.3.1 Types

Supported ground types include bool, num (HOL4’s type
of natural numbers, i.e., non-negative integers), int and
real. These are translated to their Yices counterparts
bool, nat, int and real, respectively. First-order and
higher-order functions are supported, as are tuples,
records, fixed-width bit-vector types and user-defined
data types, e.g., lists (see below).

3.3.2 Basics

Our Yices translation supports the same propositional
connectives as the SMT-LIB translation, i.e., T, F, ⇐⇒ ,
=⇒ , ∨, ∧ and ¬, as well as equality and if-then-else.
These are translated to their Yices counterparts true,
false, =, =>, or, and, not, as well as = and ite.

Yices has a Lisp-like input syntax, similar to SMT-
LIB. However, just like in HOL4, there is no distinction
between formulas and terms. Therefore, a single trans-
lation function suffices to translate both. ite is used for
if-then-else (regardless of whether it occurs in a formula
or a term), and = is used both for equality and equiva-
lence.

3.3.3 Arithmetic

In addition to the arithmetic types and operators that
are supported by our SMT-LIB translation (i.e., addi-
tion, subtraction, multiplication on int and real, compar-
ison operators, and min, max, abs), the Yices interface
supports natural numbers: numerals of type num, arith-
metic and comparison operators on naturals, the suc-
cessor function (SUC xnum is translated as + 1 x). Also
integer division, div, and the modulo operation, mod, are
supported (both on integers and naturals), as is division
of real numbers, /.

Because of semantic differences between some of the
latter operations in HOL4 and in Yices, the transla-
tion does not merely consist of a one-to-one mapping
from HOL4 constants to (allegedly) corresponding built-
in Yices constants. Instead, we typically have to define
corresponding constants in Yices ourselves. This is fur-
ther discussed in Sect. 3.4 below.

3.3.4 Quantifiers

Yices—and hence our translation—supports universal
and existential quantifiers of arbitrary order. They are
translated to their Yices counterparts, forall and exists.
As an example, consider the following (not universally
valid) higher-order formula: ∀fα→β .∃gβ→α.∀xα. g (f x) =
x. This is translated as

(define-type a)
(define-type b)
(assert (not (forall (f::(-> a b))

(exists (g::(-> b a))
(forall (x::a) (= (g (f x)) x))))))

which Yices currently reports as “unknown”. Generally
Yices is incomplete when quantifiers are used, and the
model that is returned for a problem with “unknown”
status may be spurious. However, Yices will not erro-
neously claim unsatisfiability; thus, soundness is not com-
promised.

3.3.5 Let expressions

In contrast to the SMT-LIB translation, our Yices inter-
face allows let expressions to occur anywhere, also inside
terms. let expressions are translated to their Yices coun-
terparts: e.g., let x = 1 in x > 0 becomes

(assert (not (let ((x 1)) (> x 0))))

Yices has no flet construct; since there is no distinction
between formulas and terms, let is also used for terms
of type bool.

3.3.6 Anonymous and Higher-Order Functions

Yices provides a lambda construct, which is used to trans-
late λ-abstractions. We first perform β-normalization in
HOL4: although this could in theory cause a blowup of
the formula, we generally expect the HOL system to be
better at dealing with λ-terms than the SMT solver. This
is followed by η-expansion, because we found that Yices
only provides partial support for partial function appli-
cations.

We do not make use of Yices’s ability to bind sev-
eral variables simultaneously. In HOL4, λxα yβ . f x y is
merely syntactic sugar for λxα. λyβ . f x y, and the func-
tion space constructor, →, always takes two arguments.
Consequently, we never use function types with more
than one domain (which are supported by Yices). In-
stead, we use currying when translating functions with
multiple arguments. Thus, assuming the return type of f
is translated as c, the type of the above λ-term will be
translated as -> a (-> b c), rather than -> a b c.

Update of a function f at position a with value b in
HOL4 is written (a=+ b) f . Thus, the update operator,
=+, is of polymorphic type α → β → (α → β) → α →
β. It is translated to its Yices counterpart: the above
expression becomes update f (a) b.
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3.3.7 Tuples

Product types α × β are mapped to their Yices coun-
terparts, tuple a b. Tuples are created by the comma
operator in HOL4; (x, y) is translated as mk-tuple x y.
Accessor functions for a tuple’s components, FST p and
SND p, are translated as select p 1 and select p 2,
respectively.

In HOL4, tuples with more than two components
are supported through right-nesting: e.g., (xα, yβ , zγ) is
merely syntactic sugar for (xα, (yβ , zγ)) of type α× (β×
γ). For ease of implementation we use the same tech-
nique when translating to Yices, and do not make use of
tuples with more than two components.4

3.3.8 Records

Record types in HOL4 are semantically equivalent to
product types, but with named field access and update.
For types that were introduced by a record type defini-
tion, such as

Hol datatype
‘person = < | employed : bool ; age : num |>‘

a corresponding type definition is generated in Yices:

(define-type person
(record employed::bool age::nat))

Our Yices interface at the moment does not support re-
cursive record types.

In HOL4, record types can be parameterized, i.e.,
depend on type arguments. Since Yices only supports
monomorphic types (over uninterpreted basic types), we
may need to create multiple copies of a parameterized
record type. For instance, if (α)foo was introduced by a
record type definition

Hol datatype ‘foo = < | bar : ’a |>‘

an occurrence of both (α)foo and (β)foo in the input
formula leads to two type definitions

(define-type a)
(define-type foo1 (record bar1::a))
(define-type b)
(define-type foo2 (record bar2::b))

In contrast to [13], where this process is called monomor-
phisation, we do not mingle string representations of its
argument types into the record type name, because this
makes it tricky to guarantee unique names. Instead, our
implementation uses freshly generated identifiers (see
Sect. 3.4).

Field selectors in HOL4 are functions named
<record type> <field>. Field access can be written with
a dot, as in x.age; however, assuming x is of type person,

4 Taking full advantage of Yices’s input language could poten-
tially improve the solver’s performance on problems that involve
tuples with many components. However, at present there are no
such problems in the HOL4 library.

this is merely syntactic sugar for person age x. It is trans-
lated to Yices as select x age.

Field updates, as in x with employed := T, are syn-
tactic sugar for more general functional field updates.
Provided x is of type person, this particular update cor-
responds to person employed fupd (K T) x, where K is
the usual combinator that drops its second argument, re-
turning its first. Since the employed field in our example
is of type bool, the update function person employed fupd
is of type (bool → bool) → person → person. We trans-
late the general form of a functional field update,
<record type> <field> fupd f x, by first translating
f (<record type> <field>x), i.e., f applied to the cur-
rent field value, performing β-reduction in HOL4 if pos-
sible. Call the resulting string fx, then the functional
update is translated as update x <field> fx in Yices.

Record literals, such as < | employed := F ; age :=
65 | >, in HOL4 are syntactic sugar for a sequence of
field updates to an arbitrary (i.e., uninterpreted) initial
record. We translate them just like this, and do not use
Yices’s mk-record feature at the moment.

3.3.9 Data types

HOL4 supports nested and mutually recursive data types.
Popular data types include the one-element type one,
disjoint sum types (with constructors INL and INR), the
option type (with constructors NONE and SOME), the
list type (with constructors NIL and CONS).

Our Yices interface supports recursion only as long
as it is not nested or mutual. (Thus, all of the abovemen-
tioned types are fully supported.) When a data type5 is
encountered in the input formula, its definition is trans-
lated to a corresponding data type definition in Yices.
For instance, the HOL4 definition of the (α)list type,

Hol datatype ‘list = NIL | CONS of ’a => list‘

becomes

(define-type a)
(define-type list (datatype NIL

(CONS hd::a tl::list)))

Note that HOL4 does not provide accessor functions.
Thus, their names (hd, tl above) do not occur else-
where and can be chosen freely, as long as they do not
clash with other identifiers. The discussion about multi-
ple copies of parametric record types (see the previous
subsection) also applies to parametric data types. We do
not use Yices’s “scalar” types: enumeration types, with
nullary constructors only. These are just a special case
of data types.

Yices automatically declares a recognizer C? for ev-
ery data type constructor C. Recognizers are predicates
on the data type; recognizer C? returns true for a given
element e of the data type if e is of the form (C ...).

5 Other than bool and num, which can also be viewed as data
types, but are supported as basic types by Yices.
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We use recognizers to implement case distinction: e.g.,
list case b f l, the case constant on lists, is translated
as ite (NIL? l) b (f (hd l) (tl l)). Case distinc-
tions on data types with three or more constructors lead
to cascaded if-then-else expressions. Note the use of ac-
cessor functions to obtain a constructor’s arguments.

Support for recursive functions is preliminary. Sim-
ple proof obligations, e.g., length NIL = 0, can be shown
by unfolding their definition. More generally, we can add
the (universally quantified) recursive definition as an an-
tecedent to the proof obligation. The use of quantifiers,
however, introduces incompleteness, and in our experi-
ence Yices will often fail to solve the problem.

Note that overloading in HOL4 is achieved merely by
pretty-printing, but does not affect the underlying logic,
and polymorphic recursion is not supported at all.

3.3.10 Bit vectors

HOL4 provides fixed-width bit-vector types, e.g., word8,
word16, word32.6 These are translated to their Yices coun-
terparts: as bitvector 8, bitvector 16, bitvector 32,
etc.

Our translation supports a whole range of bit-vector
operations. Literals, such as 0w and 1w, are translated
using Yices’s mk-bv function. Bit-vector concatenation,
@@, and bit-vector extraction, ><, are mapped to
bv-concat and bv-extract, respectively. Other oper-
ations that are supported by mapping them directly to
built-in Yices functions include left and right shift, bit-
wise conjunction, disjunction, negation (one’s comple-
ment) and xor, bit-vector addition, subtraction, multi-
plication and negation (two’s complement), signed and
unsigned comparison.

HOL’s w2w function, which converts between bit vec-
tors of different width, is translated using either
bv-extract or bv-concat, depending on the width of its
argument and result. More precisely, (w2w xwordm)wordn

is translated as bv-extract (n-1) 0 x if n ≤ m, and as
bv-concat (mk-bv (n-m) 0) x otherwise. Because we
are dealing with fixed-width bit vectors only, the values
of n and m, and hence of n − 1 and n −m, are known
at translation time.

Extracting a single bit from a bit vector, denoted by
an infix ′ in HOL4, is translated using Yices’s bv-extract
function. However, the result of bv-extract is again a
bit vector (in this case of length 1), while the ′ opera-
tor in HOL4 returns a Boolean. Therefore, a final com-
parison with 0b1 ensures type correctness: xwordm

′ n is
translated as = (bv-extract n n x) 0b1, provided n
is a numeral less than m. HOL4’s word msb function,
which extracts a bit vector’s most significant byte, is
translated using a similar approach.

6 These are implemented as instances of a polymorphic (α)word
type, based on [16]. Our Yices translation only supports fixed-
width instances of this type.

3.4 Caveats

Because a bug in our translation could lead to inconsis-
tent theorems in the HOL4 system (albeit tagged with an
“oracle” string), it is imperative to get things right. Ar-
guably, the translation is quite straightforward in princi-
ple: many HOL constants are merely replaced by corre-
sponding constants in the SMT solver’s input language,
using a simple dictionary approach. However, we have
identified three potential pitfalls that deserve to be
pointed out.

Identifiers. When names of HOL variables or constants
are re-used in the SMT solver’s input, we must ensure
that they do not accidentally coincide with identifiers or
keywords that have special meaning to the SMT solver
(e.g., names of built-in functions). We must also ensure
that these names are in fact regarded as valid identifiers
by the SMT solver; they must not contain special char-
acters (e.g., white-space) that would render them illegal.
Note that we cannot rely on HOL4’s built-in parser to
rule out such identifiers: the HOL4 prover grants its users
direct access to the underlying Standard ML prompt,
which allows to use any string as the name of a con-
stant, variable or type. Moreover, identifiers for fresh
variables introduced by abstraction (see Sect. 3.1) or for
type copies and accessor functions (see Sect. 3.3) must
not coincide with any other identifiers.

Instead of re-using HOL identifiers, a conceptually
simpler solution—and the one that we take in our cur-
rent implementation—is to uniformly generate a fresh
name for every HOL identifier. This makes it easy to
guarantee uniqueness and validity, thereby elegantly solv-
ing most of the technical issues just described (at the
cost of readability of the resulting SMT input file, which,
however, is not intended for human eyes anyway).

Semantic differences. Replacing a HOL constant by its
“obvious” SMT counterpart may not be the right thing
to do. There are subtle semantic differences between cer-
tain HOL and SMT functions that would render this
approach unsound. For instance, subtraction m − n on
naturals in HOL4 is defined to be 0 if n > m; in Yices,
however, the result would be a negative integer. Our
Yices translation therefore introduces a wrapper func-
tion hol num minus for subtraction on naturals, which
we define (in Yices) as follows:

(define hol_num_minus::(-> nat nat nat)
(lambda (x::nat y::nat)

(ite (< x y) 0 (- x y))))

Other examples are x div 0 and xmod 0, which are
unspecified (but well-formed) in HOL4, whereas both are
not type-correct in Yices. We use the following wrapper
function hol num div to translate HOL’s div operator:

(define hol_num_div0::(-> nat nat))
(define hol_num_div::(-> nat nat nat)
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(lambda (x::nat y::nat) (ite (= y 0)
(hol_num_div0 x) (div x y))))

Note the use of an unspecified function hol num div0.
The translation of div and mod on integers is handled
similarly.

Error checking. It would be convenient if our translation
could generate potentially ill-formed SMT input (e.g.,
containing non-linear arithmetic terms), and rely on the
SMT solver for proper error checking. Yices, however,
“does no checking and can behave unpredictably if given
bad input” [12]. One can enable a certain amount of type
checking in Yices via a command-line switch, but if we
want to ensure soundness, the burden to produce correct
input for the SMT solver is essentially on our translation.

4 Experiments

We have applied Yices to a range of “typical” proof obli-
gations from the HOL4 library, involving data types,
quantifiers, etc., as well as to several sample proof obliga-
tions arising from work on machine-code verification [25]:
quantifier-free formulas that involve bit-vector opera-
tions and linear integer arithmetic. These proof obli-
gations had been proved interactively in HOL4 before.
Based on our experiments, our key experiences are:

– The SMT-LIB interface, due to its restrictions, does
not add very much to existing proof procedures. In
particular, automated term rewriting and decision
procedures for linear arithmetic have been available
in HOL4 for years [27], and their performance is typ-
ically satisfactory for the proof obligations that arise
in interactive verification.

– Yices performs very well for proof obligations that
involve bit-vector operations and linear arithmetic
only. It was able to prove all our sample formulas,
some of which had rather involved interactive proofs,
in split seconds. Size and logical complexity did not
pose a serious challenge to the solver; the proof obli-
gations that arise in interactive verification are typ-
ically much smaller than what SMT solvers are de-
signed to handle.

– Support for quantifiers and λ-terms, however, could
be improved. Yices typically gave inconclusive an-
swers for formulas containing nested quantifiers or
higher-order functions in a non-trivial way. Perhaps
term patterns (i.e., triggers), as supported by Z3,
could help improve Yices’s heuristics for quantifier
instantiation.

We expect to gather more practical experience with our
SMT solver interface as we carry out larger case studies,
and—since our implementation is now part of the stan-
dard HOL4 distribution—through feedback from other
HOL4 users. A more detailed quantitative evaluation is
beyond the scope of this paper.

5 Related Work

There is a substantial amount of related work. SMT
solvers have been a hot research topic for the past few
years, and an integration with interactive theorem provers
has been pursued by several researchers.

Perhaps most closely related is a recent integration
of Yices with the Isabelle/HOL system by Erkök and
Matthews [13]. Aside from targeting a different theorem
prover, we have not only implemented a translation to
Yices, but also a (less expressive) translation to SMT-
LIB format, and our Yices interface supports bit-vector
operations.

Barsotti et al. [4] describe a verification case study
in Isabelle/HOL that benefitted from the automation of
ICS and CVC Lite (predecessors of Yices and CVC3,
respectively). Their translation uses the SMT-LIB lan-
guage, similar to our SMT-LIB interface. Yices is also
available as a decision procedure in recent versions (4.0
and higher) of PVS [29]. Since Yices and PVS share a
common type system, the translation is probably much
more direct than ours.

Collavizza and Gordon [9] recently integrated Yices
with HOL4 to solve verification conditions that arise
from symbolic execution of Java programs. Their inter-
face was tailored toward this particular application. It
only supported a small subset of the HOL terms that our
translation can handle. Our interface has since been inte-
grated with their verification condition generator, where
it makes a fine replacement for their (now obsolete) more
restrictive interface.

Hurlin et al. [20] have integrated the SMT solver
haRVey with Isabelle/HOL in a proof-producing fashion.
Their work, however, is restricted to formulas of first-
order logic (including quantifiers, uninterpreted func-
tions and equality). Linear arithmetic or other back-
ground theories are not supported.

The integration of CVC3 with HOL Light by
McLaughlin et al. [22], which is also proof-producing,
supports (a subset of) the AUFLIA logic of SMT-LIB,
i.e., closed linear formulas over the theory of integer ar-
rays with free sort, function and predicate symbols. Con-
chon et al. [10] present an integration of their solver Ergo
with Coq. Ergo supports polymorphic first-order logic,
which simplifies the translation from Coq, and generates
proofs for uninterpreted functions and linear arithmetic.

Very recently, Böhme [6] and Weber [7] have pre-
sented a more comprehensive integration of Z3 with Is-
abelle/HOL and HOL4. Their focus is on proof recon-
struction (i.e., translating Z3’s proofs into Isabelle/HOL
inferences), rather than on a translation from Isabelle/
HOL to Z3.
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6 Conclusions

We have presented an integration of Yices and other
SMT solvers, e.g., CVC3 and Z3, with the HOL4 theo-
rem prover. In contrast to related work, we support both
i) Yices’s native input format, and ii) the SMT-LIB for-
mat. This paper contained a head-to-head comparison
of both translations. Yices has a rich input language, of
which we used almost every feature (with the notable ex-
ception of subtypes and dependent types); consequently,
the Yices translation can handle a substantial fragment
of higher-order logic. The SMT-LIB translation is more
restrictive, but provides support for a large number of
SMT solvers. Our implementation has become part of
the Kananaskis 5 release of HOL4 and can be obtained
from its Subversion repository [17].

One could work around many of SMT-LIB’s restric-
tions: higher-order logic could be encoded in first-order
logic (through the use of a binary application operator,
as in [23]), natural numbers could be treated as inte-
gers with an additional non-negativity constraint, data
types could be characterized by first-order axiomatiza-
tions. However, this would add significant complexity
to our (otherwise fairly direct) translation, and SMT
solver support for the resulting encodings would likely
be rather inefficient: for instance, encoding application
would interact badly with the congruence-closure algo-
rithm often used in SMT solvers. Since various SMT
solvers already provide direct support for these features,
it seems more worthwhile to implement custom transla-
tions, as we have done for Yices.

Still, the fact that there is no single, solver-indepen-
dent input language that covers these features seems un-
fortunate. We believe that it would be desirable to have
more expressive power in the SMT-LIB language itself.
The SMT-LIB benchmark collection is already organized
in a modular and extensible way, and since features like
natural numbers or data types are supported by various
SMT solvers, adding syntax for them would seem bene-
ficial to us, even if no benchmark problems make use of
them yet.

Our work targeted version 1.2 of the SMT-LIB stan-
dard. Very recently, version 2.0 was released [2]. The
revised standard allows for some simplifications, e.g., be-
cause it identifies formulas with terms of type bool. On
the other hand, certain useful features (in particular al-
gebraic data types) are still missing. We are currently
updating our implementation to target SMT-LIB 2.0;
most translation challenges remain the same between the
two versions of the language.

Our translations are largely straightforward. Never-
theless, it is tricky to get every detail right. Small mis-
takes that introduce unsoundness are made all too easily.
To address this issue, we have (in separate work) imple-
mented proof reconstruction: proofs of unsatisfiability
produced by the SMT solver Z3 are translated into a

fixed set of inference rules provided by the HOL4 theo-
rem prover [6,7].

We only translate single proof obligations (including
a list of assumptions) at the moment. Other context in-
formation, e.g., definitions and axioms of the theory un-
der consideration, must be added by the user manually.
A more convenient approach, suggested in [35], would
be to identify relevant axioms (and perhaps helpful lem-
mas) automatically, and pass them to the SMT solver as
additional assumptions, along with the proof obligation
itself.

Last, but not least, we plan to make better use of
models found by the SMT solver (by displaying them to
the user of the HOL4 system as a potential counterex-
ample), and to add support for further HOL constructs.
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