Efficiently Checking Propositional Refutations
in HOL Theorem Provers

Tjark Weber

Institut fur Informatik, Technische Universitit Miunchen, Boltzmannstr. 3,
D-85748 Garching b. Minchen, Germany

Hasan Amjad

Computer Laboratory, University of Cambridge, 15 J J Thomson Avenue,
Cambridge CB3 OFD, UK

Abstract

This paper describes the integration of zChaff and MiniSat, currently two leading
SAT solvers, with Higher Order Logic (HOL) theorem provers. Both SAT solvers
generate resolution-style proofs for (instances of) propositional tautologies. These
proofs are verified by the theorem provers. The presented approach significantly
improves the provers’ performance on propositional problems, and exhibits coun-
terexamples for unprovable conjectures. It is also shown that LCF-style theorem
provers can serve as viable proof checkers even for large SAT problems. An efficient
representation of the propositional problem in the theorem prover turns out to be
crucial; several possible solutions are discussed.

Key words: Interactive Theorem Proving, Propositional Resolution, LCF-style
Proof Checking

1 Introduction

Interactive theorem provers like PVS [ORS92], HOL4 [GM93] or Isabelle
[Pau94| traditionally support rich specification logics. Proof search and au-
tomation for these logics however is difficult, and proving a non-trivial theo-
rem usually requires manual guidance by an expert user. Automated theorem

Email addresses: webertj@in.tum.de (Tjark Weber), ha227@cl.cam.ac.uk
(Hasan Amjad).

Preprint submitted to Elsevier 1 May 2007

provers on the other hand, while often designed for simpler logics, have be-
come increasingly powerful over the past few years. New algorithms, improved
heuristics and faster hardware allow interesting theorems to be proved with
little or no human interaction, sometimes within seconds.

By integrating automated provers with interactive systems, we can preserve
the richness of our specification logic and at the same time increase the degree
of automation [Sha01]. This is an idea that goes back at least to the early
nineties [KKS91]. However, to ensure that a potential bug in the integration
with the automated prover does not render the whole system unsound, the-
orems in LCF-style [Gor00] provers can be derived only through a fixed set
of core inference rules. Therefore it is not sufficient for the automated prover
to return whether a formula is provable, but it must also generate the actual
proof, expressed (or expressable) in terms of the interactive system’s inference
rules.

Formal verification is an important application area of interactive theorem
proving. Problems in verification can often be reduced to Boolean satisfiabil-
ity (SAT), and recent SAT solver advances have made this approach feasible
in practice. Hence the performance of an interactive prover on propositional
problems may be of significant practical importance.

In this paper we describe the integration of zChaff [MMZ*01] and Mini-
Sat [ES04], two leading SAT solvers, with the Isabelle/HOL [NPW02], HOL4
[GM93] and HOL Light [Har96a] theorem provers. All three are LCF-style
theorem provers for higher-order logic (HOL), and all use natural deduction
as the underlying inference system. The term structure is simple type theory
with polymorphism, and the formula syntax is higher-order predicate calculus
with equality. Despite these similarities, the underlying implementations of the
logic are different enough to pose unique challenges. We shall discuss these in
Section 2.4. Outside of that section, we will use tool independent terminology
unless explicitly stated otherwise. In particular, we understand a theorem to
encode a sequent I' - ¢, where ¢ is a single formula, and I' is a finite set of
formulae. The intended interpretation is that ¢ holds when every formula in
I' is assumed as a hypothesis.

We have shown earlier [Web05a,Web05b] that using a SAT solver to prove
theorems of propositional logic dramatically improves Isabelle’s performance
on this class of formulae, even when a naive representation of propositional
problems is used. Furthermore, while Isabelle’s previous decision procedures
simply fail on unprovable conjectures, SAT solvers are able to produce con-
crete counterexamples. In this paper we focus on recent improvements of the
proof reconstruction algorithm, implemented in the three provers mentioned
above, which cause a speedup by several orders of magnitude. In particular
the representation of the propositional problem in HOL turns out to be crucial

for performance. While the implementation in [Web05a] was still limited to
relatively small SAT problems, our recent improvements now allow us to check
proofs with millions of resolution steps in reasonable time. This shows that,
somewhat contrary to common belief, efficient proof checking in an LCF-style
system is feasible.

The next section describes the integration of zChaff and MiniSat with the
theorem provers in more detail. In Section 3 we evaluate the performance of
our approach, and report on experimental results. Related work is discussed in
Section 4. Section 5 concludes this paper with some final remarks and points
out possible directions for future research.

2 System Description

To prove a propositional tautology ¢ with the help of zChaff or MiniSat, we
proceed in several steps. First ¢ is negated, and the negation is converted into
an equivalent formula ¢* in conjunctive normal form. ¢* is then written to a
file in DIMACS CNF format [DIM93], the standard input format supported
by most SAT solvers. zChaff and MiniSat, when run on this file, return either
“unsatisfiable” | or a satisfying assignment for ¢*.

In the latter case, the satisfying assignment is displayed to the user. The as-
signment constitutes a counterexample to the original (unnegated) conjecture.
Optionally, the satisfying assignment can be substituted into the negation of
¢, and a theorem that the counterexample implies the negation of ¢ can be
derived efficiently by evaluating the resulting ground formula.

When the solver returns “unsatisfiable” however, things are more complicated.
We could simply trust accept ¢ as a theorem in the HOL theorem prover. The
theorem is tagged with an “oracle” flag to indicate that it was proved not
through the prover’s own inference rules, but by an external tool. In this
scenario, a bug in the SAT solver could potentially allow us to derive incon-
sistent theorems. Worse, even if the SAT solver is correct, a bug in the less
thoroughly tested translation from HOL to SAT might still render the entire
system unsound.

The LCF approach instead demands that we verify the solver’s claim of un-
satisfiability as well as the correctness of our translation within the prover.
While this is not as simple as the validation of a satisfying assignment, the
increasing complexity of SAT solvers has before now raised the question of
support for independent verification of their results, and in 2003 L. Zhang
and S. Malik [ZMO03] extended zChaff to generate resolution-style proofs that
can be verified by an independent checker. This issue has also been acknowl-

Theorem Prover

SAT Solver
DIMACS CNF
Input - . e N
formula »(Preprocessing < satisfiable?
yes no
Model
<C0unterexample -t \—/\

Proof Trace

Proof _/\

. -
reconstruction /=

Theorem -

Fig. 1. Theorem Prover — SAT System Architecture

edged by the annual SAT Competition, which introduced a special track on
certified “unsatisfiable” answers in 2005. More recently, a proof-logging version
of MiniSat has been released [ES06].

From the HOL prover’s point of view, using an independent (external) proof
checker to verify the SAT solver’s answer, while increasing the degree of con-
fidence in the result and likely faster than using the theorem prover for ver-
ification, still suffers from potential soundness issues. The independent proof
checker, as well as the translation between the different tools, would become
part of the trusted code base. Therefore in the LCF framework our main
task boils down to using the HOL theorem prover itself as a checker for the
resolution proofs found by zChaff and MiniSat.

Both solvers store their proof in a file that is read in by the prover, and
the individual resolution steps are replayed using the prover’s inference rules.
Section 2.1 briefly describes the necessary preprocessing of the input formula,
and details of the proof reconstruction are explained in Section 2.2. The overall
system architecture is shown in Figure 1.

2.1 Preprocessing

The provers support arbitrary formulae of propositional logic, whereas most
SAT solvers only support formulae of propositional logic in CNF. Therefore
the (negated) input formula ¢ must be preprocessed before it can be passed
to the SAT solver.

Three different CNF conversions are currently implemented: a naive encoding
that may cause an exponential blowup of the formula, an explicit Tseitin-

style “definitional” encoding [Tse83] that avoids exponential blowup but may
introduce (existentially quantified) auxiliary Boolean variables, cf. [Gor01],
and an implicit Tseitin-style encoding [Bar03] that avoids the quantification
and much of the proof. The technical details for the first two can be found
in [Web05a; the third is described below. More sophisticated CNF conversions,
e.g. from [NRWOS], could be implemented as well. The main focus of our work
however is on efficient proof reconstruction: the benchmark problems used for
evaluation in Section 3 are already given in CNF anyway.

Note that it is not sufficient to convert ¢ into an equivalent formula ¢* in
CNF. Rather, we have to prove this equivalence inside the theorem prover.
The result is not a single formula, but a theorem of the form F ¢ = ¢*.

The fact that our CNF transformation must be proof-producing leaves some
potential for optimization. One could implement a non proof-producing (and
therefore much faster) version of the same CNF transformation, and use it for
preprocessing instead. Application of the proof-producing version would then
be necessary only if the SAT solver has shown a formula to be unsatisfiable.
This scheme can be implemented using lazy proofs [Amj05], thus avoiding the
penalty for doing the conversion twice: first without, and later with proofs.
This way, preprocessing times for unprovable formulae would improve.

2.1.1 Implicit Definitional CNF

Even the linear blowup of Tseitin-style CNF conversion becomes a bottle-
neck for large formulas. This is not a concern in benchmarking since SATLIB
problems are provided in CNF format. However, it is a serious drawback in
promoting everyday use of the system, which is our main motivation. John
Harrison suggested an alternative where the definitional variables are not used
in logical inferences, but are replaced by their expansions. This is inspired by
the approach used for Nelson-Oppen purification in [Bar03], and proceeds as
follows:

(1) Use assumption on —¢ to obtain —¢ F —¢.

(2) Split this into several theorems using any top-level conjunctive structure
that —¢ may have. This is done in a general sense, e.g. top-level terms of
the form p A g are obviously split on, but so are =(pVq), =(p = q), etc.
In addition, double negations are eliminated. This step is then applied
recursively to the resulting theorems until no more splits are possible.

(3) The conclusion of each split theorem is converted to CNF without proof,
using a standard Tseitin-style CNF encoding.

(4) Then ¢* is the conjunction of the conclusions of the resulting theorems.

In practice, many problems (including all unsatisfiable SATLIB problems) will
have ¢ negated at the top-level. Thus, —¢ is a double negation, so that step 2

above is more useful than might appear: if =¢ were not a double negation,
the only situation in which step 2 would do anything at all is if the top-
level negation could be converted to a top-level conjunction, e.g. =(p = q)
becomes p A—q. When there is no conjunctive structure at the top-level, step 2
terminates.

When replaying the resolution steps in the prover, occurrences of the auxiliary
Tseitin variables are substituted by their expansions. This method often avoids
doing a Tseitin-style traversal of the entire term, yielding a factor two to five
speedup. However, this is not yet implemented in all the provers we consider,
so the benchmarks in Section 3 are all for problems that have already been
converted to CNF.

Finally, ¢* is written to a file in DIMACS CNF format, and the SAT solver is
invoked on this input file.

2.2 Proof Reconstruction

When zChaff and MiniSat return “unsatisfiable”, they generate a resolution-
style proof of unsatisfiability and store the proof in a file. The proof trace is
logged to the file on-the-fly, to keep memory free for the SAT algorithm itself.
While the precise format of this file differs between the solvers, the essential
proof structure is the same. Both SAT solvers use propositional resolution to
derive new clauses from existing ones:

PVvzx QV —x
PVvQ

It is well-known that this single inference rule is sound and complete for propo-
sitional logic. A set of clauses is unsatisfiable iff the empty clause is derivable
via resolution. For the purpose of proof reconstruction, we are only interested
in the proof returned by the SAT solver, not in the techniques and heuristics
that the solver uses internally to find this proof. Therefore the integration
of zChaff and MiniSat is quite similar, and further SAT solvers capable of
generating resolution-style proofs could be integrated in the same manner.

We assign a unique identifier — a non-negative integer — to each clause of
the original CNF formula. Further clauses derived by resolution are assigned
unique identifiers by the solver. We are usually interested in the result of a
resolution chain, where two clauses are resolved, the result is resolved with yet
another clause, and so on. Consequently, we define an ML [MTHM97] type
of propositional resolution proofs as a pair whose first component is a table
mapping integers (to be interpreted as the identifiers of clauses derived by
resolution) to lists of integers (to be interpreted as the identifiers of previously

derived clauses that are part of the defining resolution chain). The second
component of the proof is just the identifier of the empty clause.

type proof = int list Inttab.table * int

This type is intended as an internal format to store the information contained
in a resolution proof. There are many restrictions on valid proofs that are not
enforced by this type. For example, it does not ensure that its second com-
ponent indeed denotes the empty clause, that every resolution step is legal,
or that there are no circular dependencies between derived clauses. It is only
important that every resolution proof can be represented as a value of type
proof, not conversely. The proof returned by zChaff or MiniSat is translated
into this internal format, and passed to the actual proof reconstruction algo-
rithm. This algorithm will either generate a theorem, or fail in case the proof
is invalid. Of course the latter should not happen, unless the SAT solver—or
our translation from HOL to DIMACS—contains a bug.

2.2.1 2zChaff Proof Traces

The format of the proof trace generated by zChaff has not been documented
before. We describe it here. We use version 2004.11.15 of zChaff. See Sec-
tion 2.3 for a simple example of a proof trace.

The proof file generated by zChaff consists of three sections, the first two of
which are optional (but present in any non-trivial proof). The first section
defines clauses derived from the original problem by resolution. A typical line
would be “CL: 7 <= 2 3 0”7, meaning that a new clause, assigned the fresh
identifier 7, was derived by resolving clauses 2 and 3, and resolving the result
with clause 0. Initial clauses are implicitly assigned identifiers starting from
0, in the order they occur in the DIMACS file.

The second section of the proof file records variable assignments that are im-
plied by the first section, and by other variable assignments. As an example,
consider “VAR: 3 L: 2 V: 0 A: 1 Lits: 4 7”. This line states that vari-
able 3 must be false (i.e. its value must be 0; “V: 1” marks true variables) at
decision level 2, the antecedent being clause 1. The antecedent is a clause in
which every literal except for the one containing the assigned variable must
evaluate to false because of earlier variable assignments (or because the an-
tecedent is already a unit clause). The antecedent’s literals are given explicitly
by zChaff, using an encoding that multiplies each variable by 2 and adds 1
for negative literals. Hence “Lits: 4 7”7 corresponds to the clause x5 V —x3.
Our internal proof format does not allow us to record variable assignments
directly, but we can translate them by observing that they correspond to unit
clauses. For each variable assignment in zChaff’s trace, a new clause identifier
is generated (using the number of clauses derived in the first section as a basis,

and the variable itself as offset) and added as a key to the proof’s table. The
associated chain of clauses begins with the antecedent, and continues with
the unit clauses corresponding to the explicitly given literals. We ignore both
the value and the level information in zChaft’s trace. The former is implicit
in the derived unit clause (which contains the variable either positively or
negatively), and the latter is implicit in the overall proof structure.

The last section of the proof file consists of a single line which specifies a clause
which has only false literals: e.g. “CONF: 3 == 4 6", says clause 3 is x5V x3 in
this case. We translate this line into our internal proof format by generating
a new clause identifier ¢ which is added to the proof’s table, with this clause
together with the unit clauses for each of the clause’s variables forming the
chain. Finally, we set the proof’s second component to .

For each resolution, we need to determine the pivot literals (i.e. the literals to
be resolved on) before resolving two clauses. This could be done by directly
comparing the two clauses, and searching for a term that occurs both positively
and negatively. It turns out to be slightly faster however (and also more robust,
since we make fewer assumptions about the actual implementation of clauses
in the provers) to use our own data structure. With each clause, we associate
a table that maps integers — one for each literal in the clause — to the prover
term representation of a literal. The table is an inverse of the mapping from
literals to integers that was constructed for translation into DIMACS format,
but restricted to the literals that actually occur in a clause. Positive integers
are mapped to positive literals (atoms), and negative integers are mapped to
negative literals (negated atoms). This way term negation simply corresponds
to integer negation. The table associated with the result of a resolution step
is the union of the two tables that were associated with the resolvents, but
with the entries for the pivots removed from the tables associated with the
two participating clauses.

2.2.2 MiniSat Proof Traces

The proof-logging version of MiniSat generates proof traces in a compact (and
again undocumented) binary format. This is mostly likely because SAT com-
petitions currently suggest a limit of 2 GB on proof traces. We use version
1.14p of MiniSat.

MiniSat’s proof traces contain three types of statements: original clauses,
clauses derived via resolution chains, and deleted clauses. Clause identifiers
are implicitly assigned in the order in which the statement appears in the
trace, ignoring deletions. Chains use original clauses or earlier derived clauses
only. The last chain statement derives the empty clause.

The trace itself is a sequence of numbers occupying 8, 16, 32 or 64 bits. Part

of the first byte of each number encodes this information, so that the parser
knows how many more bytes to input before the number is completely read.

An original clause is a list of numbers. Each number is a literal of the clause,
using the zChaff encoding except that variable numbering begins at 0. The
list is sorted in ascending order with duplicates removed. The beginning of
an original clause is indicated by an even number, which needs to be right-
shifted by one bit to obtain the number corresponding to the first literal. The
remaining literals are recorded as positive adjacent differences, and a zero
terminates the clause. Since there are no duplicates, there is no danger of a
literal being represented by a zero.

A resolution chain is a list of numbers representing clause identifiers, inter-
leaved with a list of numbers representing the pivot variables. The beginning of
a chain statement is indicated by an odd number, which must be right-shifted
by one bit and subtracted from the chain’s implicit clause identifier (which
the parser keeps count of) to yield the first clause identifier in the chain. The
next number is the pivot variable and the one after that is another clause
identifier, completing the first resolution of the chain. Pivot variable numbers
are stored with one added to them (to avoid possible confusion with the ter-
minating zero), and clause identifiers other than the first are stored as positive
differences from the chain’s clause identifier. As before, a zero terminates the
chain.

Deletions are chains where the list of pivot variables is empty, and the single
clause identifier is the deleted clause.

MiniSat drops trivial clauses and also performs unit propagation during the
read-in phase. Thus the list of original clauses logged (and hence their clause
identifiers) may not correspond exactly to the theorem prover’s internal list
of clauses. We have modified the MiniSat solver to record the original clause
identifiers not implicitly by the order in which they appear in the proof trace,
but explicitly by the order in which they appear in the original problem. This
obviates lookups for original clauses when reading the proof trace. We have
also modified MiniSat to record sign information for the pivot. This allows us
to dispense with a linear time scan in ML of the literals to determine pivot
polarity in the participating clauses.

2.3 A Simple Example

In this section we illustrate the proof reconstruction using a small example.
Consider the following input formula

Qb = (_'1'1 vV l‘g) A (_hI‘Q V _|l‘3) A (ZEl V ZL‘Q) VAN (_|£L‘2 V 1'3).

T \/ZL’Q X1 \/ZL‘Q .171\/[E2 T \/lL‘Q
X9 V T3 i) T2 V T3 T
xT3 —T3

€L
Fig. 2. Resolution Proof found by zChaff

Since ¢ is already in conjunctive normal form, preprocessing simply yields
the theorem + ¢ = ¢. The corresponding DIMACS CNF file, aside from its
header, contains one line for each clause in ¢:

-1

N
|

-
W N WwN
O O O O

[
N

zChaff and MiniSat easily detect that this problem is unsatisfiable. zChaff
creates a text file with the following data:

CL: 4 <=20
VAR: 2 L: OV: 1 A: 4 Lits: 4
VAR: 3 L: 1 V: OA: 1 Lits: 5 7

CONF: 3 ==5 6

We see that first a new clause, with identifier 4, is derived by resolving clause 2,
x1Vxy, with clause 0, =1 Vxy. The pivot variable which occurs both positively
(in clause 2) and negatively (in clause 0) is z1; this variable is eliminated by
resolution.

Now the value of o (VAR: 2) can be deduced from clause 4 (A: 4). x5 must
be true (V: 1). Clause 4 contains only one literal (Lits: 4), namely x5 (since
4 + 2 = 2), occuring positively (since 4 mod 2 = 0). This decision is made at
level 0 (L: 0), before any decision at higher levels.

Likewise, the value of x5 can then be deduced from clause 1, —xy V —x3. 23
must be false (V: 0).

Clause 3 is our final clause. It contains two literals, —zy (since 5 + 2 = 2,
5mod 2 = 1) and z3 (since 6 =2 = 3, 6 mod 2 = 0). But we already know
that both literals must be false, so this clause is not satisfiable.

In the prover, the resolution proof corresponding to zChaff’s proof trace is
constructed backwards from the conflict clause. A tree-like representation of
the proof is shown in Figure 2. Note that information concerning the level of
decisions, the actual value of variables, or the literals that occur in a clause is
redundant in the sense that it is not needed to validate zChaff’s proof.

10

) V I3 T2 V T3 X9 V xT3 T2 V T3
T V To T2 T V i) —T9
2 L1

L

Fig. 3. Resolution Proof found by MiniSat

The proof trace produced by MiniSat for the same problem happens to encode
a different resolution proof, shown below in ASCII form, with clause and literal
identifiers recovered from the binary encoding:

O, = N DN ON

OO NO W WO Wk
o Y N

The first four lines introduce the four clauses in the original problem. The
next four lines derive four new clauses by resolution, e.g., clause 4 is the result
of resolving clause 3 (—xzq V x3) with clause 1 (—x9 V —x3), where x5 is used as
the pivot variable. Hence clause 4 is equal to —x5. The full proof is shown in
Figure 3.

2.3.1 Proof Trace Compaction

Before proof reconstruction begins, we can remove redundant and/or unused
information from the trace. This can be done without proof, saving time.

2.3.1.1 Unused and reused derivations An obvious optimization has
been present in all of our implementations. During proof search the SAT solver
may derive many clauses that are never used. Since the proof is logged to file
on the fly, these derivations end up in the final proof trace. Instead of replaying
the whole proof trace in chronological order, we perform “backwards” proof
reconstruction, starting with the identifier of the empty clause, and recur-
sively visiting only the required resolvents using depth-first search. We have
modified MiniSat to directly output this smaller extracted proof, by doing a
disk-based backwards clause traversal on the original trace file. This allows us
to read in bigger proofs into memory. Contrary to expectations the disk-based
method does not cause a significant performance penalty. We will implement
this functionality for zChaff proofs as well.

Some clauses may be used multiple times in the resolution proof. It would be

11

inefficient to prove these clauses more than once. Therefore clauses are stored
in an associative array, keyed on their clause identifier, and upon first use are
converted into the sequent format described in Section 2.3.2 below. Reusing a
clause is then a single lookup.

2.3.1.2 Detecting redundant derivations The above suggests it could
be beneficial to analyze the resolution chains in more detail: sometimes very
similar chains occur in a proof, differing only in a clause or two. Unfortunately,
even if a chain differs from another in a single clause, the end result can be
quite different, so simple string matching on chains does not get us much.
However, the core idea is not invalidated.

One way to detect redundant computation in chains is to keep track of the
clauses that are already known. Then if a resolution step derives a clause that
is subsumed by an existing clause, we can skip the resolution and substitute
the subsuming clause in its place. This is coupled with unit and binary clause
tracking to enable quicker convergence to the empty clause.

To some extent, the clause learning component of SAT solvers tries to avoid
redundant search using the same idea. However, it does not target subsump-
tion directly (we know of only one exception [Zha05]), so there is room for
improvement.

Our experimental implementation for subsumption based filtering shows prom-
ising results in reducing proofs. This implementation is primitive however and
currently does not scale beyond toy problems, so it would be premature to
provide empirical data at this time. It may be possible to improve performance
using the SAT solver’s internal data structures, but such an investigation is
non-trivial and beyond the scope of this paper.

2.3.2 Proof Reconstruction

We now come to the core of this paper. The task of proof reconstruction is
to derive False from the original clauses, using information from a value of
type proof (which represents a resolution proof found by a SAT solver). This
can be done in various ways. In particular the precise representation of the
problem as a HOL theorem (or a collection of HOL theorems) turns out to be
crucial for performance.

2.3.2.1 Naive HOL representation In an early implementation, the
whole problem was represented as a single theorem F (¢* = False) —
(¢* = False), where ¢* was completely encoded in HOL as a conjunction

12

of disjunctions [Web05al]. Step by step, this theorem was then modified to
reduce the antecedent ¢* = False to True, which would eventually prove
F ¢* = False.

This was extremely inefficient for two reasons. First, every resolution step re-
quired manipulation of the whole (possibly huge) problem term at once. Sec-
ond, and just as important, SAT solvers treat clauses as sets of literals, making
implicit use of associativity, commutativity and idempotence of disjunction.
Likewise, CNF formulae are treated as sets of clauses, making implicit use of
the same properties for conjunction. The encoding in HOL however required
numerous explicit rewrites (with theorems like - (PV Q) = (QV P)) to reorder
clauses and literals before each resolution step. Detailed performance figures
may be found in [Web05a].

2.3.2.2 Separate clauses representation A better representation of the
CNF formula was discussed in [FMM™06]. So far we have mostly considered
theorems of the form F ¢, i.e. with no hypotheses. This was motivated by
the normal user-level view of theorems, where assumptions are encoded using
implications = , rather than hypotheses. However, the provers’ inference
rules let us convert between hypotheses and implications as we like:

A 'y . Thé=y I'ko. o
o ssume 1ﬂ\(ﬁl_(ﬁ:>¢1mp U F o imp
Let us use [Ay;...; A,] = B as a short hand for Ay —= ... = A, = B

(with implication associating to the right). In [FMM™06], each clause p; V...V
pn is encoded as an implication p; = ... = p,, = False (where p; denotes
the negation normal form of —p;, for 1 < i < n), and turned into a separate
theorem

{1 V...Vp.}Ep1;...;Pn] = False.

This allows resolution to operate on comparatively small objects, and resolving
two clauses I' F [p1;...;pn] = False and I'" F [q1; .. .; ¢n] = False, where
—p; = ¢; for some i and j, essentially becomes an application of the cut
rule. The first clause is rewritten to I' = [p1;...;pi1;Div1; - ;0] = —pir A
derived tactic then performs the cut to obtain

FUT'F [qu- -5 @j-13P15 - -3 Dim15 Pit s - -3 Pai Qs - - - 5 Gm] = False

from the two clauses. Note that this representation, while breaking apart the
given clauses into separate theorems allows us to view the CNF formula as a
set of clauses, still does not allow us to view each individual clause as a set of

13

literals. Some reordering of literals is necessary before cuts can be performed,
and after each cut, duplicate literals have to be removed from the result.

This representation improved on the proof replay times reported in [Web05a],
by up to two orders of magnitude. Detailed numbers can be seen in [FMM*06].

2.3.2.3 Sequent representation We can further exploit the fact that the
inference kernel treats a theorem’s hypotheses as a set of formulae, by encoding
each clause using hypotheses only. Consider the following representation of a
clause p; V...V p, as a theorem:

{p1V...VpnDpi,...,pnt False.

Resolving two clauses p; V...V p, and 1 V...V @y, where =p; = ¢;, now starts
with an implication introduction to obtain

{pV...VDn,D1,...,Pic1,Dit1s - - -, Pn} = —p; = False

then using negation introduction and double negation elimination to get

{pl V... \/anTl?-'wpi—l;pi—i-la---JTn} l_pz

and then using cut (extended to hypotheses) with the sequent representation
theorem for the clause ¢; V...V ¢, to yield

{p1V...VpuDi,. .., Dic1: Dit1s-- - Dn} U
{anV. . Vau, @, ... G1,T+1, - - - Gm } | False.

This approach requires no explicit reordering of literals, nor removal of dupli-
cate literals after resolution. That is all handled by the inference kernel now.
The sequent representation is as close to a SAT solver’s view of clauses as sets
of literals as is possible in a HOL prover. With this representation, we do not
rely on derived rules to perform resolution, but can give a precise specification
of propositional resolution in terms of a few applications of inference rules of
natural deduction. The actual implementation varies depending on the prover.

2.3.2.4 CNF sequent representation The sequent representation has
the disadvantage that each clause contains itself as a hypothesis. Since hy-
potheses are accumulated during resolution (specifically, when the cut rule is
applied), this leads to larger and larger sets of hypotheses, which will eventu-
ally contain every clause used in the resolution proof as an individual term.
Forming the union of these sets takes the kernel a significant amount of time.

14

It is therefore faster to use a slightly different clause representation, where each
clause contains the whole CNF formula ¢* as a hypothesis. Let ¢* = AF_, C;,
where £ is the number of clauses. Using the Assume rule, we obtain a theo-
rem {/\f:1 Ci} /\f:1 C;. Repeated elimination of conjunction yields a list of
theorems {A*_, C;} = Cy, ..., {A\", Ci} F Cy. Each of these theorems is then
converted into the sequent form described above, with literals as hypotheses
and False as the theorem’s conclusion. Now, throughout the entire proof, the
set of hypotheses for each clause consists of a single term A, C; and the
clause’s literals only. It is therefore much smaller than before, which speeds
up resolution.

Furthermore, memory requirements do not increase significantly: the term
¥ | C; needs to be kept in memory only once, and can be shared between
different clauses. This can also be exploited when the union of hypotheses is
formed (assuming that the inference kernel and the underlying ML system
support it): a simple pointer comparison is sufficient to determine that both
theorems contain A¥_, C; as a hypothesis (and hence that the resulting theorem
needs to contain it only once); no lengthy term traversal is required. Thus, even
though the size of the sequent using this representation increases in terms of
the number of symbols, there is no detrimental effect on either performance or
memory use. Note that this representation fits neatly with implicit definitional
CNEF: we get the required clause representations for free, and only need to
perform the contrapositivising step of the sequent representation approach.

We should mention that this representation of clauses, despite its superior
performance, has a small downside. The resulting theorem always has every
given clause as a premise, while the theorem produced by the sequent repre-
sentation only has those clauses as premises that were actually used in the
proof. To obtain the latter, logically stronger theorem, the resolution proof
can be analyzed to identify the clauses that are used in the proof, and the
unused ones can be filtered out before proof reconstruction.

2.4 Prover-specific Issues

All three of the theorem provers considered support higher-order logic, and all
use natural deduction as the inference system. Nonetheless, differences in the
implemention of the logic have posed different challenges, which we discuss
now.

For us, the relevant differences lie in the data structure representing theorems,
the choice of primitive inference rules, and the underlying ML system.

15

2.4.1 Theorem implementation

Our research highlighted inefficiencies in the kernels of all the provers. These
inefficiencies played no important role as long as the kernel only had to deal
with relatively small terms, but in our context, where formulae sometimes
consist of millions of literals, they turned out to have a measurable negative
impact on performance. For example: in Isabelle, instantiating a theorem with
a term was linear in the size of the term, rather than constant time; in HOLA4,
iterated conjunction elimination was not tail-recursive, resulting in a stack
overflow; in HOL Light, theorem hypotheses were implemented by unsorted
lists, giving quadratic time hypothesis set union. These inefficiencies were re-
moved by the prover developers. In the case of HOL Light, this had a dramatic
effect on performance.

The speed of the resolution operation relies critically on being able to form
fast unions of the hypothesis sets of theorems. Isabelle/HOL and HOL Light
implement hypothesis sets as ordered lists and HOL4 as red-black sets. This
means that resolution, asymptotically, is linear in the size of hypotheses in
Isabelle/HOL and HOL Light, and O(n - logn) in HOL4. If the size of the
hypotheses set is small, this difference does not play a big role.

However, since there can be millions of resolutions, constant factors become
important as the number of inferences rises. Isabelle/HOL resolution may be
linear, but has a slightly larger constant factor than HOL4 since implication
introduction is linear in Isabelle/HOL, but logarithmic in HOL4. Similarly,
HOL Light resolution is also linear, but the current implementation requires
one extra traversal of the hypotheses to determine sign information for the
pivot. Furthermore, theorems may contain other (prover-dependent) informa-
tion aside from their hypotheses, e.g. an internal representation of the the-
orem’s proof. This information must be updated by the kernel as well when
inferences are performed. These effects show up as differences in performance
on checking long proofs with small clauses versus short proofs with big clauses.

We are considering the use of random sets to implement hypotheses. The
expected asymptotic performance of these is superior to the solutions outlined
above, but the constant factor may be too high.

2.4.2 Choice of primitive inference rules

An LCF-style theorem prover has a kernel of primitive inference rules. Only
these rules are allowed direct access to the data structure encoding theorems.
All other rules are built by composing the primitives. These derived rules may
not manipulate theorems directly and are relatively slower as a result.

For our purposes, Isabelle/HOL and HOL4 have all the required inference

16

rules for simulating propositional binary resolution (assumption, implication
introduction, negation introduction, modus ponens) as primitives. HOL4 has a
slight advantage in that conjunction elimination, required in the pre-processing
stage, is primitive in HOL4 but not in Isabelle/HOL, where the effect is
achieved by instantiating pro-forma theorems (namely - P A Q = P and
F PAQ = Q) and using modus ponens. HOL Light has a considerably more
primitive kernel. For instance, implication introduction is not primitive but
must be derived from the following rule (and others)

I'pk A qF
’pF, CIA . :’Z pdeduct,antisym

Even so, it is possible to implement the rule for binary propositional reso-
lution in HOL Light in a manner that is asymptotically as good as that in
Isabelle/HOL.

2.4.8 Underlying ML system

HOLA4 performance suffers simply because the underlying ML system, Moscow
ML, usually runs slower than both Poly/ML (Isabelle/HOL) and OCaml
(HOL Light). On the other hand, HOL Light is able to make up for some
of its performance loss by being implemented in the fastest of the three ML
systems.

Because of all these differences, it is fairly uninformative to directly compare
the performance of these provers. None of the three issues above are particu-
larly easy to control for. Thus, while we give performance numbers for all three
provers for the record (in Section 3), we caution the reader against inferring
any comparative judgements.

3 Evaluation

The new sequent representation and improvements to prover implementations
enable us to evaluate performance on some significantly harder problems, such
as pigeonhole instances and industrial problems taken from the SATLIB li-
brary [HS00]. These problems not only push the provers’ inference kernels to
their limits, but also other components such as the term parser and pretty-
printer. For the larger SATLIB problems the parsers (which are mainly in-
tended for small, hand-crafted terms) are unable to parse the problem files,
which are several megabytes large, in reasonable time. Also, the prover’s user
interface is unable to display the resulting formulae. We have therefore im-
plemented our own parser, which builds ML terms directly from DIMACS

17

Problem Vars. Clauses Resolutions zChaff | zChaff4 | zverify_df Isabelle | HOL4 | HOL Light

c7552mul.miter 11282 69529 242509 45 45 1.1 69 120 130

6pipe 15800 394739 310813 134 137 3.7 192 431 1918

6pipe_6_000 17064 545612 782903 263 265 5.1 421 1050 3684

Tpipe 23910 751118 497019 440 440 6.5 609 1514 6562
Table 1

Runtimes (in seconds) for SATLIB problems

Problem Vars. Clauses Resolutions zChaff zChaff+ zverify _df Isabelle HOL4 HOL Light
pigeon-7 56 204 8705 <1 <1 <0.1 <1 1 <1
pigeon-8 72 297 25369 <1 <1 0.1 1 2 1
pigeon-9 90 415 73472 1 1 0.2 3 5 5
pigeon-10 110 561 215718 5 6 0.4 10 17 13
pigeon-11 132 738 601745 23 24 1.2 36 57 57
pigeon-12 156 949 3186775 242 247 6.5 315 446 665
Table 2

Runtimes (in seconds) for pigeonhole instances

files, and we work entirely at the systems’ ML level, avoiding the usual user
interface, to prove unsatisfiability.

For all three provers, statistics for four unsatisfiable SATLIB problems (cho-
sen from those that were used to evaluate zChaff’s performance in [ZM03])
are shown in Table 1. Runtimes for selected pigeonhole instances are given
in Table 2. The time for zChaff is time taken to solve the problem, without
(zChaff) and with (zChaff+) proof logging. (Note that we measure CPU time
only, which does not include time spent blocked on I/0. Measuring wall time
is pointless because of other processes that may be running simultaneously.)
The times for the provers are total times, including zChaff solving time, proof
replay, parsing of input and output files, and any other intermediate pre- and
post-processing. These timings were obtained on a 1.87 GHz Pentium M note-
book with 1.5 GB of main memory. Timings are rounded to the nearest second.
For comparison, runtimes for zChaff’s own proof checker zverify_df [ZM03] are
shown as well, rounded to the nearest tenth of a second[T]

The proof logging version of MiniSat 1.14 ran out of memory on all problems
in Table 1 except c7552mul.miter. This is probably because MiniSat’s fast
execution tends to find longer proofs, which becomes very costly when proof
logging is turned on. The latest version of MiniSat is often better than zChaff
(considering the results of the 2006 SAT-Race competition), but unfortunately
it did not support proof logging at the time of writing. Therefore we do not
give performance data for replaying MiniSat proofs.

Needless to say, none of the SATLIB problems can be solved automatically
by the provers’ built-in proof procedures. Only the smallest of the pigeonhole
instances succumbs, and takes far longer to do so.

Pigeonhole instances are known to be pathologically hard problems for resolu-

1 The version of zverify_df that comes with zChaff 2004.11.15 contains a minor bug
(related to the decision level of variables) which increases its runtime significantly.
The above timings were measured with the bug fixed.

18

tion proof systems. All theorem provers ran out of memory on the pigeonhole
problem with 13 holes, even though zChaff found a proof in about 10 minutes.
It is hard to do a fine-grained analysis of memory usage, but we can safely
say that having to store terms rather than numbers in memory contributed to
this failure.

Execution times for Isabelle/HOL are below those for HOL4 and HOL Light.
The theorem implementation in Isabelle allows for a smaller constant factor
when inferences are performed. A closer look shows that, as discussed in Sec-
tion 2.4, Isabelle does better when there are fewer but bigger resolutions steps
(e.g. problem 7pipe), and HOL4 does better (comparatively) when there are
lots of small resolution steps (e.g. problem pigeon-12).

HOL Light is slower than the other provers on SATLIB problems but slightly
faster than HOL4 on some pigeonhole instances. We saw in Section 2.4 that
HOL Light has a slightly higher constant factor per inference, which becomes
worse if the participating clauses are large. This translates to a comparative
slowdown on problems which have smaller proofs which involve longer clauses,
such as the SATLIB problems. On the pigeonhole problems, the speed of the
OCaml system wins out because shorter clauses mean the underlying constant
factors per resolution do not dominate.

Proof checking in LCF-style HOL provers, despite all optimizations that we
have implemented, is about an order of magnitude slower than proof ver-
ification with zChaff’s own proof checker zverify_df, written in C++. This
additional overhead is to be expected: it is the price that we have to pay for
using an LCF-style kernel which is not geared towards propositional logic.
However, we also see that proof reconstruction in HOL provers scales quite

well with our latest implementation, and that it remains feasible even for large
SAT problems.

4 Related Work

The work most closely related to ours is John Harrison’s LCF-style integration
of Stalmarck’s algorithm and BDDs into HOL Light and Hol90 (an ancestor
of HOL4) respectively [Har96b,Har95]. Harrison found that doing BDD op-
erations inside HOL was about 100 times worse (after several optimizations)
than a C implementation. The integration with Stalmarck’s algorithm fared
much better, but was possibly not folded into the mainstream distribution due
to licensing issues.

Mike Gordon implemented HolSatLib [Gor01] in Hol98, a precursor to HOLA.
This library provided functions to convert Hol98 terms into CNF, and to ana-

19

lyze them using a SAT solver. In the case of unsatisfiability however, the user
only had the option to trust the external solver. No proof reconstruction took
place, “since there is no efficient way to check for unsatisfiability using pure
Hol98 theorem proving” [Gor0O1]. A bug in the SAT solver could ultimately
lead to an inconsistency in Hol98. The HOL4 implementation of this library
is instead based on the work discussed in this paper.

A custom-built SAT solver has been integrated with the CVC Lite system
[BB04] by Clark Barrett et al. [BBDO03]. The solver produces proofs that can
be checked independently. This ability was used to integrate CVC Lite with
HOL Light [MBGO5]. The integration considerably improved HOL Light’s
propositional proof capability, but proof reconstruction for CVC Lite’s decision
procedure for real arithmetic was not fast enough to beat HOL Light’s built-
in procedure, because of issues similar to the ones we faced when integrating
SAT solvers with HOL Light.

Similarly, haRVey, a Satisfiability Modulo Theories (SMT) prover, has been
integrated with Isabelle [Hur06]. haRVey, like other SMT systems, uses various
decision procedures (e.g. congruence closure for uninterpreted functions) on
top of a SAT solver.

Further afield, the integration of automated first-order provers with HOL
provers has been explored by Joe Hurd [Hur99,Hur02], Jia Meng [Men03],
and Lawrence Paulson [MP04,MP06]. Proofs found by the automated system
are either verified by the interactive prover immediately [Hur99], or trans-
lated into a proof script that can be executed later [MPO04]. Andreas Meier’s
TRAMP system [Mei00] transforms the output of various automated first-
order provers into natural deduction proofs. In the same vein, Mike Gordon
and others are working on an integration of the ACL2 prover into HOL4, by
embedding the ACL2 logic in HOL and deriving its axioms as HOL4 theo-
rems. The main focus of both however is on the necessary translation from
the interactive prover’s specification language to first-order logic. In contrast
our approach is so far restricted to instances of propositional tautologies, but
we have focused on performance (rather than on difficult translation issues),
and we use a SAT solver, rather than a first-order prover. Other work on
combining proof and model search includes [dNMOG].

An earlier version of this work was presented in [Web05a], and improved by
Alwen Tiu et al. [FMM06]. In this paper we have discussed our most recent
implementation, which is based on a novel clause representation and consti-
tutes a significant performance improvement when compared to earlier work.

20

5 Conclusions and Future Work

The SAT solver approach dramatically outperforms the automatic procedures
that were previously available in the theorem provers we have considered. With
the help of zChaff or MiniSat, many formulae that were previously out of the
scope of built-in tactics can now be proved—or refuted—automatically, often
within seconds. The provers’ applicability as a tool for formal verification,
where large propositional problems occur in practice, has thereby improved
considerably.

Furthermore, using the data structures and optimizations described in this pa-
per, proof reconstruction for propositional logic scales quite well even to large
SAT problems and proofs with millions of resolution steps. The additional
confidence gained by using an LCF-style prover to check the proof obviously
comes at a price (in terms of running time), but it’s not nearly as expensive
as one might have expected after earlier implementations.

This work is rather new, so there has not as yet been any major verification
using it. Some experiments have been performed in the contexts of coun-
terexample driven abstraction refinement and decision procedures for word
arithmetic. Our current implementation of the integration has been accepted
into the developer repositories of all three provers and will form part of their
next release.

While improving the performance of our implementation, we discovered ineffi-
ciencies in the implementation of the provers. Subsequently the prover imple-
mentations were modified, and these inefficiencies were removed. Tuning an
implementation to the extent presented here requires a great deal of familiarity
with the underlying theorem prover. Nevertheless our results are applicable
beyond these interactive provers, really to any prover that supports proposi-
tional logic and is able to simulate propositional resolution.

Roughly speaking, there are four ways one might implement high-performance
algorithms for LCF-style provers: trust an external implementation, mimic
them in-logic (perhaps extracting a fast executable version if the logic is con-
structive), reconstruct externally generated proofs, or use reflection to gen-
erate efficient proof checkers. The first is unsatisfactory for obvious reasons
and the second invariably causes an unacceptable performance penalty. Proof
reconstruction works best if the prover’s object logic can efficiently simulate
the proof system used by the external implementation of the algorithm, or if
we can find an efficient translation to such a proof system. This was the case
in our work. If it were not so, we can fall back to using some form of reflection,
but only as a last resort: reflection is logically tricky and nearly always adds
to the trusted code base.

21

We did not find any soundness bugs in the SAT solvers during proof recon-
struction. This is not surprising, since the solvers have already been tested
thoroughly on all the problems evaluated above. We did note an odd com-
pleteness bug in the verifier bundled with zChaff: it refuses to verify a proof of
unsatisfiability if the original problem contains trivial clauses. This is special
cased in the code, so the zChaff developers are clearly aware of it. Definitional
CNF conversions often generate trivial clauses, so in our setting this is per-
haps more important than for the usual verification of unsatisfiable SATLIB
problems.

Regarding the proofs produced by SAT solvers, we would like to emphasize
the importance of having a well-documented standard, similar to what the
DIMACS format is for a SAT solver’s input. At present, the mere fact that dif-
ferent solvers use different (and partially undocumented) proof formats makes
their integration a bit more of an engineering challenge than it would have
to be. Also, solver developers need to be aware that even trivial preprocess-
ing steps (like reordering of clauses) may need to be reproduced in the proof
checker. Therefore these steps should (perhaps optionally) be logged in the
proof trace as well, or the checker must implement the same preprocessing
algorithm as the solver.

We have already mentioned some possible directions for future work. There
is probably not very much potential left to optimize the implementation of
resolution itself at this point. However, to further improve the performance
of proof reconstruction, it could be beneficial to analyze the resolution proof
found by the SAT solver in more detail. Merging similar resolution chains may
reduce the overall number of resolutions required, and re-sorting resolutions
may help to derive shorter clauses during the proof, which should improve the
performance of individual resolution steps. Some preliminary results along
these lines are reported in [Amj06]. Also preprocessing of CNF formulae for
SAT solvers has recently shown very promising results [AS06,EB05], so it
might be worthwhile to integrate a preprocessing SAT solver with an LCF-
style prover. Note that this is not a trivial task, as the preprocessing must be
mimicked inside the HOL prover in a proof-producing fashion.

The approach presented in this paper has applications beyond propositional
reasoning. The decision problem for richer logics (or fragments thereof) can be
reduced to SAT [ABC'02,Str02,MS05,RH06]. Consequently, proof reconstruc-
tion for propositional logic can serve as a foundation for proof reconstruction
for other logics. Based on our work, only a proof-generating implementation of
the reduction is needed to integrate the more powerful, yet SAT-based decision
procedure with an LCF-style theorem prover. T'wo instances of this approach,
using CVC Lite and haRVey, have been mentioned in the previous section.

Acknowledgments. Tjark Weber would like to thank Markus Wenzel for

22

several good ideas and his extensive help with tuning the Isabelle/HOL im-
plementation. The clause representations used in this paper were suggested to

him by various people, including John Harrison, John Matthews, and Markus
Wenzel.

Hasan Amjad would like to thank John Harrison for help with porting the
MiniSat interface to HOL Light, and for developing implicit definitional CNF
and suggesting the CNF sequent representation.

Finally both authors would like to thank the anonymous referees for their
valuable suggestions.

References

[ABCT02] G.Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani.
A SAT based approach for solving formulas over Boolean and linear
mathematical propositions. In Andrei Voronkov, editor, Proceedings of
the 18th International Conference on Automated Deduction (CADE-18),
volume 2392 of Lecture Notes in Artificial Intelligence, pages 195-210,
Copenhagen, Denmark, July 2002. Springer.

[Amj05] Hasan Amjad. Shallow lazy proofs. In Joe Hurd and Tom Melham,
editors, Proceedings of the 18th International Conference on Theorem
Proving in Higher Order Logics, volume 3603 of Lecture Notes in
Computer Science, pages 35—49. Springer, 2005.

[Amj06] Hasan Amjad. Compressing propositional refutations. In Stephan
Merz and Tobias Nipkow, editors, Sizth International Workshop on
Automated Verification of Critical Systems (AVOCS ’06) — Preliminary
Proceedings, pages 7-18, 2006.

[AS06] Anbulagan and John Slaney. Multiple preprocessing for systematic
SAT solvers. In C. Benzmiiller, B. Fischer, and G. Sutcliffe, editors,
Proceedings of the 6th International Workshop on the Implementation
of Logics, volume 212 of CEUR Workshop Proceedings, pages 100-116,
Phnom Penh, Cambodia, 2006.

[Bar03] Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in
Combinations of First-Order Theories. PhD thesis, Stanford University,
January 2003. Stanford, California.

[BB04] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of
the cooperating validity checker. In Proceedings of the 16th International
Conference on Computer Aided Verification (CAV 2004), Boston,
Massachusetts, USA, July 2004.

[BBD03] Clark Barrett, Sergey Berezin, and David L. Dill. A proof-producing
Boolean search engine. In Proceedings of the Workshop on Pragmatics

23

[DIM93]

[ANMO6]

[EBO5]

[ES04]

[ES06]

[FMM*+06]

[GMO3]

[Gor00]

[Gor01]

[Har95]

of Decision Procedures in Automated Reasoning (PDPAR 2003), Miami,
Florida, USA, July 2003.

DIMACS satisfiability suggested format, 1993. Available online at |ftp:
//dimacs.rutgers.edu/pub/challenge/satisfiability/doc.

Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure
based on finite model search. In Ulrich Furbach and Natarajan Shankar,
editors, Automated Reasoning — Third International Joint Conference,
IJCAR 2006, Seattle, WA, USA, August 2006, Proceedings, volume 4130
of Lecture Notes in Artificial Intelligence, pages 303-317, 2006.

Niklas Eén and Armin Biere. Effective preprocessing in SAT through
variable and clause elimination. In Fahiem Bacchus and Toby Walsh,
editors, SAT, volume 3569 of Lecture Notes in Computer Science, pages
61-75. Springer, 2005.

Niklas Eén and Niklas Sorensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume
2919 of Lecture Notes in Computer Science, pages 502-518. Springer,
2004.

Niklas Eén and Niklas Soérensson. MiniSat-p-v1.14 — A proof-logging
version of MiniSat, September 2006. Available online at www.cs.
chalmers.se/Cs/Research/FormalMethods/MiniSat/.

Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa
Nieto, and Alwen Tiu. Expressiveness + automation + soundness:
Towards combining SMT solvers and interactive proof assistants. In
Holger Hermanns and Jens Palsberg, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 12th International
Conference, TACAS 2006 Held as Part of the Joint Furopean
Conferences on Theory and Practice of Software, ETAPS 2006, Vienna,
Austria, March 25 - April 2, 2006, Proceedings, volume 3920 of Lecture
Notes in Computer Science, pages 167-181. Springer, 2006.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A theorem proving environment for higher order logic. Cambridge
University Press, 1993.

M. J. C. Gordon. From LCF to HOL: A short history. In G. Plotkin,
Colin P. Stirling, and Mads Tofte, editors, Proof, Language, and
Interaction. MIT Press, 2000.

M. J. C. Gordon. HolSatLib 1.0b, June 2001. Available online at http:
//www.cl.cam.ac.uk/~mjcg/HolSatLib/HolSatLib.html.

John Harrison. Binary decision diagrams as a HOL derived rule. The
Computer Journal, 38(2):162-170, 1995.

24

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc
www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
http://www.cl.cam.ac.uk/
http://www.cl.cam.ac.uk/
~mjcg/HolSatLib/HolSatLib.html

[Har96a]

[Har96b|

[HS00]

[Hur99]

[Hur02]

[Hur06]

[KKS91]

[MBGO5]

[Mei00]

John Harrison. HOL Light: A tutorial introduction. In Mandayam K.
Srivas and Albert John Camilleri, editors, FMCAD, volume 1166 of
Lecture Notes in Computer Science, pages 265—269. Springer, 1996.

John Harrison. Stalmarck’s algorithm as a HOL derived rule. In Joakim
von Wright, Jim Grundy, and John Harrison, editors, Theorem Proving
in Higher Order Logics, volume 1125 of Lecture Notes in Computer
Science, pages 221-234. Springer, 1996.

Holger H. Hoos and Thomas Stiitzle. SATLIB: An online resource for
research on SAT. In Ian Gent, Hans van Maaren, and Toby Walsh,
editors, SAT 2000, pages 283-292. I0S Press, 2000. Available online at
http://www.satlib.org/.

Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles
Dowek, André Hirschowitz, Christine Paulin, and Laurent Théry,
editors, Theorem Proving in Higher Order Logics, 12th International
Conference, TPHOLs ’99, volume 1690 of Lecture Notes in Computer
Science, pages 311-321, Nice, France, September 1999. Springer.

Joe Hurd. An LCF-style interface between HOL and first-order logic.
In Andrei Voronkov, editor, Proceedings of the 18th International
Conference on Automated Deduction (CADE-18), volume 2392 of
Lecture Notes in Artificial Intelligence, pages 134-138, Copenhagen,
Denmark, July 2002. Springer.

Clément Hurlin. Proof reconstruction for first-order logic and set-
theoretical constructions. In Stephan Merz and Tobias Nipkow, editors,
Sixth International Workshop on Automated Verification of Critical
Systems (AVOCS °06) — Preliminary Proceedings, pages 157-162, 2006.

R. Kumar, T. Kropf, and K. Schneider. Integrating a first-order
automatic prover in the HOL environment. In M. Archer, J. J. Joyce,
K. N. Levitt, and P. J. Windley, editors, Proceedings of the 1991
International Workshop on the HOL Theorem Proving System and
its Applications, pages 170-176, Davis, California, USA, August 1991.
IEEE Computer Society Press, 1992.

S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theorem provers: A
case study combining CVC Lite and HOL Light. In Alessandro Armando
and Alessandro Cimatti, editors, PDPAR, volume 144 of FElectronic
Notes in Theoretical Computer Science, pages 43-51. Springer, 2005.

Andreas Meier. TRAMP: Transformation of machine-found
proofs into natural deduction proofs at the assertion level. In
David A. McAllester, editor, Automated Deduction — CADE-17, 17th
International Conference on Automated Deduction, Pittsburgh, PA,
USA, June 17-20, 2000, Proceedings, volume 1831 of Lecture Notes in
Artificial Intelligence, pages 460-464. Springer, 2000.

25

http://www.satlib.org/

[Men03]

[MMZ+01]

[MP04]

[MP06]

[MS05]

Jia Meng. Integration of interactive and automatic provers. In
Manuel Carro and Jesus Correas, editors, Second CologNet Workshop
on Implementation Technology for Computational Logic Systems, FME
2003, September 2003.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chatff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, Las Vegas, June 2001.

Jia Meng and Lawrence C. Paulson. Experiments on supporting
interactive proof using resolution. In David Basin and Michagl
Rusinowitch, editors, Automated Reasoning: Second International Joint
Conference, IJCAR 2004, Cork, Ireland, July 4-8, 2004, Proceedings,
volume 3097 of Lecture Notes in Artificial Intelligence, pages 372—-384.
Springer, 2004.

Jia Meng and Lawrence C. Paulson. Translating higher-order problems
to first-order clauses. In Geoff Sutcliffe, Renate Schmidt, and
Stephan Schulz, editors, ESCoR: Empirically Successful Computerized
Reasoning, volume 192 of CEUR Workshop Proceedings, pages 70-80,
2006.

Andreas Meier and Volker Sorge. Applying SAT solving in classification
of finite algebras. Journal of Automated Reasoning, 35(1-3):201-235,
October 2005.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The

[NPWO02]

[NRWOS]

[ORS92]

[Pau94]

[RHO6]

Definition of Standard ML - Revised. MIT Press, May 1997.

Tobias Nipkow, L. C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes
in Computer Science. Springer, 2002.

Andreas Nonnengart, Georg Rock, and Christoph Weidenbach. On
generating small clause normal forms. In Claude Kirchner and Hélene
Kirchner, editors, Automated Deduction — CADE-15, 15th International
Conference on Automated Deduction, Lindau, Germany, July 5-10,
1998, Proceedings, volume 1421 of Lecture Notes in Computer Science,
pages 397-411. Springer, 1998.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on
Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748-752, Saratoga, NY, June 1992. Springer.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828
of Lecture Notes in Computer Science. Springer, 1994.

Erik Reeber and Warren A. Hunt, Jr. A SAT-based decision procedure
for the subclass of unrollable list formulas in ACL2 (SULFA). In
Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning —

26

[Sha01]

[Str02]

[Tse83]

[Web05a]

[Web05b)]

[Zha05]

[ZM03]

Third International Joint Conference, IJCAR 2006, Seattle, WA, USA,
August 2006, Proceedings, volume 4130 of Lecture Notes in Artificial
Intelligence, pages 453467, 2006.

Natarajan Shankar. Using decision procedures with a higher-order logic.
In Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving
in Higher Order Logics, 14th International Conference, TPHOLs 2001,
Edinburgh, Scotland, UK, September 3-6, 2001, Proceedings, volume
2152 of Lecture Notes in Computer Science, pages 5—26. Springer, 2001.

Ofer Strichman. On solving Presburger and linear arithmetic with
SAT. In M. D. Aagaard and J. W. O’Leary, editors, Formal Methods in
Computer-Aided Design: 4th International Conference, FMCAD 2002,
Portland, OR, USA, November 6-8, 2002, Proceedings, volume 2517 of
Lecture Notes in Computer Science, pages 160-169. Springer, 2002.

G. S. Tseitin. On the complexity of derivation in propositional calculus.
In J. Siekmann and G. Wrightson, editors, Automation Of Reasoning:
Classical Papers On Computational Logic, Vol. II, 1967-1970, pages
466—483. Springer, 1983. Also in Structures in Constructive Mathematics
and Mathematical Logic Part II, ed. A. O. Slisenko, 1968, pp. 115-125.

Tjark Weber. Integrating a SAT solver with an LCF-style theorem
prover. In A. Armando and A. Cimatti, editors, Proceedings of
PDPAR’05 — Third International Workshop on Pragmatical Aspects
of Decision Procedures in Automated Reasoning, Edinburgh, UK, July
2005.

Tjark Weber. Using a SAT solver as a fast decision procedure for
propositional logic in an LCF-style theorem prover. In Joe Hurd,
Edward Smith, and Ashish Darbari, editors, Theorem Proving in
Higher Order Logics — 18th International Conference, TPHOLs 2005,
Ozford, UK, August 2005, Emerging Trends Proceedings, pages 180-189,
Oxford, UK, August 2005. Oxford University Computing Laboratory,
Programming Research Group. Research Report PRG-RR-05-02.

Lintao Zhang. On subsumption removal and on-the-fly CNF
simplification. In Fahiem Bacchus and Toby Walsh, editors, SAT,
volume 3569 of Lecture Notes in Computer Science, pages 482—489.
Springer, 2005.

Lintao Zhang and Sharad Malik. Validating SAT solvers using an
independent resolution-based checker: Practical implementations and
other applications. In Design, Automation and Test in Europe (DATE
2003), pages 10880-10885. IEEE Computer Society, 2003.

27

	Introduction
	System Description
	Preprocessing
	Proof Reconstruction
	A Simple Example
	Prover-specific Issues

	Evaluation
	Related Work
	Conclusions and Future Work
	References

