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Abstract

A groupoid consists of a set G equipped with a binary operation.
This article examines the relationship between commutativity and vari-
ous (less common) groupoid identities between products with 3 factors,
e.g., (zy)z = (yz)z. We systematically study all 12 identities of this
form to identify additional conditions (e.g., unitality) that are sufficient
for commutativity. Automated deduction techniques were used in sev-
eral parts of the work.
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1 Introduction

A groupoid (also called a magma) consist of a set G equipped with a binary
operation -: G x G — (. Despite the lack of further axioms, interesting results
about groupoids exist [1]. Application of the binary operation is commonly
denoted by juxtaposition: zy is short for = -y, the product of z and y.

There are two ways to form a product of two groupoid elements x, y: zy
and yx. If the groupoid operation satisfies

TY = Yyx (0)

for all x,y € G, it is said to be commutative.
Likewise, there are 12 ways to form a product of three groupoid elements =,
y, z. They give rise to the following 12 equations (where we implicitly assume
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x, Yy, z to be universally quantified over G):

(zy)z = (ay)2 (1)
(zy)z = (w2)y (2)
(zy)z = (yz)2 (3)
(xy)z = (y2)z (4)
(xy)z = (22)y (5)
(zy)z = (2y)z (6)
(zy)z = x(yz) (7)
(zy)z = z(2y) (8)
(zy)z = y(v2) (9)
(xy)z = y(zx) (10)
(zy)z = z(zy) (11)
(zy)z = =z(yz) (12)

Note that all other equations between products with three (possibly distinct)
factors are either symmetric to or equivalent permutations of one of the above.
For instance, x(yz) = z(yz), studied by Kleinfeld [6] in 1978, is symmetric
to (6), and z(yz) = (yx)z, studied by Thedy [8] in 1967, is a permutation
of (9).

Certainly the most well-known of these properties is (7), associativity. Any
groupoid that is both commutative and associative is readily shown to satisfy
(1)—(12). In Section 2, we study these equations to identify additional condi-
tions that are sufficient for commutativity. Some of our results are immediate
(which is readily explained by the simplicity of the properties that we inves-
tigate), others, however, are more interesting. We conclude with a discussion
of the automated deduction techniques that were used in this work, and with
some final remarks in Section 3.

2 Ensuring Commutativity

None of the above Equations (1)—(12) alone is sufficient for commutatitivity.
In fact, even their conjunction does not imply commutativity. Figure 1 shows a
finite, non-commutative groupoid that satisfies (1)—(12). We now study these
properties separately to identify additional conditions that ensure commuta-
tivity.
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a b c d
ala a a a
bla a a a
cla a b b
dla a a b

Figure 1: A non-commutative groupoid satisfying (1)-(12)

2.1 (zy)z = (2y)z

This property is trivially satisfied by any groupoid, simply because equality is
reflexive.

2.2 (zy)z = (x2)y

Equation (2) is known as right-commutativity. It implies commutativity if the
groupoid contains a left identity, i.e., an element e such that ex = z for all
xeGqG.

Lemma 1. Any groupoid satisfying (2) that has a left identity is commutative.

Proof. Let z, y € G, and let e be a left identity. Then, using (2), zy = (ex)y =
(ey)x = yz. O

The slightly weaker condition of containing a left-cancellative element (i.e.,
an element [ such that lz = ly implies z = y for all z, y € G) is not sufficient
for commutativity in the presence of (2). Likewise, the symmetric condition
of having a right identity (i.e., an element e such that xe = z for all z €
G) is not sufficient either. It is easy to give a non-commutative (but right-
commutative) groupoid with just two elements that serves as a counterexample
to both conjectures.

2.3 (zy)z = (yz)z

This property obviously holds in any commutative groupoid. It implies com-
mutativity if the groupoid contains no right-equivalent elements.

Definition 1 (Right-Equivalent). Two elements z, y of G are called right-
equivalent if xz = yz for all z € G.

A groupoid is said to have no right-equivalent elements if, for all x and y
in G, x and y are right-equivalent only if z = y.

Perhaps more descriptively, having no right-equivalent elements means that
no two rows of the groupoid operation’s matrix are equal. (For instance, the
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groupoid given in Figure 1 has two right-equivalent elements: a and b.) It is
easy to show that right-equivalence is in fact an equivalence relation on G.
We also note that every groupoid which contains a right-cancellative element
(i.e., an element r such that xr = yr implies z = y for all z, y € G) has no
right-equivalent elements. The converse, however, is not true in general.

Lemma 2. Any groupoid satisfying (3) that has no right-equivalent elements
18 commutative.

Proof. Let x, y € G. Then (3) implies that xy and yx are right-equivalent.
Hence zy = yx. O

The symmetric condition of having no left-equivalent elements is not suffi-
cient for commutativity. A non-commutative groupoid with just two elements
that satisfies (3) and even has a left identity is readily constructed.

2.4 (zy)z = (y2)x

It is easy to see that any groupoid satisfying Equation (4) and having a right
identity is commutative. We present two non-trivial results that allow us
to strengthen this observation. First, elements commute under sufficiently
many multiplications from the right. (The following lemma shows that five
multiplications are sufficient. Using an exhaustive computer search, we have
verified that ((((ab)c)d)e)f # ((((ba)c)d)e)f in the groupoid freely generated
by a, b, ¢, d, e, f, modulo the equivalence relation that is induced by (4).
Hence four multiplications are not sufficient in general.)

Lemma 3. For all a, b, ¢, d, e, f, g € G, (4) implies (((((ab)c)d)e)f)g =
(((((ba)c)d)e) f)g-

Proof. Let a, b, ¢, d, e, f, g € G. Then, using (4), (((((ab)c)d)e)f)g =
((((be)a)d)e) flg = ((((ad)(bc))e)flg = ((((be)e)(ad)) flg =
(((elad))(bc)) flg = (((be)f)(e(ad)))g = ((e(ad))g)((be)f) =
(((ad)g)e)((be)f) = ((ge)(ad))((bc)f) = ((ad)((bc)f))(ge) =
((d((bc)f))a)(ge) = ((((be)fla)d)(ge) = ((((cf)b)a)d)(ge) =
(((ba)(cf))d)(ge) = (((cf)d)(ba))(ge) = ((d(ba))(cf))(ge) =
((cf)(ge))(d(ba)) = ((ge)(d(ba)))(cf) = ((e(d(ba)))g)(cf) =
(g(cf))(e(d(ba))) = ((cf)le(d(ba))))g = ((fle(d(ba))))c)g =
(((e(d(ba)))c) f)g = ((((d(ba))c)e) f)g = (((((ba)c)d)e) f)

g. ]
Although the conclusion of Lemma 3 is weaker than (3), the lemma allows
to derive a corollary that is directly analog to Lemma 2.

Corollary 4. Any groupoid satisfying (4) that has no right-equivalent ele-
ments is commutative.
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Proof. Let x, y € G. Then, for arbitrary a, b, ¢, d € G, Lemma 3 implies that

((((zy)a)b)c)d and ((((yz)a)b)c)d are right-equivalent, hence equal.
Repeating this argument four more times, we can conclude that xy and yx

must be equal. O

The symmetric condition of having no left-equivalent elements is once again
not sufficient for commutativity. It is easy to construct a non-commutative
groupoid with four elements that satisfies (4) and has no left-equivalent el-
ements. Also existence of a left-cancellative element is not sufficient. For a
counterexample, consider the free groupoid on a single generator a, modulo the
equivalence relation that is induced by (4). Obviously a is left-cancellative, but
(aa)a # a(aa).

We note that this counterexample is infinite. In fact, there is no finite
counterexample: for finite groupoids, the existence of a left-cancellative ele-
ment implies surjectivity of the binary operation (by the pigeonhole principle).
This is sufficient to derive commutativity, as we will show now.

Equation (4) implies that elements that can be written as a product of
products commute with products.

Lemma 5. Foralla, b, c,d, e, f € G, (4)implies ((ab)(cd))(ef) = (ef)((ab)(cd)).

Proof. Let a, b, ¢, d, e, f € G. Then, using (4), ((ab)(cd))(ef) =
((ed)(ef))(ab) = ((d(ef))c)(ab) = (((ef)c)d)(ab) = (((fc)e)d)(ab) =
(((ce)f)d)(ab) = ((fd)(ce))(ab) = ((ce)(ab))(fd) = ((ab)(fd))(ce) =
((b(fd))a)(ce) = (((fd)a)b)(ce) = (((da)f)b)(ce) = ((fb)(da))(ce) =
((b(da)) f)(ce) = (fl(ce))(b(da)) = ((ce)(b(da)))f = ((e(b(da)))c)f =
(((b(da))c)e)f = (ef)((b(da))c) = (ef)(((da)c)b) = (ef)(((ac)d)b) =
(ef)(((ed)a)b) = (ef)((ab)(cd)). O

Corollary 6. Any groupoid satisfying (4) that has a surjective groupoid oper-
ation 1s commutative.

Proof. Let x, y € G. Using surjectivity of the binary operation four times,
we obtain a, b, ¢, d, e, f € G with x = (ab)(cd) and y = ef. Now zy =
((ab)(cd))(ef) = (ef)((ab)(ed)) = yx by Lemma 5. O

Surjectivity of the binary operation is clearly not necessary for commuta-
tivity. However, we note that a weaker condition—namely that all groupoid
elements that cannot be written as a product (i.e., all elements not in the range
of the binary operation) commute with each other—is not sufficient. It is easy
to give a non-commutative groupoid with just three elements that satisfies this
condition, and Equation (4).
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2.5 (zy)z = (z2)y

This property is equivalent to the previous one, (zy)z = (yz)x.
Lemma 7. Any groupoid satisfies (5) if and only if it satisfies (4).

Proof. Let x, y, z € G. Suppose (4) holds. Then (zy)z = (yz)r = (zx)y.
Conversely, if (5) holds, (zy)z = (z2)y = (y2)x. O

2.6 (zy)z=(zy)x

Rings satisfying this property were studied by Kleinfeld [6] in 1978. Equa-
tion (6) implies commutativity if the groupoid contains a right identity.

Lemma 8. Any groupoid satisfying (6) that has a right identity is commuta-
tive.

Proof. Let z, y € G, and let e be a right identity. Then, using (6), xy =
(we)y = (ye)z = yo. 0

Merely containing a right-cancellative element is not sufficient for commu-
tativity. A counterexample with just three elements—even containing a left
identity as well—is easily constructed.

2.7 (zy)z = x(yz)

This property simply states that the groupoid is associative, i.e., a semigroup.
It is well-known that semigroups need not be commutative. The smallest non-
commutative semigroup has just two elements, and there seems to be no ob-
vious condition (aside from commutativity itself) that ensures commutativity
in the presence of (7).

2.8 (zy)z = x(z2y)

Property (8) is symmetric to (9), in the sense that the groupoid given by (G, o),
with z oy defined as y - z, satisfies (9) if and only if (G, -) satisfies (8). Clearly
o is commutative if and only if - is. Therefore the next subsection applies
(modulo symmetry).

We remark that the same symmetry principle, when applied to (7), (10),
(11), or (12), merely yields an equivalent permutation of the respective equa-
tion.
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2.9 (zy)z=vy(z2)

Rings satisfying this property were studied by Thedy [8] in 1967. Property (9)
clearly implies commutativity if the groupoid contains a right identity, but
also—and perhaps less obvious—if it merely contains no right-equivalent el-
ements. Assuming (9), we establish a property that is weaker than (3), but
stronger than the conclusion of Lemma 3 (and structurally similar to both):
elements commute under two multiplications from the right.

Lemma 9. Foralla, b, ¢, d € G, (9) implies ((ab)c)d = ((ba)c)d.

Proof. Let a, b, ¢, d € G. Then, using (9), ((ab)c)d = (b(ac))d = (ac)(bd) =
c(a(bd)) = c((ba)d) = ((ba)c)d. O

Corollary 10. Any groupoid satisfying (9) that has no right-equivalent ele-
ments 15 commutative.

Proof. Similar to the proof of Corollary 4, but using Lemma 9. O

Surjectivity and having no left-equivalent elements, however, are not suf-
ficient to ensure commutativity in the presence of (9). It is easy to give a
non-commutative groupoid with two elements that satisfies (9) and even has
a left identity.

2.10 (zy)z =y(zx)

Hentzel et al. [4, Theorem 1] have proven the remarkable result that groupoids
satisfying (10) are 5-nice, meaning that any product of 5 elements is the same,
regardless of their association or order. This immediately implies commutativ-
ity under relatively weak additional assumptions. For instance, any groupoid
satisfying (10) that has no equivalent elements must be commutative.

Definition 2 (Equivalent Elements). Two elements z, y of G are called
equivalent if they are both left- and right-equivalent, i.e., if zx = zy and
rz =yz for all z € G.

A groupoid is said to have no equivalent elements if, for all x and y in G,
x and y are equivalent only if x = y.

More descriptively, this condition means that no two distinct groupoid
elements behave exactly the same under multiplication.

Corollary 11. Any groupoid satisfying (10) that has no equivalent elements
18 commutative.

Proof. Similar to the proof of Corollary 4, but using 5-niceness (instead of
Lemma 3) to establish both left- and right-equivalence. O
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Moreover, we show that (10) implies commutativity if all elements that
cannot be written as a product (i.e., all elements not in the range of the
binary operation) commute with each other. Note that this condition is also
necessary, and hence equivalent to commutativity in the presence of (10). It
is trivially satisfied in any groupoid whose binary operation is surjective.

Lemma 12. Any groupoid satisfying (10) is commutative if and only if xy =
yx for all x, y in G that are not in the range of the binary operation.

Proof. Let z, y € GG, and assume that non-products commute with each other.
We proceed by case distinction.

Case 1: both x and y are not in the range of the binary operation. Then
ry = yx by assumption.

Case 2: exactly one of x and y is in the range of the binary operation.
Without loss of generality, assume x = ab for some a, b € G. Three subcases
follow.

Case 2.1: both a and b are not in the range of the binary operation. Then,
using (10), zy = (ab)y = b(ya) = b(ay) = (yb)a = (by)a = y(ab) = yz.

Case 2.2: a = wv for some u, v € G. Without loss of generality, we may
assume that u, v, b are not in the range of the binary operation (otherwise
zy = yx follows from 5-niceness). Then (uv)y = y(uv) by Case 2.1. Hence
xy = yz, using the same transformations as in Case 2.1.

Case 2.3: b = uv for some u, v € (. Similar to Case 2.2. This concludes
the proof of Case 2.

Case 3: both x and y are in the range of the binary operation, i.e., x = ab,
y = cd for some a, b, ¢, d € G. Without loss of generality, we may assume that
a, b, ¢, d are not in the range of the binary operation (otherwise xy = yx follows
from 5-niceness). Then, using (10), zy = (ab)(cd) = (ba)(dc) = (¢(ba))d =
((ac)b)d = ((ca)b)d = (a(be))d = (be)(da) = c((da)b) = c(a(bd)) = c(a(db)) =
c((ba)d) = (dc)(ba) = (cd)(ab) = yz.

The above shows commutativity. The “only if” part of the statement is
trivial. O

2.11 (zy)z = z(xy)

This property, which states that products commute, obviously holds in any
commutative groupoid. Similar to (10), it implies commutativity if all elements
that cannot be written as a product commute with each other.

Lemma 13. Any groupoid satisfying (11) is commutative if and only if xy =
yx for all x, y in G that are not in the range of the binary operation.

Proof. Let z, y € GG. and assume that non-products commute with each other.
If both x and y are not in the range of the binary operation, then xy = yx by
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assumption. Otherwise, at least one of x and y can be written as a product.
Without loss of generality, assume x = ab for some a, b € G. Then (11) implies
xy = (ab)y = y(ab) = yz. The “only if” part of the statement is trivial. [

2.12  (zy)z = z(yx)

This property also holds in any commutative groupoid. It clearly implies
commutativity if the groupoid contains an identity, i.e., an element that is both
a left identity and a right identity. More interestingly, however, commutativity
is already implied if the groupoid contains a one-sided identity.

Lemma 14. Any groupoid satisfying (12) that has a left identity is commu-
tative.

Proof. Let z, y € G, and let e be a left identity. Then, using (12), xy =
z((ee)y) = z(y(ee)) = x(ye) = (ey)x = yx. O

Corollary 15. Any groupoid satisfying (12) that has a one-sided (i.e., left or
right) identity is commutative.

Proof. The statement follows from Lemma 14 by the symmetry principle de-
scribed in Section 2.8. O

Existence of a cancellative element, however, is not sufficient to ensure
commutativity. For a counterexample, consider the free groupoid on two gen-
erators a, b, modulo the equivalence relation that is induced by (12). One can
show that a is (both left- and right-) cancellative, but ab # ba.

We note that this counterexample is infinite. In fact, there is no finite
counterexample: for finite groupoids, the existence of a left-cancellative ele-
ment implies surjectivity of the binary operation (by the pigeonhole principle;
we used the same argument before in Section 2.4). This is sufficient for com-
mutativity, as demonstrated by the following lemma.

Lemma 16. Any groupoid satisfying (12) with a left-cancellative element that
can be written as a product is commutative.

Proof. Let | = ab (with a, b € G) be left-cancellative. We first show that [
commutes with every groupoid element. Using (12), [l = (ab)l = I(ba). Hence
[ = ba because [ is left-cancellative. Now, for arbitrary z € G, Iz = (ab)z =

z(ba) = zl.
Therefore, for arbitrary x, y € G, l(zy) = (zy)l = l(yx). Hence zy = xy
because [ is left-cancellative. O

Note that Lemma 16 is a strictly stronger result than Lemma 14. By
symmetry, the left-cancellative element can be replaced by a right-cancellative
one.
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a b c d e f g
alf d a b g f f
blb f ¢ f e f d
clg e fc [ [ a
did f e f ¢ f b
ela ¢ f e f f g
rrrrrirr
gif b g da ff

Figure 2: A non-commutative groupoid satisfying (12) with a surjective binary
operation

Corollary 17. Any groupoid satisfying (12) with a left- or right-cancellative
element that can be written as a product is commutative.

Proof. The statement follows from Lemma 16 by the symmetry principle de-
scribed in Section 2.8. O

Even if we make the stronger assumption that every groupoid element can
be written as a product, the left- or right-cancellative element is needed. Fig-
ure 2 shows a groupoid satisfying (12) that has a surjective binary operation,
but is non-commutative (and hence has no left- or right-cancellative element).
Moreover, the groupoid shown has no left-equivalent or right-equivalent ele-
ments.

3 Conclusions

In this article, we have systematically studied all groupoid identities between
products with 3 (possibly distinct) factors, and identified conditions under
which these identities imply commutativity: e.g., existence of a (left or right)
identity, having no (right-)equivalent elements, surjectivity of the groupoid op-
eration, commutativity of non-products. Our results are surveyed in Table 1.
While some of them are immediate, others—in particular for (zy)z = (yz)z
(Section 2.4), for (zy)z = y(zz) (Section 2.10), and for (zy)z = z(yz) (Sec-
tion 2.12)—were not as obvious. We have also provided or hinted at a number
of counterexamples, showing that certain weaker conditions do not suffice to
ensure commutativity in the presence of (one of) Equations (1)-(12).
Because of the simplicity of the axioms considered in this article, our
results are easy to verify. However, proofs and counterexamples for non-
commutative, non-associative operations are not always easy to find. We suc-
cessfully used Waldmeister [5], a theorem prover for equational logic, and the
Isabelle/HOL [7] system. Waldmeister was able to find proofs for (equational
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Identity Condition

(xy)z = (zy)z commutativity

(xy)z = (z2)y existence of a left identity

(xy)z = (yx)z no right-equivalent elements

(xy)z = (y2)x no right-equivalent elements; surjectivity

(xy)z = (zx)y no right-equivalent elements; surjectivity

(xy)z = (zy)x existence of a right identity

(xy)z = x(y=2) commutativity; non-associativity

(xy)z = x(2y) no left-equivalent elements

(xy)z = y(x=2) no right-equivalent elements

(xy)z = y(zx) no equivalent elements;
non-products commute with each other

(xy)z = z(xy) non-products commute with each other

(xy)z = z(yx) | existence of a left- or right-cancellative product

Table 1: Sufficient conditions for commutativity

logic encodings of) many lemmas in this article automatically. In particular,
proofs for Lemma 3 and Lemma 5 were first found by Waldmeister. Since
Waldmeister proofs may be unnecessarily long, we then implemented a small
(about 300 lines of code) C program, which searched for a proof using a simple
(exhaustive) breadth-first rewriting algorithm. The proofs of Lemmas 3 and 5
that are shown in this article were found by our C program, and they are the
shortest proofs possible that use (4) as an oriented (i.e., from left to right)
rewrite rule.

Subsequently, to increase the confidence in these computer-proven results,
we interactively developed machine-readable proofs for most of them in Isa-
belle/HOL. Moreover, Isabelle/HOL has a built-in model generator [9], which
was able to find the finite counterexamples described in this article automat-
ically. At the same time, the model generator’s failure to find smaller coun-
terexamples implies that the ones given here are the smallest ones possible,
in terms of the size of G. We also employed Equinox [2] and Paradox [3] (a
theorem prover and a model generator, respectively, for first-order logic) to
investigate various conjectures.

This article was mainly concerned with commutativity in the presence of
Equations (1)-(12). Future work could focus on the relationship between these
equations and other groupoid properties, e.g., associativity or k-niceness, on
applications of our results to non-associative rings, and also on identities be-
tween products with more than 3 factors.

Acknowledgments. The author’s interest in these topics was sparked
by a thread in the Usenet newsgroup de.sci.mathematik several years ago.



210 T. Weber

Koen Classen answered my questions about Paradox, and Thomas Hillenbrand
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