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Abstract

This paper describes the integration of zChaff and MiniSat, currently two leading
SAT solvers, with Isabelle/HOL. Both SAT solvers generate resolution-style proofs
for (instances of) propositional tautologies. These proofs are verified by the theorem
prover. The presented approach significantly improves Isabelle’s performance on
propositional problems, and exhibits counterexamples for unprovable conjectures.
It is shown that an LCF-style theorem prover can serve as a viable proof checker even
for large SAT problems. An efficient representation of the propositional problem in
the theorem prover turns out to be crucial; several possible solutions are discussed.

1 Introduction

Interactive theorem provers like PVS [ORS92], HOL [GM93] or Isabelle [Pau94] tradi-
tionally support rich specification logics. Proof search and automation for these logics
however is difficult, and proving a non-trivial theorem usually requires manual guidance
by an expert user. Automated theorem provers on the other hand, while often designed
for simpler logics, have become increasingly powerful over the past few years. New algo-
rithms, improved heuristics and faster hardware allow interesting theorems to be proved
with little or no human interaction, sometimes within seconds.

By integrating automated provers with interactive systems, we can preserve the
richness of our specification logic and at the same time increase the degree of automa-
tion [Sha01]. This is an idea that goes back at least to the early nineties [KKS91].
However, to ensure that a potential bug in the automated prover does not render the
whole system unsound, theorems in Isabelle, like in other LCF-style [Gor00] provers,
can be derived only through a fixed set of core inference rules. Therefore it is not suffi-
cient for the automated prover to return whether a formula is provable, but it must also
generate the actual proof, expressed (or expressable) in terms of the interactive system’s
inference rules.

Formal verification is an important application area of interactive theorem prov-
ing. Problems in verification can often be reduced to Boolean satisfiability (SAT), and
recent SAT solver advances have made this approach feasible in practice. Hence the
performance of an interactive prover on propositional problems may be of significant



practical importance. In this paper we describe the integration of zChaff [MMZ+01]
and MiniSat [ES04], two leading SAT solvers, with the Isabelle/HOL [NPW02] prover.

We have shown earlier [Web05a, Web05b] that using a SAT solver to prove theo-
rems of propositional logic dramatically improves Isabelle’s performance on this class of
formulae, even when a rather naive (and unfortunately, as we will see in Section 3, inef-
ficient) representation of propositional problems is used. Furthermore, while Isabelle’s
previous decision procedures simply fail on unprovable conjectures, SAT solvers are able
to produce concrete counterexamples. In this paper we focus on recent improvements
of the proof reconstruction algorithm in Isabelle/HOL, which cause a speedup by sev-
eral orders of magnitude. In particular the representation of the propositional problem
turns out to be crucial for performance. While the implementation in [Web05a] was still
limited to relatively small SAT problems, the recent improvements now allow to check
proofs with millions of resolution steps in reasonable time. This shows that, somewhat
contrary to common belief, efficient proof checking in an LCF-style system is feasible.

The next section describes the integration of zChaff and MiniSat with Isabelle/HOL
in more detail. In Section 3 we evaluate the performance of our approach, and report
on experimental results. Related work is discussed in Section 4. Section 5 concludes
this paper with some final remarks and points out directions for future research.

2 System Description

To prove a propositional tautology φ in the Isabelle/HOL system with the help of zChaff
or MiniSat, we proceed in several steps. First φ is negated, and the negation is converted
into an equivalent formula φ∗ in conjunctive normal form. φ∗ is then written to a file
in DIMACS CNF format [DIM93], the standard input format supported by most SAT
solvers. zChaff and MiniSat, when run on this file, return either “unsatisfiable”, or a
satisfying assignment for φ∗.

In the latter case, the satisfying assignment is displayed to the user. The assignment
constitutes a counterexample to the original (unnegated) conjecture. When the solver
returns “unsatisfiable” however, things are more complicated. If we have confidence in
the SAT solver, we can simply trust its result and accept φ as a theorem in Isabelle.
The theorem is tagged with an “oracle” flag to indicate that it was proved not through
Isabelle’s own inference rules, but by an external tool. In this scenario, a bug in the
SAT solver could potentially allow us to derive inconsistent theorems in Isabelle/HOL.

The LCF-approach instead demands that we verify the solver’s claim of unsatisfia-
bility within Isabelle/HOL. While this is not as simple as the validation of a satisfying
assignment, the increasing complexity of SAT solvers has before raised the question of
support for independent verification of their results, and in 2003 zChaff has been ex-
tended by L. Zhang and S. Malik [ZM03] to generate resolution-style proofs that can be
verified by an independent checker. (This issue has also been acknowledged by the an-
nual SAT Competition, which has introduced a special track on certified unsat answers
in 2005.) More recently, a proof-logging version of MiniSat has been released [ES06],
and John Matthews has extended this version to produce human-readable proofs that
are easy to parse [Mat06], similar to those produced by zChaff. Hence our main task
boils down to using Isabelle/HOL as an independent checker for the resolution proofs
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found by zChaff and MiniSat.
Both solvers store their proof in a text file that is read in by Isabelle, and the

individual resolution steps are replayed in Isabelle/HOL. Section 2.1 briefly describes
the necessary preprocessing of the input formula, and details of the proof reconstruction
are explained in Section 2.2. The overall system architecture is shown in Figure 1.

2.1 Preprocessing

Isabelle/HOL offers higher-order logic (on top of Isabelle’s meta logic), whereas most
SAT solvers only support formulae of propositional logic in conjunctive normal form
(CNF). Therefore the (negated) input formula φ must be preprocessed before it can be
passed to the solver.

Two different CNF conversions are currently implemented: a naive encoding that
may cause an exponential blowup of the formula, and a Tseitin-style encoding [Tse83]
that may introduce (existentially quantified) auxiliary Boolean variables, cf. [Gor01].
The technical details can be found in [Web05a]. More sophisticated CNF conversions,
e.g. from [NRW98], could be implemented as well. The main focus of our work however
is on efficient proof reconstruction, less on transformations of the input formula: the
benchmark problems used for evaluation in Section 3 are already given in CNF anyway.

Note that it is not sufficient to convert φ into an equivalent formula φ∗ in CNF.
Rather, we have to prove this equivalence inside Isabelle/HOL. The result is not a sin-
gle formula, but a theorem of the form ` φ = φ∗. The fact that our CNF transformation
must be proof-producing leaves some potential for optimization. One could implement
a non proof-producing (and therefore much faster) version of the same CNF transfor-
mation, and use it for preprocessing instead. Application of the proof-producing version
would then be necessary only if the SAT solver has in fact shown a formula to be un-
satisfiable. The total runtime on provable formulae would increase slightly, as the CNF



transformation needed to be done twice – first without, later with proofs. Preprocessing
times for unprovable formulae however should improve.

φ∗ is written to a file in DIMACS CNF format, and the SAT solver is invoked on
this input file.

2.2 Proof Reconstruction

When zChaff and MiniSat return “unsatisfiable”, they also generate a resolution-style
proof of unsatisfiability and store the proof in a text file [ZM03, Mat06]. While the
precise format of this file differs between the solvers, the essential proof technique is the
same. Both SAT solvers use propositional resolution to derive new clauses from existing
ones:

P ∨ x Q ∨ ¬x
P ∨Q

It is well-known that this single inference rule is sound and complete for propositional
logic. A set of clauses is unsatisfiable iff the empty clause is derivable via resolution.
(For the purpose of proof reconstruction, we are only interested in the proof returned
by the SAT solver, not in the techniques and heuristics that the solver uses internally
to find this proof. Therefore the integration of zChaff and MiniSat is quite similar –
minor differences in their proof trace format aside –, and further SAT solvers capable
of generating resolution-style proofs could be integrated with Isabelle in the exact same
manner.)

We assign a unique identifier – simply a non-negative integer, starting with 0 –
to each clause of the original CNF formula. Further clauses derived by resolution are
assigned identifiers by the solver. Often we are not interested in the clause obtained by
resolving just two existing clauses, but only in the result of a whole resolution chain,
where two clauses are resolved, the result is resolved with yet another clause, and so
on. Consequently, we define an ML [MTHM97] type of propositional resolution proofs
as a pair whose first component is a table mapping integers (to be interpreted as the
identifiers of clauses derived by resolution) to lists of integers (to be interpreted as the
identifiers of previously derived clauses that are part of the defining resolution chain).
The second component of the proof is just the identifier of the empty clause.

type proof = int list Inttab.table * int

This type is merely intended as an internal format to store the information contained
in a resolution proof. There are many restrictions on valid proofs that are not enforced
by this type. For example, it does not ensure that its second component indeed denotes
the empty clause, that every resolution step is legal, or that there are no circular depen-
dencies between derived clauses. It is only important that every resolution proof can
be represented as a value of type proof, not conversely. The proof returned by zChaff
or MiniSat is translated into this internal format, and passed to the actual proof recon-
struction algorithm. This algorithm will either generate an Isabelle/HOL theorem, or
fail in case the proof is invalid (which should not happen unless the SAT solver contains
a bug).



2.2.1 zChaff’s Proof Trace Format

The format of the proof trace generated by zChaff has not been documented before.
Therefore a detailed description of the format and its interpretation, although not the
main focus of this paper, seems in order.

The proof file generated by zChaff consists of three sections, the first two of which
are optional (but present in any non-trivial proof). The first section defines clauses
derived from the original problem by resolution. A typical line would be “CL: 7 <= 2
3 0”, meaning that a new clause was derived by resolving clauses 2 and 3, and resolving
the result with clause 0. In this example, the new clause is assigned the identifier 7,
which may then be used in further lines of the proof file. Clauses of the original CNF
formula are implicitly assigned identifiers starting from 0, in the order they are given in
the DIMACS file. When converting zChaff’s proof into our internal format, the clause
identifiers in a CL line can immediately be added to the table which constitutes the
proof’s first component, with the new identifier as the key, and the list of resolvents as
the associated value.

The second section of the proof file records variable assignments that are implied by
the first section, and by other variable assignments. As an example, consider “VAR: 3
L: 2 V: 0 A: 1 Lits: 4 7”. This line states that variable 3 must be false (i.e. its
value must be 0; zChaff uses “V: 1” for variables that must be true) at decision level 2,
the antecedent being clause 1. The antecedent is a clause in which every literal except
for the one containing the assigned variable must evaluate to false because of variable
assignments at lower decision levels (or because the antecedent is already a unit clause).
The antecedent’s literals are given explicitly by zChaff, using an encoding that multiplies
each variable by 2 and adds 1 for negative literals. Hence “Lits: 4 7” corresponds
to the clause x2 ∨ ¬x3. Our internal proof format does not allow to record variable
assignments directly, but we can translate them by observing that they correspond to
unit clauses. For each variable assignment in zChaff’s trace, a new clause identifier is
generated (using the number of clauses derived in the first section as a basis, and the
variable itself as offset) and added as a key to the proof’s table. The associated list of
resolvents contains the antecedent, and is otherwise obtained from the explicitly given
literals: for each literal’s variable (except for the one that is being assigned), a similar
unit clause must have been added to the table before; its identifier computed according
to the same formula. We ignore both the value and the level information in zChaff’s
trace. The former is implicit in the derived unit clause (which contains the variable
either positively or negatively), and the latter is implicit in the overall proof structure.

The last section of the proof file consists of just one line which specifies the conflict
clause, a clause which has only false literals: e.g. “CONF: 3 == 4 6”. Literals are
encoded in the same way as in the second section, so clause 3 would be x2 ∨ x3 in this
case. We translate this line into our internal proof format by generating a new clause
identifier i which is added to the proof’s table, with the conflict clause itself and the
unit clause for each of the conflict clause’s variables as associated resolvents. Finally,
we set the proof’s second component to i.



2.2.2 MiniSat’s Proof Trace Format

The proof-logging version of MiniSat originally generated proof traces in a rather com-
pact (and again undocumented) binary format, for which we have not implemented a
parser. John Matthews [Mat06] however has extended this version with the ability to
produce readable proof traces in ASCII format, similar to those produced by zChaff.
We describe the precise proof trace format, and its translation into our internal proof
format.

MiniSat’s proof traces, unlike zChaff’s, are not divided into sections. They contain
four different types of statements: “R” to reference original clauses, “C” for clauses
derived via resolution, “D” to delete clauses that are not needed anymore, and “X” to
indicate the end of proof. Aside from “X”, which must appear exactly once and at the
end of the proof trace, the other statements may appear in any number and (almost)
any order.

MiniSat does not implicitly assign identifiers to clauses in the original CNF formula.
Instead, “R” statements, e.g. “R 0 <= -1 3 4”, are used to establish clause identifiers.
This particular line introduces a clause identifier 0 for the clause ¬x1∨x3∨x4, which must
have been one of the original clauses in this example. (Note that MiniSat, unlike zChaff,
uses the DIMACS encoding of literals in its proof trace.) Since our internal proof format
uses different identifiers for the original clauses, the translation of MiniSat’s proof trace
into the internal format becomes parameterized by a renaming R of clause identifiers.
An “R” statement does not affect the proof itself, but it extends the renaming. The
given literals are used to look up the identifier of the corresponding original clause, and
the clause identifier introduced by the “R” statement is mapped to the clause’s original
(internal) identifier.

New clauses are derived from existing clauses via resolution chains. A typical line
would be “C 7 <= 2 5 3 4 0”, meaning that a new clause with identifier 7 was derived
by resolving clauses 2 and 3 (with x5 as the pivot variable), and resolving the result with
clause 0 (with x4 as the pivot variable). In zChaff’s notation, this would correspond
to “CL: 7 <= 2 3 0”. We add this line to the proof’s table just like for zChaff, but
with one difference: MiniSat’s clause identifiers cannot be used directly. Instead, we
generate a new internal clause identifier for this line, extend the renaming R by mapping
MiniSat’s clause identifier (7 in this example) to the newly generated identifier, and
apply R to the identifiers of resolvents as well.

Clauses that are not needed anymore can be indicated by a “D” statement, followed
by a clause identifier. Currently such statements are ignored. Making beneficial use of
them would require not only a modified proof format, but also a different algorithm for
proof reconstruction.

Finally a line like “X 0 42” indicates the end of proof. The numbers are the mini-
mum and maximum, respectively, identifiers of clauses used in the proof. We ignore the
first identifier (which is usually 0 anyway), and use the second identifier, mapped from
MiniSat’s identifier scheme to our internal one by applying R, as the identifier of the
empty clause, i.e. as the proof’s second component.

There is one significant difference between MiniSat’s and zChaff’s proof traces that
should have become apparent from the foregoing description. MiniSat, unlike zChaff,
records the pivot variable for each resolution step in its trace, i.e. the variable that occurs



positively in one clause partaking in the resolution, and negatively in the other. This
information is redundant, as the pivot variable can always be determined from those two
clauses: If two clauses containing more than one variable both positively and negatively
were to be resolved, the resulting clause would be tautological, i.e. contain a variable and
its negation. Both zChaff and MiniSat are smart enough not to derive such tautological
clauses in the first place. We have decided to ignore the pivot information in MiniSat’s
traces, since proof reconstruction for zChaff requires the pivot variable to be determined
anyway, and using MiniSat’s pivot data would need a modified internal proof format.
This however leaves some potential for optimization wrt. replaying MiniSat proofs.

2.2.3 Proof Reconstruction

We now come to the core of this paper. The task of proof reconstruction is to derive
False from the original clauses, using information from a value of type proof (which
represents a resolution proof found by a SAT solver). This can be done in various ways.
In particular the precise representation of the problem as an Isabelle/HOL theorem (or
a collection of Isabelle/HOL theorems) turns out to be crucial for performance.

Naive HOL Representation In an early implementation [Web05a], the whole prob-
lem was represented as a single theorem ` (φ∗ =⇒ False) =⇒ (φ∗ =⇒ False), where
φ∗ was completely encoded in HOL as a conjunction of disjunctions. Step by step, this
theorem was then modified to reduce the antecedent φ∗ =⇒ False to True, which would
eventually prove ` φ∗ =⇒ False.

This was extremely inefficient for two reasons. First, every resolution step required
manipulation of the whole (possibly huge) problem at once. Second, and just as im-
portant, SAT solvers treat clauses as sets of literals, making implicit use of associa-
tivity, commutativity and idempotence of disjunction. Likewise, CNF formulae are
treated as sets of clauses, making implicit use of the same properties for conjunction.
The encoding in HOL however required numerous explicit rewrites (with theorems like
` (P ∨Q) = (Q ∨ P )) to reorder clauses and literals before each resolution step.

Separate Clauses Representation A better representation of the CNF formula was
discussed in [FMM+06]. In order to understand it, we need to look at the ML datatype
of theorems that Isabelle uses internally. Every theorem encodes a sequent Γ ` φ, where
φ is a single formula, and Γ is a finite set of formulae (implemented as an ordered list
of terms, although this detail doesn’t matter to us). The intended interpretation is
that φ holds when every formula in Γ is assumed as a hypothesis. So far we have only
considered theorems where Γ = ∅, written ` φ for short. This was motivated by the
normal user-level view on theorems in Isabelle, where assumptions are encoded using
implications =⇒ , rather than hypotheses. Isabelle’s inference kernel however provides
rules that let us convert between hypotheses and implications as we like:

{φ} ` φ
Assume

Γ ` ψ
Γ \ φ ` φ =⇒ ψ

impI
Γ ` φ =⇒ ψ Γ′ ` φ

Γ ∪ Γ′ ` ψ
impE

Let us use [[A1; . . . ;An]] =⇒ B as a short hand for A1 =⇒ . . . =⇒ An =⇒ B (with
implication associating to the right). In [FMM+06], each clause p1 ∨ . . .∨ pn is encoded



as an implication p1 =⇒ . . . =⇒ pn =⇒ False (where pi denotes the negation normal
form of ¬pi, for 1 ≤ i ≤ n), and turned into a separate theorem

{p1 ∨ . . . ∨ pn} ` [[p1; . . . ; pn]] =⇒ False.

This allows resolution to operate on comparatively small objects, and resolving two
clauses Γ ` [[p1; . . . ; pn]] =⇒ False and Γ′ ` [[q1; . . . ; qm]] =⇒ False, where ¬pi = qj
for some i and j, essentially becomes an application of the cut rule. The first clause
is rewritten to Γ ` [[p1; . . . ; pi−1; pi+1; . . . ; pn]] =⇒ ¬pi. A derived Isabelle tactic then
performs the cut to obtain

Γ ∪ Γ′ ` [[q1; . . . ; qj−1; p1; . . . ; pi−1; pi+1; . . . ; pn; qj+1; . . . ; qm]] =⇒ False

from the two clauses. Note that this representation, while breaking apart the given
clauses into separate theorems allows us to view the CNF formula as a set of clauses,
still does not allow us to view each individual clause as a set of literals. Some reordering
of literals is necessary before cuts can be performed, and after each cut, duplicate literals
have to be removed from the result.

Sequent Representation We can further exploit the fact that Isabelle’s inference
kernel treats a theorem’s hypotheses as a set of formulae, by encoding each clause using
hypotheses only. Consider the following representation of a clause p1 ∨ . . . ∨ pn as an
Isabelle/HOL theorem:

{p1 ∨ . . . ∨ pn, p1, . . . , pn} ` False.

Resolving two clauses p1 ∨ . . . ∨ pn and q1 ∨ . . . ∨ qm, where ¬pi = qj , now starts with
two applications of the impI rule to obtain theorems

{p1 ∨ . . . ∨ pn, p1, . . . , pi−1, pi+1, . . . , pn} ` ¬pi =⇒ False

and
{q1 ∨ . . . ∨ qm, q1, . . . , qj−1, qj+1, . . . , qm} ` pi =⇒ False.

We then instantiate a previously proven theorem

` (P =⇒ False) =⇒ (¬P =⇒ False) =⇒ False

(where P is an arbitrary proposition) with pi for P . Instantiation is another basic
operation provided by Isabelle’s inference kernel. Finally two applications of impE yield

{p1∨. . .∨pn, p1, . . . , pi−1, pi+1, . . . , pn}∪{q1∨. . .∨qm, q1, . . . , qj−1, qj+1, . . . , qm} ` False.

This approach requires no explicit reordering of literals anymore. Furthermore,
duplicate literals do not need to be eliminated after resolution. This is all handled by
the inference kernel now; the sequent representation is as close to a SAT solver’s view of
clauses as sets of literals as possible in Isabelle. With this representation, we do not rely
on derived tactics anymore to perform resolution, but we can give a precise description
of the implementation in terms of (five, as we see above) applications of core inference
rules.



CNF Sequent Representation The sequent representation has the disadvantage
that each clause contains itself as a hypothesis. Since hypotheses are accumulated
during resolution, this leads to larger and larger sets of hypotheses, which will eventually
contain every clause used in the resolution proof. Forming the union of these sets
takes the kernel a significant amount of time. It is therefore faster to use a slightly
different clause representation, where each clause contains the whole CNF formula φ∗

as a hypothesis. Let φ∗ ≡
∧k

i=1Ci, where k is the number of clauses. Using the Assume
rule, we obtain a theorem {

∧k
i=1Ci} `

∧k
i=1Ci. Repeated elimination of conjunction

(with the help of two theorems, namely ` P ∧ Q =⇒ P and ` P ∧ Q =⇒ Q) yields a
list of theorems {

∧k
i=1Ci} ` C1, . . . , {

∧k
i=1Ci} ` Ck. Each of these theorems is then

converted into the sequent form described above, with literals as hypotheses and False
as the theorem’s conclusion. This representation increases preprocessing times slightly,
but throughout the entire proof, the set of hypotheses for each clause now consists of∧k

i=1Ci and the clause’s literals only. It is therefore much smaller than before, which
speeds up resolution. Furthermore, memory requirements do not increase: the term∧k

i=1Ci needs to be kept in memory only once, and can be shared between different
clauses. This can also be exploited when the union of hypotheses is formed (assuming
that the inference kernel and the underlying ML system support it): a simple pointer
comparison is sufficient to determine that both theorems contain

∧k
i=1Ci as a hypothesis

(and hence that the resulting theorem needs to contain it only once); no lengthy term
traversal is required.

We should mention that this representation of clauses, despite its superior practical
performance, has a small downside. The resulting theorem always has every given
clause as a premise, while the theorem produced by the sequent representation only has
those clauses as premises that were actually used in the proof. If the logically stronger
theorem is needed, it can be obtained by analyzing the resolution proof to identify the
used clauses beforehand, and filtering out the unused ones before proof reconstruction.

We still need to determine the pivot literal (i.e. pi and ¬pi in the above example)
before resolving two clauses. This could be done by directly comparing the hypotheses
of the two clauses, and searching for a term that occurs both positively and negatively.
It turns out to be slightly faster however (and also more robust, since we make fewer
assumptions about the actual implementation of hypotheses in Isabelle) to use our own
data structure. With each clause, we associate a table that maps integers – one for each
literal in the clause – to the Isabelle term representation of a literal. The table is an
inverse of the mapping from literals to integers that was constructed for translation into
DIMACS format, but restricted to the literals that actually occur in a clause. Positive
integers are mapped to positive literals (atoms), and negative integers are mapped to
negative literals (negated atoms). This way term negation simply corresponds to integer
negation. The table associated with the result of a resolution step is the union of the
two tables that were associated with the resolvents, but with the entry for pi (¬pi,
respectively) removed from the table associated with the first (second, respectively)
clause.

Another optimization, related not to the representation of individual clauses, but
to the overall proof structure, is perhaps more obvious and has been present in our
implementations since the beginning. zChaff and MiniSat, during proof search, may
generate many clauses that are ultimately not needed to derive the empty clause. Instead



of replaying the whole proof trace in chronological order, we perform “backwards” proof
reconstruction, starting with the identifier of the empty clause, and recursively proving
the required resolvents using depth-first search.

While some clauses may not be needed at all, others may be used multiple times
in the resolution proof. It would be highly inefficient to prove these clauses over and
over again. Therefore all clauses proved are stored in an array, which is allocated
at the beginning of proof reconstruction (with a size big enough to possibly hold all
clauses derived during the proof). Initially, this array only contains clauses present
in the original CNF formula, still in their original format as a disjunction of literals.
Whenever an original clause is used as a resolvent, it is converted into the sequent format
described above. (Note that this avoids converting original clauses that are not used
in the proof at all.) The converted clause, along with its literal table, is stored in the
array instead of the original (unconverted) clause. Each clause obtained as the result of
a resolution chain is stored as well. Reusing a previously proved clause merely causes
an array lookup.

For this reason, it could be beneficial to analyze the resolution chains in more detail:
sometimes very similar chains occur in a proof, differing only in a clause or two. Common
parts of resolution chains could be stored as additional lemmas (which only need to
be derived once), thereby reducing the total number of resolution steps. A detailed
evaluation of this idea is beyond the scope of this paper.

2.3 A Simple Example

In this section we illustrate the proof reconstruction using a small example. Consider
the following input formula

φ ≡ (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x3).

Since φ is already in conjunctive normal form, preprocessing simply yields the theorem
` φ = φ. The corresponding DIMACS CNF file, aside from its header, contains one line
for each clause in φ:

-1 2 0
-2 -3 0
1 2 0
-2 3 0

zChaff and MiniSat easily detect that this problem is unsatisfiable. zChaff creates a
text file with the following data:

CL: 4 <= 2 0
VAR: 2 L: 0 V: 1 A: 4 Lits: 4
VAR: 3 L: 1 V: 0 A: 1 Lits: 5 7
CONF: 3 == 5 6

We see that first a new clause, with identifier 4, is derived by resolving clause 2,
x1 ∨ x2, with clause 0, ¬x1 ∨ x2. The pivot variable which occurs both positively (in
clause 2) and negatively (in clause 0) is x1; this variable is eliminated by resolution.



¬x2 ∨ x3

x1 ∨ x2 ¬x1 ∨ x2
x2

x3

¬x2 ∨ ¬x3

x1 ∨ x2 ¬x1 ∨ x2
x2

¬x3

⊥

Figure 2: Resolution Proof found by zChaff

Now the value of x2 (VAR: 2) can be deduced from clause 4 (A: 4). x2 must be
true (V: 1). Clause 4 contains only one literal (Lits: 4), namely x2 (since 4÷2 = 2),
occuring positively (since 4 mod 2 = 0). This decision is made at level 0 (L: 0), before
any decision at higher levels.

Likewise, the value of x3 can then be deduced from clause 1, ¬x2 ∨¬x3. x3 must be
false (V: 0).

Finally clause 3 is our conflict clause. It contains two literals, ¬x2 (since 5÷ 2 = 2,
5 mod 2 = 1) and x3 (since 6 ÷ 2 = 3, 6 mod 2 = 0). But we already know that both
literals must be false, so this clause is not satisfiable.

In Isabelle, the resolution proof corresponding to zChaff’s proof trace is constructed
backwards from the conflict clause. A tree-like representation of the proof is shown in
Figure 2. Note that information concerning the level of decisions, the actual value of
variables, or the literals that occur in a clause is redundant in the sense that it is not
needed by Isabelle to validate zChaff’s proof. The clause x2, although used twice in the
proof, is derived only once during resolution (and reused the second time), saving one
resolution step in this little example.

The proof trace produced by MiniSat for the same problem happens to encode a
different resolution proof:

R 0 <= -1 2
R 1 <= -2 -3
R 2 <= 1 2
R 3 <= -2 3
C 4 <= 3 3 1
C 5 <= 0 2 4
C 6 <= 2 2 4
C 7 <= 5 1 6
X 0 7

The first four lines introduce clause identifiers for all four clauses in the original
problem, in their original order as well (effectively making the renaming R from Mini-
Sat’s clause identifiers to internal clause identifiers the identity in this case). The next
four lines define four new clauses (one clause per line), derived by resolution. Clause 4 is
the result of resolving clause 3 (¬x2∨x3) with clause 1 (¬x2∨¬x3), where x3 is used as
pivot literal. Hence clause 4 is equal to ¬x2. Likewise, clause 5 is the result of resolving
clauses 0 and 4, and clause 6 is obtained by resolving clauses 2 and 4. Finally resolving
clauses 5 and 6 yields the empty clause, which is assigned clause identifier 7. The proof
is shown in Figure 3. Again one resolution step is saved in the Isabelle implementation
because clause ¬x2 is proved only once.



¬x1 ∨ x2

¬x2 ∨ x3 ¬x2 ∨ ¬x3
¬x2

¬x1

x1 ∨ x2

¬x2 ∨ x3 ¬x2 ∨ ¬x3
¬x2

x1

⊥

Figure 3: Resolution Proof found by MiniSat

Problem Representation Proof Reconstruction (zChaff)
Naive HOL 726.5
Separate Clauses 7.8
Sequent 1.2
CNF Sequent 0.5

Table 1: Runtimes (in seconds) for MSC007-1.008

3 Evaluation

In [Web05a], we compared the performance of our approach, using the naive HOL
problem representation, to that of Isabelle’s existing automatic proof procedures on
all 42 problems contained in version 2.6.0 of the TPTP library [SS98] that have a
representation in propositional logic. The problems were negated, so that unsatisfiable
problems became provable. The benchmarks were run on a machine with a 3 GHz Intel
Xeon CPU and 1 GB of main memory.

19 of these 42 problems are rather easy, and were solved in less than a second each by
both the existing procedures and the SAT solver approach. On the remaining 23 prob-
lems, zChaff proved to be clearly superior to Isabelle’s built-in proof procedures. zChaff
solved all problems in less than a second, and proof reconstruction in Isabelle/HOL took
a few seconds at most for all but one problem: with the naive HOL representation, the
proof for problem MSC007-1.008 was reconstructed in just over 12 minutes.

To give an impression of the effect that the different clause representations discussed
in Section 2.2.3 have on performance, Table 1 shows the different times required to
prove problem MSC007-1.008. The proof found by zChaff for this problem has 8,705
resolution steps. MiniSat finds a proof with 40,790 resolution steps for the same problem,
which is reconstructed in about 3.8 seconds total with the sequent representation, and
in 1.1 seconds total with the CNF sequent representation. The times to prove the other
problems from the TPTP library have decreased in a similar fashion and are well below
one second each now.

This enables us to evaluate the performance on some significantly larger problems,
taken from the SATLIB library [HS00]. These problems do not only push Isabelle’s
inference kernel to its limits, but also other parts of the prover. While the smaller TPTP
problems were converted to Isabelle’s input syntax by a Perl script, this approach turns
out to be infeasible for the larger SATLIB problems. The Perl script still works fine, but
Isabelle’s parser (which was mainly intended for small, hand-crafted terms) is unable
to parse the resulting theory files, which are several megabytes large, in reasonable
time. Also, the prover’s user interface is unable to display the resulting formulae. We
have therefore implemented our own little parser, which builds ML terms directly from



Problem Variables Clauses zChaff (s) Proof (s) Resolutions Total (s)
c7552mul.miter 11282 69529 73 70 252200 145
6pipe 15800 394739 167 321 268808 512
6pipe 6 ooo 17064 545612 308 2575 870345 3179
7pipe 23910 751118 495 1132 357136 1768

Table 2: Runtimes (in seconds) for SATLIB problems, zChaff

Problem Variables Clauses MiniSat (s) Proof (s) Resolutions Total (s)
c7552mul.miter 11282 69529 25 49 908231 106
6pipe 15800 394739 x — — —
6pipe 6 ooo 17064 545612 x — — —
7pipe 23910 751118 x — — —

Table 3: Runtimes (in seconds) for SATLIB problems, MiniSat

DIMACS files, and we work entirely at the system’s ML level, avoiding the usual user
interface, to prove unsatisfiability.

Statistics for four unsatisfiable SATLIB problems (chosen among those that were
used to evaluate zChaff’s performance in [ZM03]) are shown in Tables 2 and 3, for zChaff
and MiniSat respectively. The first column shows the time in seconds that it takes the
SAT solver to find a proof of unsatisfiability. The second column, “Proof”, shows the
time in seconds required to replay the proof’s resolutions steps in Isabelle/HOL, using
the CNF sequent representation of clauses. The third column shows the number of
resolution steps performed during proof replay. The last column, “Total”, finally shows
the total time to prove the problem unsatisfiable in Isabelle, including SAT solving
time, proof replay, parsing of input and output files, and any other intermediate pre-
and postprocessing. These timings were obtained on an AMD Athlon 64 X2 Dual Core
Processor 3800+ with 4 GB of main memory. An x indicates that the solver ran out of
memory, or that the proof trace file exceeded a size of 2 GB. Needless to say that none
of these problems can be solved automatically by Isabelle’s built-in proof procedures.

It seems that proof checking in Isabelle/HOL, despite all optimizations that we have
implemented, is sometimes about an order of magnitude slower than proof verification
with an external checker written in C++ [ZM03]. From Table 2 we conclude that proving
unsatisfiability in Isabelle/HOL is by a factor of roughly 2 to 10 slower than using zChaff
alone. This additional overhead was to be expected: it is the price that we have to pay
for using Isabelle’s LCF-style kernel, which is not geared towards propositional logic.
However, we also see that proof reconstruction in Isabelle scales quite well with our
latest implementation, and that it remains feasible even for large SAT problems.

Comparing the runtimes for problem c7552mul.miter on the proofs found by zChaff
and MiniSat, we see that the time taken to reconstruct a proof does not solely depend on
the number of resolutions steps. In particular our algorithm for resolving two clauses,
as described in Section 2.2.3, is linear in the length (i.e. number of literals) of those
clauses. The average length of a clause is about 31.0 for the MiniSat proof, and about
98.6 for the proof found by zChaff. This explains why the zChaff proof, despite its
smaller number of resolution steps, takes longer to reconstruct.



4 Related Work

Michael Gordon has implemented HolSatLib [Gor01], a library which is now part of the
HOL 4 theorem prover. This library provides functions to convert HOL 4 terms into
CNF, and to analyze them using a SAT solver. In the case of unsatisfiability however, the
user only has the option to trust the external solver. No proof reconstruction takes place,
“since there is no efficient way to check for unsatisfiability using pure Hol98 theorem
proving” [Gor01]. A bug in the SAT solver could ultimately lead to an inconsistency in
HOL 4.

Perhaps closer related to our work is the integration of automated first-order provers,
in the context of Isabelle recently further explored by Joe Hurd [Hur99, Hur02], Jia
Meng [Men03], and Lawrence Paulson [MP04, MP06]. Proofs found by the automated
system are either verified by the interactive prover immediately [Hur99], or translated
into a proof script that can be executed later [MP04]. Also Andreas Meier’s TRAMP sys-
tem [Mei00] transforms the output of various automated first-order provers into natural
deduction proofs. The main focus of their work however is on the necessary translation
from the interactive prover’s specification language to first-order logic. In contrast our
approach is so far restricted to instances of propositional tautologies, but we have fo-
cused on performance (rather than on difficult translation issues), and we use a SAT
solver, rather than a first-order prover. Other work on combining proof and model
search includes [dNM06].

A custom-built SAT solver has been integrated with the CVC Lite system [BB04]
by Clark Barrett et al. [BBD03]. While this solver produces proofs that can be checked
independently, our work shows that it is possible to integrate existing, highly efficient
solvers with an LCF-style prover: the information provided by recent versions of zChaff
and MiniSat is sufficient to produce a proof object in a theorem prover, no custom-built
solver is necessary.

An earlier version of this work was presented in [Web05a], and improved by Alwen
Tiu et al. [FMM+06]. Furthermore Hasan Amjad [Amj06b] has recently integrated a
proof-generating version of the MiniSat solver with HOL 4 in a similar fashion. In
this paper we have discussed our most recent implementation, which is based on a
novel clause representation and constitutes a significant performance improvement when
compared to earlier work.

5 Conclusions and Future Work

The SAT solver approach dramatically outperforms the automatic proof procedures that
were previously available in Isabelle/HOL. With the help of zChaff or MiniSat, many
formulae that were previously out of the scope of Isabelle’s built-in tactics can now be
proved – or refuted – automatically, often within seconds. Isabelle’s applicability as a
tool for formal verification, where large propositional problems occur in practice, has
thereby improved considerably.

Furthermore, using the data structures and optimizations described in this paper,
proof reconstruction for propositional logic scales quite well even to large SAT problems
and proofs with several hundred thousand resolution steps. The additional confidence
gained by using an LCF-style prover to check the proof obviously comes at a price (in



terms of runtime), but it’s not nearly as expensive as one might have expected after
earlier implementations.

While improving the performance of our implementation, we confirmed an almost
self-evident truth: use profiling to see which functions take a lot of time, and focus on
improving them – this is were the greatest benefits lie. This was an iterative process.
A better implementation would allow us to tackle larger SAT problems, which in turn
would uncover new performance bottlenecks. More importantly, we discovered some
inefficiencies in the implementation of the Isabelle kernel. (Instantiating a theorem with
a term, for example, was linear in the size of the term, rather than in constant time.)
These inefficiencies played no important role as long as the kernel only had to deal with
relatively small terms, but in our context, where formulae sometimes consist of millions
of literals, they turned out to have a negative impact on performance. Subsequently the
kernel implementation was modified, and these inefficiencies were removed.

Tuning an implementation to the extend presented here requires a great deal of
familiarity with the underlying theorem prover. Nevertheless our results are applica-
ble beyond Isabelle/HOL. Other interactive provers for higher-order logic, e.g. HOL 4
and HOL-Light, use very similar data structures to represent their theorems. Hasan
Amjad has confirmed that the CNF sequent representation works equally well in these
provers [Amj06b].

We have already mentioned some possible directions for future work. There is prob-
ably not very much potential left to optimize the implementation of resolution itself
at this point. However, to further improve the performance of proof reconstruction, it
could be beneficial to analyze the resolution proof found by the SAT solver in more
detail. Merging similar resolution chains may reduce the overall number of resolutions
required, and re-sorting resolutions may help to derive shorter clauses during the proof,
which should improve the performance of individual resolution steps. Some preliminary
results along these lines are reported in [Amj06a].

The approach presented in this paper has applications beyond propositional reason-
ing. The decision problem for richer logics (or fragments thereof) can be reduced to
SAT [ABC+02, Str02, MS05, RH06]. Consequently, proof reconstruction for proposi-
tional logic can serve as a foundation for proof reconstruction for other logics. Based
on our work, only a proof-generating implementation of the reduction is needed to inte-
grate the more powerful, yet SAT-based decision procedure with an LCF-style theorem
prover. This has already been used to integrate haRVey, a Satisfiability Modulo Theo-
ries (SMT) prover, with Isabelle [Hur06]. haRVey, like other SMT systems, uses various
decision procedures (e.g. congruence closure for uninterpreted functions) on top of a
SAT solver.
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André Hirschowitz, Christine Paulin, and Laurent Théry, editors, Theorem
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