
A SAT-based Sudoku Solver?

Tjark Weber

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

webertj@in.tum.de

Abstract. This paper presents a SAT-based Sudoku solver. A Sudoku is
translated into a propositional formula that is satisfiable if and only if the
Sudoku has a solution. A standard SAT solver can then be applied, and
a solution for the Sudoku can be read off from the satisfying assignment
returned by the SAT solver. No coding was necessary to implement this
solver: The translation into propositional logic is provided by a frame-
work for finite model generation available in the Isabelle/HOL theorem
prover. Only the constraints on a Sudoku solution had to be specified in
the prover’s logic.

1 Introduction

Sudoku, also known as Number Place in the United States, is a placement puzzle.
Given a grid – most frequently a 9 × 9 grid made up of 3 × 3 subgrids called
“regions” – with various digits given in some cells (the “givens”), the aim is to
enter a digit from 1 through 9 in each cell of the grid so that each row, column
and region contains only one instance of each digit. Fig. 1 shows a Sudoku on
the left, along with its unique solution on the right [12]. Note that other symbols
(e.g. letters, icons) could be used instead of digits, as their arithmetic properties
are irrelevant in the context of Sudoku. This is currently a rather popular puzzle
that is featured in a number of newspapers and puzzle magazines [1, 3, 9].

Several Sudoku solvers are available already [6, 10]. Since there are more
than 6 · 1021 possible Sudoku grids [5], a näıve backtracking algorithm would
be infeasible. Sudoku solvers therefore combine backtracking with – sometimes
complicated – methods for constraint propagation. In this paper we propose a
SAT-based approach: A Sudoku is translated into a propositional formula that is
satisfiable if and only if the Sudoku has a solution. The propositional formula is
then presented to a standard SAT solver, and if the SAT solver finds a satisfying
assignment, this assignment can readily be transformed into a solution for the
original Sudoku. The presented translation into SAT is simple, and requires
minimal implementation effort since we can make use of an existing framework
for finite model generation [11] available in the Isabelle/HOL [8] theorem prover.

? This work was supported by the PhD program Logic in Computer Science of the
German Research Foundation.



5 3 7
6 1 9 5

9 8 6
8 6 3
4 8 3 1
7 2 6

6 2 8
4 1 9 5

8 7 9

5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

Fig. 1. Sudoku example and solution

2 Implementation in Isabelle/HOL

An implementation of the Sudoku rules in the interactive theorem prover Isa-
belle/HOL is straightforward. Digits are modelled by a datatype with nine ele-
ments 1, . . . , 9. We say that nine grid cells x1, . . . , x9 are valid iff they contain
every digit.

Definition 1 (valid).

valid(x1, x2, x3, x4, x5, x6, x7, x8, x9) ≡

9∧

d=1

9∨

i=1

xi = d.

Labeling the 81 cells of a 9 × 9 grid as shown in Fig. 2, we can now define
what it means for them to be a Sudoku solution: each row, column and region
must be valid.

Definition 2 (sudoku).

sudoku({xij}i,j∈{1,...,9}) ≡

9∧

i=1

valid(xi1, xi2, xi3, xi4, xi5, xi6, xi7, xi8, xi9)

∧

9∧

j=1

valid(x1j , x2j , x3j , x4j , x5j , x6j , x7j , x8j , x9j)

∧
∧

i,j∈{1,4,7}

valid(xij , xi(j+1), xi(j+2), x(i+1)j , x(i+1)(j+1), x(i+1)(j+2),

x(i+2)j , x(i+2)(j+1), x(i+2)(j+2)).

The next section describes the translation of these definitions into proposi-
tional logic.

3 Translation to SAT

We encode a Sudoku by introducing 9 Boolean variables for each cell of the
9 × 9 grid, i.e. 93 = 729 variables in total. Each Boolean variable pd

ij (with



x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

Fig. 2. Sudoku grid

1 ≤ i, j, d ≤ 9) represents the truth value of the equation xij = d. A clause

9∨

d=1

pd
ij

ensures that the cell xij denotes one of the nine digits, and 36 clauses

∧

1≤d<d′≤9

¬pd
ij ∨ ¬pd′

ij

make sure that the cell does not denote two different digits at the same time.
Since there are just as many digits as cells in each row, column, and region,

Def. 1 is equivalent to the following characterization of validity, stating that the
nine grid cells x1, . . . , x9 contain distinct values.

Lemma 1 (Equivalent characterization of validity).

valid(x1, x2,x3, x4, x5, x6, x7, x8, x9) ⇐⇒
∧

1≤i<j≤9

xi 6= xj

⇐⇒
∧

1≤i<j≤9

9∧

d=1

xi 6= d ∨ xj 6= d.

The latter characterization turns out to be much more efficient when trans-
lated to SAT. While Def. 1, when translated directly, produces 9 clauses with
9 literals each (one literal for each equation), the formula given in Lemma 1 is
translated into 324 clauses (9 clauses for each of the 36 inequations xi 6= xj), but
each clause of length 2 only. This allows for more unit propagation [14] at the
Boolean level, which – in terms of the original Sudoku – corresponds to cross-
hatching [12] of digits, a technique that is essential to reduce the search space.



The 9 clauses obtained from a direct translation of Def. 1 could still be used as
well; unit propagation on these clauses would correspond to counting the digits
1 – 9 in regions, rows, and columns to identify missing numbers. However, in our
experiments we did not experience any speedup by including these clauses.

This gives us a total of 11745 clauses: 81 definedness clauses of length 9, 81·36
uniqueness clauses of length 2, and 27 · 324 validity clauses,1 again of length 2.
However, we do not need to introduce Boolean variables for cells whose value
is given in the original Sudoku, and we can omit definedness and uniqueness
clauses for these cells as well as some of the validity clauses – therefore the total
number of variables and clauses used in the encoding of a Sudoku with givens
will be less than 729 and 11745, respectively.

Note that our encoding already yields a propositional formula in conjunctive
normal form (CNF). Therefore conversion into DIMACS CNF format [4] – the
standard input format used by most SAT solvers – is trivial. Isabelle can search
for a satisfying assignment using either an internal DPLL-based [2] SAT solver,
or write the formula to a file in DIMACS format and execute an external solver.
We have employed zChaff [7] to find the solution to various Sudoku classified as
“hard” by their respective authors (see Fig. 3 for an example), and in every case
the runtime was only a few milliseconds.

2
6 3

7 4 8
3 2

8 4 1
6 5

1 7 8
5 9

4

1 2 6 4 3 7 9 5 8
8 9 5 6 2 1 4 7 3
3 7 4 9 8 5 1 2 6
4 5 7 1 9 3 8 6 2
9 8 3 2 4 6 5 1 7
6 1 2 5 7 8 3 9 4
2 6 9 3 1 4 7 8 5
5 4 8 7 6 9 2 3 1
7 3 1 8 5 2 6 4 9

Fig. 3. hard Sudoku example and solution

4 Concluding Remarks

We have presented a straightforward translation of a Sudoku into a propositional
formula. The translation can easily be generalized from 9 × 9 grids to grids of
arbitrary dimension. It is polynomial in the size of the grid, and since Sudoku is
NP-complete [13], no algorithm with better complexity is known. The transla-
tion, combined with a state-of-the-art SAT solver, is also practically successful:
9 × 9 Sudoku puzzles are solved within milliseconds.

Traditionally the givens in a Sudoku are chosen so that the puzzle’s solution
is unique; nevertheless our algorithm can be extended to enumerate all possi-

1 This number includes some duplicates, caused by the overlap between rows/columns
and regions: certain cells that must be distinct because they belong to the same row
(or column) must also be distinct because they belong to the same region.



ble solutions (by explicitly disallowing all solutions found so far, and perhaps
using an incremental SAT solver that allows adding clauses on-the-fly to avoid
searching through the same search space multiple times).

Particularly remarkable is the fact that our solver, while it can certainly
compete with hand-crafted Sudoku solvers, some of which use rather complex
patterns and search heuristics, required very little implementation effort. Aside
from Lemma 1, no domain-specific knowledge was used. The impressive perfor-
mance is largely due to the SAT solver. Even the translation into propositional
logic was not written by hand, but is an instance of a framework for finite model
generation that is readily available in the Isabelle/HOL theorem prover. Only
the Sudoku rules had to be defined in the prover, and this was a trouble-free
task.

References

[1] Col Allan, editor. New York Post. News Corporation, New York City, NY, USA,
2005.

[2] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5:394–397, 1962.

[3] Giovanni di Lorenzo, editor. Die Zeit. Zeitverlag Gerd Bucerius GmbH & Co.
KG, Hamburg, Germany, 2005.

[4] DIMACS satisfiability suggested format, 1993. Available online at ftp://dimacs.
rutgers.edu/pub/challenge/satisfiability/doc.

[5] Bertram Felgenhauer and Frazer Jarvis. Enumerating possible Sudoku grids, June
2005. Available online at http://www.shef.ac.uk/∼pm1afj/sudoku/.

[6] DeadMan’s Handle Ltd. Sudoku solver, September 2005. Available online at
http://www.sudoku-solver.com/.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of the 38th Design Automation Conference,
Las Vegas, June 2001.

[8] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[9] Robert James Thomson, editor. The Times. Times Newspapers Ltd., London,
UK, 2005.

[10] Pete Wake. Sudoku solver by logic, September 2005. Available online at http:
//www.sudokusolver.co.uk/.

[11] Tjark Weber. Bounded model generation for Isabelle/HOL. In Wolfgang Ahrendt,
Peter Baumgartner, Hans de Nivelle, Silvio Ranise, and Cesare Tinelli, editors,
Selected Papers from the Workshops on Disproving and the Second International
Workshop on Pragmatics of Decision Procedures (PDPAR 2004), volume 125(3)
of Electronic Notes in Theoretical Computer Science, pages 103–116. Elsevier,
July 2005.

[12] Wikipedia. Sudoku – Wikipedia, the free encyclopedia, September 2005. Available
online at http://en.wikipedia.org/wiki/Sudoku.

[13] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding an-
other solution and its application to puzzles. In IPSJ SIG Notes 2002-AL-87-2.
IPSJ, 2002.

[14] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In
Andrei Voronkov, editor, Proceedings of the 8th International Conference on Com-
puter Aided Deduction (CADE 2002), volume 2392 of Lecture Notes in Computer
Science. Springer, 2002.


