
Towards Mechanized Program Verification with

Separation Logic?

Tjark Weber

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

webertj@in.tum.de

Abstract. Using separation logic, this paper presents three Hoare logics
(corresponding to different notions of correctness) for the simple While
language extended with commands for heap access and modification.
Properties of separating conjunction and separating implication are me-
chanically verified and used to prove soundness and relative completeness
of all three Hoare logics. The whole development, including a formal proof
of the Frame Rule, is carried out in the theorem prover Isabelle/HOL.

Keywords. Separation Logic, Formal Program Verification, Interactive
Theorem Proving

1 Introduction

Since C. A. R. Hoare’s seminal work in 1969 [9], extensions of his logic have been
developed for a multitude of language constructs [1, 2], including recursive pro-
cedures, nondeterminism, and even object-oriented languages. Extending Hoare
logic to pointer programs however is not without difficulties. Recently separa-
tion logic was proposed by O’Hearn, Reynolds et al. [15, 19, 16] to overcome the
local reasoning problem that is raised by the treatment of record components as
arrays [6, 5].

Machine support is indispensable for formal program verification. Manual
proofs are error-prone, and the verification of medium-sized programs has be-
come feasible only because systems like SVC [3] can automatically discharge
many proof obligations. Separation logic, although its usability has been demon-
strated in several case studies [18, 4], currently lacks such support. In this paper
we show how separation logic can be embedded into the theorem prover Is-
abelle/HOL [14]. We thereby lay the foundations for the use of separation logic
in a semi-automatic verification tool. Our work is based on a previous formaliza-
tion of a simple imperative language [12] which however did not consider pointers
or separation logic. The current focus is on fundamental semantic properties of
the resulting Hoare logics.

This paper is organized as follows. In Section 2 we define the programming
language, together with its operational and denotational semantics. Section 3

? Research supported by Graduiertenkolleg Logik in der Informatik (PhD Program
Logic in Computer Science) of the Deutsche Forschungsgemeinschaft (DFG).

introduces separation logic. In Section 4 we present three Hoare logics for our
language, all of which are proved to be sound and relative complete. Also the
Frame Rule is adressed, and its soundness is proved for one of the Hoare logics.
We discuss the mechanical verification of a simple pointer algorithm, in-place
list reversal, in Section 5.

2 The Language

2.1 Semantic Domains

We use an unspecified type var of variables. Addresses are elements of a numeri-
cal type, namely naturals (nat), to permit address arithmetic. For simplicity, the
same type is used for values. Thereby the value of a variable can immediately
be used as an address, with no need for a conversion function (cf. [16]).

Stores map variables to values. Heaps are modelled as partial functions from
addresses to values. Other possibilities would be to define heaps as subsets of
addr × val (with functionality constraints), or as (addr × val) list (again with
functionality constraints, and modulo order). However, our current definition is
much easier to state and work with in Isabelle/HOL since it can make use of
readily available function types and does not require subtyping. On the other
hand it also permits infinite heaps. This seemingly minor difference will become
important again in Section 4.4, when we consider the Frame Rule.

A program state is either a pair consisting of a store and a heap, or None.
The latter value will be used in the semantics of the language to indicate that
a memory error occurred during program execution. Arithmetic and boolean
expressions are only modelled semantically: they are just functions on stores
(and hence independent of the heap).

Most of Isabelle’s syntax used in this paper is close to standard mathematical
notation and should not require further explanation. Both =⇒ and −→ mean
implication. [[P1 ; . . . ; Pn]] =⇒ Q is an abbreviation for P 1 =⇒ . . . =⇒ Pn

=⇒ Q. We use ′a ⇒ ′b for the type of total functions from ′a to ′b. Likewise,
infix ⇀ is used to denote the type of partial functions. Other type constructors,
e.g. list, are written postfix. Thus the abovementioned semantic domains can be
formalized as follows:

types addr = nat
val = nat
store = var ⇒ val
heap = addr ⇀ val
state = (store × heap) option
aexp = store ⇒ val
bexp = store ⇒ bool

2.2 Syntax

We consider an extension of the simple While language [9, 12] with new com-
mands for memory allocation (list, alloc), heap lookup, heap mutation, and mem-
ory deallocation (dispose).

Both list and alloc allocate memory on the heap. list can only be used when
the number of addresses to be allocated is known beforehand, i.e. for allocation
of fixed-size records. The list command takes a list of arithmetic expressions as
its second argument. The number of consecutive addresses to be allocated is
given by the length of the list; the allocated memory is then initialized with the
values of the expressions in the list. alloc on the other hand is meant for dynamic
allocation of arrays. Its second argument is a single arithmetic expression that
specifies the number of consecutive addresses to be allocated. The allocated
memory is initialized with arbitrary values.

The lookup command assigns the value of an (allocated) address to a variable,
the heap mutation command modifies the value of the heap at a given address,
and dispose finally deallocates a single address. The precise operational semantics
is given in Section 2.4.

2.3 Basic Operations on Heaps

Before we can define the semantics of our language, we need to introduce some
basic operations on heaps. We define four functions to retrieve the value of a
heap at a specific address, remove an address from the domain of a heap, test
whether a set of addresses is free in a heap, and update a set of consecutive
addresses in a heap with specific values. To some extent these functions allow us
to abstract from our particular implementation of heaps as partial functions.

heap-lookup :: heap ⇒ addr ⇒ val
heap-lookup h a ≡ the (h a)
heap-remove :: heap ⇒ addr ⇒ heap
heap-remove h a ≡ h(a:=None)
heap-isfree :: heap ⇒ addr ⇒ nat ⇒ bool
heap-isfree h a n ≡ set [a..a+n(] ∩ dom h = {}
heap-update :: heap ⇒ addr ⇒ (val list) ⇒ heap

heap-update h a vs ≡ h([a..a+length vs(][7→]vs)

Later we will also need notions of disjointness and union for heaps in order
to define separating conjunction and separating implication. We say two heaps
(or more generally, two partial functions) are disjoint, ./, iff their domains are
disjoint.

f ./ g ≡ dom f ∩ dom g = {}

The union of heaps, ++, is defined as one would expect, with the second
heap having precedence over the first.

f ++g ≡ λx . case g x of None ⇒ f x | Some y ⇒ Some y

We will only take the union of disjoint heaps however, and for those, ++ is
commutative:

Lemma f ./ g =⇒ f ++ g = g ++ f

2.4 Operational Semantics

The operational semantics of our language is defined via a (big-step) evaluation
relation −→c. We write 〈c,s〉 −→c t for execution of c, started in state s, may
terminate in state t. This evaluation relation is defined inductively.

〈c,None〉 −→c None
〈skip,Some (s,h)〉 −→c Some (s,h)
〈x :== a,Some (s,h)〉 −→c Some (s[x 7→a s],h)
〈c0 ,s〉 −→c s ′′ =⇒ 〈c1 ,s ′′〉 −→c s ′ =⇒ 〈c0 ; c1 , s〉 −→c s ′

b s =⇒ 〈c0 ,Some (s,h)〉 −→c s ′ =⇒ 〈if b then c0 else c1 , Some (s,h)〉 −→c s ′

¬b s =⇒ 〈c1 ,Some (s,h)〉 −→c s ′ =⇒ 〈if b then c0 else c1 , Some (s,h)〉 −→c s ′

b s =⇒ 〈c,Some (s,h)〉 −→c s ′′ =⇒ 〈while b do c, s ′′〉 −→c s ′

=⇒ 〈while b do c, Some (s,h)〉 −→c s ′

¬b s =⇒ 〈while b do c,Some (s,h)〉 −→c Some (s,h)
[[heap-isfree h a (length as); vs = map (λe. e s) as]]

=⇒ 〈x :== list as, Some (s,h)〉 −→c Some (s[x 7→a], heap-update h a vs)
(∀ a. ¬ heap-isfree h a (length as)) =⇒ 〈x :== list as, Some (s,h)〉 −→c None
(heap-isfree h a (n s) ∧ (length vs = n s))

=⇒ 〈x :== alloc n, Some (s,h)〉 −→c Some (s[x 7→a], heap-update h a vs)
(∀ a. ¬ heap-isfree h a (n s)) =⇒ 〈x :== alloc n, Some (s,h)〉 −→c None
a s ∈ dom h =⇒ 〈x :== @a,Some (s,h)〉 −→c Some (s[x 7→heap-lookup h (a s)],h)
a s /∈ dom h =⇒ 〈x :== @a,Some (s,h)〉 −→c None
a s ∈ dom h =⇒ 〈@a :== v ,Some (s,h)〉 −→c Some (s,heap-update h (a s) [v s])
a s /∈ dom h =⇒ 〈@a :== v ,Some (s,h)〉 −→c None
a s ∈ dom h =⇒ 〈dispose a,Some (s,h)〉 −→c Some (s,heap-remove h (a s))

a s /∈ dom h =⇒ 〈dispose a,Some (s,h)〉 −→c None

The rules for skip, assignment, composition, if, and while are standard, and
only shown for completeness. The rules for the pointer commands come in pairs,
with one rule leading to a valid successor state, the other one to the error state
None. Which rule can be applied depends on the current heap. Allocating mem-
ory in a heap that does not have enough free addresses will result in an error,
as will the attempt to access, modify, or deallocate free addresses.

With the exception of the first rule, these rules are all syntax directed (i.e.
applicable only to a specific command). The first rule is needed to ensure that
programs “don’t get stuck” when an error occurred. For the same reason it is
important that we do not restrict the rule for sequential composition to valid
states.

Nondeterminism is introduced by the rules for list and alloc. Both commands
choose an arbitrary sequence of (consecutive) free addresses for the newly allo-
cated memory. Furthermore, alloc initializes this memory with arbitrary values.

2.5 Denotational Semantics

In addition to the operational semantics, we also define the denotational se-
mantics of commands. We will show that both semantics are equivalent, thus we
could (in principle) do without a denotational semantics. However, we found that

the denotational semantics, and in particular its fixed point characterization of
while, is often easier to work with than the operational semantics. It enables us to
prove semantic properties by induction on commands, rather than by induction
on the evaluation relation. The denotational semantics of a command is given
by a set of pairs of states.

types com-den = (state × state) set

The following function Γ is used to define the semantics of the while command
as a least fixed point. The O operator denotes relational composition.

Γ :: bexp ⇒ com-den ⇒ (com-den ⇒ com-den)
Γ b cd ≡ (λϕ.

{ (Some(s,h),t) | s h t . (Some(s,h),t) ∈ (ϕ O cd) ∧ b s } ∪
{ (Some(s,h),Some(s,h)) | s h. ¬b s } ∪

{ (None,None) })

The meaning function C, which maps each command to its denotational
semantics, is now defined by primitive recursion.

C skip = Id
C (x :== a) = { (Some(s,h),Some(s[x 7→a s],h)) | s h. True } ∪

{ (None,None) }
C (c0 ;c1) = C (c1) O C (c0)
C (if b then c1 else c2) = { (Some(s,h),t) | s h t . (Some(s,h),t) ∈ C c1 ∧ b s } ∪

{ (Some(s,h),t) | s h t . (Some(s,h),t) ∈ C c2 ∧ ¬b s } ∪
{ (None,None) }

C (while b do c) = lfp (Γ b (C c))
C (x :== list as) = { (Some(s,h),Some(s[x 7→a],heap-update h a (map (λe. e s) as)))

| s h a. heap-isfree h a (length as) } ∪
{ (Some(s,h),None) | s h. ∀ a. ¬ heap-isfree h a (length as) } ∪
{ (None,None) }

C (x :== alloc n) = { (Some(s,h),Some(s[x 7→a],heap-update h a vs))
| s h a vs. heap-isfree h a (n s) ∧ (length vs = n s) } ∪

{ (Some(s,h),None) | s h. ∀ a. ¬ heap-isfree h a (n s) } ∪
{ (None,None) }

C (x :== @a) = { (Some(s,h),Some(s[x 7→heap-lookup h (a s)],h))
| s h. a s ∈ dom h } ∪

{ (Some(s,h),None) | s h. a s /∈ dom h } ∪
{ (None,None) }

C (@a :== v) = { (Some(s,h),Some(s,heap-update h (a s) [v s]))
| s h. a s ∈ dom h } ∪

{ (Some(s,h),None) | s h. a s /∈ dom h } ∪
{ (None,None) }

C (dispose a) = { (Some(s,h),Some(s,heap-remove h (a s))) | s h. a s ∈ dom h } ∪
{ (Some(s,h),None) | s h. a s /∈ dom h } ∪

{ (None,None) }

By induction on −→c, one can show that 〈c,s〉 −→c t implies (s , t) ∈ C c.
The other direction, i.e. (s , t) ∈ C c =⇒ 〈c,s〉 −→c t, is shown by induction
on c. For both directions, only the while case is not automatic (but still fairly

simple). Taking these two results together, we obtain equivalence of denotational
and operational semantics:

Theorem (s,t) ∈ C (c) = (〈c,s〉 −→c t)

We will freely use this result in the following proofs whenever it is more
convenient to reason using a particular semantics.

3 Assertions of Separation Logic

We only model the semantics of assertions, not their syntax. Assertions are
predicates on stores and heaps:

types assn = store ⇒ heap ⇒ bool

This semantic approach (or shallow embedding) entails that any HOL term
of the correct type can be used as an assertion, not just formulae of separation
logic. If we had modelled assertions syntactically, we would have had to redefine
most of HOL’s logical connectives (including classical conjunction, implication,
and first-order quantification), and the explicit definition of a formula’s seman-
tics would have introduced another layer of abstraction between separation logic
and the lemmata and proof automation available in HOL. Our current defini-
tion on the other hand allows us to consider separation logic as an extension
of higher-order logic, thereby giving us the features of HOL (almost) for free.
The main drawback for our purposes is perhaps an esthetic one: when mixing
classical and separating connectives, we have to use λ-abstractions to make their
types compatible (cf. Section 3.1). A more detailed discussion of the respective
strengths and weaknesses of shallow vs. deep embeddings is forthcoming [17].

Let us now introduce some abbreviations. emp asserts that the heap is empty
(i.e. that no address is allocated), and a 7→v is true of a heap iff a is the only
allocated address, and it points to the value v.

emp h ≡ dom h = {}

(a 7→v) h ≡ dom h = {a} ∧ heap-lookup h a = v

Separation logic has two special connectives, separating conjunction (∧∗)
and separating implication (−∗). P ∧∗ Q states that the heap can be split
into disjoint parts satisfying P and Q, respectively. P −∗ Q is true of a heap
h iff Q holds for every extension of h with a disjoint part that satisfies P.
These connectives are defined using quantification over heaps. The definitional
approach allows us to prove their properties, rather than to introduce them as
new axioms.

sep-conj :: (heap ⇒ bool) ⇒ (heap ⇒ bool) ⇒ heap ⇒ bool (infixl ∧∗)
(P ∧∗ Q) h ≡ ∃ h ′ h ′′. (h ′ ./ h ′′) ∧ (h ′ ++ h ′′ = h) ∧ P h ′ ∧ Q h ′′

sep-imp :: (heap ⇒ bool) ⇒ (heap ⇒ bool) ⇒ heap ⇒ bool (infixr −∗)

(P −∗ Q) h ≡ ∀ h ′. ((h ′ ./ h) ∧ P h ′) −→ Q (h ++ h ′)

Although assertions of separation logic may depend on the store, they usually
do so only in a completely homomorphic fashion (cf. [16]). Therefore this depen-
dency can easily be eliminated from compound formulae, and it is sufficient to
define separating conjunction and implication for predicates of type heap ⇒ bool.
Further assertions denote that a heap contains exactly one allocated address a
(written a 7→−), and that an address a points to a value v, where other addresses
in the heap may be allocated as well (a↪→v). Using address arithmetic (Suc is
the successor function on naturals), we extend these notions to lists of values.

(a 7→−) h ≡ ∃ v . (a 7→v) h
(a↪→v) ≡ (a 7→v) ∧∗ true
(a[7→][]) = emp
(a[7→](v#vs)) = ((a 7→v) ∧∗ ((Suc a)[7→]vs))
(a[↪→][]) = true
(a[↪→](v#vs)) = ((a↪→v) ∧∗ ((Suc a)[↪→]vs))

3.1 Properties of Separating Conjunction and Separating

Implication

We can relatively easily prove associativity and commutativity of ∧∗, identity of
emp under ∧∗, and various distributive and semidistributive laws. Most of the
proofs are automatic; sometimes however we need to manually instantiate the
existential quantifiers obtained by unfolding the definition of ∧∗.

Lemma P ∧∗ (Q ∧∗ R) = (P ∧∗ Q) ∧∗ R
Lemma P ∧∗ Q = Q ∧∗ P
Lemma emp ∧∗ P = P
Lemma P ∧∗ emp = P
Lemma ((λh. P h ∨ Q h) ∧∗ R) h = (P ∧∗ R) h ∨ (Q ∧∗ R) h
Lemma ((λh. P h ∧ Q h) ∧∗ R) h −→ ((P ∧∗ R) h ∧ (Q ∧∗ R) h)
Lemma ((λh. ∃ x . P x h) ∧∗ Q) h = (∃ x . (P x ∧∗ Q) h)
Lemma ((λh. ∀ x . P x h) ∧∗ Q) h −→ (∀ x . (P x ∧∗ Q) h)
Lemma [[∀ h. P h −→ P ′ h; ∀ h. Q h −→ Q ′ h]] =⇒ (P ∧∗ Q) h −→ (P ′ ∧∗ Q ′) h
Lemma [[∀ h. (P ∧∗ Q) h −→ R h]] =⇒ P h −→ (Q −∗ R) h

Lemma [[∀ h. P h −→ (Q −∗ R) h]] =⇒ (P ∧∗ Q) h −→ R h

Following Reynolds [16], we have also defined pure, intuitionistic, strictly
exact, and domain exact assertions, and proved many of their properties. Our
growing library of lemmata serves as a basis for verification proofs and increased
proof automation.

4 Hoare Logics

4.1 Partial Correctness

In this subsection we present a Hoare logic for partial correctness. We say a Hoare
triple {P}c{Q} is valid, |=p, iff every terminating execution of c that starts in

a valid state (i.e. in a state of the form Some (s , h)) satisfying the precondition
P ends up in a state that satisfies Q, unless a memory error occurs.

|=p {P}c{Q} ≡

∀ s h s ′ h ′. (Some (s,h), Some (s ′,h ′)) ∈ C (c) −→ P s h −→ Q s ′ h ′

Hence there are two ways in which a Hoare triple can be trivially valid: c,
when executed in a state that satisfies the precondition, i) does not terminate
at all, or ii) only terminates in the error state None.

Derivability, `p, of Hoare triples is defined inductively. The following set of
Hoare rules is both sound and relative complete with respect to the notion of
validity defined above.

`p {P} skip {P}
`p {λs h. P (s[x 7→(a s)]) h} x :==a {P}
[[`p {P}c{Q}; `p {Q}d{R}]] =⇒ `p {P} c;d {R}
[[`p {λs h. P s h ∧ b s}c{Q}; `p {λs h. P s h ∧ ¬b s}d{Q}]] =⇒

`p {P} if b then c else d {Q}
`p {λs h. P s h ∧ b s} c {P} =⇒

`p {P} while b do c {λs h. P s h ∧ ¬b s}
`p {λs h. (∀ a. ((a[7→](map (λe. e s) as)) −∗ (P (s[x 7→a]))) h)}

x :== list as {P}
`p {λs h. (∀ a vs. (length vs = n s) −→ ((a[7→]vs) −∗ (P (s[x 7→a]))) h)}

x :== alloc n {P}
`p {λs h. (a s ∈ dom h) −→ P (s[x 7→heap-lookup h (a s)]) h} x :== @a {P}
`p {λs h. (a s ∈ dom h) −→ P s (heap-update h (a s) [v s])} @a :== v {P}
`p {λs h. (a s ∈ dom h) −→ P s (heap-remove h (a s))} dispose a {P}
[[∀ s h. P ′ s h −→ P s h; `p {P}c{Q}; ∀ s h. Q s h −→ Q ′ s h]] =⇒

`p {P ′}c{Q ′}

Soundness is proved by a straightforward induction on `p. The only nontrivial
case is the while rule; it requires fixed point induction.

Theorem `p {P}c{Q} =⇒ |=p {P}c{Q}

To prove completeness, we employ the notion of weakest (liberal) precondi-
tions [8].

wp :: com ⇒ assn ⇒ assn

wp c Q ≡ λs h. (∀ s ′ h ′. (Some (s,h), Some(s ′,h ′)) ∈ C (c) −→ Q s ′ h ′)

The key to the completeness proof is a lemma stating that Hoare triples of
the form {wp c Q} c {Q} are derivable. The lemma is proved by induction on
c.

Lemma ∀Q . `p {wp c Q} c {Q}

From this, relative completeness of the Hoare rules follows easily with the
rule of consequence.

Theorem |=p {P}c{Q} =⇒ `p {P}c{Q}

4.2 Tight Specifications

The Hoare logic from Section 4.1 does not guarantee the absence of memory
errors. We now consider a slightly different Hoare logic for partial correctness,
which perhaps better reflects the principle that “well-specified programs don’t
go wrong” [16]. In this logic, a Hoare triple {P}c{Q} is valid, |=t, iff every
terminating execution of c that starts in a valid state satisfying P ends up in a
valid state satisfying Q.

|=t {P}c{Q} ≡
∀ s h. ((P s h −→ (Some (s,h), None) /∈ C (c))

∧ (∀ s ′ h ′. (Some (s,h), Some (s ′,h ′)) ∈ C (c) −→ P s h −→ Q s ′ h ′))

Compared to the previous Hoare logic, we have added a safety constraint
expressing that the error state None must be unreachable. Specifications are
now “tight” in the sense that every address accessed by c must either be men-
tioned in the precondition, or allocated by c before it is used (in which case the
precondition must ensure the existence of a free address).

Of course the preconditions in our Hoare rules must be modified to reflect this
change in the definition of validity. The rules for skip, assignment, composition,
if, and while, as well as the consequence rule, remain unchanged; therefore they
are not shown below. The rules for list, alloc, lookup, mutate, and dispose however
now have preconditions which consist of two parts: one guaranteeing the absence
of an error, and the other one guaranteeing that the postcondition will hold in
all reachable states.

`t {λs h. (∃ a. heap-isfree h a (length as)) ∧ (∀ a. ((a[7→](map (λe. e s) as))
−∗ (P (s[x 7→a]))) h)} x :== list as {P}

`t {λs h. (∃ a. heap-isfree h a (n s)) ∧ (∀ a vs. (length vs = n s)
−→ ((a[7→]vs) −∗ (P (s[x 7→a]))) h)} x :== alloc n {P}

`t {λs h. (∃ v . ((a s)↪→v) h ∧ P (s[x 7→v]) h)} x :== @a {P}
`t {λs h. ((a s)7→− ∧∗ (((a s)7→(v s)) −∗ P s)) h} @a :== v {P}

`t {λs h. ((a s)7→− ∧∗ P s) h} dispose a {P}

These rules are similar to the ones presented in [16], with the exception that
for list and alloc, we need to assert the existence of available memory in the
precondition. (In [16], free heap cells are guaranteed to exist because heaps are
always finite.)

Using similar techniques as before – in particular, induction on `t and a suit-
ably modified notion of weakest liberal preconditions – we can prove soundness
and relative completeness of this Hoare logic. Both properties are slightly more
difficult to prove than for the logic in Section 4.1, since we do not just have to
deal with the postcondition, but also with the safety constraint.

Theorem (|=t {P}c{Q}) = (`t {P}c{Q})

4.3 Total Correctness

So far we have only considered partial correctness, where a Hoare triple is valid iff
every reachable state satisfies the postcondition. If we also want to take termina-
tion into account, we need to define a judgment c ↓ s that expresses guaranteed

termination of c started in state s. The Hoare rules then differ from those for par-
tial correctness only in the one place where nontermination can arise: the while

rule. For the simple While language, the details have been carried out in [13].
Since the new pointer commands always terminate, the development would be
almost identical for our extended language.

4.4 The Frame Rule

In Hoare logic for the simple While language, one can show that if |={P}c{Q},
then |={P∧R}c{Q∧R}, provided that no variables modified by c occur free in
R. Under certain conditions (cf. the discussion in [19]), separation logic allows
us to obtain a similar rule for our extended language:

|={P}c{Q} =⇒ |={P∧∗R}c{Q∧∗R} ,

with the same syntactic side condition on R. This Frame Rule is essential for
modular verification, in particular in the presence of procedures. Unfortunately
however, the Frame Rule does not hold in the two previously defined Hoare
logics. As counterexamples consider

|=p {emp} dispose (λs . 0) {false}
¬(|=p {emp∧∗true} dispose (λs . 0) {false∧∗true})

for the Hoare logic in Section 4.1, and

|=t {emp} x :==alloc (λs . 1) {true}
¬(|=t {emp∧∗true} x :==alloc (λs . 1) {true∧∗true}

for the logic in Section 4.2. The reason why the Frame Rule does not hold in the
second Hoare logic is that this logic, when used with potentially infinite heaps,
does not validate safety monotonicity [19]. Safety monotonicity means that if
executing c in a state with heap h1 is safe (i.e. cannot lead to None), then
executing c in a state with an extended heap h1 ++ h2 (for h1./h2) must be
safe as well. This is in particular false for list and alloc, since there may not be
enough free addresses left in the extended heap.

We could restore safety monotonicity by only considering finite heaps, as
done in existing work on separation logic [16, 19]. Combined with an infinite
contiguous address space, memory allocation will then always succeed. We note
however that a slightly weaker property is sufficient to establish safety mono-
tonicity: namely that heaps contain arbitrary long sequences of unallocated ad-
dresses. (Reynolds imposes an equivalent, but more complicated condition on the
set of addresses in [16].) This motivates a Hoare logic where we only consider
such lacunary heaps.

lacunary h ≡ ∀ n. ∃ a. heap-isfree h a n

Clearly every finite heap is lacunary, and every heap whose domain is con-
tained in the domain of a lacunary heap is itself lacunary. Furthermore, lacunar-
ity is invariant under execution of commands. This can be shown by induction

on the evaluation relation −→c, with the rules for list, alloc, and dispose being
the more interesting cases. Unlike finiteness however, lacunarity is not preserved
under union of heaps.

Lemma finite (dom h) =⇒ lacunary h
Lemma [[dom h ⊆ dom h ′; lacunary h ′]] =⇒ lacunary h

Lemma 〈c,Some (s,h)〉 −→c Some (s ′,h ′) =⇒ lacunary h ′ = lacunary h

Based on the concept of lacunary heaps, we define yet another notion of
validity, |=l, for Hoare triples. The requirements are exactly the same as for |=t

(i.e. the postcondition must hold in every reachable valid state, and the error
state None must be unreachable), but for |=l, they need to hold only if the initial
heap is lacunary.

|=l {P}c{Q} ≡
∀ s h. lacunary h −→ ((P s h −→ (Some (s,h), None) /∈ C (c))

∧ (∀ s ′ h ′. (Some (s,h), Some (s ′,h ′)) ∈ C (c) −→ P s h −→ Q s ′ h ′))

A set of sound and relative complete Hoare rules is obtained by modifying
the preconditions in the rules for skip, assignment, list, alloc, lookup, mutate, and
dispose accordingly. The rules for list and alloc can then be simplified a little,
since lacunarity already implies the existence of free addresses. The rules for
composition, if, and while are the same as for `t. To prove completeness of the
while rule, however, we need to strengthen the consequence rule.

`l {λs h. lacunary h −→ P s h} skip {P}
`l {λs h. lacunary h −→ P (s[x 7→(a s)]) h} x :==a {P}
`l {λs h. lacunary h −→ (∀ a. ((a[7→](map (λe. e s) as))

−∗ (λhh. (P (s[x 7→a]) hh))) h)} x :== list as {P}
`l {λs h. lacunary h −→ (∀ a vs. (length vs = n s)

−→ ((a[7→]vs) −∗ (λhh. (P (s[x 7→a]) hh))) h)} x :== alloc n {P}
`l {λs h. lacunary h −→ (∃ v . ((a s)↪→v) h ∧ P (s[x 7→v]) h)} x :== @a {P}
`l {λs h. lacunary h −→ ((a s)7→− ∧∗ (((a s)7→(v s)) −∗ P s)) h}

@a :== v {P}
`l {λs h. lacunary h −→ ((a s)7→− ∧∗ P s) h} dispose a {P}
[[∀ s h. lacunary h −→ P ′ s h −→ P s h; `l {P}c{Q};

∀ s h. lacunary h −→ Q s h −→ Q ′ s h]] =⇒ `l {P ′}c{Q ′}

As usual, soundness is proved by induction on `l, and relative complete-
ness is proved using (an adapted notion of) weakest liberal preconditions. The
abovementioned properties of lacunary heaps are used in both directions of the
proof.

Theorem (|=l {P}c{Q}) = (`l {P}c{Q})

4.5 Proving the Frame Rule

The proof of the Frame Rule presented in this subsection is largely based on [19].
Since we did not specify the syntax of assertions, our first step must be a semantic
version of the Frame Rule’s side condition. The set of variables that are modified
by a command is defined as follows.

ModifiedVars skip = {}
ModifiedVars (x :==a) = {x}
ModifiedVars (c1 ;c2) = ModifiedVars c1 ∪ ModifiedVars c2
ModifiedVars (if b then c1 else c2) = ModifiedVars c1 ∪ ModifiedVars c2
ModifiedVars (while b do c) = ModifiedVars c
ModifiedVars (x :== list as) = {x}
ModifiedVars (x :== alloc n) = {x}
ModifiedVars (x :== @a) = {x}
ModifiedVars (@a :== v) = {}

ModifiedVars (dispose a) = {}

By induction on c, one can show that for x /∈ ModifiedVars c, the value of x
is invariant under execution of c.

Lemma ∀ s h s ′ h ′. (Some (s,h), Some (s ′,h ′)) ∈ C (c) −→ x /∈ ModifiedVars(c)

−→ (s x = s ′ x)

We say an assertion P is independent of a set of variables S, written S \P, iff
P does not depend on the value of variables in S.

S \P ≡ ∀ s s ′. (∀ x . x /∈ S −→ s x = s ′ x) −→ (P s = P s ′)

The key lemma is now proved by induction on c. It states that a memory
error occuring in a lacunary heap can also occur in every subheap, and a valid
execution either has a corresponding “restricted” execution in the subheap, or
it corresponds to a memory error.

Lemma ∀ s h1 h2 s ′ h ′. h1./h2
−→ (lacunary (h1++h2) −→ (Some (s,h1++h2), None) ∈ C (c)

−→ (Some (s,h1), None) ∈ C (c))
∧ ((Some (s,h1++h2), Some(s ′,h ′)) ∈ C (c)

−→ (Some (s,h1), None) ∈ C (c)

∨ (∃ h1 ′. h1 ′./h2 ∧ h1 ′++h2 = h ′ ∧ (Some (s,h1), Some(s ′,h1 ′)) ∈ C (c)))

Both safety monotonicity and the frame property [19] follow immediately.

Lemma [[h1./h2 ; lacunary (h1++h2) ; (Some (s,h1), None) /∈ C (c)]]
=⇒ (Some (s,h1++h2), None) /∈ C (c)

Lemma [[h1./h2 ; (Some (s,h1), None) /∈ C (c) ;
(Some (s,h1++h2), Some(s ′,h ′)) ∈ C (c)]]

=⇒ ∃ h1 ′. h1 ′./h2 ∧ h1 ′++h2 = h ′ ∧ (Some (s,h1), Some(s ′,h1 ′)) ∈ C (c)

Finally we can prove the Frame Rule. Safety monotonicity is used to show
that the error state is unreachable, and the frame property proves that every
reachable state satisfies the postcondition.

Theorem [[|=l {P}c{Q}; (ModifiedVars c)\R]]
=⇒ |=l {λs h. (P s ∧∗ R s) h}c{λs h. (Q s ∧∗ R s) h}

5 Example: In-place List Reversal

To evaluate the practical applicability of our framework, we verify an in-place
list reversal algorithm. This relatively simple algorithm has been considered

before [6, 5], also by Reynolds [16], who gave an (informal) correctness proof
using separation logic, and by Mehta and Nipkow [11], who formally verified the
algorithm in Isabelle/HOL, but without separation logic. The actual algorithm
is shown below. i, j and k are variables: i contains a pointer to the current
(initially, the first) list cell, j contains a pointer to the previous list cell (initially
null), and k, which is initialized at the beginning of the loop body, contains
a pointer to the next list cell. null is just an abbreviation for 0, rather than
a distinguished address. This resembles the treatment of the NULL pointer in
(e.g.) C [10].

reverse i j k ≡
(j :== (λs. null)); (∗ initially , there is no previous list cell ∗)
while (λs. s i 6= null) do (∗ end of list reached? ∗)

((((k :== @(λs. Suc (s i))); (∗ the next list cell ∗)
(@(λs. Suc (s i)) :== (λs. s j))); (∗ update pointer to next cell ∗)
(j :== (λs. s i))); (∗ previous :== current ∗)

(i :== (λs. s k))) (∗ current :== next ∗)

The corresponding specification theorem states that if i, j, and k are distinct
and i points to a list vs, then after execution of reverse i j k, j will point to the
reversed list.

Theorem |=t { λs h. heap-list vs (s i) h ∧ distinct [i ,j ,k] }
reverse i j k

{ λs h. heap-list (rev vs) (s j) h }

The predicate heap-list relates singly linked linear lists on the heap to Is-
abelle/HOL lists. heap-list vs a h is true iff the heap h contains a singly linked
linear list whose cells contain the values vs, and whose first cell is at address a.

heap-list [] a h = ((a = null) ∧ emp h)

heap-list (v#vs) a h = ((a 6= null) ∧ (∃ k . ((a[7→][v ,k]) ∧∗ heap-list vs k) h))

To prove the specification, we use soundness of `t and apply appropriate
Hoare rules until we are left with three verification conditions: namely that the
precondition, after execution of j :== (λs . null), implies the loop invariant

(∃ xs ys . (heap-list xs (s i) ∧∗ heap-list ys (s j)) h ∧ (rev vs) = (rev xs)@ys)
∧ distinct [i ,j ,k] ,

that the loop invariant is preserved during execution of the loop body, and finally
that the loop invariant, together with s i = null, implies the postcondition.

Lemma heap-list vs a h =⇒ ∃ xs ys. (heap-list ys null ∧∗ heap-list xs a) h
∧ rev vs = rev xs @ ys

Lemma (heap-list ys j ∧∗ heap-list (x # xs) i) h =⇒
(heap-list xs (heap-lookup h (Suc i)) ∧∗ heap-list (x # ys) i)

(heap-update h (Suc i) [j])

Lemma (heap-list xs null ∧∗ heap-list ys a) h =⇒ heap-list (rev xs @ ys) a h

The first and last lemma are easily proved with the help of simple properties
of heap-list. The proof of the second lemma is more difficult. Using the definition

of separating conjunction, we obtain disjoint subheaps h ′ and h ′′ of h with
heap-list ys j h ′ and heap-list (x#xs) i h ′′. The conclusion can then be shown by
splitting heap-update h (Suc i) [j] into the two disjoint heaps h ′′(i :=None, Suc
i :=None) and h ′(i 7→x)(Suc i 7→j). Overall the separation logic proof is slightly
less automatic than the proof in [11].

At the moment, the proof strategy employed here seems to be characteristic
of formal program verification with separation logic. First Hoare rules are used
to obtain a set of verification conditions; this step could easily be automated for
programs with loop annotations. Some of the verification conditions can then
be shown using simple algebraic properties (e.g. commutativity, associativity) of
separating conjunction and implication and the involved predicates, while others
presently require semantic arguments. Although it is known that separation logic
is not finitely axiomatizable [7], we hope that further case studies will allow us
to identify other useful laws of the separating connectives, so that the need for
(usually involved) semantic arguments can be minimized.

6 Conclusions and Future Work

This work is a first step towards the use of separation logic in machine-assisted
program verification. We have mechanically verified semantic properties of sep-
aration logic, and presented three different Hoare logics for pointer programs,
all of which we proved sound and relative complete. The whole development, in-
cluding a formal proof of the Frame Rule, was carried out in the semi-automatic
theorem prover Isabelle/HOL.

From our experience, separation logic can be a useful tool to state program
specifications in a short and elegant way. At this time, however, the advantage
of concise specifications comes with a cost: verification proofs, when carried out
at the level of detail that is required for mechanical verification, tend to become
more intricate and less automatic. Further work is necessary to achieve a better
integration of separation logic into the existing Isabelle/HOL framework, and to
increase the degree of proof automation for the connectives of separation logic.

More immediate aims are a verification condition generator for an annotated
version of the language, some syntactic sugar for the connectives of separation
logic, and extensions to the programming language, e.g. recursive procedures
and concurrency.

Acknowledgments The author would like to thank Tobias Nipkow, Farhad Mehta
and the anonymous referees for their valuable comments.

References

[1] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey – part I. ACM Transactions
on Programming Languages and Systems, 3(4):431–483, October 1981.

[2] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey – part II: Nondeterminism.
Theoretical Computer Science, 28:83–109, 1984.

[3] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity checking for
combinations of theories with equality. In Mandayam K. Srivas and Albert J.
Camilleri, editors, Formal Methods in Computer-Aided Design, volume 1166 of
Lecture Notes in Computer Science, pages 187–201. Springer, November 1996.

[4] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local reasoning about a
copying garbage collector. In Proceedings of the 31-st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 220–231.
ACM Press, January 2004.

[5] Richard Bornat. Proving pointer programs in Hoare logic. In Mathematics of
Program Construction, pages 102–126, 2000.

[6] Rodney M. Burstall. Some techniques for proving correctness of programs which
alter data structures. In Bernard Meltzer and Donald Michie, editors, Machine
Intelligence, volume 7, pages 23–50. Edinburgh University Press, Edinburgh, Scot-
land, 1972.

[7] Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability and
complexity results for a spatial assertion language for data structures. In Ramesh
Hariharan, Madhavan Mukund, and V. Vinay, editors, FST TCS 2001: Founda-
tions of Software Technology and Theoretical Computer Science, volume 2245 of
Lecture Notes in Computer Science, pages 108–119. Springer, 2001.

[8] E. Dijkstra. Guarded commands, non-determinacy and formal derivation of pro-
grams. Communications of the ACM, 18:453–457, 1975.

[9] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, October 1969.

[10] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, Inc., second edition, 1988.

[11] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order
logic. In Franz Baader, editor, Automated Deduction – CADE-19, volume 2741 of
Lecture Notes in Artificial Intelligence, pages 121–135. Springer, 2003.

[12] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics text-
book. Formal Aspects of Computing, 10(2):171–186, 1998.

[13] Tobias Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and
R. Steinbrüggen, editors, Proof and System-Reliability, pages 341–367. Kluwer,
2002.

[14] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[15] Peter W. O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Laurent Fribourg, editor, Computer
Science Logic, volume 2142 of Lecture Notes in Computer Science, pages 1–19.
Springer, 2001.

[16] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS’02), pages 55–74, 2002.

[17] Martin Wildmoser and Tobias Nipkow. Certifying machine code safety: shallow
versus deep embedding. Accepted to the 17th International Conference on Theo-
rem Proving in Higher Order Logics (TPHOLs 2004).

[18] Hongseok Yang. Local Reasoning for Stateful Programs. PhD thesis, University
of Illinois, Urbana-Champaign, 2001.

[19] Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning.
In Foundations of Software Science and Computation Structure, pages 402–416,
2002.

