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Abstract. Sledgehammer, a component of the interactive proof assis-
tant Isabelle/HOL, aims to increase proof automation by automatically
discharging proof goals with the help of external provers. Among these
provers are a group of satisfiability modulo theories (SMT) solvers with
support for the SMT-LIB input language. Despite existing formalizations
of IEEE floating-point arithmetic in both Isabelle/HOL and SMT-LIB,
Sledgehammer employs an abstract translation of floating-point types
and constants, depriving the SMT solvers of the opportunity to make
use of their dedicated decision procedures for floating-point arithmetic.
We show that, by extending Sledgehammer’s translation from the lan-
guage of Isabelle/HOL into SMT-LIB with an interpretation of floating-
point types and constants, floating-point reasoning in SMT solvers can be
made available to Isabelle/HOL. Our main contribution is a description
and implementation of such an extension. An evaluation of the extended
translation shows a significant increase of Sledgehammer’s success rate
on proof goals involving floating-point arithmetic.

1 Introduction

Interactive theorem proving is one of the more flexible and powerful formal veri-
fication techniques available. However, finding a proof outline with intermediate
proof steps just simple enough for a proof assistant to be able to discharge au-
tomatically may require a considerable amount of time and effort, even from
a seasoned user. As an example, the seL4 micro-kernel, the product of about
two person-years and 9000 lines of code, took a total of about 20 person-years
and 200,000 lines of proof development to formally verify [29]. For this reason,
increasing proof automation in interactive proof assistants is crucial to further
broaden their applicability.

As a way of tackling this issue, many interactive proof assistants have the
ability to transfer the proof burden of some of the intermediate steps onto au-
tomated reasoning systems with automatic proof methods better suited for the
task. This approach has proven to be quite successful in bringing the number
of required user interactions down for many types of problems, thus increasing
productivity.

Among these proof assistants, we find Isabelle/HOL [34] and its power-
ful proof-delegation tool Sledgehammer [36], which acts as an interface be-
tween Isabelle/HOL and a number of external provers. In addition to traditional



(resolution-based) first-order automated theorem provers (ATPs) such as E [40],
SPASS [45] and Vampire [38] and the higher-order ATP Zipperposition [9], these
external provers include satisfiability modulo theories (SMT) solvers such as
CVC4 [7], veriT [15] and Z3 [31]. SMT solvers are highly specialized for reason-
ing within certain logical theories (e.g., integers, real numbers, and bit vectors),
and often implement decision procedures more efficient than those found in the
automatic proof methods of Isabelle/HOL.

Whether an external prover succeeds in solving a delegated proof obligation
depends, among other factors, on how the proof obligation is encoded in the lan-
guage of the prover. SMT solvers support the SMT-LIB input language [6], which
offers both uninterpreted (free) type and function symbols that are declared by
the user, as well as theory-specific interpreted types and operations that have
a fixed semantics. Dedicated inference rules and decision procedures for specific
theories that are available in SMT solvers are typically employed only when the
types and operations that appear in the delegated proof obligation are inter-
preted. An abstract translation that leaves types and operations uninterpreted
will deprive external solvers of the opportunity to make use of their dedicated
decision procedures for specific background theories, and will instead have to
rely on a sufficient set of facts being passed to the solver along with the proof
obligation.

One of the more recent additions to the growing set of theories supported by
major SMT solvers is that of floating-point arithmetic [16]. A formalization of
IEEE floating-point arithmetic in Isabelle/HOL has been available in the Archive
of Formal Proofs for nearly a decade [46]. However, Sledgehammer has not yet
caught up to this development; its SMT component does not implement an
interpretation of floating-point types and operations. Our aim is to provide such
an interpretation, with the purpose of increasing the success rate for floating-
point proof obligations delegated to SMT solvers, and thereby to increase the
degree of automation in the interactive proof process.

As an example, let us consider the commutativity of floating-point addition.
SMT solvers that support floating-point arithmetic typically have no trouble
proving that x + y = y + x when they can assume that x and y denote floating-
point numbers, and that + denotes IEEE floating-point addition (i.e., when + is
translated as fp.add). However, if this formula is translated in an uninterpreted
fashion, the problem becomes much harder: it now requires to show commuta-
tivity of a user-declared function over a user-declared type. Whether the SMT
solver will succeed in this case depends on many factors, including which addi-
tional facts (definitions and lemmas) are passed along from the interactive proof
assistant together with the proof obligation itself.

Contributions. We define a formal model of floating-point arithmetic in Is-
abelle/HOL that implements the SMT-LIB floating-point theory (Section 3).

We then extend the SMT solver integration in Isabelle/HOL by adding sup-
port for floating-point arithmetic, i.e., by treating floating-point types and oper-
ations as interpreted in the translation from the language of Isabelle/HOL to the
SMT-LIB input format. In addition to describing this extension in detail (Sec-



tion 4), we provide an implementation (in the Archive of Formal Proofs [46]) that
supports Sledgehammer. To the best of our knowledge, this makes Isabelle/HOL
the first interactive proof assistant to employ an interpreted translation for
floating-point arithmetic in its integration of automated theorem provers.

An evaluation (Section 5), performed on a representative set of floating-
point proof obligations from interactive proof, confirms the expectation that
our translation extension significantly increases Sledgehammer’s success rate on
proof goals involving floating-point arithmetic, albeit at the cost of lower success
rates for proof reconstruction—at this stage, our integration typically requires
the external SMT solvers to be trusted as oracles.

2 Background

In this section, we cover additional background information regarding Sledge-
hammer and floating-point arithmetic.

2.1 The Sledgehammer Proof Process

When trying to prove a conjecture in Isabelle, a user may, via a simple call to
Sledgehammer, pass along the proof obligation to several external provers, which
will then work on the problem in parallel. The statement to be proven is used
by a relevance filter [30] to select additional facts (axioms and previously proven
statements) that may help in finding a proof. All of these statements are then
translated and compiled into a file in the input format of the external prover (in
the case of SMT solvers, an SMT-LIB input file), as illustrated in Figure 1.

After working on the problem, the external prover (if it does not time out)
returns to Isabelle with its findings. At this point, if a prover reported the con-
jecture to be true, the user can either choose to view the prover as an oracle
and accept the conjecture as a theorem (the dashed path in Figure 1), or make
Isabelle try to automatically reconstruct the proof internally, based on the ad-
ditional facts sent with the conjecture and any proof details the prover may
provide. Theorems that are only proved externally are marked with an oracle
tag, meant to convey a certain amount of skepticism—reconstructed proofs are
generally preferred, as they remove the consideration of possible bugs in the
external prover, or in the translation between formats.

In Sledgehammer’s translation module, types and constants are generally de-
clared with a unique (freshly generated) identifier that has no inherent meaning
to the external prover. A few Isabelle theories (e.g., those for integer arithmetic,
real arithmetic, and bit vectors) define types and constants that are treated
as interpreted by the translation into SMT-LIB [11], in which case they are
mapped directly to their counterpart in the target logic—thereby allowing the
SMT solvers to use their built-in decision procedures designed specifically to
reason within the theories in question.
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Fig. 1. A conjecture’s journey to become a theorem via Sledgehammer

2.2 IEEE 754 Binary Floating-Point Arithmetic

The most common way to approximate the real numbers to a suitable finite set of
numbers in modern hardware is via floating-points. Simulating real arithmetic us-
ing floating-points is not a straightforward task; the definitions of arithmetic op-
erations are not always obvious, and should ideally not vary between implemen-
tations. To this end, the IEEE developed the technical standard IEEE 754 [26],
aiming to provide clear specifications and recommendations on all aspects of
floating-point arithmetic. To meet the needs of different applications, the stan-
dard specifies several floating-point formats, each defining a unique set of num-
bers.

A binary floating-point format is characterized by its exponent width w ∈ N,
and its precision p ∈ N. A binary floating-point number, x, may then be repre-
sented in this format by a triple (s, e, f) of bit vectors of length 1, w, and p− 1,
respectively, such that (for finite x)

x =


(−1)s · 21−bias(w) · (0 + f

2p−1
) if e = 0

(−1)s · 2e−bias(w) · (1 + f

2p−1
) otherwise,

(1)

where bias(w) = 2w−1 − 1. The standard also specifies two signed infinities,
+∞ and −∞, denoting values that are too great in magnitude for the format.
These are represented by the triples (0, 1 . . . 1, 0 . . . 0) and (1, 1 . . . 1, 0 . . . 0), re-
spectively. Together, the sign s, the (biased) exponent e, and the fraction f
constitute a unique representation of any finite or infinite floating-point num-
ber; in particular, the two numbers +0, represented by (0, 0 . . . 0, 0 . . . 0), and −0,



represented by (1, 0 . . . 0, 0 . . . 0), are considered distinct. To represent the result
of invalid operations, such as 0/0, the standard defines a special Not-a-Number
(NaN) value, represented via any triple (s, 1 . . . 1, f) such that f ̸= 0 . . . 0.3

Additionally, IEEE 754 specifies various arithmetic operations on floating-
point numbers. Conceptually, floating-point arithmetic is carried out by convert-
ing floating-point numbers to more precise values, performing the corresponding
arithmetic operation, and converting the result back to the original floating-point
format, in an emulation of a rounded infinitely precise calculation. In an envi-
ronment like Isabelle/HOL, where theories of real arithmetic are available, the
task of carrying out calculations with infinite precision falls upon these, whereas
the floating-point operations handle the rounding and special cases (e.g., an ar-
gument being NaN or infinite). IEEE 754 specifies precisely how this handling
should be performed.

3 An Implementation of SMT-LIB Floating-Point
Arithmetic in Isabelle/HOL

Formalizations of floating-point arithmetic are readily available for many proof
assistants. For Isabelle/HOL, a formalization originally developed by Lei Yu is
available from the Archive of Formal Proofs [46]. This defines a (polymorphic)
type of floating-point numbers, whose instances correspond to IEEE floating-
point formats with specific width and precision, and various arithmetic opera-
tions over this type.

However, although both are based on the IEEE standard, there are impor-
tant semantic differences between this model and the SMT-LIB floating-point
theory [16]. These differences would have rendered a direct interpretation of Lei
Yu’s model in the SMT-LIB floating-point theory unsound.

First, the SMT-LIB theory offers five rounding modes. The mode round-

NearestTiesToAway (which is optional according to IEEE 754) was not available
in the Isabelle/HOL model. Therefore, the enumerated type of rounding modes
in Isabelle/HOL did not correspond to the RoundingMode sort in SMT-LIB. We
have resolved this difference by adding support for roundNearestTiesToAway

to Lei Yu’s model. Although rounding is pervasive in IEEE—it is performed by
most arithmetic operations—it is factored out into only two functions in the
Isabelle/HOL model (round and intround), so that this was a relatively minor,
local change.

Second, the formalization by Lei Yu emphasizes the bit representation of
floating-point values (corresponding to specification level 4 in IEEE 754), while
the SMT-LIB floating-point theory takes a more abstract view (corresponding
to specification level 2 in IEEE 754). Specifically, in Lei Yu’s formalization,
each floating-point format contains multiple NaN values (with different bit rep-
resentations), while the corresponding floating-point format in SMT-LIB only

3 The IEEE 754 standard defines a quiet and a signalling NaN. This distinction is not
present in the SMT-LIB floating-point theory, which is based on a higher level of
abstraction.



contains a single (abstract) NaN value. To resolve this fundamental difference,
we have constructed a new model of floating-point arithmetic in Isabelle/HOL.
Our starting point is a quotient construction over the type (’e,’f) float of
floating-point numbers offered by Lei Yu’s model. We first define an equivalence
relation is nan equivalent on this type that relates all NaN values:

definition is nan equivalent :: (’e,’f) float ⇒ (’e,’f) float ⇒ bool

where is nan equivalent a b ≡ a = b ∨ (is nan a ∧ is nan b)

We then define a new type (’e,’f) floatSingleNaN that contains the equiva-
lence classes of (’e,’f) float with respect to the relation is nan equivalent:

quotient type (overloaded) (’e,’f) floatSingleNaN =
(’e,’f) float / is nan equivalent

The resulting type (’e,’f) floatSingleNaN contains a single (abstract) NaN
value. The (type) arguments ’e and ’f indicate the bit width of the exponent
and fraction, respectively. A similar construction, but limited to the double-
precision (64-bit) format, was used in [8] to facilitate OCaml code generation
for floating-point numbers. Flocq [14], a Coq library of floating-point arithmetic,
defines a type with similar semantics inductively, rather than using a quotient
construction.

Most floating-point operations can then be lifted [25] in a straightforward
manner from (’e,’f) float to (’e,’f) floatSingleNaN. We have addition-
ally defined various operations that are supported in SMT-LIB but that were not
available in Lei Yu’s model, such as conversion functions between floating-point
numbers and bit vectors. Our model now covers all operations that are available
in the SMT-LIB floating-point theory.

Some (rather subtle) semantic differences between our model and the SMT-
LIB floating-point theory remain. In SMT-LIB, the result of certain opera-
tions, such as converting NaN or infinities to a real number, is unspecified.
Isabelle/HOL does not support partial specifications; therefore, the result of
these operations is defined4 in our model. Technically, the Isabelle/HOL model
is an implementation of the SMT-LIB specification. This does not affect the
soundness of interpreting the model in SMT-LIB: any theorem provable under
SMT-LIB semantics also holds for the Isabelle/HOL model.

An error in the remainder function float rem as defined in Isabelle/HOL
was discovered during implementation and has been patched: the remainder of
a finite floating-point value x and ±∞ shall be x [26, §5.3.1].

4 Interpreting Isabelle/HOL Floating-Point Arithmetic
in SMT-LIB

This section describes an interpreted translation of floating-point types and op-
erations from Isabelle/HOL to SMT-LIB. Our translation extends a preexisting
general translation [11] targeting SMT solvers that is part of Sledgehammer,

4 For instance, in terms of a special constant called undefined.



which treats floating-point arithmetic as uninterpreted. It supports the formal
model of IEEE floating-point arithmetic in Isabelle/HOL that was described in
the previous section. We aim to be comprehensive but restrict attention to those
floating-point concepts that are defined in both Isabelle/HOL and SMT-LIB.

4.1 SMT-LIB Logic

The first task of our translation module is to select an SMT-LIB logic within
which the SMT solver is to reason when deciding the satisfiability of the formula.
For performance reasons, it is generally a good idea to select a logic that is as
specific as allowed by the contents and structure of the formula. However, FP, the
logic for floating-point arithmetic, is too restrictive for many of Isabelle’s proof
obligations, which may freely combine floating-point operations with other types
and constants. When translated, these will require support for symbols that are
either free (uninterpreted) or defined in other SMT-LIB theories.

Sledgehammer’s SMT integration relies on callback functions to analyze the
proof obligation and determine the problem’s logic. However, only one of these
functions may select a logic. In the absence of a framework allowing for a more
modular approach (e.g., incrementally generalizing the logic as little as necessary,
based on the types and constants that appear in the proof obligation), we need
to select a logic that covers all operations that appear in the proof obligation. To
achieve this, whenever a supported floating-point type is detected in the formula
to be translated, our callback function returns the (pseudo-)logic ALL. Available
since version 2.5 of the SMT-LIB standard, this provides a convenient way to
select the most general logic that the respective SMT solver supports.

4.2 Types

Both Isabelle/HOL and SMT-LIB define binary floating-point formats of arbi-
trary width of the exponent and fraction fields. In Isabelle/HOL, (m,n) float-

SingleNaN is the type of floating-point numbers with an exponent field of width m

and a fraction field of width n (and thus with precision n+1). In SMT-LIB,
the hidden bit of the significand (the bit preceding the fraction) is included in
the format specification, making ( FloatingPoint m n+1) the corresponding
sort. The SMT-LIB sorts are only defined for formats with m > 1 and n > 0,
whereas m and n are merely required to be positive in Isabelle/HOL. Thus, any
type (1,n) floatSingleNaN lacks a corresponding sort in SMT-LIB, and is left
uninterpreted by the translation.

In Isabelle/HOL, all floating-point formats (m,n) floatSingleNaN are in-
stances of a polymorphic type (’e,’f) floatSingleNaN. Here, ’e and ’f are
type variables that may be instantiated with concrete (type) arguments, or left
uninstantiated to express generic properties that hold for all floating-point for-
mats. Due to the current lack of support for polymorphism in SMT-LIB, (m,n)
floatSingleNaN is interpreted only when m and n are (type) arguments encoding
fixed numeric values; polymorphic types are left uninterpreted.



In addition to the types for floating-point formats, Isabelle/HOL defines an
enumerated type roundmode for the rounding modes used by the arithmetic
operations. SMT-LIB provides a corresponding type; roundmode is interpreted
as RoundingMode in SMT-LIB.

4.3 Constants

For the sake of brevity, we focus here on some of the more interesting aspects
of the translation of constants. (In HOL, constants are not limited to arity 0,
but may have a function type.) An exhaustive enumeration of the mapping is
provided in Table 1.

Polymorphism. The issue regarding polymorphism, described in the previous
section, affects the translation of constants as well. A constant can only be inter-
preted if its type is not polymorphic. Since Isabelle’s automatic type inference
assigns constants the most general type possible with respect to the context,
variables and constants with a floating-point type will in many cases need to be
attached with explicit type constraints in order to trigger the interpretation.

Direct correspondence. For many floating-point related constants in Isabelle,
there is a direct semantic-preserving mapping to a function in SMT-LIB. Among
these we find, e.g., the rounding modes and comparison operations together
with many arithmetic operations and classification predicates. The translation
of these does not involve much more than simply replacing their name with the
corresponding identifier in SMT-LIB.

Format parameter extraction. A few SMT-LIB functions targeted by our trans-
lation are technically elements of an infinite family of functions generated by an
index over all floating-point formats. This holds, e.g., for the conversion operation
from reals to floating-points, and for the (nullary) functions denoting the special
floating-point values ±0, ±∞ and NaN. Their behavior depends on the result
sort, which is not necessarily derivable from context and must be indicated ex-
plicitly in SMT-LIB. In these cases, we extract the type arguments of the (result)
type of the constant to be translated, and add them explicitly as arguments to
the corresponding function symbol in SMT-LIB. For instance, the Isabelle/HOL
function round of type roundmode ⇒ real ⇒ (’e,’f) floatSingleNaN, which
converts a real number into a floating-point number (rounding as necessary), is
interpreted as ( to fp m n+1) whenever its result type is of the form (m,n)

floatSingleNaN, where m and n encode fixed numeric values.

Term translation. Isabelle/HOL supports the definition of advanced concepts on
top of the types and constants that are provided by the model of floating-point
arithmetic. Our translation does not interpret such derived concepts directly.
Instead, these can be handled by unfolding their definitions in Isabelle when
desired, or by relying on Sledgehammer’s relevance filter, which can make their
definitions and other relevant facts available to external provers automatically.



Table 1. Types and constants in Isabelle/HOL covered by the translation, together
with sorts and functions in SMT-LIB. m > 1 and n > 0 indicate the floating-point
format. Square brackets denote syntactic sugar, which is also interpreted.

Isabelle/HOL SMT-LIB
Floating-point type (m,n) floatSingleNaN ( FloatingPoint m n+1)
Rounding mode type roundmode RoundingMode
Bit-vector type m word ( BitVec m)
Rounding mode roundNearestTiesToEven RNE
Rounding mode roundNearestTiesToAway RNA
Rounding mode roundTowardPositive RTP
Rounding mode roundTowardNegative RTN
Rounding mode roundTowardZero RTZ
Value construction fp fp
Positive infinity plus infinity [∞] ( +oo m n+1)
Negative infinity minus infinity ( -oo m n+1)
Positive zero zero class.zero [0] ( +zero m n+1)
Negative zero minus zero ( -zero m n+1)
Not-a-number NaN ( NaN m n+1)
Absolute value abs class.abs [| |] fp.abs
Negation uminus class.uminus [-] fp.neg
Addition fadd fp.add
Subtraction fsub fp.sub
Multiplication fmul fp.mul
Division fdiv fp.div
Fused multiply-add fmul add fp.fma
Square root fsqrt fp.sqrt
Remainder float rem fp.rem
Integral rounding fintrnd fp.roundToIntegral
Less or equal fle fp.leq
Less than flt fp.lt
Greater or equal fge fp.geq
Greater than fgt fp.gt
IEEE equality feq fp.eq
Normal? is normal fp.isNormal
Subnormal? is subnormal fp.isSubnormal
Zero? is zero fp.isZero
Infinity? is infinity fp.isInfinite
NaN? is nan fp.isNaN
Negative? is negative fp.isNegative
Positive? is positive fp.isPositive
To real valof fp.to real
To unsigned word unsigned word of float fp.to ubv
To signed word signed word of float fp.to sbv
From IEEE word float of IEEE754 word ( to fp m n+1)
From real round ( to fp m n+1)
From float float of float ( to fp m n+1)
From signed word float of signed word ( to fp m n+1)
From unsigned word float of unsigned word ( to fp unsigned m n+1)



5 Evaluation

To investigate the difference in the performance of Sledgehammer brought on
by the interpreted translation, and to get a clear overview of the comparative
performance of the SMT solvers, we conducted an experimental evaluation on
a set of proof obligations that involve floating-point operations. Freely available
Isabelle formalizations of floating-point properties are scarce; only a few proper-
ties are included with the formal IEEE model in the Archive of Formal Proofs.
We complemented these with our own formalizations of floating-point properties
taken from the IEEE 754 standard and the Handbook of Floating-point Arith-
metic [32], resulting in a set of 124 formulas. The formulas in the evaluation set
exhibit difficulties ranging from nearly trivial to levels on par with Sterbenz’s
lemma [42].

All formulas in the evaluation set are polymorphic over a single floating-
point type (’e,’f) floatSingleNaN. This type was instantiated to different
fixed-size floating-point formats: half (16-bit), single (32-bit), double (64-bit),
and quadruple (128-bit) precision formats, as specified by IEEE 754. The inter-
preted translation was evaluated on each of these fixed-size formats. For com-
parison, the abstract (uninterpreted) translation that was previously employed
by Sledgehammer was additionally evaluated on the original (polymorphic) eval-
uation set. This gives rise to nine different models—technically, Isabelle theories
with different type annotations—for measuring Sledgehammer’s performance on
the evaluation set, defined for x ∈ {(5,10), (8,23), (11,52), (15,112)} as:

– Ix : interpretation is enabled and all floating-points are of type
x floatSingleNaN.

– Ux : interpretation is disabled and all floating-points are of type
x floatSingleNaN.

– Upoly: interpretation is disabled and all floating-points are of polymorphic
type (’e,’f) floatSingleNaN.

We used the Mirabelle [17] tool with default settings—including a 30 second
time limit per formula—to apply Sledgehammer to each proof obligation. The
default external provers invoked by Sledgehammer in Isabelle2022 are the ATPs
E (version 2.6-1), SPASS (version 3.8ds-2), Vampire (version 4.6) and Zipper-
position (version 2.1-1), along with the SMT solvers CVC4 (version 1.8), veriT
(version 2021.06.2-rmx), and Z3 (version 4.4.0 4.4.1). Since the floating-point
solver in this version of Z3 suffers from a soundness bug, we evaluated Z3 ver-
sion 4.12.2 instead. We did not evaluate newer versions of the other solvers, such
as cvc5 [3], as they are not yet integrated with Isabelle.

Out of the three SMT solvers, only CVC4 and Z3 support the floating-point
theory of SMT-LIB. For each of the nine models, we evaluated four different
prover configurations: CVC4 only, Z3 only, CVC4+Z3, and Sledgehammer’s de-
fault prover configuration, which includes all of the ATPs and SMT solvers listed
above. For the Ix models, where interpretation is enabled, the default prover con-
figuration uses both interpreted and uninterpreted translations (depending on



the prover). For CVC4, we enabled its experimental floating-point solver (op-
tion --fp-exp) to obtain support for floating-point formats beyond single and
double precision.

Sledgehammer’s relevance filter had access to a large collection of theorems
from the Isabelle/HOL library, including the definitions of all types and oper-
ations, and (for later formulas in the evaluation set) to all formulas that were
evaluated earlier. This mimics realistic use in interactive proof, where users can
rely on proven statements and employ them as lemmas in subsequent proofs. To
avoid later runs being affected by earlier runs, the status of the machine learning
selection of facts (stored in the Isabelle configuration file mash state) was reset
before each Mirabelle run.

The experiments were conducted under Debian GNU/Linux 6.1.0-10-amd64,
running on an i9-9980HK CPU at 2.4 GHz with 16 processor threads and 32 GB
of main memory.

5.1 Results

Table 2 shows Sledgehammer’s success rates for the four different prover con-
figurations when run on the evaluation set in the models described above. For
convenience, the four fixed formats are abbreviated by their total bit length (16,
32, 64, and 128, respectively) in the model name. Sledgehammer succeeds when
at least one of the external provers reports that it found a proof within the time
limit of 30 seconds.

Table 2. Sledgehammer’s success rates for the four prover configurations on proof
goals from the evaluation set, by model.

U16 I16 U32 I32 U64 I64 U128 I128 Upoly

CVC4 41% 94% 57% 91% 35% 90% 58% 89% 54%
Z3 39% 86% 56% 85% 35% 84% 56% 77% 58%
CVC4+Z3 41% 95% 58% 91% 36% 90% 58% 89% 57%
Default (all) 41% 94% 60% 91% 37% 91% 60% 88% 56%

In this case, Sledgehammer attempts to reconstruct the external proof in
Isabelle using a collection of automated proof methods (as discussed in Sec-
tion 2.1). The success rates for this process, again as a percentage of the total
number (124) of proof obligations, are shown in Table 3.

For each floating-point format (and also for the polymorphic model), the
largest success rate across prover configurations, with or without interpretation
enabled, is indicated in boldface.

5.2 Discussion

Based on the results of our evaluation, we put forward the following observations:



Table 3. Success rates of proof reconstruction for the four prover configurations on
proof goals from the evaluation set, by model.

U16 I16 U32 I32 U64 I64 U128 I128 Upoly

CVC4 41% 5% 55% 5% 35% 5% 54% 5% 54%
Z3 39% 4% 54% 4% 35% 4% 53% 4% 58%
CVC4+Z3 41% 5% 55% 5% 36% 5% 56% 5% 57%
Default (all) 40% 7% 58% 7% 37% 7% 57% 7% 54%

1. An interpreted translation increases Sledgehammer’s success rate for all prover
configurations and fixed-size floating point formats. With an uninterpreted
translation, success rates vary between 35% and 58%. This increases to be-
tween 77% and 95% with an interpreted translation. Across the board, the
interpreted translation performs significantly better than the uninterpreted
translation.

2. The increase in Sledgehammer’s success rate is most pronounced for the half
(16-bit) and double (64-bit) precision formats. The uninterpreted translation
performs worse for these two formats (with success rates of 35% to 41%) than
for single and quadruple precision. In contrast, the interpreted translation
consistently yields high success rates (of 89% to 95% in the best solver con-
figuration) regardless of the format’s precision.

3. Sledgehammer’s success rate on the polymorphic model is generally compa-
rable to, and in some cases better than, its success rate for fixed-size for-
mats with an uninterpreted translation. When the external provers cannot
take advantage of their decision procedures for fixed-size floating-point arith-
metic, reasoning about fixed-size properties is no easier for them than rea-
soning about polymorphic properties. (Indeed, depending on the additional
facts chosen by Sledgehammer’s relevance filter, it may well be harder.) This
changes when interpretation is enabled.

4. CVC4 outperforms Z3 on most models. This is true both with and without
interpretation enabled. The only exception is the polymorphic model, where
Z3 performs slightly better than CVC4. Using all available provers typically
results in (only) slightly higher success rates than using CVC4 alone, but can
also lead to slightly lower success rates (mainly because of non-determinism
in Sledgehammer’s behavior).

5. With interpretation disabled, proof reconstruction success rates are often
close to Sledgehammer’s success rates. In other words, proof reconstruction
in the uninterpreted models succeeds on the vast majority of proofs found
by external provers. This is a testament to the power of Isabelle’s built-in
proof methods (in particular, metis), which provide strong automation for
first-order reasoning.

6. Interpretation leads to (much) lower proof reconstruction rates for all prover
configurations and fixed-size floating point formats. Although interpretation
allows external provers to find more proofs, these proofs are rarely success-
fully reconstructed in Isabelle. This is to be expected: Isabelle currently does



not offer built-in automated proof procedures for floating-point reasoning
that could be used to reconstruct such proofs.

Many formulas from the evaluation set were previously proven with 10-20 lines of
interactively developed Isabelle proof script, and can now (after interpretation)
be proven completely automatically by CVC4 or Z3. The interpreted translation
can save significant amounts of human labor in formal proof developments that
involve floating-point arithmetic. However, due to the lower proof reconstruction
rate, interpretation of floating-point arithmetic is currently primarily of interest
to users who are willing to accept CVC4 and Z3 as oracles (cf. Section 2.1).

6 Related Work

The practice of employing automatic provers as back-ends in interactive theorem
provers is not unique to Isabelle. Generic proof-delegation tools similar to Sledge-
hammer have also been developed for other proof assistants, e.g., MizAR [43]
for Mizar [2], and HOL(y)Hammer [27] for HOL Light [22] and HOL4 [41].
There are also proof-delegation tools aimed specifically toward SMT solvers,
e.g., Smtlink [37] for ACL2 [28] and SMTCoq [1] for Coq [10].

Single integrations of SMT solvers have perhaps been more common than
these larger-scale tools. The interactive theorem prover PVS [35] is tightly con-
nected with the SMT solver Yices [18] (and its predecessor ICS), which has been
available as a decision procedure for a long time. An oracle integration of Yices in
Isabelle by Erkök and Matthews [20] makes use of its dedicated decision proce-
dures, but refrains from translating into SMT-LIB, and instead targets the native
input format of Yices due to its expressiveness. Weber [44] proposes a similar
oracle integration of Yices into HOL4, but extends it with support for additional
SMT solvers via the SMT-LIB format. This integration has since been supple-
mented with proof reconstruction and become part of HOL(y)Hammer [13].

The work presented here is based on the original integration of SMT solvers
in Isabelle’s Sledgehammer by Blanchette et al. [11]. It is dependent on vari-
ous aspects of their translation into SMT-LIB, including the interpretation of
bit-vector types and constants. In this sense, it also bears resemblance to how
SMTCoq was recently extended with dedicated support for the theory of bit
vectors [19].

Formalizations of IEEE 754 floating-point arithmetic are readily available in
interactive proof assistants, e.g., in HOL Light [23], ACL2 [39], and Coq [14], and
have been used extensively to verify floating-point related properties. However,
to the best of our knowledge, no integration of SMT solvers in interactive proof
assistants takes advantage of the dedicated decision procedures for floating-point
arithmetic available in the former.

Superficially, the work perhaps most similar to ours is a Why3 [12] formal-
ization of floating-point arithmetic and its mapping to the SMT-LIB floating-
point theory [21]. Why3, however, is not a prover itself, but a stand-alone proof-
delegation tool relying completely on external provers. Thus greater automation
in interactive proof assistants is not a shared objective.



7 Conclusions

In the years since its introduction in Isabelle, Sledgehammer has seen a number
of improvements. In varying degree, they have each gradually brought us closer to
the ultimate goal of powerful proof automation in interactive proof assistants.
By defining a formal model of floating-point arithmetic in Isabelle/HOL that
implements SMT-LIB semantics, and by enhancing the translation from Isabelle
to SMT-LIB with an interpretation of floating-point types and constants, we
have taken another step in this direction. Sledgehammer enjoys a significant
increase in success rates (before proof reconstruction) for proof obligations that
involve floating-point arithmetic.

Many proof obligations that were previously out of reach for any automated
prover can now be solved automatically. For users who are are willing to trust
the external SMT solvers, enhancing Sledgehammer’s translation with a floating-
point interpretation increases proof automation and reduces the manual effort
required to construct proofs in this important application domain.

Our translation does not require formulas to be fully interpretable in the
SMT-LIB floating-point theory. The SMT solvers are instructed to reason in a
more general logic, where interpreted and uninterpreted sorts and functions can
be combined freely.

There are two notable limitations, which we propose to address through
future work. First, the interpretation of floating-point arithmetic is restricted
to fixed-size formats. In many situations, this is not a severe limitation—fixed-
size reasoning is sufficient, for instance, when one wants to verify a specific
hardware architecture, or a software implementation that uses a specific floating-
point type such as binary64. However, floating-point properties that hold for
all formats are most naturally stated polymorphically in Isabelle/HOL. Such
properties cannot be interpreted in the floating-point theory of SMT-LIB, which
(in its current version 2.6) lacks support for polymorphism: although it offers a
type ( FloatingPoint m n) for any sufficiently large m and n, it does not offer
a polymorphic type ( FloatingPoint m n) where m and n are variables that
may be instantiated.

Supporting polymorphism in SMT solvers is no small feat. Fortunately, there
is ongoing work to obtain a tighter integration of automatic provers, including
SMT solvers, with proof assistants. One of the means by which to achieve this is
via support for higher-order logic in these provers [5]. Most likely, SMT-LIB 3—
the next major update to SMT-LIB—will facilitate these changes by supporting
polymorphism [4]. When such support becomes available in SMT solvers that
support floating-point arithmetic, an interpreted translation can be employed
also for polymorphic floating-point properties. There has already been work on
supporting parametric bit-vector formulas in SMT solvers by encoding them as
formulas over non-linear integer arithmetic, uninterpreted functions, and uni-
versal quantifiers (the UFNIA logic in SMT-LIB) [33]. This approach could in
principle be extended to floating-point numbers.

Second, interpretation of floating-point arithmetic allows SMT solvers to find
more proofs, but reduces proof reconstruction rates in Isabelle. There is a mis-



match between the reasoning capabilities of SMT solvers that support floating-
point arithmetic and Isabelle’s built-in automated proof procedures, which are
used to reconstruct proofs. The latter currently do not offer dedicated support
for floating-point reasoning, but need to rely on explicit lemmas to reason about
concepts for which the SMT solver, when interpretation is enabled, can employ
specialized decision procedures. Users may opt to bypass proof reconstruction
and use external SMT solvers as oracles; however, this reduces trust in the result-
ing theorems, as errors in the SMT solver, in the translation from Isabelle/HOL
to SMT-LIB, or in the Isabelle/HOL model of floating-point arithmetic could
lead to unsound results. The approach preferred by the interactive theorem prov-
ing community is that of a skeptic [24]—external proofs should be reconstructed
internally. If successful, this approach combines the speed of the SMT solver
with the reliability of the proof assistant.

Efficient reconstruction of proofs has previously been achieved for other SMT-
LIB logics [11], and is likely possible also for floating-point reasoning, through
improving on the proof information provided by SMT solvers and translating
theory-specific inferences. An automated proof procedure for floating-point arith-
metic implemented on top of Isabelle’s inference kernel would both facilitate
the reconstruction of external proofs and increase the built-in automation for
floating-point reasoning available in Isabelle/HOL. The implementation of such
a proof procedure will require substantial work, but the evaluation results in
this paper—in particular, the difference between Tables 2 and 3—clearly indi-
cate that the effort would not be wasted.
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