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Abstract

This paper presents our solutions to some problems we encountered in an ongoing attempt to verify the
micro-hypervisor currently developed within the Robin project. The problems that we discuss are (1) effi-
cient automatic reasoning for type-correct programs in virtual memory, and (2) modeling memory-mapped
devices with alignment requirements. The discussed solutions are integrated in our verification environment
for operating-system kernels in the interactive theorem prover PVS. This verification environment will ul-
timately be used for the verification of the Robin micro-hypervisor. As a proof of concept we include an
example verification of a very simple piece of code in our environment.
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1 Introduction

The programming environment of operating-system kernels differs in essential ways

from that of application programs. The most prominent differences are direct hard-

ware access and privileged processor instructions. In addition, certain situations

that are absurd from an application-programming point of view are possible (and

sometimes even very common) in kernel programming. For instance, many kernels

see some piece of main memory at different virtual addresses. (Other important
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ways in which kernel programming differs are the use of casts and pointer arith-

metic, however, those are outside the main scope of this paper.)

The additional hardware features that are exploited in a kernel programming

environment are usually subject to very specific programming rules, which are de-

scribed in the hardware architecture’s technical documentation. Typically the rules

are not enforced and, when not obeyed, one might get bugs that are hard to repro-

duce. As a consequence certain kinds of bugs can only occur in kernels (or similar

kinds of low-level systems).

In the following we use the term kernel-programming features to refer to the

additional phenomena of kernel programming just described. A verification envi-

ronment for kernel code must of course model the kernel-programming features in

order to give a semantics to the code. Less immediate but equally important is,

however, that the verification environment is faithful with respect to the possible

bugs associated with kernel-programming features. With faithful we mean here

that any such bug must with certainty lead to a verification failure. The subtle

differences between valid and erroneous code make the design of the verification

environment very challenging.

In this paper we discuss our approach to model certain kernel-programming

features that are used in the Robin micro-hypervisor. The solutions presented here

are already implemented in our verification environment. The presentation includes

a discussion of the kinds of programming errors that our models are able and are

not able to catch. We focus on the memory peculiarities in this paper and present

the following two points:

• A model of virtual memory that captures virtual-memory aliases, permits the

verification of page-table modifications and efficient reasoning about well-behaved

code (Section 3).

• A general model for memory-mapped devices and the phenomena of reserved bits

in certain hardware registers (Section 4).

In addition, Section 2 gives a general overview of our verification environment, and

Section 5 contains a verification example.

2 Overview of the Robin Verification Environment

(Semantics of the)
Nova source code

Semantics of
data types

Hardware model

Nova interface specification

Fig. 1: Verification approach

This section provides some details about our verifi-

cation environment for the Robin micro-hypervisor,

see Figure 1 for illustration. More technical informa-

tion can be obtained from [8], while the context of

the Robin project is described in [6]. Our approach

relies on source-code verification in the interactive

theorem prover PVS [5]. The input language of PVS

is higher-order logic enriched with predicate subtyp-

ing and some other forms of dependent types. For

the verification we model parts of the IA32 hard-

ware and the semantics of C++ data types inside PVS. These two models provide

the basic operations for a model of the micro-hypervisor. Then we use the prover
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Fig. 2. Approach for source code verification

component of PVS to establish theorems about the model. Technically we show

Φdata types , Φhardware ` ϕ(hypervisor),

where ϕ is one property from the hypervisor specification, such as termination

without runtime type errors. Our verification results will describe properties of the

source code. A formal lifting of the results to object code (which would eliminate

the correctness of the compiler from our assumptions) is planned for the future.

Figure 2 depicts the data flow of our verification approach. A semantics compiler

translates the C++ source code into its semantics in higher-order logic in PVS.

The semantics compiler is currently developed on the basis of the Elsa/Olmar C++

front-end [7] and will be described elsewhere. The basic building blocks of the C++

semantics are provided by the hardware model and the data-type semantics.

The operations in the hardware model as well as the data-type semantics and the

semantics of C++ fragments are uniformly modeled as state transformers. State

transformers come in two flavors: statement state transformers (for C++ state-

ments) and expression state transformers (for C++ expressions and everything else).

An expression state transformer is a function of type

State →ExprResult[State, Data].

Here State is the type of all possible states of the hardware model, and Data is a

type parameter for the result of the state transformer (if it terminates successfully).

Both types are theory parameters in our PVS formalization, making them effec-

tively polymorphic. In the verification of concrete C++ programs however, Data is

instantiated with a fixed type for each state transformer. The State parameter is

either instantiated as well (if we verify against a concrete hardware model), or left

polymorphic if we verify against the plain-memory specification (see Section 3) in

general. The type ExprResult is defined as follows:

ExprResult[State, Data : Type] : Datatype
BEGIN

OK(state: State, data: Data) : OK?
Exception(ex type : Exception type, state : State) : Exception?
Fatal : Fatal?
Hang : Hang?

END ExprResult
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This piece of PVS code defines ExprResult as a disjoint union with four variants

tagged OK, Exception, Fatal and Hang. The identifiers with question marks are rec-

ognizer predicates for the corresponding variants (e.g., OK? is true on OK(· · ·) and

false on the other three variants). The identifiers state, data, ex type are (partial)

accessor functions (e.g., state(OK(s, −)) = s).

A state-transformer result of the form OK(s, d) models successful termination

with successor state s and result d. Hang stands for non-termination, for instance

because of a while loop or a page fault that keeps occurring at the same instruction.

Fatal is reserved for unrecoverable errors, which we want to rule out by verification.

A result of the form Exception models hardware exceptions and interrupts that will

be handled by the micro-kernel. 5

Statement state transformers have the form [State →StmtResult[State, Data]]

with a very similar type StmtResult. The main difference between ExprResult and

StmtResult is that StmtResult contains abnormalities like Break and Return to model

the corresponding C++ control-flow statements, very similar to [3]. Further, OK

does not carry a data element. The parameter of type Data is used inside Return to

model the return type of C++ functions.

State transformers can be composed in the obvious way. For two state trans-

formers f and g their composition f ## g is a state transformer that performs the

effect of g on the successor state of f if f returns OK. Otherwise g is discarded and

the result of f is the result of the composition. If f is an expression transformer,

the data in any OK result is discarded.

The first base component of our verification environment, the hardware model,

formalizes an abstract model of the IA32 hardware in PVS. It provides physical

memory, virtual memory with address translation via page tables, and much more.

The hardware model does not blindly implement the behavior of the real hardware.

Instead certain subtle programming errors that would cause the real CPU to do

nonsense yield unprovable proof obligations in the hardware model. For instance,

the attempt to interpret a string as a page-table entry yields a proof obligation

that remains unprovable unless a suitable data-type conversion is formalized as an

axiom. (Of course such an axiom is not justified.) This kind of error checking even

works for hardware-initiated page-table traversals during address translation.

The memory formalization in the hardware model is split into different layers

of memory models, for instance for physical and virtual memory. These different

memory models share a common interface. Every memory model defines a type

State of possible states and the following record of operations.

Memory struct : Type = [#
memory read : [Address → [State →ExprResult[State, Byte]]],
memory write : [Address, Byte → [State →ExprResult[State, Unit]]],
... #]

The two operations respectively read and write one byte at the given address. Note

that reading in memory can change the memory (for instance set the accessed bits

in the page table). The memory structure contains two additional operations for

5 Exception does not model C++ exceptions. We consider C++ exceptions too heavyweight to be used in
an operating-system kernel. Therefore they are outside the fragment of C++ treated in this paper.
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modeling memory-mapped devices and reserved bits, see Section 4.

In order to get a uniform treatment of memory-mapped devices and the special

effects of feature flags in CPU control registers, we decided to have a uniform address

space for both memory and registers. The type Address is therefore defined as a

record consisting of a Register Id and an offset:

Address : Type = [# type of : Register Id, offset : nat #]

Real memory appears as a (rather big) special register with Register Id Mem. For

memory the offset is the real address. For hardware registers the offset will most

often be 0, however, for processor architectures featuring partial register access,

the offset might be positive (e.g., for accessing AH one would use offset 1 in EAX).

The sizes and possible offsets of hardware registers are enforced with suitable side

effects, see Section 4.

On top of the memory structure we define the following two functions for ac-

cessing contiguous blocks of memory for every memory model in the obvious way.

memory write list :
[Memory struct → [Address, list[Byte] → [State →ExprResult[State, Unit]]]]

memory read list :
[Memory struct → [Address, nat → [State →ExprResult[State, list[Byte]]]]]

Our second base component, the semantics of data types, provides a suitable

semantics for all C++ types and all necessary hardware data types (such as page-

table entries). It exploits under-specification to make the detection of erroneous

type casts and wrong implicit type conversions possible (like, for instance, reading

data from a union with the wrong type) [2]. The data-type semantics is indepen-

dent of any memory model. It provides operations to convert data from and to

their object representation, which is of type list[Byte]. Writing and reading the

object representation into and out of memory is done with the above functions

memory write list and memory read list.

In our design, the three base components—hardware model, data types, and

C++ semantics—are relatively independent of each other. It is therefore possible

• to add new operations to the hardware model,

• to use different versions of the hardware model for different parts of the hypervi-

sor; the boot code of the hypervisor can, for instance, be verified against physical

memory,

• to add additional axioms to the data types, e.g. to model compiler-specific as-

sumptions about the size of some data types or the precise behavior of some type

casts, and

• to adopt the semantics of new C++ features or compiler-specific C++ constructs.

Our hardware model and the C++ semantics are necessarily incomplete. Many

of the omissions however do not lead to global assumptions on the validity of our

verification. The hardware model, for instance, does not contain virtual 8086 mode,

but the validity of our verification does not hinge on the absence of instructions that

enable virtual 8086 mode. Instead the VM flag, which controls this mode, is protected
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with a suitable side effect (see Section 4). Any attempt to enable virtual 8086 mode

will yield a Fatal result. Hence a proof of normal termination suffices to show that

virtual 8086 mode is never enabled. Similarly, the use of missing features in the

C++ semantics will trigger an assertion in the semantics compiler.

For a number of features currently not present in our verification environment,

we plan inclusion in the future. These features are (1) the Translation Lookaside

Buffer (TLB) 6 , (2) cache policy checking for devices, (3) segment offsets and seg-

ment size checking, (4) linking object code and instruction fetch to the abstract

C++ semantics. Because of their absence we are currently unable to detect certain

kinds of errors, namely

• TLB errors, e.g. inconsistencies between the TLB and the page tables, or implicit

assumptions about the TLB size and structure,

• segment violations (the Robin micro-hypervisor uses a flat memory model where

no segment violations can occur, however, currently we do not check that the

segment descriptors are filled with the proper values),

• cache policy errors for memory-mapped devices, and delayed side effects for

cachable memory-mapped devices, 7

• discrepancies between our C++ semantics and the compiled object code, which

(apart from compiler bugs) could occur for the following reasons: volatile-related

errors in the source code 8 , certain compiler optimizations (e.g. delayed write-back

to memory), or self-modifying code (however, no self-modifying code is contained

in our current verification target).

Once these missing features have been added, our verification will build on the

following general assumptions:

• The software to be verified will be executed on a single-processor system.

• Caches for real memory are working completely transparent and can be ignored.

This should be guaranteed by the hardware on single-processor systems.

• The involved software tools—the C++ compiler used to compile the Robin micro-

hypervisor, our semantics compiler (including the Elsa C++ parser and type

checker), and PVS—produce correct results.

3 The Plain-Memory Abstraction

The memory in an IA32 system is a sophisticated device: segments and page tables

specify access rights, a given piece of memory might be visible in different virtual-

address ranges, the address translation in the CPU from virtual to physical addresses

might differ from what is specified in the page table because of bogus TLB entries,

6 The TLB is a special CPU-internal cache for virtual-to-physical address translations.
7 The source code that we currently target does not involve any devices. In general, cache policy checking
for memory-mapped devices is trivial to add with our mechanism for side effects (see Section 4). To model
cache effects on cachable devices, the model of the device should include the relevant cache effects.
8 A C++ compiler is permitted to perform arbitrary optimizations with respect to non-volatile data. Mem-
ory accesses to such data are not part of the observable behavior of a C++ program, which makes a correct
semantics difficult. At the moment our C++ semantics treats all data as volatile. A verification based on
the current semantics will therefore not catch missing volatile annotations or missing memory fences.
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and much more. We cannot ignore all these effects, not even for most innocent

kernel code, because of the errors that they might cause.

As a consequence we designed the plain-memory abstraction for the verification

of those parts of the kernel that require only the standard C++ memory model. It

deals with the following issues.

• Writing or reading a single byte in memory can have devastating effects if one hits

a memory-mapped device, a page table or simply an unmapped address. For cor-

rectness, the verification must therefore be carried out against a faithful model of

IA32 memory. Plain memory provides a (comparatively) simple abstraction that

can be used for those parts of the sources that only need well-behaved memory

without special effects.

• The IA32 hardware provides several memory configurations: real-address mode,

protected mode with and without paging. Our hardware model multiplies the

number of different memories because we prefer to model different memory fea-

tures (such as the TLB or execution of the page-fault handler) in different mem-

ory models. Most of the code does not depend on a concrete memory model and

should consequently be verified against a suitable set of memory models. Plain

memory permits precisely this because every memory model of interest will give

rise to a model of plain memory.

Technically plain memory is a specification that provides byte-wise read and

write access to memory, where special properties are guaranteed for read-blessed

and read/write-blessed address regions. (There are additional operations to access

side effects of memory-mapped devices and to enforce reserved bits. We ignore

these things here, see Section 4 for details.) The general idea is simple. Memory

at blessed addresses is sane: read access does not change anything in the blessed

address range, and write access only changes the bytes written (in the expected

way). Moreover, these special properties are maintained as long as only blessed

addresses are accessed. No guarantees are made however for a memory access

outside the blessed address regions. We have shown in PVS that these properties

are satisfied by normal virtual memory (that is outside memory-mapped devices)

under the following preconditions:

• All blessed addresses are mapped in the page table, and no two different

read/write-blessed addresses are mapped to the same physical address. (Different

read-blessed addresses might refer to the same physical address, and there might

also exist other mappings for addresses outside the blessed address regions.)

• The page tables can only be read-blessed if the accessed and dirty bits are set.

(This condition can be relaxed for page-table entries of read-blessed or unblessed

memory.)

We want the plain-memory specification to be usable with all concrete memory

models (including physical real-address memory). Therefore the specification must

describe all properties only with the observations that can be made by reading and

writing single bytes. In PVS the specification is split into a record of functions

(capturing the plain-memory signature) and a predicate for the required properties.

With this technique the axioms of the plain-memory specification do not show up as
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axioms in the PVS formalization, hence they do not affect consistency. Instead, any

use of a plain-memory property in a proof will spawn a subgoal requiring the proof

of the plain-memory axioms. The plain-memory signature is defined as follows:

Plain Memory : Type = [#
mem : Memory struct[State], % see page 4
states : PRED[State], % states fulfilling the plain memory properties
ro addr : PRED[Address], % read−blessed addresses
rw addr : PRED[Address] % write−blessed addresses

#]

The properties of plain memory are specified as follows.

plain memory?(pm) : bool =
unchanged memory invariant?(pm‘mem, pm‘states,

union( all permitted state transformers except write access to pm‘rw addr ),
union(pm‘ro addr, pm‘rw addr)) ∧

unchanged memory invariant?(pm‘mem, pm‘states,
memory write transformers(pm‘mem, pm‘rw addr),
pm‘ro addr) ∧

unchanged memory write invariant?(pm‘mem, pm‘states, pm‘rw addr) ∧
changed memory invariant?(pm‘mem, pm‘states, pm‘rw addr) ∧
transformers ok?(pm‘states,

union( all permitted state transformers )) ∧
side effect content unchanged(union(pm‘ro addr, pm‘rw addr), pm‘states,

memory read side effect(pm‘mem)) ∧
side effect content unchanged(pm‘rw addr, pm‘states,

memory write side effect(pm‘mem))

We have omitted the involved expression for the union of all permitted state trans-

formers. This set contains all read accesses to read- and read/write-blessed ad-

dresses, all write accesses to read/write-blessed addresses, and all corresponding

side effects.

The first clause states that read accesses to blessed addresses and all possible

side effects do not change the contents of any of the blessed addresses. The second

clause expresses the same for write accesses and the read-blessed addresses. The

third clause requires that a write access to one address leaves all other read/write-

blessed addresses intact. The fourth clause states that write accesses actually change

the written address in the right way. The utility predicates used in the first four

clauses additionally require that the set of states forms an invariant with respect

to the respective set of state transformers. This makes the plain-memory property

an invariant: permitted state transformers must stay in the set of plain-memory

states, in which all the nice properties hold. The fifth clause makes all memory

accesses terminate with OK (which prohibits e.g. unhandled page-faults). The last

two clauses require that side effects do not change the data read or written.

The plain-memory specification entails that only explicit writes change a memory

cell. This property enables us to prove the following lemma.

plain memory read write other res : Lemma
plain memory?(pm) ∧
pm‘states(s) ∧
in blessed memory?(dt1, addr1, pm‘rw addr) ∧
in blessed memory?(dt2, addr2, union(pm‘ro addr, pm‘rw addr)) ∧
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blocks disjoint?(addr1, size(uidt(dt1)), addr2, size(uidt(dt2))) ∧
valid in mem(pm,dt2)(addr2)(s)

=⇒
data( (write data(pm,dt1)(addr1, data1) ##

read data(pm,dt2)(addr2))(s) )
=

data( read data(pm,dt2)(addr2)(s) )

It expresses that for two variables of type dt1 and dt2 that lie disjoint in blessed

memory, writing the first one does not change the contents of the second. This

lemma is used in a rewrite engine that enables PVS to symbolically compute the

value of a variable by going back to the last write access to that variable.

Our hardware model contains physical memory (RAM) as a base of all memory

models. Physical memory provides one byte of storage for every address up to a

certain maximum. Accesses above the maximum yield Fatal as result. Unsurpris-

ingly we can prove that all states of physical memory form a plain memory, with

all addresses below the maximum read/write-blessed.

Our model of linear memory contains page-table based address translation, but

no TLB or page-fault handler yet. The linear memory is stacked on top of a plain

memory using the general memory-structure interface (see Section 4.2 for more

on the stacking of memory models). This plain memory is typically instantiated

with physical memory (possibly containing devices). We have shown in PVS that

the plain-memory properties are obtained for linear memory under the following

preconditions:

• The code segment register (CS), determining the code privilege level, the page-

table base register, and the page tables themselves remain unchanged (with the

exception of access bits).

• Any translation for read or execute accesses succeeds for the entire blessed range

of virtual addresses. Translations for writes succeed for the writable subset.

• Blessed writable virtual addresses map to blessed writable physical addresses,

blessed read-only addresses map to blessed readable or writable physical ad-

dresses.

• Page tables reside in a memory area that is disjoint from the targets of the above

mappings.

• There is no blessed shared-memory alias to a writable virtual address. (Virtual

read-only regions may be shared arbitrarily.)

One point to highlight is that we only have to require those page-table entries

to remain unchanged that are used in the translation of the virtual blessed address

range. This allows us to modify unrelated page-table entries without loosing the

blessing properties. We achieve this by requiring

disjoint?(virt to phys range(s, union(pm‘ro addr, pm‘rw addr)),
address in pt range?(s, union(pm‘ro addr, pm‘rw addr))),

where virt to phys range translates all addresses in the virtual blessed address range,

and address in pt range? returns the corresponding physical addresses containing the

page-table entries for this range.
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4 Memory-Mapped Devices and Reserved Bits

Although most device drivers reside outside the micro-hypervisor, some devices

(e.g. the interrupt controller) must remain under kernel control to prevent malicious

code from monopolizing the system. To program these devices, the micro-hypervisor

code accesses certain device registers. Unlike normal RAM, these registers show

very special behavior when accessed. Special-purpose processor registers (such as

the IA32 control registers [IA32-3a-2.5] 9 ) are similar to device registers in that read

or write accesses to them may cause special effects. For our verification attempt,

the following special effects are important.

Reserved bits The value of reserved bits must not be modified, or otherwise the

processor behavior is undefined. For example, bits 0–2 and bits 5–11 of the IA32

page-table base register (CR3) are reserved [IA32-3a-2.5].

Access type restrictions Some device registers are read-only respectively write-

only accessible, or they allow no instructions to be fetched. ROM is a prominent

example of a read-only accessible device.

Alignment restrictions Some devices require that registers are accessed only

at certain offsets relative to the register base address. Furthermore, each access

must read or write a certain amount of data at once. For example, the registers

of the IA32 advanced programmable interrupt controller (APIC) are aligned on

16-byte boundaries. They must be accessed with 4-byte wide and 4-byte aligned

reads and writes [IA32-3a-8.4.1].

Side effects Reading or writing causes side effects on some devices. For exam-

ple, writing to the IA32 APIC end of interrupt register signals completion of

the interrupt-handling procedure [IA32-3a-8.8.5]. This may cause the immediate

delivery of the next pending interrupt.

More abstractly, we can summarize these behaviors as follows: reading and

writing certain registers and certain locations in memory may result in modifications

to the system state, to the memory (or register) contents, and to the value read or

written. Furthermore, the behavior of an operation may be undefined; in this case

the verification should fail.

4.1 Modeling Devices and Reserved Bits

Instead of modeling memory and additional devices as parallel abstract ma-

chines, we prefer the following approach. We extend the Memory struct of

each memory model with two side-effect transformers memory read side effect and

memory write side effect of the following type:

Address, list[Byte], bool → [State →ExprResult[State, list[Byte]]].

Unlike memory read and memory write, these side-effect transformers take the entire

list of bytes read from (or written to) the given address. This is necessary to enforce

alignment restrictions, which require knowledge about the amount of data that is

9 The notation [IA32-3a-2.5] refers to Volume 3a, Section 2.5 of the Intel 64 and IA-32 Architectures
Software Developer’s Manual [4].
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read (respectively written) at once. The third parameter is an indicator whether

the access crossed a page boundary in a higher virtual memory layer. We elaborate

on the use of this parameter in Section 4.2.

In the following we use a simple memory-mapped random number genera-

tor (RNG) to illustrate how one can model side effects and access restrictions. The

RNG device provides one read-only memory-mapped register, rnd val, that con-

tains an unspecified (supposedly “random”) value. The internal state of the device

(which is kept in addition to the memory state) contains two natural numbers seed

and access count. The value of access count is incremented as a side effect with each

memory access. The seed is left unspecified.

To obtain the random value we apply a completely unspecified function random

to the seed and the current access count. Because access count is strictly increasing,

we get potentially different values for every access to rnd val. Under-specified and

non-deterministic behavior of more complicated devices can be modeled in a similar

fashion.

4.1.1 Access Type and Alignment Restrictions

Modeling devices with access-type and alignment restrictions is straightforward by

checking these restrictions for overlapping accesses. As an example, we impose that

rnd val must be accessed with machine-word granularity (as unsigned int).

unaligned access(a : Address, bl : list[Byte], cp : bool) :
[Random device memory →ExprResult[Random device memory, list[Byte]]] =

If disjoint?(address block(a, length(bl)), address block(rnd val, size(uidt(dt uint)))) ∨
(¬ cp ∧ length(bl) = size(uidt(dt uint)) ∧ a = rnd val)

Then ok result(bl)
Else fatal result Endif

Here size(uidt(dt uint)) comes from the C++ data-type model and gives the number

of bytes of an unsigned int (which is usually 4 on the IA32 architecture, although

this may vary with the C++ implementation). To require the read-only behavior

of rnd val we use the following after the above alignment check has been passed:

write rnd dev(a : Address, bl : list[Byte], cp : bool) :
[Random device memory →ExprResult[Random device memory, list[Byte]]] =

If a = rnd val
Then fatal result
Else ok result(bl) Endif

The memory read side effect and memory write side effect transformers of the

RNG device are set to compositions of the above two transformers and other checks,

which we discuss below.

4.1.2 Reserved Bits

Reserved-bit restrictions come in two flavors, depending on whether the value of

reserved bits is specified. For example, the IA32 processor manuals [IA32-3a-2.5]

specify bits 11–31 of the CR4 register as reserved. The value of these bits must be 0.

As long as the value of reserved bits is specified, we merely have to check that the

value in the byte list passed to the memory write side effect transformer is according

to the specification. Registers whose reserved bits all have specified values can then

be modified simply by writing to these registers.
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Tews, Völp and Weber

Other special-purpose processor registers and device registers leave the value of

certain reserved bits undefined. In this case we match against an unspecified value

in the memory write side effect transformer. Because the initial register contents

are not specified, we can establish that reserved bits are unaltered by a write access

only when the written data originates from a previous read of this register.

Reserved bits can also be used to restrict the processor modes in which the

micro-hypervisor may execute. For example, we fix the mode bits in the IA32

control registers CR0 and CR4 to the setting for 32-bit paged, protected mode. This

prevents the kernel from switching back to real mode. Consequently it suffices to

model only those parts of real mode that are required for the verification of the

kernel’s boot-strapping code.

4.1.3 Side Effects

Side effects on reads (respectively on writes) cause additional parts of the system

state to be updated. Here, one can either update the memory state itself, or add

an additional device state. For the random number generator, we decided to use

the latter approach. As described earlier, our RNG device implements a side effect

to count all memory accesses in its internal state.

access count(a : Address, bl : list[Byte], cp : bool)(s) :
ExprResult[Random device memory, list[Byte]] =

OK(increase access count(s)(length(bl)), bl)

Another side-effect transformer generates the “random” (i.e. unspecified) value

when the rnd val register is read.

random : [nat, nat →{ l : list[Byte] | length(l) = size(uidt(dt uint)) }]

read rnd val(a : Address, bl : list[Byte], cp : bool) :
[Random device memory →ExprResult[Random device memory, list[Byte]]] =

If a = rnd val
Then λ(s : Random device memory) :

ok result(random(seed(s), access count(s))(s)
Else ok result(bl) Endif

4.2 Stacking Memory Layers

For greater modularity we split different hardware features into separate memory

models where possible. For instance, segment based and page-table based address

translation (which are both part of the virtual memory in the IA32 architecture) can

nevertheless be split into two independent memory models. To obtain the overall

effect we stack different memory models, exploiting the general memory struct inter-

face. Every memory layer performs its functionality before invoking the underlying

layer via the abstract interface. The bottom layer is a model of physical memory

that contains a byte array to store the memory contents.

A good example of the stacking of memory layers is provided by linear memory,

which adds page-table based address translation to an underlying physical memory.

In order to keep the stacking flexible, the linear memory is not based on our model

of physical memory directly, but is instead parameterized with an arbitrary plain-

memory model pm. (This model can be instantiated with physical memory, and with

12
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Physical/Device Memory

Virtual Memory

APIC

Fig. 3. Splitting of side effects when stacking virtual memory on top of device memory.

any other memory model that satisfies the plain-memory properties.) The linear

memory layer defines page-table based lookup and address translation as described

for 32-bit page tables in [IA32-3a-3.7]. Finally it defines functions for filling the

memory struct of the linear memory model. The function for memory read is given

by

linear read(a : Address) : [Linear memory →ExprResult[Linear memory, Byte]] =
If in memory(max linear)(a) Then

If Mem?(type of(a)) Then
linear resolve(a, Read) ## λ(pa : Address) : memory read(pm‘mem)(pa)

Else
memory read(pm‘mem)(a)

Endif
Else fatal result Endif

The state-space type Linear memory is equal to the state space of the plain-memory

parameter pm. The function linear read first checks if the access is within the mem-

ory or register bounds. For a real memory access, the virtual address a is then

translated into a physical address pa, which is used to access the underlying mem-

ory of pm. Any abnormal result of the address translation (because of page faults

or data-type errors in a page table) is propagated to the outside via the composi-

tion of state transformers, ##. Register accesses are passed to pm without address

translation, of course.

Our random number generator from the previous section was also implemented

as an independent memory layer, which adds the functionality of the RNG device

to the underlying memory layer.

However, when combining virtual memory with memory-mapped devices, one

must deal with new problems. The virtual memory performs address translation and

may thereby split an access to a contiguous block of memory into several accesses

to noncontiguous blocks. By coincidence the splitting might result in an access

to a memory-mapped device that seemingly satisfies all alignment and granularity

requirements of the device. For instance, in Figure 3 the very last piece of the

virtual address block is mapped precisely to the first APIC register. We view such

an access as an error, because it is only part of a larger memory access. Moreover,

the IA32 architecture gives no guarantees that in the case depicted in Figure 3 the

access to the APIC is performed with 4-byte granularity [IA32-3a-7.1.1], as required

by the APIC.

To detect this kind of error, we introduce a crossed-page indicator cp as argument

to our side-effect transformers. Initially being false, this indicator is set to true

when the address translation splits a contiguous memory access. The side effect

transformer unaligned access (see page 11) of our RNG device always checks the

cp flag and delivers an error if it is true.
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5 Example Verification

To illustrate how kernel-code verification works in our environment, we have proved

two partial correctness properties of a simple linear search (in an array of N unsigned

integers) in PVS. The C++ implementation of the search algorithm uses pointers

and pointer arithmetic:

unsigned int a[N], value;
unsigned int ∗first = &a[0];
unsigned int ∗last = &a[N];
unsigned int ∗current;

current = first;
while(current < last) {

if (∗current == value) break;
current++;

}

More precisely, we have shown that the current pointer refers to an array element

containing the search value if the value is contained in the array, and to the element

one beyond the array bounds (last) if no such element is present. The verification of

these properties proceeds according to the approach that was outlined in Figure 2

on page 3. First, (1) the C++ sources for the search program are translated into

their semantics in PVS. Second, (2) the correctness properties are formulated as pre-

and postconditions, and then verified against the plain-memory specification. Our

verification thus shows that, under suitable assumptions, the example program runs

correctly both in physical and virtual memory. Finally, to avoid vacuous results,

(3) the plain-memory preconditions were validated for concrete stacks of memory

models (e.g. linear memory on top of the RNG device on top of physical memory).

Because we have established parts (2) and (3) separately, changing the under-

lying hardware/memory model only requires that one repeats the validation of the

plain-memory assumptions (part (3)) for the new memory model.

5.1 C++ to Semantics Translation

The semantics compiler translates the above C++ code into its PVS semantics.

Expression-to-statement and lvalue-to-rvalue conversions are made explicit. We

only show the translation of the second part (lines 6–10) of the above code snippet.

e2s[State, Address, Semantics void]
(assign(pm, dt pointer)(id(current), l2r(pm, dt pointer)(id(first)))) ##

while(l2r(pm, dt pointer)(id(current)) < l2r(pm, dt pointer)(id(last)),
if else(

l2r(pm, dt uint)(deref(pm)(l2r(pm, dt pointer)(id(current)))) == literal(value),
break,
skip) ##

e2s[State, Semantics pointer, Semantics void](postinc(pm)(id(current)))),

Here first, last and current are addresses of disjointly allocated pointer variables.

Currently we require disjointness of these variables in a precondition, but once the

formalization of memory allocation is complete, disjointness will be derived from

the allocator model.
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5.2 Verification Against the Plain-Memory Abstraction

Verification is currently done by automatic loop unrolling and simplification ac-

cording to the plain-memory rewriting rules. For this, the necessary preconditions

in blessed memory and valid in mem for not previously written variables have been

added to the precondition. in blessed memory states that the variable is correctly

allocated in blessed memory, valid in mem that the memory contains a valid bit rep-

resentation for the variable. Typically the latter is established by a previous write

to this variable.

In our C++ semantics, all expressions and most statements are ex-

pressed using a combination of only four different state transformers:

read data, write data, ok result(data) (which returns OK(s, data)), and fatal result

(which produces Fatal). It is therefore possible to simplify expressions by first

expanding them to sequences of these transformers, and then simplifying these

sequences using the plain-memory rewriting rules (e.g. the rule in Section 3).

Similarly, we evaluate statements up to the point where only expressions remain

in the code sequence. For example, under the precondition OK?((expr ## b ex)(s))

the sequence

(e2s(expr) ## if else(b ex, stmt if, stmt else))(s)

is rewritten into

(e2s(expr ## b ex) ## If data(expr ## b ex)(s) Then stmt if Else stmt else Endif)(s)

This simplifies with an appropriate rewriting rule for e2s to either

expr ## b ex ## stmt if or to expr ## b ex ## stmt else, depending on the

value of data((expr ## b ex)(s)). Likewise, we rewrite the statements stmt if and

stmt else to expression sequences containing only read data, write data, and the

above result transformers. Because of this transformation it suffices to define and

prove the plain-memory rewriting rules only for data reads and writes. All other

rules of the rewriting system operate independently from the data-type or memory

model.

5.3 Establishing Plain Memory

For each memory model we established the plain-memory property for a certain

range of addresses. As stated above, for physical memory this is the entire address

range. Stacked models contain preconditions which require the blessed address

range to be contained in the blessed range of the underlying memory model. It

is therefore sufficient to show that the addresses used in the code to be verified

all reside in blessed memory. Accesses outside the blessed-memory address range

automatically violate the plain-memory assumption and cannot be simplified with

the plain-memory rewriting rules. In such a case the plain-memory property must

be reestablished before one can proceed with the automatic simplification.

For our verification example, one needs the following preconditions:

• The variables are allocated so that they do not overlap with the registers of the

random device.

• The variables are allocated so that they do not overlap with a page-table entry
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used to access some of the variables.

• All page-table entries of these variables are writable (because reference bits may

be written back to memory).

• The memory of current is not virtually aliased with any of the other variables

used in the search program.

Note that it is possible to have virtual aliases in the array or for the first and last

pointers, as these are read only.

6 Conclusions

In this paper we have presented two details of our approach to model the memory

of an IA32 system. The first detail is a specification of well-behaved plain mem-

ory. This specification allows us to maintain an abstract level of reasoning with

reasonable efficiency on top of a complex model of paged virtual memory. The sec-

ond detail is our modeling of memory-mapped devices and reserved bit restrictions.

We use side-effect state transformers that are performed before and after memory

access to uniformly model both, reserved bits and memory-mapped devices. As

demonstrations we have included the formalization of a (memory-mapped) random

number generator, and an example verification of a simple C++ code fragment.

Related Work. There have been extensive attempts to reconcile the untyped

memory model of C with a typed view, see e.g. [10]. At the other end of the spec-

trum, complete micro-processors have been formally verified at the gate level [1].

Our current work is located in-between those efforts. We take a correct IA32 pro-

cessor for granted. Our aim then is to establish that the view on memory provided

by the Robin micro-hypervisor, despite various peculiarities present in the architec-

ture’s hardware (virtual vs. physical memory, memory-mapped devices, etc.), is a

model of C++ memory, which is well-behaved in the sense that one does not need

to worry about low-level features like virtual address aliasing anymore. Perhaps

most closely related is the verification of page table algorithms in [9], which still

uses a rather abstract memory model however.
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