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Abstract. We define a general notion of transition system where states and action labels
can be from arbitrary nominal sets, actions may bind names, and state predicates from an
arbitrary logic define properties of states. A Hennessy-Milner logic for these systems is
introduced, and proved adequate and expressively complete for bisimulation equivalence. A
main technical novelty is the use of finitely supported infinite conjunctions. We show how
to treat different bisimulation variants such as early, late, open and weak in a systematic
way, explore the folklore theorem that state predicates can be replaced by actions, and
make substantial comparisons with related work. The main definitions and theorems have
been formalised in Nominal Isabelle.

1. Introduction

Transition systems are ubiquitous in models of computing. Specifications about what may
and must happen during executions are often formulated in a modal logic. There is a plethora
of different versions of both transition systems and logics, including a variety of higher-
level constructs such as updatable data structures, new name generation, alias generation,
dynamic topologies for parallel components etc. In this paper we formulate a general kind
of transition system where such aspects can be treated uniformly, and define accompanying
modal logics. Our results are on adequacy, i.e., that logical equivalence coincides with
bisimilarity, and expressive completeness, i.e., that any bisimulation-preserving property can
be expressed.

States. In any transition system there is a set of states P,Q, . . . representing the config-
urations a system can reach, and a relation telling how a computation can move between
them. Many formalisms, for example all process algebras, define languages for expressing
states, but in the present paper we shall make no assumptions about any such syntax and
just assume that the states form a set.

Actions. In systems describing communicating parallel processes, the transitions are often
labelled with actions α, β, representing the externally observable effect of the transition.

A transition P
α−→ P ′ thus says that in state P the execution can progress to P ′ while

performing the action α, which is visible to the rest of the world. For example, in CCS these
actions are atomic and partitioned into output and input communications. In value-passing
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calculi the actions can be more complicated, consisting of a channel designation and a value
from some data structure to be sent along that channel.

Scope openings. With the advent of the pi-calculus [MPW92] two important aspects of
transitions were introduced: name generation and scope opening. The main idea is that
names (i.e., atomic identifiers) can be scoped to represent local resources. They can also
be transmitted in actions, to give the environment access to this resource. In the monadic
pi-calculus such an action is written a(νb), to mean that the local name b is exported along

the channel a. These names can be subjected to alpha-conversion: if P
a(νb)−−−→ P ′ and c

is a fresh name then also P
a(νc)−−−→ P ′{c/b}, where P ′{c/b} is P ′ with all free occurrences

of b replaced by c. Making this idea fully formal is not entirely trivial and many papers
gloss over it. In the polyadic pi-calculus several names can be exported in one action, and
in psi-calculi arbitrary data structures may contain local names. In this paper we make
no assumptions about how actions are expressed, and just assume that for any action α
there is a finite set of names bn(α), the binding names, representing exported names. In
our formalisation we use nominal sets [Pit13], an attractive theory to reason about objects
depending on names on a high level and in a fully rigorous way.

State predicates. The final general components of our transition systems are the state
predicates, ranged over by ϕ, representing what can be concluded in a given state. For
example state predicates can be equality tests of expressions, or connectivity between
communication channels. We write P ` ϕ to mean that in state P the state predicate ϕ
holds. We make no assumptions about what the state predicates are, beyond the fact that
they form a nominal set, and that ` does not depend on particular names.

A structure with states, transitions, and state predicates as discussed above we call a
nominal transition system.

Hennessy-Milner Logic. Modal logic has been used since the 1970s to describe how facts
evolve through computation. We use the popular and general branching time logic known
as Hennessy-Milner Logic [HM85] (HML). Here the idea is that an action modality 〈α〉
expresses a possibility to perform an action α. If A is a formula then 〈α〉A says that it is
possible to perform α and reach a state where A holds. With conjunction and negation
this gives a powerful logic shown to be adequate for bisimulation equivalence: two processes
satisfy the same formulas exactly if they are bisimilar. In the general case, conjunction must
take an infinite number of operands when the transition systems have states with an infinite
number of outgoing transitions.

Contributions. Our definition of nominal transition systems is very general since we leave
open what the states, transitions and predicates are. The only requirement is that transitions
satisfy alpha-conversion. A technically important point is that we do not assume the usual

name preservation principle, that if P
α−→ P ′ then the names occurring in P ′ must be a subset

of those occurring in P and α. This means that the results are applicable to a wide range of
calculi. For example, the pi-calculus represents a trivial instance where there are no state
predicates. CCS represent an even more trivial instance where bn always returns the empty
set. In the fusion calculus and the applied pi-calculus the state contains an environmental
part which tells which expressions are equal to which. In the general framework of psi-calculi
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the states are processes together with assertions describing their environments. All of these
are special cases of nominal transition systems.

We define a modal logic with the 〈α〉 operator that binds the names in bn(α). The
fully formal treatment of this requires care in ensuring that infinite conjunctions do not
exhaust all names, leaving none available for alpha-conversion. All previous works that
have considered this issue properly have used uniformly bounded conjunction, i.e., the set
of all names in all conjuncts is finite. Instead of this we use the notion of finite support
from nominal sets: the conjunction of an infinite set of formulas is admissible if the set has
finite support. This results in a much greater generality and expressiveness. For example,
we can now define quantifiers and the next-step modalities as derived operators. Also the
traditional fixpoint operators from the modal mu-calculus are definable through an infinite
set of approximants.

We establish adequacy: that logical equivalence coincides with bisimilarity. Compared to
previous such adequacy results our proof takes a new twist. We further establish expressive
completeness: that all properties (i.e., subsets of the set of states) that are bisimulation-closed
can be expressed as formulas. To our knowledge this result is the first of its kind.

We provide versions of the logic adequate for a whole family of bisimulation equivalences,
including late, early, their corresponding congruences, open, and hyper. Traditionally these
differ in how they take name substitutions into account. We define a general kind of effect
function, including many different kinds of substitution, and show how all variants can
be obtained by varying it. We also show how such effects can be represented directly as
transitions. Thus these different kinds of bisimulation can all be considered the same, only
on different transition systems.

Weak bisimulation, where the so called silent actions do not count, identifies many
more states than strong bisimulation. We provide adequate and expressively complete logics
for weak bisimulation. In the presence of arbitrary state predicates this is a particularly
challenging area and there seems to be more than one alternative formulation. We formally
prove the folklore theorem that for strong and weak bisimulation, state predicates can be
encoded as actions on self-loops. The counterpart for weak logic is less clear and there
appear to be a few different possibilities.

Finally we compare our logic to several other proposed logics for CCS and developments
of the pi-calculus. A conclusion is that we can easily represent most of them. The corre-
spondence is not exact because of our slightly different treatment of conjunction, but we
certainly gain simplicity and robustness in otherwise complicated logics. We also show how
our framework can be applied to obtain logics where none have been suggested previously.

Our main definitions and theorems have been formalised in Nominal Isabelle [UK12].
This has required significant new ideas to represent data types with infinitary constructors
like infinite conjunction, and their alpha-equivalence classes. As a result we corrected several
details in our formulations and proofs, and now have very high confidence in their correctness.
The formalisation effort has been substantial, and we consider it a very worthwhile investment.
It is hard to measure it precisely since five persons worked on this on and off since 2015, but
at a very rough estimate it is less than half of the total effort. The main hurdle was in the
very beginning, to get a representation of the infinitely wide formulas with bound names,
and accompanying induction schemes.

Exposition. In the following section we provide the necessary background on nominal sets.
In Section 3 we present our main definitions and results on nominal transition systems and
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modal logics. In Sections 4 and 5 we derive useful operators such as quantifiers and fixpoints,
and indicate some practical uses. Section 6 shows how to treat variants of bisimilarity such
as late and open in a uniform way, and in Section 7 we treat a logic for weak bisimilarity.
Section 8 presents an encoding of state predicates as actions. In Sections 9 and 10 we
compare with related work and demonstrate how our framework can be applied to recover
earlier results uniformly. Section 11 contains a brief account of the formalisation in Nominal
Isabelle, and finally Section 12 concludes with some ideas for further work.

This paper is an extended and revised version of [PBE+15] and [PWBE17].

2. Background on nominal sets

Nominal sets [Pit13] is a general theory of objects which depend on names, and in particular
formulates the notion of alpha-equivalence when names can be bound. The reader need not
know nominal set theory to follow this paper, but some key definitions will make it easier to
appreciate our work and we recapitulate them here.

We assume a countably infinite multi-sorted set of atomic identifiers or names N ranged
over by a, b, . . .. 1 A permutation is a sort-preserving bijection on names that leaves all
but finitely many names invariant. The singleton permutation which swaps names a and b
and has no other effect is written (a b), and the identity permutation that swaps nothing is
written id. Permutations are ranged over by π, π′. The effect of applying a permutation π
to an object X is written π ·X. Formally, the permutation action · can be any operation
that satisfies id ·X = X and π · (π′ ·X) = (π ◦ π′) ·X, but a reader may comfortably think
of π ·X as the object obtained by permuting all names in X according to π.

A set of names N supports an object X if for all π that leave all members of N invariant
it holds π ·X = X. In other words, if N supports X then names outside N do not matter
to X. If a finite set supports X then there is a unique minimal set supporting X, called
the support of X, written supp(X), intuitively consisting of exactly the names that matter
to X. As an example the set of names textually occurring in a datatype element is the
support of that element, and the set of free names is the support of the alpha-equivalence
class of the element. Note that in general, the support of a set is not the same as the union
of the support of its members. An example is the set of all names; each element has itself as
support, but the whole set has empty support since π · N = N for any π.

We write a#X, pronounced “a is fresh for X”, for a 6∈ supp(X). The intuition is that if
a#X then X does not depend on a in the sense that a can be replaced with any fresh name
without affecting X. If N is a set of names we write N#X for ∀a ∈ N . a#X.

A nominal set S is a set equipped with a permutation action such that if X is in S,
then also π ·X is in S, and where each member of S has finite support. A main point is that
then each member has infinitely many fresh names available for alpha-conversion. Similarly,
a set of names N supports a function f on a nominal set if for all π that leave N invariant
it holds π · f(X) = f(π ·X), and similarly for relations and functions of higher arity. Thus
we extend the notion of support to finitely supported functions and relations as the minimal
finite support, and can derive general theorems such as supp(f(X)) ⊆ supp(f) ∪ supp(X).

An object that has empty support we call equivariant. For example, a unary function f
is equivariant if π · f(X) = f(π ·X) for all π,X. The intuition is that an equivariant object
does not treat any name special.

1In [Pit13] they are called atoms and the set of atoms is written A.
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In order to reason about bound names we adopt the notion of generalised name ab-
straction for finite sets of names (see [Pit13, Chapter 4.6]). Let S be a nominal set and
Pfin(N ) be the finite subsets of names. The nominal alpha-equivalence =α is the binary
relation on Pfin(N ) × S defined by (N,X) =α (N ′, X ′) if there is a permutation π such
that π · (N,X) = (N ′, X ′) and π(a) = a for all a ∈ supp(X) \N . It is easily proven that =α

is an equivariant equivalence. The intuition is that the pair (N,X) means X with bound
names N , and that alpha-converting the bound names is allowed as long as there are no
captures, i.e., collisions with names free in X.

The set of equivalence classes (Pfin(N )×S)/=α is traditionally written [Pfin(N )]S, and
the equivalence class containing (N,X) is written <N>X (which has support supp(X) \N).
This is an unfortunate clash of notation with Hennessy-Milner logics, where these brackets
signify a modal action operator.

3. Nominal transition systems and Hennessy-Milner logic

3.1. Basic definitions. We define nominal transition systems, bisimilarity, and a corre-
sponding Hennessy-Milner logic in this subsection.

Definition 3.1. A nominal transition system is characterised by the following

• states: A nominal set of states ranged over by P,Q.
• pred: A nominal set of state predicates ranged over by ϕ.
• An equivariant binary relation ` on states and pred. We write P ` ϕ to mean that in

state P the state predicate ϕ holds.
• act: A nominal set of actions ranged over by α.
• An equivariant function bn from act to finite sets of names, which for each α returns a

subset of supp(α), called the binding names.
• An equivariant subset of states× [Pfin(N )](act× states), called the transition relation,

written →. If (P,<N>(α,Q)) ∈ → it must hold that bn(α) = N .

We call <bn(α)>(α, P ′) a residual. A residual is thus an alpha-equivalence class of a pair
of an action and a state, where the scope of the binding names in the action also contains the

state. For (P,<bn(α)>(α, P ′)) ∈ → we write P
α−→ P ′. This follows the traditional notation

in process algebras like the pi-calculus, although it hides the fact that the scope of the names
bound by the action extends into the target state. Transitions satisfy alpha-conversion in

the following sense: If a ∈ bn(α), b#α, P ′ and P
α−→ P ′ then also P

(a b)·α−−−−→ (a b) · P ′ denotes
the same transition.

As an example, basic CCS from [Mil89] is a trivial nominal transition system. Here the
states are the CCS agents, act the CCS actions, bn(α) = ∅ for all actions, and pred = ∅.
For the pi-calculus, states are the pi-calculus agents, and act the four kinds of pi-calculus
actions (silent, output, input, bound output). In the early semantics bn returns the empty
set except for bound outputs where bn(a(νx)) = {x}. In the late semantics there are actions
like a(x) where x is a placeholder so also bn(a(x)) = {x}. In the polyadic pi-calculus each
action may bind a finite set of names.

In the original terminology of these and similar calculi these occurrences of x are referred
to as “bound.” We believe a better terminology is “binding,” since they bind into the target
state. For higher-order calculi this distinction is important. Consider an example where
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objects transmitted in a communication are processes, and a communicated object contains
a bound name:

P
a(νb)Q−−−−→ R

The action here transmits the process (νb)Q along the channel a. The name b is local to Q,
so alpha-converting b to some new name affects only Q. Normally agents are considered
up to alpha-equivalence; this means that b is not in the support of the action, and we have
bn(a(νb)Q) = ∅.

In the same calculus we may also have a different action

P
(νb)aQ−−−−→ R

Again this transmits a process along the channel a, but the process here is just Q. The
name b is shared between Q and R, and is extruded in the action. An alpha-conversion of b
thus affects both Q and R simultaneously. In the action b is a free name, in the sense that b
is in its support, and it cannot be replaced by another name in the action alone. Here we
have bn((νb)aQ) = {b}.

In all of the above we have pred = ∅ since communication is the only way a process
may influence a parallel process, and thus communications are the only things that matter
for process equivalence. More general examples come from psi-calculi [BJPV11] where
there are so called “conditions” representing what holds in different states; those would
then correspond to pred. Other calculi, e.g. those presented in [WG05, BM07], also have
mechanisms where processes can influence each other without explicit communication, such
as fusions and updates of a constraint store. All of these are straightforward to accommodate
as nominal transition systems. Section 10 contains further descriptions of these and other
examples.

Definition 3.2. A bisimulation R is a symmetric binary relation on states in a nominal
transition system satisfying the following two criteria: R(P,Q) implies

(1) Static implication: For each ϕ ∈ pred, P ` ϕ implies Q ` ϕ.

(2) Simulation: For all α, P ′ such that bn(α)#Q and P
α−→ P ′ there exists some Q′ such

that Q
α−→ Q′ and R(P ′, Q′)

We write P
·∼ Q to mean that there exists a bisimulation R such that R(P,Q).

Static implication means that bisimilar states must satisfy the same state predicates;
this is reasonable since these can be tested by an observer or parallel process. The simulation
requirement is familiar from the pi-calculus. Note that this definition corresponds to “early”
bisimulation in the pi-calculus. In Section 6 we will consider other variants of bisimilarity.

Proposition 3.3.
·∼ is an equivariant equivalence relation.

Proof. The proof has been formalised in Isabelle. Equivariance is a simple calculation,
based on the observation that if R is a bisimulation, then π ·R is a bisimulation. To prove

reflexivity of
·∼, we note that the identity relation is a bisimulation. Symmetry is immediate

from Definition 3.2. To prove transitivity, we show that the composition of
·∼ with itself

is a bisimulation; the simulation requirement is proved by a considering an alpha-variant

of P
α−→ P ′ where bn(α) is fresh for Q.

We shall now define a Hennessy-Milner logic for nominal transition systems. As men-
tioned above, we shall use conjunctions with an infinite set of conjuncts, and need to take
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care to avoid set-theoretic paradoxes. For example, if we allow conjunctions over arbitrary
subsets of formulas then the formulas will not form a set (because its cardinality would then
be the same as the cardinality of the set of its subsets). We thus fix an infinite cardinal κ
to bound the conjunctions. We assume that κ is sufficiently large; specifically, we require
κ > ℵ0 (so that we may form countable conjunctions) and κ > |states|. Our logic for
nominal transition systems is the following.

Definition 3.4. The nominal set of formulas A ranged over by A is defined by induction
as follows:

A ::=
∧
i∈I

Ai | ¬A | ϕ | 〈α〉A

Name permutation distributes over all formula constructors. The only binding construct
is in 〈α〉A where bn(α) is abstracted and binds into α and A. To be completely formally
correct we should write the final clause of Definition 3.4 as <bn(α)>(〈α〉A). As with the
transitions, we abbreviate this to just 〈α〉A, letting the scope of the names bound in α
tacitly extend into A. This means that supp(〈α〉A) = supp(α,A) \ bn(α). To avoid notation
clashes, we shall in the following let name abstractions be implicit in all transitions and
logical formulas.

The formula
∧
i∈I Ai denotes the conjunction of the set of formulas {Ai | i ∈ I}. This

set must have bounded cardinality, by which we mean that |{Ai | i ∈ I}| < κ. It is also
required that {Ai | i ∈ I} has finite support; this is then the support of the conjunction.

For a simple example related to the pi-calculus with the late semantics, consider
the formula 〈a(x)〉〈bx〉> where > is the empty conjunction and thus always true. Since
bn(a(x))) = {x} the name x is abstracted in the formula, so 〈a(y)〉〈by〉> is an alpha-variant.
The formula says that it must be possible to input something along a and then output it
along b. In the early semantics, where the input action contains the received object rather
than a placeholder, the corresponding formula is∧

x∈N
〈ax〉〈bx〉>

in other words, the conjunction is over the set of formulas S = {〈ax〉〈bx〉> |x ∈ N}. This
set has finite support, in fact the support is just {a, b}. The reason is that for c, d#{a, b}
we have (c d) · S = S. Note that the formulas in this set have no finite common support, i.e.,
there is no finite set of names that supports all elements, and thus the conjunction is not a
formula in the usual logics for the pi-calculus.

This example highlights one of the main novelties in Definition 3.4, that we use con-
junction of a possibly infinite and finitely supported set of conjuncts. In comparison, the
earliest HML for CCS, Hennessy and Milner (1985) [HM85], uses finite conjunction, meaning
that the logic is adequate only for finitely branching transition systems. In his subsequent
book (1989) [Mil89] Milner admits arbitrary infinite conjunction. Abramsky (1991) [Abr91]
employs a kind of uniformly bounded conjunction, with a finite set of names that supports
all conjuncts, an idea that is also used in the first HML for the pi-calculus (1993) [MPW93].
Almost all subsequent developments follow one of these three approaches. Note that with
arbitrary infinite conjunction the formulas become a proper class and not a set, meaning we
cannot reason formally about the formulas using set theories like ZF or HOL.

Our main point is that both finite and uniformly bounded conjunctions are expressively
weak, in that the logic is not adequate for the full range of nominal transition systems, and
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in that quantifiers over infinite structures are not definable. In contrast, our use of finitely
supported sets of conjuncts is adequate for all nominal transition systems (cf. Theorems 3.8
and 3.11 below) and admits quantifiers as derived operators (cf. Section 4 below). Universal
quantification over names ∀x ∈ N .A(x) is usually defined to mean that A(n) must hold
for all n ∈ N . We can define this as the (infinite) conjunction of all these A(n). This set
of conjuncts is not uniformly bounded if n ∈ supp(A(n)). But it is supported by supp(A)
since, for any permutation π not affecting supp(A) we have π ·A(n) = A(π(n)) which is also
a conjunct; thus the set of conjuncts is unaffected by π.

The validity of a formula A for a state P is written P |= A and is defined by recursion
over A as follows.

Definition 3.5.

P |= ∧
i∈I Ai if for all A ∈ {Ai | i ∈ I} it holds that P |= A

P |= ¬A if not P |= A
P |= ϕ if P ` ϕ
P |= 〈α〉A if there exists P ′ such that P

α−→ P ′ and P ′ |= A

In the last clause we assume that 〈α〉A is a representative of its alpha-equivalence class
such that bn(α)#P .

Lemma 3.6. |= is equivariant.

Proof. By the Equivariance Principle in Pitts (2013) [Pit13, page 21]. A detailed proof
that verifies P |= A ⇐⇒ π · P |= π · A for any permutation π has been formalised in
Isabelle. The proof proceeds by structural induction on A, using equivariance of all involved
relations. For the case 〈α〉A in particular, we use the fact that if 〈α′〉A′ = 〈α〉A, then
〈π · α′〉(π ·A′) = 〈π · α〉(π ·A).

Definition 3.7. Two states P and Q are logically equivalent, written P
·

= Q, if for all A it
holds that P |= A iff Q |= A.

3.2. Logical adequacy. We show that the logic defined in Section 3.1 is adequate for
bisimilarity; that is, bisimilarity and logical equivalence coincide.

Theorem 3.8. P
·∼ Q =⇒ P

·
= Q

Proof. The proof has been formalised in Isabelle. Assume P
·∼ Q. We show P |= A ⇐⇒

Q |= A by structural induction on A.

(1) Base case: A = ϕ. Then P |= A ⇐⇒ P ` ϕ ⇐⇒ Q ` ϕ ⇐⇒ Q |= A by static

implication and symmetry of
·∼.

(2) Inductive steps
∧
i∈I Ai and ¬A: immediate by induction.

(3) Inductive step 〈α〉A: Assume P |= 〈α〉A. Then for some alpha-variant 〈α′〉A′ = 〈α〉A,

∃P ′ . P α′−→ P ′ and P ′ |= A′. Without loss of generality we assume also bn(α′)#Q,
otherwise just find an alpha-variant of 〈α′〉A′ where this holds. Then by simulation

∃Q′ . Q α′−→ Q′ and P ′
·∼ Q′. By induction and P ′ |= A′ we get Q′ |= A′, whence by

definition Q |= 〈α〉A. The proof of Q |= 〈α〉A =⇒ P |= 〈α〉A is symmetric, using the

fact that P
·∼ Q entails Q

·∼ P .

The converse result uses the idea of distinguishing formulas.
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Definition 3.9. A distinguishing formula for P and Q is a formula A such that P |= A
and not Q |= A.

The following lemma says that we can find such a formula B where, a bit surprisingly,
the support of B does not depend on Q.

Lemma 3.10. If P 6 ·= Q then there exists a distinguishing formula B for P and Q such
that supp(B) ⊆ supp(P ).

Proof. The proof has been formalised in Isabelle. If P 6 ·= Q then there exists a distinguishing
formula A for P and Q, i.e., P |= A and not Q |= A. Let ΠP = {π | n ∈ supp(P ) ⇒
π(n) = n} be the group of name permutations that leave supp(P ) invariant and let B be
the ΠP -orbit of A, i.e.,

B = {π ·A | π ∈ ΠP }
In the terminology of Pitts [Pit13] ch. 5, B is hullsupp(P )A. Clearly, if a, b#P and π ∈ ΠP

then (a b) ◦ π ∈ ΠP . Thus (a b) · B = B and therefore supp(B) ⊆ supp(P ). This means
that the formula B =

∧B is well-formed and supp(B) ⊆ supp(P ). For all π ∈ ΠP we
have by definition P = π · P and by equivariance π · P |= π ·A, i.e., P |= π ·A. Therefore
P |= B. Furthermore, since the identity permutation is in ΠP and not Q |= A we get not
Q |= B.

Note that in this proof, B uses a conjunction that is not uniformly bounded.

Theorem 3.11. P
·

= Q =⇒ P
·∼ Q

Proof. The proof has been formalised in Isabelle. We establish that
·

= is a bisimulation.

Obviously it is symmetric. So assume P
·

= Q, we need to prove the two requirements on a
bisimulation.

(1) Static implication. P ` ϕ iff P |= ϕ iff Q |= ϕ iff Q ` ϕ.

(2) Simulation. The proof is by contradiction. Assume that
·

= does not satisfy the simulation

requirement. Then there exist P,Q, P ′, α with bn(α)#Q such that P
·

= Q and P
α−→ P ′

and, letting Q = {Q′ | Q α−→ Q′}, for all Q′ ∈ Q it holds that P ′ 6 ·= Q′. Assume bn(α)#P ,
otherwise just find an alpha-variant of the transition satisfying this requirement. By

P ′ 6 ·= Q′, for all Q′ ∈ Q there exists a distinguishing formula for P ′ and Q′. The formula
may depend on Q′, and by Lemma 3.10 we can find such a distinguishing formula BQ′
for P ′ and Q′ with supp(BQ′) ⊆ supp(P ′). Therefore the formula

B =
∧
Q′∈Q

BQ′

is well-formed with support included in supp(P ′). We thus get that P |= 〈α〉B but not

Q |= 〈α〉B, contradicting P
·

= Q.

This proof of the simulation property is different from other such proofs in the literature.
For finitely branching transition systems, Q is finite so a finite conjunction is enough to

define B. For transition systems with the name preservation property, i.e., that if P
α−→ P ′

then supp(P ′) ⊆ supp(P )∪ supp(α), a uniformly bounded conjunction suffices with common
support supp(P ) ∪ supp(Q) ∪ supp(α). Without the name preservation property, we here
use a non-uniformly bounded conjunction in Lemma 3.10.
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3.3. Expressive completeness. Theorem 3.11 shows that for every pair of non-bisimilar
states, there is a formula that distinguishes them. We can prove an even stronger result: the
logic contains characteristic formulas for the equivalence classes of bisimilarity. Moreover,
every finitely supported set of states that is closed under bisimilarity has a characteristic
formula.

We first strengthen Lemma 3.10 by showing that there is an equivariant function that
yields distinguishing formulas for non-equivalent states.

Lemma 3.12. If P 6 ·= Q, write BP,Q for a distinguishing formula for P and Q such that
supp(BP,Q) ⊆ supp(P ). Then

D(P,Q) :=
∧
π

π−1 ·Bπ·P,π·Q

defines a distinguishing formula for P and Q with support included in supp(P ). Moreover,
the function D is equivariant.

Proof. The proof has been formalised in Isabelle. Assume P 6 ·= Q. For any permutation π,

π · P 6 ·= π ·Q by equivariance of
·

=. Thus the formulas Bπ·P,π·Q exist by Lemma 3.10, and
supp(π−1 ·Bπ·P,π·Q) ⊆ supp(P ). Hence the conjunction D(P,Q) is well-formed with support
included in supp(P ).

From π · P |= Bπ·P,π·Q we have P |= π−1 · Bπ·P,π·Q by equivariance of |=. Hence
P |= D(P,Q). Also not Q |= BP,Q, hence (by considering the identity permutation) not
Q |= D(P,Q). Therefore D(P,Q) is a distinguishing formula for P and Q.

For equivariance, we have

ρ ·D(P,Q) =
∧
π

(ρ ◦ π−1) ·Bπ·P,π·Q

{σ :=π◦ρ−1}
=

∧
σ

σ−1 ·B(σ◦ρ)·P,(σ◦ρ)·Q

= D(ρ · P, ρ ·Q)

as required.

Definition 3.13. A characteristic formula for P is a formula A such that for all Q,

P
·∼ Q iff Q |= A

Characteristic formulas can be obtained as a (possibly infinite) conjunction of distin-
guishing formulas.

Lemma 3.14. Let D be defined as in Lemma 3.12. The formula

Char(P ) :=
∧
P 6 ·=Q

D(P,Q)

is a characteristic formula for P .

Proof. The proof has been formalised in Isabelle. By Lemma 3.12, supp(D(P,Q)) ⊆ supp(P )

for all Q with P 6 ·= Q. Thus the conjunction is well-formed with support included in supp(P ).

We show that P
·

= Q iff Q |= Char(P ). The lemma then follows because bisimilarity
and logical equivalence coincide (Theorems 3.8 and 3.11).
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=⇒: Assume P
·

= Q. By the definition of distinguishing formulas, P |= D(P,Q′) for

all Q′ with P 6 ·= Q′. Hence P |= Char(P ). Therefore Q |= Char(P ) by logical equivalence.

⇐=: Assume Q |= Char(P ). If P 6 ·= Q, then Char(P ) has D(P,Q) as a conjunct.
By assumption we then have Q |= D(P,Q), which is a contradiction since D(P,Q) is a
distinguishing formula for P and Q by Lemma 3.10.

Lemma 3.15. Let Char(P) be defined as in Lemma 3.14. The function

Char: P 7→ Char(P )

is equivariant.

Proof. The proof has been formalised in Isabelle. We verify that π · Char(P ) = Char(π · P )

for any permutation π using the equivariance of
∧

, 6 ·=, and D.

Definition 3.16. A property of states is a subset of the states. A property S is well-formed
if it is finitely supported and bisimulation closed, i.e., if P ∈ S and P ∼ Q then also Q ∈ S.

Well-formed properties can be described as a (possibly infinite) disjunction of character-
istic formulas. (Disjunction

∨
i∈I Ai is defined in the usual way as ¬∧i∈I ¬Ai; see Section 4

for further details.)

Theorem 3.17 (Expressive Completeness). Let S be a well-formed property. Then there
exists a formula A such that

P |= A iff P ∈ S
Proof. The proof has been formalised in Isabelle. Let

A =
∨
P ′∈S

Char(P ′)

S is finitely supported by assumption, and by the equivariance of Char (Lemma 3.15) we
have supp({Char(P ′) | P ′ ∈ S}) ⊆ supp(S). Hence the disjunction is well-formed.

Assume P ∈ S. Since P |= Char(P ) we get P |= ∨
P ′∈S Char(P ′). Conversely, assume

that P |= ∨
P ′∈S Char(P ′). Then for some P ′ ∈ S, P |= Char(P ′). By Lemma 3.14,

P ′
·∼ P . Hence P ∈ S because S is closed under bisimilarity.

There are many relative expressiveness results in connection with logics in general and
modal logics in particular. A classic example is van Benthem’s result that modal logic is the
bisimulation-invariant fragment of first-order logic [vB85]. Theorem 3.17 is very different in
that it establishes a kind of absolute expressiveness: any (finitely supported and bisimulation
closed) set of states can be characterized by a single formula. This is clearly impossible
in any logic with only countably many formulas, since the set of sets of states may be
uncountable.

4. Derived formulas

Dual connectives. We define logical disjunction
∨
i∈I Ai in the usual way as ¬∧i∈I ¬Ai,

when {Ai | i ∈ I} has bounded cardinality and finite support. A special case is I = {1, 2}:
we then write A1 ∧A2 instead of

∧
i∈I Ai, and dually for A1 ∨A2. We write > for the empty

conjunction
∧
i∈∅, and ⊥ for ¬>. We also write A =⇒ B for B ∨ ¬A.

The must modality [α]A is defined as ¬〈α〉¬A, and requires A to hold after every
possible α-labelled transition from the current state. Note that bn(α) bind into A. By the
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semantics of the logic, [α](A ∧ B) is equivalent to [α]A ∧ [α]B, and dually 〈α〉(A ∨ B) is
equivalent to 〈α〉A ∨ 〈α〉B.

Quantifiers. Let S be any finitely supported set of bounded cardinality and use v to
range over members of S. Write A{v/x} for the substitution of v for the name x in A, and
assume this substitution function is equivariant. Then we define ∀x ∈ S.A as

∧
v∈S A{v/x}.

There is not necessarily a common finite support for the formulas A{v/x}, for example if S is
some term algebra over names, but the set {A{v/x} | v ∈ S} has finite support bounded by
{x} ∪ supp(S) ∪ supp(A). In our examples in Section 10, substitution is defined inductively
on the structure of formulas, based on primitive substitution functions for actions and state
predicates, which are capture-avoiding and preserve the binding names of actions.

Existential quantification ∃x ∈ S.A is defined as the dual ¬∀x ∈ S.¬A. When X is a
metavariable used to range over a nominal set X , we simply write X for “X ∈ X”. As an
example, ∀a.A means that the formula A{n/a} holds for all names n ∈ N .

New name quantifier. The new name quantifier Nx.A [Pit03] intuitively states that
P |= A{n/x} holds where n is a fresh name for P . For example, suppose we have actions of
the form a b for input, and a b for output where a and b are free names, then the formula
Nx.[a x]〈b x〉> expresses that whenever a process inputs a fresh name x on channel a, it has

to be able to output that name on channel b. If the name received is not fresh (i.e., already
present in P ) then P is not required to do anything. Therefore this formula is weaker than
∀x.[a x]〈b x〉>.

Since A and P have finite support, if P |= A{n/x} holds for some n fresh for P , by
equivariance it also holds for almost all n, i.e., all but finitely many n. Conversely, if it holds
for almost all n, it must hold for some n# supp(P ). Therefore Nx is often pronounced “for
almost all x”. In other words, P |= Nx.A holds if {x | P |= A(x)} is a cofinite set of names
[Pit13, Definition 3.8].

To avoid the need for a substitution function, we here define the new name quantifier
using name swapping (a n). Letting cof = {S ⊆ N | N \ S is finite} we thus encode Nx.A
as
∨
S∈cof

∧
n∈S\supp(A)(xn)·A. This formula states there is a cofinite set of names n such

that for all of them that are fresh for A, (xn)·A holds. The support of
∧
n∈S\supp(A)(xn)·

A is bounded by (N \ S) ∪ supp(A) where S ∈ cof, and the support of the encoding∨
S∈cof

∧
n∈S\supp(A)(xn)·A is bounded by supp(A).

Next step. We can generalise the action modality to sets of actions: if T is a finitely
supported set of actions that has bounded cardinality, we write 〈T 〉A for

∨
α∈T 〈α〉A. The

support of {〈α〉A | α ∈ T} is bounded by supp(T ) ∪ supp(A) and thus finite. Dually, we
write [T ]A for ¬〈T 〉¬A, denoting that A holds after all transitions with actions in T . Note
that binding names of actions in T bind into A, and so 〈α〉A is equivalent to 〈{α}〉A for
any α.

To encode the next-step modality, let actA = {α | bn(α)#A}. Note that supp(actA) ⊆
supp(A) is finite. If κ (Definition 3.4) is larger than |actA|, we write 〈 〉A for 〈actA〉A,
meaning that we can make some (non-capturing) transition to a state where A holds.
As an example, 〈 〉> means that the current state is not deadlocked. The dual modality
[ ]A = ¬〈 〉¬A means that A holds after every transition from the current state. Larsen [Lar88]
uses the same approach to define next-step operators in HML, though his version is less
expressive since he uses a finite action set to define the next-step modality.
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5. Fixpoint operators

Fixpoint operators are a way to introduce recursion into a logic. For example, they can be
used to concisely express safety and liveness properties of a transition system, where by
safety we mean that some invariant holds for all reachable states, and by liveness that some
property will eventually hold. Kozen [Koz83] introduced the least (µX.A) and the greatest
(νX.A) fixpoint operators in modal logic.

By combining the fixpoint and next-step operators, we can encode the temporal logic
CTL [CE82], following Emerson [Eme96]. The CTL formula AGA, which states that A
holds along all paths, is defined as νX.A∧ [ ]X. Dually the formula EFA, stating the there is
some path where A eventually holds, is defined µX.A∨ 〈 〉X. These are special cases of more
general formulas: the formula A[AUB] states that for all paths A holds until B holds, and
dually E[AUB] states that there is a path along which A holds until B. They are encoded
as νX.B ∨ ([ ]X ∧A) and µX.B ∨ (〈 〉X ∧A), respectively. For example, deadlock-freedom is
given by the CTL formula AG 〈 〉> expressing that every reachable state has a transition.
The encoding of this formula is νX.〈 〉> ∧ [ ]X.

We extend the logic of Definition 3.4 with the least fixpoint operator and give meaning
to formulas as sets of satisfying states. We show that the meaning of the fixpoint operator
is indeed a fixpoint. We proceed to show that the least fixpoint operator can be directly
encoded in the logic. The greatest fixpoint operator can then be expressed as the dual of
the least fixpoint.

5.1. Logic with the least fixpoint operator.

Definition 5.1. We extend the nominal set of formulas with the least fixpoint operator:

A ::=
∧
i∈I

Ai | ¬A | ϕ | 〈α〉A | X | µX.A

where X ranges over a countably infinite set of equivariant (i.e., π ·X = X for all π) variables.
We require that all occurrences of a variable X in a formula µX.A are in the scope of an
even number of negations.

An occurrence of a variable X in A is said to be free if it is not a subterm of some µX.B.
We say that a formula A is closed if for every variable X, none of its occurrences in A are
free. We use a capture-avoiding substitution function [A/X] on formulas that substitutes A
for the free occurrences of the variable X. In particular, (〈α〉B)[A/X] = 〈α〉(B[A/X]) when
bn(α) is fresh for A.

We give a semantics to formulas containing variables and fixpoint modalities as sets of
satisfying states.

Definition 5.2. A valuation function ε is a finitely supported map from variables to (finitely
supported) sets of states. We write ε[X 7→ S] for the valuation function that maps X to S,
and any variable X ′ 6= X to ε(X ′).
We define the interpretation of formula A under valuation ε by structural induction as the
set of states JAKε:

J
∧
i∈I AiKε =

⋂
i∈IJAiKε

J¬AKε = states \ JAKε
JϕKε = {P | P ` ϕ}
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J〈α〉AKε =
{
P | ∃α′A′ P ′ . 〈α〉A = 〈α′〉A′ ∧ bn(α′)#P, ε ∧ P α′−→ P ′ ∧ P ′ ∈ JA′Kε

}
JXKε = ε(X)

JµX.AKε =
⋂{

S ∈ Pfs(states) | JAKε[X 7→S] ⊆ S
}

We write J K for the function (A, ε) 7→ JAKε.

Lemma 5.3. J K is equivariant.

Proof. By the Equivariance Principle [Pit13, page 21].

Lemma 5.4. For any formula A and valuation function ε, JAKε ∈ Pfs(states).
Proof. By equivariance of J K, supp(JAKε) ⊆ supp(A) ∪ supp(ε).

Temporal operators such as “eventually” can be encoded using the least fixpoint operator.
For instance, the formula µX.〈α〉X ∨ A states that A eventually holds on some path
labelled with α. We define the greatest fixpoint operator νX.A in terms of the least
as ¬µX.¬A[¬X/X]. Using the greatest fixpoint operator we can state global invariants:
νX.[α]X ∧A expresses that A holds along all paths labelled with α. We can freely mix the
fixpoint operators to obtain formulas like νX.[α]X ∧ (µY.〈β〉Y ∨A), which means that for
each state along any path labelled with α, a state where A holds is reachable along a path
labelled with β.

As sanity checks for our definition, we prove that the interpretation of formulas without
fixpoint modalities is unchanged, and that the interpretation of the formula µX.A is indeed
the least fixpoint of the function F εA : S 7→ JAKε[X 7→S].

Proposition 5.5. Let A be a formula as in Definition 3.4. Then for any valuation function ε
and state P , P |= A if and only if P ∈ JAKε.

Proof. By structural induction on A. The clauses for X and µX.A′ in Definition 5.2 are not
used. The interesting case is

Case 〈α〉A′: Assume P |= 〈α〉A′. Without loss of generality assume also bn(α)#P, ε,
otherwise just find an alpha-variant of 〈α〉A′ where this holds. From Definition 3.5

we obtain P ′ such that P
α−→ P ′ and P ′ |= A′. Then P ′ ∈ JA′Kε by the induction

hypothesis, hence P ∈ J〈α〉A′Kε by Definition 5.2.
Next, assume P ∈ J〈α〉A′Kε. From Definition 5.2 we obtain an alpha-variant

〈α′〉A′′ = 〈α〉A′ and P ′ such that bn(α′)#P , P
α′−→ P ′ and P ′ ∈ JA′′Kε. Then P ′ |= A′′

by the induction hypothesis. Hence P |= 〈α′〉A′′ = 〈α〉A′ by Definition 3.5.

Lemma 5.6. For any formula µX.A and valuation function ε, F εA has finite support.

Proof. By equivariance of J K, supp(F εA) ⊆ supp(A) ∪ supp(ε).

Lemma 5.7. For any formula µX.A and for any valuation function ε, the function
F εA : Pfs(states)→ Pfs(states) is monotonic with respect to subset inclusion.

Proof. By structural induction on A, for arbitrary ε. Let S, T ∈ Pfs(states) such that S ⊆ T .
We prove a more general statement: if all occurrences of X in A are positive (i.e., within the
scope of an even number of negations), F εA(S) ⊆ F εA(T ), and if all occurrences of X in A
are negative (i.e., within the scope of an odd number of negations), F εA(T ) ⊆ F εA(S). The
interesting case is
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Case µX ′.A′: If X = X ′, note that for any U , V ∈ Pfs(states), ε[X 7→ U ][X 7→ V ] =
ε[X 7→ V ]. Therefore, JµX ′.A′Kε[X 7→S] = JµX ′.A′Kε[X 7→T ] is immediate from Defini-
tion 5.2.

Otherwise, X 6= X ′. Suppose that all occurrences of X in A are positive. Then all
occurrences of X in A′ are positive, and for any V ∈ Pfs(states), JA′Kε[X′ 7→V ][X 7→S] ⊆
JA′Kε[X′ 7→V ][X 7→T ] by the induction hypothesis applied to A′ and ε[X ′ 7→ V ]. Since
X 6= X ′, for any U , V ∈ Pfs(states), ε[X 7→ U ][X ′ 7→ V ] = ε[X ′ 7→ V ][X 7→ U ].
Thus,

JµX ′.A′Kε[X 7→S] =
⋂{

S′ ∈ Pfs(states) | JA′Kε[X 7→S][X′ 7→S′] ⊆ S′
}
⊆⋂{

S′ ∈ Pfs(states) | JA′Kε[X 7→T ][X′ 7→S′] ⊆ S′
}

= JµX ′.A′Kε[X 7→T ].

The case where all occurrences of X in A are negative is similar.

We use a nominal version of Tarski’s fixpoint theorem [Tar55] to show existence, unique-
ness, and the construction of the least fixpoint of F εA. Note that the usual Tarski fixpoint
theorem does not apply, since the lattice Pfs(states) is not necessarily complete. (For a
simple counterexample, consider states = N : sets that are neither finite nor cofinite are
not elements of Pfs(N ).)

Theorem 5.8. Suppose X is a nominal set, and f : Pfs(X)→ Pfs(X) is finitely supported
and monotonic with respect to subset inclusion. Then f has a least fixpoint lfp f , and

lfp f =
⋂
{S ∈ Pfs(X) | f(S) ⊆ S} .

Proof. (Due to Pitts [Pit15])
Since f is finitely supported and

⋂
is equivariant, also

⋂ {S ∈ Pfs(X) | f(S) ⊆ S} is finitely
supported (with support contained in supp(f)). It then follows by a replay of the usual
Tarski argument that

⋂ {S ∈ Pfs(X) | f(S) ⊆ S} is the least fixpoint of f .

Finally, we can show that the interpretation of a fixpoint formula µX.A is the least
fixpoint of the function F εA.

Proposition 5.9. For any formula µX.A and valuation function ε, JµX.AKε = lfpF εA.

Proof. Using Lemmas 5.6 and 5.7, the proposition is immediate from Theorem 5.8.

5.2. Encoding the least fixpoint operator. The least fixpoint operator can be encoded
in our logic of Section 3. The basic idea here is simple: we translate the fixpoint modality
into a transfinite disjunction that at each step α unrolls the formula α times. This then
semantically corresponds to a limit of an increasing chain generated by a monotonic function,
i.e., a least fixpoint.

Recall that the cardinality of a set of conjuncts—and thus also of a set of disjuncts—must
be less than some fixed infinite cardinal κ (see Definition 3.4). As before, we require κ > ℵ0
and κ > |states|.
Definition 5.10. We define the formula unrollα(µX.A) for all ordinals α < κ by transfinite
induction.

unroll0(µX.A) = ⊥
unrollα+1(µX.A) = A[unrollα(µX.A)/X]

unrollλ(µX.A) =
∨
α<λ unrollα(µX.A) when λ is a limit ordinal
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Since unrollα is equivariant, the disjunction in the limit case has finite support bounded
by supp(A). Note that if A does not contain any fixpoint modalities then unrollα(µX.A)
also does not contain any fixpoint modalities.

To show that for some ordinal γ < κ, the interpretation of unrollγ(µX.A) indeed is
the least fixpoint of F εA, we use a nominal version of a chain fixpoint theorem for sets by
Kuratowski (1922) [Kur22], augmented with a bound on the depth of the unrolling.

Theorem 5.11. Suppose X is a nominal set, and f : Pfs(X)→ Pfs(X) is finitely supported
and monotonic with respect to subset inclusion. Set f0 = ∅, fα+1 = f(fα), and fλ =

⋃
α<λ f

α

for limit ordinals λ. Then f has a least fixpoint lfp f , and if ν is a cardinal with ν > |X|,
there exists an ordinal γ < ν such that

lfp f = fγ .

Proof. First, each fα is finitely supported, since supp(fα) ⊆ supp(f) for every ordinal α by
transfinite induction. Also, using monotonicity of f , we have fα ⊆ fβ for all α ≤ β.

We then show that f has a fixpoint fγ for some ordinal γ < ν, by contradiction.
Otherwise, for each γ < ν there is xγ ∈ fγ+1 \fγ . This yields an injective function g : ν → X
with g(γ) = xγ , which is a contradiction since ν > |X|.

Let y be any fixpoint of f . For every ordinal α, fα ⊆ y by transfinite induction, so in
particular fγ ⊆ y. Thus fγ is the least fixpoint of f .

Let ν = max {|states|+,ℵ0} denote the least infinite cardinal larger than |states|.
Note that ν ≤ κ by assumption.

Lemma 5.12. For any formula µX.A and valuation function ε, there exists an ordinal γ < ν
such that lfpF εA = (F εA)α for all ordinals α ≥ γ.

Proof. Since ν > |states|, the lemma is an immediate consequence of Theorem 5.11, whose
other assumptions follow from Lemmas 5.6 and 5.7.

From this lemma, we obtain an equivariant function conv that maps each formula µX.A
and each valuation function ε to the least ordinal conv(µX.A, ε) < ν such that

lfpF εA = (F εA)conv(µX.A,ε).

When E is a non-empty set of valuation functions, we write Conv(µX.A, E) for supε∈E
conv(µX.A, ε).

Lemma 5.13. Let E be a non-empty set of valuation functions such that |E| < ν. Then
Conv(µX.A, E) < ν.

Proof. Note that ℵ0 is regular, and every successor cardinal is regular. Hence ν is regular.
Therefore, the set {conv(µX.A, ε) | ε ∈ E} (whose cardinality is less than ν) is not cofinal
in ν.

Lemma 5.14. For any formulas A, B and valuation function ε, if A does not contain any
fixpoint operators, then JA[B/X]Kε = JAKε[X 7→JBKε].

Proof. By structural induction on A. The clause for µX.A′ in Definition 5.2 is not used.

Lemma 5.15. For any formula A and valuation function ε, if A does not contain any
fixpoint operators, then Junrollα(µX.A)Kε = (F εA)α for all ordinals α < κ.

Proof. By transfinite induction on α.
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(1) Base case: Junroll0(µX.A)Kε = J⊥Kε = ∅ = (F εA)0 by definition.
(2) Inductive step:

Junrollα+1(µX.A)Kε = JA[unrollα(µX.A)/X]Kε
(1)
= JAKε[X 7→Junrollα(µX.A)Kε]

(2)
= JAKε[X 7→(F εA)

α]

= F εA((F εA)α)

= (F εA)α+1

as required. Above, equality (1) follows from Lemma 5.14 and equality (2) follows from
the induction hypothesis for α.

(3) Limit case: The limit case is straightforward. We have

Junrollλ(µX.A)Kε = J
∨
α<λ

unrollα(µX.A)Kε

=
⋃
α<λ

Junrollα(µX.A)Kε

(1)
=
⋃
α<λ

(F εA)α

= (F εA)λ

where equality (1) follows from the induction hypothesis for all α < λ.

Definition 5.16. Given any non-empty set of valuation functions E with |E| < ν, we define
the formula AE homomorphically on the structure of A. The encoding µX.AE of a fixpoint
formula is its unrolling up to a sufficiently large ordinal.∧

i∈I AiE
=

∧
i∈I AiE

¬AE = ¬AE
ϕE = ϕ

〈α〉AE = 〈α〉AE
XE = X

µX.AE = unrollγ(µX.AE ′) where E ′ = {ε[X 7→ (F εA)α] | ε ∈ E , α ≤ conv(µX.A, ε)}
and γ = Conv(µX.AE ′ , E)

In the fixpoint case, since |E| < ν and Conv(µX.A, E) < ν (Lemma 5.13), we also have
|E ′| < ν · ν = ν. Since the encoding function is equivariant, it preserves the finite support
property for conjunctions. Clearly, AE does not contain any fixpoint operators. Moreover,
if A is closed, then AE does not contain any variables, and is therefore a formula in the sense
of Definition 3.4.

Theorem 5.17. Let E be a non-empty set of valuation functions such that |E| < ν. For any
formula A and valuation function ε ∈ E, JAEKε = JAKε.

Proof. By structural induction on A, for arbitrary E and ε. The interesting case is

Case µX.A′: We need to show that JµX.A′EKε = JµX.A′Kε. Let E ′ and γ be as in Defini-

tion 5.16. First, we compute the left-hand side to JµX.A′EKε = Junrollγ(µX.A′E ′)Kε =
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(F εA′E′
)γ = lfpF εA′E′

by Lemma 5.15 and Lemma 5.12, where we use the fact that

γ ≥ conv(µX.A′E ′ , ε) since ε ∈ E . For the right-hand side, we have JµX.A′Kε = lfpF εA′
by Proposition 5.9.

We now show (F εA′E′
)α = (F εA′)

α for all ordinals α ≤ conv(µX.A′, ε)+1 by transfinite

induction on α. The base case (α = 0) and limit case (α = λ) are straightforward. For
the inductive step, we have

(F εA′E′ )
α+1 = F εA′E′ ((F

ε
A′E′

)α)

(1)
= F εA′E′ ((F

ε
A′)

α)

= JA′E ′Kε[X 7→(F ε
A′ )

α]

(2)
= JA′Kε[X 7→(F ε

A′ )
α]

= F εA′((F
ε
A′)

α)

= (F εA′)
α+1

as required. Above, equality (1) follows from the induction hypothesis for α, and
equality (2) follows from the outer induction hypothesis applied to E ′ and ε[X 7→
(F εA′)

α]. Note that ε[X 7→ (F εA′)
α] ∈ E ′ since α ≤ conv(µX.A′, ε).

It follows with Lemma 5.12 that (F εA′E′
)conv(µX.A

′,ε) = lfpF εA′ = (F εA′E′
)conv(µX.A

′,ε)+1.

Hence lfpF εA′ is a fixpoint of F εA′E′
, and thus lfpF εA′E′

⊆ lfpF εA′ . Moreover, (F εA′E′
)α ⊆

lfpF εA′E′
for any ordinal α (as in the proof of Theorem 5.11), so in particular lfpF εA′ =

(F εA′E′
)conv(µX.A

′,ε) ⊆ lfpF εA′E′
. By combining both inclusions, lfpF εA′E′

= lfpF εA′ .

If A is closed, its semantics does not depend on ε. In this case, we can pick an arbitrary
valuation function to perform the encoding: e.g., let ε∅ be the valuation that maps every
variable to ∅. We simply write A for A{ε∅}.

Every closed formula containing fixpoint operators can be translated into an equivalent
formula without fixpoint operators.

Corollary 5.18. For any ε, P and closed formula A, we have P |= A iff P ∈ JAKε.

Proof. By Theorem 5.17 and Proposition 5.5.

6. Logics for variants of bisimilarity

6.1. Variants of bisimilarity. There are variants of bisimilarity, differing in the effect the
binding in a transition can have on the target state. A typical example is in the pi-calculus
where the input action binds a name, and the target state must be considered for all possible
instantiations of it. There is then a difference between the so-called late bisimilarity, where
the target states must bisimulate before instantiating the input, and early bisimilarity,
where it is enough to bisimulate after each instantiation. There are also corresponding
congruences, obtained by closing bisimilarity under all substitutions of names for names.
The original value-passing variant of CCS from 1989 [Mil89] uses early bisimilarity. The
original bisimilarity for the pi-calculus (1992) is of the late kind [MPW92], where it also
was noted that late equivalence is the corresponding congruence. Early bisimilarity and
congruence in the pi-calculus were introduced in 1993 [MPW93], where HMLs adequate
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for a few different bisimilarity definitions are explored. Other ways to treat the name
instantiations include Sangiorgi’s open bisimilarity (1993) [San93] and Parrow and Victor’s
hyperbisimilarity (1998) [PV98]. Hyperbisimilarity is the requirement that the bisimulation
relation is closed under all name instantiations, and corresponds to a situation where the
environment of a process may at any time instantiate any name. Open bisimilarity is between
late and hyper: the environment may at any time instantiate any name except those that
have previously been extruded or declared constant.

In our definition of nominal transition systems there are no particular input variables in
the states or in the actions, and thus no a priori concept of replacing a name by something
else. In order to cover all of the above variants of the pi-calculus and also of high-level
extensions of it, we generalise name instantiation using a notion of effect functions.

Definition 6.1. An effect is a finitely supported function from states to states. We let
F stand for a nominal set of effects, and we let Pfs(F), ranged over by F , be the finitely
supported subsets of F .

For instance, in the monadic pi-calculus the effects would be the functions replacing
one name by another. In a value-passing calculus the effects would be substitutions of
values for variables. In the psi-calculi framework the effects would be sequences of parallel
substitutions. Variants of bisimilarity then correspond to the use of various effects. For
instance, if the action contains an input variable x, then the effects appropriate for late
bisimilarity would be substitutions for x. Our only requirement is that the effects form a
nominal set.

The definition of bisimilarity will now be through a Pfs(F)-indexed family {RF } of
bisimulations. The index F (“first”) simply says which effects must be taken into account
before performing a transition. There is a function L (“later”), which determines what
effects should be considered after taking a transition. In its simplest form these effects
depend only on the action of the transition, that is, L has type act→ Pfs(F). We require
that L is equivariant.

Definition 6.2 (Simple L-bisimulation and
F/L∼ ). A simple L-bisimulation, for L : act→

Pfs(F) equivariant, is a Pfs(F)-indexed family {RF } of symmetric binary relations on states
satisfying the following:

For all F ∈ Pfs(F), RF (P,Q) implies

(1) Static implication: For all f ∈ F , f(P ) ` ϕ implies f(Q) ` ϕ.
(2) Simulation: For all f ∈ F and α, P ′ such that bn(α)#f(Q), F there exists Q′ such that

if f(P )
α−→ P ′ then f(Q)

α−→ Q′ and RL(α)(P
′, Q′)

We write P
F/L∼ Q, called F/L-bisimilarity, to mean that there exists a simple L-

bisimulation {RF }F∈Pfs(F)
such that RF (P,Q).

To exemplify F/L-bisimilarity we shall consider some of the popular bisimulation
equivalences in the monadic pi-calculus; the ideas obviously generalize to more advanced
settings. Thus the states are pi-calculus agents, and there are no state predicates. In the
monadic pi-calculus there are input actions written a(x), where a and x are names and
the intention is that the binding input object x shall be instantiated with another name
received in a communication with a parallel process. There are also binding output actions
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a(x) signifying the output of a local name x. We let bn(a(x)) = bn(a(x)) = {x}, and for all
other actions α we let bn(α) = ∅.

The relevant effects are the name substitutions, i.e., functions σ from names to names
that are identity almost everywhere. For any substitution, the set of names which are
substituted to something else, or something else is substituted to, is finite. Clearly if a
permutation only permutes names outside this set, then its action does not change the
substitution. Thus every substitution has finite support, and we can let F be the set of
substitutions. The effect of applying σ to a state P is notated Pσ, in conformance with
most of the literature on the pi-calculus.

Write id for the identity function on names, and let substx = {σ | ∀y 6= x. σ(y) = y}
be the set of substitutions for x. Note that supp(substx) = {x}. We now get:

• Early bisimilarity
·∼E does not use binding input actions, instead it uses non-binding

actions where the received object is already present. Early bisimilarity thus is precisely as
defined in Definition 3.2, which is the same as {id} /LE-bisimilarity where LE(α) = {id}
for all α. No substitutive effect is needed; the substitution of output object for input
object is included already in the semantics and thus already present in the corresponding
nominal transition system.
• Early equivalence ∼E is early bisimilarity closed under all possible substitutions, i.e.,

P ∼E Q if for all σ it holds Pσ
·∼E Qσ. Therefore ∼E is F /LE-bisimilarity where LE

is as above. Any substitution can be applied initially, and thereafter no substitution is
needed. Early equivalence is the smallest congruence including early bisimilarity.

• Late bisimilarity
·∼L has a binding input action and should consider all possible in-

stantiations of the bound input object before the next transition. In other words,
·∼L is

{id} /LL-bisimilarity where LL(a(x)) = substx and LL(α) = {id} for all other actions α.
• Late equivalence ∼L is late bisimilarity closed under all possible substitutions, i.e.,

P ∼L Q if for all σ it holds Pσ
·∼L Qσ. Therefore ∼L is F /LL-bisimilarity where LL is

as above. Late equivalence is the smallest congruence including late bisimilarity.
• Hyperbisimilarity ∼H means that any name can be substituted at any time, thus it is
F /LH-bisimilarity where LH(α) = F for all α.

Open bisimilarity is more involved and requires a generalisation of the L-function to
take additional parameters. We begin by quoting the definition from Sangiorgi 1993 [San93].

Definition 6.3 (Open bisimilarity, Sangiorgi). A distinction is a finite symmetric and
irreflexive relation on names. A substitution σ respects a distinction D if (a, b) ∈ D
implies σ(a) 6= σ(b). A distinction-indexed family of symmetric relations {SD}D is an open
bisimulation if for all SD and for each σ which respects D, (P,Q) ∈ SD implies

(1) If Pσ
a(b)−−→ P ′ with b fresh then Q′ exists s.t. Qσ

a(b)−−→ Q′ and (P ′, Q′) ∈ SD′ where
D′ = Dσ ∪ ({b} × fn(Pσ,Qσ)) (with symmetric closure)

(2) If Pσ
α−→ P ′ with α not a binding output and bn(α) fresh then Q′ exists s.t. Qσ

α−→ Q′

and (P ′, Q′) ∈ SDσ
Write P ∼O Q to mean that (P,Q) ∈ S∅ for some open bisimulation {SD}D.

In this definition, “b is fresh” means that it “is supposed to be different from any
other name appearing in the objects of the statement, like processes or distinctions.” The
function fn extracts the free names of a process; in nominal terms this is the support.

Clearly, the distinctions here correspond to our effect sets since they determine which
substitutions should be taken into account. A complication is then that the distinction D′
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after the transition in clause (1) depends not only on the action but also on D, σ, P and Q.
We therefore present an alternative definition of open bisimulation, where distinctions may
be infinite but still finitely supported. Write D+ b for the distinction D ∪ ({b} × (N − {b}))
(and its symmetric closure) and D − b for the distinction {(x, y) ∈ D | x, y 6= b}. Note that
supp(D + b) ⊆ supp(D) ∪ {b} and supp(D − b) ⊆ supp(D) ∪ {b}. It is easy to see that the
function that maps a distinction to the set of substitutions respecting it is an equivariant
injection. Therefore we let sets of substitutions be represented as distinctions, and say
“σ ∈ D” instead of “σ respects D.”

Definition 6.4 (Alternative definition of open bisimulation). A distinction-indexed family
of symmetric relations {SD}D is an open bisimulation if for all SD and for each σ ∈ D,
(P,Q) ∈ SD implies

(1) If Pσ
a(b)−−→ P ′ with b#Qσ,D, σ then Q′ exists s.t. Qσ

a(b)−−→ Q′ and (P ′, Q′) ∈ SDσ+b
(2) If Pσ

α−→ P ′ with bn(α) = ∅ then Q′ exists s.t. Qσ
α−→ Q′ and (P ′, Q′) ∈ SDσ

(3) If Pσ
a(b)−−→ P ′ with b#Qσ,D, σ then Q′ exists s.t. Qσ

a(b)−−→ Q′ and (P ′, Q′) ∈ SDσ−b
Compared to Definition 6.3, clause (1) now requires b to be distinct from all names,

not just the names in Pσ and Qσ. In the pi-calculus, it is known that if Pσ
a(b)−−→ P ′ then

supp(P ′) ⊆ supp(Pσ) ∪ {b}. Therefore, the difference between the clauses only concerns
names outside supp(P ′, Q′), meaning that the additional substitutions allowed by clause (1)
of Definition 6.3 will be injective when restricted to supp(P ′, Q′), and open bisimilarity
(with any distinction) is closed under injective substitutions.

All names “occur” in Dσ + b even though it has finite support. Thus, in a subsequent
input a(b) it will be impossible to choose b fresh according to Sangiorgi. Instead we get the
same effect with clause (3): removing an input binder b from the distinction is the same
as choosing a new one that does not occur there. We also tighten and make explicit the
necessary freshness condition on b.

To capture open bisimulation in our framework, we extend the simple L-functions to
take more parameters as follows:

Definition 6.5 (L-bisimulation). A (general) L-bisimulation, for L : act× Pfs(F)×F →
Pfs(F) equivariant, is a Pfs(F)-indexed family {RF } of symmetric binary relations on states
satisfying the following:

For all F ∈ Pfs(F), RF (P,Q) implies

(1) Static implication: For all f ∈ F , f(P ) ` ϕ implies f(Q) ` ϕ.
(2) Simulation: For all f ∈ F and α, P ′ such that bn(α)#f(Q), F, f there exist Q′ such that

if f(P )
α−→ P ′ then f(Q)

α−→ Q′ and RL(α,F,f)(P
′, Q′)

The simple L-bisimulation of Definition 6.2 is thus the special case when L does not
depend on F or f . In the following when we write L-bisimulation we always refer to the
general case of Definition 6.5.

To represent open bisimulation as an L-bisimulation we let F be the set of all substitutions
and use distinctions to represent sets of substitutions (thus F is the empty distinction), and
define the function LO by:

LO(α,D, σ) =

 Dσ + b if α = a(b)
Dσ if bn(α) = ∅
Dσ − b if α = a(b)
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Strictly speaking this LO is partial since there are sets of substitutions in Pfs(F) that
cannot be represented by a distinction. These substitution sets will not matter and we can
make LO total by assigning an arbitrary value in those cases. We now immediately get,
using Definition 6.4:

Proposition 6.6. P ∼O Q iff P
F/LO∼ Q

In conclusion we have a uniform framework to define most variants of bisimulation
co-inductively. The common claim that open bisimulation is the only co-inductively defined
congruence in the pi-calculus is somewhat contradicted by our framework, which represents
both late and early equivalence conveniently.

6.2. Variants of the logic. In view of the previous subsection, we only need to provide a
modal logic adequate for (general) F/L-bisimilarity; it can then immediately be specialised
to all of the above variants. To this end we introduce a new kind of logical effect consequence
operator @, which appears in front of state predicates and actions in formulas. We define
the formulas that can directly use effects from F and after actions use effects according to L,
ranged over by AF/L, in the following way:

Definition 6.7. Given L as in Definition 6.5, for all F ∈ Pfs(F) define AF/L as the set of
formulas given by the mutually recursive definitions:

AF/L ::=
∧
i∈I

A
F/L
i | ¬AF/L | f@ϕ | f@〈α〉AL(α,F,f)/L

where we require f ∈ F and bn(α)#f, F and that the conjunction has bounded cardinality
and finite support.

Validity of a formula for a state P is defined as in Definition 3.5, where in the last
clause we assume that 〈α〉A is a representative of its alpha-equivalence class such that
bn(α)#P, F, f . Validity of formulas involving the effect consequence operator is defined as
follows.

Definition 6.8. For each f ∈ F ,

P |= f@A if f(P ) |= A

Thus the formula f@A means that A holds when the effect f is applied to the state.
The effect consequence operator is similar in spirit to the action modalities: both f@A
and 〈α〉A assert that something (an effect or action) must be possible and that A holds
afterwards. Indeed, effects can be viewed as a special case of transitions (as formalised in
Definition 6.11 below).

Lemma 6.9. If A ∈ AF/L is a distinguishing formula for P and Q, then there exists a
distinguishing formula B ∈ AF/L for P and Q such that supp(B) ⊆ supp(P, F ).

Proof. The proof has been formalised in Isabelle. It is an easy generalisation of the proof
of Lemma 3.10, just replace A by AF/L and supp(P ) by supp(P, F ) everywhere. We

additionally need to prove that B ∈ AF/L. Since L is equivariant, A ∈ AF/L implies
π ·A ∈ A(π·F )/L = AF/L for all π ∈ Π(P,F ), this establishes B ∈ AF/L.

Let P
F/L
= Q mean that P and Q satisfy the same formulas in AF/L.
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Theorem 6.10. P
F/L∼ Q iff P

F/L
= Q

Proof. The proof has been formalised in Isabelle. Direction ⇒ is a generalisation of Theo-
rem 3.8.

(1) Base case: A = f@ϕ and f ∈ F . Then f(P ) ` ϕ. By static implication f(Q) ` ϕ,
which means Q |= A.

(2) Inductive step f@〈α〉A where A ∈ AL(α,F,f)/L with f ∈ F and bn(α)#f, F : Assume

P |= f@〈α〉A. Then ∃P ′. f(P )
α−→ P ′ and P ′ |= A. Without loss of generality we

assume also bn(α)#f(Q), otherwise just find an alpha-variant of the transition where

this holds. Then by simulation ∃Q′. f(Q)
α−→ Q′ and P ′

L(α,F,f)/L∼ Q′. By induction and
P ′ |= A we get Q′ |= A, whence by definition Q |= f@〈α〉A.

The direction ⇐ is a generalisation of Theorem 3.11: we prove that
F/L
= is an F/L-

bisimulation. The modified clauses are:

(1) Static implication. Assume f ∈ F , then f(P ) ` ϕ iff P |= f@ϕ iff Q |= f@ϕ iff
f(Q) ` ϕ.

(2) Simulation. The proof is by contradiction. Assume that
F/L
= does not satisfy the

simulation requirement. Then there exist f ∈ F , P , Q, P ′, α with bn(α)#f(Q), F, f

such that P
F/L
= Q and f(P )

α−→ P ′ and, letting Q = {Q′ | f(Q)
α−→ Q′}, for all Q′ ∈ Q it

holds that not P ′
L(α,F,f)/L

= Q′. Thus, for all Q′ ∈ Q there exists a distinguishing formula
in AL(α,F,f)/L for P ′ and Q′. The formula may depend on Q′, and by Lemma 6.9 we can
find such a distinguishing formula BQ′ ∈ AL(α,F,f)/L for P ′ and Q′ with supp(BQ′) ⊆
supp(P ′, L(α, F, f)). Therefore the formula

B =
∧
Q′∈Q

BQ′

is well formed in AL(α,F,f)/L with support included in supp(P ′, L(α, F, f)). We thus get

that P |= f@〈α〉B but not Q |= f@〈α〉B, contradicting P
F/L
= Q.

6.3. Effects as transitions. It is possible to view effects as transitions, and thus not use
the effect consequence operator explicitly. The idea is to let the effect functions be part

of the transition relation, thus f(P ) = P ′ becomes P
f−→ P ′. We here make this idea fully

formal. Given a transition system T we construct a new transition system L(T) without
effects. The effects in T are included among the actions in L(T). The states in L(T) are of
two kinds. One is ef(F, P ) where P is a state in T and F ∈ Pfs(F), corresponding to the
state P where F contains the effects that should be considered before taking an action or
checking a state predicate. The transitions from ef(F, P ) are effects in F . The other kind is
ac(f, F, P ), corresponding to a state P where f ∈ F has been applied; the transitions from
ac(f, F, P ) are the actions from P .

To define this formally, and to talk about different nominal transition systems in the
same definition, we write statesT for the states of the nominal transition system T and
similarly for actions, predicates, etc.
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Definition 6.11. Let T be a nominal transition system with a set of effects F . Let L be
as in Definition 6.5. The L-transform L(T) of a nominal transition system T is a nominal
transition system where:

• statesL(T) = {ac(f, F, P ) | f ∈ F , F ∈ Pfs(F), P ∈ statesT}
∪ {ef(F, P ) | F ∈ Pfs(F), P ∈ statesT}

• predL(T) = predT

• ac(f, F, P ) `L(T) ϕ if P `T ϕ, and ef(F, P ) `L(T) ϕ never holds.
• actL(T) = actT ] F .
• bnL(T)(α) = bnT(α) for α ∈ actT; bnL(T)(f) = ∅ for f ∈ F .

• The transitions in L(T) are of two kinds. If in T we have P
α−→ P ′ with bn(α)#f, F ,

then in L(T) there is a transition ac(f, F, P )
α−→ ef(L(α, F, f), P ′). Additionally, for each

f ∈ F it holds ef(F, P )
f−→ ac(f, F, f(P )).

The intuition is that states of kind ac can perform ordinary actions, and states of
kind ef can commit effects. The analogous transform of modal formulas in T to formulas in
L(T) simply replaces effects by actions: L(f@A) = 〈f〉L(A), and L is homomorphic on all
other formula constructors.

The L-transform preserves satisfaction of formulas in the following sense:

Theorem 6.12. Assume A ∈ AF/L. Then P |= A iff ef(F, P ) |= L(A).

Proof. The proof has been formalised in Isabelle. It is by induction over formulas in AF/L,
for arbitrary P . The cases conjunction and negation are immediate by induction.

Case A = f@ϕ: We then know f ∈ F , and have P |= f@ϕ iff f(P ) `T ϕ iff, by construction

of `L(T), ac(f, F, f(P )) |= ϕ. Since ef(F, P )
f−→ ac(f, F, f(P )), it follows that

ef(F, P ) |= 〈f〉ϕ = L(f@ϕ). Conversely, from ef(F, P ) |= 〈f〉ϕ we obtain P ′ with

ef(F, P )
f−→ P ′ and P ′ |= ϕ. Since bnL(T)(f) = ∅, there are no other alpha-variants

of this transition. It follows that P ′ = ac(f, F, f(P )).

Case A = f@〈α〉A′: We then know A′ ∈ AL(α,F,f)/L and f ∈ F and bn(α)#f, F . Without
loss of generality we assume also bn(α)#P , otherwise just find an alpha-variant where
this holds.

Assume P |= f@〈α〉A′. Then ∃P ′. f(P )
α−→ P ′ and P ′ |= A′. We thus have

ef(L(α, F, f), P ′) |= L(A′) by induction. With ac(f, F, f(P ))
α−→ ef(L(α, F, f), P ′)

we have ac(f, F, f(P )) |= 〈α〉L(A′). Since ef(F, P )
f−→ ac(f, F, f(P )), it follows that

ef(F, P ) |= 〈f〉〈α〉L(A′) = L(f@〈α〉A′).
Conversely, from ef(F, P ) |= 〈f〉〈α〉L(A′) we obtain P ′ with ef(F, P )

f−→ P ′ and
P ′ |= 〈α〉L(A′). Since bnL(T)(f) = ∅, there are no other alpha-variants of this
transition. It follows that P ′ = ac(f, F, f(P )). Note that bn(α)#f, F, f(P ). By

construction of L(T) we obtain P ′′ with ac(f, F, f(P ))
α−→ ef(L(α, F, f), P ′′) and

f(P )
α−→ P ′′ and ef(L(α, F, f), P ′′) |= L(A′). Thus P ′′ |= A′ by induction. Hence

f(P ) |= 〈α〉A′. Hence P |= f@〈α〉A′.

As an immediate corollary we get:

Theorem 6.13. Let the L-transform be as above. Then ef(F, P )
·∼ ef(F,Q) =⇒ P

F/L∼ Q.
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Proof. The proof has been formalised in Isabelle. We first apply Theorem 3.8 to get

ef(F, P )
·

= ef(F,Q), then Theorem 6.12 to get ef(F, P )
F/L
= ef(F,Q), and finally Theo-

rem 6.10 to get P
F/L∼ Q.

The converse cannot be proved in the same way since L is not a surjection on formulas.
As an example, the formula 〈f〉> is not in the range of L, since any effect in any formula in

AF/L must be followed by a state predicate or an action. Nevertheless the converse holds:

Theorem 6.14. Let the L-transform be as above. Then P
F/L∼ Q =⇒ ef(F, P )

·∼ ef(F,Q).

Proof. The proof has been formalised in Isabelle. Define a binary relation R on statesL(T)

by including (ef(F, P ),ef(F,Q)) ∈ R and (ac(f, F, f(P )),ac(f, F, f(Q))) ∈ R for all f , F ,

P , Q with f ∈ F and P
F/L∼ Q. We prove that R is a bisimulation.

Symmetry is immediate since
F/L∼ is symmetric. Now assume R(S, T ).

(1) Static implication. Assume S `L(T) ϕ. Then S = ac(f, F, f(P )) for some F , f ∈ F
and P with f(P ) `T ϕ, and T = ac(f, F, f(Q)) with P

F/L∼ Q. Thus f(Q) `T ϕ, hence
T `L(T) ϕ.

(2) Simulation. Assume S
α−→ S′. By construction of L(T) there are two cases:

• S = ef(F, P )
f−→ ac(f, F, f(P )) = S′ and f ∈ F . Then T = ef(F,Q) with P

F/L∼ Q.

We get T
f−→ ac(f, F, f(Q)) =: T ′ and R(S′, T ′). Note here that bnL(T)(f) = ∅.

• S = ac(f, F, f(P ))
α−→ ef(L(α, F, f), P ′) = S′ and f(P )

α−→ P ′ and f ∈ F . Then T =

ac(f, F, f(Q)) with P
F/L∼ Q. We may assume bn(α)#T , hence also bn(α)#f(Q), F, f .

Then by simulation ∃Q′ . f(Q)
α−→ Q′ and P ′

L(α,F,f)/L∼ Q′. Thus we have T
α−→

ef(L(α, F, f), Q′) =: T ′, and R(S′, T ′) as required.

A consequence is that for the variants of bisimilarity considered in Section 6.1 no new
machinery is really needed; they can all be obtained by extending the transition relation.
For the examples on the monadic pi-calculus, there would be substitution transitions, which
take a state to another state where the substitution has been performed. Here the L function
determines exactly which substitutions are applicable at which states, and by varying it we
can obtain e.g. late, open and hyperbisimulation.

7. Unobservable actions

The logics and bisimulations considered so far are all of the strong variety, in the sense that
all transitions are regarded as equally significant. In many models of concurrent computation
there is a special action which is unobservable in the sense that in a bisimulation, and also
in the definition of the action modalities, the presence of extra such transitions does not
matter. This leads to notions of weak bisimulation and accompanying weak modal logics.
For example, a process that has no transitions is weakly bisimilar to any process that has
only unobservable transitions, and these satisfy the same weak modal logic formulas. We
shall here introduce these ideas into the nominal transition systems. One main source of
complication over similar treatments in process algebras turns out to be the presence of
state predicates.
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To cater for unobservable transitions assume a special action τ with empty support.
The following definitions are standard:

Definition 7.1.

(1) P ⇒ P ′ is defined by induction to mean P = P ′ or P
τ−→ ◦ ⇒ P ′.

(2) P
α⇒ P ′ means P ⇒ ◦ α−→ ◦ ⇒ P ′.

(3) P
α̂⇒ P ′ means P ⇒ P ′ if α = τ and P

α⇒ P ′ otherwise.

Intuitively P
α̂⇒ P ′ means that P can evolve to P ′ through transitions with the only

observable content α. We call this a weak action α and it will be the basis for the semantics
in this section.

7.1. Weak bisimilarity. The standard way to define weak bisimilarity is to weaken Q
α−→ Q′

to Q
α̂⇒ Q′ in the simulation requirement. This results in the weak simulation criterion:

Definition 7.2. A binary relation R on states is a weak simulation if R(P,Q) implies that
for all α, P ′ with bn(α)#Q there exists Q′ such that

if P
α−→ P ′ then Q

α̂⇒ Q′ and R(P ′, Q′)

However, just replacing the simulation requirement with weak simulation in Definition 3.2
will not suffice. The reason is that through the static implication criterion in Definition 3.2,
an observer can still observe the state predicates directly, and thus distinguish between a
state that satisfies ϕ and a state that does not but can silently evolve to another state that
satisfies ϕ:

Example 7.3.

P Q
ϕ

τ

Certainly {(P,Q), (Q,Q)} is a weak simulation according to Definition 7.2. But P 6` ϕ and
Q ` ϕ, thus they are in no static implication. We argue that if ϕ is the only state predicate
(in particular, there is no predicate ¬ϕ), then the only test that an observer can apply
is “if ϕ then . . . ,” and here P and Q will behave the same; P can pass the test after an
unobservable delay. Thus P and Q should be deemed weakly bisimilar, and static implication
as in Definition 3.2 is not appropriate.

Therefore we need a weak counterpart of static implication where τ transitions are
admitted before checking predicates, that is, if P ` ϕ then Q ⇒ Q′ ` ϕ. In other words,
Q can unobservably evolve to a state that satisfies ϕ. However, this is not quite enough
by itself. Consider the following example where P ` ϕ0, P ` ϕ1, R ` ϕ1 and Q ` ϕ0, with

transitions P
τ−→ R and Q

τ−→ R:

Example 7.4.

ϕ1 ϕ0ϕ1

ϕ0
R QP

τ τ
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Here we do not want to regard P and Q as weakly bisimilar. They do have the same
transitions and can satisfy the same predicates, possibly after a τ transition. But an observer
of P can first determine that ϕ1 holds, and then determine that ϕ0 holds. This is not
possible for Q: an observer who concludes ϕ1 must already have evolved to R.

Similarly, consider the following example where the only difference between P and Q is
that P ` ϕ but not Q ` ϕ:

Example 7.5.

P

P0

P1

Q
ϕ

ϕ

τ

α

τ

α

Again we do not want to regard P and Q as weakly bisimilar. Intuitively, an observer of Q
who determines that ϕ holds must already be at P1 and thus have preempted the possibility
to do α, whereas for P , the predicate ϕ holds while retaining the possibility to do α. For
instance, P in parallel with a process of kind “if ϕ then γ” can perform γ followed by α,
but Q in parallel with the same cannot do that sequence.

In conclusion, the weak counterpart of static implication should allow the simulating
state to proceed through unobservable actions to a state that both satisfies the same predicate
and continues to bisimulate. This leads to the following:

Definition 7.6. A binary relation R on states is a weak static implication if R(P,Q) implies
that for all ϕ there exists Q′ such that

if P ` ϕ then Q⇒ Q′ and Q′ ` ϕ and R(P,Q′)

Definition 7.7. A weak bisimulation is a symmetric binary relation on states satisfying

both weak simulation and weak static implication. We write P
·≈ Q to mean that there

exists a weak bisimulation R such that R(P,Q).

In Example 7.3, {(P,Q), (Q,P ), (Q,Q)} is a weak bisimulation. In Examples 7.4 and 7.5,
P and Q are not weakly bisimilar.

It is interesting to compare Definition 7.7 with weak bisimilarities defined for psi-
calculi [JBPV10]. A psi-calculus contains a construct of kind “if ϕ then . . . ” to test if a state
predicate is true. These constructs may be nested; for instance, “if ϕ0 then if ϕ1 then . . . ”
effectively tests if both ϕo and ϕ1 are true simultaneously. If state predicates are closed
under conjunction, Definition 7.7 coincides with the definition of simple weak bisimulation
in [JBPV10]. In general, however, Definition 7.7 is less discriminating than in [JBPV10].

Consider P0
τ−→ P1

τ−→ P0 where for i = 0, 1: Pi ` ϕi. Compare it to Q with no transitions
where both Q ` ϕ0 and Q ` ϕ1:

Example 7.8.

P0 P1
ϕ0 ϕ1

τ

τ Q
ϕ0 ϕ1

Here all of P0, P1 and Q are weakly bisimilar, unless the predicates are closed under
conjunction, in which case the predicate ϕ0 ∧ ϕ1 distinguishes between them. In psi-calculi
Q would not be simply weakly bisimilar to P0 or P1 for the same reason. Thus the approach
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in the present paper is more general. In many cases it is reasonable to expect predicates
to be closed under finite conjunctions, but there are circumstances when they are not, for
example when the predicates can be checked only one at a time. Consider for example a
system where ϕi means checking if the variable i has value zero. If the system does not
admit checking several variables simultaneously, then the predicates are not closed under
conjunction, and there is no way to tell the systems in Example 7.8 apart.

We proceed to establish some expected properties of weak bisimilarity.

Lemma 7.9. If P
·≈ Q and P

α̂⇒ P ′ with bn(α)#Q then for some Q′ it holds P ′
·≈ Q′ and

Q
α̂⇒ Q′.

Proof. The proof has been formalised in Isabelle. We first prove the lemma for the case
α = τ by induction on the derivation of P ⇒ P ′. The base case is immediate. In the

inductive step, we have P
τ−→ P ′′ ⇒ P ′ for some P ′′. By weak simulation we obtain Q′′ with

Q⇒ Q′′ and P ′′
·≈ Q′′. It then follows from the induction hypothesis that there exists Q′

with Q′′ ⇒ Q′ and P ′
·≈ Q′.

In case α 6= τ , we obtain P1, P2 with P ⇒ P1 and P1
α−→ P2 and P2 ⇒ P ′. By the

previous case there exists Q1 with Q ⇒ Q1 and P1
·≈ Q1. Without loss of generality we

assume bn(α)#Q1, otherwise just find an alpha-variant of the transition where this holds.

By weak simulation we obtain Q2 with Q1
α̂⇒ Q2 and P2

·≈ Q2. It then follows from the

previous case that there exists Q′ with Q2 ⇒ Q′ and P ′
·≈ Q′.

Lemma 7.10.
·≈ is an equivariant equivalence relation.

Proof. The proof has been formalised in Isabelle. Equivariance is a simple calculation, based
on the observation that if R is a weak bisimulation, then π ·R is a weak bisimulation. To

prove reflexivity of
·≈, we note that equality is a weak bisimulation. Symmetry is immediate

from Definition 7.7. To prove transitivity, we show that the composition of
·≈ with itself

is a bisimulation. Assume P
·≈ S

·≈ Q. The weak simulation requirement is proved by

considering a transition P
α−→ P ′ where bn(α) is fresh for Q. Without loss of generality

we also assume bn(α)#S, otherwise just find an alpha-variant of the transition where this

holds. Since
·≈ satisfies weak simulation, we obtain S′ with S

α̂⇒ S′ and P ′
·≈ S′. Since

S
·≈ Q, Lemma 7.9 then implies that there exists Q′ with Q

α̂⇒ Q′ and S′
·≈ Q′. To prove

weak static implication, assume P ` ϕ. We use P
·≈ S and the fact that

·≈ satisfies weak

static implication to obtain some S′ with S ⇒ S′ and P
·≈ S′ and S′ ` ϕ. Since S

·≈ Q,

Lemma 7.9 then implies that there exists Q′ with Q ⇒ Q′ and S′
·≈ Q′. By weak static

implication of
·≈ we obtain Q′′ with Q′ ⇒ Q′′ and S′

·≈ Q′′ and Q′′ ` ϕ. So we have Q⇒ Q′′

and P
·≈◦ ·≈ Q′′, as required.

7.2. Weak logic. We here define a Hennessy-Milner logic adequate for weak bisimilarity.
Since weak bisimilarity identifies more states than strong bisimilarity, the logic needs to
be correspondingly less expressive: it must not contain formulas that distinguish between
weakly bisimilar states. Our approach is to keep the definition of formulas (Definition 3.4)
and identify an adequate sublogic.
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One main idea is to restrict the action modalities 〈α〉 to occur only in accordance with

the requirement of a weak bisimulation, thus checking for
α̂⇒ rather than for

α−→. We therefore
define the derived weak action modal operator 〈〈α〉〉 in the following way, where 〈τ〉iA is
defined to mean A if i = 0 and 〈τ〉〈τ〉i−1A otherwise.

Definition 7.11 (Weak action modality).

〈〈τ〉〉A =
∨
i∈ω
〈τ〉iA 〈〈α〉〉A = 〈〈τ〉〉〈α〉〈〈τ〉〉A for α 6= τ

Note that in 〈〈α〉〉A the names in bn(α) are abstracted and bind into α and A. It is
straightforward to show (and formalize in Isabelle) that 〈〈α〉〉A corresponds to the weak
transitions used in the definition of weak bisimilarity:

Proposition 7.12. Assume bn(α)#P . Then

P |= 〈〈α〉〉A iff ∃P ′. P α̂⇒ P ′ and P ′ |= A

In particular, for α = τ , we have that 〈〈τ〉〉A holds iff A holds after zero or more τ
transitions.

Thus a first step towards a weak sublogic is to replace 〈α〉 by 〈〈α〉〉 in Definition 3.4. By
itself this is not enough; that sublogic is still too expressive. For instance, the formula ϕ
asserts that ϕ holds in a state; this holds for Q but not for P in Example 7.3, even though
they are weakly bisimilar.

To disallow ϕ as a weak formula we require that state predicates only occur guarded
by a weak action 〈〈τ〉〉. This solves part of the problem. In Example 7.3 we can no longer
use ϕ as a formula, and the formula 〈〈τ〉〉ϕ holds of both P and Q. Still, in Example 7.3
there would be the formula 〈〈τ〉〉¬ϕ which holds for P but not for Q, and in Example 7.8
the formula 〈〈τ〉〉(ϕ0 ∧ ϕ1) holds for Q but not for P0. Clearly a logic adequate for weak
bisimulation cannot have such formulas. The more draconian restriction that state predicates
occur immediately under 〈〈τ〉〉 would indeed disallow both 〈〈τ〉〉¬ϕ and 〈〈τ〉〉(ϕ0 ∧ ϕ1) but
would also disallow any formula distinguishing between P and Q in Examples 7.4 and 7.5.

A solution is to allow state predicates under 〈〈τ〉〉, and never directly under negation or
in conjunction with another state predicate. The logic is:

Definition 7.13 (Weak formulas). The set of weak formulas is the sublogic of Definition 3.4
given by

A ::=
∧
i∈I

Ai | ¬A | 〈〈α〉〉A | 〈〈τ〉〉(A ∧ ϕ)

Note that since P
α̂⇒ ◦ ⇒ P ′ holds iff P

α̂⇒ P ′ we have that 〈〈α〉〉〈〈τ〉〉A is logically
equivalent to 〈〈α〉〉A. We thus abbreviate 〈〈α〉〉〈〈τ〉〉(A∧ϕ) to 〈〈α〉〉(A∧ϕ). We also abbreviate
〈〈α〉〉(> ∧ ϕ) to 〈〈α〉〉ϕ.

Compared to Definition 3.4, the state predicates can now only occur in formulas of
the form 〈〈τ〉〉(A ∧ ϕ), i.e., under a weak action, and not under negation or conjunction
with another predicate. For instance, in Example 7.3 above, neither ϕ nor 〈〈τ〉〉¬ϕ are weak
formulas, and in fact there is no weak formula to distinguish between P and Q. Similarly,
in Example 7.8 〈〈τ〉〉(ϕ0 ∧ ϕ1) is not a weak formula, and no weak formula distinguishes
between Q and Pi.

To argue that the logic still is expressive enough to provide distinguishing formulas for
states that are not weakly bisimilar, consider Example 7.4 and the formula 〈〈τ〉〉((〈〈τ〉〉ϕ0)∧ϕ1)
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which holds for P but not for Q. Similarly, in Example 7.5 〈〈τ〉〉((〈〈α〉〉>) ∧ ϕ) holds for P
but not for Q.

Definition 7.14. Two states P and Q are weakly logically equivalent, written P
·≡ Q, if for

all weak formulas A it holds that P |= A iff Q |= A.

7.3. Logical adequacy and expressive completeness. We show that the logic defined
in Section 7.2 is adequate for weak bisimilarity. Moreover, every finitely supported set of
states that is closed under weak bisimilarity can be described by a weak formula.

Theorem 7.15. P
·≈ Q =⇒ P

·≡ Q
Proof. The proof has been formalised in Isabelle. We prove by induction over weak formulas

that P
·≈ Q implies that P |= A iff Q |= A. The cases for conjunction and negation are

immediate by induction.

Case 〈〈α〉〉A: Assume P |= 〈〈α〉〉A. Then for some 〈〈α′〉〉A′ = 〈〈α〉〉A, ∃P ′ . P α̂′⇒ P ′ and
P ′ |= A′. Without loss of generality we assume also bn(α′)#Q, otherwise just find an

alpha-variant of 〈α′〉A′ where this holds. Then, by Lemma 7.9, ∃Q′ . Q α̂′⇒ Q′ and P ′
·≈ Q′.

By induction and P ′ |= A′ we get Q′ |= A′, hence by definition Q |= 〈〈α〉〉A. The proof

of Q |= 〈〈α〉〉A =⇒ P |= 〈〈α〉〉A is symmetric, using the fact that P
·≈ Q entails Q

·≈ P .

Case A = 〈〈τ〉〉(B ∧ ϕ). Assume P
·≈ Q and P |= A. Then P ⇒ P ′ such that P ′ |= B

and P ′ ` ϕ. By P
·≈ Q and Lemma 7.9 we obtain Q′ such that Q⇒ Q′ and P ′

·≈ Q′. By

weak static implication we obtain Q′′ with Q′ ⇒ Q′′ and P ′
·≈ Q′′ and Q′′ ` ϕ. By induction

Q′′ |= B, thus Q′′ |= B ∧ ϕ. From Q⇒ Q′ ⇒ Q′′ we have Q⇒ Q′′. Thus Q |= 〈〈τ〉〉(B ∧ ϕ)
as required.

The proof that Q |= A implies P |= A is symmetric, using the fact that P
·≈ Q entails

Q
·≈ P .

Lemma 7.16. If P 6 ·≡ Q then there exists a distinguishing weak formula B for P and Q
such that supp(B) ⊆ supp(P ).

Proof. The proof has been formalised in Isabelle. Since P 6 ·≡ Q there is a distinguishing
weak formula A for P and Q. Let ΠP be the set of name permutations that leave supp(P )
invariant and choose B =

∧{π · A |π ∈ ΠP }. In the terminology of Pitts [Pit13] ch. 5,
B is the conjunction of hullsupp(P )A; this set is supported by supp(P ) (but not uniformly
bounded). Because |= is equivariant we get P |= π ·A for all conjuncts π ·A of B, and since
Q 6|= A = id ·A we get Q 6|= B.

Theorem 7.17. P
·≡ Q =⇒ P

·≈ Q

Proof. The proof has been formalised in Isabelle. We establish that
·≡ is a weak bisimulation.

Obviously it is symmetric. So assume P
·≡ Q, we need to prove the two requirements on a

weak bisimulation.

(1) Weak static implication. The proof is by contradiction. Assume that
·≡ does not satisfy

the weak static implication requirement. Then there exist P , Q, ϕ such that P
·≡ Q and

P ` ϕ and for all Q′ such that Q⇒ Q′ and Q′ ` ϕ there exists a distinguishing formula
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AQ′ such that P |= AQ′ and not Q′ |= AQ′ . By Lemma 7.16 supp(AQ′) ⊆ supp(P ),
which means that the infinite conjunction A of all these AQ′ is well formed. We thus

have that 〈〈τ〉〉(A ∧ ϕ) is a distinguishing formula for P and Q, contradicting P
·≡ Q.

(2) Weak simulation. The proof is by contradiction. Assume that
·≡ does not satisfy the

weak simulation requirement. Then there exist P,Q, P ′, α with bn(α)#Q such that

P
·≡ Q and P

α−→ P ′ and, letting Q = {Q′ | Q α̂⇒ Q′}, for all Q′ ∈ Q it holds that P ′ 6 ·≡ Q′.
Assume bn(α)#P , otherwise just find an alpha-variant of the transition satisfying this.

By P ′ 6 ·≡ Q′, for all Q′ ∈ Q there exists a weak distinguishing formula for P ′ and Q′.
The formula may depend on Q′, and by Lemma 7.16 we can find such a distinguishing
formula BQ′ for P ′ and Q′ with supp(BQ′) ⊆ supp(P ′). Let B be the conjunction of all

BQ′ . We thus get that P |= 〈〈α〉〉B but not Q |= 〈〈α〉〉B, contradicting P
·≡ Q.

We omit the proofs of the following results (which have also been formalised in Isabelle),
as they are similar to the corresponding proofs for the full logic in Section 3.3. In addition,
we need to verify that the constructions used below yield weak formulas. This is immediate
from Definition 7.13.

Lemma 7.18. If P 6 ·≡ Q, write BP,Q for a distinguishing weak formula for P and Q such
that supp(BP,Q) ⊆ supp(P ). Then

D(P,Q) :=
∧
π

π−1 ·Bπ·P,π·Q

defines a distinguishing weak formula for P and Q with support included in supp(P ). More-
over, the function D is equivariant.

Definition 7.19. A characteristic weak formula for P is a weak formula A such that for

all Q, P
·≈ Q iff Q |= A.

Lemma 7.20. Let D be defined as in Lemma 7.18. The formula Char(P ) :=
∧
P 6
·
≡Q

D(P,Q)

is a characteristic weak formula for P .

Lemma 7.21. Let Char(P) be defined as in Lemma 7.20. The function Char: P 7→ Char(P )
is equivariant.

Theorem 7.22 (Weak Expressive Completeness). Let S be a finitely supported set of states

that is closed under weak bisimilarity, i.e., for all P ∈ S and Q, P
·≈ Q implies Q ∈ S.

Then P ∈ S iff P |= ∨
P ′∈S Char(P ′).

7.4. Disjunction elimination. As defined in Section 4, disjunction is a derived logical
operator, expressed through conjunction and negation. This is still true in the weak modal
logic, but there is a twist in that neither general conjunctions nor negations may be applied
to unguarded state predicates. The examples in Section 7.1 demonstrate why this restriction
is necessary: negated or conjoined state predicates in formulas would mean that adequacy
no longer holds. Interestingly, we can allow disjunctions of unguarded predicates while
maintaining adequacy; in fact, adding disjunction would not increase the expressive power
of the logic. In this section we demonstrate this claim. An uninterested reader may skip
this section without loss of continuity.
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The extended weak logic is as follows, where a simultaneous induction defines both
extended weak formulas (ranged over by E) and preformulas (ranged over byB) corresponding
to subformulas with unguarded state predicates.

Definition 7.23 (Extended weak formulas E and preformulas B).

E ::=
∧
i∈I Ei | ¬E | 〈〈α〉〉E | 〈〈τ〉〉B

B ::= E ∧B | ϕ | ∨
i∈I Bi

The last clause in the definition of preformulas is what distinguishes this logic from the
logic in Definition 7.13. (Thus an extended weak formula is also an ordinary weak formula if
it does not contain a disjunction of unguarded state predicates.) For instance, 〈〈τ〉〉(ϕ0 ∨ ϕ1)
is an extended weak formula, as is

〈〈τ〉〉(((〈〈β〉〉>) ∧ ϕ0) ∨ ((〈〈γ〉〉>) ∧ ϕ1))

saying that it is possible to do a sequence of unobservable actions such that either continuing
with β and satisfying ϕ0 hold, or continuing with γ and satisfying ϕ1 hold.

Lemma 7.24. 〈〈τ〉〉∨i∈I Bi is a formula iff
∨
i∈I〈〈τ〉〉Bi is, and in this case

〈〈τ〉〉
∨
i∈I

Bi
·≡
∨
i∈I
〈〈τ〉〉Bi

Proof. The proof is by directly expanding definitions, noting that supp({〈〈τ〉〉Bi | i ∈ I}) is
equal to supp({Bi | i ∈ I}).
Theorem 7.25. For any extended weak formula E there is an (ordinary) weak formula ∆(E)

such that E
·≡ ∆(E).

Proof. The idea is to push disjunctions in preformulas to top level using the fact that (finite)
conjunction distributes over disjunction, and then use Lemma 7.24. Say that a preformula is
in normal form if it either is A∧ ϕ where A here and in the following stands for an ordinary
weak formula, or is a disjunction of normal forms. We let C range over normal preformulas,
thus

C ::= A ∧ ϕ |
∨
i∈I

Ci

The intuition is that in a normal preformula no conjunction can contain a disjunction of
preformulas.

Define a function δ from normal preformulas to (ordinary) weak formulas by

δ(A ∧ ϕ) = 〈〈τ〉〉(A ∧ ϕ)

δ(
∨
i∈I Ci) =

∨
i∈I δ(Ci)

By induction δ is equivariant, hence the disjunction in the above definition is finitely

supported. Moreover, δ(C)
·≡ 〈〈τ〉〉C by Lemma 7.24 and induction.

Next, define a binary function ε from pairs consisting of an (ordinary) weak formula
and a normal preformula, to normal preformulas, by

ε(A,A′ ∧ ϕ) = (A ∧A′) ∧ ϕ
ε(A,

∨
i∈I Ci) =

∨
i∈I ε(A,Ci)

Also ε is equivariant, and ε(A,C)
·≡ A ∧ C by induction and distributivity of conjunction.
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We now provide an explicit transformation ∆ from extended weak formulas to (ordinary)
weak formulas. We also provide a transformation ∆pre that maps preformulas to normal
preformulas. The transformations ∆ and ∆pre are defined by mutual recursion:

∆(
∧
i∈I Ei) =

∧
i∈I ∆(Ei)

∆(¬E) = ¬∆(E)

∆(〈〈α〉〉E) = 〈〈α〉〉∆(E)

∆(〈〈τ〉〉B) = δ(∆pre(B))

∆pre(E ∧B) = ε(∆(E),∆pre(B))

∆pre(ϕ) = > ∧ ϕ
∆pre(

∨
i∈I Bi) =

∨
i∈I ∆pre(Bi)

By simultaneous induction over extended weak formulas and preformulas it is easy to
prove that both ∆ and ∆pre are equivariant. Therefore, all conjunctions and disjunctions
that appear on the right-hand side in the above definition are finitely supported.

We now prove, again by simultaneous induction over extended weak formulas E and

preformulas B, that ∆(E)
·≡ E and ∆pre(B)

·≡ B. The cases ∆(
∧
i∈I Ei) and ∆(¬E) and

∆(〈〈α〉〉E) are immediate by induction. For the case ∆(〈〈τ〉〉B) we have

∆(〈〈τ〉〉B) = δ(∆pre(B))
·≡ 〈〈τ〉〉∆pre(B)

·≡ 〈〈τ〉〉B
by induction. Likewise, for the case ∆pre(E ∧B) we have

∆pre(E ∧B) = ε(∆(E),∆pre(B))
·≡ ∆(E) ∧∆pre(B)

·≡ E ∧B
by induction. The case ∆pre(ϕ) is trivial, and the case ∆pre(

∨
i∈I Bi) is again immediate by

induction.

8. State predicates versus actions

Transition system formalisms differ in how much information is considered to reside in states
and how much is considered to reside in actions. One extreme is Lamport’s TLA [Lam02]
where all information is in the states. On the other extreme are most process algebras such
as the pi-calculus, where states contain no information apart from the outgoing transitions.
Advanced process algebras such as psi-calculi use both state predicates and actions. Clearly,
many ways are possible and the choice is more dependent on the traditions and modelling
convenience in different areas than on hard theoretical results.

The question if state information can be encoded as actions and vice versa is old.
Already in 1989 Jonsson et al. [JKP90] provided a translation from a labelled transition
system into an (unlabelled) Kripke structure, in order to use a model checker for CTL. With
nominal transition systems it is hard to see how such a translation could work. The actions
can contain binding names and encoding that into the states would require a substantial
extension of our definitions.

In the other direction, it has long been a folklore fact in process algebra that a state
predicate can be represented as an action on a transition leading back to the same state. In
this section we make this idea fully formal: for the purposes of checking bisimilarity this
transformation is indeed sound, and there is a companion transformation on modal logic
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formulas. This is straightforward for strong bisimulation and modal logic, and a little more
involved for weak modal formulas.

8.1. Strong bisimulation and logic. Our idea is that for any transition system T there
is another transition system S(T) where state predicates are replaced by self-loops. To
formulate this idea we again use the notation statesT to mean the states in the transition
system T, and similarly for actions, bn, transitions, bisimilarity, etc.

Definition 8.1. The function S from transition systems to transition systems is defined as
follows:

• statesS(T) = statesT
• actS(T) = actT ] predT

• bnS(T)(α) = bnT(α) if α ∈ actT; bnS(T)(ϕ) = ∅ if ϕ ∈ predT

• predS(T) = `S(T) = ∅
• P α−→S(T) P

′ if P
α−→T P ′ (for α ∈ actT); P

ϕ−→S(T) P if P `T ϕ (for ϕ ∈ predT)

It is easy to see that if T is a transition system then so is S(T). In particular equivariance
of →S(T) follows from equivariance of →T and `T and the fact that the union of equivariant

relations is equivariant.2

Theorem 8.2. P
·∼T Q =⇒ P

·∼S(T) Q

Proof. The proof has been formalised in Isabelle. We show that
·∼T is a S(T)-bisimulation.

Obviously it is symmetric. Static implication is trivial since `S(T) is false everywhere. For

simulation, assume P
·∼T Q and that P has a transition in S(T). If the transition has

an action in T, then P has the same transition in T. If the action is a state predicate

in T then the transition must be P
ϕ−→S(T) P where P `T ϕ, hence by static implication

Q `T ϕ, thus also Q
ϕ−→S(T) Q. In both cases we therefore have a simulating transition from

Q in S(T).

Theorem 8.3. P
·∼S(T) Q =⇒ P

·∼T Q

Proof. The proof has been formalised in Isabelle. We show that
·∼S(T) is a T-bisimulation.

Obviously it is symmetric. Assume P
·∼S(T) Q. For static implication, if P `T ϕ then P

has a transition with action ϕ in S(T), thus Q has a transition with the same action, hence
Q `T ϕ. For simulation, any transition in T is also a transition in S(T).

Modal logic formulas over S(T) use predicates as actions. We extend S to formulas as
follows.

Definition 8.4. The function S from formulas over the transition system T to formulas
over the transition system S(T) is defined by

S(ϕ) = 〈ϕ〉>
and is homomorphic on the other cases in Definition 3.4.

2Nominal Isabelle does not admit empty types. Therefore, the type predS(T) is given by the unit type in
our Isabelle formalisation. We still define `S(T) to be false everywhere, so that this minor difference has no

further significance.
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Theorem 8.5. P |=T A iff P |=S(T) S(A)

Proof. The proof has been formalised in Isabelle. It is by induction over formulas A, for
arbitrary P . If A = ϕ then clearly P |=T ϕ iff P |=S(T) 〈ϕ〉>. For the case A = 〈α〉A′ we
assume without loss of generality bn(α)#P , otherwise just find an alpha-variant where this
holds. This and the other cases are then immediate by induction.

This provides an alternative proof of Theorem 8.3. If P
·∼S(T) Q then by Theorem 3.8

for any A it holds that P |= S(A) iff Q |= S(A), and thus P |= A iff Q |= A, therefore by

Theorem 3.11 P
·∼T Q. The converse does not follow since S is not surjective on formulas.

8.2. Weak bisimulation. For weak bisimulation the corresponding proofs are only a little
bit more complicated.

Theorem 8.6. P
·≈T Q =⇒ P

·≈S(T) Q

Proof. The proof has been formalised in Isabelle. We show that
·≈T is a weak S(T)-

bisimulation. Obviously it is symmetric. Weak static implication is trivial since `S(T) is

false everywhere. For weak simulation, assume P
·≈T Q. There are two cases.

(1) P
α−→S(T) P

′ where α ∈ actT. Then P
α−→T P ′ and by P

·≈T Q we get Q
α̂⇒T Q′, which

implies Q
α̂⇒S(T) Q

′, with P ′
·≈T Q′.

(2) P
ϕ−→S(T) P where ϕ ∈ predT and P `T ϕ. By weak static implication Q⇒T Q′ and

Q′ `T ϕ and Q′
·≈T P . Thus Q⇒S(T) Q

′ and Q′
ϕ−→S(T) Q

′, hence Q
ϕ̂⇒S(T) Q

′.

The converse uses the following lemma, which is familiar in many process algebras and
interesting in its own right.

Lemma 8.7. If P ⇒ Q⇒ R and P
·≈ R then Q

·≈ R.

Proof. The proof has been formalised in Isabelle. We establish that {(Q,R), (R,Q)} ∪ ·≈ is
a weak bisimulation. Obviously it is symmetric.

For weak static implication, clearly if R ` ϕ then Q ⇒ R ` ϕ; and if Q ` ϕ then

P ⇒ Q ` ϕ, so by P
·≈ R, Lemma 7.9, and weak static implication we obtain R′ with

R⇒ R′ ` ϕ as required.

For weak simulation, clearly if R
α−→ R′ then Q⇒ R

α−→ R′, hence Q
α̂⇒ R′ (and obviously

R′
·≈ R′); and if Q

α−→ Q′ then P
α̂⇒ Q′, so again by P

·≈ R and Lemma 7.9 we obtain R′

with R
α̂⇒ R′ and Q′

·≈ R′.

Theorem 8.8. P
·≈S(T) Q =⇒ P

·≈T Q

Proof. The proof has been formalised in Isabelle. We show that
·≈S(T) is a weak T-

bisimulation. Obviously it is symmetric.

For weak static implication, assume P
·≈S(T) Q and P `T ϕ. Thus P

ϕ−→S(T) P .

By weak simulation we obtain Q′ with Q
ϕ̂⇒S(T) Q

′ and P
·≈S(T) Q

′. By construction

of S(T) this means that there is a Q′′ such that Q ⇒S(T) Q
′′ ϕ−→S(T) Q

′′ ⇒S(T) Q
′. Thus
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Q⇒T Q′′ and Q′′ `T ϕ. Moreover, by applying Lemma 8.7 to Q⇒S(T) Q
′′ ⇒S(T) Q

′ and

Q
·≈S(T) P

·≈S(T) Q
′ we get P

·≈S(T) Q
′′ as required.

For weak simulation, assume P
·≈S(T) Q and P

α−→T P ′. This implies P
α−→S(T) P

′,

and thus by weak simulation Q
α̂⇒S(T) Q

′, which implies Q
α̂⇒T Q′, with P ′

·≈S(T) Q
′ as

required.

8.3. Weak logic. For the weak logic, the correspondence between state predicates and
actions is less obvious, and there appear to be more than one alternative. The transformation
S of formulas does not preserve the property of being a weak formula since

S(〈〈τ〉〉(A ∧ ϕ)) = 〈〈τ〉〉(S(A) ∧ 〈ϕ〉>)

and the subformula 〈ϕ〉> is not weak. For the transition system S(T) we thus get an alterna-
tive logic adequate for weak bisimilarity by taking the formulas {S(A) | A is a weak formula},
i.e., with the last clause of Definition 7.13 replaced by formulas of kind 〈〈τ〉〉(A ∧ 〈ϕ〉>).

Corollary 8.9. P
·≈S(T) Q iff for all weak formulas A: P |=S(T) S(A) iff Q |=S(T) S(A)

Proof. The proof has been formalised in Isabelle. It is immediate by Theorems 7.15, 7.17
and 8.5–8.8.

For this corollary to hold it is critical that the transition system is an image of S, i.e.,
that the transitions involving actions ϕ only occur in loops. If this is not the case, there
may be formulas in the image of S that can distinguish between weakly bisimilar states. An
example is the following:

P
ϕ

α

τ
ϕ

Q
α

τ
ϕ

Here P and Q are weakly bisimilar. Let A be the weak formula 〈〈τ〉〉(〈〈α〉〉> ∧ ϕ). Then
S(A) = 〈〈τ〉〉(〈〈α〉〉> ∧ 〈ϕ〉>), and P |= S(A) but not Q |= S(A).

Ideally, we would want an alternative transformation onto weak formulas, but it seems
difficult to formulate this in a succinct way. Through expressive completeness (Section 7.3)
we get the following:

Theorem 8.10. Let A be a weak formula over T. Then there exists a weak formula A′

over S(T) such that
P |=T A iff P |=S(T) A

′

for all states P .

Proof. The proof has been formalised in Isabelle. Note that {Q | Q |=T A} is finitely

supported (with support included in supp(A)), and moreover closed under
·≈S(T) by Theo-

rems 7.15 and 8.8. It then follows from Theorem 7.22 that A′ =
∨
Q|=TA

Char(Q) has the

desired properties.
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Inherent in this proof is a construction of the weak formula A′ from the weak formula A,
but the construction depends implicitly on distinguishing formulas (cf. Theorem 3.11) and
thus on the entire transition system.

We have failed to find a transformation of weak formulas that yields equivalent weak
formulas over S(T) and is defined by induction over formulas, or, at the very least, is
independent of the transition system. We have also failed to prove that such a transformation
cannot exist, and thus have to leave this problem open. The following counterexamples shed
light on the difficulties:

Counterexample. Define the transformation S on weak formulas by

S(〈〈τ〉〉(A ∧ ϕ)) = 〈〈ϕ〉〉S(A)

With this definition, the counterpart of Theorem 8.5 fails. A counterexample is A =

¬〈〈α〉〉>, P `T ϕ with P
τ−→T Q and P

α−→T Q for some α 6= τ , where Q has no outgoing
transitions, cf. the diagrams below:

P Qϕ

τ
α α

τ

ϕ

QP
T: S(T):

Since P
ϕ⇒S(T) Q and Q has no 〈〈α〉〉 action, we have that

P |=S(T) 〈〈ϕ〉〉¬〈〈α〉〉>
The only state in T that satisfies ϕ also has an 〈〈α〉〉 action, thus it does not hold that

P |=T 〈〈τ〉〉(¬〈〈α〉〉> ∧ ϕ)

Counterexample. Define the transformation S on weak formulas by

S(〈〈τ〉〉(A ∧ ϕ)) = 〈〈τ〉〉(S(A) ∧ 〈〈ϕ〉〉>)

Then again the counterpart of Theorem 8.5 fails. A counterexample here is A = 〈〈α〉〉>, with

P
τ−→T Q and Q `T ϕ, P

α−→T Q for some α 6= τ , cf. the diagrams below:

P Qϕ

τ
α α

τ

ϕ

QP
T: S(T):

Here it holds that
P |=S(T) 〈〈τ〉〉(〈〈α〉〉> ∧ 〈〈ϕ〉〉>)

and it does not hold that
P |=T 〈〈τ〉〉(〈〈α〉〉> ∧ ϕ)

Finally, consider the partial transformation S ′ on weak formulas by

S ′(〈〈τ〉〉((〈〈τ〉〉A) ∧ ϕ)) = 〈〈ϕ〉〉S ′(A)

where S ′ is homomorphic on the first three cases in Definition 7.13.
S ′ is not total since a formula 〈〈τ〉〉(A ∧ ϕ) is in its domain only when A = 〈〈τ〉〉A′ for

some A′. It is easy to see that S ′ is injective and surjective, i.e., every weak formula A
on S(T) has a unique formula B on T such that S ′(B) = A. We write S ′−1 for the inverse
of S ′. Thus

S ′−1(〈〈ϕ〉〉A) = 〈〈τ〉〉((〈〈τ〉〉S ′−1(A)) ∧ ϕ)
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and S ′−1 is homomorphic on all other operators.

Theorem 8.11. P |=S(T) A iff P |=T S ′−1(A)

Proof. By induction over weak formulas on S(T). All cases are trivial by induction except

for the case 〈〈ϕ〉〉A with ϕ ∈ predT. Suppose P |=S(T) 〈〈ϕ〉〉A. Then P ⇒S(T) P
′ ϕ−→S(T)

P ′′ ⇒S(T) Q with Q |=S(T) A. By construction of S(T) we get P ′ = P ′′, and P ⇒T P ′ ⇒T

Q with P ′ `T ϕ. By induction Q |=T S ′−1(A). This establishes that P ′ |=T 〈〈τ〉〉S ′−1(A)∧ϕ
and thus P |=T 〈〈τ〉〉(〈〈τ〉〉S ′−1(A)∧ϕ) as required. Conversely, if P |=T 〈〈τ〉〉(〈〈τ〉〉S ′−1A∧ϕ)
then P ⇒T P ′ ⇒T Q, and by construction of S(T) and induction we get P |=S(T) 〈〈ϕ〉〉A.

An interesting consequence is that to express the distinguishing formulas guaranteed
by Theorem 7.17, it is enough to consider formulas in dom(S ′), i.e., in the last clause of

Definition 7.13, it is enough to consider A = 〈〈τ〉〉A′. The reason is that if P 6 ·≈T Q then by

Theorem 8.8 also P 6 ·≈S(T) Q, which by Theorem 7.17 means there is a distinguishing for-

mula B for P and Q in S(T), which by Theorem 8.11 means that S ′−1(B) is a distinguishing
formula in T.

In conclusion, the results in this section show that the transformation S indicates an
alternative weak logic with formulas 〈〈τ〉〉(A∧ 〈ϕ〉>), which is appropriate if ϕ only occurs in
self-loops. The transformation S ′, on the other hand, indicates that a sublogic with formulas
〈〈τ〉〉(〈〈τ〉〉A ∧ ϕ) is expressively equivalent. It admits a smooth transformation of predicates
into actions at the cost of a more complicated definition of a weak logic.

Through expressive completeness we obtain a transformation on our original weak logic,
but it does not really shed light on the nature of state predicates and actions. Certainly,
it means that any impossibility result for a transformation onto weak formulas must be
qualified with a notion of independence from the transition system. This would require a
proper definition of the set of transition systems that act as models for a given logic. One
difficulty here is that the disjoint union of a set of transition systems is itself a transition
system. By expressive completeness we get a transformation (dependent on this union);
that same transformation thus applies to all the members in the set. Consider the set of all
transition systems of cardinality at most κ; this set may have a cardinality higher than κ.
Thus an impossibility result may actually depend on the cardinality limit in Definition 3.4.

9. Applications

In this section we consider standard process calculi and their accompanying labelled bisimi-
larities, and investigate how to obtain an adequate modal logic using our framework. In
each of the final two examples, no HML has to our knowledge yet been proposed, and we
immediately obtain one by instantiating the logic in the present paper.

Pi-calculus. The pi-calculus by Milner et al. [MPW92] has a labelled transition system
with early input, defined using a structural operational semantics. This transition system
satisfies the axioms of a nominal transition system, and the logic of Section 3 (with an empty
set of state predicates) is adequate for early bisimilarity. Other variants of bisimilarity can
be obtained by instead using the original transition system (with late input) and one of the
variants of our logic described in Section 6.
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The pi-calculus already has several notions of weak bisimulation, and Definition 7.7
corresponds to the early weak bisimulation. In the pi-calculus there are no state predicates,
thus the weak static implication is unimportant. The weak logic of Definition 7.13 is adequate
for early weak bisimulation.

Applied pi-calculus. The applied pi-calculus by Abadi and Fournet (2001) [AF01] comes
equipped with a labelled transition system and a notion of weak labelled bisimulation. States
contain a record of emitted messages; this record has a domain and can be used to equate
open terms M and N modulo some rewrite system. The definition of bisimulation requires
bisimilar processes to have the same domain and equate the same open terms, i.e., to be
strongly statically equivalent. We model these requirements using state predicates “x ∈ dom”
and “M ≡ N”. Since satisfaction is invariant under silent transitions, weak and strong static
implication coincide, and our weak HML is adequate for Abadi and Fournet’s early weak
labelled bisimilarity.

Spi-calculus. The spi-calculus by Abadi and Gordon (1999) [AG99] has a formulation
as an environment-sensitive labelled transition system by Boreale et al. (2001) [BDNP01]
equipped with state formulae (predicates) φ. Adding state predicates “x ∈ dom” to the state
predicates makes our weak HML adequate with respect to Boreale’s early weak bisimilarity.

Concurrent constraint pi calculus. The concurrent constraint pi calculus (CC-pi) by
Buscemi and Montanari (2007) [BM07] extends the explicit fusion calculus [WG05] with a
more general notion of constraint stores c. Using the labelled transition system of CC-pi and
the associated bisimulation (Definition 3.2), we immediately get an adequate modal logic.

The reference equivalence for CC-pi is open bisimulation [BM08] (closely corresponding
to hyperbisimulation in the fusion calculus [PV98]), which differs from labelled bisimulation
in two ways: First, two equivalent processes must be equivalent under all store extensions.
To encode this, we let the effects F be the set of constraint stores c different from 0, and let

c(P ) = c | P . Second, when simulating a labelled transition P
α−→ P ′, the simulating process

Q can use any transition Q
β−→ Q′ with an equivalent label, as given by a state predicate

α = β. As an example, if α = a〈x〉 is a free output label then P ` α = β iff β = b〈y〉 where
P ` a = b and P ` x = y. To encode this, we transform the labels of the transition system

by replacing them with their equivalence classes, i.e., P
α−→ P ′ becomes P

[α]P−−→ P ′ where
β ∈ [α]P iff P ` β = α. Hyperbisimilarity (Definition 6.2) on this transition system then
corresponds to open bisimilarity, and the modal logic defined in Section 6 is adequate.

Psi-calculi. In psi-calculi by Bengtson et al. (2011) [BJPV11], the labelled transitions take

the form Ψ . P
α−→ P ′, where the assertion environment Ψ is unchanged after the step. We

model this as a nominal transition system by letting the set of states be pairs (Ψ, P ) of

assertion environments and processes, and define the transition relation by (Ψ, P )
α−→ (Ψ, P ′)

if Ψ . P
α−→ P ′. The notion of bisimulation used with psi-calculi also uses an assertion

environment and is required to be closed under environment extension, i.e., if Ψ . P ∼ Q,
then Ψ ⊗ Ψ′ . P ∼ Q for all Ψ′. We let the effects F be the set of assertions, and
define Ψ((Ψ′, P )) = (Ψ⊗Ψ′, P ). Hyperbisimilarity on this transition system then subsumes
the standard psi-calculi bisimilarity, and the modal logic defined in Section 6 is adequate.
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Weak bisimilarity for CC-pi and psi. Both CC-pi and psi-calculi has a special unob-
servable action τ , but until now only psi-calculi have a notion of weak labelled bisimulation
(as remarked in Section 7.1), and neither has a weak HML. Through this paper they both
gain both weak bisimulation and logic, although more work is needed to establish how
compatible the bisimulation equivalence is with their respective syntactic constructs. A
complication is that the natural formulation of bisimulation makes use of effects (store or
assertion extensions) which are bisimulation requirements on neither predicates nor actions.
In order to map them into our framework these would need to be cast as actions. Their
interactions with the silent action could be an interesting topic for further research.

10. Related work

We here discuss other modal logics for process calculi, with a focus on how their constructors
can be captured by finitely supported conjunction in our HML. This comparison is by
necessity somewhat informal: formal correspondence fails to hold due to differences in the
conjunction operator of the logic (finite, uniformly bounded or unbounded vs. bounded
support).

HML for CCS. The first published HML is Hennessy and Milner (1980–1985) [HM80,
Mil81, HM85]. They work with image-finite CCS processes, where finite (binary) conjunction
suffices for adequacy, and define both strong and weak versions of the logic. The logic by
Hennessy and Liu (1995) [HL95] for a value-passing calculus also uses binary conjunction,
where image-finiteness is due to a late semantics and the logic contains quantification
over data values. A similar idea and argument is in a logic for LOTOS by Calder et
al. (2002) [CMS02], though that paper only considers stratified bisimilarity up to ω.

Hennessy and Liu’s value-passing calculus is based on ordinary CCS. In this calculus, a
receiving process a(x).P can participate in a synchronisation on a, becoming an abstraction
(x)P where v is a bound variable. Dually, a sending process a v.Q becomes a concretion (v,Q)
where v is a value. The abstraction and concretion above react as part of the synchronisation
on a, yielding P{v/x} | Q. To capture the operations of abstractions and concretions in our

framework, we add effects id and ?v, with ?v((x)P ) = P{v/x}, and transitions (v, P )
!v−→ P .

Letting L(a?, ) = {?v | v ∈ values} and L(α, ) = {id} otherwise, late bisimilarity is
{id}/L-bisimilarity as defined in Section 6. We can then encode their universal quantifier
∀x.A as

∧
v〈?v〉A{v/x}, which has support supp(A) \ {x}, and their output modality 〈c!x〉A

as 〈c!〉∨v〈!v〉A{v/x}, with support {c} ∪ (supp(A) \ {x}).
An infinitary HML for CCS is discussed in Milner’s book (1989) [Mil89], where also

the process syntax contains infinite summation. There are no restrictions on the indexing
sets and no discussion about how this can exhaust all names. The adequacy theorem is
proved by stratifying bisimilarity and using transfinite induction over all ordinals, where
the successor step basically is the contraposition of the argument in Theorem 3.11, though
without any consideration of finite support. A more rigorous treatment of the same ideas is
by Abramsky (1991) [Abr91] where uniformly bounded conjunction is used throughout.

Koutavas et al. (2018) [KGH18] study a transactional CCS, extending the natural
transition system in order to provide three equivalent adequate HMLs. Neither processes
nor actions contain bound names, which is a stark difference from the problem treated in
the present paper. Formulas contain countably infinite conjunction and thus may contain
an infinite number of variable names, which are “interpreted nominally”. The paper does
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not define alpha-equivalence for formulas, and states that variable instantiation ”does not
require any notion of alpha-equivalence, as in [PBE+15]”. In order to find a fresh variable
name, the adequacy proof instead uses an unspecified notion of renaming (Prop. 4.5).

Simpson (2004) [Sim04] gives a sequent calculus for proving HML properties of process
calculi in GSOS format, using binary conjunction and assuming finite branching and a finite
number of actions.

µ-calculus. Kozen’s modal µ-calculus (1983) [Koz83] subsumes several other weak temporal
logics including CTL* (Cranen et al. 2011) [CGR11], and can encode weak transitions using
least fixed points. Dam (1996) [Dam96] gives a modal µ-calculus for the pi-calculus, treating
bound names using abstractions and concretions, and provides a model checking algorithm.
Bradford and Stevens (1999) [BS99] give a generic framework for parameterising the µ-
calculus on data environments, state predicates, and action expressions. The logic defined in
the present paper can encode the least fixpoint operator of µ-calculi by a disjunction of its
finite unrollings, as seen in Section 5.2. We can immediately encode the atomic µ-calculus
by Klin and  Le lyk (2017) [KL17].

Pi-calculus. The first HML for the pi-calculus is by Milner et al. (1993) [MPW93], where
infinite conjunction is used in the early semantics and conjunctions are restricted to use
a finite set of free names. The adequacy proof has the same structure as in this paper.
The logic of Section 3, applied to the pi-calculus transition system from which bound input
actions x(y) have been removed, contains the logic F of Milner et al., or the equipotent logic
FM if we take the set of name matchings [a = b] as state predicates. Gabbay [Gab03] gives
the first nominal syntax and operational semantics for the pi-calculus, in Fraenkel-Mostowski
set theory.

Koutavas and Hennessy (2012) [KH12] give a weak HML for a higher-order pi-calculus
with both higher-order and first-order communication using an environment-sensitive LTS.
Xu and Long (2015) [XL15] define a weak HML with countable conjunction for a purely
higher-order pi-calculus. The adequacy proof uses stratification.

Ahn et al. (2017)[AHT17] give an innovative intuitionistic logic characterising open
bisimilarity. In their setting, substitution effects are only employed inside the definition of
the logical implication operator. Their soundness proof is standard; for the completeness
proof the distinguishing formula for P wrt. Q is constructed in parallel with one for Q
wrt. P .

There are several extensions of HML with spatial modalities. The one most closely
related to our logic is by Berger et al. (2008) [BHY08]. They define an HML with both
strong and weak action modalities, fixpoints, spatial conjunction and adjunction, and a
scope extrusion modality, to study a typed value-passing pi-calculus with selection and
recursion. The logic has three (may, must, and mixed) proof systems that are sound and
relatively complete.

Spi Calculus. Frendrup et al. (2002) [FHNJ02] provide three Hennessy-Milner logics for
the spi calculus [AG99]. All three logics use infinite quantification without any consider-
ation of finite support. The transition system used is a variant of the one by Boreale et
al. (2001) [BDNP01], where a state is a pair σ . P of a process P and its environment σ: a
substitution that maps environment variables to public names and messages received from
the process. This version of the spi calculus has expressions ξ, that are terms constructed
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from names and environment variables using encryption and decryption operators, and
messages M , that only contain names and encryption. Substitution ξσ replaces environment
variables in ξ with their values in σ, and evaluation e(ξ) is a partial function that attempts
to perform the decryptions in ξ, yielding a message M if all decryptions are successful.

As usual for the spi calculus, the bisimulation (and logic) is defined in terms of the
environment actions, rather than the process actions. In Frendrup’s version of Boreale’s
environment-sensitive transition system, the transition labels are related to the process
actions in the following way: when a process P receives message M on channel a, the label

of a corresponding environment-sensitive transition σ . P
a ξ−→ σ′ . P ′ describes how the

environment σ computed the message M = e(ξσ). For process output of message M on

channel a, the corresponding environment-sensitive transition is simply σ . P
a−→ σ′ . P ′;

the message M can be recovered from the updated environment σ′.
The logics of Frendrup et al. include a matching modality [M = N ]A that is defined

using implication: σ . P |= [M = N ]A iff e(Mσ) = e(Nσ) implies σ . P |= A. This is
equipotent to having matching as a state predicate, since we can rewrite all non-trivial
guards by [M = N ]A ⇐⇒ A ∨ ¬[M = N ]>.

The logic of Section 3, applied to the nominal transition system with the environment
labels τ , a and a ξ above has the same modalities as the logic F of Frendrup et al.

The logic EM by Frendrup et al. replaces the simple input modality by an early input
modality 〈a (x)〉EA, which (after a minor manipulation of the input labels) can be encoded
as the conjunction

∧
ξ〈a ξ〉A{ξ/x} with support supp(A) \ {x}. We do not consider their

logic LM that uses a late input modality, since its application relies on sets that do not
have finite support [FHNJ02, Theorem 6.12], which are not meaningful in nominal logic.

Frendrup et al. claim to “characterize early and late versions of the environment sensitive
bisimilarity of [BDNP01]”, but this claim only holds with some modification. First the
definition of static equivalence [FNJ01, Definition 22] that is used in the adequacy proofs is
strictly stronger than the one that appears in the published paper [FHNJ02, Definition 3.4].
Thus, the adequacy results [FHNJ02, Theorems 6.3, 6.4, and 6.14] are false as stated, but
can be repaired by substituting the stronger notion of static equivalence. Then Frendrup’s
logics and bisimilarities become sound, but not complete, with respect to the bisimilarity
of [BDNP01], since the latter uses the weaker notion of static equivalence (Definition 3.4).
In Section 9 we sketched an instance of our logic, for Boreale’s labelled transition system,
that is adequate for early bisimilarity.

Applied Pi-calculus. A more recent work is a weak HML by Hüttel and Pedersen
(2007) [HP07] for the applied pi-calculus by Abadi and Fournet (2001) [AF01], where
completeness relies on an assumption of image-finiteness of the weak transitions. Similarly
to the spi calculus, there is a requirement that terms M received by a process P can be
computed from the current knowledge available to an observer of the process, which we here
write M ∈ S(P ).

The logic contains atomic formulae for term equality (indistinguishability) in the frame
of a process, corresponding to our state predicates. However, Hüttel and Pedersen use a
notion of equality (and thus static equivalence) that is stronger than the corresponding
relation by Abadi and Fournet, and that is not well-defined modulo alpha-renaming [Ped06,
p. 20]. Since our framework is based on nominal sets, we must identify alpha-equivalent
processes, and instead use Abadi and Fournet’s notion of term equality.
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Hüttel and Pedersen’s logic includes an early input modality and an existential quantifier.
The early input modality 〈a (x)〉A can be straightforwardly encoded as the conjunction∧
M 〈aM〉A{M/x}, with support {a} ∪ (supp(A) \ {x}). The definition of the existential

quantifier takes the observer knowledge into account: P satisfies ∃x.A if x#P and there is
M ∈ S(P ) such that {M/x} | P satisfies A. The condition M ∈ S(P ) makes the quantifier
difficult to encode using effects, since there is no corresponding state predicate (for good
reason: the main property modelled by cryptographic process calculi is that different cipher
texts E(M,k) and E(N, k) are indistinguishable unless the key k is known). To treat
the existential quantifier, we instead add an action (x) with bn((x)) = x and transitions

P
(x)−−→ {M/x} | P if M ∈ S(P ) and x#P . We can then encode ∃x.A as 〈(x)〉A.

Fusion calculus. In an HML for the fusion calculus by Haugstad et al. (2006) [HTV06]
the fusions (i.e., equality relations on names) are action labels ϕ. The corresponding modal
operator 〈ϕ〉A has the semantics that the formula A must be satisfied for all substitutive
effects of ϕ (intuitively, substitutions that map each name to a fixed representative for its
equivalence class). In order to represent fusion actions in the logics in this paper, we add
substitution effects σ such that σ(P ′) = P ′σ. The fusion modality 〈ϕ〉A can then be encoded
in our framework as 〈ϕ〉∨σ σ@Aσ, where the parameter σ of the disjunction ranges over
the (finite set of) substitutive effects of ϕ. Their adequacy theorem uses the contradiction
argument with infinite conjunction, with no argument about finiteness of names for the
distinguishing formula.

Nominal transition systems. De Nicola and Loreti (2008) [DL08] define a general format
for multiple-labelled transition systems with labels for name revelation and resource man-
agement, and an associated modal logic with name equality predicates, name quantification
(∃ and N), and a fixed-point modality. In contrast, we seek a small and expressive HML for
general nominal transition systems. Indeed, the logic of De Nicola and Loreti can be seen as
a special case of ours: their different transition systems can be merged into a single one, and
we can encode their quantifiers and fixpoint operator as described in Section 4. Nominal SOS
of Cimini et al. (2012) [CMRG12] is also a special case of our nominal transition systems.
Aceto et al. (2017) [AFGP+17] give conditions on rule formats for transitions from processes
to residuals so that they generate nominal transition systems.

11. Formalisation

We have formalised results of Sections 3 and 6–8. We use Nominal Isabelle [UK12], an
implementation of nominal logic in Isabelle/HOL [NPW02]. This is a popular interactive
proof assistant for higher-order logic with convenient specification mechanisms for, and
automation to reason about, data types with binders. Our Isabelle theories are available
from the Archive of Formal Proofs [WEP+16]. We here comment on some of the interesting
aspects, and the difficulties involved for the results yet without a formal proof.

The main challenge, and perhaps most prominent contribution from the perspective
of formalisation, is the definition of formulas (Definitions 3.4 and 6.7). Nominal Isabelle
does not directly support infinitely branching data types. We therefore construct formulas
from first principles in higher-order logic, by defining an inductive data type of raw formulas
(where alpha-equivalent raw formulas are not identified). The constructor for conjunction
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recurses through sets of raw formulas of bounded cardinality, a feature made possible only
by a recent re-implementation of Isabelle/HOL’s data type package [BHL+14].

Definition 11.1. The set of raw formulas R ranged over by R is defined by induction as
follows:

R ::=
∧
i∈I

Ri | ¬R | ϕ | α.R

In
∧
i∈I Ri it is required that |I| < κ.

There are no name abstractions or binders in raw formulas: α.R, unlike 〈α〉A, is not
an abbreviation for an equivalence class, and bn(α) plays no role in the definition of raw
formulas. Name permutation distributes over all raw constructors. Raw formulas need not
have finite support: for instance, consider the raw formula

∧
a∈S ϕa where supp(ϕa) = {a}

and S ⊂ N is not finitely supported.
We then define the concrete alpha-equivalence of raw formulas (not to be confused

with nominal alpha-equivalence as defined in Section 2), in the following just called alpha-
equivalence, by well-founded recursion.

Definition 11.2. Two raw formulas
∧
i∈I Ri and

∧
i∈I Si are alpha-equivalent (≈α) if for

every conjunct Ri there is an alpha-equivalent conjunct Sj , and vice versa. Two raw
formulas α.R and β.S are alpha-equivalent if there exists a permutation π with π · α = β
such that π · R ≈α S. Moreover, π must leave names that are in (supp(α) ∪ N) \ bn(α)
invariant, for some set of names N that supports [R]≈α . The other cases in the definition of
alpha-equivalence are standard.

We note that alpha-equivalence is equivariant, i.e., R ≈α S iff π ·R ≈α π · S. Moreover,
all raw constructors respect alpha-equivalence. To obtain formulas, we quotient raw formulas
by alpha-equivalence, and finally carve out the subtype of all terms that can be constructed
from finitely supported ones.

Definition 11.3. An alpha-equivalence class [R]≈α is hereditarily finitely supported (h.f.s.)
if, for each subformula S of R, [S]≈α has finite support.

Definitions 11.1–11.3 have been formalised in Isabelle. To our knowledge, this is the first
mechanisation of infinitely branching nominal data types in a proof assistant. Fortunately,
we need not keep the details of this construction in mind, since the formulas obtained in
this way agree with those obtained from Definition 3.4. We give an explicit bijection.

Definition 11.4. If R is a raw formula, the corresponding formula AR is defined homomor-
phically except for the case R = α.S where Aα.S = 〈α〉AS .

This defines a partial function Γ: R ↪→ A, R 7→ AR. Γ is partial because Γ(
∧
i∈I Ri) =∧

i∈I Γ(Ri) is well-formed only when {Γ(Ri) | i ∈ I} is finitely supported.

Lemma 11.5. The partial function Γ is equivariant on its domain: R ∈ dom(Γ) iff
π ·R ∈ dom(Γ), and in this case π · Γ(R) = Γ(π ·R).

Proof. By structural induction on R, using the fact that all constructors of (raw) formulas
are equivariant.

Theorem 11.6. For all R, S ∈ dom(Γ), we have R ≈α S iff Γ(R) = Γ(S).
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Topic Section LOC

Basics 3 3062
L-bisimilarity 6 3215
Unobservables 7 1730
Predicates vs actions 8 817

Table 1. Size (lines of code) of the Isabelle formalisation.

Proof. By structural induction on R, for arbitrary S ∈ dom(Γ). The case R = ϕ is trivial.
The cases R = ¬R′ and R =

∧
i∈I Ri follow from the induction hypothesis. Finally consider

R = α.R′.
=⇒: From R ≈α S we obtain S = β.S′ and a permutation π with π · α = β and

π ·R′ ≈α S′. Equivariance of ≈α implies R′ ≈α π−1 ·S′, hence π ·Γ(R′) = Γ(S′) by induction
and Lemma 11.5. Moreover, π must leave names in (supp(α)∪N)\bn(α) invariant, where N
supports [R′]≈α . The induction hypothesis implies supp([R′]≈α) = supp(Γ(R′)). Since
supp([R′]≈α) is the smallest set that supports [R′]≈α we have supp([R′]≈α) ⊆ N . Hence π
witnesses 〈α〉Γ(R′) = 〈β〉Γ(S′).
⇐=: From Γ(R) = Γ(S) we obtain S = β.S′ and a permutation π with π · α = β and

π · Γ(R′) = Γ(S′). Lemma 11.5 implies Γ(R′) = Γ(π−1 · S′), hence π ·R′ ≈α S′ by induction
and equivariance of ≈α. Moreover, π must leave names in (supp(α) ∪ supp(Γ(R′))) \ bn(α)
invariant. The induction hypothesis implies supp([R′]≈α) = supp(Γ(R′)). Hence π witnesses
α.R′ ≈α β.S′.

Theorem 11.6 implies that Γ can be lifted to a partial function on alpha-equivalence
classes, Γ̂ : R/≈α ↪→ A, [R]≈α 7→ AR for R ∈ dom(Γ). The following lemma shows that this
function is defined on all alpha-equivalence classes that are h.f.s.

Lemma 11.7. If [R]≈α is h.f.s, then R ≈α S for some S ∈ dom(Γ).

Proof. By structural induction on R.

To prove that Γ̂ is a bijection between h.f.s. alpha-equivalence classes and formulas, it
remains to show that every formula is the image of some h.f.s alpha-equivalence class.

Theorem 11.8. For any formula A, there is h.f.s [R]≈α such that Γ̂([R]≈α) = A.

Proof. By Theorem 11.6, Γ̂ is injective. It follows that the inverse function Γ̂−1 : A ↪→ R/≈α
is well-defined on Γ̂(R/≈α). Equivariance of Γ (Lemma 11.5) implies that Γ̂−1 is equivariant

on its domain. We show by induction on A that A ∈ dom(Γ̂−1) and that Γ̂−1(A) is h.f.s.

In order to conveniently work with formulas in Isabelle we have proved important
lemmas; for instance, a strong induction principle for formulas that allows the bound names
in 〈α〉A to be chosen fresh for any finitely supported context. This is why we prefer the
logic for weak bisimulation (Definition 7.13) to be a sublogic: that way we do not have to
re-do these proofs. Armed with these definitions and induction principles, most of the proof
mechanisation proceeded smoothly. The formal proofs follow closely the sketches provided
in this paper, and often helped clarify points and correct minor errors. Our development
currently amounts to approximately 8800 lines of Isar proof scripts; this is divided according
to Table 1.
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Some parts of this paper lack formal proofs. Among them are the definitions and results
in Section 5 on fixpoint operators. Here proof mechanisation would be tedious, since Isabelle
does not provide enough support for transfinite induction: explicit reasoning about ordinals
and cardinals would require further library development [BPT14]. The results of Sections 9
and 10, on applications and comparisons with related work, lack proofs for two reasons. First,
the correspondences are not exact since we allow arbitrary finitely supported conjunctions,
and second, any formal proof must begin by constructing a formal model of the related work
under study, which would require a large effort including resolving any ambiguities in that
work.

Finally, the result on disjunction elimination (Section 7.4, Theorem 7.25) is challenging
for a different reason. The proof uses a case analysis and induction over derived operators.
While we believe that our proof is correct, to formalise it we would need to prove that this is
well-defined, despite the ranges of the derived operators not being disjoint (recall that 〈〈α〉〉A
is shorthand for a disjunction, which in turn is shorthand for a negation). This turned out
to be more difficult than first anticipated, and at the time of writing, we have not finished
the formal proofs.

12. Conclusion

We have given a general account of transition systems and Hennessy-Milner Logic using
nominal sets. The advantage of our approach is that it is more expressive than previous
work. We allow infinite conjunctions that are not uniformly bounded, meaning that we can
encode, e.g., quantifiers and the next-step operator. We have given ample examples of how
the definition captures different variants of bisimilarity and how it relates to many different
versions of HML in the literature. Our main results have been formalised in the interactive
proof assistant Isabelle.

There are many interesting avenues for further research. Many process algebras can be
given a semantics where the operators of the algebra correspond to functions on nominal
transition systems with designated initial states. There may be interesting classes of
such functions, for example finitely supported bisimilarity preserving functions, that merit
study. For particular such functions it would be interesting to explore compositionality
of |=. Similar work abounds for ordinary transition systems and modal logics; for nominal
transition systems in general this area is very much open.
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