
DRAFT May 22, 2015
c© Parrow, Borgström, Eriksson, Gutkovas, Weber

This work is licensed under the Creative Commons
Attribution-No Derivative Works License.

Modal Logics for Nominal Transition Systems

Joachim Parrow Johannes Borgström Lars-Henrik Eriksson
Ramūnas Gutkovas Tjark Weber

We define a uniform semantic substrate for a wide variety of process calculi where states and action
labels can be from arbitrary nominal sets. A Hennessy-Milner logic for these systems is introduced,
and proved adequate for bisimulation equivalence. We show how to treat different bisimulation
variants such as early, late and open in a systematic way, and make substantial comparisons with
related work. The main definitions and theorems have been formalized in Nominal Isabelle.

1 Introduction

Transition systems. Transition systems are ubiquitous in models of computing, and specifications to
say what may and must happen during executions are often formulated in a modal logic. There is a
plethora of different versions of both transition systems and logics, including a variety of higher-level
constructs such as updatable data structures, new name generation, alias generation, dynamic topologies
for parallel components etc. In this paper we formulate a general framework where such aspects can
be treated uniformly, and define accompanying modal logics which are adequate for bisimulation. This
is related to, but independent of, our earlier work on psi-calculi [4], which proposes a particular syntax
for defining behaviours. The present paper does not depend on any such language, and provides general
results for a large class of transition systems.

In any transition system there is a set of states P,Q, . . . representing the configurations a system can
reach, and a relation telling how a computation can move between them. Many formalisms, for example
all process algebras, define languages for expressing states, but in the present paper we shall make no
assumptions about any such syntax.

In systems describing communicating parallel processes the transitions are labelled with actions α,β ,
representing the externally observable effect of the transition. A transition P α−→ P′ thus says that in state
P the execution can progress to P′ while conducting the action α , which is visible to the rest of the world.
For example, in CCS these actions are atomic and partitioned into output and input communications. In
value-passing calculi the actions can be more complicated, consisting of a channel designation and a
value from some data structure to be sent along that channel.

Scope openings. With the advent of the pi-calculus [19] an important aspect of transitions was intro-
duced: that of name generation and scope opening. The main idea is that names (i.e., atomic identifiers)
can be scoped to represent local resources. They can also be transmitted in actions, to give a parallel
entity access to this resource. In the monadic pi-calculus such an action is written a(νb), to mean that
the local name b is exported along the channel a. These names can be subjected to alpha-conversion: if

P
a(νb)−−−→ P′ and c is a fresh name then also P

a(νc)−−−→ P′{c/b}, where P′{c/b} is P′ with all bs replaced by
cs. Making this idea fully formal is not entirely trivial and many papers gloss over it. In the polyadic
pi-calculus several names can be exported in one action, and in psi-calculi arbitrary data structures may
contain local names. In this paper we make no assumptions about how actions are expressed, and just as-
sume that for any action α there is a finite set of names bn(α), the binding names, representing exported

http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/


2 Modal Logics for Nominal Transition Systems

names. In our formalization we use nominal sets, an attractive theory to reason about objects depending
on names on a high level and in a fully rigorous way.

State predicates. The final general components of our transition systems are the state predicates ranged
over by ϕ , representing what can be concluded in a given state. For example state predicates can be
equality tests of expressions, or connectivity between communication channels. We write P ` ϕ to mean
that in state P the state predicate ϕ holds.

A structure with states, transitions and state predicates as discussed above we call a nominal transi-
tion system.

Hennessy-Milner Logic. Modal logic has been used since the 1970s to describe how facts evolve
through computation. We use the popular and general branching time logic known as Hennessy-Milner
Logic [15] (HML). Here the idea is that an action modality 〈α〉 expresses a possibility to perform an
action α . If A is a formula then 〈α〉A says that it is possible to perform α and reach a state where A
holds. With conjunction and negation this gives a powerful logic shown to be adequate for bisimulation
equivalence: two processes satisfy the same formulas exactly if they are bisimilar. In the general case,
conjunction must take an infinite number of operands when the transition systems have states with an
infinite number of outgoing transitions. The fully formal treatment of this requires care in ensuring that
such infinite conjunctions do not exhaust all names, leaving none available for alpha-conversion. All
previous works that have considered this issue properly have used uniformly bounded conjunction, i.e.
the set of all names in all conjuncts is finite.

Contributions. Our definition of nominal transition systems is very general since we leave open what the
states, transitions and predicates are. The only requirement is that transitions satisfy alpha-conversion. A
technically important point is that we do not assume the usual name preservation principle, that if P α−→P′

then the names occurring in P′ must be a subset of those occurring in P and α . This means that the results
are applicable to a wide range of calculi. For example, the pi-calculus represents a trivial instance where
there are no state predicates. CCS represent an even more trivial instance where bn always returns the
empty set. In the fusion calculus and the applied pi-calculus the state contains an environmental part
which tells what expressions are equal to what. In the general framework of psi-calculi the states are
processes with assertions describing their environments.

We define a modal logic with the 〈α〉 operator that binds the names in bn(α), and contains operators
for state predicates. In this way we get a logic for an arbitrary nominal transition system such that logical
equivalence coincides with bisimilarity. We also show how variants of the logic correspond to late, open
and hyperbisimilarity in a uniform way. The main technical difficulty is to ensure that formulas and their
alpha-equivalence classes throughout are finitely supported, i.e. only depend on a finite set of names,
even in the presence of infinite conjunction. Instead of uniformly bounded conjunction we use the notion
of finite support from nominal sets. This results in greater generality and expressiveness. For example,
we can now define quantifiers and the next step modalities as derived operators.

Formalization. Our main definitions and theorems have been formalized in Nominal Isabelle [26]. This
has required significant new ideas to represent data types with infinitary constructors like infinite con-
junction and their alpha-equivalence classes. As a result we corrected several details in our formulations
and proofs, and now have very high confidence in their correctness. The formalization effort has been
substantial, but certainly less than half of the total effort, and we consider it a very worthwhile investment.



Parrow, Borgström, Eriksson, Gutkovas, Weber 3

Exposition. In the following section we provide the necessary background on nominal sets. In Section 3
we present our main definitions and results on nominal transition systems and modal logics. In Section
4 we derive useful operators such as quantifiers and fixpoints, and indicate some practical uses. Section
5 shows how to treat variants of bisimilarity such as late and open in a uniform way, and in Section 6 we
compare with related work and demonstrate how our framework can be applied to recover earlier results
uniformly. Finally Section 7 concludes with some remarks on the formalization in Nominal Isabelle. All
proofs are relegated to the Appendix.

2 Background on nominal sets

Nominal sets [24] is a general theory of objects which depend on names, and in particular formulates the
notion of alpha-equivalence when names can be bound. The reader need not know nominal set theory to
follow this paper, but some key definitions will make it easier to appreciate our work and we recapitulate
them here.

We assume an infinitely countable multi-sorted set of atomic identifiers or names N ranged over
by a,b, . . .. The permutations is the group of name permutations that leave all but finitely many names
invariant. The singleton permutation which swaps names a and b and has no other effect is written (ab),
and the identity permutation that swaps nothing is written id. Permutations are ranged over by π,π ′. The
effect of applying a permutation π to an object X is written π ·X . Formally, the permutation action · can
be any operation that satisfies id ·X = X and π ·(π ′ ·X) = (π ◦π ′) ·X , but a reader may comfortably think
of π ·X as the object obtained by permuting all names in X according to π .

A set of names N supports an object X if for all π that leave all members of N invariant it holds
π ·X = X . In other words, a support N of X is such that names outside N do not matter to X . If X has a
finite support then it also has a unique minimal support, written supp(X), intuitively consisting of exactly
the names that matter to X . As an example the set of names textually occurring in a datatype element
is the support of that element, and the set of free names is the support of the alpha equivalence class of
the element. Note that in general, the support of a set is not the same as the union of the support of its
members. An example is the set of all names; each element has itself as support, but the whole set has
empty support since any permutation of the set yields the same set.

We write a#X , pronounced “a is fresh for X”, for a 6∈ supp(X). The intuition is that if a#X then X
does not depend on a in the sense that a can be replaced with any fresh name without affecting X . If A is
a set of names we write A#X for ∀a ∈ A .a#X .

A nominal set S is a set with a permutation action such that X ∈ S⇒ π ·X ∈ S, and where each
member X ∈ S has finite support. A main point is that then each member has infinitely many fresh names
available for alpha-conversion. Similarly, a set of names N supports a function f on a nominal set if for
all π that leave N invariant it holds π · f (X) = f (π ·X), and similarly for relations and functions of higher
arity. Thus we extend the notion of support to finitely supported functions and relations as the minimal
finite support, and can derive general theorems such as supp( f (X))⊆ supp( f )∪ supp(X).

An object that has empty support we call equivariant. For example, a unary function f is equivariant
if π · f (X) = f (π ·X) for all π,X . The intuition is that an equivariant object does not treat any name
special.

3 Nominal transition systems and Hennessy-Milner logic

Definition 1. A nominal transition system is characterized by the following



4 Modal Logics for Nominal Transition Systems

• STATES: A nominal set of states ranged over by P,Q.

• PRED: A nominal set of state predicates ranged over by ϕ .

• An equivariant binary relation ` on STATES and PRED. We write P ` ϕ to mean that in state P
the state predicate ϕ holds.

• ACT: A nominal set of actions ranged over by α .

• An equivariant function bn from ACT to finite sets of names, which for each α returns a subset of
supp(α), called the binding names.

• An equivariant transition relation → on states and residuals. A residual is a pair of action and
state. For→ (P,(α,P′)) we write P α−→ P′. The transition relation must satisfy alpha-conversion of

residuals: If a ∈ bn(α), b#α,P′ and P α−→ P′ then also P
(ab)·α−−−−→ (ab) ·P′.

Definition 2. A bisimulation R is a symmetric binary relation on states in a nominal transition system
satisfying the following two criteria: R(P,Q) implies

1. Static implication: P ` ϕ implies Q ` ϕ .

2. Simulation: For all α,P′ such that bn(α)#Q there exist Q′ such that if P α−→ P′ then Q α−→ Q′ and
R(P′,Q′)

We write P ·∼ Q to mean that there exists a bisimulation R such that R(P,Q).

Static implication means that bisimilar states must satisfy the same state predicates; this is reasonable
since these can be tested by an observer. The simulation requirement is familiar from the pi-calculus.

Proposition 3. ·∼ is an equivariant equivalence relation.

The minimal HML for nominal transition systems is the following.

Definition 4. The nominal set of formulas A ranged over by A is defined by induction as follows:

A ::=
∧
i∈I

Ai | ¬A | ϕ | 〈α〉A

Support and name permutation are defined as usual (permutation distributes over all formula con-
structors). In

∧
i∈I Ai it is assumed that the indexing set I has bounded cardinality, by which we mean that

|I| ≤ κ for some fixed infinite cardinal κ at least as large as the cardinality of STATES, ACT and PRED.
It is also required that {Ai}i∈I has finite support; this is then the support of the conjunction. Note that
this does not imply that each conjunct has that support, and that we do not require the support of the
conjuncts to be uniformly bounded. Alpha-equivalent formulas are identified; the only binding construct
is in 〈α〉A where bn(α) binds into A.

The validity of a formula A for a state P is written P |= A and is defined by induction on A as follows.

Definition 5.
P |=

∧
i∈I Ai if for all i ∈ I it holds that P |= Ai

P |= ¬A if not P |= A
P |= ϕ if P ` ϕ

P |= 〈α〉A if there exists P′ such that P α−→ P′ and P′ |= A

In the last clause we assume that 〈α〉A is a representative of its alpha-equivalence class such that
bn(α)#P. It is easy to show that |= is an equivariant relation.



Parrow, Borgström, Eriksson, Gutkovas, Weber 5

Definition 6. Two states P and Q are logically equivalent, written P ·
= Q, if for all A it holds that P |= A

iff Q |= A

Theorem 7. P ·∼ Q =⇒ P ·
= Q

The proof is by induction over formulas. The converse result uses the idea of distinguishing formulas.

Definition 8. A distinguishing formula for P and Q is a formula A such that P |= A and not Q |= A.

Note that if A is a distinguishing formula for P and Q then ¬A is a distinguishing formula for Q and
P. Thus P and Q are logically equivalent precisely if there is no distinguishing formula for P and Q.
The following lemma says that we can find such a formula where, a bit surprisingly, the support does not
depend on Q.

Lemma 9. If A is a distinguishing formula for P and Q, then there exists a distinguishing formula B for
P and Q such that supp(B)⊆ supp(P).

The proof is by direct construction: in the terminology of Pitts [24, Ch. 5] B is the conjunction of
hullsupp(P)A.

Theorem 10. P ·
= Q =⇒ P ·∼ Q

Proof: We establish that ·= is a bisimulation. The proof of the simulation property of Theorem 10 is
different from earlier similar proofs. These use the name preservation property to show that ·= restricted
to states with a finite bound on the names is a bisimulation. This does not hold in the present paper;
instead we use Lemma 9 to bound the support of distinguishing formulas.

4 Derived formulas

Dual connectives. We define logical disjunction
∨

i∈I Ai in the usual way as ¬
∧

i∈I¬Ai, when the index-
ing set I has bounded cardinality and {Ai}i∈I has finite support. A special case is I = {1,2}: we then
write A1∧A2 instead of

∧
i∈I Ai, and dually for A1∨A2. We write > for the empty conjunction

∧
i∈ /0, and

⊥ for ¬>. The must modality [α]A is defined as ¬〈α〉¬A, and requires A to hold after every possible
α-labelled transition from the current state. For example, [α](A∧B) is equivalent to [α]A∧ [α]B, and
dually 〈α〉(A∨B) is equivalent to 〈α〉A∨〈α〉B.

Quantifiers. Let S be any finitely supported set of bounded cardinality and use v to range over members
of S. Write A{v/x} for the substitution of v for x in A, and assume this substitution function is equivariant.
Then we define ∀x ∈ S .A as

∧
v∈S A{v/x}. There is not necessarily a common finite support for the

formulas A{v/x}, for example if S is some term algebra over names, but the set {A{v/x} : v ∈ S} has
finite support bounded by {x}∪ supp(S)∪ supp(A). In our examples in Section 6, substitution is defined
inductively on the structure of formulas, based on primitive substitution functions for actions and state
predicates, avoiding capture and preserving the binding names of actions.

Existential quantification ∃x ∈ S .A is defined as the dual ¬∀x ∈ S .¬A. When X is a metavariable
used to range over a nominal set X , we simply write X for “X ∈X ”. As an example, ∀a .A means that
the formula A{n/a} holds for all names n ∈N .

New name quantifier. The new name quantifier Nx.A intuitively states that P |= A{n/x} holds where n
is a fresh name for P. For example, suppose we have actions of the form ab for input, and ab for output
where a and b are free names, then the formula Nx.[ax]〈bx〉> expresses that whenever a process inputs a
fresh name x on channel a, it has to be able to output that name on channel b. If the name received is not



6 Modal Logics for Nominal Transition Systems

fresh (i.e., already present in P) then P is not required to do anything. Therefore this formula is weaker
than ∀x . [ax]〈bx〉>.

To define this formally we use name permutation rather than substitution. Since A and P have finite
support, if P |= (xn) ·A holds for some n fresh for P, by equivariance it also holds for almost all n,
i.e., all but finitely many n. Conversely, if it holds for almost all n, it must hold for some n#supp(P).
Therefore Nx is often pronounced “for almost all x”. In other words, P |= Nx.A holds if {x |P |= A(x)}
is a cofinite set of names [24, Definition 3.8]. Letting COF = {S ⊆N |N \S is finite} we thus encode
Nx.A as

∨
S∈COF

∧
n∈S(xn)·A. This formula states there is a cofinite set of names such that for all of them

A holds. The support of
∧

n∈S(xn)·A is bounded by (N \S)∪ supp(A) where S ∈ COF, and the support
of the encoding

∨
S∈COF

∧
n∈S(xn)·A is bounded by supp(A).

Next step. We generalise the action modality to sets of actions in the following way. If T is a finitely
supported set of actions such that bn(α)#A for all α ∈ T , we write 〈T 〉A for

∨
α∈T 〈α〉A. The support

of the set {〈α〉A : α ∈ T} is bounded by supp(T )∪ supp(A) and thus finite. Dually, we write [T ]A for
¬〈T 〉¬A, denoting that A holds after all transitions with actions in T .

To encode the next-step modality, we let ACTA = {α : bn(α)#A}. Noting that supp(ACTA)⊆ supp(A)
is finite, we write 〈〉A for 〈ACTA〉A, meaning that we can make some (non-capturing) transition to a state
where A holds. As an example, 〈〉> means that the current state is not deadlocked. The dual modality
[ ]A = ¬〈〉¬A means that A holds after every transition from the current state. Larsen [17] uses the same
approach to define next-step operators in HML, though his version is less expressive since he uses a finite
action set to define the next-step modality.

Fixpoints. Fixpoint operators are a way to introduce recursion into a logic. For example, they can be
used to concisely express safety and liveness properties of a transition system, where by safety we mean
that some invariant holds for all reachable states, and by liveness that some property will eventually
hold. Kozen (1983) [16] introduced the least (µX .A) and the greatest (νX .A) fixpoints in modal logic.
Intuitively, the least fixpoint states a property that holds for states of a finite path, while the greatest holds
for states of an infinite path.

Theorem 11. The least and greatest fixpoint operators are expressible in our HML.

For the full proofs and definitions, see the appendix. The idea is to start with an extended language
with the forms µX .A and X , where X ranges over a countable set of variables and all occurrences of X
in A are in the scope of an even number of negations. Write A(B) for the capture-avoiding substitution
of B for X in A, and let A0(B) = B and Ai+1(B) = A(Ai(B)). Then the encoding of a least fixpoint
µX .A is

∨
i∈N Ai(⊥), given that fixpoints have been recursively expanded in A. The disjunction has finite

support supp(A), since substitution is equivariant. When interpreting formulas as elements of the power-
set lattice of STATES, this encoding yields a fixpoint of A(·): the sequence of formulas Ai(⊥) yields
an approximation from below. We define the greatest fixpoint operator νX .A in terms of the least as
¬µX .¬A(¬X).

Using the greatest fixpoint operator we can state global invariants: νX .[α]X ∧A expresses that A
holds along all paths labelled with α . Temporal operators such as eventually can also be encoded using
the least fixpoint operator: the formula µX .〈α〉X ∨A states that eventually A holds along some path
labelled with α . We can freely mix the fixpoint operators to obtain formulas like νX .[α]X ∧ (µY.〈β 〉Y ∨
A) which means that for each state along any path labelled with α , a state where A holds is reachable
along a path labelled with β . Formulas with mixed fixpoint combinators are very expressive, and with
the next operator they can encode the branching-time logic CTL∗ [11].



Parrow, Borgström, Eriksson, Gutkovas, Weber 7

5 Logics for variants of bisimilarity

The bisimilarity of Section 3 is of the early kind: any substitutive effect of an input (typically replacing a
variable with the value received) must have manifested already in the action corresponding to the input,
since we apply no substitution to the target state. Alternative treatments of substitutions include late-,
open- and hyperbisimilarity, where the input action instead contains the variable to be replaced, and there
are different ways to make sure that bisimulations are preserved by relevant substitutions.

In our definition of nominal transition systems there are no particular input variables in the states
or in the actions, and thus no a priori concept of “substitution”. We therefore choose to formulate the
alternatives using so called effect functions. An effect is simply a finitely supported function from states
to states. For example, in the monadic pi-calculus the effects would be the functions replacing one name
by another. In a value-passing calculus the effects would be substitutions of values for variables. In
the psi-calculi framework the effects would be sequences of parallel substitutions. Our definitions and
results are applicable to any of these; our only requirement is that the effects form a nominal set which we
designate by F . Variants of bisimilarity then correspond to requiring continuation after various effects.
For example, if the action contains an input variable x then the effects appropriate for late bisimilarity
would be substitutions for x.

We will formulate these variants as F/L-bisimilarity, where F (for first) represents the set of effects
that must be observed before following a transition, and L (for later) is a function that represents how
this set F changes depending on the action of a transition, i.e., L(α,F) is the set of effects that must
follow the action α if the previous effect set was F . In the following let Pfs(F ) ranged over by F be
the finitely supported subsets of F , and L range over equivariant functions from actions and Pfs(F ) to
Pfs(F ).

Definition 12. An L-bisimulation where L : ACT×Pfs(F )→Pfs(F ) is a Pfs(F )-indexed family of
symmetric binary relations on states satisfying the following:

If RF(P,Q) then:

1. Static implication: for all f ∈ F it holds that f (P) ` ϕ implies f (Q) ` ϕ .

2. Simulation: For all f ∈ F and α,P′ such that bn(α)# f (Q) there exist Q′ such that

if f (P) α−→ P′ then f (Q)
α−→ Q′ and RL(α,F)(P′,Q′)

We write P
F/L∼ Q, called F/L-bisimilarity, to mean that there exists an L-bisimulation R such that

RF(P,Q).

Most strong bisimulation varieties can be formulated as F/L-bismilarity. Write idSTATES for the
identity function on states, ID for the singleton set {idSTATES} and allID for the constant function
λ (α,F).ID.

• Early bisimilarity, precisely as defined in Definition 2, is ID/allID-bisimilarity.

• Early equivalence, i.e. early bisimilarity under all possible effects, is F /allID-bisimilarity.

• Late bisimilarity is ID/L-bisimilarity, where L(α,F) yields the effects that represent substitutions
for variables in input actions α (and ID for other actions).

• Late equivalence is similarly F /L-bisimilarity.

• Open bisimilarity is F /L-bisimilarity where L(α,F) is the set F minus all effects that change
bound output names in α .



8 Modal Logics for Nominal Transition Systems

• Hyperbisimilarity is F /λ (α,F).F -bisimilarity.

All of the above are generalizations of known and well-studied definitions. The original value-
passing variant of CCS [18] uses early bisimilarity. The original bisimilarity for the pi-calculus is of
the late kind [19], where it also was noted that late equivalence is the corresponding congruence. Early
bisimilarity and equivalence and open bisimilarity for the pi-calculus were introduced in 1993 [20, 25],
and hyperbisimilarity for the fusion calculus in 1998 [22].

In view of this we only need to provide a modal logic adequate for F/L-bisimilarity; it can then
immediately be specialized to all of the above variants. For this we introduce a new kind of logical
operator as follows.

Definition 13. For each f ∈F the logical unary effect consequence operator 〈 f 〉 has the definition

P |= 〈 f 〉A if f (P) |= A

Thus the formula 〈 f 〉A means that A holds if the effect f is applied to the state. Note that by definition
this distributes over conjunction and negation, e.g. P |= ¬〈 f 〉A iff P |= 〈 f 〉¬A iff not f (P) |= A etc. The
effect consequence operator is similar in spirit to the action modalities: both 〈 f 〉A and 〈α〉A assert that
something (an effect or action) must be possible and that A holds afterwards. Indeed, effects can be
viewed as a special case of transitions (as formalised in Definition 17 below) which is why we give the
operators a common syntactic appearance.

Now define the formulas that can directly use effects from F and after actions use effects according
to L, ranged over by AF/L, in the following way:

Definition 14. Given L as in Definition 12, for all F ∈Pfs(F ) define A F/L as the set of formulas given
by the mutually recursive definitions:

AF/L ::=
∧
i∈I

AF/L
i | ¬AF/L | 〈 f 〉ϕ | 〈 f 〉〈α〉AL(α,F)/L

where we require f ∈ F and that the conjunction has bounded cardinality and finite support.

Let P
F/L
= Q mean that P and Q satisfy the same formulas in A F/L.

Theorem 15. P
F/L∼ Q ⇔ P

F/L
= Q

Proof: The direction⇒ is a generalization of Theorem 7. The other direction is a generalization of

Theorem 10: we prove that
F/L
= is an F/L-bisimulation. It needs a variant of Lemma 9:

Lemma 16. If A ∈ A F/L is a distinguishing formula for P and Q, then there exists a distinguishing
formula B ∈A F/L for P and Q such that supp(B)⊆ supp(P,F).

The proof is an easy generalisation of Lemma 9.
An alternative to the effect consequence operators is to transform the transition system such that

standard (early) bisimulation on the transforms coincides with F/L-bisimilarity. The idea is to let the

effect function be part of the transition relation, thus f (P) = P′ becomes P
f−→ P′.

Definition 17. Assume F and L as above. The L-transform of a nominal transition system T is a nominal
transition system where:

• The states are of the form AC(F, f (P)) and EF(F,P), for f ∈ F ∈Pfs(F ) and states P of T. The
intuition is that states of kind AC can perform ordinary actions, and states of kind EF can commit
effects.



Parrow, Borgström, Eriksson, Gutkovas, Weber 9

• The state predicates are those of T.

• AC(F,P) ` ϕ if in T it holds P ` ϕ , and EF(F,P) ` ϕ never holds.

• The actions are the actions of T and the effects in F .

• bn is as in T, and additionally bn( f ) = /0 for f ∈F .

• The transitions are of two kinds. If in T it holds P α−→ P′, then there is a transition AC(F,P) α−→
EF(L(α,F),P′). And for each f ∈ F it holds EF(F,P)

f−→ AC(F, f (P)).

Theorem 18. P
F/L∼ Q in T if and only if EF(F,P) ·∼ EF(F,Q) in the L-transform of T.

The proof idea is that from an F/L-bisimulation in T it is easy to construct an (ordinary) bisimulation

in the L-transform of T, and vice versa. A direct consequence is that P
F/L∼ Q iff EF(F,P) ·= EF(F,Q) in

the L-transform of T. Here the actions in the logic would include effects f ∈F .

6 Related work and examples

HML for CCS. The first published HML is Hennessy and Milner (1985) [15]. They use finite (binary)
conjunction with the assumption of image-finiteness for ordinary CCS. The same goes for the value-
passing calculus and logic by Hennessy and Liu (1995) [14], where image-finiteness is due to a late
semantics and the logic contains quantification over data values. A similar idea and argument is in a
logic for LOTOS by Calder et al. (2002) [8], though that only considers stratified bisimilarity up to ω .

Hennessy and Liu’s value-passing calculus is based on abstractions (x)P and concretions (v,P) where
v is drawn from a set of values. To encode their logic in ours, we add effects idSTATES and ?v, with
?v((x)P) = P{v/x}, and transitions (v,P) !v−→ P. Letting L(a?, ) = {?v : v ∈ values} and L(α, ) =
{idSTATES} otherwise, late bisimilarity is {idSTATES}/L-bisimilarity as defined in Section 5. We can
then encode their universal quantifier ∀x.A as

∧
v〈?v〉A{v/x}, which has support supp(A)\{x}, and their

output modality 〈c!x〉A as 〈c!〉
∨

v〈!v〉A{v/x}, with support {c}∪ (supp(A)\{x}).
An infinitary HML for CCS is discussed in Milner’s book (1989) [18], where also the process syntax

contains infinite summation. There are no restrictions on the indexing sets and no discussion about
how this can exhaust all names. The adequacy theorem is proved by stratifying bisimilarity and using
transfinite induction over all ordinals, where the successor step basically is the contraposition of the
argument in Theorem 10, though without any consideration of finite support. A more rigorous treatment
of the same ideas is by Abramsky (1991) [3] where uniformly bounded conjunction is used throughout.

Pi-calculus. The first HML for the pi-calculus is by Milner et al. (1993) [20], where infinite conjunction
is used in the early semantics and conjunctions are restricted to use a finite set of free names. The
adequacy proof is of the same structure as in this paper. The logic defined in this paper, applied to the
pi-calculus transition system omitting bound input actions x(y), contains the logic F of Milner et al., or
the equipotent logic FM if we take the set of name matchings [a = b] as state predicates.

Spi Calculus. Frendrup et al. (2002) [12] provide three Hennessy-Milner logics for the spi calculus [2].
The action modalities in Frendrup’s logic only uses parts of the labels: on process output, the modality
〈a〉 tests only the channel used. On process input, the modality 〈aξ 〉 describes how the observer σ

computed the received message M = e(ξ σ), where ξ is an expression that may contain decryptions
and projections, and supp(ξ ) \ dom(σ) is fresh for P and σ . Simplifying the labels of the transition



10 Modal Logics for Nominal Transition Systems

system to τ and the aforementioned a and aξ labels, our minimal HML applied to the particular nominal
transition system of the spi calculus coincides with the logic F of Frendrup et al, although the latter
uses infinite conjunction without any mechanism to prevent formulas from exhausting all names, leaving
none available for alpha-conversion. Thus their notion of substitution is not formally well defined.

Their logic E M replaces the simple input modality by an early input modality 〈a(x)〉EA, which
(after a minor manipulation of the input labels) can be encoded as the conjunction

∧
ξ 〈aξ 〉A{ξ/x}, which

has support supp(A)\{x}. We do not consider their logic L M that uses a late input modality, since its
application relies on sets that do not have finite support [12, Theorem 6.12], which are not meaningful in
nominal logic.

Applied Pi-calculus. A more recent work is a logic by Pedersen (2006) [23] for the applied pi-calculus [1],
where the adequacy theorem uses image-finiteness of the semantics in the contradiction argument. The
logic contains atomic formulae for equality in the frame of a process, corresponding to our state predi-
cates. The main difference to our logic is an early input modality and a quantifier ∃x.

Their early input modality 〈a(x)〉A can be straightforwardly encoded as the conjunction
∧

M〈aM〉A{M/x},
with support {a}∪ (supp(A)\{x}). For the existential quantifier, there is a requirement that the received
term M can be computed from the current knowledge available to an observer of the process, which

we here write M ∈S (P). We add actions M/x with bn(M/x) = x and transitions P
M/x−−→ P | {M/x} if

M ∈S (P) and x#P. We can then encode ∃x.A as
∨

M〈M/x〉A, which has support supp(A)\{x}.

Fusion calculus. In a HML for the fusion calculus by Haugstad et al. (2006) [13] the fusions (i.e.,
equality relations on names) are action labels ϕ . The corresponding modal operator 〈ϕ〉A has the se-
mantics that the formula A must be satisfied for all substitutive effects of ϕ (intuitively, substitutions
that map each name to a fixed representative for its equivalence class). The adequacy theorem uses the
contradiction argument with infinite conjunction, with no argument about finiteness of names for the
distinguishing formula. This HML can be encoded in our framework by making the substitutive effects
of fusion actions visible in the transition system.

Concurrent constraint pi calculus. The concurrent constraint pi calculus (CC-pi) by Buscemi and
Montanari (2007) [6] extends the explicit fusion calculus [27] with a more general notion of constraint
stores c. The reference equivalence for CC-pi is open bisimulation [7] (closely corresponding to hyper-
bisimulation in the fusion calculus [22]), which differs from labelled bisimulation in two ways: First, two
equivalent processes must be equivalent under all store extensions. To encode this, we let the effects F
be the set of constraint stores c different from 0, and let c(P) = c | P. Second, when simulating a labelled

transition P α−→ P′, the simulating process Q can use any transition Q
β−→ Q′ with an equivalent label, as

given by a state predicate α = β . As an example, if α = a〈x〉 is a free output label then P ` α = β

iff β = b〈y〉 where P ` a = b and P ` x = y. To encode this, we transform the labels of the transition

system by replacing them with their equivalence classes, i.e., P α−→ P′ becomes P
[α]P−−→ P′ where β ∈ [α]P

iff P ` β = α . Hyperbisimilarity (Definition 12) on this transition system then corresponds to open
bisimilarity, and the modal logic defined in Section 5 is adequate.

Nominal transition systems. De Nicola and Loreti (2008) [10] define a general format for nominal
transition systems and an associated modal logic, that is adequate for image-finite transition systems
only and uses several different modalities for name revelation and resource consumption. In contrast, we
seek a small and expressive HML for general nominal transition systems. Indeed, the logic of De Nicola



Parrow, Borgström, Eriksson, Gutkovas, Weber 11

and Loreto can be seen as a special case of ours: their different transition systems can be merged into a
single one, and we can encode their quantifiers and fixpoint operator as described in Section 4. Nominal
SOS of Cimini et al. (2012) [9] is also a special case of nominal transition systems.

Psi-calculi. In psi-calculi by Bengtson et al (2011) [4], the labelled transitions take the form Ψ . P α−→ P′,
where the assertion environment Ψ is unchanged after the step. We model this as a nominal transition
system by letting the set of states be pairs (Ψ,P) of assertion environments and processes, and define
the transition relation by (Ψ,P) α−→ (Ψ,P′) if Ψ . P α−→ P′. The notion of bisimulation used with psi-
calculi also uses an assertion environment and is required to be closed under environment extension,
i.e., if Ψ . P ∼ Q, then Ψ⊗Ψ′ . P ∼ Q for all Ψ′. We let the effects F be the set of assertions, and
define Ψ((Ψ′,P)) = (Ψ⊗Ψ′,P). Hyperbisimilarity on this transition system then subsumes the standard
psi-calculi bisimilarity, and the modal logic defined in Section 5 is adequate.

7 Conclusion

We have given a general account of transition systems and Hennessy-Milner Logic using nominal sets.
The advantage of our approach is that it is more expressive than previous work. We allow infinite con-
junctions that are not uniformly bounded, meaning that we can encode e.g. quantifiers and the next-step
operator. We have given ample examples of how the definition captures different variants of bisimilarity
and how it relates to many different versions of HML in the literature.

We have formalized the results of Section 3, including Theorems 7 and 10, using Nominal Is-
abelle [26].1 Nominal Isabelle is an implementation of nominal logic in Isabelle/HOL [21], a popular
interactive proof assistant for higher-order logic. It adds convenient specification mechanisms for, and
automation to reason about, datatypes with binders.

However, Nominal Isabelle does not directly support infinitely branching datatypes. Therefore, the
mechanization of formulas (Definition 4) was challenging. We construct formulas from first principles in
higher-order logic, by defining an inductive datatype of raw formulas (where alpha-equivalent raw for-
mulas are not identified). The datatype constructor for conjunction recurses through sets of raw formulas
of bounded cardinality, a feature made possible only by a recent re-implementation of Isabelle/HOL’s
datatype package [5].

We then define alpha-equivalence of raw formulas. For finitely branching datatypes, alpha-equivalence
is based on a notion of free variables. Here, to obtain the correct notion of free variables of a conjunction,
we define alpha-equivalence and free variables via mutual recursion. This necessitates a fairly involved
termination proof. (All recursive functions in Isabelle/HOL must be terminating.) To obtain formulas,
we quotient raw formulas by alpha-equivalence, and finally carve out the subtype of all terms that can
be constructed from finitely supported ones. We then prove important lemmas; for instance, a strong
induction principle for formulas that allows the bound names in 〈α〉A to be chosen fresh for any finitely
supported context.

Our development, which in total consists of about 2700 lines of Isabelle definitions and proofs,
generalizes the constructions that Nominal Isabelle performs for finitely branching datatypes to a type
with infinite branching. To our knowledge, this is the first mechanization of an infinitely branching
nominal datatype in a proof assistant.

1Our Isabelle theories are available at https://github.com/tjark/ML-for-NTS.

https://github.com/tjark/ML-for-NTS


12 Modal Logics for Nominal Transition Systems

Acknowledgements

We thank Andrew Pitts for enlightening discussions on nominal datatypes with infinitary constructors,
and Dmitriy Traytel for providing a formalization of cardinality-bounded sets.

References

[1] Martı́n Abadi & Cédric Fournet (2001): Mobile Values, New Names, and Secure Communication. In: Pro-
ceedings of POPL ’01, ACM, pp. 104–115.

[2] Martı́n Abadi & Andrew D. Gordon (1999): A Calculus for Cryptographic Protocols: The Spi Calculus.
Journal of Information and Computation 148(1), pp. 1–70.

[3] Samson Abramsky (1991): A Domain Equation for Bisimulation. Journal of Information and Computa-
tion 92(2), pp. 161–218, doi:10.1006/inco.1991.9999. Available at http://dx.doi.org/10.1006/inco.
1991.9999.

[4] Jesper Bengtson, Magnus Johansson, Joachim Parrow & Björn Victor (2011): Psi-calculi: a frame-
work for mobile processes with nominal data and logic. Logical Methods in Computer Science 7(1),
doi:10.2168/LMCS-7(1:11)2011. Available at http://dx.doi.org/10.2168/LMCS-7(1:11)2011.

[5] Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei Popescu & Dmitriy
Traytel (2014): Truly Modular (Co)datatypes for Isabelle/HOL. In Gerwin Klein & Ruben Gamboa, editors:
Proceedings of ITP 2014, LNCS 8558, Springer, pp. 93–110, doi:10.1007/978-3-319-08970-6 7. Available
at http://dx.doi.org/10.1007/978-3-319-08970-6_7.

[6] Maria Grazia Buscemi & Ugo Montanari (2007): CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In Rocco De Nicola, editor: Proceedings of ESOP 2007, LNCS 4421, Springer, pp.
18–32.

[7] Maria Grazia Buscemi & Ugo Montanari (2008): Open Bisimulation for the Concurrent Constraint Pi-
Calculus. In Sophia Drossopoulou, editor: Proceedings of ESOP 2008, LNCS 4960, Springer, pp. 254–268,
doi:10.1007/978-3-540-78739-6 20. Available at http://dx.doi.org/10.1007/978-3-540-78739-6_
20.

[8] Muffy Calder, Savi Maharaj & Carron Shankland (2002): A modal logic for full LOTOS based on symbolic
transition systems. The Computer Journal 45(1), pp. 55–61.

[9] Matteo Cimini, Mohammad Reza Mousavi, Michel A. Reniers & Murdoch J. Gabbay (2012): Nominal
SOS. Electron. Notes Theor. Comput. Sci. 286, pp. 103–116, doi:10.1016/j.entcs.2012.08.008. Available at
http://dx.doi.org/10.1016/j.entcs.2012.08.008.

[10] Rocco De Nicola & Michele Loreti (2008): Multiple-Labelled Transition Systems for nominal
calculi and their logics. Mathematical Structures in Computer Science 18(1), pp. 107–143,
doi:10.1017/S0960129507006585. Available at http://dx.doi.org/10.1017/S0960129507006585.

[11] E. Allen Emerson (1997): Model checking and the Mu-calculus. In: DIMACS Series in Discrete Mathemat-
ics, American Mathematical Society, pp. 185–214.

[12] Ulrik Frendrup, Hans Hüttel & Jesper Nyholm Jensen (2002): Modal Logics for Cryptographic Processes.
Electr. Notes Theor. Comput. Sci. 68(2), pp. 124–141. Available at http://dx.doi.org/10.1016/

S1571-0661(05)80368-8.

[13] Arild Martin Møller Haugstad, Anders Franz Terkelsen & Thomas Vindum (2006): A Modal Logic for the
Fusion Calculus. Unpublished, University of Aalborg.

[14] M. Hennessy & X. Liu (1995): A modal logic for message passing processes. Acta Informatica 32(4), pp.
375–393, doi:10.1007/BF01178384. Available at http://dx.doi.org/10.1007/BF01178384.

[15] Matthew Hennessy & Robin Milner (1985): Algebraic Laws for Nondeterminism and Concurrency. J. ACM
32(1), pp. 137–161. Available at http://doi.acm.org/10.1145/2455.2460.

http://dx.doi.org/10.1006/inco.1991.9999
http://dx.doi.org/10.1006/inco.1991.9999
http://dx.doi.org/10.1006/inco.1991.9999
http://dx.doi.org/10.2168/LMCS-7(1:11)2011
http://dx.doi.org/10.2168/LMCS-7(1:11)2011
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-540-78739-6_20
http://dx.doi.org/10.1007/978-3-540-78739-6_20
http://dx.doi.org/10.1007/978-3-540-78739-6_20
http://dx.doi.org/10.1016/j.entcs.2012.08.008
http://dx.doi.org/10.1016/j.entcs.2012.08.008
http://dx.doi.org/10.1017/S0960129507006585
http://dx.doi.org/10.1017/S0960129507006585
http://dx.doi.org/10.1016/S1571-0661(05)80368-8
http://dx.doi.org/10.1016/S1571-0661(05)80368-8
http://dx.doi.org/10.1007/BF01178384
http://dx.doi.org/10.1007/BF01178384
http://doi.acm.org/10.1145/2455.2460


Parrow, Borgström, Eriksson, Gutkovas, Weber 13

[16] Dexter Kozen (1983): Results on the propositional mu-calculus. Theoretical Computer Science 27(3), pp. 333
– 354, doi:http://dx.doi.org/10.1016/0304-3975(82)90125-6. Available at http://www.sciencedirect.
com/science/article/pii/0304397582901256. Special Issue Ninth International Colloquium on Au-
tomata, Languages and Programming (ICALP) Aarhus, Summer 1982.

[17] Kim G. Larsen (1988): Proof systems for Hennessy-Milner Logic with recursion. In M. Dauchet & M. Nivat,
editors: Proceedings of CAAP ’88, LNCS 299, Springer, pp. 215–230, doi:10.1007/BFb0026106. Available
at http://dx.doi.org/10.1007/BFb0026106.

[18] Robin Milner (1989): Communication and Concurrency. Prentice Hall.
[19] Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, I. Inf. Com-

put. 100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4. Available at http://dx.doi.org/10.1016/
0890-5401(92)90008-4.

[20] Robin Milner, Joachim Parrow & David Walker (1993): Modal logics for mobile processes. Theoretical
Computer Science 114(1), pp. 149 – 171, doi:10.1016/0304-3975(93)90156-N. Available at http://www.
sciencedirect.com/science/article/pii/030439759390156N.

[21] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002): Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. LNCS 2283, Springer, doi:10.1007/3-540-45949-9. Available at http://dx.doi.org/10.
1007/3-540-45949-9.

[22] Joachim Parrow & Björn Victor (1998): The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. In: Proceedings of LICS 1998, pp. 176–185, doi:10.1109/LICS.1998.705654. Available at http:
//dx.doi.org/10.1109/LICS.1998.705654.

[23] Michael Pedersen (2006): Logics for the Applied pi calculus. Master’s thesis, Aalborg University. BRICS
RS-06-19.

[24] Andrew M. Pitts (2013): Nominal Sets. Cambridge University Press. Available at http://dx.doi.org/
10.1017/CBO9781139084673. Cambridge Books Online.

[25] Davide Sangiorgi (1993): A theory of bisimulation for the π-calculus. In Eike Best, editor: Proceedings
of CONCUR ’93, LNCS 715, Springer, pp. 127–142, doi:10.1007/3-540-57208-2 10. Available at http:
//dx.doi.org/10.1007/3-540-57208-2_10.

[26] Christian Urban & Cezary Kaliszyk (2012): General Bindings and Alpha-Equivalence in Nominal Isabelle.
Logical Methods in Computer Science 8(2), doi:10.2168/LMCS-8(2:14)2012. Available at http://dx.
doi.org/10.2168/LMCS-8(2:14)2012.

[27] Lucian Wischik & Philippa Gardner (2005): Explicit fusions. Theoretical Computer Science 304(3), pp.
606–630.

A Appendix: Proofs

Proofs from Section 3

Proposition 3 ·∼ is an equivariant equivalence relation.
Proof: The proof has been formalized in Isabelle. Equivariance is a simple calculation, based on the

observation that if R is a bisimulation, then π ·R is a bisimulation. To prove reflexivity of ·∼, we note that
equality is a bisimulation. Symmetry is immediate from Def. 2. To prove transitivity, we show that the
composition of ·∼ with itself is a bisimulation; the simulation requirement is proved by a considering an
alpha-variant of P α−→ P′ where bn(α) is fresh for Q.

Lemma 19. |= is equivariant.

Proof: By the Equivariance Principle in Pitts (2013) [24, page 21]. A more detailed proof that verifies
P |= A ⇐⇒ π ·P |= π ·A for any permutation π has been formalized in Isabelle. The proof proceeds

http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://www.sciencedirect.com/science/article/pii/0304397582901256
http://www.sciencedirect.com/science/article/pii/0304397582901256
http://dx.doi.org/10.1007/BFb0026106
http://dx.doi.org/10.1007/BFb0026106
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0304-3975(93)90156-N
http://www.sciencedirect.com/science/article/pii/030439759390156N
http://www.sciencedirect.com/science/article/pii/030439759390156N
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1109/LICS.1998.705654
http://dx.doi.org/10.1109/LICS.1998.705654
http://dx.doi.org/10.1109/LICS.1998.705654
http://dx.doi.org/10.1017/CBO9781139084673
http://dx.doi.org/10.1017/CBO9781139084673
http://dx.doi.org/10.1007/3-540-57208-2_10
http://dx.doi.org/10.1007/3-540-57208-2_10
http://dx.doi.org/10.1007/3-540-57208-2_10
http://dx.doi.org/10.2168/LMCS-8(2:14)2012
http://dx.doi.org/10.2168/LMCS-8(2:14)2012
http://dx.doi.org/10.2168/LMCS-8(2:14)2012


14 Modal Logics for Nominal Transition Systems

by structural induction on A, using equivariance of all involved relations. For the case 〈α〉A in particular,
we use the fact that if 〈α ′〉A′ = 〈α〉A, then 〈π ·α ′〉(π ·A′) = 〈π ·α〉(π ·A).

Theorem 7 P ·∼ Q =⇒ P ·
= Q

Proof: The proof has been formalized in Isabelle. Assume P ·∼Q. We show P |= A ⇐⇒ Q |= A by
structural induction on A.

1. Base case: A = ϕ . Then P |= A ⇐⇒ P ` ϕ ⇐⇒ Q ` ϕ ⇐⇒ Q |= A by static implication and
symmetry of ·∼.

2. Inductive steps
∧

i∈I Ai and ¬A: immediate by induction.

3. Inductive step 〈α〉A: Assume P |= 〈α〉A. Then for some alpha-variant 〈α ′〉A′ = 〈α〉A, ∃P′ .P α ′−→
P′ and P′ |= A′. Without loss of generality we assume also bn(α ′)#Q, otherwise just find an alpha-

variant of 〈α ′〉A′ where this holds. Then by simulation ∃Q′ .Q α ′−→ Q′ and P′ ·∼ Q′. By induction
and P′ |= A′ we get Q′ |= A′, whence by definition Q |= 〈α〉A. The proof of Q |= 〈α〉A =⇒
P |= 〈α〉A is symmetric, using the fact that P ·∼ Q entails Q ·∼ P.

Lemma 9 If A is a distinguishing formula for P and Q, then there exists a distinguishing formula B for
P and Q such that supp(B)⊆ supp(P).

Proof: The proof has been formalized in Isabelle. We use the fact that a conjunction is well-formed
if the set of conjuncts has finite support—this is much more liberal than that each conjunct has the same
finite support. Assume P |= A and not Q |= A. Let S be the group of name permutations of names outside
supp(P) and let B be the S-orbit of A, i.e.,

B = {π ·A |π ∈ S}

Clearly π ′ ·B = B for all π ′ ∈ S, thus supp(B) ⊆ supp(P), which means that the formula B =
∧

B is
well-formed and supp(B)⊆ supp(P). By equivariance, if P |= A and π ∈ S then also P |= π ·A. Therefore
P |= B. Furthermore, since the identity permutation is in S and not Q |= A we get not Q |= B.

Theorem 10 P ·
= Q =⇒ P ·∼ Q

Proof: The proof has been formalized in Isabelle. We establish that ·= is a bisimulation. Obviously
it is symmetric. So assume P ·

= Q, we need to prove the two requirements on a bisimulation.

1. Static implication. P ` ϕ iff P |= ϕ iff Q |= ϕ iff Q ` ϕ .

2. Simulation. The proof is by contradiction. Assume that ·= does not satisfy the simulation re-
quirement. Then there exist P,Q,P′,α with bn(α)#Q such that P ·

= Q and P α−→ P′ and, letting
Q = {Q′ |Q α−→Q′}, for all Q′ ∈Q it holds that P′ 6 ·= Q′. Assume bn(α)#P, othertwise just find an
alpha-variant of the transition satisfying this. By P′ 6 ·= Q′, for all Q′ ∈Q there exists a distinguish-
ing formula for P′ and Q′. The formula may depend on Q′, and by Lemma 9 we can find such a
distinguishing formula BQ′ for P′ and Q′ with supp(BQ′)⊆ supp(P′). Therefore the formula

B =
∧

Q′∈Q
BQ′

is well-formed with support included in supp(P′). We thus get that P |= 〈α〉B but not Q |= 〈α〉B,
contradicting P ·

= Q.



Parrow, Borgström, Eriksson, Gutkovas, Weber 15

Proofs from Section 4 on fixpoint operators

Definition 20. We extend the nominal set of formulas with the least fixpoint operator:

A ::=
∧
i∈I

Ai | ¬A | ϕ | 〈α〉A | X | µX .A

where X is ranges over a countable set of equivariant variables. We require that all occurrences of a
variable X in a formula µX .A are in the scope of an even number of negations.

We use a capture-avoiding substitution function on formulas [A/X ] that substitutes A for the variable
X. In particular, (〈α〉B)[A/X ] = 〈α〉(B[A/X ]) when bn(α) is fresh for A.

To encode the fixpoint operators, we first give a semantics to formulas (including fixpoints) as sets
of states.

Definition 21. A valuation function ε is a map from variables to finitely supported sets of states, such
that ε(X) is the empty set for all but finitely many X. We define the interpretation function as follows:

J
∧

i∈I AiKε =
⋂

i∈IJAiKε

J¬AKε = STATES− JAKε

JϕKε = {P |P ` ϕ}
J〈α〉AKε =

{
P | ∃P′ .P α−→ P′ and P′ ∈ JAKε

}
JXKε = ε(X)

JµX .AKε =
⋂{

S ∈Pfs(STATES) | JAKε[X 7→S] ⊆ S
}

Note that J·K· is equivariant, so the intersections defining J
∧

i∈I AiKε and JµX .AKε are finitely supported.

Lemma 22. Let A be a formula as defined in Definition 4, then P |= A if and only if P ∈ JAKε .

Proof. By induction on A.

Similarly to the Knaster-Tarksi fixpoint theorem, the least fixpoint lfp(F) of a finitely supported
function F on the lattice of finitely supported subsets of a nominal set X can be computed by taking the
intersection of all pre-fixpoints (i.e., finitely supported sets S such that F(S) ⊆ S). (Note that the usual
Tarski fixpoint theorem does not apply, since this lattice is not continuous in general.)

Lemma 23. If X is a nominal set and F : Pfs(X)→Pfs(X) is monotonic and finitely supported, then

the least fixpoint of F is given by
⋂{

S ∈Pfs(X) |F(S)⊆ S
}

.

Proof. Let A =
{

S ∈Pfs(X) |F(S)⊆ S
}

. Note that X ∈ A, that A has finite support (bounded by
supp(F)), and that A contains all fixpoints of F . Let C =

⋂
A; note that supp(C)⊆ supp(A) is finite and

that C is a subset of any fixpoint of F . Since C⊆ S for all S∈A, we have F(C)⊆
⋂

S∈A F(S)⊆
⋂

S∈A S=C.
From F(C)⊆C and monotonicity we get F(F(C))⊆ F(C), so F(C) ∈ A and we get C ⊆ F(C) by con-
struction. From F(C)⊆C ⊆ F(C) we get C = F(C), so C is indeed the least fixpoint of F .

We thus only need to show that F(S) = JAKε[X 7→S] is monotonic in order for the interpretation of the
least fixpoint formula µX .A to indeed denote the least fixpoint.

Lemma 24. The function F(S) = JAKε[X 7→S] is monotonic for a closed formula µX .A.

Proof. Assume S ⊆ T for finitely supported sets of states S and T . We need to show that JAKε[X 7→S] ⊆
JAKε[X 7→T ]. We proceed by structural induction on A.



16 Modal Logics for Nominal Transition Systems

Case ϕ: Since X does not occur in ϕ , JϕKε[X 7→S] = JϕKε ⊆ JϕKε = JϕKε[X 7→T ].

Case X ′: If X = X ′, then ε[X 7→ S](X) = S⊆ T = ε[X 7→ T ](X) by assumption. Otherwise ε(X) = ε(X)
by reflexivity of ⊆.

Case ¬A: As induction hypothesis we have JAKε[X 7→S]⊆ JAKε[X 7→T ]. We consider two cases. If X does not
occur in A, then J¬AKε[X 7→S] = J¬AKε and J¬AKε[X 7→T ] = J¬AKε , and by reflexivity of⊆we are done
in this case. Otherwise, the X occurs in A and is in scope of one¬, we know JAKε[X 7→T ]⊆ JAKε[X 7→S],
therefore J¬AKε[X 7→S] = STATES− JAKε[X 7→S] ⊆ STATES− JAKε[X 7→T ] = J¬AKε[X 7→S].

Case 〈α〉A: Since, from induction hypothesis, JAKε[X 7→S] ⊆ JAKε[X 7→T ], it is easy to see that J〈α〉AKε[X 7→S]
contains at least the state of J〈α〉AKε[X 7→T ], that is, the former is the subset of latter.

Case
∧

i∈I Ai: By induction hypothesis, for every i ∈ I, JAiKε[X 7→S] ⊆ JAiKε[X 7→S]. Thus, J
∧

i∈I AiKε[X 7→S] =⋂
i∈IJAiKε[X 7→S] ⊆

⋂
i∈IJAiKε[X 7→T ] = J

∧
i∈I AiKε[X 7→T ].

Case µX ′.A: In case X = X ′ and by induction hypothesis JAKε[X 7→S] ⊆ JAKε[X 7→T ], JµX ′.AKε[X 7→S] =⋂{
S′ ∈Pfs(STATES) | JAKε[X 7→S][X ′ 7→S′] ⊆ S′

}
⊆ JµX ′.AKε[X 7→T ]. In case X ′ 6=X , then JµX ′.AKε[X 7→S]=

JµX ′.AKε and similarly for the set T , thus by reflexivity of ⊆ we conclude the proof case.

The least fixpoint operator can be directly expressed in our logic of Section 3. The idea here is
simple: we translate a fixpoint into an infinite disjunction that at each step i unrolls the recursion i times.
This then semantically corresponds to a limit of an ω-chain generated by a monotonic function, i.e., the
least fixpoint.

expand0(µX .A) = ⊥
expandi+1(µX .A) = A[expandi(µX .A)/X ]

µX .A =
∨

i∈ω expandi(µX .A)
X = X

∧
i∈I Ai =

∧
i∈I Ai ¬A = ¬A ϕ = ϕ 〈α〉A = 〈α〉A

Note that expandi is equivariant for all i. Thus, the disjunction in the fixpoint case is well-formed and
has support bounded by supp(A).

Theorem 25. For any formula A and valuation function ε , JAKε = JAKε .

Proof. By structural induction over A.

Case µX .A We need to show that JµX .AKε = JµX .AKε . First, we compute the left-hand side to JµX .AKε =
J
∨

i∈ω expandi(µX .A)Kε =
⋃

i∈ωJexpandi(µX .A)Kε Second, define F(S) = JAKε[X 7→S], and using
this we approximate the fixpoint from below with

⋃
i∈ω F i( /0)=

⋂{
S ∈Pfs(STATES) | JAKε[X 7→S] ⊆ S

}
=

JµX .AKε .

We prove that the above expressions are equal by showing that the elements are equivalent at every
step, that is, Jexpandi(µX .A)Kε = F i( /0) for every i ∈ ω . The proof proceeds by induction on i.



Parrow, Borgström, Eriksson, Gutkovas, Weber 17

Base case: J⊥Kε = /0 = F0( /0) by definition. Induction step:

Jexpandi+1(µX .A)Kε = Jexpandi+1(µX .A)Kε =

= JA[expandi(µX .A)/X ]Kε =
= JA[expandi(µX .A)/X ]Kε =
= JAKε[X 7→Jexpandi(µX .A)K]
= JAKε[X 7→F i( /0)]

(By induction hypothesis)
= JAKε[X 7→F i( /0)]

(By induction hypothesis JAKε = JAKε for any ε)
= F(F i( /0))
= F i+1( /0)

Other cases are trivial.

Proofs from Section 5

Theorem 15
P

F/L∼ Q ⇐⇒ P
F/L
= Q

Proof: Direction⇒ is a generalization of Theorem 7.

1. Base case: A = 〈 f 〉ϕ and f ∈ F . Then f (P) ` ϕ . By static implication f (Q) ` ϕ , which means
Q |= A.

2. Inductive step 〈 f 〉〈α〉A where A ∈ A F/L: Assume P |= 〈 f 〉〈α〉A. Then ∃P′ . f (P) α−→ P′ and
P′ |= A. Without loss of generality we assume also bn(α)# f (Q), otherwise just find an alpha-

variant of the transition where this holds. Then by simulation ∃Q′ . f (Q)
α−→ Q′ and P′

L(α,F)/L∼ Q′.
By induction and P′ |= A and A ∈A F/L we get Q′ |= A, whence by definition Q |= 〈 f 〉〈α〉A.

The direction⇐ is a generalization of Theorem 10: we prove that
F/L
= is an F/L-bisimulation. The

modified clauses are:

1. Static implication. Assume f ∈ F , then f (P) ` ϕ iff P |= 〈 f 〉ϕ iff Q |= 〈 f 〉ϕ iff f (Q) ` ϕ .

2. Simulation. The proof is by contradiction. Assume that
F/L
= does not satisfy the simulation re-

quirement. Then there exist f ∈ F,P,Q,P′,α such that P
F/L
= Q and f (P) α−→ P′ and, letting

Q = {Q′ | f (Q)
α−→ Q′}, for all Q′ ∈ Q it holds not P′

L(α,F)/L
= Q′. Choose bn(α)# f (P). Thus,

for all Q′ ∈Q there exists a distinguishing formula in A L(α,F)/L for P′ and Q′. The formula may
depend on Q′, and by Lemma 16 we can find such a distinguishing formula BQ′ ∈A L(α,F)/L for P′

and Q′ with support in supp(P′,L(α,F))⊆ supp(P,α,F). Therefore the formula

B =
∧

Q′∈Q
BQ′

is well formed in A L(α,F)/L with support included in supp(P′,α,F). We thus get that P |= 〈 f 〉〈α〉B
but not Q |= 〈 f 〉〈α〉B, contradicting P

F/L
= Q.



18 Modal Logics for Nominal Transition Systems

Lemma 16 If A ∈ A F/L is a distinguishing formula for P and Q, then there exists a distinguishing
formula B ∈A F/L for P and Q in such that supp(B)⊆ supp(P,F).

Proof: by direct construction: in the terminology of Pitts [24] ch. 5, B is the conjunction of hullsupp(P,F)A.
To spell out the proof: Assume A ∈A F/L and P |= A and not Q |= A. Let S be the group of name per-
mutations of names outside supp(P,F) and let B be the S-orbit of A, i.e.

B = {π ·A |π ∈ S}

Clearly π ′ ·B = B for all π ′ ∈ S, thus supp(B) ⊆ supp(P,F), which means that the formula B =
∧

B
is well formed and supp(B) ⊆ supp(P,F). By equivariance, if P |= A and π ∈ S then also P |= π ·A.
Therefore P |= B. Furthermore, since the identity permutation is in S and not Q |= A we get not Q |= B.
Finally, since L is equivariant we have supp(A F/L) ⊆ supp(F), which means that π ·A ∈ A F/L for all
π ∈ S, this establishes B ∈A F/L.

Theorem 18 P
F/L∼ Q in T if and only if EF(F,P) ·∼ EF(F,Q) in the L-transform of T.

Proof: For the direction ⇒, assume that R is an L-bisimulation. Define R′ on the L-transform by
including (EF(F,P),EF(F,Q)) and (AC(F, f (P)),AC(F, f (Q))) for all P,Q, f ,F such that f ∈ F and
RF(P,Q). We now prove R′ to be a simulation. Assume R′(S,T ).

1. Static implication: Assume S ` ϕ . Then S = AC(F, f (P)) for some F , f ∈ F and P and f (P) ` ϕ

holds in T, and T = AC(F, f (Q)) with RF(P,Q). Thus f (Q) ` ϕ whence T ` ϕ .

2. Simulation: Assume S α−→ S′. There are two cases:

• S = EF(F,P)
f−→ AC(F, f (P)) = S′ and f ∈ F . Then T = EF(F,Q) where RF(P,Q). We get

T
f−→ AC(F, f (Q)) = T ′ and R′(S′,T ′). Note here and below that bn( f ) = /0.

• S= AC(F, f (P)) α−→ EF(L(α,F),P′)= S′ and f (P) α−→P′, with bn(α)#AC(F, f (Q)). Then also
bn(α)# f (Q). We get T = AC(F, f (Q)) where RF(P,Q), so also f (Q)

α−→Q′ with RL(α,F)(P′,Q′).
Thus T α−→ EF(L(α,F),Q′) = T ′, and R′(S′,T ′) as required.

For the direction⇐, assume that R′ is a bisimulation in the L-transform of T. Define RF by RF(P,Q) if
R′(EF(F,P),EF(F,Q)). We prove R an L-bisimulation. Assume RF(P,Q).

1. Static implication: Let f ∈ F and assume f (P) ` ϕ . Then EF(F,P)
f−→ AC(F, f (P)). Since R′ is a

bisimulation we get EF(F,Q)
f−→ AC(F, f (Q)). Now f (P) ` ϕ means AC(F, f (P)) ` ϕ , and again

since R′ is a bisimulation AC(F, f (Q)) ` ϕ , which means f (Q) ` ϕ as required.

2. Simulation: Assume f ∈ F and f (P) α−→ P′ with bn(α)# f (Q). Without loss of generality addi-
tionally assume the transition is represented by an alpha-variant such that bn(α)#F . We get the
transitions

EF(F,P)
f−→ AC(F, f (P)) α−→ EF(L(α,F),P′)

Since R′ is a bisimulation and bn(α)#F, f (Q) we get a simulating sequence

EF(F,Q)
f−→ AC(F, f (Q))

α−→ EF(L(α,F),Q′)

This means that f (Q)
α−→ Q′ with RL(α,F)(P′,Q′) as required.


	Introduction
	Background on nominal sets
	Nominal transition systems and Hennessy-Milner logic
	Derived formulas
	Logics for variants of bisimilarity
	Related work and examples
	Conclusion
	Appendix: Proofs

