
Towards automated proof support for
probabilistic distributed systems

AK McIver1 and T Weber2

1 Dept. Computer Science, Macquarie University, NSW 2109 Australia;
anabel@ics.mq.edu.au

2 Dept. Computer Science, Technische Universität München, Germany;
webertj@in.tum.de

Abstract. The mechanisation of proofs for probabilistic systems is par-
ticularly challenging due to the verification of real-valued properties that
probability entails: experience indicates [12, 4, 11] that there are many
difficulties in automating real-number arithmetic in the context of other
program features.
In this paper we propose a framework for verification of probabilistic
distributed systems based on the generalisation of Kleene algebra with
tests that has been used as a basis for development of concurrency control
in standard programming [7]. We show that verification of real-valued
properties in these systems can be considerably simplified, and moreover
that there is an interpretation which is susceptible to counterexample
search via state exploration, despite the underlying real-number domain.

1 Introduction

Recent developments in mechanised theorem-proving approaches to the verifica-
tion of probabilistic programs [12, 4, 11] have highlighted at once both the ben-
efits and drawbacks of proof-based techniques. On the plus side, we see clearly
that proofs provide more general solutions (which can be re-used and easily
checked) than do other forms of automated verification such as probabilistic
model checking [17] (which, unlike standard model checking, does not compute
counterexamples). On the minus side, however, experience has shown that there
remain difficulties in automating real arithmetic in the context of other program
features, a necessity whenever typical properties are quantitative such as “the
probability that the program terminates is at least 0.7”.

The infinite domain (of reals) needed for quantitative analysis also implies
other limitations when compared to qualitative analysis. For example, it prevents
the provision of counterexample search via state exploration [28]. Counterexam-
ple search is an effective technique in the activity of mathematical proof, as it
leads to the debugging of conjectures, often by directing the prover to strengthen
the hypotheses under which the consequent should follow. In program verifica-
tion this debugging process corresponds to reformulations of specifications under
which a proposed refinement is valid, or to the redesign of a suggested imple-
mentation. Such debugging strategies have been employed to great effect in tools

2 AK McIver and T Weber

such as Alloy [13]. Given the above however, it appears at first sight that the
task of quantitative verification cannot be enhanced straightforwardly by coun-
terexample search.

Nevertheless, the benefits of mechanised proof provide a strong motivation
to look for methods that will alleviate the drawbacks. In this paper we present
a proof system which reduces the overhead of arithmetic in automated proof,
as well as supporting counterexample search. As far as we are aware, this is the
first proof system for probabilistic programs to do so.

As our principal context we take probabilistic distributed systems — such
systems are particularly difficult to verify, as the interaction of probability with
other system features can lead to unexpected behaviour [26, 2]. In these cases,
much of the verification is devoted to showing that, under certain simple hy-
potheses, a highly distributed architecture is equivalent to a serialised one. In
fact a proof of such an equivalence can often be done without appeal to prob-
ability at all, even though the systems and their correctness depend on explicit
quantitative properties. This has the effect of reducing any quantitative reason-
ing to validation of the hypotheses for a particular concrete system, in general
a significantly simpler problem than analysing the two architectures directly.
Cohen’s work [7, 6] on the practical use of Kleene algebra for verification in
loosely-coupled (but non-probabilistic) systems provides ample evidence that
a Kleene-style algebra is a good candidate for this kind of reasoning, and the
evidence applies even when probability is introduced.

Our first contribution is to show how a model for probabilistic systems LS
(for given state space S) [10, 23] can be interpreted over a Kleene-style program
algebra [16], so that explicit probabilistic reasoning is significantly reduced.

Next we turn to the feasibility of counterexample search in probabilistic
Kleene algebra. For this we propose an abstraction of the probabilistic model
that preserves the important limiting features of standard probability, and at
the same time yields genuinely finite models which are thus amenable to state
exploration techniques similar to those for non-probabilistic systems [28].

Our second contribution is a model of abstract probabilities KS that is sus-
ceptible to complete semantic exploration, yielding counterexamples even for the
probabilistic model LS. This appears to be the first facility for counterexample
search for probabilistic systems.

In Sec. 2 we set out the probabilistic model LS, together with, in Sec. 2.1,
an interpretation in the Kleene-style algebra. Next, in Sec. 3 we set out the
abstract model KS and show that the the interpretation in Kleene algebra is a
homomorphic image of the interpretation in LS, and in particular that equalities
over Kleene algebra expressions are preserved. Finally in Sec. 4 we show how state
exploration techniques within KS can be used to generate counterexamples even
within LS. In Sec. 5 we summarise other research in this area and suggest further
topics for investigation.

Towards automated proof support for probabilistic distributed systems 3

The notational conventions used are as follows. Function application is rep-
resented by a dot, as in f.x. If K is a set then K is the set of discrete probability
distributions over K, that is the normalised functions from K into the real in-
terval [0, 1] (i.e. function f is normalised if

∑
s:K f.s = 1). A point distribution

centered at a point k is denoted by δk. The (p, 1− p)-weighted average of distri-
butions d and d′ is denoted d p⊕d′; more generally we write p1d

1 + . . .+pndn for
the (p1, . . . , pn) weighted average over distributions d1, . . . , dn. If K is a subset,
and d a distribution, we write d.K for

∑
s:K d.s. The power set of K is denoted

℘K.

2 Probabilistic systems

Given a (discrete) state space S, the set of functions S → ℘S, from (initial)
states to subsets of distributions over (final) states, is the basis for the transition-
system style model now generally accepted for probabilistic systems [19] though,
depending on the particular application, the conditions imposed on the sub-
sets of (final) probability distributions can vary [23, 10]. Briefly the idea is that
probabilistic systems comprise both quantifiable arbitrary behaviour (such as
the chance of winning an automated lottery) together with unquantifiable arbi-
trary behaviour (such as the precise order of concurrent events). The functions
S → ℘S model the quantifiable events as probability distributions — effectively
probabilistic transitions (hence the range of semantic functions includes distri-
butions in S). On the other hand, the unquantifiable events are modelled as a
subset of distributions (hence the range of semantic functions can be a subset of
distributions).

For example, a program that simulates a fair coin is modelled by a function
that maps an arbitrary state s to the distribution weighted evenly between the
point distributions representing heads and tails (but see below):

s 7→ {δhead 1/2⊕ δtail} . (1)

In contrast a program that simulates a possible bias favouring heads of at
most 2/3, is modelled by a function which takes an arbitrary state to a subset
of distributions specifying the precise limits on the bias:

s 7→ {δhead 1/2⊕ δtail , δhead 2/3⊕ δtail} . (2)

In setting up the details, we follow Morgan et al.[23] and take a domain the-
oretical approach, restricting the result sets of the semantic functions according
to an underlying order on the state space. An innovation, however, is to distin-
guish specially “miraculous” or infeasible behaviour from ordinary behaviour —
miracles are used in program semantics to simplify calculations [21, 20], to model
“tests” [16] and, here, they will work well with our simple algebra of programs
to come. In the semantics, miracles will be associated with a special introduced
state >, and our program model is defined over the probabilistic power domain
[14] based on the underlying (flat) domain (S>,v), where S> is S conjoined

4 AK McIver and T Weber

with the special state >, and the order v is constructed so that > dominates all
(proper) states in S, which are otherwise unrelated.

Definition 1. A probabilistic power domain is a pair (S>,vD), where S> is
the set of normalised functions from S> into the real interval [0, 1], and vD is
induced from v on S> so that

d vD d′ iff (∀K ⊆ S · d.K + d.> ≤ d′.K + d′.>) .

Probabilistic programs (with miracles) are now modelled as the set of func-
tions from initial S> to sets of final distributions over S>, where the result sets
are restricted by so-called healthiness conditions characterising viable probabilis-
tic behaviour, and motivated in detail elsewhere [19]. By doing so the semantics
accounts for specific features of probabilistic programs. In this case (again fol-
lowing Morgan) we impose up-closure (the inclusion of all vD-dominating dis-
tributions), convex closure (the inclusion of all convex combinations of distribu-
tions), and Cauchy closure (the inclusion of all limits of distributions according
to the standard Cauchy metric on real-valued functions [23]). Thus, by con-
struction, viable computations are those in which miracles dominate (refine) all
other behaviours (implied by up-closure), nondeterministic choice is refined by
probabilistic choice (implied by convex closure), and classic limiting behaviour
of probabilistic events (such as so-called “zero-one laws” 3) is also accounted for
(implied by Cauchy closure). An additional bonus is that program refinement is
simply defined as reverse set-inclusion. We observe that probabilistic properties
are preserved with increasing order.

Definition 2. The space of probabilistic programs 4 is given by (LS,vL) where
LS is the set of functions from S> to the power set of S>, restricted to subsets
which are Cauchy- , convex- and up closed with respect to vD. All programs are
>-preserving (mapping > to {δ>}). The order between programs is defined

P vL P ′ iff (∀s:S · P.s ⊇ P ′.s) .

Thus in the examples above, taking the closure conditions into account, we
see that up-closure implies that the result set at (1) would also contain the
distributions aδhead + bδtail + cδ> for a, b, c satisfying the conditions 1/2 ≤ a + c,
and 1/2 ≤ b+c. Similarly convex-closure implies that the result set at (2) should
also include all (p, 1−p)-weighted distributions of the form (δhead 2/3⊕ δtail/3) p⊕
(δhead 1/2⊕ δtail), for any 0 ≤ p ≤ 1.

In Fig. 1 we define some mathematical operators on the space of programs,
which will be used to interpret our language. Informally composition P ;P ′ corre-
sponds to a program P being executed followed by P ′, so that from initial state
s, any result distribution d of P.s can be followed by an arbitrary distribution of
3 An easy consequence of a zero-one law is that if a fair coin is flipped repeatedly,

then with probability 1 a head is observed eventually. See the program ‘coin’ inside
an iteration, which is discussed below.

4 This particular “Lamington” model was first suggested by Carroll Morgan [22].

Towards automated proof support for probabilistic distributed systems 5

Identity Id.s =̂ d{δs}e ,
top >.s =̂ {δ>} ,
composition (P ; P ′).s =̂ {

∑
u:S>(d.u)× d′u | d ∈ P.s; d′u ∈ P ′.u} ,

choice (if B then P else P ′).s =̂ if B.s, then P.s, otherwise P ′.s
probability (P p⊕ P ′).s =̂ d{d p⊕ d′ | d ∈ r.s; d′ ∈ r′.s}e ,
nondeterminism (P u P ′).s =̂ d{d | d ∈ (P.s ∪ P ′.s)}e ,
iteration P ∗ =̂ (νX · P ; X u Id) .

In the above definitions s is a state in S and dKe is the smallest up-, convex- and
Cauchy-closed subset of distributions containing K. Programs are denoted by P and
P ′, and the expression (νX · f.X) denotes the greatest fixed point of the function f —
in the case of iteration the function is the monotone vL-program-to-program function
λX · (P ; X u Id). All programs map > to {δ>}.

Fig. 1. Mathematical operators on the space of programs [19].

P ′. 5 The probabilistic operator takes the weighted average of the distributions of
its operands, and the nondeterminism operator takes their union. To illustrate,
let S be the set of integers, and consider the following transition πk.s =̂ {δs+k}.
Thus πk.s is the transition that adds k to s. Next we can define more complicated
transitions using the operators, for example

Π.s =̂ if (s ≥ 0) then (π−1 1
2
⊕ (Id 1

2
⊕ π−2)).s else Id.s (3)

The transition at (3) essentially maps initial states with value at least 0 to
the weighted sum of point distributions, namely 1

2 × δs−1 + 1
4 × δs + 1

4 × δs−2,
and otherwise leaves the state alone.

Iteration is the most intricate of the operations — operationally P ∗ represents
the program that can execute P an arbitrary number of finite times. In the
probabilistic context, as well as generating the results of all “finite iterations”
of (P u Id) (viz, a finite number of compositions of (P u Id)), imposition of
Cauchy closure acts as expected on metric spaces, in that it generates all limiting
distributions as well — i.e. if d0, d1, . . . are distributions contained in a result set
M which converge to d, then d is contained in M as well. To illustrate, consider
the transition at (3) inside an iteration Π∗ corresponding to a transition system
which can (but does not have to) reduce s indefinitely until its value falls below
zero. For states with value less than zero the iteration does nothing to the state
(i.e. we are considering “skipping forever” to be the the same as terminating).
Now it is easy to see that from initial s = 0, after n iterations of the program
at (3) the distribution over the results s = 0,−1 or −2 is pnδ0 + qnδ−1 + rnδ−2,
where pn = 1/(4n), qn = 2(1 − pn)/3 and rn = (1 − pn)/3. But observe now
the limits limn→∞ pn = 0, limn→∞ qn = 2/3, and limn→∞ rn = 1/3, and that
Cauchy closure implies the limit distribution 2δ−1/3 + δ−2/3 is contained in the
result set of the iteration Π∗ as well.

5 Compare composition in Markov Decision Processes [9].

6 AK McIver and T Weber

More generally we will need to characterise the limiting distributions in terms
of distributions contained in the result sets of finite iterations. (Recall that a
finite iteration of program Q is of the form Qn for some n, where Q0 =̂ Id,
and Qn+1 =̂ Q;Qn.) The following lemma provides conditions, in the context
of finite state spaces, that a distribution be generated by an iteration. For any
distribution d, let supp.d be the smallest subset K ⊆ S> with d.K = 1, and for
iteration (P ∗) let PN be the set of distributions generated by finite iterations
of (Id u P). Further, we say that “subset K can be reached with probability 1
from state s via executions of program Q” if there exists a sequence (possibly
finite) of distributions di with each di ∈ Qi.s, such that limi≥0 di.K = 1. (Note
that distributions contained in finite executions are a special case.)

Lemma 1. Let P be a program in LS, and let S be finite. If distribution d is
in P ∗.s, then supp.d can be reached from s with probability 1 via executions of
(Id u P). Alternatively if K is a subset of supp.d′ for some d′ in P ∗.s, and can
be reached with probability 1 via executions of (IduP) from all s in supp.d′, then
there is some d in P ∗.s with supp.d = K.

Proof. By the greatest fixed point definition, P ∗ = dlimn≥0(Id u P)ne, thus the
first condition follows. Alternatively if distribution d′ is in the result set of P ∗.s,
then the nondeterminism in subsequent executions of (Id u P) can be exploited
to produce a distribution with support K, since if s′ 6∈ K, the branch P can
be selected until K is established with probability 1, which (if P itself has no
nondeterminsim) yields an appropriate distribution d. The case that P is non-
deterministic reduces to the latter case since it has been shown elsewhere [19,
8] that P ∗ = ui:IP

∗
i , where we are using ui:IP

∗
i to mean the nondeterminis-

tic choice over the programs in the index set I, which in this case ranges over
all deterministic refinements of P . The result now follows since d is a convex
combination of distributions within the P ∗i .s.

Now we have introduced a model for general probabilistic contexts, our next
task is to investigate its program algebra. That is the topic of the next section.

2.1 Kleene algebra for probabilistic systems

Kleene algebra consists of a sequential composition operator (with a distin-
guished identity (1) and zero (0)); a binary plus (+) and unary star (∗). Terms
are ordered by ≤ defined by + (see Fig. 2), and both binary as well as the unary
operators are monotone with respect to it. Sequential composition is indicated by
the sequencing of terms in an expression so that ab means the program denoted
by a is executed first, and then b. The expression a + b means that either a or b
is executed, and the Kleene star a∗ represents an arbitrary number of executions
of the program a. In Fig. 2 we set out the rules for the probabilistic Kleene alge-
bra, pKA. We use early letters (a, b, c) to denote expressions (constructed from
application of the operators) and late letters (x, y, z) to denote variables (within
expressions). In an interpretation of a pKA expression the variables are mapped
to specific (probabilistic) programs. The next definition sets out the details.

Towards automated proof support for probabilistic distributed systems 7

(i) 0 + a = a (viii) ab + ac ≤ a(b + c) (†)
(ii) a + b = b + a (ix) (a + b)c = ac + bc

(iii) a + a = a (x) a ≤ b iff a + b = b
(iv) a + (b + c) = (a + b) + c
(v) a(bc) = (ab)c (xi) a∗ = 1 + aa∗

(vi) 0a = a0 = 0 (xii) a(b + 1) ≤ a ⇒ ab∗ = a
(vii) 1a = a1 = a (xiii) ab ≤ b ⇒ a∗b = b

Programs are denoted by a, b and c. Note that the rule (†) is weaker than the corre-
sponding rule in standard Kleene algebra [7]; this is because of the well-documented
[19, 27] interaction of probability and nondeterminism.

Fig. 2. Rules of Probabilistic Kleene algebra, pKA.

Definition 3. The semantic mapping from pKA expressions to LS is given by

|[1]|ρ =̂ Id , |[0]|ρ =̂ >
|[ab]|ρ =̂ |[a]|ρ; |[b]|ρ , |[a + b]|ρ =̂ |[a]|ρ u |[b]|ρ , |[a∗]|ρ =̂ |[a]|∗ρ

Here ρ gives the precise interpretation corresponding to the variables in the ex-
pressions a and b, so that for variable x, we have |[x]|ρ is a specific (fixed) prob-
abilistic program ρ.x in LS.

We use ≥ for the order in pKA, which we identify with vL from Def. 2; the
next result shows that Def. 3 is a valid interpretation for the rules in Fig. 1, in
that theorems in pKA apply in general to probabilistic programs.

Theorem 1. Let ρ be an interpretation as set out at Def. 3. The rules at Fig. 2
are all satisfied, namely if a ≤ b is a theorem of pKA set out at Fig. 2, then
|[b]|ρ vL |[a]|ρ.

Proof. Follows from Def. 3, and the fact that P ∗ = d
⋃

n≥0(Id u P)ne.

Next in Lem. 2 we illustrate some proofs within Kleene algebra of some simple
properties of programs. The first two theorems are basic technical equalities; the
third equality, on the other hand, is of independent interest as it forms the basis
for many “separation”-style theorems common in distributed systems [7], and
indeed generalises similar theorems to the probabilistic context.

Lemma 2.

a∗a∗ = a∗ (4)
a∗(b + c) = a∗(a∗b + a∗c) (5)

a(b + 1) ≤ ca + d ⇒ ab∗ ≤ c∗(a + db∗) (6)

Proof. For (4) we observe from (xi) that a∗ = 1 + aa∗, thus aa∗ ≤ a∗, and the
result follows from (xiii).

For (5) we reason as follows:

8 AK McIver and T Weber

a∗(a∗b + a∗c) ≥ a∗(b + c) = a∗a∗(b + c) ≥ a∗(a∗b + a∗c) ,

where the first inequality follows since 1 ≤ a∗; the inequality from (4), and
the final inequality from (viii).

Finally for (6) we show first that

c∗(a + db∗)(b + 1) ≤ c∗(a + db∗) ,

reasoning as follows.

c∗(a + db∗)(b + 1)
= c∗(a(b + 1) + db∗(b + 1)) (ix)

≤ c∗(ca + d + db∗(b + 1)) hypothesis

≤ c∗(ca + db∗ + db∗) 1, (b + 1) ≤ b∗; (4)

= c∗(ca + db∗) (iii)

≤ c∗(c∗a + c∗db∗) 1, c ≤ c∗

= c∗(a + db∗) . (5)

From this inequality we now appeal to the induction rule at (xii) to deduce that
c∗(a+db∗)b∗ ≤ c∗(a+db∗), and the result now follows since ab∗ ≤ c∗(a+db∗)b∗.

The rules in Fig. 2 purposefully treat probabilistic choice implicitly, and it
is only the failure of the equality at (viii) which implies that probability may
be present in an interpretation |[a]|ρ: in fact it is this property that characterises
probabilistic-like models, separating them from those which contain only pure
demonic nondeterminism. 6 The use of implicit probabilities fits in well with
our applications, where probability is usually confined to statements within a
distributed protocol and nondeterminism refers to the arbitrary sequencing of
actions that is controlled by a so-called adversarial scheduler [27]. For example,
if a and b correspond to atomic program fragments (containing probability), then
the expression (a+b)∗ means that either a or b (possibly containing probability)
is executed an arbitrary number of times (according to the scheduler), in any
order — in other words it corresponds to the concurrent execution of a and b.
Typically a verification of a distributed protocol might involve transformation of
a simple, serialised specification architecture, such as a∗b∗ (first a executes for an
arbitrary number of times, and then b does), into a distributed implementation
architecture, such as (a+b)∗ using general hypotheses, such as ab = ba (program
fragments a and b commute). For instance a typical conjecture might be the
following transformation

ab ≤ ca ⇒ ab∗ ≤ c∗a , (7)

which says that if a and b are programs such that running a followed by b
is a refinement of c followed by a, then it should be the case that a followed
6 Programming models that include angelic nondeterminism as well as demonic non-

determinism satisfy (viii), and not the stronger equality [3]; however those models
do not satisfy the special limiting properties of probabilistic programs.

Towards automated proof support for probabilistic distributed systems 9

by running b for an arbitrary number of times is a refinement of running c
similarly for an arbitrary number of times followed by a. Were this result to be
proved generally within the proof system then for a particular example where a,
b and c were specific programs typically containing precise probabilistic choices,
only the simple hypothesis ab ≤ ca would need to be checked (i.e. that |[ca]|ρ vL
|[ab]|ρ) instead of constructing brute force the concrete model for the whole of the
(iterative) programs |[ab∗]|ρ and |[c∗a]|ρ and then comparing the results explicitly.

Though plausible, unfortunately the particular conjecture at (7) turns out to
be invalid in the probabilistic model (though it is valid in the standard model)
and so any attempt to prove otherwise using pKA is bound to fail. To see that
let ρ be the interpretation such that

|[a]|ρ = |[b]|ρ = |[c]|ρ = x: = 0 1
2
⊕ x: = 1 (8)

so that |[ab∗]|ρ = x: = 0 u x: = 1 and |[c∗a]|ρ = x: = 0 1
2
⊕ x: = 1. Were (7) to

be true generally, it would assert (in this case, since x: = 0 u x: = 1 vL x: =
0 1

2
⊕ x: = 1 is generally true) the equality of the programs x: = 0 u x: = 1 and

x: = 0 1
2
⊕ x: = 1. But the result set of the latter program does not contain the

point distributions δ0 and δ1, whereas the result set of the former does.
Such false conjectures are a common pitfall in the activity of proof, and can

be seen as intermediate stages of a validation. Once the error is discovered, the
solution is usually clear, and in the case of (7) is fixed by strengthening the
hypothesis to a(b + 1) ≤ ca so that the correct theorem becomes

a(b + 1) ≤ ca ⇒ ab∗ ≤ c∗a , (9)

which can indeed be verified within the proof system. 7 And the above interpre-
tation at (8) is no longer a counterexample for (9) since the new hypothesis now
fails to hold.

Determining which conjectures are false can however be a very time consum-
ing and ad hoc process, thus any automated tool to prompt the user with a
counterexample is an invaluable resource. Unfortunately automated counterex-
ample searchers normally use some kind of exhaustive search through models of
finite size, but this is not possible for the real-number domain needed to model
probability distributions. In the next section we consider an abstraction which,
overcomes this problem.

3 Abstract Probabilistic systems

In this section we propose an abstraction of LS which yields genuinely finite
models. The basic idea is to replace a probability distribution d by a simple
set, in fact its support supp.d, which contains only the information of which
transitions are probabilistic, and the range over which each probabilistic transi-
tion extends. We call such a subset the abstract distribution associated with d.
7 Indeed it is a special case of (6) at Lem. 2 above with d set to 0.

10 AK McIver and T Weber

This abstraction (mapping distributions to their abstract counterparts) induces
an order on subsets of S>: two subsets (abstract distributions) are defined to
be comparable only if there exist corresponding probability distributions which
are comparable under vD. The next definition reformulates that idea without
referring to distributions at all.

Definition 4. Given a distribution d, its associated abstract distribution is de-
fined to be supp.d. Abstract distributions K and K ′ are ordered as follows 8

K vA K ′ iff (K = K ′) ∨ ((> ∈ K ′) ⇒ K ′ ⊆ K).

The space of abstract programs now uses abstract distributions. The closure
conditions are suitable abstractions of those used in Def. 2; in particular union-
closure is an abstraction of convex closure.

Definition 5. The space of abstract probabilistic programs is the pair (KS,vK
) where KS is the set of functions S> → ℘℘S>, restricted to subsets which are
union- and up closed with respect to vA. The order between programs is defined

U vK U ′ iff (∀s:S · U.s ⊇ U ′.s) .

Next we define a projection which maps probabilistic programs to abstract
probabilistic programs, so that it preserves order.

Definition 6. The abstraction projection ε : LS → KS is defined ε.P.s =̂
{supp.d | d ∈ P.s}.

Lemma 3. For probabilistic programs P, P ′:LS, if P vL P ′ then ε.P vK ε.P ′.

Proof. Follows from the definitions of ε, vD and vA.

In Fig. 3 we define some mathematical operators over the space of abstract
probabilistic programs — they have been chosen so that they correspond via
ε to the operators for the probabilistic model given at Fig. 1. We say that if
K is a subset of abstract distributions then |dKe| is the smallest vA-up- and
union-closed containing K.

By construction the abstraction projection preserves (homomorphically) com-
position and nondeterminism. In particular it is easy to see that ε.(P ;P ′) ≡K
ε.P ;; ε.P ′ and that ε.(P u P ′) ≡K ε.P []ε.P ′. Our next task is to do the same for
iteration — here, as for composition and nondeterminism, our goal is to define
the abstract version so that the abstract distributions in the result set of the
iteration can be determined by those in the underlying abstract program —
even when they correspond to limit distibutions. For example, a probabilistic
program modelling of a fair coin, say coin =̂ head 1

2
⊕ tail, has the result

that its iteration (coin∗) includes both output distributions δhead and δtail though
neither point distribution is a result of any finite number of iterations of coin —
it is Cauchy closure that guarantees their inclusion. To see that, we imagine that
8 This is actually the well-known Hoare order on subsets based on v for S>.

Towards automated proof support for probabilistic distributed systems 11

Identity Id.s =̂ |d{{s}}e| ,
top >.s =̂ {{>}} ,
composition (U ;; U ′).s =̂ {

⋃
u:K K′

u | K: U.s; K′
u: U ′.u} ,

probability (U ⊕ U ′).s =̂ |d{K ∪K′ | K: U.s; K′: U ′.s}e| ,
nondeterminism (U []U ′).s =̂ |d{K | K: (U.s ∪ U ′.s)}e| ,

Here s is a state in S, and U , U ′ are programs, and if K is a subset of abstract
distributions then |dKe| is the smallest vA-up- and union-closed subset containing K.
We deal with iteration below.

Fig. 3. Mathematical operators on abstract probabilistic programs.

the implicit “u” inside of the definition of coin∗ acts like a “demon” which can
see the value established by the flipped coin after every execution of coin, and
can terminate the iteration at any moment — since the laws of probability assert
that a fair coin flipped for an arbitrary number of times must with probability
1 flip a head eventually, the demon can use this to his advantage to wait only
long enough until that head appears. The overall effect is that the iteration can
terminate with probability 1 in the state head, which is the same as saying that
coin∗ outputs the point distribution δhead. A similar argument holds for tail.

Thus we need to define the abstract iteration so that ε.(coin∗) contains the
corresponding abstract distributions {head} and {tail}.

Definition 7. For abstract program A in KS, we define A∗ as follows. Subset
K ⊆ A∗.s if there exists a probabilistic program P in LS such that ε.P = A and
K = supp.d for some distribution d in P ∗.s.

Our next task is to reformulate Def. 7 so that A∗ can be determined without
referring to any probabilities at all (in an underlying probabilistic program, P
say). Fortunately, for finite state spaces S, Lem. 1 implies that the images in
ε of limit distributions can be characterised in terms of abstract probabilistic
properties alone, which is precisely what we need. The next two lemmas set out
the details.

Lemma 4. For any program P in LS, with S finite, we have the equality ε.(P ∗) =
(ε.P)∗.

Proof. Follows immediately from Lem. 1 which implies that supports of distribu-
tions in iterations are independent of the probabilistic weights of the transitions.

Whilst Lem. 4 implies that the actual numeric values of underlying programs
P are irrelevant for determining A∗ (provided that they are non zero), the next
result shows how to compute A∗ without referring to the underlying probabilistic
programs at all, but only their abstractions. We say that K is reachable with
probability 1 via executions of A if K is reachable with probability 1 for some
program P in LS such that ε.P = A. It is well-known that in finite state spaces
there exist algorithms to compute such probability 1 reachability sets using only

12 AK McIver and T Weber

the information provided by the abstract transitions; for example de Alfaro et
al. provide such an algorithm [8] with complexity quadratic in the size of the
underlying transition system, and we discuss its relevance in the next section.

Lemma 5. Given abstract program A in KS, where S is a finite state space we
can compute A∗ as follows. Subset K is in A∗.s if

1. K ⊆ (Id [] A)n for some n ≥ 0;
2. or there is some K ′ ⊆ A∗.s such that K ⊆ K ′ and for all k ∈ K ′ it is possible

to reach K with probability 1 from k via executions of (Id [] A).

Proof. Let P be any program in LS such that ε.P = A. The result now follows
from Lem. 1.

Finally we can define an interpretation of pKA over abstract probabilistic
programs so that the two interpretations correspond homomorphically.

Definition 8. The semantic mapping from pKA terms to the abstract proba-
bilistic semantics is given by 9

(|1|)ρ =̂ Id , (|0|)ρ =̂ >
(|ab|)ρ =̂ (|a|)ρ ;; (|b|)ρ , (|a + b|)ρ =̂ (|a|)ρ [] (|b|)ρ , (|a∗|)ρ =̂ (|a|)∗ρ

Here ρ gives the precise interpretation corresponding to the variables in the ex-
pressions a and b, so that for variable x, we have (|x|)ρ is a specific (fixed) abstract
probabilistic program ρ.x in KS.

The next lemma gives states the relationship between interpretations in LS
and in KS.

Lemma 6. Let e be any expression in pKA, and let ρ be an interpretation in
LS, so that all variables are mapped to programs in LS, and Def. 3 is used to
interpret the operators. The equality ε.|[e]|ρ = (|e|)ε.ρ holds, where ε.ρ denotes the
interpretation in KS where all variables are mapped to the images under ε of the
programs defined by ρ, and Def. 8 is used to interpret the operators.

Proof. Structural induction, Def. 8 and Lem. 5.

In this section we have set up a model for abstract probabilistic programs
in which the precise weights attached to the probabilistic transitions have been
suppressed, whilst retaining the limiting properties of probability theory.

9 Note that we do not claim that the Kleene rules are satisfied by this definition;
indeed (xiii) fails to hold. The abstract program s0 7→ {{s0, s1}}; s1 7→ {{s1}}
denoting both a and b is a counterexample.

Towards automated proof support for probabilistic distributed systems 13

4 Towards a framework for counterexample search

In this next section we show how KS can be used to find counterexamples in LS
using a strategy based on state exploration over finite abstract models.

Lemma 7. Let e and f be expressions in the Kleene algebra. If e 6= f is satis-
fiable within KS then it is also satisfiable within LS.

Proof. Let the variables in e and f be x1, . . . xn. Let ρ be an interpretation which
maps each xi to abstract program Ai within KS so that (|e|)ρ 6= (|f |)ρ — this is
possible since, by assumption, the inequality is satisfiable in KS. We note that for
each Ai there is a corresponding probabilistic model A′i such that ε.A′i = Ai (let
each abstract distribution K in Ai.s be replaced by the uniform distribution over
K). It now follows immediately from Lem. 3 and Lem. 6 that the interpretation
defined by the A′i demonstrates that the inequality is satisfiable in LS as well.

Finally we have our main result — that if a counterexample exists in KS to
a conjectured equality, it is not provable in pKA.

Corollary 1. Let e and f be expressions in the Kleene algebra. If e 6= f is
satisfiable within KS then the equality e = f it is not provable by probabilistic
Kleene algebra rules.

Proof. By Lem. 7, the inequality e 6= f is satisfiable within LS, and by Thm. 1
interpretations in LS satisfy the probabilistic Kleene rules.

To see Lem. 7 in action, consider the assertion at (7). In a two state-space
{s0, s1}, we define Ai.s =̂ |d{{s0, s1}}e| for i = 1, 2, 3; the resulting interpretation
with a, b, c mapped to A1, A2, A3 respectively show that the negation of (7) is
satisfiable in KS. And indeed the construction described in the proof of Lem. 7
shows that it is not satisfiable in LS either, recovering the counterexample in
LS given at (8).

4.1 Mechanisation of counterexample search

Lem. 7 implies that automated counterexample search for equalities within LS
can be based on state exploration of finite models in KS, and Lem. 5 implies
that we can use existing reachability algorithms for finite probabilistic systems
to compute (within KS) all instances of a∗.

Based on the model KS we have implemented a counterexample search using
the SAT solving facility [29] of the Isabelle theorem proving environment [25], by
translating the pKA expressions into CNF. For very small state spaces, the trans-
lation into propositional logic creates an explicit representation of the ∗ operator,
where a∗ is precomputed for every abstract program a. Due to the number of
possible models, this approach is infeasible for larger state spaces, though, fortu-
nately, in practice, counterexamples do appear to be exhibited within very small
state spaces. Here however partial evaluation is employed instead to compute a∗

symbolically, using an appropriate version of de Alfaro’s algorithm applied to

14 AK McIver and T Weber

the propositional representation of the abstract program a under consideration.
Still the size of the resulting CNF formula limits the size of the models that
can be handled. On-the-fly simplification can be used to reduce the size of the
formula when a partially known program is considered. Consequently a hybrid
approach, where enumeration of models is performed partially by the SAT solver
(to reduce the search space) and partially before translation to SAT (to simplify
the translation) might prove to be even more efficient.

The fact that the implementation of ∗ is challenging seems to be the case in
other systems using SAT solving in the context of ∗-like operators [13].

Finally we note that the proposed procedure for discovering counterexamples
outlined above does not, in general, work well for theorems with hypotheses.
That is because the abstraction function does not preserve inequalities. However,
experience with the Kleene algebra has shown that many universal equalities are
needed within any proof, thus automated support extending only to equalities
is still an important resource.

That said, there are some interesting special cases for which this approach
still applies such as hypotheses of the form p = 0 [5].

5 Conclusions and comparisons with other approaches

This work represents the first step towards automated reasoning tools for prob-
abilistic distributions systems. Future work will also explore the use of optimi-
sations and heuristics for mechanised search within KS, other strategies to treat
hypotheses, and the use of other generalisations of Kleene algebra, to include
termination properties [7].

Other techniques for verifying probabilistic systems separate probabilistic
from standard reasoning [27], but unlike our algebraic approach the standard
reasoning only includes properties that are insensitive to the underlying proba-
bilities, and thus only weak properties (typically non probabilistic) can be veri-
fied in this way. Other approaches that combine model checking and reasoning
to yield parametrised properties include that of Pnueli et al. [1]. There is an
extensive literature on probabilistic semantics, for example, [18, 27, 15] but as
far as we are aware none of this work can support automated counterexample
search.

References

1. T. Arons, A. Pnueli, and L. Zuck. Parameterized verification by probabilistic
abstraction. In Proceedings of FOSSACS, number 2620 in LNCS, April 2003.

2. James Aspnes and M. Herlihy. Fast randomized consensus using shared memory.
J. Algorithms, 11(3):441–61, 1990.

3. R.-J.R. Back and J. von Wright. The Refinement Calculus: A Systematic Intro-
duction. Springer Verlag, 1998.

4. O. Celiku and A. McIver. Cost-based analysis of probabilistic programs mechanised
in HOL. Nordic Journal of Computing, 2004.

Towards automated proof support for probabilistic distributed systems 15

5. E. Cohen. Hypotheses in Kleene Algebra. Bellcore technical report, 1994.
6. E. Cohen. Lazy caching. Bellcore technical report, 1994.
7. E. Cohen. Separation and reduction. In Mathematics of Program Construction,

5th International Conference, volume 1837 of LNCS, pages 45–59. Springer, 2000.
8. Luca de Alfaro and T. Henzinger. Concurrent ω-regular games. In Proc. 15th

IEEE Symp. Logic in Computer Science. IEEE, 2000.
9. C. Derman. Finite State Markov Decision Processes. Academic Press, 1970.

10. Jifeng He, K. Seidel, and A.K. McIver. Probabilistic models for the guarded com-
mand language. Science of Computer Programming, 28:171–192, 1997.

11. Thai Son Huang. The Development of a Probabilistic B Method and a Supporting
Toolkit. PhD thesis, Dept. Engineering and Computer Science. In draft.

12. Joe Hurd, A.K. McIver, and C.C. Morgan. Probabilistic guarded commands mech-
anised in HOL. Proc. QAPL ’04 (ETAPS), 2004.

13. D. Jackson. Alloy:A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11:256–290, 2002.

14. C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Pro-
ceedings of the IEEE 4th Annual Symposium on Logic in Computer Science, pages
186–195, Los Alamitos, Calif., 1989. Computer Society Press.

15. B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic pro-
cesses. In Proc. 6th Conf. LICS, 1991.

16. D. Kozen. Kleene algebra with tests and commutativity conditions. In Proceedings
of TACAS, 1996.

17. M. Kwiatkowska, G. Norman, and D.Parker. Probabilistic symbolic model checking
with PRISM: A hybrid approach. Proceedings of TACAS, 2002.

18. G. Lowe. Probabilities and priorities in timed CSP. Technical Monograph PRG-
111, Oxford University Computing Laboratory, 1993. (DPhil Thesis).

19. A.K. McIver and C.C. Morgan. Abstraction, Refinement and Proof for Probabilistic
Programs. Springer, 2005.

20. C.C. Morgan. The specification statement. ACM Transactions on Programming
Languages and Systems, 10(3), July 1988. Reprinted in [24].

21. C.C. Morgan. Programming from Specifications. Prentice-Hall, 1994.
22. C.C. Morgan. Private communication. 2004.
23. C.C. Morgan, A.K. McIver, and K. Seidel. Probabilistic predicate transformers.

ACM Transactions on Programming Languages and Systems, 18(3):325–353, 1996.
24. C.C. Morgan and T.N. Vickers, editors. On the Refinement Calculus. FACIT Series

in Computer Science. Springer Verlag, Berlin, 1994.
25. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
26. M.O. Rabin. N-process mutual exclusion with bounded waiting by 4 log 2n-valued

shared variable. Journal of Computer and System Sciences, 25(1):66–75, 1982.
27. Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time

Systems. PhD thesis, MIT, 1995.
28. N. Shankar. Automated verification using deduction, exploration and abstraction.

In A.K. McIver and C.C. Morgan, editors, Programming Methodology. Springer,
2003.

29. Tjark Weber. Bounded model generation for Isabelle/HOL. In Wolfgang Ahrendt,
Peter Baumgartner, Hans de Nivelle, Silvio Ranise, and Cesare Tinelli, editors,
Selected Papers from the Workshops on Disproving and the Second International
Workshop on Pragmatics of Decision Procedures (PDPAR 2004), volume 125 of
ENTCS, pages 103–116. Elsevier, July 2005.

