
Submitted to:
ACM ML Workshop 2015

c© D. Matthews, M. Stenqvist and T. Weber

Resource Monitoring for Poly/ML Processes
— Extended Abstract (Demo) —

David Matthews
Prolingua Ltd.

Cambridge, U.K.
david.matthews@prolingua.co.uk

Magnus Stenqvist Tjark Weber
Dept. of Information Technology

Uppsala University, Sweden
magnus.p.stenqvist@gmail.com tjark.weber@it.uu.se

Application monitoring is invaluable to manage the performance of applications, understand their
resource requirements and identify bottlenecks. We present a graphical monitoring tool for the
Poly/ML run-time system, a popular implementation of Standard ML. This allows to gather and
visualize detailed data showing the run-time behavior of Poly/ML applications, and thereby assists
developers in understanding and improving the resource needs of such applications.

Software applications are subject to (implicit or explicit) performance requirements. Whether such
requirements are met is evident only under load at run-time. Application monitoring is commonly used
to understand the computational resources required by software applications, and to identify performance
bottlenecks.

Standard ML [6] (SML) is a general-purpose functional programming language. For want of better
alternatives, developers of SML applications typically resort to generic system monitor tools, such as
the Windows Task Manager [1] or htop on Linux [7], for application monitoring. While these tools
provide basic information about a process, they are unaware of the internals of the run-time system that
is executing SML code. In contrast, run-time aware monitoring tools such as JConsole [3] for the Java
Virtual Machine can provide much more specific information, e.g., about threads and garbage collection.

This extended abstract presents a graphical monitoring tool for the Poly/ML [5] run-time system.
Poly/ML is a popular open-source implementation of SML. It features multi-threading and parallel
garbage collection, and since version 5.5, it makes detailed information about the state of the run-time
system available. Our monitoring tool continually retrieves this data for running Poly/ML processes, and
presents it to the user in visual form.

The resource data that is collected by the Poly/ML run-time system currently includes 17 values from
four areas of interest: CPU time (four values: both user and system time, separately for garbage collection
and non-GC), memory footprint (five values: total heap size, free space after the last partial/full garbage
collection, size of and free space in the allocation area), garbage collection (two values: number of
partial and full GCs) and threads (six values: total number of threads, threads running ML code, threads
waiting for I/O, a mutex or a condition variable, threads performing signal handling). Additionally, up to
eight user counters are available and may be used freely by applications to keep track of integer values:
for instance, to aid in monitoring an application’s task queues.

This information is exposed via a memory-mapped file whose name is derived from the process
identifier of the Poly/ML process. Details differ between Windows and Linux. In earlier versions of
Poly/ML, the file was directly mapped from a C struct in memory, making its precise layout subject to
the C compiler and other unknowns. In current versions, to facilitate interoperability between processes,
ASN.1 Basic Encoding [2] is employed to obtain a well-specified binary format.

Additionally, two functions are provided by the Poly/ML run-time that allow the data to be accessed
conveniently from ML applications. PolyML.Statistics.getRemoteStats takes the process identi-
fier of a running Poly/ML process and returns an SML record containing the 17 values (plus eight user



2 Real-Time Resource Monitoring for Poly/ML Processes

counters) described earlier. PolyML.Statistics.getLocalStats is a simplified version that returns
the data for the current process, without requiring a process identifier.

With so much data at our disposal, the challenge becomes to prepare and display this data in an
accessible fashion. To this end, we have implemented a graphical monitoring application. The monitor
is largely written in Java for easy programming access to GUI components, and uses the JFreeChart
library [4] to display multiple time series. Figure 1 shows a screenshot of the main window. The source
code of the application, which is structured according to the common model-view-controller pattern, is
available from https://bitbucket.org/tjark/poly-ml-monitor.

Figure 1: Poly/ML Process Monitor

Since the ML interface to the statistics data,
i.e., PolyML.Statistics.getRemoteStats,
has proved more stable over time than the pre-
cise format of the memory-mapped file, the
monitor uses the former to retrieve data for all
running Poly/ML applications. It launches a
small Poly/ML application that receives process
identifiers and responds with XML-encoded
statistics data via standard pipes. This applica-
tion is queried for updated values at fixed inter-
vals (every 500 ms by default).

The ML code uses extensible records, so
that the monitor application will likely be
forward-compatible with future versions of the
Poly/ML run-time even if these add further
items to the data provided. Of course, actually
displaying such additional items in the monitor’s UI would require at least minor changes to its sources.

Thus, our monitoring application allows developers to visualize the resource requirements of their
Poly/ML applications at run-time. It will run on the most popular architectures and operating systems
(provided Java is available), and it does not require any changes to the applications that are being moni-
tored.

References

[1] How to use and troubleshoot issues with Windows Task Manager. Available at https://support.

microsoft.com/kb/323527. Last Review: September 11, 2011. Retrieved May 18, 2015.

[2] Information technology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical En-
coding Rules (CER) and Distinguished Encoding Rules (DER). Available at http://www.itu.int/ITU-T/
studygroups/com17/languages/X.690-0207.pdf. ITU-T X6.90, 07/2002. Retrieved May 18, 2015.

[3] The Java Monitoring and Management Console (jconsole). Available at http://openjdk.java.net/

tools/svc/jconsole/. Retrieved May 18, 2015.

[4] David Gilbert: JFreeChart. Available at http://www.jfree.org/jfreechart/. Retrieved May 18, 2015.

[5] David Matthews: Poly/ML. Available at http://www.polyml.org/. Last updated: 22 August 2014. Re-
trieved May 18, 2015.

[6] Robin Milner, Mads Tofte, Robert Harper & David MacQueen (1997): The Definition of Standard ML –
Revised. MIT Press.

[7] Hisham Muhammad: htop - an interactive process viewer for Linux. Available at http://hisham.hm/htop/.
Retrieved May 18, 2015.

https://bitbucket.org/tjark/poly-ml-monitor
https://support.microsoft.com/kb/323527
https://support.microsoft.com/kb/323527
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://openjdk.java.net/tools/svc/jconsole/
http://openjdk.java.net/tools/svc/jconsole/
http://www.jfree.org/jfreechart/
http://www.polyml.org/
http://hisham.hm/htop/

