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Abstract. Cryptographic protocols can only be secure under certain
inequality assumptions. Axiomatizing these inequalities explicitly is prob-
lematic: stating too many inequalities may impair soundness of the ver-
ification approach. To address this issue, we investigate an alternative
approach (based on first-order logic) that does not require inequalities
to be axiomatized. A derivation of the negated security property exhibits
a protocol attack, and absence of a derivation amounts to absence of the
investigated kind of attack.

We establish a fragment of FOL strictly greater than Horn formulas in
which the approach is sound. We then show how to use finite model gen-
eration in this context to prove the absence of attacks. To demonstrate
its practicality, the approach is applied to several well-known protocols,
including ones relying on non-trivial algebraic properties. We show that
it can be used to deal with infinitely many principals (and thus sessions).

1 Introduction

Cryptographic protocol analysis often models operations on messages in terms
of a free algebra. Encryption of a message m with a key k, for instance, may
be represented as the term e(k,m). Decryption can be represented either im-
plicitly, by including a rule that says that if a principal knows a (symmetric)
key k and an encrypted message e(k,m), then he can also learn m, or explic-
itly, using a decryption operator d that is assumed to satisfy a cancellation rule
d(k,e(k,m)) = m. The knowledge of a Dolev-Yao attacker is defined inductively:
he knows any messages that are transmitted over an insecure channel, and he
can learn new messages by performing, e.g., encryption, decryption (provided
he knows the key), and by sending messages to other principals to learn their
response.

Typically automated or interactive theorem proving is used with the free alge-
bra model to establish security properties of protocols [I]. Security proofs, how-
ever, must make crucial use of freeness: to show that transmitting a message m
over an insecure channel does not reveal a secret s, we of course have to assume
that s is distinct from m. Since the attacker can encrypt, we also have to as-
sume that s is distinct from e(m, m), e(m, e(m, m)), etc. Moreover, to show that
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the attacker cannot learn s, we have to assume that the attacker’s only means
of gaining knowledge are according to the rules of the inductive definition, i.e.,
that his knowledge is understood as a least fixed point—because without this
understanding, the attacker might know everything. Theorem provers usually
implement an “open world” semantics, where only those statements are prov-
ably false that hold in no model of the axioms. To show secrecy, distinctness and
least fixed-point axioms therefore have to be asserted explicitly in these systems.

This is sometimes done automatically [2]. Otherwise, however, it can be te-
dious and error-prone. Stating too few inequalities may impair completeness of
the verification approach, and stating too many may impair soundness. One has
to be careful not to assert erroneous axioms, which might render the protocol
formalization inconsistent and allow one to prove anything (e.g., security of a
protocol that is in fact insecure).

In this paper we investigate the alternative approach that one can negate
the conjecture about a protocol’s security: instead of showing that the attacker
does not know a secret s, we attempt to prove that he knows s. A proof of this
conjecture corresponds to an attack, and the proven absence of a proof (equiv-
alently, by soundness and completeness of first-order logic, a counterexample to
the conjecture) corresponds to security of the protocol

Note that this approach allows us to establish security of the protocol without
stating any freeness or fixed-point axioms. It is related to the famous “closed
world assumption”, which was popularized by Prolog and is now also used in,
e.g., the ProVerif protocol verifier [4]. The closed world assumption gives rise to
the treatment of negation as failure: every statement that cannot be proved is
considered false.

Thus model generation can be used to prove protocols secure: a simple 2-
element model (in which m and s are interpreted differently) suffices to show
that transmission of m does not necessarily reveal the secret s to the attacker.
In Sect. Bl we will show that this is in fact sufficient to conclude secrecy of s in
the free algebra model.

In Sect.[3] we demonstrate practicality of the approach by applying it to
abstract first-order formalizations of three well-known protocols: the RSA Prob-
abilistic Signature Scheme (RSA-PSS), the Wired Equivalent Privacy (WEP)
protocol, and the Needham-Schroeder-Lowe (NSL) authentication protocol. Sec-
tion [ concludes.

2 FOL-Based Crypto-Protocol Verification: Derivations
vs. Models

We consider protocol formalizations in first-order logic, as e.g. in [4l5]. We re-
strict ourselves to secrecy properties in this paper. Blanchet [0] discusses how
authentication can be treated in this framework.

LA similar approach was taken in [3], although without investigating the questions
we consider in this paper.
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Central to the formalization of a protocol is a unary predicate knows (defined
inductively) that describes which messages are known to a Dolev-Yao attacker.
Showing security of a protocol then amounts to showing that the attacker does
not know a certain secret in the free algebra model.

However, when giving a proof that the axioms of a protocol formalization
imply that the attacker does not know the secret, we implicitly have to consider
all models of the axioms. In some of these models, equalities may hold that one
would expect an implementation of the protocol to avoid: e.g., that the secret
is equal to a publicly known value. To consider the free algebra model only,
traditionally further axioms must be asserted: namely freeness of operations (to
prevent unwanted confusion in the model), and a least fixed-point axiom for
the knows predicate (to prevent the attacker from knowing messages without
reason).

Stating these axioms explicitly seems inelegant. It introduces the risk of in-
cluding too few distinctness axioms, impairing completeness of the verification
approach by giving rise to spurious attacks (based on accidental equalities be-
tween different terms). Including too many axioms, on the other hand, might
lead to an inconsistent protocol specification, thereby impairing soundness of the
verification approach. We would like to avoid these dangers.

There is an alternative to asserting these axioms, and consequently proving
security in the free algebra model. We will show that for many protocols, security
can be established by exhibiting just one (arbitrary) model in which the attacker
does not know the secret.

2.1 Model-Theoretic Foundations

Note that automated theorem provers implicitly consider every possible model
satisfying the given axioms to see whether it satisfies the given conjecture, not
only the quotients of the free algebra under the axioms. This means that in the
models considered, additional properties not following from the given axioms
may hold. In the case of cryptographic protocols, this may mean that a secret
key coincides with a public value and therefore becomes known to the adversary.
This is of course something which one would assume an implementation of the
protocol to avoid, and therefore one would like to analyze the protocol under
the assumption that this does not happen. There are two ways to deal with this
situation:

1. If one wants to formulate the conjecture in a way that a proof of the conjec-
ture means that the protocol is secure, one needs to explicitly include axioms
which prevent an unwanted collapse of the model (for example, axioms re-
quiring each constant in the model describing a secret value to be different
from any other value).

2. Alternatively, one can formulate the conjecture in a negated way so that a
proof of the conjecture corresponds to an attack, and the proven absence
of a proof (equivalently, by soundness and completeness of FOL, a counter-
example to the formula) corresponds to the security of the protocol. This
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makes sure that, when considering a given protocol execution (i.e., a given
instantiation of the message variables), all models of the formulas have to
fulfill the attack conjecture in order for an attack to be detected, in particular
also the quotient of the free algebra under the formula, which does not satisfy
any equations that would be assumed not to hold in an implementation of
the protocol (for example, between a secret key and a public value) and
which we call a confusion-free model (to be defined precisely below). That
way, false positives arising in this way can be avoided.

We would like to avoid having to introduce the distinctness axioms in the first
option, since it would introduce the risk of including too few distinctness axioms
(again giving rise to false counter-examples to the security of the specification),
or too many (which may lead to an inconsistency of the formula on the whole).

The second option, however, raises an issue with respect to the completeness
of the analysis: Note that in general it is not the case that any formula which
holds in the quotient of a free algebra under given axioms also holds in every
other model of the axioms. Therefore, in the second approach explained above,
finding a counter-example which satisfies the axioms but not the conjecture does
not in general have to mean that the confusion-free models of the axioms do not
satisfy the conjecture either. This, however, is what one would like to establish
here to show that the program is secure in a certain sense. Intuitively speaking,
having a counter-example just means that there exists an implementation of the
protocol which happens to be secure against the conjecture, maybe only because
certain non-standard equalities happen to hold, whereas one would like to show
that any reasonable implementation of the protocol, in particular the ones which
correspond to the confusion-free models, is secure.

Therefore, we would like to establish under which conditions on the set of
axioms and which conditions on the conjecture it is indeed the case that the
following logical equivalence holds: There exists a model which satisfies the ax-
ioms but not the conjecture if and only if the confusion-free models satisfying
the axioms do not satisfy the conjecture.

We consider the negated security conjecture, i.e., that the attacker knows the
secret. A proof of this “insecurity conjecture” corresponds to an attack on the
protocol. Since the proof implicitly considers all models of the protocol axioms,
the attack cannot depend on accidental equalities; it will be possible in the free
algebra model as well.

Recall that if a conjecture cannot be derived from a given set of axioms,
this does not mean that one can derive the negation of the conjecture from the
axioms. The conjecture may just be independent of the axioms, i.e., it may hold
in some models satisfying the axioms, but not in others. In general it is not the
case that any formula which holds in the free algebra model also holds in every
other model of the axioms.

We now identify conditions on protocol formalizations that are sufficient to
conclude security (i.e., that the attacker does not know the secret in the free
algebra model) from the proven absence of a proof of the “insecurity conjec-
ture” (or equivalently, by soundness and completeness of first-order logic, from
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a counterexample). Note that this is closely related to the treatment of negation
as failure, which is justified in, e.g., Prolog by the “closed world assumption”@

Let us recall some concepts from mathematical logic. We observe that a for-
malization of security protocols in first-order logic (or more precisely, of the
corresponding knows predicate describing the attacker’s knowledge) can often
be given by strict Horn clauses. The following definition is standard [9].

Definition 1 (Strict Horn Clause). A strict Horn clause is a formula that

consists of universal (first-order) quantifiers followed by a quantifier-free formula

of the form ¢ (a fact), or o1 A... A @, => @ (a rule), where the formulas o1,
.oy ©n, @ are all atomic.

Theories consisting of strict Horn clauses always have an initial model. This is
known as the initial model theorem [9].

Theorem 1 (Initial Model Theorem). Let T be a theory consisting of strict
Horn clauses. Then T has a model A with the property that for every model B
of T there is a unique homomorphism from A to B. (Such a model A is called
an initial model of 7. It is unique up to isomorphism.)

The initial model satisfies the no junk and no confusion properties; its universe is
indeed the freely generated term algebra of messages. Moreover, the initial model
(also known as the least Herbrand model) satisfies only those atomic sentences
that are derivable from 7. Thus, the initial model is precisely the free algebra
model that we are interested in. Moreover, if we can find any model B in which
the attacker does not know the secret, then the existence of a homomorphism
from the initial model A to B implies that the attacker does not know the
secret in the initial model either. (Recall that a homomorphism A from A to B,
by definition, preserves satisfaction: if A = knows(s), then B = knows(h(s)).
Therefore, by contraposition, if B }= knows(h(s)), then A = knows(s).)

Theorem [ also applies to theories that contain equality. (For a proof sketch,
note that equality is a predicate that can be axiomatized by strict Horn clauses.
We then obtain the initial model by taking equivalence classes of elements. A de-
tailed proof can be found in [9].) Therefore the theorem covers both implicit and
explicit decryption (cf. Sect. []). More generally it covers varieties, i.e., algebraic
structures defined by identities.

We would like to investigate now to what extent Thm. [I] can be strengthened
to cover a larger fragment of FOL exceeding strict Horn clauses, in particular
wrt. confusion-freeness in crypto-protocol verification.

For the purposes of this paper, we are only concerned with the additional
knowledge that the adversary may gain from exploiting certain equalities in spe-
cific models of the axioms (which correspond to implementations of the protocol
specification). One could also investigate other kind of relations besides equal-
ities which the adversary may exploit to gain knowledge, although we believe

2 Tt is interesting to note that there are non-standard interpretations of classical logic
formulas such as inductive logic [7] that also enforce certain “closed world” assump-
tions and that have recently been used for crypto-protocol verification [§].
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that in many cases these could be modeled by equalities, if necessary introducing
extra function operators.

Therefore, we are interested in the models M of a given set A of axioms in
the (logical) signature X' (containing function and relation symbols) that are
confusion-free in the following sense: for all terms ¢1, 2 in X' with free variables
x, if the formula Vz.t1 = ¢2 holds in M, then it holds in all models of A.

Suppose we are given a signature X' and a set A of axioms and a conjecture c.
We would like to establish sufficient conditions on A and ¢ that imply existence
of a set G of confusion-free models such that if all models in G satisfy ¢, then
each model of A satisfies c.

Our approach is to find a way to construct all models of A out of the models
in G in a way that preserves satisfaction of c. We recall a few definitions from
algebraic model theory [10]. A limit sentence is a sentence of the form

Va1, .. xn) (X1, oy xn) = Bty Ym)O(T1, - s T, Y1y - e Ym))-

Note that, in particular, universal Horn sentences are limit sentences. However,
limit sentences are strictly more expressive than universal Horn sentences: for
example, one can show that the class of algebras satisfying the limit formula
V. (a(x) AB(x) = Fly. p(x,y)) is not definable by a universal Horn theory [10]
p-210].

A subclass S of a class M of models is called reflective if for every structure
M in M there exists a structure S in § and a homomorphism r : M — S (the
reflection homomorphism) such that for every structure S’ in S and for every
homomorphism f : M — S’ there exists a unique homomorphism f’ : S — S’
such that f = f'or.

Theorem 2. Suppose that A is a set of limit sentences, ¢ a universally quan-
tified conjunction of atomic formulas, and G the set of reflections of the free
X -structures on finitely many generators under the sentences in A. Then the
structures in G are confusion-free models such that if all models in G satisfy c,
then each model of A satisfies c.

Proof. Let T be a set of limit sentences and A the class of models of T'. One can
show that the class of A-structures is closed under limits and directed colimits in
the class of X-structures. By [10], 2.48], this implies that the class of A-structures
is reflective in the class of E—structuresE Therefore, the set G of reflections of
the free X-structures on finitely many generators under the sentences in A is
confusion-free. Note that every XY-structure is a directed colimit of the free X-
structures on finitely many generators. This implies that every A-structure is a
directed colimit of the structures in G. Also, it follows that every A-structure
satisfies any universally quantified conjunction ¢ of atomic formulas satisfied
by all structures in G (because these are preserved by quotients and, as limit
sentences, by directed colimits). This proves the above theorem.

3 Note that it follows from [IT] that the converse does not hold, that is a reflective
subclass of a class of structures which is closed under colimits need not be definable
by a limit theory.
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Theorem [ covers approaches such as [12] (formalizing BAN logic)[ as well as
[BUT3] (that use similar formalizations as ours here). [I3] also remarks that a sig-
nificant number of protocols and security requirements can in fact be expressed
using Horn formulas. [I4] uses the (arguably inelegant) approach that the pro-
tocol specifier has to explicitly introduce relevant inequalities (such as different
public keys being unequal). The paper does not comment on how to deal with
a possible incompleteness or inconsistency of the resulting axioms. All of the
above approaches do not explicitly consider the issue of soundness with respect
to cryptographic inequalities raised above.

It would be worthwhile to consider whether Thm. [2] can be generalized from
limit theories to basic theories defined in [10, 5.31], but we do not need this here.

Note that the restrictions on A cannot be relaxed arbitrarily. For instance,
with A = {e(k,a) # e(k,b) = knows(s)} and ¢ = knows(s) one obtains a
model which satisfies the axiom (by falsifying its premise) but not the conjecture,
although the corresponding protocol should be regarded as insecure (because
one would usually assume an implementation to satisfy e(k, a) # e(k,b), unless
a = b). The reason is that limit sentences do not admit negation.

In cryptographic protocols, the usage of negated equations in the protocol for-
malization applies for example to the error treatment when a cryptographic cer-
tificate verification fails. Certificate verification is typically performed by check-
ing an equation ¢ = ¢/, where ¢ and ¢ are cryptographic expressions. For error
handling one would need to specify a behavior that is executed when ¢ = ¢’ fails
to hold, i.e., when ¢ # ¢’ holds.

To deal with the fact that this is not supported by limit sentences, we simply
leave out the precondition ¢ # ¢ from the formalization. This abstraction is
safe (because the attacker needs to do less work to achieve his goal), and it
is not overly unrealistic, because one would usually assume that the attacker
would anyhow be able to provoke a failed certificate check (simply by producing
a wrong certificate) to try to exploit a possible security weakness in the error
treatment. Nevertheless, we are currently considering whether one can make use
of ideas on elimination of negation in term algebras in this context [I5/I6].

Also, the restrictions on ¢ cannot be relaxed arbitrarily, for example because
quotients of free algebras do not in general preserve inequalities and implications.
Thus, for A = () and ¢ = (e(k,a) = e(k,b) = knows(s)) a counterexample
is found, although one would usually assume an implementation to satisfy c
(vacuously, since a and b are distinct because nothing forces them to be equal
here).

However, in our practical examples it has so far always been possible to for-
malize the conjecture in a way that the restrictions do not become a problem.
If they would, one could still take the approach of considering the security con-
jecture directly (without negating) and asserting suitable distinctness axioms. If

* Note that there a conjecture formalizes a security (rather than insecurity) property,
but our theorem easily transforms to that case, since BAN logic does not formalize
the adversary knowledge but rather the protocol participants assurance and can thus
be treated in a dual way.
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the model generator then finds counterexamples to both the conjecture and its
negation, one knows that the conjecture is independent of the axioms; thus, more
distinctness axioms should be introduced. However, this has not happened yet in
our usage of this approach in a variety of examples and application case-studies.

2.2 Using Finite Model Generation for Verifying Crypto-Protocols

In Sect. 211 we have given sufficient conditions under which security of a protocol
(i.e., that the attacker does not know the secret in the free algebra model) can
be concluded from existence of just one (arbitrary) model in which the attacker
does not know the secret. Unlike the free algebra model, which is necessarily
infinite, this model may even be finite. Thus finite model generation [I7] can be
used to search for it.

A finite model generator is an automatic software tool that attempts to build
a finite model of a (typically first-order) formula. In a sense, model genera-
tion is dual to theorem proving: while the latter establishes validity, the former
establishes satisfiability (and may provide counterexamples by considering the
negation of a formula).

Note that some formulas have infinite models only. Thus, failure to find a
finite model does not prove unsatisfiability. Validity and finite satisfiability of
first-order formulas are semi-decidable, general satisfiability however is not. In
the following Sect. [3] we will see that these theoretical restrictions are of limited
importance in practice.

3 Case Studies

To further illustrate the approach for protocol verification discussed in this pa-
per, and to demonstrate its practicality, we have applied the approach to three
well-known (and frequently studied) protocols: the RSA Probabilistic Signature
Scheme (RSA-PSS) [18], the Wired Equivalent Privacy (WEP) protocol [19],
and the Needham-Schroeder-Lowe (NSL) authentication protocol [20].

We present abstract protocol formalizations in TPTP [2I] syntax. The TPTP
library is a collection of standard benchmark problems for first-order theorem
provers. The concrete syntax uses & for conjunction, => for implication, and !
(followed by a list of variables in square brackets) for universal quantification.

Vampire 10.0, an automatic theorem prover for first-order logic, was used
to find attacks, and Paradox 2.3 [22], a finite model generator, was employed
to search for models that show security. Both Vampire (which was invoked via
Sutcliffe’s “System on TPTP” [23] web interface) and Paradox support TPTP
syntax as their input format.

We have also formalized these protocols in Isabelle/HOL [2], an interac-
tive theorem prover and model generator for higher-order logic. Since the Is-
abelle/HOL formalization differs from the TPTP formalization only in terms of
concrete syntax, we do not show it in this paper.

As is often done in protocol analysis, we assume perfect cryptography and
consider abstract versions of these protocols only, i.e., we do not aim to verify
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an actual implementation, nor the mathematics underlying the cryptographic
primitives (except where stated otherwise).

3.1 RSA-PSS

RSA-PSS [1§] is a digital signature scheme that follows the usual “hash-then-
sign” paradigm. RSA refers to the now classic algorithm for public-key cryptogra-
phy devised by Rivest, Shamir, and Adleman [24]. PSS stands for “Probabilistic
Signature Scheme”, first described by Bellare and Rogaway [25]. Starting with
a message m that is to be signed, the RSA-PSS protocol—at a very abstract
level—proceeds in two steps:

1. Apply a one-way hash function to the message m to produce an encoded
message hash(m).

2. Apply a signature function to the encoded message, using a private key k,
to produce a signature sign(hash(m), k).

The message m is then sent together with its signature, sign(hash(m), k). The
signature can be verified by the receiver using the sender’s public key k~'. Note
that RSA-PSS is not an encryption algorithm; m becomes publicly known.

A detailed Isabelle/HOL formalization of the RSA-PSS protocol by Linden-
berg and Wirt is available [26]. For our purposes, however, it will be sufficient to
model hashing and signing as uninterpreted functions. Our analysis is therefore
not specific to PSS hashing. A third function, conc, forms the concatenation of
two messages.

We assume a naive implementation of the RSA signature function that suf-
fers from an undesirable homomorphism property, which allows the attacker to
compute the signature of concatenated messages from signatures for their com-
ponents (and vice versa):

sign(conc(a, b), k) = conc(sign(a, k), sign(b, k)). (1)

If we consider a modified protocol without PSS hashing, then it is easy to show
from () that the attacker can forge the signature for conc(b, a) if he knows the
signature for conc(a, b). Vampire finds a proof of this result in less than a second.

Our goal is rather simple: we want to show that PSS hashing breaks this
homomorphism property, thereby improving security of the signature scheme.
We consider a protocol run where the message conc(a, b) is hashed, signed with
some private key k, and then transmitted over an insecure connection. The first-
order formulas that model the RSA-PSS protocol and the abilities of a potential
Dolev-Yao attacker are shown in Fig.[I] Note that we do not assume sign to
satisfy a homomorphism property similar to (II) wrt. hash.

Can we conclude from these axioms that the attacker knows the signature
sign(hash(conc(b, a)), k)? (In our formalization, it is certainly possible that the
attacker knows this signature—since the knows predicate, as discussed in Sect. [T}
may be true everywhere—but is it also necessary?) The answer is: No. Paradox
finds a counterexample with just four elements (shown in Fig.[]) in about two
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fof (knows_hash, axiom, (! [X]: (knows (X)=>knows(hash(X))))).

fof (knows_sign,axiom, (! [X,K]: ((knows (X)&knows (K) )=>knows (sign(X,K))))).

fof (remove_sign,axiom, (! [X,K]: ((knows (sign(X,K))&knows (invs (K)))=>knows(X)))) .
fof (knows_conc,axiom, (! [X,Y]: ((knows (X)&knows (Y) )=>knows (conc(X,Y))))).

fof (remove_conc,axiom, (! [X,Y] : (knows (conc(X,Y))=>(knows (X)&knows (Y))))) .

fof (sign_hom,axiom, (! [X,Y,K]: (sign(conc(X,Y),K)=conc(sign(X,K),sign(Y,K))))).
fof (protocol_msg,axiom, (knows (conc(conc(a,b),sign(hash(conc(a,b)) ,k))))).

fof (public_key,axiom, (knows(invs(k)))).

fof (attack,conjecture, (knows (sign(hash(conc(b,a)) ,k)))).

Fig. 1. TPTP encoding of the RSA-PSS protocol

hash(1) =2 hash(2) =14 hash(3) 3 hash(4) =14
invs(1) =3 invs(2) =3 invs(3) = invs(4) =3
sign(1,1) =2 sign(1,2) =2 sign(1,3) =1 sign(1,4) =2
sign(2,1) =2 sign(2,2) =2 sign(2,3) = sign(2,4) =1
sign(3,1) =1 sign(3,2) =1 sign(3,3) = sign(3,4) =2
sign(4,1) =2 sign(4,2) =2 sign(4,3) = sign(4,4) =1
conc(l,1) =1 conc(1,2) =2 conc(1,3) =3 conc(1l,4) =1
conc(2,1) =2 conc(2,2) =2 conc(2,3) =3 conc(2,4) =2
conc(3,1) =3 conc(3,2) =3 conc(3,3) =3 conc(3,4) =3
conc(4,1) =4 conc(4,2) =2 conc(4,3) =3 conc(4,4) =1
a =4 b =1 k =3

knows(1) knows(2) —knows(3) knows(4)

Fig. 2. Model showing security of RSA-PSS hashing

seconds on a current personal computer. This proves that the attack mentioned
above (exploiting (dI)) is no longer possible with hashing[l Of course the inter-
pretation of, e.g., conc is not the usual one in this finite model. By Thm. [T
however, the result also holds in the free algebra model (modulo ().

3.2 Wired Equivalent Privacy

The Wired Equivalent Privacy (WEP) protocol [19] was introduced in 1997 to
provide confidentiality for wireless networks. Later serious weaknesses were iden-
tified, and the protocol is now considered deprecated. In the context of this paper
the protocol is interesting because it employs the “exclusive or” function, which
can be characterized algebraically by associativity, commutativity, existence of
a neutral element, and nilpotency:

xor(xor(z,y), z) = xor(x, xor(y, z)), xor(x,0) = =,
xor(z,y) = xor(y, ), xor(z,x) = 0.

Note that all four axioms are universally quantified identities.

® We have also shown that this remains true even if the hashing function is reversible,
i.e., if we add an axiom ! [X]: (knows (hash(X))=>knows(X)).
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fof (xor_assoc,axiom, (! [X,Y,Z] : (xor (xor (X,Y) ,Z)=xor(X,xor(Y,Z))))).
fof (xor_comm,axiom, (! [X,Y]: (xor(X,Y)=xor(¥,X)))).
fof (xor_neutral,axiom, (! [X]: (xor(X,zero)=X))).
fof (xor_nilpotent,axiom, (! [X]: (xor(X,X)=zero))).
fof (knows_xor,axiom, (! [X,Y] : ((knows (X) &knows (Y) ) =>knows (xor (X,Y))))).
fof (knows_zero,axiom, (knows (zero))).
fof (knows_rc4,axiom, (! [X,Y] : ((knows (X) &knows (Y) )=>knows (rc4(X,Y))))).
fof (knows_c,axiom, (! [X,Y] : (knows (X)=>knows (c(X))))).
fof (knows_conc,axiom, (! [X,Y] : ((knows (X)&knows (Y) )=>knows (conc(X,Y))))).
fof (remove_conc,axiom, (! [X,Y]: (knows (conc(X,Y))=>(knows (X)&knows (Y))))).
fof (protocol_msg,axiom, (knows (conc(v,xor(conc(m,c(m)),rcd(v,k)))))).
% an arbitrary delta message
fof (knows_d,axiom, (knows(d))).
% homomorphism property for c
fof (c_hom,axiom, (! [X,Y]: (c(xor(X,Y))=xor(c(X),c(¥Y))))).
% homomorphism property for conc
fof (conc_hom,axiom, (! [X1,Y1,X2,Y2] : (xor(conc(X1,Y1),conc(X2,Y2))
=conc (xor (X1,X2),xor(Y1,Y2))))).
% the protocol is malleable
fof (attack,conjecture,
(knows (conc (v,xor (conc (xor(m,d) ,c(xor(m,d))) ,rc4(v,k)))))).

Fig. 3. TPTP encoding of the Wired Equivalent Privacy protocol

Our formalization is based on [27), Sect. 3.3]. The WEP protocol uses the RC4
algorithm, which generates a sequence of pseudo-random bits from an initial
vector v and a shared secret key k. Moreover, it uses a checksum algorithm c,
e.g., cyclic redundancy check. We model both RC4 and ¢ by uninterpreted
functions.

To encrypt a message m, principal A chooses an initial vector v, computes
RC4(v, k) and c(m), encrypts conc(m, c(m)) with RC4(v, k) (using xor), and sends
both v and the ciphertext to principal B. To decrypt, B (who must know the
shared key k) then computes RC4(v, k), obtains conc(m,c(m)) from the cipher-
text (again using xor), and verifies the checksum c(m).

If both conc and c satisfy a homomorphism property with respect to xor (see
Fig.B)), the protocol becomes malleable: a Dolev-Yao attacker can modify a
ciphertext arbitrarily without disrupting the checksum [28]. Vampire automati-
cally proves the attack in about three seconds.

The attack is no longer possible if we drop the conc_hom axiom. Paradox then
finds a counterexample (of size 8) to the attack conjecture in less than a second.
We omit the model for space reasons.

If we instead drop the c_hom axiom, Paradox—perhaps surprisingly—fails to
refute the attack. We used it to exhaustively check all models of size 15 or
less (which took several hours on a current personal computer); none of them
constitute a counterexample to the conjecture. Possibly, all counterexamples are
infinite.
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3.3 Needham-Schroeder-Lowe with ECB

The Needham-Schroeder-Lowe (NSL) protocol [20] is perhaps the most fre-
quently studied authentication protocol of all. Our formalization is based on [27,
Sect. 3.5]. The NSL protocol consists of three messages.

1. First, principal A sends encrypt(conc(N4, A), pk(B)) to principal B, where
pk(B) is B’s public key, and N4 is a fresh (e.g., random) value.

2. B decrypts this message, using his secret key sk(B), to learn N4. He then
sends encrypt(conc(N 4, conc(Ng, B)), pk(4)) to A, where Np is again a fresh
value.

3. Third, A decrypts B’s message to learn Np, and replies to B with
encrypt(Np, pk(B)). B verifies receipt of this message.

At the end of the protocol, A and B are convinced to talk with each other, and
to share the secrets N4 and Ng. The protocol, however, is flawed if Electronic
Code Book (ECB) is used for encryption. ECB is a block cipher mode that simply
encrypts each message block separately. ECB (formalized by the uninterpreted
function encrypt below) renders the NSL protocol insecure because it satisfies a
homomorphism property:

encrypt(conc(a, b), k) = conc(encrypt(a, k), encrypt(b, k)). (2)

The attack works as follows. Assuming that principal A initiates a protocol
session Sp with the intruder by sending encrypt(conc(Na, A), pk(I)), the intruder
can then

1. impersonate A to initiate a session S; with principal B:
(S2.1) I(A)—B: encrypt(conc(Ny, A),pk(B)),
2. learn the secret Np by abusing A to decrypt B’s response:

(S2.2) B—I(A): encrypt(conc(N4,conc(Ng, B)), pk(A))
(51.2) T— A : encrypt(conc(Na,conc(Ng,I)),pk(A))
(51.3) A— T : encrypt(Np,pk(I)),

3. and finally use Np to trick B (who is actually communicating with the
intruder) into believing that he is communicating with A:

(52.3) I(A)—B: encrypt(Ng,pk(B)).

The ECB homomorphism property () is used in step 2] of the attack.

The protocol formalization in TPTP syntax is shown in Fig.[dl We assume
that exactly one principal, A, initiates a session with the intruder. To model
freshness of Np, we use a Skolem function (rather than a constant) nb that takes
three arguments, which correspond to the three parameters in the protocol’s first
message, i.e., N4, A, and B. Vampire automatically proves the attack in about
two seconds.
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fof (knows_encrypt,axiom, (! [X,K] : ((knows (X)&knows (K) ) =>knows (encrypt (X,K))))) .

fof (remove_encrypt,axiom, (! [X,Y]: ((knows (encrypt (X,pk(Y)))&knows (sk(Y)))
=>knows(X)))).

fof (knows_conc,axiom, (! [X,Y]: ((knows (X)&knows (Y))=>knows (conc(X,Y))))).

fof (remove_conc,axiom, (! [X,Y]: (knows (conc(X,Y))=>(knows (X)&knows(Y))))).

% principal A initiates a session with the intruder I

fof (protocol_msg_1,axiom, (knows (encrypt (conc(na,a),pk(i))))).

fof (protocol_msg_2,axiom, (! [Na,A,B]: (knows (encrypt (conc(Na,A) ,pk(B)))
=>knows (encrypt (conc (Na, conc(nb(Na,A,B) ,B)) ,pk(4)))))).

% principal A will respond to the intruder’s reply

fof (protocol_msg_3,axiom, (! [Nb] : (knows (encrypt (conc(na,conc(Nb,i)) ,pk(a)))
=>knows (encrypt (Nb,pk(i)))))).

fof (knows_i,axiom, (knows(i))).

fof (knows_pka,axiom, (knows (pk(a)))).

fof (knows_pkb,axiom, (knows (pk(b)))).

fof (knows_pki,axiom, (knows (pk(i)))).

fof (knows_ski,axiom, (knows(sk(i)))).

% ECB homomorphism property

fof (ecb_hom,axiom, (! [X,Y,K]: (encrypt (conc(X,Y),K)
=conc (encrypt (X,K) ,encrypt (Y,K))))).

fof (attack,conjecture, (knows (nb(na,a,b)))).

Fig. 4. TPTP encoding of the Needham-Schroeder-Lowe protocol

On the other hand, if we do not assume (2]), the attacker can no longer gain
knowledge of nb(N4, A, B). Paradox finds a counterexample of size 4 in just
about a second. We omit the model for space reasons.

Our formalization does not model the state of principal A. In reality, the intruder
can abuse A to decrypt a value only once. In our formal model, the intruder is more
powerful: there appears to be an unbounded number of protocol sessions initiated
by A available to him. However, this is not used in Vampire’s proof of the attack,
and it does not affect security of the protocol when (2) is omitted.

Infinitely Many Principals

We can model a potentially infinite number of principals by introducing a unary
function next and a predicate principal, and requiring principal(i) as well as Vz.
(principal(x) = principal(next(z))). Note that these assertions are strict Horn
clauses. If we modify the NSL formalization accordingly (by replacing protocol
msg-1, protocol msg 3, and knows_pkX from Fig.[d with suitably quantified ver-
sions), Paradox still finds a counterexample of size 4. Thus, the NSL protocol is (by
Thm. [I]) secure even in the presence of infinitely many principals.

4 Conclusion

In this paper, we have proposed an approach to crypto-protocol verification that
proceeds by negating the security conjecture, and then employs finite model gener-
ation to show security by means of a single (counter-) model. This idea was
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independently pioneered in an earlier paper by Selinger [29]. Here we have estab-
lished conditions under which the approach is sound, thereby perhaps remedying
the “uneasy feeling” that Selinger in that paper mentioned that he had because of
the models’ potential simplicity. Our result also shows that approaches such as [3]
are sound in the sense that our Theorem 2 applies to it. We have also shown that
the search for models can be automated not just “in principle”, but that current
model generators are extremely valuable for this task.

Theorem proving, in this approach, can be used to find attacks. Unlike in the
traditional free algebra approach, no freeness axioms or least fixed-point axioms
for the attacker’s knowledge are required.

In contrast to ProVerif, we do not merely claim security of protocols, but pro-
duce “security certificates”: models that can be verified independently. This has
recently been explored further by Goubault-Larrecq [30], who translates models
into Coq proofs of protocol correctness. Furthermore, our use of a standard, highly
efficient theorem prover and model generator leads to effortless support for a larger
fragment of first-order logic, including, e.g., equality.

The proposed technique has both theoretical and practical limitations. It is sound
for protocols that can be formalized by strict Horn clauses (including identities),
and more generally, limit theories (cf. Sect.[2). On the practical side, finite model
generators may fail to find a counterexample (which would demonstrate security
of the protocol) because of resource (i.e., runtime, memory) constraints, or sim-
ply because no finite model exists. Therefore the approach is not complete; it may
fail to demonstrate the security of a secure protocol. Nevertheless, its successful
application to three well-known protocols in this paper provides evidence that the
approach is both sufficiently versatile and practical. It can simplify protocol for-
malizations and security proofs significantly.

In this paper, we only considered secrecy properties. However, the general results
carry over to other properties that can be formalized within limit theories (such as
authentication by correspondence properties).

In future work, it would be interesting to investigate how the ideas discussed
here could be used in the context of verifying implementations, rather than speci-
fications of crypto protocols, e.g., in the context of [31], or the verification of secure
information flow, e.g., based on [32].

References

1. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal
of Computer Security 6(1-2), 85-128 (1998)

2. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

3. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS, vol. 1632, pp. 314-328. Springer,
Heidelberg (1999)

4. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: CSFW-14, pp. 82-96. IEEE Computer Society, Los Alamitos (2001)



11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.

23.

24.

25.

26.

Finite Models in FOL-Based Crypto-Protocol Verification 169

Jirjens, J.: A domain-specific language for cryptographic protocols based on
streams. Journal of Logic and Algebraic Programming (JLAP) (2009)

Blanchet, B.: From secrecy to authenticity in security protocols. In: Hermenegildo,
M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342-359. Springer, Heidel-
berg (2002)

Comon, H., Nieuwenhuis, R.: Induction = I-axiomatization + first-order consistency.
Technical report, ENS Cachan (1998)

Steel, G., Bundy, A., Maidl, M.: Attacking a protocol for group key agreement by
refuting incorrect inductive conjectures. In: Basin, D., Rusinowitch, M. (eds.) IJCAR
2004. LNCS, vol. 3097, pp. 137-151. Springer, Heidelberg (2004)

Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
Adémek, J., Rosicky, J.: Locally Presentable and Accessible Categories. London
Math. Soc. Lect. Note Ser., vol. 189. Cambridge University Press, Cambridge (1994)
Jiirjens, J.: On a problem of Gabriel and Ulmer. Journal of Pure and Applied Alge-
bra 158, 183-196 (2001)

Schumann, J.: Automatic verification of cryptographic protocols with SETHEO. In:
CADE (1999)

Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. Sci.
Comput. Program. 50(1-3), 51-71 (2004)

Cohen, E.: First-order verification of cryptographic protocols. Journal of Computer
Security 11(2), 189-216 (2003)

Lassez, J.L., Maher, M.J., Marriott, K.: Elimination of negation in term algebras.
In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 1-16. Springer, Heidelberg
(1991)

Comon, H., Ferndndez, M.: Negation elimination in equational formulae. In: Havel,
I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629. Springer, Heidelberg (1992)
Weber, T.: SAT-based Finite Model Generation for Higher-Order Logic. PhD thesis,
Technische Universitat Miinchen (2008)

RSA Laboratories: PKCS #1: RSA Cryptography Standard Version 2.1. (June 2002)
Institute of Electrical and Electronics Engineers: IEEE Std 802.11-1997 (1997)
Lowe, G.: An attack on the Needham-Schroeder public key authentication protocol.
Information Processing Letters 56(3), 131-136 (1995)

Sutcliffe, G., Suttner, C.B.: The TPTP problem library: CNF release v1.2.1. Journal
of Automated Reasoning 21(2), 177-203 (1998)

Claessen, K., Sorensson, N.: New techniques that improve MACE-style finite model
finding. In: CADE, Workshop W4 (2003)

Sutcliffe, G.: System on TPTP,
http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP| (accessed January 9,
2009)

Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2), 120-126 (1978)
Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399-416. Springer, Heidelberg (1996)

Lindenberg, C., Wirt, K.: SHA1, RSA, PSS and more. In: Klein, G., Nipkow, T.,
Paulson, L. (eds.) The Archive of Formal Proofs (May 2005),
http://afp.sourceforge.net/entries/RSAPSS.shtml,

Formal proof development


http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
http://afp.sourceforge.net/entries/RSAPSS.shtml

170 J. Jirjens and T. Weber

27. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14(1), 1-43 (2006)

28. Borisov, N., Goldberg, 1., Wagner, D.: Intercepting mobile communications: The in-
security of 802.11. In: MOBICOM, pp. 180-188 (2001)

29. Selinger, P.: Models for an adversary-centric protocol logic. Electr. Notes Theor.
Comput. Sci. 55(1) (2001)

30. Goubault-Larrecq, J.: Towards producing formally checkable security proofs, auto-
matically. In: Computer Security Foundations (CSF), pp. 224-238 (2008)

31. Jiirjens, J.: Security analysis of crypto-based java programs using automated theo-
rem provers. In: ASE, pp. 167-176. IEEE Computer Society, Los Alamitos (2006)

32. Jiirjens, J.: Secure information flow for concurrent processes. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 395-409. Springer, Heidelberg (2000)



171

encrypt(2,2) =4
encrypt(4,2) = 3
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encrypt(1,2) =4

3
4
3
4

encrypt(2, 1)
encrypt(3, 1)
encrypt(4, 1)

col (in Fig. [6). These models were mentioned in Sect. B.3land Sect. B2l respectively,
encrypt(1,1)

Schroeder-Lowe protocol (in Fig. Bl) and of the Wireless Equivalent Privacy proto-
of the paper. They were omitted from the paper for space reasons.

This appendix contains finite models that demonstrate security of the Needham-
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xor(l,1) =5 xor(1,2) =7 xor(1,3) =4 xor(1,4)
xor(1,5) =1 xor(1,6) =8 xor(1,7) =2 xor(1,8)
xor(2,1) =7 xor(2,2) =5 xor(2,3) =38 xor(2,4)
xor(2,5) =2 xor(2,6) =4 xor(2,7) =1 xor(2, 8)
xor(3,1) =4 xor(3,2) =8 xor(3,3) =5 xor(3,4)
xor(3,5) =3 xor(3,6) =7 xor(3,7) =6 xor(3,8)
xor(4,1) =3 xor(4,2) =6 xor(4,3) =1 xor(4,4)
xor(4,5) =4 xor(4,6) =2 xor(4,7) =38 xor(4, 8)
xor(5,1) =1 xor(5,2) =2 xor(5,3) =3 xor (5, 4)
xor(5,5) =5 xor(5,6) =6 xor(5,7) =7 xor (5, 8)
xor(6,1) =38 xor(6,2) =4 xor(6,3) =7 xor(6, 4)
xor(6,5) =6 xor(6,6) =5 xor(6,7) =3 xor(6, 8)
xor(7,1) =2 xor(7,2) =1 xor(7,3) =6 xor(7,4)
xor(7,5) =7 xor(7,6) =3 xor(7,7) =5 xor(7,8)
xor(8,1) =6 xor(8,2) =3 xor(8,3) =2 xor(8,4)
xor(8,5) =38 xor(8,6) =1 xor(8,7) =4 xor(8, 8)
zero =5

RC4(1,1) =5  RC4(1,2) =8  RC4(1,3) =2  RCA(1,4)
RC4(1,5) =1  RC4(1,6) =1  RC4(1,7) =2  RCA4(1,8)
RC4(2,1) =5  RC4(2,2) =2  RC4(2,3) =3  RC4(2,4)
RC4(2,5) =2  RC4(2,6) =5  RC4(2,7) =1  RC4(2,8)
RC4(3,1) =5  RC4(3,2) =1 RC4(3,3) =1  RC4(3,4)
RC4(3,5) =5  RC4(3,6) =1  RC4(3,7) =5  RCA4(3,8)
RC4(4,1) =1  RC4(4,2) =2  RC4(4,3) =2  RCA(4,4)
RC4(4,5) =5  RC4(4,6) =5  RC4(4,7) =1  RC4(4,8)
RC4(5,1) =5  RC4(5,2) =4  RC4(5,3) =1  RC4(5,4)
RC4(5,5) =1  RC4(5,6) =4  RC4(5,7) =1  RCA4(5,8)
RC4(6,1) =5  RC4(6,2) =5  RC4(6,3) =2  RC4(6,4)
RC4(6,5) =5  RC4(6,6) =7  RC4(6,7) =1  RCA4(6,8)
RC4(7,1) =6  RC4(7,2) =1 RC4(7,3) =1  RC4(7,4)
RC4(7,5) =1  RC4(7,6) =7  RC4(7,7) =6  RC4(7,8)
RC4(8,1) =7  RC4(8,2) =7  RC4(8,3) =7  RCA(S,4)
RC4(8,5) =7  RC4(8,6) =7  RC4(8,7) =7  RCA(S,8)
c(1) =5 c(2) =2 c(3) =1 c(4)

c(5) =5 c(6) =7 c(7) =2 c(8)
conc(l,1) =1 conc(1,2) =2 conc(1,3) =7 conc(1, 4)
conc(1,5) =1 conc(1,6) =3 conc(1,7) =2 conc(1, 8)
conc(2,1) = 3 conc(2,2) =8 conc(2,3) =7 conc(2, 4)
conc(2,5) = 4 conc(2,6) =3 conc(2,7) =4 conc(2, 8)
conc(3,1) = 2 conc(3,2) =38 conc(3,3) =7 conc(3,4)
conc(3,5) = 2 conc(3,6) =4 conc(3,7) =2 conc(3, 8)
conc(4,1) =8 conc(4,2) =7 conc(4,3) =7 conc(4, 4)
conc(4,5) = 2 conc(4,6) =3 conc(4,7) =4 conc(4, 8)
conc(5,1) =5 conc(5,2) =8 conc(5,3) =6 conc(5, 4)
conc(5,5) =5 conc(5,6) = 2 conc(5,7) =2 conc(5, 8)
conc(6,1) =8 conc(6,2) = 2 conc(6,3) =4 conc(6, 4)
conc(6,5) = 3 conc(6,6) =4 conc(6,7) =6 conc(6, 8)
conc(7,1) =6 conc(7,2) =7 conc(7,3) =3 conc(7,4)
conc(7,5) = 2 conc(7,6) = 2 conc(7,7) =3 conc(7, 8)
conc(8,1) =7 conc(8,2) =7 conc(8,3) =7 conc(8, 4)
conc(8,5) =7 conc(8,6) =7 conc(8,7) =7 conc(8, 8)
m =2 v =1 k 2 d
knows(1) —knows(2) —knows(3) —knows(4)
knows(5) —knows(6) —knows(7) —knows(8)

Fig. 6. Model showing security of WEP
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