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Abstract. We present a new integration of relational and algebraic
methods in the Isabelle/HOL theorem proving environment. It consists
of a fine grained hierarchy of algebraic structures based on Isabelle’s type
classes and locales, and a repository of more than 800 facts obtained by
automated theorem proving. We demonstrate further benefits of Isabelle
for hypothesis learning, duality reasoning, theorem instantiation, and
reasoning across models and theories. Our work forms the basis for a
reference repository and a program development environment based on
algebraic methods. It can also be used by mathematicians for exploring
and integrating new variants.

1 Introduction

Kleene and relation algebras provide semantics for programs and a basis for inte-
grating logics for computing systems. Relational and algebraic reasoning is at the
core of popular program development methods for imperative, concurrent and
functional programs. Algebraic approaches seem particularly useful for modelling
and analysing the information and control flow in computing systems. Specifi-
cations are often very compact, concise and generic in this setting; proofs are
based on first-order equational reasoning, hence calculational, and often much
shorter than set-theoretic ones. This makes algebraic methods very suitable for
automation. Applications of these methods in program development, however,
may require additional mechanisms for reasoning about data structures or data
types and higher-order features for fixed points or (co)recursion.

Interactive theorem proving (ITP) systems such as Isabelle/HOL [29] and
Coq [7] have been used to implement Kleene and relation algebras [32,21,30], as
have special-purpose systems [2]. It has also been shown that automated theorem
proving (ATP) systems are quite successful at proving algebraic theorems at
textbook level [17,18] and able to support simple program analysis tasks [5].

The strenghts and weaknesses of ITP and ATP are almost orthogonal: Apart
from supporting theory hierarchies and proof management, ITP systems offer
the expressiveness of higher-order logic for modelling and reasoning. But they
require considerable mathematical expertise and sophisticated tactics for feeding
manual proofs into the tool. ATP systems, in contrast, have traditionally been



obtimised towards proof search performance; even non-expert users can discharge
many calculational proof obligations fully automatically. But these tools are
typically limited to first-order logic, and proof management, hypothesis learning
and modular reasoning are usually not supported.

Currently, however, there are strong trends to make these two worlds con-
verge. Isabelle, in particular, is being transformed into a theorem proving envi-
ronment that combines higher-order modelling and reasoning with ATP systems,
satisfiability modulo theories (SMT) solvers, decision procedures and counterex-
ample generators. So does this make the best of both worlds available for the
automated engineering of relational and algebraic methods?

This paper comes to an overall very positive answer. It proposes Isabelle/HOL
as a way forward in engineering relational and algebraic methods. Algebraic the-
orem proving is now perhaps just as easy with Isabelle as with ATP systems. Im-
portant additional benefits arise from Isabelle’s higher-order features and SMT
integration. Our main contributions are as follows.

We implement a theory hierarchy for relation and Kleene algebras using Is-
abelle’s local specification facilities. This hierarchy includes many popular vari-
ants such as basic process algebras, probabilistic Kleene algebras, demonic refine-
ment algebras, omega algebras, Kleene algebras with (anti)domain and modal
Kleene algebras. Theorems are inherited across the hierarchy by subclass and
sublocale proofs, and the difference between reasoning in Kleene algebras and
relation algebras often vanishes.

We prove more than 800 facts in this setting, all of them by ATP using
Isabelle’s Sledgehammer tool [9]. It turns out that Sledgehammer is very good
at learning hypotheses for proofs. Since Isabelle reconstructs all proofs produced
by Sledgehammer’s external ATP systems with an internally verified tool, the
degree of automation is slightly lower than by standalone ATP, and a few difficult
theorems do not succeed by ATP alone in one full sweep. Nevertheless, most of
the basic facts attempted could be proved automatically in one single step.

We show that Isabelle’s higher-order features are very valuable for automated
theory engineering. Dualities can be formalised and used to obtain theorems for
free. Higher-order variables can be used for instantiating theorems, for instance,
from abstract Galois connections or conjugations. Set-theoretic specifications
of algebras with explicit carrier sets support mechanised reasoning in universal
algebra. By formally linking abstract algebras with concrete models, we obtain
a seamless transition between pointwise and pointfree reasoning.

These results suggest that our Isabelle/HOL formalisation has considerable
potential for turning relation and Kleene algebras into program development
and verification tools that are relatively lightweight yet offer a high degree of
automation. We propose it as the basis for a standardised repository for algebraic
methods from which further variants, a more extensive library of theorems and
proofs, and more concrete program analysis environments can be engineered.

Beyond these technical contributions, another main purpose of this paper
is to serve as a tutorial introduction to the relational and algebraic methods
community.



2 Isabelle/HOL

Isabelle/HOL [29] is a popular ITP system based on higher-order logic. It has
recently mutated from a metalogical framework for specifying logics [31] into a
theorem proving environment with integrated decision procedures, ATP systems,
SMT solvers and counterexample generators. Intricate mathematical proofs and
industrial verification tasks have been carried out with this tool (e.g. [25,22]).
For our purposes, the following features of Isabelle are particularly interesting.

First, Isabelle offers a user interface with notation support [29, §4]. Standard
notations for Kleene and relation algebras can therefore be defined and used.
LATEX code can automatically be generated from proofs and specifications. In
fact, this paper was generated from our Isabelle theory files, with the added
benefit that its entire technical content has been formally verified.

Second, the proof language Isar [36] supports a proof style that is natural and
easily readable for humans. Equational reasoning, in particular, can be translated
almost unchanged into Isabelle [4], and Isar proofs could be published directly
in mathematical texts.

Third, Isabelle offers facilities for theory hierarchies and modules through
local specifications [16]. A local specification consist of parameters and assump-
tions: for instance, the operations of Boolean algebra, and the axioms satisfied by
these operations. Hierarchies of local specifications can be established through
extension or proof. Relation algebra, for instance, can be specified as an exten-
sion (subclass in Isabelle parlance) of Boolean algebra, and all theorems proved
in the latter context become automatically available in the former.

Fourth, Isabelle’s Sledgehammer tool [9] integrates various external ATP sys-
tems. To obtain trustworthy facts, all external ATP proofs are reconstructed ei-
ther by proof search using the internal Isabelle-verified theorem prover Metis [19],
or more directly by Isar. Sledgehammer selects hypotheses among local verified
lemmas and calls the external ATP systems. Since Metis is less efficient, the ex-
ternal provers can be used iteratively to minimise hypothesis sets before Metis
is called. Alternatively, an Isar proof can be generated that attempts a stepwise
reconstruction of external proofs. SMT solvers, notably Z3, have recently been
integrated [10] as an alternative to ATPs. Finally, also counterexample genera-
tors such as Nitpick [8] are now part of Isabelle. They allow a game of proof and
refutation when developing and prototyping theories.

In contrast to previous rather monolithic ATP proofs in Kleene and relation
algebra, where theorems were often attempted directly from the axioms, the
user now owns the means of production: proofs can be performed at any level
of granularity, from fully automated proofs to textbook-style manual Isar proof
scripts, in which the individual proof steps can be automated.

Examples of these features and the different styles of proof are given in the
remainder of this paper. Isabelle is well documented; and more information can
be found at the tool web site [1]. Our complete repository, including all facts
used in this paper, can be found online [33]. All hypotheses used in the proofs
presented can easily be found by searching their names in the repository.



3 Implementing a Kleene Algebra Hierarchy

We informally use the term “Kleene algebra” for a family of algebras based
on variants of idempotent semirings—or dioids—which are extended with op-
erations for finite or infinite iteration. Different variants correspond to different
system semantics and different intended applications, inlcuding processes, proba-
bilistic systems, program refinement, sequential or concurrent program analysis.
Program semantics for partial or total correctness and formalisms such as dy-
namic, temporal or Hoare logics can be obtained by adding further axioms.

Isabelle’s local specification facilities allow us to build a modular theory hi-
erarchy for Kleene algebras and to inherit theorems across theories and models.
We outline the approach in this section. To simplify the presentation, the code
in this paper sometimes differs slightly from that in the repository.

Our hierarchy starts with the axiomatic class of join semilattices.

Class join-semilattice = plus-ord +
assumes add-assoc: (x+y)+z = x+(y+z )
and add-comm: x+y = y+x
and add-idem: x+x = x

It expands a predefined class plus-ord, which provides notation for addition and
order and connects them via x ≤ y ≡ x + y = y by the semilattice axioms.

Linking the equational view on semilattices with the order-based one requires
showing that join semilattices are partial orders.

Sublass (in join-semilattice) order
Proof

fix x y z
show x ≤ x by (metis add-idem leq-def )
show x ≤ y =⇒ y ≤ x =⇒ x = y by (metis add-comm leq-def )
show x ≤ y =⇒ y ≤ z =⇒ x ≤ z by (metis add-assoc leq-def )
show x < y ←→ x ≤ y ∧ ¬ (y ≤ x ) by (metis strict-leq-def )

qed

The individual proof goals are prescribed by Isabelle, in particular that for <
which is usually a definition. Isabelle’s built-in ATP system Metis is called on
each goal with the hypotheses indicated. More information about such proofs
can be found in the following sections. All Isabelle theorems for partial orders
are now available for join semilattices.

The next level of our hierarchy implements variants of semirings and dioids,
whose multiplication symbol is provided by a predefined class mult.

Class near-semiring = plus + mult +
assumes mult-assoc: (x ·y)·z = x ·(y ·z )
and add-assoc ′: (x+y)+z = x+(y+z )
and add-comm ′: x+y = y+x
and distr : (x+y)·z = x ·z+y ·z

Class near-dioid = near-semiring + plus-ord +
assumes idem: x+x = x



Near-dioids form the basis of process algebras like CCS or ACP [6]. By definition,
near-diods are near-semirings, and all near-semiring theorems are automatically
inherited. But the link with semilattices requires proof.

Sublass (in near-dioid) join-semilattice — automatic proof omitted

Other variants of semirings and dioids can be obtained by extension, e.g.,

Class pre-dioid = near-dioid +
assumes subdistl : z ·x ≤ z ·(x+y)

Class semiring = near-semiring +
assumes distl : x ·(y+z ) = x ·y+x ·z

Class dioid = semiring + near-dioid

Predioids form the basis for game algebras [15] and probabilistic Kleene alge-
bras [27]. Semirings and dioids have various applications in different fields of
mathematics and computing. We have extended these structures with additive
and multiplicative units in the usual ways. Different variants are needed again
for different applications.

At the next level of the hierarchy we add a Kleene star to our variants of
semirings with 1. We only show the extremal points of this level.

Class left-near-kleene-algebra = near-dioid-one + star +
assumes star-unfoldl : 1+x ·x? ≤ x?

and star-inductl : z+x ·y ≤ y −→ x?·z ≤ y

Class kleene-algebra = left-kleene-algebra-zero +
assumes star-inductr : z+y ·x ≤ y −→ z ·x? ≤ y

Isolation of the left star unfold and left induction axiom is important for variants
such as probabilistic Kleene algebras. A right unfold law can be proved from the
three axioms for all variants except near Kleene algebras.

At the final level of the hierarchy we extend different algebraic variants with
an omega operation for infinite iteration. Since omega algebras [11] will not
appear any further in this paper, we refer to our repository for details.

Our repository also contains semigroups, semirings and Kleene algebras with
domain and antidomain [12,14], including modal Kleene algebras [28] and de-
monic refinement algebras [37]. Domain semirings essentially subsume Kleene
algebras with tests [23]. Most theories have been developed to the present state
of knowledge. A proof environment for dynamic logics, temporal logics or Hoare
logic can be obtained with minor effort. Structures such as concurrent Kleene
algebras, action algebras and action lattices, and Kleene algebras with converse
are under development.

4 Integrating Relation Algebras

Our implementation of relation algebras follows Roger Maddux’s book [26],
which itself is based on Alfred Tarski’s original paper [35]. It uses Hunting-



ton’s axioms for Boolean algebras. These are rather minimalist, and we have
added definitions for the partial order, the maximal and minimal element, and
meet.

Class boolean-algebra = plus-ord + uminus + one + zero + mult +
assumes join-assoc: (x+y)+z = x+(y+z )
and join-comm: x+y = y+x
and compl : x = −((−x )+(−y))+(−((−x )+y))
and one-def : x+(−x ) = 1
and zero-def : (− 1 ) = 0
and meet-def : x ·y = −((−x )+(−y))

For applications in Section 6, we introduce the concept of conjugate functions
over a Boolean algebra [20], which gives rise to Boolean algebras with operators
and Galois connections. In particular, they yield theorems for free.

Definition (in boolean-algebra)
conjugation-p f g ≡ ∀ x y . (f (x )·y = 0 ←→ x ·g(y) = 0 )

Next we obtain relation algebras from Boolean algebras and show that every
relation algebra is a dioid.

Class relation-algebra = boolean-algebra + composition + unit + converse +
assumes comp-assoc: (x ;y);z = x ;(y ;z )
and comp-unitr : x ;e = x
and comp-distr : (x+y);z = x ;z + y ;z
and conv-invol : (x^)^ = x
and conv-add : (x+y)^ = x^+y^

and conv-contrav : (x ;y)^ = y^;x^

and comp-res: x^;(−(x ;y)) ≤ −y

Sublocale relation-algebra ⊆ dioid-one-zero (op +) (op ;) (op ≤) (op <) 0 e
— automatic proof omitted

In this case, we establish a sublocale (instead of a subclass) relationship
because different signatures need to be matched.

To link relation algebras with Kleene algebras, we add a reflexive-transitive
closure operation.

Class relation-algebra-rtc = relation-algebra + star +
assumes rtc-unfoldl : e+x ;x? ≤ x?

and rtc-inductl : z+x ;y ≤ y −→ x?;z ≤ y
and rtc-inductr : z+y ;x ≤ y −→ z ;x? ≤ y

Sublocale relation-algebra-rtc ⊆
kleene-algebra (op +) (op ;) (op ≤) (op <) 0 e (op ?)

— automatic proof omitted

All facts for Kleene algebra are now available for relation algebras; the difference
between reasoning in Kleene algebra and relational reasoning becomes often
invisible for users.



Our implementation of relation algebra includes the most important textbook
concepts and theorems about functions, subidentities or tests, domain and range
elements, vectors and points.

Relation algebras have previously been implemented in Isabelle/HOL by
Gritzner and von Oheimb [30]. At that time, however, type classes, locales and
ATP integration were not available, and proving relational theorems required
strong user interaction. Their system therefore uses a translation to relational
atom structures and complex algebras to increase the degree of automation,
which was certainly impressive in 1997. A comparison nicely illustrates the tech-
nological advances in automated and interactive theorem proving over the last
decade.

5 Automated Algebraic Proofs with Isabelle

Our development of a repository of verified theorems for relational and algebraic
methods in Isabelle is largely based on ATP via Sledgehammer. To our knowl-
edge, it is the first larger case study on automated algebraic reasoning within
Isabelle.

In this paper, we can only present a few example proofs out of the more
than 800 proofs in our repository. Our main intention is to illustrate the range
of possibilities available and to compare this new approach to our previous work
with standalone ATP systems.

We show that, in Kleene algebras, the Kleene star indeed axiomatises the
reflexive transitive closure. (In our repository, these proofs have been obtained
in slightly weaker algebras.) The first proof goal, namely that x? is reflexive,
transitive, and extends x, can be stated as follows.

Lemma (in kleene-algebra) star-rtc1 : 1+x+x?·x? ≤ x?

— proof below

To prove this lemma, we called Sledgehammer, which itself called a number
of external ATP systems. In this case the external ATPs returned with proofs
within seconds. In a second round, the ATP systems were rerun to minimise the
hypothesis set needed. Finally, Isabelle’s built-in ATP system Metis performed
proof search on a selected hypothesis set to reconstruct the external proof within
Isabelle. In our example, this yields

by (metis add-lub star-ext star-ref star-trans)

This list shows that Sledgehammer has “learned” appropriate hypotheses for
proving this fact. Instead of the star axioms, for instance, two lemmas are used
that have previously been verified. This sort of proof management is not sup-
ported by standalone ATP systems.

Alternatively, the SMT solver Z3 can be used, whose proof is again recon-
structed internally:

by (smt add-lub star-ext star-ref star-trans)



On our repository, the overall performance of Z3 is comparable to Metis, but both
are less successful than the external ATP systems. This explains why hypothesis
minimisation is an important feature of Sledgehammer.

A third variant is asking Sledgehammer for an Isar proof. In our example,
the following Isar proof script is generated for lemma star-rtc1.

Proof −
have 1 ≤ x? by (metis star-ref )
hence 1 ≤ x? ∧ x ≤ x? by (metis star-ext)
hence 1 + x ≤ x? by (metis add-lub)
hence 1 + x ≤ x? ∧ x? · x? ≤ x? by (metis star-trans)
thus 1 + x + x? · x? ≤ x? by (metis add-lub)

qed

Individual proof steps are again verified by Metis, but, due to the change of
granularity, Isar proofs can often be checked more quickly. The Isar proof feature
of Sledgehammer is, however, still experimental and often rather unstable.

It now remains to show that x? is the least element above x that is reflexive
and transitive. The proof, which can be found in our repository, can again be
fully automated, but Metis takes several minutes.

A particular benefit of the ITP approach is that users own the means of
production. Instead of fully automated proofs, textbook-style proofs can be given
as Isar scripts whenever Sledgehammer fails or the user chooses so. The following
example shows such a proof in which, of course, the user’s expertise is needed.

Lemma (in kleene-algebra) star-slide: (x ·y)?·x = x ·(y ·x )?

Proof −
have x ·(y ·x )? ≤ x ·(y ·(x ·y)?·x+1 )

by (metis add-comm mult-assoc star-unfoldr-eq star-slide1
mult-isor add-iso mult-isol)

hence x ·(y ·x )? ≤ (x ·y ·(x ·y)?+1 )·x
by (metis distl mult-assoc mult-oner distr mult-onel)

hence x ·(y ·x )? ≤ (x ·y)?·x
by (metis add-comm star-unfoldl-eq)

thus ?thesis by (metis antisym-conv star-slide1 )
qed

In the first step, the well-known star unfold law 1 + x? · x = x?, which
has previously been verified, is used. The second and third step use essentially
distributivity and star unfold. The slide law (x · y)? · x ≤ x · (y · x )?, which
again has been verified before, is used in the final step.

Our experiments suggest that handwritten proofs in relation algebra and
Kleene algebra can usually be translated directly into readable Isar scripts.

The theory hierarchy, combined with ATP systems and counterexample gen-
erators, helps finding the weakest structure in which theorems hold. We were
able, for instance, to prove all identities that were known to hold in Kleene
algebras and all formulas in omega algebras—including the above slide rule—
without right star induction. These empirical observations suggest that weaker
variants of Kleene (and omega) algebras may already be complete for the algebra
of (omega-)regular events.



6 Higher-Order Features

Apart from managing ATP proofs, Isabelle’s higher-order features are very use-
ful for theory engineering. Here we give only two examples: the exploitation of
duality for domain and range semirings, and the instantiation of theorems of
Boolean algebras with operators in relation algebras.

The domain of a relation is the set of all states on which a relation is en-
abled. In the semiring of relations, domain(x) ≡ {(p, p) | ∃q. (p, q) ∈ x}. More
abstractly, we use a domain operation d and the following axioms [14].

Class domain-semiring = semiring-one-zero + plus-ord + domain-op +
assumes d1 : x+(d(x )·x ) = d(x )·x
and d2 : d(x ·y) = d(x ·d(y))
and d3 : d(x )+1 = 1
and d4 : d(0 ) = 0
and d5 : d(x+y) = d(x )+d(y)

We can prove that domain elements are precisely the fixpoints of the domain
operation. This domain characterisation is not merely an equivalence between
domain semiring identities; it involves an existential quantifier.

Lemma (in domain-semiring) d-fixpoint : (∃ y . x = d(y)) ←→ d(x ) = x
— automatic proof omitted

Semiring duality is duality with respect to opposition, that is, the order of
multiplication is swapped. The notion extends to semirings with one and zero,
and preservation of theorems can be expressed by the following lemma, which
states that the opposite contravariant multiplication induces again a semiring.3

Definition (in mult) x � y ≡ y · x

Lemma (in semiring-one-zero) dual-semiring-one-zero:
class.semiring-one-zero 0 1 (op +) (op �) — automatic proof omitted

In the context of domain semirings, the dual of domain is range:

Class range-semiring = semiring-one-zero + plus-ord + range-op +
assumes r1 : x+(x ·r(x )) = x ·r(x )
and r2 : r(x ·y) = r(r(x )·y)
and r3 : r(x )+1 = 1
and r4 : r(0 ) = 0
and r5 : r(x+y) = r(x )+r(y)

Sublocale range-semiring ⊆ domain-semiring r (op +) (op ≤) (op <) 0 1 (op �)
— automatic proof omitted

This sublocale expression states that range semirings are duals of domain semir-
ings with respect to opposition. It allows us to obtain statements about range
directly by dualising domain statements. In fact, all statements about range in
3 The logically equivalent Sublocale semiring-one-zero ⊆ semiring-one-zero 0 1

(op +) (op �) is not accepted by Isabelle for technical reasons.



our repository have been obtained this way. The following range export law, for
instance, is automatically derived from its dual domain export law, which has
been proved by other means.

Lemma (in range-semiring) range-export : r(x ·r(y)) = r(x )·r(y)
by (metis dual .domain-export opp-mult-def )

In the proof, the domain export law d(d(x)·y) = d(x)·d(y), which has previously
been proved, is dualised by the sublocale statement above. The above definition
of � is also needed in the proof. The hypotheses have been found automatically
by Sledgehammer.

Next we show how abstract theorems about conjugate functions in Boolean
algebras with operators can automatically be instantiated to more concrete the-
orems about relation algebras. In our hierarchy, relation algebras form a subclass
of Boolean algebras, hence conjugation is available for relation algebras, too.

The following lemma shows that the functions λy. x; y and λy. x^; y are
conjugate in relation algebras. This is, in fact, one of the famous Schröder rules.

Lemma (in relation-algebra) schroeder-1 : (x ;y)·z = 0 ←→ y ·(x^;z ) = 0
Proof −

have (x ;y)·z = 0 ←→ (z ^;x )·y^ = 0 by (metis conv-invol peirce)
thus ?thesis by (metis conv-invol conv-zero conv-contrav conv-times meet-comm)

qed

Lemma (in relation-algebra) schroeder-1-var :
conjugation-p (λ y . x ; y) (λ y . x^ ; y)
by (metis conjugation-p-def schroeder-1 )

Lemma schroeder-1 proves the Schröder law explicitly from Peirce’s formula
(x; y) · z^ = 0 ←→ (y; z) · x^ = 0, which can be found in our repository. It is
used in the proof of Lemma schroeder-1-var to express the conjugation property.
The following modular law of relation algebra, for instance, can then be obtained
automatically by instantiating an abstract modular law of Boolean algebras with
operators that holds for conjugate functions.

Lemma (in boolean-algebra) modular-1 :
assumes conjugation-p f g shows f (x )·y ≤ f (x ·g(y))·y
— proof omitted

Corollary (in relation-algebra) modular-1 ′: (x ;y)·z ≤ (x ;(y ·(x^;z )))·z
by (metis schroeder-1-var modular-1 )

Such higher-order features are particularly useful for modal semirings and
modal Kleene algebras, where dualities, conjugations and Galois connections re-
late the forward and backward box and diamond operators. Dualities can then be
used as theorem transformers and conjugations as theorem generators. Theorems
for free can thus be effectively realised by theory engineering in Isabelle.



7 Abstract versus Set-Theoretic Classes

This section discusses an alternative set-theoretic specification of algebraic struc-
tures that uses explicit carrier sets. The abstract type-based approach described
in the previous sections is usually sufficient to reason in algebraic structures,
e.g., to prove identities in Kleene algebra. However, limitations show up when
reasoning about these structures, for instance about subalgebras. Explicit carrier
sets overcome these limitations in Isabelle/HOL. They allow specifications that
are more appropriate for mechanising model theory or universal algebra.

To keep our example simple, we show a carrier-based specification for domain
semigroups [12] instead of domain semirings.
Class carrier-semigroup = mult +

fixes carrier :: ′a set
assumes m-closed : [[x∈carrier ; y∈carrier ]] =⇒ x ·y ∈ carrier
and m-assoc: [[x∈carrier ; y∈carrier ; z∈carrier ]] =⇒ (x ·y)·z = x ·(y ·z )

Class carrier-domain-semigroup = carrier-semigroup + domain-op +
assumes d-closed : x∈carrier =⇒ d(x ) ∈ carrier
and d1 : x∈carrier =⇒ d(x )·x = x
and d2 : [[x∈carrier ; y∈carrier ]] =⇒ d(x ·d(y)) = d(x ·y)
and d3 : [[x∈carrier ; y∈carrier ]] =⇒ d(d(x )·y) = d(x )·d(y)
and d4 : [[x∈carrier ; y∈carrier ]] =⇒ d(x )·d(y) = d(y)·d(x )

In contrast to our previous abstract specifications, each assumption is now rel-
ativised to the carrier set and closure conditions for the operations have been
added, as usual in algebra.

By using carrier sets, we can now prove automatically that the set of do-
main elements in a domain semigroup forms a domain subsemigroup. Because
Isabelle/HOL does not offer dependent types, this would be difficult, if not im-
possible, to state without explicit carrier sets.
Lemma (in carrier-domain-semigroup) domain-subsemigroup:

class.carrier-domain-semigroup (op ·) {x∈carrier . d(x )=x} d
— automatic proof omitted

The lemma states that the set of all elements x in the carrier that satisfy d(x) = x
endowed with the operations · and d forms a domain semigroup with carrier.

This example suggests that metalogical statements could still be proved by
ATP when using classes with explicit carrier sets, although set theory is now
involved. Additional experiments suggest that carrier sets may cause substantial
overhead and more fragile proof automation, but further evidence is needed.

The abstract and the set-theoretic level can be linked, and theorems can be
transferred between them. Given an abstract algebraic structure, the universal
set over its type, i.e., {x . True}, constitutes a suitable carrier set for the cor-
responding set-theoretic structure. Conversely, given a structure with explicit
carrier set C, the subtype of all elements in C constitutes a suitable base type
for the corresponding abstract structure. However, due to Isabelle/HOL’s lack
of dependent types, this subtype can be defined only when C does not depend
on local parameters.



8 Integrated Point-Wise and Point-Free Reasoning

We have discussed how a hierarchy of algebraic structures can be defined in
Isabelle, and we explained how this hierarchy is useful for organising theory
engineering. However, in intended models, the theorems thus obtained are con-
ditional: e.g., 0∗ = 1, provided 0, 1 and ·∗ denote the respective operations of,
e.g., a Kleene algebra. We cannot apply these theorems in concrete models un-
less we know that the operations in these models satisfy the axioms of (in this
case) Kleene algebra. Three important models of Kleene algebras are sets of
traces, formal languages, and binary relations [13]. In this section we sketch how
abstract ”point-free” reasoning in relation and Kleene algebra can be formally
linked with ”point-wise” reasoning in concrete models. A full account can again
be found in our repository.

A trace is given by a list of odd length whose first element is a state, and in
which states and actions alternate. Isabelle provides pair types ′α × ′β and a
polymorphic list type ′α list, but has limited support for predicative subtypes.
Therefore, the following (equivalent) characterisation of traces is easier to work
with formally: a trace is a pair consisting of an initial state and a list of transi-
tions, where each transition is a pair of action and successor state.

Types ( ′σ, ′α) trace = ′σ × ( ′α × ′σ) list

We define functions first and last that extract the first and last state of a
trace, respectively. Multiplication of traces t and u is a partial operation that is
defined when the last state of t is equal to the first state of u.

Definition t · u ≡ if last(t) = first(u) then (π1(t), π2(t) @ π2(u)) else undefined

Here π1, π2 are the projections for pairs, and @ denotes list concatenation.
Multiplication can be lifted to a complex product on sets of traces in the

usual way. HOL is a logic of total functions; undefined above—contrary to com-
mon mathematical usage—is a constant of the logic that merely denotes some
completely unspecified value. In the complex product, we only consider pairs of
traces whose product is defined.

Definition T · U ≡
S

t∈T .
S

u∈{u ∈ U . last(t) = first(u)}. {t · u}

The empty set is the multiplicative zero, and the set
⋃

p {(p, [])} of all single-
state traces is the multiplicative unit. In fact, sets of traces form a Kleene algebra
(where addition is given by set union, the order coincides with the subset relation,
and the star operation is given by arbitrary iterations of multiplication, as in
language theory). Isabelle provides the Interpretation command to formally
establish this relationship.

Interpretation kleene-algebra (op ∪) (op ·) (op ⊆) (op ⊂) ∅ (
S

p. {(p, [])}) (·?)
— proof omitted

Isabelle sets up a proof obligation that requires the user to show that the op-
erations listed indeed satisfy the axioms of Kleene algebras. Simple axioms can
be verified automatically, while harder ones—in particular verification of the



star axioms, which now require induction—need user interaction. The hierar-
chical approach leads to well-structured interpretation proofs: the fact that sets
of traces form left Kleene algebras (with 0) and Kleene algebras (with 0) in
which also the right star induction axiom holds can be verified incrementally.
This is useful, for instance, when attempting completeness proofs for the weakest
possible axiomatisation.

In addition to the trace model of Kleene algebras, we have formalised the
models of formal languages (i.e., sets of words, where words are implemented as
lists, and word multiplication is given by list concatenation) and binary relations
(i.e., sets of ordered pairs, with multiplication given by relative product).

Having established, for instance, that binary relations form a Kleene algebra,
Isabelle immediately makes all abstract theorems of Kleene algebra proved in
the system available for binary relations as well. For instance,

Lemma y? ◦ x? ≤ x? ◦ y? =⇒ (x + y)? ≤ x? ◦ y?

— automatic proof omitted

is the instance of the abstract Church-Rosser theorem of Kleene algebra for bi-
nary relations (with ◦ denoting relative product and ·? the reflexive-transitive
closure of a relation). We can therefore seamlessly switch back and forth between
point-free abstract reasoning (at the algebraic level) and point-wise concrete rea-
soning (in the model of binary relations). Krauss and Nipkow [24] artfully explore
this connection to decide (in)equations of binary relations using an equivalence
checker for regular expressions. Making their integrated decision procedure for
regular expressions available for deciding identities in Kleene algebra could in-
crease the proof automation for this class significantly.

Models such as traces, languages and binary relations carry, of course, a
richer structure than what has been captured by Kleene or relation algebras.
This can to a certain extent be captured abstractly by defining Kleene algebras
over quantales or relation algebras over complete Boolean algebras. While a
specification of these structures in Isabelle is straightforward, the suitability
of Sledgehammer in this higher-order context remains another interesting open
question.

9 Future Directions

The work in this paper documents only the initial steps towards an Isabelle
repository for algebraic methods. The directions for future work that arise from
this work are perhaps more important than the results obtained so far. We
envisage three main directions:

(a) The creation of a standardised repository for relational and algebraic meth-
ods that includes the most important variants, models and theorems, and
reflects the state of the art in the field.

(b) The integration of this repository into a development and verification en-
vironment for programs and computing systems that combines lightweight
relational specification languages with heavyweight automation.



(c) The exploration of more advanced mathematics, e.g., the model theory and
universal algebra of Kleene algebras and relation algebras within Isabelle.

These directions can best be addressed through a joint effort within the
RAMiCS community, and the repository, its notation, conceptualisation, struc-
ture and design is therefore open to additions and debate. A possible way forward
is the creation of a Wiki to which any researcher in the area will be able to con-
tribute through a moderated process. A minimal requirement would be that all
documents checked in must compile with Isabelle.

Using standalone ATP systems for reasoning automatically about Kleene and
relation algebras showed that proofs of calculational statements at textbook level
can usually be automated. But there are several limitations, in particular the fact
that reasoning about data structures and data types such as numbers, arrays,
lists is not sufficiently supported, and that proofs by induction are not possible.
The presence of both SMT solvers and higher-order features in Isabelle/HOL
seems of great benefit here and certainly deserves further exploration. Automat-
ing large parts of program analyses in this new setting seems possible, although
we cannot provide any empirical evidence yet. The development and integration
of decision procedures for fragments of Kleene algebras and relation algebras
seems also very beneficial in this respect.

Finally, we are not aware that a systematic formalisation of model theory or
universal algebra in Isabelle/HOL has so far been attempted. Our proof exper-
iments show that some simple metamathematical concepts and proofs can effi-
ciently be handled by ATP, which might facilitate this endeavour. Completeness
proofs for variants of Kleene algebras are particularly important for integrating
decision procedures and further enhancing automation.

10 Conclusion

We have shown that Isabelle/HOL is a highly useful environment for automated
theorem proving in relation algebras and variants of Kleene algebras that over-
comes previous limitations of standalone ATP proofs with these structures. Main
advantages include theory hierarchies, proof management, hypothesis learning,
cross-theory reasoning, automatisation of duality and abstraction/instantiation,
integration of abstract and model-based reasoning and other higher-order fea-
tures that enable metatheory reasoning. These suitably complement the sheer
proof power of ATP systems on calculational proofs. The integration of SMT
solvers into Isabelle promises additional benefits for reasoning about data struc-
tures and data types.

These results provide further evidence that algebraic and relational methods
are very suitable as lightweight formal methods with heavyweight automation;
and that our Isabelle repository is a significant step in that direction.

But there is still scope for improvement from the tool side, too. The exist-
ing automation gap between the external ATP systems and the internal proof
reconstruction needs to be closed, and a wider range of ATP systems should



be integrated. For this purpose, ATP output should be further standardised
(cf. TSTP [34]). Other valuable features would be better ATP support for order-
based reasoning (ordered chaining calculi [3]), better sort or type support, and
enhanced techniques for hypothesis learning and, more generally, large hypoth-
esis sets.
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