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Abstract

The 2014 SMT Competition was held in conjunction with the SMT Workshop, affiliated
with the CAV, IJCAR, and SAT conferences at FLoC 2014, at the Vienna Summer of Logic
in July 2014. Eighteen solvers participated from thirteen different research groups, across
34 different logic divisions. The competition was also part of the FLoC Olympic Games
event, which gave combined visibility to 14 different competitions related to automated
logic problem solving. The 2014 edition of the SMT Competition was executed for the
first time on the StarExec logic solving service. Several records were broken: number
of participating solvers, number of new entrants, number of logic divisions, number of
benchmarks, and amount of computation. The detailed performance of each solver on
each benchmark from this first year using StarExec will be a solid baseline to measure
improvements in the state-of-the-art of solver performance in future years.

KEYWORDS: SMT solver, SMT-COMP, SMT-LIB, Satisfiability Modulo Theories, com-
petitions

1. Introduction

The SAT decision problem can be generalized by replacing Boolean variables with atomic
predicates built with symbols from a background theory, or a combination of background
theories. The resulting decision problem is called Satisfiability Modulo Theories [32]. The
background theories of interest arise from application domains, such as formal verification
or scheduling problems, and include arrays, bit-vectors, equality with uninterpreted func-
tions, linear and non-linear arithmetics over integers and real numbers. Also, a theory may
explicitly allow or disallow quantification. Tools addressing the SMT problem are called
SMT solvers. An SMT solver is often built by combining a SAT solver with (semi-)decision
procedures for specific theories.

The 2014 SMT Competition (SMT-COMP) continued the series of annual competitions in
SMT solver capability and performance that began in 2005. This is the 9th competition in
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the series, skipping only 2013; in that year an evaluation [17] was performed, rather than a
1.

competition.
The competition is held to spur advances in SMT solver implementations acting on bench-
mark formulas of practical interest. Public competitions are a well-known means of stim-
ulating advancement in software tools. For example, in automated reasoning, the SAT
and CASC competitions for propositional and first-order reasoning tools, respectively, have
spurred significant innovation in their fields [1, 23, 8, 28|.

The competition is sponsored by the SM'T Workshop, which was held in conjunction with the
CAV, IJCAR, and SAT conferences at FLoC 2014 [33], at the Vienna Summer of Logic [34]
in July 2014. Information about the winners and results of the competition is summarized in
this report and is available online at www.smtcomp.org. Information about previous years’
competitions is also available at that website and in published summary reports [4, 16, 17].

In the succeeding sections we describe the competition goals (§2), the SMT-LIB language
that is the basis for the competition (§3), the competition benchmarks (§4), participants (§5),
procedure (§6), computational infrastructure (§7), comparisons with other competitions (§8),
the results (§9), the place of SMT-COMP in the FLoC Olympic Games (§10), and post-
competition activities (§11). Section 12 presents observations on this competition and rec-
ommendations for the future.

2. The Competition Goals and Organization

In planning the 2014 competition, the organizers’ overall goal was to encourage breadth in
the capability of SMT solvers. SMT-COMP 2014 benefited from the evaluation that was
performed in 2013 and the experience of previous competitions. As a result we established
the following emphases. Note that, as described in later sections, the competition is divided
into a number of divisions, each focuses on a given logic, and each has its own set of
benchmark problems and solvers.

e In 2012 the competition was narrowed to a smaller number of more significant logics.
In response to feedback, in 2014 we reverted to the practice of evaluating solvers in all
available divisions.

e A significant result of the 2013 Evaluation was that the results of previous competitions
were highly sensitive to the selection of benchmarks: different random selections of
benchmarks resulted in different winning orders in a large fraction of samples. Hence,
an aim for 2014 was to use as large a benchmark set as possible in the competition to
minimize this effect. We were able to run the competition with all eligible benchmarks.
This point is discussed further in §4.2.

1. The evaluation did not measure solvers against each other, as in a competition. Rather it assessed con-
cerns such as how the design of the competition (e.g., random choice of benchmarks) affects the outcome,
the variety and distribution of benchmarks, and the extent to which the competition is dominated by
single solvers or by a few solvers or is broadly competitive.
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e In 2012 some experimental tracks were held: parallel performance, unsat cores, and
proof generation. The participation in those tracks was light. Since in 2014 we also
had to migrate to using the new StarExec cluster to execute the competition, we held
only a main track and an application (incremental) track in the 2014 competition.
The organizers still appreciate the value of measuring the performance of solvers on
new features such as parallel processing, model generation, unsat core determination,
and proof generation, and recommend that these tracks be reinstated in some future
edition of the competition.

e An additional goal was to be able to evaluate the effect of the timeout setting on the
competition. Thus a change in 2014 was to increase the timeout limit for a solver
processing a given benchmark from 25 minutes (in 2012) to 40 minutes (see §6 for
details on the competition parameters and §9.1 for a discussion on their effects).

An important difference between the 2014 competition and previous competitions was that
this year’s competition was executed on the StarExec cluster, described below in §7. All
the supporting tools and related procedures needed to be ported to this new framework.
With watchful eyes by the organizers and the StarExec team, and with some debugging, the
StarExec framework worked well and enabled a larger scale of competition than in previous
years.

3. SMT-LIB Logic, Language and Solvers

The SMT Competition is a competition among SMT solvers on a set of benchmark logic
problems. Each benchmark problem is a combination of definitions and logical assertions
expressed with respect to an underlying logical theory and, perhaps, some constraints on the
kinds of expressions in that theory. For example, the logic of linear arithmetic includes the
multiplication operation, but only allows multiplication by constants. Each problem is a set
of closed formulas (possibly including quantification over variables) over a set of constant or
function symbols; a solution to the problem is an assignment of each constant and function
evaluation to values in a way that satisfies all the problem’s assertions. That is, the task
is to find a satisfying assignment for the benchmark problem or to determine that there is
no such assignment. Since the presence of quantified expressions introduces incompleteness,
solvers may also produce a potential solution that may be marked as possibly spurious.

As stated, the goal of SMT-COMP is similar to the goal of the SAT competition. The
SMT logic extends SAT by incorporating defined theories, such as the theory of arrays, or
of uninterpreted functions, or of arithmetic, or of bit-vectors. In addition, there may be
constraints on the set of expressions allowed, such as only linear arithmetic, or only integer
difference arithmetic. The theories also define sorts, which make the theories a typed first-
order logic. Examples of sorts used in current theories are Boolean, Int, Real, bit-vectors
of various lengths, and arrays with arbitrary sorts as index and value. Each combination of
underlying theories and language constraints is a logic. The names of the logics as used in
SMT-LIB are combinations of initials. For example, AUFLIA is the logic with a combination
of Arrays (A), Uninterpreted Functions (UF), and linear integer arithmetic (LIA). Table 1
can be used to interpret these names.
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QF Quantifier-Free

A Arrays

UF Uninterpreted Functions

BV Bit-Vector

L Linear (arithmetic)

N Non-Linear (arithmetic)
IA/RA/IRA | Integer/Real/Mixed arithmetic
IDL/RDL Integer /Real Difference Logic

Table 1: Abbreviations used in logic names

A competition based on benchmark problems needs a standard language in which to express
those problems. For SMT-COMP, that language is the SMT-LIB language (cf. http://www.
smtlib.org) |5, 6, 15]. In 2010, a significantly reworked version of the language was agreed
upon. This version 2 increased the flexibility and expressiveness of the language while also
simplifying the syntax. It also includes a command language that improves the language’s
usefulness for interactive applications. In particular, the standard specifies a typed (sorted),
first-order logical language for terms and formulas, a language for specifying background
logical theories and logics, and a command language. Some other tools that process SMT-
LIB v2 are listed in the SMT-LIB web pages (cf. http://www.smtlib.org/utilities.
shtml). Further revisions were discussed at the SMT Workshop 2014. One of the goals
of the SMT Competition is to encourage use and tool implementations of the SMT-LIB
standard.

Optional features such as incrementality, proof production, and determining unsat cores are
evaluated in specialized tracks, separate from the main competition. The presence of such
tracks in the competition has varied from year to year.

The following example illustrates part of the language’s concrete syntax:

r

(set—logic UFLIA)
(declare—fun max (Int Int) Int)
(assert (forall ((x Int) (y Int))
(let ((m (max x y)))
(and (>=m x) (>=my) (or (
(assert (not (forall ((x Int) (y |
(let ((m (max x y)))
(= (max m x) m)))))

(check—sat)
(S J

Commands to the SMT solver are typeset in bold here. The command set—logic sets the
background theory: UFLIA is the combination of equality with uninterpreted functions (UF)
and linear integer arithmetic (LIA). Next, the command declare—fun introduces a function
symbol, named max, which has two arguments of sort Int and returns an Int value. Next, two
formulas are asserted. The first essentially restricts the interpretation of the function named
max to the standard interpretation. The second expresses the negation of a property of this
operator. The command check—sat instructs the SMT solver to check if the conjunction of
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Figure 1: Distribution of SMT-LIB benchmarks by file size.

the assertions is satisfiable. Here the expected result is unsat, indicating that the combination
of the two assertions is unsatisfiable and so, equivalently, the desired property is valid, given
the first assertion.

SMT solvers are automated tools that seek a satisfying assignment for a given SMT-LIB
problem, or assure that the problem is unsatisfiable. Tools may not be able to solve a
given problem, because, for example the tool exhausts available memory or time; a tool is
permitted to answer unknown. However, giving an incorrect answer (sat instead of unsat,
or vice versa) is considered unsound and a serious fault in the tool.

4. Competition Divisions and Benchmarks

The SMT-LIB benchmarks each belong to a specific logic. Each logic is one competition
division. For each division, we ran the solvers that entered that division on the benchmarks
for that division as one event in the overall competition.

As of June 2014, the SMT-LIB repository contained over 130,000 main-track benchmarks
divided into 34 background theories, and close to 10,000 incremental benchmarks distributed
across 8 background theories. The size of a benchmark file may vary from a few hundred
bytes to several gigabytes. Fig. 1 shows the distribution of the benchmarks by file size.

A sizeable number of benchmarks, on the order of 30,000, were added during the lead up
to the competition. Some of these were submitted in previous years but never assessed and
uploaded. Many others were supplied by solver developers (including some competitors). All
of them went through an iterative curation process to be sure that they were syntactically
valid, appropriate metadata was included, and a correct result was established. (Not all of
these submissions were through the competition organizers.)
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The SMT-LIB coordinators performed a curation step on the entire benchmark library prior
to the competition, determining the actual logic to which a benchmark belonged, rather
than the super-logic to which it had previously been assigned. This resulted in an expansion
of logics with benchmarks from 23 to 34, and also created a number of divisions with only a
very few benchmarks. Two divisions were not held because they had no eligible benchmarks.

The 34 logics are shown in Table 2. The rightmost column shows the number of benchmarks
for that logic in the SMT-LIB collection. Two considerations may make a benchmark in-
eligible for a competition. First, the benchmark may not have a known result. For newly
submitted benchmarks we made an attempt to determine the correct result of the bench-
mark; the SMT-LIB coordinators require that two different solvers solve the benchmark
and report the same result. However, for benchmarks with unknown results already in the
collection we did not have time to determine their results. We did do this analysis after the
competition was over (see §11).

The second consideration is that the benchmark must be non-trivial; a benchmark is deemed
trivial if all solvers managed to solve it in less than five seconds during SMT-EVAL 2013.

The numbers of unknown, trivial, and remaining eligible benchmarks are shown in Table 2.
Note that these numbers vary widely from division to division. As we discuss in Section 4.2
below, all eligible benchmarks were actually used in the competition; these numbers are
shown in bold.

Solvers could participate in any or all divisions at their team’s discretion. Most solvers are
designed for just one selected logic, but others are intended to be as broadly applicable as
their developers have had time to implement. Table 3 shows the participation of solvers in
various divisions.

4.1 Application benchmarks

The language includes commands that allow a fine-grained interaction with the solver,
whereby client tools may incrementally push and pop symbol declarations and assertions
while running various satisfiability checks, inspecting models, or obtaining unsatisfiability
proofs. Benchmark problems that have more than one check—sat command are called ap-
plication or incremental benchmarks. Not all SMT solvers support all of these interaction
facilities, and the main track of the competition does not use such application benchmarks.

4.2 Selection of benchmarks

Due to the mismatch between the amount of available compute time and the number of
jobs to run, benchmark selection has been an historical issue for SMT-COMP. In addition
to whether a benchmark has a known result or is trivial, the SMT-COMP organizers chose
two other factors that affect the selection of benchmarks for SMT-COMP: the benchmark’s
difficulty and the desire for a distribution of problems. In 2014, the amount of available
CPU time was enough to process all benchmarks on all solvers within the timeout defined
in the rules. However this could not be anticipated, and the issues described hereafter may
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Table 2: Numbers of main-track benchmarks. The second column shows the number of com-
petitive solvers and, in square brackets, the number of demonstration-only solvers. Entries
marked * exclude some benchmarks containing partial functions.

# of # of benchmarks
Logic solvers | eligible | unknown | trivial total
ALTA 3+[1] 29 0 13 42
AUFLIA 3+[1] 4 0 0 4
AUFLIRA 3+[1] 10791 168 | 9055 | 20014
AUFNIRA 2-+[2] 564 468 463 1495
BV 2+[1] 0 191 0 191
LIA 3+[1] 46 0 0 46
LRA 3+[1] 171 450 0 621
NIA 2-+[1] 9 0 0 9
NRA 2-+[1] 3747 66 0 3813
QF ABV 7+[2] 6457* 4191 | 4423 | 15091
QF ALIA 3-+[2] 97 0 29 126
QF AUFBV 2+[2] 37 0 0 37
QF AUFLIA | 4+[2] 610 0 399 1009
QF AX 3+]2] 335 0 216 551
QF BV 8-+[3] 2488* 28138 546 | 32500
QF IDL 3+[1] 1315 537 337 2189
QF LIA 4+3] 4381 1279 481 6141
QF LRA 4+(2] 1343 208 131 1682
QF NIA 3-+[1] 8327 927 105 9359
QF NRA 3-+[1] 10121 1392 27 | 11540
QF RDL 3+[1] 132 85 38 255
QF UF 5-+[2] 4124 4| 2522 6650
QF UFBV 2+[2] 31 0 0 31
QF UFIDL 3+[1] 311 0 130 441
QF UFLIA 4+]2] 484 0 114 598
QF UFLRA 4+(2] 1176 87 367 1630
QF UFNIA 2-+[1] 7 0 0 7
QF UFNRA 2-+[1] 32 11 0 43
UF 3+[1] 2830 2911 7 5748
UFBV 2-+[1] 0 191 0 191
UFIDL 2-+1] 49 12 19 80
UFLIA 3+[1] 5766 5499 873 | 12138
UFLRA 3-+[1] 25 0 0 25
UFNIA 2+[1] 1587 1052 712 3351
Total 18+(3] 67426 47867 | 21007 | 137648
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happen again, e.g., in case the number or difficulty of benchmarks, number of solvers, or the
timeout increase significantly, or the organizers wish to compress the time-frame in which
the competition is executed.

Each benchmark is assigned a difficulty rating; in 2014, we used the time taken to solve the
benchmark by the best performing solver in the 2013 SMT Evaluation. These values were
publicly available prior to the competition. The difficulty ratings are used to divide the
benchmarks into 5 quintiles. The rules describe a procedure for randomly selecting N out
of the eligible benchmarks for a division, with the intent of selecting roughly equal numbers,
if they are available, from each of the quintiles. The seed for the random number generator
used for selection is obtained by summing a number supplied by each solver team and the
integer portion of the New York Stock Exchange Composite Index at its opening on the day
the competition begins.

Benchmarks are also labeled by category (not shown in the tables): simple checks, ran-
domly generated problems from some template (e.g., N-queens problems for various values
of N), problems crafted to test a certain capability, and problems obtained from industrial
applications. The selection rules in previous years favored industrial benchmarks.

Another selection criterion, though not used historically, is to balance the numbers of sat
and unsat benchmarks.

In addition, some kinds of problems may be over-represented in the benchmarks. This may
be the case particularly because benchmarks may be submitted by solver developers; a team
might add a large number of benchmarks that would then over-represent problems that
a particular solver is known to handle well. The rules allow the organizers to limit the
selections from sub-populations.

In the end, in 2014, there was sufficient time to use all eligible benchmarks and no further
selection was performed. The 2014 organizers did not have the data to make a principled
decision on over-representation of particular problem types and so did not select on this basis
either. The absence of such selection may have affected the competition results and future
organizing teams should reconsider this aspect even if there are sufficient computational
resources to execute all benchmarks. The data from SMT-COMP 2014 could be used to
inform this decision.

5. Participants

The competition registration requires participants to submit information about each com-
peting solver. In addition, some solver groups provided summaries of their solvers and their
recent technical advances. Note that although one person is listed as the “submitter,” there
is generally a team of contributors behind each tool. Some teams submitted more than one
tool. The 2014 participants were the following:

e 4Simp — submitted by Trevor Hansen (U. Melbourne)

e AbzizPortfolio — two versions — submitted by Mohammed Adbul Aziz (U. Cairo). This
solver is atypical in that it is a portfolio solver: based on automated learning over
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benchmark characteristics, it chooses among other solvers to apply to the problem at
hand.

e AProVe [22| — submitted by Carsten Fuhs (University College London)

e Boolector [26] — three versions: Boolector (default), Boolector-d (dual propagation),
Boolector-j (justification) — submitted by Armin Biere, Aina Niemetz, Mathias Preiner
(Johnnes Kepler University)

e CVC3v. 2.4.3 |[7] — submitted by Morgan Deters (New York University)
e CVC4 v. 1.4 [3] — submitted by the ACSys Group (New York University)

e Kleaver — 2 versions — submitted by Hristina Palikareva, Cristian Cadar (Imperial
College)

e OpenSMT2 — submitted by Antti Hyvérinen (U. Lugano)

e raSAT [24] — submitted by Xuan-Tung Vu (Japan Advanced Insitute of Science and
Technology)

e SMTInterpol [13, 19] — submitted by Jochen Hoenicke, Jiirgen Christ (U. Freiburg)
e SONOLAR |[27] — submitted by Florian Lapschies (U. Bremen)

e STP-CryptoMiniSat4 [21, 18] — submitted by Mate Soos (Security Research Lab.),
based on previous work by Trevor Hansen (U. Melbourne) and Vijay Ganesh (Mas-
sachusetts Institute of Technology)

e veriT [10] — submitted by David Déharbe (UFRN - Universidade Federal do Rio Grande
do Norte) and Pascal Fontaine (U. Lorraine, INRIA - Institut national de recherche
en informatique et en automatique)

e Yices2 [20] — submitted by Bruno Dutertre (SRI)

There were a few solvers that the organizers hoped would be submitted but were not: Tiffany
de Wintermonte was submitted in the past by Trevor Hansen, but could not be prepared
in time for this competition; similarly SMT-RAT was withdrawn because of last minute
bugs; MathSat has been a frequent competitor in the past, but changes in priorities of the
development team caused it not to compete in 2014; MiniSMT also was not able to be
submitted; similarly, the Z3 team, from Microsoft Research, though Z3 is a strong tool, has
chosen not to take the time to prepare competition versions.

Other than those omissions, every competitive solver known to the organizers was repre-

sented. Indeed, the participation by solver teams was a record high in 2014. In addition,
four teams submitting five solvers had not participated in previous competitions.

10
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Table 4: History of solver participation (numbers in parenthesis indicate the number of
versions submitted for the tool). Complete records of early competitions were not available
to the 2014 organizers.

Solver Affiliation 2005|2006|2007]2008|2009|2010{2011|2012|2014
4Simp U. Melbourne v
AbzizPortfolio U. Cairo v | (2)
Alt-Ergo U. Paris Sud v

AProVE NIA RWTH Aachen v |/ v
ArgoLib v

Ario I/

barcelogic UPC A A A

beaver UC Berkeley I/

Boolector JKU I/ I V()
clsat Washington U. v |/
CVC/CVCLite/CVC3 NYU, U. Iowa A A A A VA VA VA VA R 4
CvC4 NYU, U. Iowa AR And
ExtSat v

Fx7 v

HTP |/

Jat v

Kleaver Imperial (2)
MathSAT 3,4,5 U. Trento, FBK VA A A VA VA I A BV A
MathSat-HeavyBV U. Trento v
MiniSMT U. Innsbruck v

NuSMV FBK v

OpenSMT, OpenSMT2 U. Lugano VA A 4 v
raSAT JAIST v
Sammy v

Sateen U. Col-Boulder A A A 4

SBT v

Simplics SRI v

simplifyingSTP U. Melbourne v

SMTInterpol U. Freiburg |/ |/
SONOLAR U. Bremen v
Spear v |/

STP, STP2 MIT v v o/
STP-CryptoMiniSat4d  Security Res. Lab. v
SVC Stanford U. v

sword U. Bremen I/

test pmathsat FBK-IRST v

Tiffany de Wintermonte U. Melbourne v
veriT Loria, UFRN |/ v
Yices, Yices2 SRI VA A A v
73 Microsoft Res. v |/ v

Total 11 (11| 9 |13 12|10 11| 11 | 18

11
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Table 5: Changes in participation

2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2014
Participants 12 12 9 13 12 10 11 10 18
New in given year 12 4 4 6 2 6 1 4 )
Continuing to the next year 8 6 7 10 4 7 7 6 10
Not ever participating again 4 ) 2 2 6 3 4 4

As in past competitions, the organizers included some publicly available historical solvers.
These solvers are run in the competition for comparison, but are designated as demonstration
only and are not eligible for any awards or designations of having won the competition. In
result tables, these solvers are listed with their names in square brackets (e.g., [MathSat]).
The organizers included current versions of MathSat and Z3. Also, during the competition,
a bug-fix release of CVC4 (named CVC4-with-bugfix) was submitted and included as a
demonstration only version (cf. §10).

History. Table 4 shows the historical participation of each solver. Note that sometimes
versions and names change, or there are multiple related versions from the same team:;
generally speaking, though not always, a solver is improved from year to year. Table 5
summarizes that data in numbers of continuing participants. Except for the record turnout
in 2014, there has been a steady 9-13 participants each year; each year there are an average
of 4 new participants, about the same number of drop-outs, and an average of 7 continuing
participants.

The introduction in 2010 of SMT-LIB v2 as the standard language for benchmarks was a
significant event. The new language required solvers to revise their front-ends and to add
new capabilities. As a result, some solvers did not continue participating, at least not im-
mediately. The added expressivity of the command language permitted to add benchmarks
representing the needs of industrial applications, and the application track of the competi-
tion was added to demonstrate the interactive capability and the corresponding abilities of
solvers.

6. Competition Procedure

The full description of the 2014 SMT Competition’s rules is found in the rules docu-
ment (http://smtcomp.sourceforge.net/2014/rules14 . pdf). The document describes
the procedures for determining benchmark difficulties, selecting benchmarks for competi-
tion, and judging the results. The preparation and execution of the competition required
the following matters to be decided and executed.

Decide the competition parameters. We set a timeout of 40 minutes for both wall clock
and CPU time; the memory limit was 100 GB. A single solver-benchmark combination (job-
pair) was run on a node at a given time. The benchmarks were scrambled; all benchmarks
were run, rather than just a subset. StarExec made about 150 nodes available for the

12
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duration of the competition. The effect of the new timeout is discussed in §9.1. Though the
memory limit was fairly generous, there were still a small number (202) of jobs that were
killed during the competition because of excessive memory use.

Settle any adjustments on the rules and competition timeline, with time for com-
ment. The competition rules are largely the same from year to year, but each year there
are adjustments and improvements. Matters to be decided are the timeline for the competi-
tion, communication vehicles (including instantiating the website for the new competition),
the various tracks and divisions, any adjustments to the benchmark selection procedure, the
scoring rules, and policies on similar submissions and portfolio solvers. A novel aspect in
2014 was the need for policies regarding the FLoC Olympic Games [25], described in §10.
During the competition, the organizers had to rule on two issues.

e First, whether solvers could be withdrawn from divisions after the competition began;
our ruling was no, because that could raise a solver’s overall performance score and
could change which divisions were deemed competitive. This decision did affect the
results of the FLoC medal competition.

e Second, whether a job-pair that responded with a result before the timeout limit, but
did not exit until after the timeout limit, is to be considered a timeout or a correct
or wrong answer; the ruling was that it is not a timeout. Only one benchmark was
affected by this decision and the decision did not affect any winning order, just a slight
change in one solver’s score.

The organizers also received and adjudicated an appeal after the competition completed
(cf. §10).

Undefined behavior. During the testing period prior to the competition beginning, dif-
ferent solvers exhibited different behavior on some benchmarks. Investigation revealed that
these differences were the result of different treatments of partial operations; in particular,
divide by zero. The semantics of SMT-LIB is based on a logic of total functions, meaning
that division by zero cannot raise an exception (or the like), but must have some value. The
SMT-LIB standard leaves this value unspecified (i.e., it could be anything). In contrast,
some solvers assume a specific, fixed value. This question had been discussed at length over
previous years, with proposals to clarify the SMT-LIB standard. There was certainly not
time to resolve this matter prior to the competition, not to mention correcting solvers to the
agreed behavior.” Thus, for the competition, we decided to omit all benchmarks (6060 of
them, 1348 of which were otherwise eligible) that were potentially affected by divide-by-zero
behavior. This question, however, remains open.

Invite and validate solver submissions. The 2014 competition saw the first use of the
StarExec computational cluster (cf. §7) for executing the competition. Each solver had to be
wrapped in appropriate scripts to be able to run in the StarExec environment. Though this
was largely the responsibility of the solver submitter, teams submitting solvers for the first
time required guidance and assistance from the organizers and the StarExec development

2. The discussion this time around can be found in the archives of the smtcomp-discussion@lists.
sourceforge.net mailing list, in the few days near 2014-06-16.
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team. This was a significant hurdle; not all solver teams were able to complete it in time. The
most significant problem was the need to create a fully statically linked version of the solver
that ran on the particular version of Linux used by StarExec. The organizers stipulated
a first solver submission deadline and a final solver submission deadline, separated by two
weeks, to enable (and encourage) trials and debugging of solver submissions.

Solver submissions comprise the solver itself, a short system description outlining what
is new or novel about the solver, and an integer seed used as input to the scrambler (as
described in §4.2).

Invite and validate benchmark submissions. New benchmarks are always welcome
and an impending competition is a particular opportunity to encourage new submissions.
Benchmarks are the responsibility of SMT-LIB coordinators, not the competition organizers.
Nevertheless, the organizers worked with the coordinators to ensure that new benchmarks
were included in SMT-LIB in time for the competition. Initial submissions are often in-
complete; to be useful they must be syntactically correct, include a designation of the logic
in which they fit, contain relevant metadata about the source and category of the bench-
mark, and have a known, validated answer. Benchmarks with unknown answers may also
be interesting and worth keeping, but cannot be used in the competition.

Create an appropriate selection of benchmarks. Not all benchmarks in the SMT-LIB
database are necessarily used in the competition. The details of this selection, as executed
for the 2014 competition, are described in §4. Part of the work in preparing the competition
to run on the StarExec cluster was to port the benchmark selector to StarExec.

Prepare the benchmark scrambler. All the benchmarks are public and known to the
solver developers beforehand. Indeed, part of the point of the benchmark database is to
serve as a testbed for solver development, outside of competitions. However, that raises the
possibility that a solver will recognize a benchmark problem by its syntactic structure and
look up an answer from a learned database, without doing any logic solving. This is explicitly
considered cheating. As a slight impediment against such behavior, the benchmarks are
individually scrambled before being presented to a solver, using the random seed described
above. For 2014, the benchmark scrambler had to be ported to StarExec.

The scrambling does not change the semantic meaning of the benchmark. It does rename
identifiers, alter the order of assertions and the position of the arguments in the application
of associative-commutative operators.

The scrambling had another effect, previously unappreciated. Although most of the solvers
are deterministic for a given input, scrambling can change the order of search. For example,
iterating over the contents of a hashed set may occur in a different order if identifiers have
different names. Consequently, the success of the solver on a given benchmark, the time it
takes to find an answer, and even whether a latent bug in the solver is triggered may all
depend on just how the benchmark is scrambled. Thus the scrambling adds a measure of
uncertainty to the competition and prevents full testing on the benchmark set before the
competition. Indeed, one solver encountered a bug during the competition that was directly
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related to the specific, randomly-chosen scrambling used during the competition. The effect
of the possible variations in performance caused by scrambling is expected to be balanced
by the large number of benchmarks employed in the competition to compare the solvers, as
also observed in the SAT community [8]. Nevertheless, this point is worthy of future further
investigation.

Prepare the real-time results display. The participants are interested in the progress
of the competition as it proceeds. The organizers also need to know if the competition is
proceeding correctly and at a reasonable pace. As the competition takes several days, an
automatic real-time display of results is helpful and encourages interest. StarExec does not
have such a facility, since different competitions have different needs. Instead the organizers
used StarExec’s command-line API to regularly (every 10 minutes or so) download the
status of all of the executing jobs, extract the results for each solver-benchmark pair, create
HTML web pages displaying the current status, and upload them to the competition website.
The current (now final) status of each division and a summary page can be seen at http:
//smtcomp.sourceforge.net/2014/results-toc.shtml.

Execute the competition. Executing the competition required preparing a StarExec job
for each division. A job executes the cross-product of a set of solvers and a set of bench-
marks. Because each division has different sets of solvers and benchmarks, each division was
represented by one or more jobs. Splitting a division into multiple jobs allowed a restart of
portions of the competition if a particular division was incorrectly configured or if a StarExec
job stalled for some reason (both of which happened).

In addition, with the new cluster, the new benchmarks, and a longer timeout period, the
organizers were unsure how long the competition would take. Our conservative estimate
was that a month of computing was needed; in fact it only took about a week, because we
had three times more StarExec nodes available than anticipated and jobs took on average
less time than estimated. However, to hedge against the competition taking longer than
anticipated, we divided larger divisions into heats, with each heat comprising about 1000
benchmarks, and with the option (stated in the rules) to terminate the competition before
all heats were executed to ensure a timely end prior to FLoC. This required handling a much
larger number of StarExec jobs. In the end it was entirely unnecessary for timely completion,
but, as mentioned, dividing the jobs into manageable pieces was useful for restarting portions
of the computation when StarExec stalled.®

In past competitions, the competition was timed to have its last portion overlap with the
conference with which it was affiliated. In 2014, because the computation took less time
than anticipated, the competition finished well before the conference.

Report the results. The results of the competition were reported at the SMT Workshop
and in this paper.

3. Stalling—that is, no longer making forward progress on a job—was less a concern after some bug fixes
during the competition, but was still observed during some post-competition computations.
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Table 6: Competition timeline

Jul. 2013 ® Cok appointed as chair of the organizing committee
Dec. 2013 ¢ Déharbe and Weber appointed as co-organizers
21 Jan. 2014 e call for applications and benchmarks
15 May 2014 o deadline for new benchmarks; benchmarks were being corrected and
curated throughout May and June, until the final solver deadline
19 May 2014 & revised competition rules posted
1 Jun. 2014 & deadline for initial solver registration; final competition rules posted
15 Jun. 2014 e deadline for final solver registration
16 Jun. 2014 & computation begins
22 Jun. 2014 e main track computation ends; official results posted on 27 June
22 Jun. 2014 e deadline for application track solvers
28 Jun. 2014 e application track computation
17 Jul. 2014 ¢ SMT Workshop at which results were announced
21 Jul. 2014 ¢ FLoC Olympic Games Awards Ceremony

Competition timeline. The preparation and execution of SMT-COMP 2014 took place
over about 7 months, relying on the experience of previous competitions, the 2013 SMT
Evaluation, and development activity on StarExec. The timeline is provided in Table 6 for
transparency and as a guideline for forthcoming editions of the competition.

7. StarExec

The competition used the NSF-funded StarExec [31] computational cluster at the University
of lowa for executing solvers on benchmarks. Past instances of SMT-COMP used a previous
SMT-Exec infrastructure. StarExec was used for several other competitions in 2014 as well.

StarExec currently consists of 192 2.4 GHz computational nodes, running Red Hat Linux 6.3.
Each node has two quad-core CPUs (model Intel Xeon E5-2609, 2.4 GHz, 10 MB cache),
and either 129022 MB (32 nodes) or 258294 MB of memory (160 nodes). In competition,
processes were limited to 100 GB memory. To avoid interference among job-pairs, only one
job-pair was executed at a time on each node. The software configuration contains

e Linux kernel 2.6.32-573.1.1.el6.x86 64
e GNU C Library stable release version 2.12
e gce (GCC) 4.4.7 20120313 (Red Hat 4.4.7-11)

For comparison, the previous computational cluster (SMT-Exec) had just 11 nodes:

e Nine were 2.4 GHz AMD Opteron 250s, configured for single core, 64-bit processing, 1
MB cache, 4 GB main memory

e Two were 2.53 GHz Intel Xeon E5540s, configured for single core, 64-bit processing, 8
MB cache, 12 GB main memory
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All SMT-Exec nodes had been running Red Hat Enterprise Linux Client release 5.2
(Tikanga), with the following software configuration:

e Linux kernel 2.6.18-128.2.1.el5
e glibc-2.5-24.el5 2.2
e runtime libraries from gecc-4.1.2-42.el5

The raw CPU speed is not significantly different, but memory size, number of cores, and
number of nodes is greatly increased.

As this was the first year SMT-COMP used StarExec, a variety of tools and procedures
needed to be ported to the new infrastructure, as described in §6. The execution of SMT-
COMP on StarExec went well, though not flawlessly: there were some bugs to work through.
The organizers had some bugs of their own: the scripts to create sets of benchmarks and
jobs did not account for spaces in filenames; some initial report generation was incorrect;
the postprocessor for translating textual output from solvers into official results needed fine-
tuning. These problems were all fixed before or early in the competition. The main issue
with StarExec itself was that sometimes jobs would hang or the StarExec infrastructure
would fail to make progress or would report results incorrectly. Bugs in scheduling were
fixed during the competition but are not entirely resolved. Accordingly, jobs need regular
monitoring to insure they are making progress.

Overall, however, StarExec performed its function well and the support team was responsive
in fixing any difficulties: evaluations of 339,714 job-pairs were completed for the competi-
tion over a period of about 9 days, including the restarts necessary because of bugs or
misconfigurations.

8. Other Competitions

Competitions among tools for a specific purpose are now common. Indeed SMT-COMP
participated among a dozen or so competitions in the FLoC Olympic Games in 2014 [33].
The competitions differ, of course, in their target problem set, but also in their overall goals,
scoring policies, and organization.

CASC SMT differs from the CASC competition [28] in directly addressing sorted logics.
SMT also focuses on fragments of first-order logic that are decidable. For example, a subset
of the benchmarks are problems in an integer-difference logic, for which there are specific
decision procedures. The competition among tools is to create very efficient implementations
of a breadth of decision procedures. Accordingly, SMT solvers have historically not handled
logics with quantified expressions, though several solvers now do so, responding to strong
encouragement from industrial users to include quantification in SMT solvers; there are
benchmarks and competition divisions corresponding to logics with quantification. Including
quantified expressions can, in general, make the satisfiability problem undecidable and the
solvers necessarily rely on heuristics. Solvers may respond that the answer to a problem is
unknown; that is, although there may be a candidate satisfying value assignment, the solver
cannot assure that some combination of instantiations of quantified formulas might not
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invalidate the assignment. Nevertheless, the inclusion of logics with quantification has been
welcome by users. With SMT solvers moving to include quantification and CASC solvers
moving to include types and arithmetic, we see a basis for fruitful future collaboration and
perhaps merging between these communities.

The organizers of SMT-COMP helped organize and execute the first edition of SL-
COMP |29, 30] as a sibling competition. SL-COMP is a competition among solvers for
separation logic. The formal logical underpinnings of SL-COMP are still being defined and
the relationship between the logic used in SL-COMP and the SMT-LIB logic is under dis-
cussion. However, SL-COMP did express its benchmark problems in the same syntax as
SMT-COMP, used the same StarkExec hardware, and used similar organization and scoring
rules.

SL-COMP Besides the subject material, the most interesting difference among compe-
titions is in scoring. (The scoring procedure for SMT-COMP is described in detail in Sec-
tion 10.) Competitions are currently mostly focused on raw solver capability—that is, the
numbers and difficulty of problems that can be solved. Thus competition winners are pri-
marily determined by the total number of problems solved correctly, with the time taken
to produce the solutions used only as a tie-breaker. This is the case for SMT-COMP, SAT,
and SV-COMP, for example.

Scoring differences. A more significant issue is how solver errors are taken into account
in the metrics. A solver error indicates an unsoundness in the tool, which is highly un-
desirable; however, highly penalizing errors may discourage new entrants whose tools are
not yet mature. Different competitions vary on this aspect. SMT-COMP has historically
emphasized soundness; a single error in a division caused the solver to be scored lower than
any other solver with no errors, even if the other solvers solved very few problems. In its
inaugural edition, the Separation Logic Competition (SL-COMP) adopted the same rules
as SMT-COMP. For the SAT competition, however, an error outright disqualifies a tool
in the category it occurs. In the QBF Gallery, a competitive evaluation of solvers for
Quantified Boolean Logic, the score is the number of solved instances. In contrast, in the
SV-competition [9], successful runs account positively towards the final score, while errors
count negatively (with an increased weight). A few other sibling competitions with scoring
variations are the Answer-Set Programming competition (ASP-COMP: wrong answers for
some problem instance cause an overall score of zero for the problem), the Confluence Com-
petition (CoCo: implausible answers disqualify from winning), and Syntax-Guided Synthesis
(SyGuS-COMP: no points for wrong answers, extra points for succinct answers).

4. See http://satcompetition.org/2014/rules.shtml.
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9. Results
9.1 Main track results

Table 7 shows a summary of the main track results. The detailed data for each division is on
the competition website: http://smtcomp.sourceforge.net/2014/results-toc.shtml.

The results of the competition per se were not surprising. The solvers that performed best
in previous years continued to do so. Boolector wins those divisions that focus on bit-vector
problems; CVC4 has the most breadth of application and wins most of the other divisions,
with Yices2 also having a strong showing. Solvers that were optimized with particular
decision procedures for particular logics can capture individual wins: AProVE for QF NIA;
veriT for UFLRA. If Z3 had competed, with the current version entered by the organizers,
it would have won many divisions, but not all; CVC4 is definitely competitive with it.

In the medal ceremony for the competition at the SM'T Workshop, the organizers took care
not to focus only on the winning solvers. The competition was also successful in attracting
new interest and many new entrants, even when the new entrants did not score highly or
had errors in their submissions. In that sense the decision of the SMT steering committee to
pause the competition for a year, to 'reboot’ it and give contestants some breathing room,
was also successful.

The organizers chose not to try to make a detailed comparison with previous years’ results.
Such a comparison had just been completed in the 2013 Evaluation exercise. Furthermore,
with the change in computation hardware, an accurate comparison would have required
running all of the 2012 solvers along with the 2014 solvers and making a comparison on just
the benchmarks used in the 2012 competition. While this is certainly possible, the organizers
were not confident enough of the ability of the new StarExec to complete even the 2014
competition to contemplate doubling the computational load. In addition, such an exercise
was out of the scope of their mandate and would have required considerable extra effort.
However, knowing now that StarExec is fully capable of executing all of the competition
benchmarks, such a comparative exercise would be definitely possible in the future. The
organizers are confident that the 2014 data will be a solid baseline for evaluating progress
in solver performance in future years.

Fastest solvers. The competition does not weight time to solve a problem significantly.
However, this is an important characteristic to any user. Hence we analyzed the competi-
tion results for each division to answer this question: for each solver, what fraction of the
benchmarks for the division does that solver solve the fastest? The data answering this
question is shown in Table 8. For each division and each benchmark, we determined the
solver that solved that benchmark the fastest, and for each solver counted the number of
benchmarks for which it was the fastest. The table lists the three solvers with the most such
benchmarks, with the fraction of benchmarks that it won. The winning solvers are a mix of
73, CVC, Yices2, and a few for veriT. In some divisions, the winning solver does dominate
the competition. Yices2, for example tends to win in those divisions in which it participates,
with Z3 winning most of the others. Note that this analysis does not take into account the
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Table 7: Main track results

Logic Solvers | Benchmarks | Order (winner in bold)

ALIA 4 29 | [Z3]; CVC4,; veriT; CVC3.

AUFLIA 4 4 | CVC4; |Z3]; CVC3; veriT.

AUFLIRA 4 10791 | [Z3]; CVC4; CVC3; veriT.

AUFNIRA 4 564 | [CVC4-with-bugfix]; [Z3]; CVC3; CVCA.

LIA 4 46 | [Z3]; CVC4; CVC3; veriT.

LRA 4 171 | CVC4; |Z3]; CVC3,; veriT.

NIA 3 9 | |Z23]; CVC4; CVC3.

NRA 3 3747 | [Z3]; CVC4; CVC3.

QF ABV 9 6457 | Boolector-j; Boolector-d; [MathSAT];
SONOLAR; CVC4; [Z3]; Yices2;
Kleaver-STP; Kleaver-portfolio.

QF _ALIA 5 97 | Yices2; SMTInterpol; [Z3|; [MathSAT]; CVCA4.

QF AUFBV 4 37 | CVC4; Yices2; [Z3]; [MathSAT).

QF AUFLIA 6 610 | Yices2; [MathSAT]; [Z3]
SMTInterpol; CVC4,; veriT.

QF _AX 5 335 | Yices2; [MathSAT]; [Z3]; CVC4;
SMTInterpol.

QF BV 11 2488 | Boolector; STP-CryptoMiniSat4;
[CVC4-with-bugfix|; [MathSAT]; [Z3];
CVC(C4; 4Simp; SONOLAR; Yices2;
abziz min features; abziz all features.

QF IDL 4 1315 | |Z3]; Yices2; CVC4; veriT.

QF _LIA 7 4381 | [CVC4-with-bugfix]; [MathSAT];
SMTInterpol; Yices2; [Z3]; veriT; CVCA4.

QF LRA 6 1343 | CVC4; Yices2; [MathSAT]; SMTInterpol;
veriT; [Z3].

QF NIA 4 8327 | [Z3]; AProVE; CVC3; CVCA4.

QF NRA 4 10121 | |Z3]; CVC3; CVC4; raSAT.

QF RDL 4 132 | Yices2; [Z3]; veriT; CVCA4.

QF _UF 7 4124 | Yices2; veriT; CVC4; OpenSMT?2; [Z3];
[MathSAT|; SMTInterpol.

QF UFBV 4 31 | Yices2; [Z3]; [MathSAT]; CVCA4.

QF UFIDL 4 311 | [Z3]; Yices2; CVC4; veriT.

QF UFLIA 6 484 | [Z3]; Yices2; CVC4; SMTInterpol;
[MathSAT]; veriT.

QF UFLRA 6 1176 | [Z3]; Yices2; [MathSAT]; CVC4;
SMTInterpol; veriT.

QF UFNIA 3 7 | cvea; [z3]; CVCs.

QF UFNRA 3 32 | [Z3]; CVCS3; CVCA.

UF 4 2830 | CVC4,; [Z3]; CVC3; veriT.

UFIDL 3 49 | [Z3]; CVC4; CVC3.

UFLIA 4 5766 | CVC4,; |Z3]; veriT; CVC3.

UFLRA 4 25 | |Z3]; veriT; CVC3; CVCA4.

UFNIA 3 1587 | |Z3]; CVC4; CVC3.
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Table 8: Fraction of benchmarks solved fastest (cpu-time) by each solver (top 3)

Logic Fraction solved fastest

ALIA 51% (23] 18% veriT

AUFLIA 66% [23] 33% CVC3

AUFLIRA | 60% [Z3] 37% veriT 1% CVC3
AUFNIRA | 72% (23] 23% CVC3 2% CVC4
LIA 43% CVC4 30% (23] 17% CVC3
LRA 42% CVCA 38% veriT 18% (23]
NIA 66% |23] 33% CVC4

NRA 96% CVCA 3% (23]

QF ABV 78% Yices2 9% SONOLAR 7% Kleaver-STP
QF ALIA 95% Yices2 4% (73]

QF AUFBV | 81% Yices2 10% [MathSAT] 5% [Z3]
QF AUFLIA | 60% Yices2 38% 23] 1% CVC4
QF_AX 92% Yices2 6% (23] 0% CVCA
QF_BV 33% Yices2 25% |Z3| 13% 4Simp
QF _IDL 87% Yices2 11% |Z3] 0% veriT
QF LIA 76% Yices2 11% [23] 7% CVC4
QF LRA 86% Yices2 3% veriT 3% CVC4
QF NIA 90% (23] 7% AProVE 1% CVC3
QF NRA | 88% [Z3] 6% CVC4 4% CVC3
QF RDL 71% Yices2 25% (23] 3% veriT
QF _UF 96% Yices2 1% veriT 1% |Z3]
QF _UFBV | 96% Yices2 3% [MathSAT]

QF UFIDL | 59% |Z3] 36% Yices2 3% veriT
QF UFLIA | 97% Yices2 2% (23] 0% CVC4
QF _UFLRA | 91% Yices2 4% (23] 2% veriT
QF UFNIA 100% CVC4

QF UFNRA | 59% CVC3 37% (23] 3% CVCA
UF 37% veriT 329 CVCA 24% (23]
UFIDL 57% CVCA 42% (23]

UFLIA 56% (23] 35% veriT 7% CVC4
UFLRA 95% veriT 4% (23]

UFNIA 80% [Z3] 10% CVCS3 9% CVC4

margin by which the times are better. The times used here are cpu-times; using wall-clock
times changes the fractions and sometimes the order, but not the overall observation.

Solver contribution. A second comparison that can be made is to determine what a
solver adds in addition to what other solvers contribute. We measure this ‘solver contri-
bution’ as follows. For each benchmark in a division, we award each solver that solves the
benchmark 1/n points, where n is the number of solvers that solved the benchmark (within
the timeout). These points are then summed over all the benchmarks in the division and
scaled by the number of benchmarks. The sum is a measure of the unique contribution pro-

21



D. COK ET AL.

Table 9: Contribution from each solver (top 3)

Logic Unique contribution

ALTA 0.4253 [Z3] 0.4080 CVC4 0.1667 veriT
AUFLIA 0.3889 CVC4 0.2778 [Z3] 0.2222 CVC3
AUFLIRA 0.2615 [Z3] 0.2521 CVC4 0.2503 CVC3
AUFNIRA 0.2509 [Z3| 0.2506 CVC4 0.2497 CVC3

LIA 0.3949 [Z3| 0.3514 CVC4 0.2319 CVC3

LRA 0.3070 CVC4 0.3070 [Z3] 0.2895 CVC3

NIA 0.8333 [Z3| 0.1667 CVC4 0.0000 Yices2

NRA 0.5071 [Z3] 0.4929 CVC4 0.0000 Yices2

QF ABV 0.1147 Yices2 0.1146 Boolector-just... 0.1144 Boolector-dual...
QF ALIA 0.2235 Yices2 0.2235 SMTInterpol 0.2235 |Z3]

QF AUFBV | 0.2635 [MathSAT] 0.2635 CVC4 0.2500 Yices2

QF AUFLIA | 0.1996 Yices2 0.1996 [MathSAT)| 0.1996 CVC4

QF AX 0.2000 Yices2 0.2000 [MathSAT] 0.2000 CVC4

QF BV 0.1051 Boolector 0.0976 STP-Crypto... 0.0934 abziz min_f...
QF IDL 0.2893 [Z3| 0.2731 Yices2 0.2395 CVC4

QF LIA 0.1620 [CVC4-...fix] 0.1610 [Z3] 0.1610 SMTInterpol
QF LRA 0.1772 CVC4 0.1689 Yices2 0.1678 SMTInterpol
QF NIA 0.4990 [Z3| 0.4912 AProVE 0.0084 CVC3

QF NRA 0.7714 [Z3] 0.1347 CVC3 0.0898 CVC4

QF RDL 0.2734 Yices2 0.2431 veriT 0.2431 [Z3]

QF _UF 0.1451 Yices2 0.1449 veriT 0.1446 CVC4
QF_UFBV | 0.4140 Yices2 0.3172 [Z3] 0.1720 [MathSAT]
QF UFIDL | 0.2708 Yices2 0.2708 [Z3] 0.2309 CVC4

QF UFLIA | 0.1698 Yices2 0.1698 [MathSAT] 0.1698 CVC4

QF UFLRA | 0.1715 |Z3| 0.1681 Yices2 0.1681 [MathSAT]
QF UFNIA | 0.5000 CVC4 0.5000 [Z3] 0.0000 Yices2

QF UFNRA | 0.5802 [Z3] 0.2099 CVC4 0.2099 CVC3

UF 0.4921 CVC4 0.1988 [Z3] 0.1759 CVC3
UFIDL 0.5204 [Z3| 0.4796 CVC4 0.0000 Yices2
UFLIA 0.4069 CVC4 0.3502 [Z3] 0.2425 veriT
UFLRA 0.2857 [Z3| 0.2381 CVC4 0.2381 veriT
UFNIA 0.4156 [Z3] 0.3860 CVC4 0.1984 CVC3

vided by a solver; a value of 1.0 would indicate that that solver was the only solver to solve
all of the benchmarks in the division. The results are shown in Table 9. The results show
again that no one solver dominates in all categories, but that there are several contributing
solvers among which users can choose.

Effect of timeout.
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Figure 2: Solver success for QF BV benchmarks over time.

to complete each benchmark problem. A common practical question users have is how much
benefit is gained by longer timeouts. The data from the competition allows us to analyze
this question somewhat.

A first question is how many additional problems are solved if the timeout is lengthened. An
approximation of an answer is shown in Fig. 2. This figure shows the number of benchmarks
solved, combined over all the solvers participating in the competition, with a solution time
less than given timeout values, for the QF BV benchmark set. Most of the benchmarks are
solved quickly: 39% in less than a second, more than half in under 3.5 seconds, 62% by 10
seconds, and then a slow increase to 88% by 2400 seconds. There is continual improvement
for long timeouts, but the return on time invested certainly decreases.

There are two caveats to this observation. First, the results depend heavily on the character
of the benchmarks set. Some logics have only easy benchmarks, some have purposefully
crafted difficult benchmarks, others are a mix. The benchmarks are not a representative
sampling of problems that might be encountered in practice. Second, the results described
are obtained by observing the wall-clock solution time when the timeout value is set at 2400
seconds. Solvers, if told what the timeout value is, have the option to adjust their search
strategies based on the timeout; the solvers might then exhibit better behavior for shorter
timeout.”

Table 10 shows a different view of the same data. Here we present the number of problems
solved by each solver within a given wall-clock solution time, subject to the same caveats.
The point to observe is that the winning solver changes depending on the timeout chosen.

5. Though solvers could use the timeout value to alter their processing algorithms, current versions of
those queried—Yices2, Z3, Boolector—do not do so. However, CVC4 and CVC3 do build in the stated
timeout into the script used for competition (though it is not used by the core solver) and so might show
differences from the behavior stated here.
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Table 10: Solver success per individual solver for 2488 QF BV benchmarks, for different
timeouts (in seconds).
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0.5 824 683 886 712 728 963 830 608 919 839 840
1.0 1058 787 1089 928 923 1101 1003 841 1084 1043 1045

2.0 1184 979 1293 1139 1015 1187 1174 957 1224 1253 1252
4.0 1306 1158 1532 1249 1250 1261 1410 1078 1434 1444 1447
10.0 1581 1441 1826 1494 1433 1359 1695 1255 1620 1771 1818
20.0 1698 1693 1946 1563 1551 1426 1802 1424 1771 1866 1888
40.0 1762 2009 2155 1633 1680 1484 2017 1560 1865 1951 1961
100.0 | 1850 2150 2226 1726 1858 1563 2114 1736 1953 2091 2111
200.0 | 1912 2220 2257 1802 2025 1623 2153 1869 1997 2108 2142
400.0 | 1970 2275 2279 1892 2163 1660 2183 1999 2033 2131 2171
800.0 | 2042 2310 2296 1964 2241 1702 2222 2116 2077 2187 2223
1200.0 | 2074 2336 2307 1998 2256 1718 2239 2145 2106 2207 2241
2400.0 | 2121 2361 2307 2026 2283 1770 2239 2199 2180 2234 2277

For these benchmarks and this set of solvers Yices2 performs best for timeouts under a
second, CVC4 does best in the middle range from 1 to 200 seconds, and Boolector does best
above 400 seconds. Other logics, but not all, show changes in winning order as well. This
phenomenon could be a result of differences in engineering of the individual solvers or it
could be a result of characteristics of the benchmark set.

The data in Table 10 also shows that most solvers have a similar trend in success as the
timeout is increased. For example, most solvers solve about 50% (ranging from 40% to 62%)
of the benchmarks that solver solves within the timeout by 1.0 second and about 75%
(ranging from 65% to 79%) of those solved within the timeout by 10 seconds. However, some
solvers, such as Boolector, are outliers: Boolector is slow off the mark—solving only 33%
and 61% of the benchmarks it eventually solves by 1 second and 10 seconds, respectively,
even though by 2400 seconds it solves more benchmarks than any other tool, in this division.

9.2 Application (incremental) track results

Most solvers are only concerned with raw performance on single benchmarks. However,
an important application area for SMT solvers requires what the SMT-LIB standard calls
‘incremental’ operation. In this mode, a user or some application interacts with the solver
repeatedly, issuing various commands to define a problem, check for satisfiability, inspect
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resulting counterexample models, adjust the problem by retracting some assertions and
adding other assertions, and so on. An example use case is a tool that allows a user to
author formal specifications in conjunction with software. The tool would check using a
back-end SMT solver whether the specifications are consistent with the code. If not, it
might supply a counterexample that could be inspected in conjunction with the source
code. As the user edits the source or the specifications, the problem presented to the SMT
solver is modified.

The application track of the competition presents to the solver a series of SMT-LIB com-
mands through a driver program; the solver replies to the driver with a response to each
command. The driver presents commands only one at a time to emulate a realistic environ-
ment and so that the solver cannot “work ahead.” The driver also measures the accumulated
time taken for each response. Note that the time measured includes the response time to ev-
ery command, not just to the satisfiability-checking commands; while check—sat commands
might be the most time-consuming, assert commands, and others, might also instigate sig-
nificant processing. The benchmark text contains (set—info :status ...) commands that
indicate the expected result for subsequent check—sat commands; status information is used
only by the driver program and not passed on to the solver. Such set—info command might
indicate a status of unknown; in that case, the driver considers the benchmark to end after
the previous check—sat command for competition purposes. The driver originally used to
collect the answers had a bug that was detected and reported by Kshitij Bansal [2], who
also provided a corrected version of the driver. The results discussed in this section were
obtained with this new driver and differ from those reported earlier, such as at the 2014
SMT Workshop.

The application track was first introduced in 2011; a report on that year’s application track
and the overall design was presented by Griggio and Bruttomesso at the 2012 COMPARE
Workshop [12]. A significantly adapted driver was implemented by the organizers for 2014
on the StarExec framework.

In 2014, the SMT-LIB contains 9,926 benchmarks that specifically exercise the incremental
solving capability of solvers. Table 11 lists the numbers of benchmarks in various logics;
UFLRA, QF UFLRA, and QF UFLIA are the only logics with significant numbers of
benchmarks. For now, AUFNIRA does not contain any valid check—sat command. All the
benchmarks were used in the competition.

Four solvers participated in this competition track: CVC3, CVC4, SMTInterpol, and Yices2;
73 was added as a demonstration-only historical comparison. The winner is the solver
that solved the most check—sat commands correctly within the timeout period. No solver
produced an erroneous result. The time out (40 minutes) is applied to the entire benchmark,
not to individual commands. The track was run for 8 divisions; the results are shown in
Table 12. Within each division, solvers are listed in winning order: Yices2 won four of the
eight divisions, out of six in which it participated. CVC3, CVC4 and SMTInterpol won one
division each. Since the previous execution of the application track was in 2012 and not on
StarExec, we did not attempt a comparison with previous results.
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Table 11: Numbers of application benchmarks and distribution of check—sat commands for
different logics.

All benchmarks

check—sat commands

Logic Benchmarks total min max avg.
AUFNIRA 165 3452 2 615 20.9
QF AUFLIA 72 | 4699864 5 1109912  65275.9
QF BV 18 2727 101 202 151.5
QF LIA 65 | 19690826 101 2630828 302935.8
QF LRA 10 1515 101 202 151.5
QF UFLIA 905 790630 1 474174 873.6
QF UFLRA 3333 22103 2 3384 6.6
UFLRA 5358 | 3514613 2 40758 656.0

Eligible benchmarks
check—sat commands

Logic Benchmarks total min max avg.
AUFNIRA 165 0 0 0 0
QF AUFLIA 72 | 4699864 5 1109912  65275.9
QF BV 18 2141 52 202 118.9
QF LIA 65 | 19689957 30 2630828 302922.4
QF LRA 10 795 45 107 79.5
QF UFLIA 905 766079 1 474174 846.5
QF UFLRA 3333 22066 0 3384 6.6
UFLRA 5358 223820 2 201 41.8

We can also consider the effect of the choice of timeout on the application track. This
effect is more complicated than for the main track since an application track benchmark
can have partial results. For example, if a benchmark contains 100 check-sat commands, a
solver may report correct answers on 0 to 100 of them prior to timing out. Furthermore the
seven divisions that have results show very different characteristics. In four of the divisions
(QF AUFLIA, QF UFLIA, QF UFLRA, UFLRA) over 90% of the solver-benchmarks
jobs were completed before the timeout; for QF UFLRA it was over 99%. The other
three divisions (QF BV, QF LIA, QF LRA) had much harder benchmarks. For example,
for QF BV, only 1% of solver-benchmark pairs were completely solved by 1 second and
only 42% by the timeout. These three divisions also have many fewer benchmarks—a few
hundred, rather than several thousand. Changing the timeouts further might affect the
results of these divisions significantly, but not those of the four divisions with many more
benchmarks.
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Table 12: Results of the incremental track, across eight divisions. In each division, solvers
are listed in winning order.

|

Solver ‘

Commands

QF BV (18 benchmarks, 2141 commands)

[MathSAT] 2022
Yices 1749
CVvC4 1706
23] 1621
AUFNIRA (165 benchmarks, 0 commands)
CvC4 0
[Z3] 0
CvCs 0
QF _AUFLIA (72 benchmarks, 4699864 commands)
Yices 3244375 (CPU time: 2182.6s)
(23] 3244375 (CPU time: 8564.3)
SMTInterpol 3244375 (CPU time: 9442.9)
CvC4 1051256
[MathSAT] 377
QF _LIA (65 benchmarks, 19689957 commands)
Yices 19689907
[Z3] 19689683
SMTInterpol 19689059
[MathSAT| 17619155
CvC4 12648373
QF _LRA (10 benchmarks, 795 commands)
[MathSAT] 793
SMTInterpol 746
Yices 742
(23] 728
CvC4 651
QF _UFLIA (905 benchmarks, 766079 commands)
[Z3] 766078
CcvcC4 765522
SMTInterpol 764699
Yices 762831
[MathSAT| 761910
QF UFLRA (3333 benchmarks, 22066 commands)
Yices 22054
23] 22053
SMTInterpol 22006
CvC4 21775
[MathSAT] 21515
UFLRA (5358 benchmarks, 223820 commands)
[Z3] 223365
CVvCs3 67802
CVvC4 66315
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10. FLoC Olympic Games Scoring

The main track and the application track described in previous sections are staples of re-
cent SMT Competitions. The 2014 edition was unique in also being associated with the
FLoC Olympic Games [25]. This association was positive in providing a platform, along
with the other competitions, to present the rationale, methodology and results of the SMT
Competition to a wider audience than just the SMT community.

One additional aspect that resulted from the Olympic Games was the awarding of three
medals to the three “winners” of the competition. Since SMT-COMP is organized into many
separate divisions, with winners determined in each division independently, the organizers
had to determine how to award three global prizes. The metrics for doing so were the subject
of significant discussion both before and after the competition. The metrics were decided by
the organizers before the competition began (and before the deadline for solver registration)
and were maintained unchanged after the competition.

The organizers chose to award the bronze medal for the best performance in a single division.
We chose the QF BV division for this medal because it is significant to applications and
because it traditionally received the most solver submissions. Indeed in 2014, there were 8
participants. Determining the winner was straightforward: we used the same metric as is
used for each division—the most problems solved without errors, with ties broken by speed
of solution. The Boolector [11] solver won this division and therefore the bronze medal. The
results for all participating solvers are shown in Table 14.

The organizers chose to award the silver and gold medals for best performance across the
most divisions. Thus we needed a metric that combined the results across divisions. We
considered two metrics. For a given solver, let

e ¢; be the number of benchmarks in division ¢ for which an incorrect result was produced
(that excludes timeouts, runtime errors and unknown answers);

e ¢; be the number of benchmarks in division ¢ solved correctly;

e t; be the total time to solve the benchmarks in division ¢ that were solved correctly;

e N; be the total number of benchmarks in division 4, used in the competition.

The normal metric for a division is that the winning solver is the one with the smallest
value of e;, the largest value of ¢; and then the smallest value of ¢;, for each division taken
separately; that is, the metric is a lexicographic ordering by smallest value of (e;, —¢;, t;).
The two global metrics we considered are

e Metric A: The winning solver is the one with the smallest value of >, e; log N;, then
the largest value of 3;(c;/N;)?log N;, then the smallest value of 3, t;log N;, where
for a given solver the sums are over all competitive divisions in which that solver
participated.

e Metric B: The winning solver is the one with the largest value of 3", (e; == 07? (c;/N;)? :
—e;) log N;, then the smallest value of Y, ¢; log IV;, where for a given solver the sums
are over all competitive divisions in which that solver participated.
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Note that incorrect results are very rare in SMT-COMP, but do occur; for almost all solvers
and divisions the value of e; is 0 and the competition hinges on the values of ¢;. The speed
of the solver is important in two ways. First, if the solver is slow, it will time out before
a solution is found and thus the value of ¢; will be lower. Second, if there is a tie in the
number of errors and correctly solved problems, the total time taken on the correctly solved
problems is used as the tie-breaker (even if the solvers solve different subsets of benchmarks);
this is a rare occurrence but does happen if, for example, all the benchmark problems in a
division are solvable within the time limit—the only situation in the competition in which
tie-breaking has been needed.

Only competitive divisions were included in the scoring (although all divisions were run and
results reported). For determining medals, a division is competitive if there are at least
two officially registered, participating solvers from different teams. This prevents a team
from gaming the scoring by submitting multiple solvers to divisions in which no one else is
participating. This criterion excluded a number of divisions from medal scoring: AUFNIRA,
BV, NIA, NRA, QF UFNIA, QF UFNRA, UFBV, UFIDL, UFNIA.

The log scaling of the scores for each division is a somewhat arbitrary means to adjust the
scores for the wide variety of numbers of benchmarks. If each division is treated equally,
with a score, say, of 1.0 for the division for solving all the benchmarks in the division
correctly, then the benchmarks for small divisions would count significantly more toward
a composite score than those of divisions with many benchmarks. On the other hand,
counting each benchmark equally appeared to underweight the effect of a solver’s effort to
participate in multiple divisions. The log scaling seemed a reasonable compromise between
these two extremes. Similarly, the square of the fraction successfully solved is an approximate
mechanism to give more weight to solving the harder problems.

Metrics A and B above differ in how errors are treated. If a solver has no errors, it is always
better off to participate in as many divisions as possible. However, an error in a division
penalizes a solver so that it would be better not to have participated in the division; hence
the organizers ruled that once the competition had started, a solver could not be withdrawn
from a division in which it was registered.

The penalty for an error is globally significant in Metric A: a single error in one division
out of many would put the solver behind any other solver with no errors, even if that other
solver participated in just one division. The penalty for an error is more local for Metric B:
the error results in a large negative score for that division, which might be compensated
by good performance in other divisions. Both metrics satisfy the criterion of putting heavy
weight on correctness of solvers. The organizers published the choice of Metric A as the
metric for the Olympic Games gold and silver medals in the rules prior to the beginning of
the competition, with no objection during the comment period.

Though all solvers were scored for the medal metrics, five solvers participated in more than
two divisions and were the most competitive during the course of the competition. The final
results are shown in Table 13. The choice of metric did have a significant effect on the result.
CVC4 and Yices2 participated in the most divisions, solved the most problems, and did so
the most efficiently. However, Yices2 had a crash on one problem in QF ABV, but had
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Table 13: Gold and silver medal competition, in winning order by Metric A. By Metric B
the order is the same except that CVC4 and Yices2 are in first and second place.

Solver Competitive Metric A Metric B
Divisions | Weighted errors Weighted solved
veriT 17 0.000 25.325 25.325
SMTInterpol 8 0.000 22.831 22.831
CvC3 10 0.000 9.618 9.618
SONOLAR 2 0.000 5.978 5.978
AProVE 1 0.000 3.776 3.776
Boolector-j 1 0.000 3.758 3.758
Boolector-d 1 0.000 3.755 3.755
OpenSMT?2 1 0.000 3.582 3.582
Boolector 1 0.000 3.058 3.058
STP-CryptoMiniSat4 1 0.000 2.859 2.859
4Simp 1 0.000 2.468 2.468
raSAT 1 0.000 0.000 0.000
Yices2 15 3.810 38.624 31.059
Cv(C4 25 7.283 54.152 43.509
abziz _min_features 1 30.563 2.548 -30.563
abziz_all features 1 30.563 2.403 -30.563
Kleaver-STP 1 213.362 3.103 | -213.362
Kleaver-portfolio 1 346.713 3.073 | -346.713

emitted an erroneous answer prior to the crash (a simple crash without an answer is scored
the same as an ‘unknown’ response, marked neither wrong nor correct). CVC4 had bugs
that affected AUFNIRA, which was not a competitive division, and QF LIA, which was
competitive. Consequently, by the competition metric, these two otherwise leading solvers
placed much further back in the pack.

When the results were published, the resulting winning teams, veriT and SMTInterpol, put
an appeal to the organizers to use Metric B instead, arguing that (i) CVC4 and Yices2 were
clearly the more capable solvers and (ii) there were known bugs in the winning solvers as
well, which, simply by good fortune, were not triggered by the competition benchmarks.
However, after public comment acknowledging the good will of the winners, the appeal was
not accepted by the organizers. The medal ceremony did highlight the differing contributions
of all four teams as well as those of the bronze medal winner. Note that the discovered bugs
were promptly fixed. In fact, CVC4 submitted an additional demonstration-only version,
named CVC4-with-bugfix in the result tables, which the organizers ran in conjunction with
the rest of the competition.
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Table 14: Bronze medal competition (QF BV division, 2488 benchmarks), in winning order.

Solver Errors Solved Time (sec)
Boolector 0 2361  138077.59
STP-CryptoMiniSat4 0 2283  190660.82
|CVC4-with-bugfix| 0 2237 139205.24
[MathSAT)| 0 2199  262349.39
[Z3] 0 2180  214087.66
CvC4 0 2166 87954.62
4Simp 0 2121  187966.86
SONOLAR 0 2026  174134.49
Yices2 0 1770 159991.55
abziz_min features 9 2155  134385.22
abziz _all features 9 2093  122540.04

11. Post-Competition Activity

After the competition, David Cok (competition chair) and Clark Barrett and Morgan Deters
(SMT-LIB coordinators) collaborated, with the assistance of Aaron Stump (StarExec lead),
in attempting to discover the status of the SMT-LIB benchmarks that were marked as
unknown. For this computation, the timeout was set to 10 hours. This activity required
several weeks of computation. A result confirmed by at least two solvers was obtained
for 75% of the unknown benchmarks, with another 4% having a tentative result from just
one solver. The results are shown in Table 15.

The unknown incremental benchmarks have yet to be resolved.

12. Concluding Observations and Recommendations

SMT-COMP 2014 successfully executed the comparison among solvers that is the main goal
of the competition. The new computational infrastructure, StarExec, worked very well for
the purpose. The competition saw a renewed interest in participation—there were record
numbers of teams participating, solvers entered, teams and solvers that had never before
participated, benchmarks used, and amount of computation performed. Although the 2014
results are not readily comparable to previous years (because of changes in benchmarks and
equipment), the detailed performance of each solver on each benchmark from this first year
using StarExec will be a solid baseline to measure improvements in the state-of-the-art of
solver performance in future years. As a partial comparison, solvers that performed well in
previous years were included in this year’s competition.

The SMT steering committee proposed that SMT-COMP 2015 be held in association with
the SMT Workshop, which itself will be affiliated with CAV 2015 in San Franciso, CA, USA
from July 18-24, 2015. The SMT Workshop is being organized by Vijay Ganesh and Dejan
Jovanovié; the organizers of the competition are Tjark Weber, David Déharbe, and Sylvain
Conchon.
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Table 15: Benchmarks resolved in post-competition computation

Logi Unknown Resolved by Resolved by | Still
ogic Solvers

Benchmarks | 2+ solvers as | 1 solver as unknown

sat unsat sat unsat

AUFLIRA 2 168 0 3 0 3 162
AUFNIRA 2 468 0 23 0 23 422
BV 2 191 29 56 42 37 27
LRA 2 450 20 148 | 241 23 18
NRA 2 66 0 41 0 16 9
QF ABV 4 4190 | 3629 373 0 1 187
QF BV 4 28138 | 8838 19166 20 10 100
QF _IDL 3 537 324 118 20 14 61
QF LIA 3 1279 743 230 | 234 4 68
QF LRA 2 208 127 25 44 8 4
QF NIA 3 927 2 0 39 246 640
QF NRA 2 1392 0 36 | 283 168 905
QF RDL 2 85 50 0 2 1 32
QF _UF 3 4 0 3 0 1 0
QF UFLRA 3 87 82 2 2 0 1
QF UFNRA 2 11 0 2 7 0 2
UF 2 2911 0 2 51 50 2808
UFBV 2 191 17 49 51 44 30
UFIDL 2 12 0 0 0 0 12
UFLIA 2 5499 0 1765 4 113 3617
UFNIA 2 1052 0 20 2 90 940
Total 47866 | 13861 22062 | 1042 852 10045
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Observations Solver implementors continue to focus primarily on raw numbers of prob-
lems solved. We think that future competitions can help broaden the focus to encompass
breadth of problems addressed, fast solutions on simple problems, and other features pro-
vided by the SMT-LIB command language.

An unexpected observation is that there is indeed a difference in outcome of even a straight-
forward competition depending on the value of timeout chosen. As a result, there might
indeed be an interest and valuable result from trying a competition track focused on fast
solving of relatively simple problems.

A satisfying observation is that there is reasonable competition among several highly-
performing solvers, as measured by the unique contributions each makes and the distribution
of fastest times.

Recommendations. Based on the experience of 2014, the 2014 organizers have the fol-
lowing recommendations or topics for consideration for future competitions.

e The 2014 competition used all available benchmarks; though the computation re-
sources enable using all benchmarks, future competitions should consider how to make
a principled selection to avoid over-representing benchmarks of particular types or ori-
gin.

e The competition has used numbers of solved benchmarks as the primary success cri-
terion. Time to solve benchmarks should be considered more strongly. In particular,
a separate track that emphasizes fast solution of fairly simple problems might be in-
formative.

e Related to the previous point, currently if a solver times-out or issues a response of
‘unknown’, the time taken to do so is not counted in the accumulated time. Only the
time taken to compute correct responses is counted towards the evaluation metric. A
user’s experience, however, is that the time taken for a solver to say “I don’t know” is
just as important as time to produce a useful answer. Thus we recommend that such
computation time be included in the evaluation metric. Omitting this time has had
no effect so far because time was little used in the overall metric.

e The comparison to a previous years’ results will now be easier because common hard-
ware will be used and benchmark selection is simplified. Future organizers might also
include a larger selection of the specific solver versions that were entered in previous
competitions.

e A key improvement needed is better benchmark sets. Though the accumulation of
benchmark problems since the inception of the competition is impressive, attention
now needs to be paid to the quality and distribution of benchmarks. Some divisions
are represented by only a few benchmarks; others have large numbers of similar bench-
marks. Benchmarks representative of application scenarios are particularly important.

e Subsequent to SMT-COMP 2014, David Cok, Aaron Stump, Morgan Deters, and Clark
Barrett collaborated in resolving the status of many previously unknown benchmarks.
Those new expected results are not yet included in the SMT-LIB benchmarks on
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StarExec. They should be incorporated into SMT-LIB on StarExec prior to the next
competition.

If a global metric is needed again in the future (per §10), a review and re-discussion
of the appropriate metric should be instigated.

Solvers with breadth of application across many logics and solvers that address prob-
lems in new logics such as string and floating point computations are important to
users. Future competitions should add tracks or otherwise find means to reward solvers
that implement such capabilities.

Various competition tracks used in the past should be rejuvenated: parallel processing,
computation of unsat cores, production of proofs, computation of symbolic models, and
computation of concrete counterexamples.

One missing tool is a standard SMT-LIB syntax checker. jSMTLIB [14] has been
proposed for this purpose, but is not yet integrated into StarExec. The tool also needs
to be updated to include the proposed new SMT-LIB features.

The difficulty in preparing a new solver for submission to StarExec for participation
in SMT-COMP should be reduced.

A general means to resolve questions surrounding partial definitions is needed in SMT-
LIB, e.g., for divide-by-zero (cf. §6).

An item for study is the effect of benchmark scrambling on the outcome of solver
comparisons.

Clearly define the subset of SMT-LIB v2 that solvers must support for a competition
and that benchmarks must use.

Acknowledgments

34

The organizers were supported by their respective institutions (GrammaTech, Federal
University of Rio Grande do Norte, Brazil and Uppsala University, Sweden respec-
tively). In addition, Cok received partial support from the U.S. National Science
Foundation under grant ACI-1314674.

Clark Barrett and Morgan Deters assisted with some aspects of benchmark prepara-
tion, in their roles as SMT-LIB coordinators.

Aaron Stump and the StarExec support team were essential in keeping the competition
cluster running; in this first large-scale, public use of the cluster, numerous small details
needed correction and were corrected promptly. The StarExec cluster is supported by
the U.S. National Science Foundation under grants #1058748 and #1058925.

The cost of executing the SMT Competition is underwritten by the SMT Workshop.



THE 2014 SMT COMPETITION

Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors, and do not necessarily reflect the views of the National Science Foun-
dation.

References

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

Current information on SAT can be found from its website: http://www.
satcompetition.org/.

Kshitij Bansal. Re: SMTCOMP 2015: Application track testing. Private communica-
tion, June 2015.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakr-
ishnan and Shaz Qadeer, editors, Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV ’11), 6806 of Lecture Notes in Computer Science,
pages 171-177. Springer, July 2011. Snowbird, Utah.

Clark Barrett, Morgan Deters, Leonardo de Moura, Albert Oliveras, and Aaron
Stump. 6 years of SMT-COMP. Journal of Automated Reasoning, pages 1-35, 2012.
10.1007/s10817-012-9246-5.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version
2.0. Technical report, Department of Computer Science, The University of Iowa, 2010.
Available at http://www.smt-1ib.org.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0.
In A. Gupta and D. Kroening, editors, Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns, edi-
tors, Proceedings of the 19th International Conference on Computer Aided Verification
(CAV ’07), 4590 of Lecture Notes in Computer Science, pages 298-302. Springer-
Verlag, July 2007. Berlin, Germany.

D. Le Berre and L. Simon. The essentials of the SAT 2003 competition. In Sizth
International Conference on Theory and Applications of Satisfiability Testing, 2919 of
LNCS, pages 452-467. Springer-Verlag, 2003.

Dirk Beyer. Software verification and verifiable witnesses - (report on SV-COMP 2015).
In Christel Baier and Cesare Tinelli, editors, Proc 21st International Conference Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2015), 9035 of
Lecture Notes in Computer Science, pages 401-416. Springer, 2015.

Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine.
veriT: an open, trustable and efficient SMT-solver. In Renate A. Schmidt, editor, Au-
tomatic Deduction — CADE-22, 5663 of Lecture Notes in Computer Science, pages
151-156. Springer-Verlag, 2009. 22nd International Confference on Automated Deduc-
tion (CADE).

35


http://www.satcompetition.org/
http://www.satcompetition.org/
http://www.smt-lib.org

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

36

D. COK ET AL.

Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver for bit-vectors
and arrays. In Stefan Kowalewski and Anna Philippou, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 5505 of Lecture Notes in Computer
Science, pages 174-177. Springer Berlin Heidelberg, 2009.

R. Bruttomesso and A. Griggio. Broadening the Scope of SMT-COMP: the Applica-
tion Track. In First International Conference on Comparative Empirical Evaluation of
Reasoning Systems, 2012.

Jiirgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An interpolating
SMT solver. In Donaldson and Parker [19], pages 248-254.

David R. Cok. jSMTLIB: Tutorial, validation and adapter tools for SMT-LIBv2. In
NASA Formal Methods, pages 480-486. Springer, 2011.

David R. Cok. The SMT-LIBv2 Language and Tools: A Tutorial. Technical report,
GrammaTech, Inc., 2011.

David R. Cok, Alberto Griggio, Roberto Bruttomesso, and Morgan Deters. The 2012
SMT competition. In Pascal Fontaine and Amit Goel, editors, 10th International Work-
shop on Satisfiability Modulo Theories, SMT 2012, Manchester, UK, June 30 - July 1,
2012, 20 of EPiC Series, pages 131-142. EasyChair, 2012.

David R. Cok, Aaron Stump, and Tjark Weber. The 2013 SMT evaluation. Techni-
cal Report 2014-017, Department of Information Technology, Uppsala University, July
2014.

Werner Damm and Holger Hermanns, editors. Computer Aided Verification, 19th Inter-
national Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, 4590
of Lecture Notes in Computer Science. Springer, 2007.

Alastair F. Donaldson and David Parker, editors. Model Checking Software - 19th
International Workshop, SPIN 2012, Oxford, UK, July 23-24, 2012. Proceedings, 7385
of Lecture Notes in Computer Science. Springer, 2012.

Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-
Aided Verification (CAV’2014), 8559 of Lecture Notes in Computer Science, pages
737-744. Springer, July 2014.

Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In
Damm and Hermanns [18], pages 519-531.

Jirgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs,
Carsten Otto, Martin Pliicker, Peter Schneider-Kamp, Thomas Stroder, Stephanie
Swiderski, and René Thiemann. Proving termination of programs automatically with
AProVE. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, Proc.
7th International Joint Conference on Automated Reasoning, 8562 of Lecture Notes in
Artificial Intelligence, pages 184—191. Springer, 2014.

Matti Jarvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The International
SAT Solver Competitions. AI Magazine, 33(1):89-92, 2012.



[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

THE 2014 SMT COMPETITION

To Van Khanh, Xuan-Tung Vu, and Mizuhito Ogawa. raSAT: SMT for polynomial
inequality. In Proceedings of the 12th International Workshop on Satisfiability Modulo
Theories (SMT 2014), page 67, Vienna, Austria, July 2014.

Thomas Krennwallner. FLoC Olympic Games (System Competitions), July 2014. http:
//vsl12014.at/olympics/.

Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. Submitted to JSAT,
2015.

Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated test case generation
with SMT-solving and abstract interpretation. In Proceedings of the Third International
Conference on NASA Formal Methods, NFM’11, pages 298-312, Berlin, Heidelberg,
2011. Springer-Verlag.

F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI Commu-
nications, 15(2-3):79-90, 2002.

Mihaela Sighireanu. SMTCOMP14-SL: Benchmark and tools for the theory of sep-
aration logic (QF _S) at SMTCOMP 2014, 2014. http://github.com/mihasighi/
smtcompl4-sl.

Mihaela Sighireanu and David Cok. Report on SL-COMP 2014. Journal of Satisfiability,
Boolean Modeling and Computation, 2014. To appear.

Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A cross-community in-
frastructure for logic solving. In Stéphane Demri, Deepak Kapur, and Christoph Wei-
denbach, editors, Automated Reasoning - 7th International Joint Conference, IJCAR
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
19-22, 2014. Proceedings, 8562 of Lecture Notes in Computer Science, pages 367-373.
Springer, 2014.

Cesare Tinelli. A DPLL-Based Calculus for Ground Satisfiability Modulo Theories. In
Proceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA
2002), 2424 of Lecture Notes in Artificial Intelligence, Cosenza, Italy, 2002. Springer.

Federated Logic Conference (FLoC), July 2014. H. Veith, M. Baaz, M.Y. Vardi and S.

Szeider organizers. Vienna, Austria.

Vienna Summer of Logic (VSL), July 2014. http://vs12014.at, Vienna, Austria.

37


http://vsl2014.at/olympics/
http://vsl2014.at/olympics/
http://github.com/mihasighi/smtcomp14-sl
http://github.com/mihasighi/smtcomp14-sl
http://vsl2014.at

	Introduction
	The Competition Goals and Organization
	SMT-LIB Logic, Language and Solvers
	Competition Divisions and Benchmarks
	Application benchmarks
	Selection of benchmarks

	Participants
	Competition Procedure
	StarExec
	Other Competitions
	Results
	Main track results
	Application (incremental) track results

	FLoC Olympic Games Scoring
	Post-Competition Activity
	Concluding Observations and Recommendations

