
Reconstruction of Z3’s Bit-Vector Proofs in
HOL4 and Isabelle/HOL

Sascha Böhme1, Anthony C. J. Fox2, Thomas Sewell3, Tjark Weber2

1 Fakultät für Informatik, TU München
boehmes@in.tum.de

2 Computer Laboratory, University of Cambridge
{acjf3,tw333}@cam.ac.uk
3 National ICT Australia

thomas.sewell@nicta.com.au

Abstract. The Satisfiability Modulo Theories (SMT) solver Z3 can gen-
erate proofs of unsatisfiability. We present independent reconstruction
of unsatisfiability proofs for bit-vector theories in the theorem provers
HOL4 and Isabelle/HOL. Our work shows that LCF-style proof recon-
struction for the theory of fixed-size bit-vectors, although difficult be-
cause Z3’s proofs provide limited detail, is often possible. We thereby ob-
tain high correctness assurances for Z3’s results, and increase the degree
of proof automation for bit-vector problems in HOL4 and Isabelle/HOL.

1 Introduction

Interactive theorem provers, such as Isabelle/HOL [30] and HOL4 [21], have
become powerful and trusted tools in formal verification. They typically provide
rich specification logics that are suited to modelling the behaviour of complex
systems. Deep theorems can be proved through user guidance. However, without
the appropriate tool support, proving even simple theorems can be a tedious task
when using interactive provers. Despite the merits of user guidance in proving
theorems, there is a clear need for increased proof automation in interactive
theorem provers.

In recent years, automated theorem provers have emerged for combinations
of first-order logic with various background theories, e.g., linear arithmetic, ar-
rays and bit-vectors. An overview of decision procedures for these domains can
be found in [25]. These automated provers, called Satisfiability Modulo Theories
(SMT) solvers, are of particular value in formal verification, where specifications
and verification conditions can often be expressed as SMT formulas [11,7]. In-
teractive theorem provers can greatly benefit from the reasoning power of SMT
solvers: proof obligations that are SMT formulas can be passed to the automated
prover, which will solve them without further human guidance [5].

This paper focuses on the theory of bit-vectors. This is an important theory,
since bit-vector problems often occur during hardware and software verification,
e.g., arising from loop invariants, ranking functions, and from code/circuits that

2 Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, Tjark Weber

involve machine arithmetic. Isabelle/HOL and HOL4 have internal decision pro-
cedures for solving bit-vector problems, however, their capabilities are exceeded
by those of SMT solvers such as Z3 (see [34]), which is a state-of-the-art SMT
solver developed by Microsoft Research, see [29]. However, there is a critical dis-
tinction in the design philosophies of these provers: interactive provers are highly
conservative, placing proof soundness above efficiency/coverage, whereas SMT
solvers are generally more liberal and place high emphasis upon performance. Al-
most every SMT solver is known to contain bugs [10]. When integrated naively,
the SMT solver (and the integration) becomes part of the trusted code base:
bugs could lead to inconsistent theorems in the interactive prover. For formal
verification, where correctness is often paramount, this is undesirable.

This soundness problem can be solved by requiring the SMT solver to pro-
duce proofs (of unsatisfiability), and reconstructing these proofs in the interac-
tive prover. In this paper, we present independent reconstruction of unsatisfia-
bility proofs for bit-vector theories generated by Z3 in Isabelle/HOL and HOL4.
LCF-style [20] theorem provers implement a relatively small trusted kernel (see
Sect. 3), which provides a fixed set of simple inference rules. In contrast, Z3 uses
a number of powerful inference rules in its proofs (see Sect. 4) and this makes
proof reconstruction challenging. In this paper, we extend a previous implemen-
tation of proof reconstruction for Z3 [8] to the theory of fixed-size bit-vectors
(as defined in the Fixed Size BitVectors theory of SMT-LIB [2]).

The motivation for our work is twofold. First, we increase proof automation in
HOL4 and Isabelle/HOL by using Z3 as an automated prover back-end. Second,
we obtain a high degree of confidence in Z3’s results. Due to the LCF-style
architecture of HOL4 and Isabelle/HOL, the trusted code base consists only of
their relatively small inference kernels. In particular, there is no need to trust
our (much more complex) proof checker. Any error in a proof will be uncovered
during reconstruction. Thus our checker can be used to identify bugs in Z3, and
to certify the status of unsatisfiable SMT-LIB benchmarks.

We describe our implementation in detail in Sect. 6. Evaluation is performed
on a large number of SMT-LIB benchmarks from the QF AUFBV, QF BV, and
QF UFBV logics (see Sect. 7). Section 8 concludes.

2 Related Work

SMT solvers have been an active research topic for the past few years, and an
integration with interactive theorem provers has been pursued by a number of
researchers.

In oracle style integrations, see [14,31], the client interactive theorem prover
simply trusts the SMT solver’s results. While this allows for a fast and rela-
tively simple integration, a bug in the SMT solver (or in the integration) could
lead to inconsistent theorems in the interactive prover. Closer to our work are
integrations that perform proof reconstruction.

McLaughlin et al. [26] describe a combination of HOL Light and CVC Lite for
quantifier-free first-order logic with equality, arrays and linear real arithmetic.

Reconstruction of Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL 3

Ge and Barrett [19] present the continuation of that work for CVC3 [3], the
successor of CVC Lite, supporting also quantified formulas and linear integer
arithmetic. CVC Lite’s and CVC3’s proof rules are much more detailed than the
ones used by Z3. For instance, CVC3 employs more than 50 rules for the theory
of real linear arithmetic alone.

Conchon et al. [12] integrated their prover Ergo with the Coq [4] interactive
theorem prover. Unlike most SMT solvers, Ergo supports polymorphic first-
order logic. Proof reconstruction, however, is restricted to congruence closure
and linear arithmetic.

Fontaine et al. [15] describe an integration of the SMT solver haRVey with
Isabelle/HOL [30]. Their work is restricted to quantifier-free first-order logic with
equality and uninterpreted functions. Hurlin et al. [24] extend this approach to
quantified formulas. Background theories (e.g., linear arithmetic, arrays) are not
supported.

At SMT’09, Böhme [6] presented proof reconstruction for Z3 in Isabelle/HOL.
Böhme and Weber [8] recently extended this to HOL4, improving both recon-
struction speed and completeness (i.e., correct coverage of Z3’s inference rules).
Their highly optimized implementation supports uninterpreted functions with
equality, quantifiers, arrays, linear integer and real arithmetic.

Common to the above approaches is their lack of support for bit-vector op-
erations. To our knowledge, this paper is the first to address LCF-style proof
reconstruction for the background theory of fixed-size bit-vectors.

3 LCF-Style Theorem Proving

The term LCF-style [20] describes theorem provers that are based on a small in-
ference kernel. Theorems are implemented as an abstract data type, and the only
way to construct new theorems is through a fixed set of functions (corresponding
to the underlying logic’s axiom schemata and inference rules) provided by this
data type. This design greatly reduces the trusted code base. Proof procedures
based on an LCF-style kernel cannot produce unsound theorems, as long as the
implementation of the theorem data type is correct.

Traditionally, most LCF-style systems implement a natural deduction calcu-
lus. Theorems represent sequents Γ ` ϕ, where Γ is a finite set of hypotheses,
and ϕ is the sequent’s conclusion. Instead of ∅ ` ϕ, we simply write ` ϕ.

The LCF-style systems that we consider here, HOL4 and Isabelle/HOL, are
popular theorem provers for polymorphic higher-order logic (HOL) [21], based
on the simply-typed λ-calculus. Isabelle’s type system is more sophisticated than
HOL4’s [22], but we do not require any of the advanced features for this work.

On top of their LCF-style inference kernels, HOL4 and Isabelle/HOL offer
various automated proof procedures: notably a simplifier, which performs term
rewriting, a decision procedure for propositional logic, tableau- and resolution-
based first-order provers, and decision procedures for Presburger arithmetic and
real algebra. We particularly use a recent decision procedure for bit-vectors based
on bit-blasting (see Sect. 5).

4 Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, Tjark Weber

The implementation language of HOL4 and Isabelle/HOL is Standard ML [27].
To benefit from the LCF-style design of these provers and the reasoning tools
built on top of their inference kernels, we must use this language to implement
proof reconstruction.

Both HOL4 and Isabelle provide a primitive inference rule that performs
substitution of type and term variables. Substitution is typically much faster
than (re-)proving a theorem’s specific instance. General theorems (which we will
call schematic) can, therefore, play the role of efficient additional inference rules.

4 Z3: Language and Proof Terms

Succinct descriptions of Z3’s language and proof terms have been given in [28,6].
We briefly review the key features, expanding on previous descriptions where
necessary.

Z3’s language is many-sorted first-order logic, based on the SMT-LIB lan-
guage [2]. Basic sorts include Bool, Int and Real. Interpreted functions include
arithmetic operators (+, −, ·), Boolean connectives (∨, ∧, ¬), constants > and ⊥,
first-order quantifiers (∀, ∃), array operations select and store, the distinct pred-
icate and equality. Proof reconstruction for these has been described before [8].

The present paper focuses on the theory of fixed-width bit-vectors. This
adds basic sorts BitVec m for every m > 0, bit-vector constants like #b0, and
various operations on bit-vectors: concatenation (concat), sub-vector extraction
(extract), bit-wise logical operations (bvnot, bvand, bvor), arithmetic operations
(bvneg, bvadd, bvmul, bvudiv, bvurem), shift operations (bvshl, bvlshr), unsigned
comparison (bvult), and several derived operations. The theory is described in
full detail in the Fixed Size BitVectors and QF BV files4 of SMT-LIB.

Z3’s proof terms encode natural deduction proofs. The deductive system used
by Z3 contains 16 axioms and inference rules.5 These range from simple rules like
mp (modus ponens) to rules that abbreviate complex reasoning steps. To adapt
our previous implementations of proof reconstruction [8] to the theory of bit-
vectors, we need to look at two rules in particular: rewrite for equality reasoning
involving interpreted functions, and th-lemma-bv for arbitrary lemmas specific
to the theory of bit-vectors. We discuss these in more detail in Sect. 6.

Z3’s proofs are directed acyclic graphs (DAGs). Each node represents applica-
tion of a single axiom or inference rule. It is labelled with the name of that axiom
or inference rule and its conclusion. The edges of a proof graph connect conclu-
sions with their premises. The hypotheses of sequents are not given explicitly. A
designated root node concludes ⊥.
4 Available at http://combination.cs.uiowa.edu/smtlib/logics/QF_BV.smt2.
5 Another 18 rules are described in the Z3 documentation, but were not exercised in

any of the benchmarks used for evaluation (see Sect. 7). Although we omit these
rules from our presentation, our implementations can handle them as well [8].

http://combination.cs.uiowa.edu/smtlib/logics/QF_BV.smt2

Reconstruction of Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL 5

In 2010, version 2 of the SMT-LIB language was introduced [2]. It is worth
noting that Z3’s concrete syntax for proofs of SMT-LIB 2 benchmarks is vastly
different from its syntax for proofs of SMT-LIB 1.2 benchmarks. While the SMT-
LIB 1.2 proof syntax was line-based (with one inference or term definition per
line), the SMT-LIB 2 proof syntax of Z3 resembles the SMT-LIB 2 benchmark
syntax and represents proofs as S-expressions.

We have written a recursive-descent parser for (a large subset of) the SMT-
LIB 2 language in Standard ML. The parser translates formulas in SMT-LIB
syntax into formulas in higher-order logic.6 We have also written a Standard ML
parser for the new Z3 proof format that utilizes our SMT-LIB 2 benchmark
parser internally.

At present, Z3’s new proof syntax still contains a few quirks and incompat-
ibilities with SMT-LIB 2 (e.g., different names for certain constants, missing
parentheses around argument lists). We hope that these syntax issues, which
currently complicate proof parsing, will be addressed in a future version of Z3.

5 Bit-Vectors in Higher-Order Logic

Isabelle/HOL’s latest theory of machine words (bit-vectors) was developed by
Dawson [13], and is based on constructing an isomorphic type for the finite set
{0, . . . , 2n − 1}.

As of 2005 HOL4’s theory of bit-vectors utilises Harrison’s technique for
modelling the n-dimensional Euclidean space in HOL Light, see [23].7 Harri-
son’s approach is based on considering the function space N → A, where N is
constrained to be finite. For bit-vectors we consider a Boolean co-domain, i.e.,
A = B. Isabelle/HOL has a more advanced type system than HOL4 and HOL
Light; however, they all support parametric polymorphism and this is sufficient
to provide a workable theory of bit-vectors.

To aid clarity, this section will simply focus on HOL4’s bit-vector library. We
give an overview of this library from the end-user perspective.

Bit-vectors in HOL4 are represented by the type αword. For example, 8-
bit words have type 8 word, which can also be written as word8. The numeric
type 8 has exactly eight members, which gives us the required word length. The
function dimindex returns the word length, and dimword returns the number of
elements, e.g., dimindex(: 8) = 8 and dimword(: 8) = 256. The bit-vector library
supports a broad collection of standard operations, including, but not limited
to:

1. Signed and unsigned arithmetic operations. Examples include bit-vector nega-
tion, addition, subtraction, multiplication and less-than.

2. Bitwise/logical operations. Examples include complement, bitwise-and (&&),
bitwise-or (!!), as well as various shifts and rotations.

6 Our parser identified numerous conformance issues in SMT-LIB 2 benchmarks. We
have reported these to the benchmark maintainers.

7 Prior to this a quotient type construction was used in HOL4.

6 Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, Tjark Weber

3. Signed and unsigned casting maps. Examples include an embedding from
naturals to words (n2w), zero-extension (w2w), sign-extension, word extrac-
tion (><), and word concatenation.

Bit-vector literals are denoted with a ‘w’ suffix. Standard number bases are
supported, for example 0xAw, 0b1010w and 10w all denote a word literal with
value ten.

Importantly, all SMT-LIB bit-vector operations have corresponding defini-
tions in the bit-vector libraries of HOL4 and Isabelle/HOL.

The word library provides a number of simplification sets (simp-sets) (which
control the behaviour of the simplifier), conversions (which construct an equiv-
alence theorem for an input term) and semi-decision procedures. These provide
the building blocks for carrying out interactive proofs and for developing further
(more powerful) tools. Most simp-sets primarily consist of collections of condi-
tional rewrite rules, but they may also apply conversions, decision procedures
and implement other functionality. The main bit-vector simp-set carries out
basic algebraic simplification, such as associative-commutative (AC) rewriting,
covering the arithmetic and bitwise operations.

Two main bit-vector semi-decision procedures are available:

– WORD DECIDE. This procedure has somewhat limited coverage but it does
provide a fairly quick means to discharge basic bit-vector problems. There
are three stages: algebraic simplification, bit expansion for non-arithmetic
operations, and finally propositional and bounds-based reasoning. By de-
fault the final stage makes use of HOL4’s standard natural number decision
procedure, which enables it to prove, for instance,

` ∀ a : word8. a >+ 253w =⇒ (a = 254w) ∨ (a = 255w)

by utilizing the constraint 0 ≤ n < 256, where n is the numeric value of the
bit-vector a.

– BBLAST. This is a semi-decision procedure that offers better coverage than
WORD DECIDE. However, it is still essentially propositional in nature, cov-
ering pure bit-vector problems of the form: ∀w1 . . . wn. P (w1, . . . , wn) or
∃w1 . . . wn. P (w1, . . . , wn). As before, the procedure starts by applying al-
gebraic simplifications, but this time the second stage also carries out bit-
expansion for addition (which in turn subsumes subtraction and the word or-
derings). The final stage involves calling a SAT solver. One advantage of this
approach is that counterexamples can be provided when goals are invalid.
The main limitations are that the procedure does not handle nested quan-
tification (or, more generally, first-order reasoning), and goals that require
non-trivial reasoning about multiplication/division. BBLAST is described in
more detail in [17].

When carrying out interactive proofs, human guidance and additional tools (such
as first-order provers) provide the means to tackle goals that are more complex
than these individual semi-decision procedures can handle on their own.

Reconstruction of Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL 7

6 Proof Reconstruction

Proof reconstruction for the theory of bit-vectors extends our previous work on
LCF-style proof reconstruction for Z3 [8]. The general setup remains the same.
We translate (negated) proof goals from HOL4 or Isabelle/HOL into SMT-LIB 2
syntax and apply Z3. If Z3 determines the negated goal to be unsatisfiable,
we then parse its proof (using our parser for the SMT-LIB 2 language and its
extension to the Z3 proof language, see Sect. 4) to obtain the encoded information
as a value in Standard ML.8

Proofs are represented by a balanced tree (with lookup in O(log n) time) that
maps node identifiers to proof nodes. Proof nodes are given by a disjoint union.
Initially, each node contains the information that is recorded explicitly in the
Z3 proof: the axiom or inference rule used at the node, the node identifiers of
premises, and the rule’s conclusion. Once the inference step has been checked in
HOL4 or Isabelle/HOL, this information is replaced by a corresponding theorem.

To reconstruct a proof, we start at its designated root node and perform a
(depth-first) post-order traversal of the proof DAG. Each node’s premises are
derived as theorems in HOL4 or Isabelle/HOL. Then these theorems are used to
derive the node’s conclusion. Ultimately, the root node’s inference step, which
derives ⊥ from the root’s premises, is reconstructed. We obtain a theorem that
proves ⊥ from the given assumptions, i.e., that shows unsatisfiability of the
negated HOL4 or Isabelle/HOL proof goal.

Out of the 16 axioms and inference rules used by Z3, 14 perform propositional
and first-order reasoning. These rules are independent of any background theory.
Proof reconstruction for them has been described in [8]. It is intricate, but does
not require adaptation for the theory of bit-vectors.

Only two rules—incidentally, the most complicated ones in Z3’s deductive
system—involve bit-vector reasoning: rewrite and th-lemma-bv. The former
is used for equality reasoning about interpreted functions (including not just bit-
vector operations, but also logical operators and other interpreted functions).
The latter is used to derive arbitrary theory-specific lemmas. It is this rather
vague specification of their semantics—and the fact that neither rule provides
additional justifications, e.g., trace information—that makes proof reconstruc-
tion challenging. We now discuss our implementations of proof reconstruction
for rewrite and th-lemma-bv in detail.

Schematic theorems. Matching a theorem’s conclusion against a given term and,
if successful, instantiating the theorem accordingly is typically much faster than
deriving the specific instance from first principles. By studying the actual us-
age of rewrite in Z3’s proofs, we identified about 20 useful schematic theorems
for bit-vector reasoning.9 Examples include associativity and commutativity of
8 It is important that this round trip from higher-order logic to SMT-LIB 2 and back

constitutes an identity transformation. Otherwise, proof reconstruction would derive
the wrong formula.

9 This is in addition to over 230 schematic theorems for propositional and arithmetic
reasoning identified earlier [8].

8 Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, Tjark Weber

bit-wise operations, e.g., (x&& y) && z = x&&(y&& z), x&& y = y&&x, neu-
trality of 0w for bit-wise disjunction, 0w !!x = x, and simplification rules for bit
extraction, e.g., (7>< 0)(x : word8) = x. We store all schematic theorems in a
term net to allow faster search for a match.

Schematic theorems are, in fact, our main workhorse for rewrite. On the
benchmarks used for evaluation (see Sect. 7), rewrite is invoked more than
1 million times. 92.5 % of the proof obligations presented to rewrite are solved
by instantiation of a schematic theorem.

The theory of fixed-size bit-vectors, unlike other background theories consid-
ered in earlier work [8], requires conditional schematic theorems. For instance,
converting a bit-vector literal x from type αword to β word yields essentially the
same literal, provided the literal could be represented in type αword in the first
place:

` x < dimword(: α) =⇒ w2w (n2w x : αword) = (n2w x : β word).

We prove these conditions by recursive instantiation of (unconditional) schematic
theorems, e.g., ` 1 < dimword(: α), and in many cases by simplification: terms
such as dimindex(: α) and dimword(: α) can be evaluated for numeric types α.

We also use schematic theorems in the implementation of th-lemma-bv, but
there the impact is much smaller. th-lemma-bv is called over 50 million times
on the benchmarks used for evaluation, but less than 0.1% of its proof obliga-
tions are solved by instantiation. We could increase this percentage by adding
more schematic theorems (at the cost of increased memory usage and start-up
time), but essentially the lemmas proved by th-lemma-bv are more diverse
and benchmark dependent than those proved by rewrite. For th-lemma-bv,
schematic theorems are mostly useful to prove corner cases not covered by one
of the automated decision procedures discussed below.

Theorem memoization. Isabelle/HOL and HOL4 allow instantiating free vari-
ables in a theorem, while Z3 has to re-derive theorems that differ in their un-
interpreted functions. Hence, there is more potential for theorem re-use in Is-
abelle/HOL and HOL4 than in Z3. We exploit this by storing theorems that
rewrite or th-lemma-bv prove via computationally expensive bit-vector deci-
sion procedures (see below) in a term net. Since every theorem is also stored in
a proof node anyway, this increases memory requirements only slightly: namely
by the memory required for the net’s indexing structure.

Before invoking a decision procedure on a proof obligation, we attempt to
retrieve a matching theorem from the net. This succeeds for 4.5 % of all proof
obligations presented to rewrite, and for an impressive 99.3 % of proof obli-
gations presented to th-lemma-bv. Here we see that schematic theorems and
theorem memoization largely complement each other. For rewrite, proof obli-
gations that occur frequently are often available as schematic theorems already.
For th-lemma-bv, however, few proof obligations seemed sufficiently generic
to be included as schematic theorems, but individual benchmarks still prove
instances of the same proof obligation many times. Therefore, theorem memo-
ization shines.

Reconstruction of Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL 9

Strategy selection. Schematic theorems can only prove formulas that have a
specific (anticipated) structure. Theorem memoization is successful only when
a matching lemma was added to the term net earlier. Initially, bit-vector proof
obligations must be proved by other means.

We rely on HOL4’s and Isabelle/HOL’s existing automation for bit-vector
logic (see Sect. 5). Both provers provide a toolbox of semi-decision procedures
for bit-vector proof obligations. Further procedures may be programmed in Stan-
dard ML. This leads to an unbounded number of proof procedures, which will
typically succeed on different (not necessarily disjoint) sets of bit-vector formu-
las, and exhibit vastly different timing behaviours both in success and failure
cases. For instance, proving x+y = y+x by rewriting is trivial if commutativity
of bit-vector addition is available as a rewrite rule. Proving the same theorem
strictly by bit-blasting alone is possible, but may take significantly longer if the
number of bits in x and y is large.

Our current implementations use only four different proof procedures for
rewrite and th-lemma-bv. For rewrite, we first try a simplification-based ap-
proach, expressing many word operations in terms of !! (disjunction), << (left
shift) and >< (word extract), and then unfolding the definition of bit-wise op-
erators, i.e., considering each bit position separately. This is followed by the
application of arithmetic rewrites, an evaluation mechanism for ground arith-
metic terms, and a decision procedure for linear arithmetic. This powerful ap-
proach solves 98 % of bit-vector goals presented to rewrite that are not han-
dled by schematic theorems or memoization. The remaining 2 % are solved by
a decision procedure that converts word arithmetic expressions into a canoni-
cal form. In particular, we need to fix the sign of word equalities: for instance,
−x = y ⇐⇒ x+ y = 0w.

For th-lemma-bv, we first use simplification with a relatively large set of
standard rewrite rules for (arithmetic and logical) word expressions, including
unfolding of bit-wise operators. Over 99 % of goals presented to th-lemma-bv
are thereby reduced to propositional tautologies. The remaining goals are solved
by bit-blasting.

This choice of proof procedures is the result of careful optimization. Starting
from a set of about 10 different proof procedures, applied in a hand-chosen order,
we independently optimized our implementations of rewrite and th-lemma-
bv using a greedy approach: based on detailed profiling data (see Sect. 7), we
modified the order in which these proof procedures were applied to try those
that had the shortest average runtime (per solved goal) first. We iterated this
process until the number of timeouts was not reduced any further, and tried
several different initial orders to avoid local optima. Each iteration required
several days of CPU time.

Clearly, more sophisticated approaches than this variant of random-restart
hill climbing could be employed. If wall time is considered to be more important
than CPU time, we could simply apply a number of proof procedures in paral-
lel, taking advantage of modern multi-core architectures. We could also devise a
heuristic hardness model that analyses each proof goal to predict the proof pro-

10 Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, Tjark Weber

cedure that is most likely to find a proof quickly. The SATzilla solver successfully
uses a similar approach to decide propositional satisfiability [35].

However, one should keep in mind that this optimization problem is ulti-
mately caused by a lack of detail in Z3’s proofs for bit-vector theorems. Rather
than devoting large amounts of resources to tuning the HOL4 and Isabelle/HOL
implementations of bit-blasting and other bit-vector decision procedures, it would
seem more worthwhile to modify Z3 itself to print more detailed certificates for
the theory of bit-vectors.

7 Experimental Results

Evaluation was performed on SMT-LIB [2] problems comprising quantifier-free
(QF) first-order formulas over (combinations of) the theories of arrays (A),
equality and uninterpreted functions (UF), and bit-vectors (BV). SMT-LIB logic
names are formed by concatenation of the theory abbreviations given in paren-
theses. We evaluated our implementations on all unsatisfiable bit-vector bench-
marks in SMT-LIB.10 At the time of writing, this comprises 4974 benchmarks
from three logics: QF AUFBV, QF BV, and QF UFBV. These benchmarks orig-
inate from a variety of sources. They constitute a diverse and well-balanced
problem set for evaluation.

We obtained all figures11 on a 64-bit Linux system with an Intel Core i7 X920
processor, running at 2 GHz. Measurements were conducted with Z3 2.19, the
latest version of Z3 at the time of writing. As underlying ML environment, we
used Poly/ML 5.4.1 for both Isabelle/HOL and HOL4. For comparability with
earlier work [6,8], we restricted proof search to two minutes and proof recon-
struction to five minutes, and limited memory usage for both steps to 4 GB. All
measured times are CPU times (with garbage collection in Poly/ML excluded).

Beyond measuring success rates and runtimes of proof reconstruction, we also
measured the performance of HOL4 bit-blasting for comparison, and we provide
profiling data to give a deeper insight into our results. For space reasons, we
do not show Isabelle/HOL results in detail, but they are roughly similar to the
HOL4 results discussed below.

7.1 Proof Generation with Z3

Table 1 shows the results obtained from applying Z3 2.19 to all unsatisfiable bit-
vector benchmarks in SMT-LIB. For every SMT-LIB logic, we show the number
of benchmarks and the average benchmark size. We then measured the number
of errors (e.g., segmentation faults), timeouts, and proofs generated by Z3. We
also show the average solving time (excluding errors and timeouts), and the
average size of generated proofs. We invoked Z3 with option PROOF MODE=2,
which enables proof generation.
10 These benchmarks were obtained from http://smtexec.org/exec/smtlib2_

benchmarks.php on June 13, 2011, using the query logic~BV & status=unsat.
11 Our data is available at http://www.cl.cam.ac.uk/~tw333/bit-vectors/.

http://smtexec.org/exec/smtlib2_benchmarks.php
http://smtexec.org/exec/smtlib2_benchmarks.php
http://www.cl.cam.ac.uk/~tw333/bit-vectors/

Reconstruction of Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL 11

Proofs are typically much larger than the original SMT-LIB benchmark—
almost 53 times as large on average. The total size of generated proofs is 34.9 GB,
and the total CPU time for Z3 on all benchmarks (including errors and timeouts)
is around 29.5 hours.

Logic Benchmarks Errors Timeouts Proofs

Size # Ratio # Ratio # Ratio Time Size
(avg) (avg) (avg)

QF AUFBV 3566 93 kB 0 0.0 % 118 3.3 % 3448 96.7 % 0.6 s 1.2 MB

QF BV 1377 322 kB 12 0.9 % 630 45.8 % 735 53.4 % 17.3 s 41.1 MB

QF UFBV 31 343 kB 0 0.0 % 15 48.4 % 16 51.6 % 37.1 s 29.2 MB

Total 4974 158 kB 12 0.2 % 763 15.3 % 4202 84.5 % 4.2 s 8.3 MB

Table 1. Experimental results (Z3 2.19) for selected SMT-LIB logics

7.2 Bit-Blasting in HOL4

Next, we show the results of bit-blasting in HOL4 for comparison. We used our
SMT-LIB 2 parser (see Sect. 4) to translate benchmarks into higher-order logic.
We then applied HOL4’s BBLAST tactic to the same set of SMT-LIB benchmarks
previously presented to Z3 (i.e., the number and size of benchmarks in Tab. 2 is
the same as before). We used a timeout of five minutes per benchmark. Similar to
before, we show the number of errors, timeouts, and proofs found by BBLAST, as
well as the average solving time (excluding errors and timeouts). Every inference
performed by BBLAST is checked by HOL4’s inference kernel, but no persistent
proof objects are generated. Therefore, there is no column for proof size in Tab. 2.

Logic Benchmarks Errors Timeouts Proofs

Size # Ratio # Ratio # Ratio Time
(avg) (avg)

QF AUFBV 3566 93 kB 1089 30.5 % 474 13.3 % 2003 56.2 % 26.2 s

QF BV 1377 322 kB 745 54.1 % 504 36.6 % 128 9.3 % 56.2 s

QF UFBV 31 343 kB 31 100.0 % 0 0.0 % 0 0.0 % —

Total 4974 158 kB 1865 37.5 % 978 19.7 % 2131 42.8 % 28.0 s

Table 2. Experimental results (BBLAST) for selected SMT-LIB logics

Errors mostly indicate that BBLAST gave up on the benchmark. To prove un-
satisfiability, many benchmarks require combinations of bit-blasting and equality
reasoning (e.g., congruence closure), which BBLAST is not capable of, or reason-
ing about specific bit-vector operations in ways not supported by BBLAST. Our
results, therefore, show that Z3 is not only much faster than BBLAST, but also
that it can solve a wider range of problems.

12 Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, Tjark Weber

7.3 Proof Reconstruction in HOL4

We checked all proofs generated by Z3 in the HOL4 theorem prover, using a
timeout of five minutes per benchmark. Table 3 shows our results. We present the
number of errors, timeouts (including out-of-memory results), and successfully
checked proofs, along with average HOL4 runtime for the latter. We also show
total HOL4 runtime (including errors and timeouts) for each logic.

Errors are caused by unsound inferences in proofs, and in many cases by bugs
in Z3’s proof pretty-printer,12 but also by shortcomings in our implementation
of proof reconstruction, which fails on some corner cases.

Logic Proofs Errors Timeouts Success Overall
time

(approx)
Ratio # Ratio # Ratio Time

(avg)

QF AUFBV 3448 587 17.0 % 54 1.6 % 2807 81.4 % 1.4 s 5.4 hrs

QF BV 735 96 13.1 % 356 48.4 % 283 38.5 % 18.8 s 31.0 hrs

QF UFBV 16 0 0.0 % 16 100.0 % 0 0.0 % — 1.2 hrs

Total 4202 683 16.3 % 426 10.1 % 3090 73.5 % 2.6 s 37.6 hrs

Table 3. Experimental results (HOL4 proof reconstruction) for Z3’s proofs

Although HOL4 achieves an overall success rate of 73.5 %, we see that this
rate varies significantly with the SMT-LIB logic. QF AUFBV contains a large
number of relatively easy benchmarks, which can be solved quickly by Z3, have
small proofs, and consequently can (in most cases) be checked successfully in
HOL4. Table 1 indicates that QF BV and QF UFBV contain significantly harder
problems. This is reflected by the performance of HOL4 on these logics, which
can check a mere 38.5 % of benchmarks in QF BV within the given time limit,
and times out for all 16 proofs in QF UFBV. However, proof reconstruction is
more than an order of magnitude faster than BBLAST, and can solve 1.5 times
as many SMT-LIB problems. Proof generation with Z3 is typically one to two
orders of magnitude faster than proof reconstruction in HOL4.

7.4 Profiling

To further understand these results and to identify potential for future opti-
mization, we present relevant profiling data for our HOL4 implementation. (Is-
abelle/HOL profiling data is roughly similar.) Figures 1 to 3 show bar graphs
that indicate the percentage shares of total runtime (dark bars) for rewrite,
th-lemma-bv, and Z3’s other proof rules. Additionally, time spent on parsing
proof files is shown as well (see Tab. 1 for average proof sizes). We contrast each
proof rule’s relative runtime with the mean frequency of that rule (light bars).

12 We have notified the Z3 authors of the problems that we found. Additionally, we
corrected some obvious syntax errors in proofs, e.g., unbalanced parentheses.

Reconstruction of Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL 13

0 20 40 60 80 100

rewrite

th-lemma-bv

other rules

parsing

% runtime % inferences

Fig. 1. QF AUFBV

0 20 40 60 80 100

rewrite

th-lemma-bv

other rules

parsing

% runtime % inferences

Fig. 2. QF BV

0 20 40 60 80 100

rewrite

th-lemma-bv

other rules

parsing

% runtime % inferences

Fig. 3. QF UFBV

We see that despite extensive optimization, proof reconstruction times are
still dominated by rewrite and th-lemma-bv. Although less than 1% of all
inferences in QF AUFBV and QF UFBV are applications of th-lemma-bv,
checking these consumes over 26% of runtime. Even more extremely, rewrite
in QF BV accounts for less than 1% of inferences, but almost 45% of proof
reconstruction time. In contrast, all other rules combined constitute the majority
of proof inferences (between 59% for QF BV and 89% for QF UFBV), but they
can be checked much more quickly: in 29% (for QF UFBV) or less of total
runtime.

Proof parsing takes less than 8% of total runtime for QF AUFBV and QF BV,
but 36% for QF UFBV. It times out on the largest proofs. Proofs for QF BV are
larger than proofs for QF UFBV on average (see Tab. 1), but QF BV contains
many small proofs that can be parsed relatively quickly. The variation in proof
size is much smaller for QF UFBV. Median proof sizes are 3.7 MB for QF BV
and 22.5 MB for QF UFBV, respectively.

8 Conclusions

Bit-vectors play an important role in hardware and software verification. They
naturally show up in the verification of, e.g., 32- and 64-bit architectures and
machine data types [18]. In this paper, we have extended a previous implemen-
tation of LCF-style proof reconstruction for Z3 [8] to the theory of fixed-size
bit-vectors. To our knowledge, this paper is the first to consider independent
checking of SMT solver proofs for bit-vector theories.

Even though Z3’s proofs provide little detail about theory-specific reason-
ing, our experimental results (Sect. 7) show that LCF-style proof reconstruction
for the theory of fixed-size bit-vectors is often possible. We have achieved an
overall success rate of 73.5% on SMT-LIB benchmarks. We thereby obtain high
correctness assurances for Z3’s results. Checking Z3’s proofs also significantly
increases the degree of proof automation for bit-vector problems in HOL4 and
Isabelle/HOL. Proof reconstruction is more powerful in scope and performance

14 Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, Tjark Weber

than built-in decision procedures, such as BBLAST, previously offered by these
provers. Our implementations are freely available13 and already in use [5].

Z3’s proof rules rewrite and th-lemma-bv seem overly complex. Despite
substantial optimization efforts, they still dominate runtime in our implemen-
tations. Proof reconstruction currently needs to duplicate proof search that Z3
has performed before, to re-obtain essential information that was computed by
Z3 internally, but not included in the proof.

More work could be done on the checker side: for instance, we could attempt
to re-implement Z3’s decision procedure for bit-vectors [34] on top of HOL4’s or
Isabelle’s LCF-style inference kernel. However, instead of duplicating Z3’s highly
tuned decision procedures in our proof checker, it would seem more sensible to
modify Z3’s proof format to include all relevant information [9].

Unfortunately, we could not do this ourselves because Z3 is closed source.
We again [8] encourage the Z3 authors to (1) replace rewrite by a collection of
simpler rules with clear semantics and less reconstruction effort, ideally covering
specific rewriting steps of at most one theory, and (2) enrich th-lemma-bv with
additional easily-checkable certificates or trace information guiding refutations
to avoid invocations of expensive decision procedures (e.g., bit-blasting) in the
checker.

Based on previous experience [32] we are confident that the techniques pre-
sented in this paper can be used to achieve similar performance for bit-vector
reasoning in other LCF-style theorem provers for higher-order logic.

Future work should aim for improved reconstruction coverage (i.e., fewer
errors) and improved performance, possibly after Z3’s proof format has been
modified as suggested above. We also intend to evaluate proof reconstruction for
typical goals of Isabelle/HOL or HOL4; to implement parallel proof reconstruc-
tion [33], by checking independent paths in the proof DAG concurrently; and to
investigate proof compression [1,16] for SMT proofs.

Acknowledgments

This research was partially funded by EPSRC grant EP/F067909/1. NICTA
is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence program. The authors are
grateful to Nikolaj Bjørner and Leonardo de Moura for their help with Z3.

References

1. Amjad, H.: Data compression for proof replay. Journal of Automated Reasoning
41(3–4), 193–218 (2008)

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, England) (2010)

13 See http://hol.sourceforge.net and http://isabelle.in.tum.de.

http://hol.sourceforge.net
http://isabelle.in.tum.de

Reconstruction of Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL 15

3. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) Computer
Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany,
July 3-7, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4590, pp.
298–302. Springer (2007)

4. Bertot, Y.: A short presentation of Coq. In: Mohamed, O.A., Muñoz, C., Tahar,
S. (eds.) Theorem Proving in Higher Order Logics, 21st International Conference,
TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings. Lecture Notes
in Computer Science, vol. 5170, pp. 12–16. Springer (2008)

5. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. In: Automated Deduction (2011), to appear

6. Böhme, S.: Proof reconstruction for Z3 in Isabelle/HOL. In: 7th International
Workshop on Satisfiability Modulo Theories (SMT ’09) (2009)

7. Böhme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie — An Interactive
Prover-Backend for the Verifying C Compiler. Journal of Automated Reasoning
44(1–2), 111–114 (2010)

8. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) Interactive Theorem Proving, First International Confer-
ence, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings. Lecture Notes in
Computer Science, vol. 6172, pp. 179–194. Springer (2010)

9. Böhme, S., Weber, T.: Designing proof formats: A user’s perspective. In: First
Workshop on Proof Exchange for Theorem Proving (2011), to appear

10. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: 7th In-
ternational Workshop on Satisfiability Modulo Theories (SMT ’09) (2009)

11. Collavizza, H., Gordon, M.: Integration of theorem-proving and constraint pro-
gramming for software verification. Tech. rep., Laboratoire d’Informatique, Sig-
naux et Systèmes de Sophia-Antipolis (2008)

12. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: Lightweight integration of the
Ergo theorem prover inside a proof assistant. In: AFM ’07: Proceedings of the
Second Workshop on Automated Formal Methods. pp. 55–59. ACM Press (2007)

13. Dawson, J.: Isabelle theories for machine words. Electronic Notes in Theoretical
Computer Science 250(1), 55–70 (2009), Proceedings of the Seventh International
Workshop on Automated Verification of Critical Systems (AVoCS 2007)

14. Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In:
AFM ’08: Proceedings of the Third Workshop on Automated Formal Methods. pp.
3–13. ACM Press (2008)

15. Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + automa-
tion + soundness: Towards combining SMT solvers and interactive proof assistants.
In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS
’06). Lecture Notes in Computer Science, vol. 3920, pp. 167–181. Springer (2006)

16. Fontaine, P., Merz, S., Paleo, B.W.: Compression of propositional resolution proofs
via partial regularization. In: Automated Deduction (2011), to appear

17. Fox, A.: LCF-style bit-blasting in HOL4. In: Second International Conference
on Interactive Theorem Proving. Lecture Notes in Computer Science, vol. 6898.
Springer (2011), to appear

18. Fox, A.C.J., Gordon, M.J.C., Myreen, M.O.: Specification and verification of ARM
hardware and software. In: Hardin, D.S. (ed.) Design and Verification of Micropro-
cessor Systems for High-Assurance Applications, pp. 221–248. Springer (2010)

19. Ge, Y., Barrett, C.: Proof translation and SMT-LIB benchmark certification: A
preliminary report. In: 6th International Workshop on Satisfiability Modulo The-
ories (SMT ’08) (2008)

16 Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, Tjark Weber

20. Gordon, M., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic
of Computation, Lecture Notes in Computer Science, vol. 78. Springer (1979)

21. Gordon, M.J.C., Pitts, A.M.: The HOL logic and system. In: Towards Verified
Systems, Real-Time Safety Critical Systems Series, vol. 2, chap. 3, pp. 49–70.
Elsevier (1994)

22. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch,
T., McBride, C. (eds.) Types for Proofs and Programs, International Workshop,
TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 4502, pp. 160–174 (2007)

23. Harrison, J.: A HOL theory of Euclidean Space. In: Hurd, J., Melham, T.F. (eds.)
Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs
2005, Oxford, UK, August 22-25, 2005, Proceedings. Lecture Notes in Computer
Science, vol. 3603, pp. 114–129. Springer (2005)

24. Hurlin, C., Chaieb, A., Fontaine, P., Merz, S., Weber, T.: Practical proof recon-
struction for first-order logic and set-theoretical constructions. In: Proceedings of
the Isabelle Workshop 2007. pp. 2–13. Bremen, Germany (Jul 2007)

25. Kroening, D., Strichman, O.: Decision Procedures – An Algorithmic Point of View.
Springer (2008)

26. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study
combining HOL-Light and CVC Lite. Electronic Notes in Theoretical Computer
Science 144(2), 43–51 (2006)

27. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML –
Revised. MIT Press (1997)

28. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Proceedings of
the LPAR 2008 Workshops, Knowledge Exchange: Automated Provers and Proof
Assistants, and the 7th International Workshop on the Implementation of Logics.
CEUR Workshop Proceedings, vol. 418. CEUR-WS.org (2008)

29. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’08). Lecture Notes in
Computer Science, vol. 4963, pp. 337–340. Springer (2008)

30. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)

31. Weber, T.: SMT solvers: New oracles for the HOL theorem prover. International
Journal on Software Tools for Technology Transfer (2011), to appear

32. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL the-
orem provers. Journal of Applied Logic 7(1), 26–40 (2009)

33. Wenzel, M.: Parallel proof checking in Isabelle/Isar. In: ACM SIGSAM 2009 In-
ternational Workshop on Programming Languages for Mechanized Mathematics
Systems (2009)

34. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. In: Bloem, R., Sharygina, N. (eds.) Proceedings of the 10th
International Conference on Formal Methods in Computer-Aided Design, FMCAD
2010, Lugano, Switzerland, October 20-23. pp. 239–246. IEEE (2010)

35. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

	Reconstruction of Z3's Bit-Vector Proofs in HOL4 and Isabelle/HOL
	Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, Tjark Weber
	Introduction
	Related Work
	LCF-Style Theorem Proving
	Z3: Language and Proof Terms
	Bit-Vectors in Higher-Order Logic
	Proof Reconstruction
	Experimental Results
	Proof Generation with Z3
	Bit-Blasting in HOL4
	Proof Reconstruction in HOL4
	Profiling

	Conclusions

