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Abstract

The ability to navigate in an unknown environment is an enabler for truly autonomous
systems. Such a system must be aware of its relative position to the surroundings using
sensor measurements. It is instrumental that these measurements are monitored for distur-
bances and faults. Having correct measurements, the challenging problem for a robot is to
estimate its own position and simultaneously build a map of the environment. This prob-
lem is referred to as the Simultaneous Localization and Mapping (SLAM) problem. This
thesis studies several topics related to SLAM, on-board sensor processing, exploration and
disturbance detection.

The particle filter (PF) solution to the SLAM problem is commonly referred to as
FastSLAM and has been used extensively for ground robot applications. Having more
complex vehicle models using for example flying robots extends the state dimension of
the vehicle model and makes the existing solution computationally infeasible. The factor-
ization of the problem made in this thesis allows for a computationally tractable solution.

Disturbance detection for magnetometers and detection of spurious features in image
sensors must be done before these sensor measurements can be used for estimation. Dis-
turbance detection based on comparing a batch of data with a model of the system using
the generalized likelihood ratio test is considered. There are two approaches to this prob-
lem. One is based on the traditional parity space method, where the influence of the initial
state is removed by projection, and the other on combining prior information with data
in the batch. An efficient parameterization of incipient faults is given which is shown to
improve the results considerably.

Another common situation in robotics is to have different sampling rates of the sen-
sors. More complex sensors such as cameras often have slower update rate than ac-
celerometers and gyroscopes. An algorithm for this situation is derived for a class of
models with linear Gaussian dynamic model and sensors with different sampling rates,
one slow with a nonlinear and/or non-Gaussian measurement relation and one fast with a
linear Gaussian measurement relation. For this case, the Kalman filter is used to process
the information from the fast sensor and the information from the slow sensor is processed
using the PF. The problem formulation covers the important special case of fast dynamics
and one slow sensor, which appears in many navigation and tracking problems.

Vision based target tracking is another important estimation problem in robotics. Dis-
tributed exploration with multi-aircraft flight experiments has demonstrated localization
of a stationary target with estimate covariance on the order of meters. Grid-based estima-
tion as well as the PF have been examined.
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Populärvetenskaplig sammanfattning

Tänk dig att du är en brandman på väg in i ett eldhärjat hus. Du vet inte hur det ser ut där
inne eller vilka vägar som är möjliga att ta. Väl inne i huset utforskar du det på jakt efter
brandorsaken. Det är samtidigt mycket viktigt att komma ihåg vilken väg du kom och hur
långt det är till närmaste utgång om du snabbt behöver lämna huset. Under utforskandet
byggs en mental karta över huset upp genom att använda synintryck och balanssinne.
Ibland kanske du återkommer till en bekant plats och kan då uppdatera din karta lite extra
eftersom du förstår hur olika delar av huset hänger ihop.

Eftersom vi vill undvika att människor skadas i samband med att de ska släcka brän-
der eller utföra andra farliga uppdrag kommer det i framtiden bli vanligt med robotar som
hjälper oss med dessa uppdrag. Scenariot ovan är därför något som framtida robotar kom-
mer ställas inför. De här robotarna måste förstås ha sensorer för att känna av omgivningen
och sin egen rörelse. Sensorer som används för detta är bland annat kameror, laser, radar,
mikrofon, kompass, accelerometer och gyroskop. Från dessa sensorer flödar mängder med
information som måste utnyttjas på ett smart sätt för att roboten ska bli så framgångsrik
som möjligt. Det är denna hantering av information som den här avhandlingen behandlar.

I det inledande scenariot handlade det mycket om att försöka bygga upp en karta över
huset. Inom robotiken kallas detta problem för samtidig lokalisering och kartuppbyggnad
och förkortas SLAM (eng. Simultaneous Localization And Mapping). SLAM-problemet
har studerats flitigt under de senaste tjugo åren, men det kräver mycket beräkningar vilket
gör att datorer inte klarar av att bygga särskilt stora kartor. Mycket forskning görs därför
på hur man kan förenkla problemet så att mindre beräkningar krävs. Ett bidrag i avhan-
dlingen behandlar ett sätt att minska beräkningsbördan för robotar som kräver avancerade
modeller. I det här fallet används en helikopter som är utrustad med en kamera, accelerom-
eter, gyroskop och barometer. Helikoptern flyger över ett område och tittar ner på marken
med kameran. Intressanta objekt i bilden sparas och bygger upp kartan som helikoptern
kan använda för att positionera sig med. Processen att bygga upp kartan och positionera
sig bygger på så kallade estimeringsmetoder.

För att välja ut särskilt intressanta objekt i bilden, som lämpar sig för att bygga en
karta med, används olika bildbehandlingsmetoder. De försöker välja ut objekt som ska
vara lätta att känna igen från en bild till en annan. Ibland blir det fel då metoderna luras
av ett snarlikt objekt i bilden. För att upptäcka den här typen av fel används statistiska
detektionsmetoder. Ett annat område där dessa metoder kan användas är för att upptäcka
fel i sensormätningar. Ibland används en kompass för att veta i vilken riktning roboten
färdas. Den är mycket känslig för störande magnetfält och dessa störningar måste därför
upptäckas.

Ett annat område som behandlas i avhandlingen är sökning efter t.ex. en försvunnen
person med hjälp av flera obemannade flygplan. Flygplanen är utrustade med kameror
som spanar ner på marken. Estimeringsmetoder används för att representera information
om vad flygplanen har sett och inte har sett så att den kan distribueras mellan flygplanen.
Tanken med tekniken är att flygplanen ska få beslutsunderlag för att själva kunna fatta
beslut om var det är lämpligt att söka.

Sammanfattningsvis kan man säga att den här avhandlingen syftar till att robotar ska
kunna använda sina “ögon”, “öron” och andra sensorer genom utnyttjande av estimerings-
och detektionsmetoder.
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1
Introduction

IMAGINE A WORLD where our cars drive without a driver and the airplanes do not have
pilots. In such a world, you can relax with a movie or read an interesting book while

the car drives you where you want to go. In such a world, lost people in a catastrophe area
can be found thanks to hundreds of small and inexpensive unmanned airplanes that easily
can search the area. The applications above are examples of autonomous systems. Sys-
tems with some degree of autonomy are already used today, for example robots already
build products in our factories, clean our floors and drive our trains. An important enabler
for autonomous systems is the ability to navigate in an unknown or partially known en-
vironment and to do this reliably without support of external infrastructure. Estimation
and detection methods are essential building blocks for such a navigation system, and the
topics of this thesis.

This introductory chapter is divided into two parts. The first part gives some robotics
background and puts the publications included in the thesis in a bigger context. The
second part discusses the outline of the thesis and the author’s contributions.

1.1 Robots

The word robot is Czech for work or labor and was first mentioned in todays context in a
play by Karel Čapek, written in the 1920s. In this play human-like mechanical creatures,
robots, were created to work in the factories. Today, a robot is a machine that has some
level of autonomy. Some of them are autonomous and make their own decisions while
others are preprogrammed to perform a certain task. A few examples of robots will be
given in this section.

An industrial robot (shown in Figure 1.1(a)) consists of a mechanical arm with a
number of joints, capable of doing welding, painting, packaging and other parts of manu-
facturing traditionally carried out by humans. This has revolutionized the manufacturing
process. Monotonous and dangerous work can now be done fast, at low cost, and with

1
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(a) Industrial robot. By courtesy of ABB. (b) Autonomous vacuum cleaner. By courtesy
of Electrolux.

(c) Autonomous car. By courtesy of Tartan
Racing.

(d) Autonomous helicopter. By courtesy of
Saab.

Figure 1.1: Examples of robots.
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high precision.
The task of many robots is to make life easier for humans. One such robot is the

autonomous vacuum cleaner, shown in Figure 1.1(b). This robot will explore the room
and then move in a strategic pattern to clean the room as fast as possible. When batteries
get low, it automatically returns to the home base to recharge.

One of the success stories in creating autonomous systems is in the DARPA Grand
Challenge. This is a competition for autonomous cars organized by Defense Advanced
Research Projects Agency (DARPA), which is the military research agency in the US.
While the first two competitions were located in the desert, the last competition in 2007
took place in an urban environment and is known as the Urban Challenge. The course
of the competition was 97 km long and the participating autonomous cars had to obey
all traffic rules. As many as 89 teams from all over the world entered the competition
and six of them reached the goal. The winning car from team Tartan Racing at Carnegie
Mellon University can be seen in Figure 1.1(c). The Journal of Field Robotics have had
two special issues on the Urban Challenge in 2008, where the winning team presents their
work in Urmson et al. (2008).

There are many active research topics concerning Unmanned Aerial Vehicles (UAVs).
Today, UAVs are mainly used in the military for surveillance and reconnaissance. For the
future, many civilian applications can be imagined. Searching for lost people, inspecting
power lines, border patrolling, traffic surveillance and wildfire detection are only a few of
the applications. The unmanned helicopter in Figure 1.1(d) is developed by the Swedish
company Saab AB. It is autonomous and intended to be used for both military and civilian
applications. One of the biggest challenges for the UAV community is to get UAVs certi-
fied for civilian airspace. In order to do this the UAV community will have to show, among
other things, that the UAV always can navigate and find its way back home. Satellite nav-
igation, such as GPS, Galileo and GLONASS, are excellent navigation systems. However,
these kind of systems rely on an external infrastructure. That means there is a risk for
outages due to, for example, satellite failure, jamming, solar storms or political reasons.
Thus, there is a need for redundancy with alternative navigation systems. There are many
techniques for terrain based navigation that can be used, some of them have a predefined
map over the area and others build the map during flight. Human pilots for example, can
recognize landmarks and navigate using a map. This sort of navigation system is needed
for UAVs as well. Some aspects of terrain based navigation and map building is covered
in Paper A.

1.2 Robotic Structure

Figure 1.2 provides an illustration of the high level structure of the information flows in
a robot. To exemplify this structure, consider an autonomous helicopter. First of all this
type of robot is unstable, which means that counteractions continuously have to be made
in order to prevent the helicopter from drifting off track. Here is an obvious need for
sensors, giving information about the helicopter’s position and orientation. However, the
individual sensors might not give the complete picture. They need to be combined using
sensor fusion methods. When fusing sensor measurements, it is important to monitor the
measurements for faults or disturbances. Using erroneous measurements could lead to
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fatal effects. Having information about the helicopter’s position, orientation and perhaps
also the surroundings, the desired path of the helicopter can be planned and the required
control actions calculated. The control actions are then realized using the actuators, which
in the case of a helicopter include the pitch angle of the blades and motor speed. The rest
of this section will give more insight about the blocks introduced in Figure 1.2.

Sensors Sensor Fusion
Planning

and
Control

Actuators

Monitoring

Figure 1.2: Internal structure of an autonomous robot. The senors provide the sensor
fusion algorithms with measurements. During the fusion process, the measurements
are monitored to detect disturbances or faults. The outcome of the sensor fusion
block is an estimate of the current state of the robot, and is passed on to the planning
and control block. Finally, the actuators provide the physical control.

1.2.1 Sensors

The autonomous car, discussed in Section 1.1, needs sensors to navigate and understand
its surroundings. It uses a combination of sensors to get a broad coverage but also for
redundancy. It has 16 laser based sensors, LIght Detection And Ranging (LIDAR) sensors,
one such sensor is depicted in Figure 1.3(a). The LIDAR has a sweeping laser beam, giving
information about heading and distance to an obstacle.

(a) Laser scanner (LIDAR) (b) Sonar sensor (c) Combined IMU and camera, by cour-
tesy of Xsens Technologies B.V.

Figure 1.3: Examples of sensors.
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The UAVs in Paper A, C and E use an Inertial Measurement Unit (IMU) and a cam-
era. There are sensor units consisting of these sensors, one of them developed by Xsens
Technologies B.V. and depicted in Figure 1.3(c). An IMU consists of accelerometers and
gyroscopes, measuring accelerations and angular velocities.

The autonomous vacuum cleaner in Figure 1.3(b) uses sound navigation and ranging
(sonar) to navigate. The technique of this sensor is to send out a sound pulse and then wait
for the echo. The distance to an obstacle can then be calculated using the speed of sound.
A typical sonar has two microphones making it possible to determine the angle of the
echo as well. This type of sensor is cheap and simple to use and is therefore very popular
for ground robot navigation. An example of a sonar sensor is shown in Figure 1.3(b).

Measurements from sensors that sense the environment, e.g., LIDAR, camera and
sonar, have to be processed before the measurements can be used in a filter. For ex-
ample in an image from a camera, interest points or features are found and then tracked
in consecutive images. The interest points are found using detectors. One example of
such a detector is the Harris detector (Harris and Stephens, 1988) which selects patches
in an image with large contrast. An example of this, taken from Paper C, can be seen in
Figure 1.4.

1 2

3

4 56

7 8

Figure 1.4: Example of camera post-processing. The image shows the view from
a helicopter at 60 m altitude. The numbered squares are patches selected using a
Harris-detector.

1.2.2 Sensor Fusion

The task of sensor fusion is to combine several sensor measurements or information
sources to extract the best possible information about the state of a system, e.g., a robot.
The state contains all information about the robot needed for predicting the future behav-
ior of the robot. To be able to use the different sensors and also relate measurements in
time, a model describing the relations is needed. The commonly used state-space model
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can be written as

xt+1 = f(xt, ut) + vt, (1.1a)
yt = h(xt, ut) + et, (1.1b)

where xt denotes the state, ut known control inputs, yt the measurements, and vt and et
are stochastic process noise and measurement noise, respectively. Note here that (1.1a)
describes how the state evolves over time (dynamics) and (1.1b) describes how the mea-
surements are related to the current state of the system.

In estimation the model (1.1) and the available measurements are used to gain infor-
mation about the state. The algorithms used to find this state are referred to as estimators
or filters and are the main topic of Chapter 3. The estimators used in this thesis build
on the well-known Kalman Filter (KF) and Particle Filter (PF). The KF (Kalman, 1960)
applies when (1.1) is a linear system with Gaussian noises, giving a solution that is param-
eterized by state mean and covariance. Also nonlinear systems can be handled by making
an approximation using linearization. This results in the popular Extended Kalman Fil-
ter (EKF). The PF (Gordon et al., 1993) is a non-parametric solution to the estimation
problem, also capable of handling nonlinear systems. It uses samples of the state distri-
bution, particles, which are updated according to the system model. The accuracy of this
method depends on how many particles that are used. However, using many particles also
increases the computational load.

One example of sensor fusion relating to robots is the use of IMU measurements for
navigation. The dynamic model (1.1a) will explain that acceleration is the second deriva-
tive of position and angular velocity is the derivative of angles. The estimation problem
will here be solved using a filter that basically integrates the measurements to get the
position and orientation. However, integration of noisy measurements leads to drift in
the estimates. This can be solved by adding more sensors, for instance a camera and a
barometer as is done in Paper A.

Also in other work, several sensors are combined to get better precision. The obvious
sensors in industrial robots are encoders measuring the joint angles. Knowing the robot
configuration, the position of the tool can then be calculated. However, robots are some-
what flexible, giving rise to errors in the estimates. In the work by Karlsson and Norrlöf
(2004), sensor fusion is used to combine the angular measurements with accelerometers,
enhancing the information about the position.

1.2.3 Monitoring

A prerequisite for successful sensor fusion is that the measurements are correct. All sen-
sors can fail and some sensors are very sensitive to disturbances. Monitoring the sensors
to detect these changes is therefore instrumental. This can be done using a residual, which
over a sliding window of length L is defined as

rt =

yt−L+1

...
yt

−


h(x̂t−L+1|t−L, ut−L+1)
h(f(x̂t−L+1|t−L), ut−L+2)

...
h(fL−1(x̂t−L+1|t−L), ut)

 , (1.2)
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where x̂t−L+1|t−L is the prediction of the initial state xt−L+1 using measurements up to
time t − L and fL−1( · ) means that f( · ) has been applied L − 1 times. The statistical
properties of the residual can be analyzed and a statistical test can be performed to deter-
mine if a fault occurred or not. In the case of a linear system with Gaussian noise where
the states are estimated using measurements from the window, the residual in (1.2) will
be calculated using a projection of the measurements. This is the classical parity space
method (Chow and Willsky, 1984).

One example of disturbance detection is given in Paper C, where spurious features
are detected. The problem arises since it is sometimes hard to match features in two
consecutive images. A feature that is erroneously matched is referred to as spurious. If
the images are combined with more sensors and a model of the system, the system will
become redundant. This basically means that we have information about the features from
different sources. Using this information, redundancy relations can be formed which can
be used for detection. The same framework is also used in Paper B to detect magnetic
disturbances.

1.2.4 Planning and Control

An autonomous system must have the ability to plan ahead. For a UAV the planning could
consist in calculating the optimal route for keeping track of two cars. Since the cars are
constantly moving, the optimal route for tracking them changes as well. The cars might
drive in different directions which makes it impossible to track both at the same time.
When one car is tracked, the uncertainty about the other grows and vice versa. How to
select which car to track will for example depend on the road network. If not tracked, the
uncertainty will grow faster for a car driving on a road with many junctions than for a car
on a road without junctions. How fast the UAV can fly and how sharp turns it can make
also has to be considered. How to minimize the uncertainty about the positions of the cars
is a very challenging planning and control problem.

Classical control algorithms that stabilize the UAV in the example above and make it
follow a desirable trajectory are studied in the area of automatic control. These algorithms
utilize knowledge about the dynamics of the system and act based on this knowledge
and measurements. Classical planning has been done at a higher level without regard
to dynamic or stochastic effects. A control algorithm has then been applied to follow
the trajectory given by the planning. The areas of automatic control and planning are
now merging, leading to treatment of both problems simultaneously. A textbook covering
these problems is LaValle (2006).

1.3 Outline

This thesis consists of two parts. The first part gives background and overview of the
subjects treated in this thesis. The second part contains the included publications.

1.3.1 Outline of Part I

Model definitions and descriptions that are used in this thesis are provided in Chapter 2.
Measurement disturbances need to be detected to avoid errors in the estimation process.
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Both estimation and detection is the subject of Chapter 3. The estimation methods are
used to solve the Simultaneous Localization and Mapping (SLAM) problem in Chapter 4.
Finally, Chapter 5 provides conclusions and possible directions for future work.

1.3.2 Outline of Part II

The edited papers, which are included in Part II, are presented in this section. Both
summary and the contributions are given below.

Paper A: Particle Filter SLAM with High Dimensional Vehicle
Model

D. Törnqvist, T. B. Schön, R. Karlsson, and F. Gustafsson. Particle filter
SLAM with high dimensional vehicle model. Journal of Intelligent and
Robotic Systems, 2008b. Accepted for publication.

Summary: This work presents a particle filter (PF) method closely related to FastSLAM
for solving the simultaneous localization and mapping (SLAM) problem. Using the stan-
dard FastSLAM algorithm, only low-dimensional vehicle models can be handled due to
computational constraints. In this work an extra factorization of the problem is introduced
that makes high-dimensional vehicle models computationally feasible. Results using ex-
perimental data from a UAV (helicopter) are presented. The algorithm fuses measurements
from on-board inertial sensors (accelerometer and gyro), barometer, and vision in order
to solve the SLAM problem.

Background and contribution: It was during discussions between the author and
Thomas Schön about SLAM implementations for a helicopter application that the main
idea of the paper was formulated. Initial implementations used data from a camera and
an IMU mounted on an industrial robot and was presented in Schön et al. (2007a) and he-
licopter data was first used in Karlsson et al. (2008). The author contributed the majority
of this work.

Paper B: Unifying the Parity-Space and GLR Approach to Fault
Detection with an IMU Application

D. Törnqvist and F. Gustafsson. Unifying the parity-space and GLR approach
to fault detection with an IMU application. Automatica, 2008. Submitted.

Summary: Using the parity-space approach a residual if formed by applying a projec-
tion to a batch of observed data, and this is a well established approach to fault detec-
tion. Based on a stochastic state space model, the parity-space residual can be put into
a stochastic framework where conventional hypothesis tests apply. In an on-line appli-
cation, the batch of data corresponds to a sliding window and in this contribution we
develop an improved on-line algorithm that extends the parity-space approach by taking
prior information from previous observations into account. For detection of faults, the
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Generalized Likelihood Ratio (GLR) test is used. This framework allows for including
prior information about the initial state, yielding a test statistic with a significantly higher
sensitivity to fault. Another key advantage with this approach is that it can be extended to
nonlinear systems using an arbitrary nonlinear filter for state estimation, and a linearized
model around a nominal state trajectory in the sliding window. We demonstrate the al-
gorithm on data from an Inertial Measurement Unit (IMU), where small and incipient
magnetic disturbances are detected using a nonlinear system model.

Background and contribution: Detection using parity space was the subject of the
authors first task as a PhD student. The work resulted in a few theoretical papers (Törn-
qvist et al., 2005, Törnqvist and Gustafsson, 2006) and the detection of magnetic distur-
bances was first presented in the Licentiate Thesis (Törnqvist, 2006). The author con-
tributed the majority of this work.

Paper C: Detecting Spurious Features using Parity Space

D. Törnqvist, T. B. Schön, and F. Gustafsson. Detecting spurious features us-
ing parity space. In Proceedings of 10th International Conference on Control,
Automation, Robotics and Vision, Hanoi, Vietnam, Dec. 2008a. Accepted for
publication.

Summary: Detection of spurious features is instrumental in many computer vision ap-
plications. The standard approach is feature based, where extracted features are matched
between the image frames. This approach requires only vision, but is computer inten-
sive and not yet suitable for real-time applications. We propose an alternative based on
algorithms from the statistical fault detection literature. It is based on image data and
an inertial measurement unit (IMU). The principle of analytical redundancy is applied
to batches of measurements from a sliding time window. The resulting algorithm is fast
and scalable, and requires only feature positions as inputs from the computer vision sys-
tem. It is also pointed out that the algorithm can be extended to also detect non-stationary
features (moving targets for instance). The algorithm is applied to real data from an un-
manned aerial vehicle in a navigation application.

Background and contribution: When working with visual SLAM applications, the
need for detecting spurious features is obvious. To do this in a structured way, methods
from the statistical detection domain were applied. The paper is based on the methods
derived in Törnqvist et al. (2005), Törnqvist and Gustafsson (2006) and Törnqvist (2006).
The author contributed the majority of this work.

Paper D: Fast Particle Filters for Multi-Rate Sensors

T. Schön, D. Törnqvist, and F. Gustafsson. Fast particle filters for multi-rate
sensors. In The 15th European Signal Processing Conference (EUSIPCO
2007), Poznan, Poland, Sept. 2007b.
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Summary: Computational complexity is a major concern for practical use of the ver-
satile particle filter (PF) for nonlinear filtering applications. Previous work to mitigate the
inherent complexity includes the marginalized particle filter (MPF), with the FastSLAM
algorithm as one important case. MPF utilizes a linear Gaussian sub-structure in the prob-
lem, where the Kalman filter (KF) can be applied. While this reduces the state dimension
in the PF, the present work aims at reducing the sampling rate of the PF. The algorithm
is derived for a class of models with linear Gaussian dynamic model and two multi-rate
sensors, with different sampling rates, one slow with a nonlinear and/or non-Gaussian
measurement relation and one fast with a linear Gaussian measurement relation. For this
case, the KF is used to process the information from the fast sensor and the informa-
tion from the slow sensor is processed using the PF. The problem formulation covers
the important special case of fast dynamics and one slow sensor, which appears in many
navigation and tracking problems.

Background and contribution: Based on an idea from Fredrik Gustafsson, Thomas
Schön and the author of this thesis worked together on the derivations and the simulation
example. The author contributed by writing the section on simulations and parts of the
other sections.

Paper E: A multiple UAV system for vision-based search and
localization

J. Tisdale, A. Ryan, Z. Kim, D. Törnqvist, and J. K. Hedrick. A multiple
UAV system for vision-based search and localization. In American Control
Conference, Seattle, WA, USA, June 2008.

Summary: The contribution of this paper is an experimentally verified real-time algo-
rithm for combined probabilistic search and track using multiple unmanned aerial vehicles
(UAVs). Distributed data fusion provides a framework for multiple sensors to search for a
target and accurately estimate its position. Vision based sensing is employed, using fixed
downward-looking cameras. These sensors are modeled to include vehicle state uncer-
tainty and produce an estimate update regardless of whether the target is detected in the
frame or not. This allows for a single framework for searching or tracking, and requires
non-linear representations of the target position probability density function (PDF) and the
sensor model. While a grid-based system for Bayesian estimation was used for the flight
demonstrations, the use of a particle filter solution has also been examined.

Multi-aircraft flight experiments demonstrate vision-based localization of a stationary
target with estimated error covariance on the order of meters. This capability for real-time
distributed estimation will be a necessary component for future research in information-
theoretic control.

Background and contribution: During the summer of 2007, the author visited the
Center for Collaborative Control of Unmanned Vehicles (C3UV) at University of Califor-
nia, Berkeley in USA. The group had been working with grid based methods for posi-
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tioning of a ground target using UAVs with camera. The author of this thesis solved the
problem using a PF and wrote the sections about that in this paper.

Other publications

Publications not included in this thesis, but that might be of interest are:

R. Karlsson, T. B. Schön, D. Törnqvist, G. Conte, and F. Gustafsson. Utiliz-
ing model structure for efficient simultaneous localization and mapping for a
UAV application. In Proceedings of IEEE Aerospace Conference, 2008.

T. Schön, R. Karlsson, D. Törnqvist, and F. Gustafsson. A framework for
simultaneous localization and mapping utilizing model structure. In The
10th International Conference on Information Fusion, Quebec, Canada, Aug.
2007a.

D. Törnqvist. Statistical Fault Detection with Applications to IMU Distur-
bances. Licentiate thesis no. 1258, Department of Electrical Engineering,
Linköping University, SE-581 83 Linköping, Sweden, June 2006.

D. Törnqvist and F. Gustafsson. Eliminating the initial state for the gener-
alized likelihood ratio test. In Proceedings of IFAC Symposium SAFEPRO-
CESS, Beijing, China, Aug. 2006.

D. Törnqvist, F. Gustafsson, and I. Klein. GLR tests for fault detection over
sliding data windows. In Proceedings of the 16th IFAC World Congress,
Prague, Czech Republic, July 2005.
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2
Modeling

AS HUMANS, WE INTERACT with systems in our every day life. We drive our cars,
ride our bikes, control our body movements and so on. All of this is done with-

out using any mathematics at all. We are using mental models built by our brain from
previous experiences. To make a robot interact with a system or understand its sensor
measurements, mental models are hard to use. Therefore, mathematical models are de-
rived that can easily be used by a computer. Using this type of models, the robot can
control systems, relate to measurements, and even predict the future.

This chapter is divided into two parts. The first part discusses general modeling and
the second part derives models for orientation and position of a rigid body.

2.1 System Descriptions

The behavior of most physical systems can be mathematically modeled using differential
equations. These equations can be in different standard forms. This section will primarily
focus on state space models, also extended to the case where data batches are treated. An
efficient parametrization of faults over a data batch is also presented.

2.1.1 State Space Model

A fairly general description of a physical system is provided by the nonlinear state space
model

ẋ = f(x, u, f, v, t), (2.1a)
y = h(x, u, f, e, t), (2.1b)

where x is the state of the system, u is the input signal, f is a fault, v is process noise,e
measurement noise, and y is the measured signal. All variables are assumed to be time-
varying. The functions f( · ) and h( · ) are in general nonlinear functions and this class of

15



16 2 Modeling

systems is for example discussed in the textbooks Khalil (2002) and Isidori (1995). The
class of models where f( · ) and h( · ) are linear functions is called linear systems. Linear
systems are in general easier to handle and hence there exist more powerful results for
them, see for instance Rugh (1996) and Kailath et al. (2000). To be able to use linear
theory also for nonlinear systems, the nonlinear systems must be approximated with a
linear model.

Linear Model

A time-varying linear state space model can be written as

ẋ = A(t)x+Bu(t)u+Bf (t)f +Bv(t)v, (2.2a)

y = C(t)x+Du(t)u+Df (t)f + e. (2.2b)

where t is used to denote time.

Discrete-Time Models

A computer can only handle discrete-time data, so measurements will be sampled in time.
Thus, the system model has to be sampled in order to describe the measurements. A
general nonlinear time-discrete model can be described as

xt = ft−1(xt−1, ut−1, ft−1, vt−1), (2.3a)
yt = ht(xt, ut, ft, et). (2.3b)

For time-discrete systems, t will be used to denote the sample number rather than time.
Sampling of linear systems is described in Rugh (1996). In the case of a piecewise

constant time-invariant linear system with piecewise constant input signal, the matrices
of the sampled system can be computed as

Ft = eA(t)T , (2.4a)

Gst =

T∫
0

eA(t)τ dτBs(t), (2.4b)

where s ∈ {u, f, v} and T is the sampling time. The discrete-time system can then be
written as

xt = Ft−1xt−1 +Gut−1ut−1 +Gft−1ft−1 +Gvt−1vt−1, (2.5a)

yt = Htxt +Hu
t ut +Hf

t ft + et. (2.5b)

2.1.2 Batched Systems

It is sometimes convenient to describe the behavior of a system over a certain time win-
dow. The system can then be described in batched form, directly derived from the linear
state-space form. The batch form is often used in fault detection and diagnosis, see Chow
and Willsky (1984), Gertler (1998), Gustafsson (2001), Paper B and C. Stack L signal
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values to define signal vectors like Y =
(
yTt−L+1, . . . , y

T
t

)T
, for all signals. If the initial

state in a time window of length L is known, the outputs in that window can be computed
as

Y = Otxt−L+1 + H̄u
t U + H̄f

t F + H̄v
t V + E, (2.6)

with the extended observability matrix

Ot =


Ht−L+1

Ht−L+2Ft−L+1

...
Ht

∏t−L+1
k=t−1 Fk

 , (2.7)

which in the time invariant case will have the following form

O =


H
HF

...
HFL−1

 . (2.8)

The matrices determining how the input signals affect the system are described by

H̄s
t =


Hs
t−L+1 0 · · · 0

Ht−L+2G
s
t−L+1 Hs

t−L+2 · · · 0
...

. . .
...

Ht

∏t−L+2
k=t−1 FkG

s
t−L+1 · · · HtG

s
t−1 Hs

t

 , (2.9)

and in case of a time invariant system, they will have the form of a Toeplitz matrix

H̄s =


Hs 0 · · · 0
HGs Hs · · · 0

...
. . .

...
HFL−2Gs · · · HGs Hs

 . (2.10)

It is often convenient to describe a model where the influence of the input is removed.
Therefore define

Z , Y− H̄u
t U = Otxt−L+1 + H̄f

t F + H̄v
t V + E. (2.11)

2.1.3 Structured Faults

The influence of a fault is often correlated in time and is changing much slower than white
noise. It is therefore natural to model the behavior of the fault with as few parameters as
possible. The fault can be parameterized using an orthogonal basis generated by the
Chebyshev polynomials. The Chebyshev polynomials are orthogonal polynomials of a
discrete variable, see Abramowitz and Stegun (1965), Rivlin (1974). The polynomials,
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denoted Φn(t), are orthogonal in the interval 0 ≤ t ≤ L− 1, where t is an integer. Thus,
the vector of length L

ΦTn =

 Φn(0)
...

Φn(L− 1)

 , (2.12)

is orthogonal to another vector Φm when n 6= m. The Chebyshev polynomials are defined
by the function

Φn(t) = n!∆n

[(
t
n

)(
t− L
n

)]
, (2.13)

where ∆n is the difference operator defined as

∆f(t) = f(t+ 1)− f(t), ∆n+1f(t) = ∆(∆nf(t)). (2.14)

The orthonormal vectors Φn will be used as basis vectors for the fault. Denoting the
parameters θt, the fault vector is modeled as

F = ΦT θt, (2.15)

where
ΦT =

(
ΦT1 ΦT2 · · ·

)
. (2.16)

The regressors obtained have the form of a constant, linear, quadratic term and so on.
This means that a step fault can be described using a one dimensional basis and smooth
faults using a low-dimensional basis. An example of a parameterized fault is given in
Example 2.1.

Example 2.1: Parameterized Fault
The output from a magnetometer (compass) is monitored. After some time, the mag-
netic field is disturbed by a magnetic object. This disturbance can be modeled using the
Chebyshev polynomial matrix ΦT . To estimate the model parameters, the following loss
function is minimized

θ̂t = arg min
θt

‖F− ΦT θt‖2. (2.17)

The fault is parameterized using three basis functions shown in Figure 2.1a. The parame-
terized fault is shown in Figure 2.1b.

2.2 Rigid Body Modeling

In many situations, the orientation and position of a system are of interest. Navigation
or control of cars, airplanes, and robots are only a few of the examples. For modeling of
ground applications it is often enough to model the two-dimensional position and a head-
ing angle, while airborne applications need three-dimensional position and orientation.
This chapter will cover the latter, both modeling the dynamics and also measurements
from an Inertial Measurement Unit, IMU. The IMU modeled in this section not only con-
sists of the traditional accelerometer and gyroscope, but also a magnetometer (compass).
The results derived in this section are used for modeling of a UAV in Paper A.
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Figure 2.1: The basis functions (a) are used to parameterize the fault from a magne-
tometer disturbance (b).

2.2.1 Coordinate Systems

To describe a moving body system, two coordinate systems are used. One system, that
is fixed to the world (earth), referred to as the W-system, and one that is following the
moving body, referred to as the B-system. Figure 2.2 illustrates the coordinate systems.
Theoretically, the measurements from the IMU are made in an inertial frame. The rotation
of the Earth introduces Coriolis forces, but since these effects are small, they are neglected
here. This allows us to use the W-system as the home of the IMU measurements. The
relation between the coordinate systems is described in two steps. First, the translation
from the origin of the W-system to the origin of the B-system is described with the vector
p. Second, the orientation from the W-system to the B-system is described by the unit
quaternion qbw or the corresponding rotation matrix R(qbw). Unit quaternions can be
used to describe orientation numerically more robust than, for example, Euler angles. For
more information about quaternions, see Appendix B.

2.2.2 Dynamic Model

The translation between the W-system and the B-system p is also called the position of
the body. The dynamic model needs to have the position p and the rotation qbw as states.
Since the accelerations of the B-system are measured, these have to be modeled as states
as well as the velocity vw. The state vector can then be chosen as

x =
(
pwT vwT awT qbw

T
)T
, (2.18)

where pw is translation from the W-system to the B-system (described in the W-system),
vw is the velocity vector of the B-system relative to the W-system (described in the W-
system), aw is acceleration of the B-system relative to the W-system (described in the
W-system), qbw is the unit quaternion describing the orientation of the B-system.
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The dynamics of the translation is easy, namely

ṗw = vw,

v̇w = aw.

Since nothing is known about the derivative of the acceleration, this is modeled as noise,

ȧw = v1,

where v1 is process noise. The dynamics of the unit quaternion qbw is derived in Ap-
pendix B and the derivative is given in (B.36). The result is

q̇bw =
1
2
S(ωbbw)qbw, (2.19)

where

S(ωbbw) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 , (2.20)

and ωbbw = (ωx ωy ωz)T denotes the angular velocity of the B-system relative to the
W-system described in the B-system. The angular velocity ωbbw is measured by the gyro-
scopes and can therefore be modeled as a state which is then modeled as a measurement.
However, to reduce the dimension of the state space and avoid the nonlinearity which
would otherwise have been introduced, the measurement of the angular velocity is used
as a known parameter in the dynamics. This approach would only be theoretically correct
if ωbbw could be measured without noise. However, since the measurement noise from the
gyroscopes v2 is small, the approximation used here is to use ωbbw+v2 as angular velocity.
Thus, the dynamics is approximated as

q̇bw ≈
1
2
S(ωbbw + v2)qbw. (2.21)
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Using (B.36), it is possible to write

S(ωbbw + v2)qbw = S(ωbbw)qbw + S′(qbw)v2. (2.22)

where

S′(qbw)


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 , (2.23)

and qbw = (q0 q1 q2 q3)T . Then, (2.21) can be written as

q̇bw ≈
1
2
S(ωbbw)qbw +

1
2
S′(qbw)v2. (2.24)

Thus, the total dynamic model is given by
ṗw

v̇w

ȧw

q̇bw

 =


0 I 0 0
0 0 I 0
0 0 0 0
0 0 0 1

2S(ωbbw)


︸ ︷︷ ︸

A


pw

vw

aw

qbw

+


0 0
0 0
I 0
0 1

2S
′(qbw)


︸ ︷︷ ︸

B

(
v1

v2

)
. (2.25)

2.2.3 Measurements

The sensors that are available in the system are gyroscopes, accelerometers and mag-
netometer (compass). The measurements from the gyroscopes are, as discussed above,
directly incorporated in the dynamics and are therefore not described in the measurement
equations.

The accelerometers measure both the free acceleration of the body and the earth grav-
itational field described in the B-system. The measurement equation can therefore be
written as

ya,t = abt − gb + ea,t = R(qbw,t)(awt − gw)︸ ︷︷ ︸
,ha(qbw,t,awt )

+ea,t, (2.26)

where R( · ) is the rotation matrix given in (B.31), a is the free acceleration, g is the
gravity vector and ea is the measurement noise.

The measurement from the magnetometer is a normalized vector n̄bnp given in the B-
system and pointing along the earth magnetic field. When using an ordinary compass,
the reading will be two dimensional giving the heading toward the magnetic north pole.
Since this measurement is three dimensional, information is also given about the magnetic
inclination. The inclination, also called dip angle, is the angle between the earth’s tangent
plane and the magnetic field vector. The magnetic inclination depends on the position on
earth and is 0◦ at the magnetic equator and 90◦ at the magnetic poles. The inclination in
Linköping, Sweden, is about 70◦. The heading information will of course be less accurate
when the inclination approaches 90◦. For more information about the earth magnetic field,
see National Geomagnetism Program.

Since the earth magnetic field is very weak, it can easily be disturbed by an electric
motor or ferromagnetic objects such as beams or other iron constructions. The disturbance
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can be modeled as an additive signal, here denoted dm,t. The measurement equation can
thus be written as

ym,t = n̄bnp,t + dm,t + em,t = R(qbw,t)n̄wnp︸ ︷︷ ︸
,hm(qbw,t)

+dm,t + em. (2.27)

The total measurement equation becomes

yt =
(
ya,t
ym,t

)
= h(qbw,t, awt ) +

(
0
I

)
dm,t + et, (2.28)

which is in the standard form given in Section 2.1.

2.2.4 Discrete-Time Dynamic Model

The dynamic model (2.25) is divided into two parts. One containing the translational
dynamics of the B-system and the other part the orientation dynamics. The first part
contains the states pw, vw and aw and the second part qbw. To simplify the notation and
stress the time dependency, qbw is denoted qt and ωbbw is denoted ωt from now on.

Translational Dynamics

For the translational part of the system, the noise inputs to the system are assumed to be
constant between the sampling intervals. Then the discrete time system can be written aspwt

vwt
awt

 = F

pwt−1

vwt−1

awt−1

+Gvvt−1, (2.29)

where

F = eAT and Gv =

T∫
0

eAtB dt.

The matrices in (2.29) can be evaluated to

F =

I TI T 2

2 I
0 I TI
0 0 I

 and Gv =

T 3

6 I
T 2

2 I
TI

 .

Attitude Dynamics

The part of the system (2.25) describing the orientation is the quaternion qt. Assume that
the angular velocity ωt is constant during the sampling intervals. Making this assumption,
the orientation dynamics becomes time invariant during the sampling interval. Hence,
considering the noise-free dynamic model (2.19), the discrete time model is given by

qt = e
1
2S(ωt−1)T qt−1. (2.30)
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To simplify calculations, the term e
1
2S(ωt)T has to be rewritten. It can be rewritten as the

series expansion

e
1
2S(ωt)T =

∞∑
n=0

(
1
2S(ωt)T

)n
n!

=
∞∑
n=0

(
T

2

)n 1
n!
S(ωt)n. (2.31)

The matrix S(ωt) has an interesting property, namely

S(ωt)2 = −‖ωt‖2I. (2.32)

Using this result and the series expansion for the cosine, the even part of the series expan-
sion (2.31) can be written as

∞∑
n=0

(
T

2

)2n 1
(2n)!

(−1)n‖ωt‖2n = cos
(‖ωt‖T

2

)
I (2.33)

Using knowledge about the series expansion of the sine, the odd part can be written as

∞∑
n=0

(
T

2

)2n+1 1
(2n+ 1)!

S(ωt)2n+1

=
T

2
S(ωt)

∞∑
n=0

(
T

2

)2n 1
(2n+ 1)!

(−1)n
‖ωt‖2n+1

‖ωt‖

=
T

2
S(ωt)

sin (‖ωt‖T/2)
‖ωt‖

. (2.34)

Combining the odd and even parts of the series expansion, the unit quaternion dynamics
can be written as

qt =

cos
(‖ωt−1‖T

2

)
I +

sin
(
‖ωt−1‖T

2

)
‖ωt−1‖

S(ωt−1)

 qt−1. (2.35)

If the sample rate is high enough so that the product ‖ωt−1‖T is small, the small angle
approximation can be used to simplify the dynamic equation to

qt =
(
I +

T

2
S(ωt−1)

)
qt−1. (2.36)

Now, reintroducing the measurement noise on ωt−1, (2.22) can be used to derive the
following expression

qt =
(
I +

T

2
S(ωt−1)

)
qt−1 +

T

2
S′(qt−1)v2,t−1. (2.37)
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2.2.5 Linearization

To do estimation using linear filtering theory or to use linear theory for fault detection,
the system must be linearized. The dynamic equations (2.29) and (2.37) are already lin-
ear time-varying equations, but the measurement equation is nonlinear. It is therefore
linearized with a first order Taylor series. Starting with the accelerometer part of the
measurement equation, it can be approximated as

ya,t = ha(qt) + ea,t ≈ ha(q̂t|t−1) +Ha,t(qt − q̂t|t−1) + ea,t, (2.38)

where:

Ha,t =
∂ha(q)
∂q

∣∣∣∣∣
q=q̂t|t−1

(2.39)

The magnetometer part of the measurement equation is approximated as

ym,t = hm(qt, awt ) + em,t

≈ hm(q̂t|t−1) +Hm
t (qt − q̂t|t−1) + dm,t + em,t, (2.40)

where:

Hm
t =

∂hm(q)
∂q

∣∣∣∣∣
q=q̂t|t−1

To form the linearized system, a new measurement variable is computed with known
information as

ỹt , yt −
(
ha(q̂t|t−1)
hm(q̂t|t−1)

)
+
(
Ha
t

Hm
t

)
q̂t|t−1 =

(
Ha
t

Hm
t

)
qt +

(
0
I

)
dm,t + et, (2.41)

where the Jacobians in the measurement equation (2.44b) are

Ha
t = 2g

−q2 q3 −q0 q1

q1 q0 q3 q2

q0 −q1 −q2 q3

 (2.42)

and

Hm
t

T = 2


nxq0 + nyq3 − nzq2 −nxq3 + nyq0 + nzq1 nxq2 − nyq1 + nzq0

nxq1 + nyq2 + nzq3 nxq2 − nyq1 + nzq0 nxq3 − nyq0 − nzq1

−nxq2 + nyq1 − nzq0 nxq1 + nyq2 + nzq3 nxq0 + nyq3 − nzq2

−nxq3 + nyq0 + nzq1 −nxq0 − nyq3 + nzq2 nxq1 + nyq2 + nzq3

 ,

(2.43)
where the magnetic vector has the following coordinates n̄fnp = (nx ny nz)T . Then the

linearized system can now be written as

qt = Ft−1qt−1 +Gvt−1vt−1, (2.44a)

ỹt =
(
Ha
t

Hm
t

)
︸ ︷︷ ︸

,Ht

qt +
(

0
I

)
︸︷︷︸
,Hdt

dm,t + et. (2.44b)

We have now derived an approximative linear model on the form (2.5) of a nonlinear
model on the form (2.3). This linearized model will be used in combination with the
filtering and detection methods in Chapter 3.
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Estimation and Detection Theory

USING MEASUREMENTS to gain knowledge about the state of a system is often re-
ferred to as estimation or statistical inference. This is a well studied area and many

methods used today are based on theory developed in the 18th century. This chapter will
start with a historical overview over the debate about statistical viewpoints that still goes
on today. Section 3.2 discusses some of the common parameter estimation methods. Tak-
ing the Bayesian view on recursive estimation in Section 3.3, this is then used to derive the
Kalman filter, extended Kalman filter, particle filter and the Rao-Blackwellized particle
filter in Section 3.4, 3.5, 3.6, and 3.7 respectively.

Another area, closely related to estimation, is detection. To detect if a change has
occurred in a system, hypotheses are formed and statistical tests are used to find the most
likely hypothesis. This is the subject of Section 3.8.

3.1 Bayesians and Frequentists

The measurement model describes how a measurement y relates to the system state x,
often in a probabilistic way as p(y|x). The statistical inference problem is sometimes
referred to as the problem of inverse probability. The question is if it is possible to use the
model and gathered measurements to compute the inverse probability, i.e., p(x|y). The
British mathematician and minister Thomas Bayes treated the statistical inference prob-
lem already in the 18th century. His publication (Bayes, 1763) introduced the theorem
that is referred to as Bayes’ theorem

p(x|y) =
p(y|x)p(x)

p(y)
. (3.1)

This theorem allows us to compute the inverse probability given the prior probability
p(x), which can be more or less informative. The Bayesian view of the world is through

25
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the so called degree of belief. The belief should reflect the uncertainty related to the sys-
tem state and is represented as a probability distribution. The Bayesians believe that only
the data is real, so given the data and the prior belief a posterior belief can be calculated.

Mathematicians started to object against the Bayesian world-view during the late 19th
century and in the 1920s Sir Ronald Aylmer Fisher founded a new view of statistics with
Fisher (1922). The arguments against the Bayesian view were that prior beliefs could not
be accepted in an objective world-view. Fisher’s view was that there is a true system state
x which is deterministic, but unknown. The probability of an outcome should be seen as
the relative frequency for the outcome, given data from a long-run experiment. A person
having this view of statistics is therefore often referred to as a frequentist.

Bayesians and frequentists have different approaches to the statistical inference prob-
lem, even though the solutions often are very similar. One example is the Kalman filter
(KF), see Section 3.4. The frequentist views the KF as a recursive minimum variance least
squares estimator. They are able to prove that it is the best linear unbiased estimator,
BLUE, but there might be a better nonlinear estimator. The Bayesians on the other hand
starts with a prior belief of the state distribution. This belief is then recursively propagated
over time using Bayes’ theorem and the solution for a linear/Gaussian system turns out
to be the KF. In this case the filters are identical, but the interpretation of the solution is
different.

The debate among Bayesians and frequentists has been ongoing since the days of
Fisher and a historical story is given in Howie (2002). The Bayesian view has regained
its popularity for use with nonlinear filtering using Monte Carlo methods. Lately, many
books promoting this view has been published, e.g., Jaynes (2003), Robert (2001), Šmídl
and Quinn (2006). It cannot be said that one view always is better than the other, but there
have been comparative studies, see for instance Samaniego and Reneau (1994).

3.2 Parameter Estimation

The parameter estimation problem deals with finding the “best” parameters from a batch
of measurements y1:t. The relation between the parameters and the measurements is
usually in the following form

yt = h(x) + et, (3.2)

where x are the parameters to be estimated and et is the measurement noise. What is
meant by best can of course vary depending on the situation and can be defined by min-
imizing or maximizing a cost function. There are several cost functions resulting in dif-
ferent estimation methods. Some of these are

• The Least Squares (LS) method finds the parameters that gives the smallest squared
error

x̂ = arg min
x

∑
t

‖yt − h(x)‖22. (3.3)

• The Maximum likelihood (ML) estimator computes the parameters that are most
likely to produce the measurements, the cost function is

x̂ = arg max
x

p(y1:t|x) (3.4)
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• The Maximum a posteriori (MAP) estimator instead computes the most likely pa-
rameters given the measurements

x̂ = arg max
x

p(x|y1:t). (3.5)

Note that the relation to ML is given by Bayes’ rule (3.1), where it is clear that the
prior p(x) will affect the solution.

A special case of parameter estimation that will be important in the included papers
about detection, Paper B and C, is estimation of the initial state in a given time window.
Section 2.1.2 gives the following model of the outputs in a time window

Z = Otxt−L+1 + H̄v
t V + E (3.6)

This type of model is known as the general Gauss-Markov linear model. The parame-
ters in xt−L+1 can be estimated with minimum variance by solving the generalized least
squares problem

x̂t−L+1 = arg min
xt−L+1

(Z−Otxt−L+1)TS−1(Z−Otxt−L+1) (3.7)

where the noise distribution is assumed to be Gaussian with S = Cov(H̄v
t V + E), see

Björck (1996). This can be rewritten as the least squares problem

x̂t−L+1 = arg min
xt−L+1

‖S−1/2Z− S−1/2Otxt−L+1‖22, (3.8)

which has the solution
x̂t−L+1 = (S−1/2Ot)†S−1/2Z, (3.9)

where † denotes the Moore-Penrose pseudo inverse, see Golub and van Loan (1996). The
estimate will be distributed according to

x̂t−L+1 = (S−1/2Ot)†S−1/2Z ∼ N(xt−L+1, (OTt S−1Ot)−1), (3.10)

where N denotes the multivariate Gaussian distribution, see Appendix A.1.

3.3 Recursive Bayesian Filtering

This section will take the Bayesian approach to recursive filtering. An initial distribution
is available which is then propagated through the filter using Bayes’ rule and the system
model. The model used in this section is fairly general. Consider the following Hidden
Markov Model (HMM), given by the densities

p(xt+1|xt), (3.11a)
p(yt|xt), (3.11b)

with initial state distribution
p(x0). (3.11c)
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The hidden parameter is the state xt, which is observed through the measurement yt.
The model for the hidden parameters or states (3.11a) is a Markov process which im-
plies that the future states are independent of old states given the current state xt, i.e.,
p(xt|x1:t−1) = p(xt|xt−1). The interpretation of this is that all information needed for
prediction is contained in the most current state xt. This type of model includes both
nonlinear and non-Gaussian models.

The filtering problem asks for the probability of the current state given the measure-
ments, that is, the marginal filtering distribution

p(xt|y1:t). (3.12)

This is also referred to as the posterior distribution since it is conditioned on the last
measurement yt. To form a recursive solution using only the known model (3.11), Bayes’
rule is applied,

p(xt|y1:t) = p(xt|yt, y1:t−1)

=
p(yt|xt, y1:t−1)p(xt|y1:t−1)

p(yt|y1:t−1)
=

(3.11b)︷ ︸︸ ︷
p(yt|xt) p(xt|y1:t−1)

p(yt|y1:t−1)
, (3.13)

where the time update or a priori distribution is calculated as

p(xt|y1:t−1) =
∫
p(xt|xt−1)︸ ︷︷ ︸

(3.11a)

p(xt−1|y1:t−1)︸ ︷︷ ︸
Previous (3.13)

dxt−1, (3.14)

the normalization factor is

p(yt|y1:t−1) =
∫
p(yt|xt)︸ ︷︷ ︸

(3.11b)

p(xt|y1:t−1)︸ ︷︷ ︸
(3.14)

dxt. (3.15)

The analytical solution to the filtering problem above is only possible to compute in a few
special cases, e.g., the KF is the solution for linear systems with Gaussian noise. For a
more general case, numerical methods can be used to solve the problem approximately.
There are for example grid-based methods and the particle filter (PF).

Another related problem is to estimate the posterior distribution for the entire tra-
jectory x1:t. This would also provide a solution to the smoothing problem, i.e., finding
p(xn|y1:t) where n < t. The recursive solution to this problem, using Bayes’ rule, would
be

p(x1:t|y1:t) =
p(yt|xt)p(x1:t|y1:t−1)

p(yt|y1:t−1)
, (3.16)

where

p(x1:t|y1:t−1) = p(xt|xt−1)p(x1:t−1|y1:t−1), (3.17)

p(yt|y1:t−1) =
∫
p(yt|xt)p(x1:t|y1:t−1) dx1:t. (3.18)

This problem formulation is often used in particle filtering and this will be further dis-
cussed in Section 3.6.2.
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3.4 Kalman Filter

The KF is the solution to the recursive Bayesian filtering problem described in Section 3.3,
given that the system model is linear and the involved noise distributions are Gaussian.
The KF can also be viewed from the frequentist view as discussed in Section 3.1. With
this view it can be shown that the KF is the Best Linear Unbiased Estimator (BLUE), which
means that its estimate is unbiased and the estimation error has least covariance among
the class of linear and unbiased estimators. The filter was first presented in Kalman (1960)
and is a commonly used estimator. Many books give a detailed description of the KF, see
for example Kailath et al. (2000) and Anderson and Moore (1979).

The filter will be derived here using the Bayesian problem formulation and is sum-
marized in Algorithm 3.1. The derivations are made without going into detail which
is straightforward but lengthy. The interested reader is referred to Ho and Lee (1964),
Nordlund (2002) or Schön (2006) for the complete derivations. To fit the framework, the
linear models from Chapter 2 are formulated in terms of the following Probability Density
Functions (PDFs)

p(xt|xt−1) = N(xt;Ftxt−1 +Gut ut, G
v
tQtG

v
t
T ), (3.19a)

p(yt|xt) = N(yt;Htxt +Hu
t ut, Rt). (3.19b)

Initialization

The initial distribution is Gaussian and parameterized as

p(x0) = N(x0; x̂0|0, P0|0) (3.20)

Time Update

The time update corresponds to making a one-step prediction according to the system
model. The prediction is calculated by the integral in (3.14), which in this case can be
computed analytically due to the linear and Gaussian structure. The result is again a
Gaussian distribution

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1 = N(xt; x̂t|t−1, pt|t−1), (3.21a)

where

x̂t|t−1 = Ft−1x̂t−1|t−1 +Gut−1ut−1, (3.21b)

Pt|t−1 = Ft−1Pt−1|t−1F
T
t−1 +Gvt−1Qt−1G

v
t−1

T . (3.21c)

Measurement Update

The measurement update will infer the measurement to the distribution. This is accom-
plished by completing the recursion in (3.13) which includes computing the integral in
(3.15). Again, this can be done analytically due to the linear and Gaussian structure. The
end result is

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
=
p(yt, xt|y1:t−1)
p(yt|y1:t−1)

= N(xt; x̂t|t, Pt|t) (3.22a)
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where

x̂t|t = x̂t|t−1 +Kt(yt −Htx̂t|t−1 −Hu
t ut), (3.22b)

Pt|t = (I −KtHt)Pt|t−1, (3.22c)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)−1. (3.22d)

This completes the recursion, the algorithm is summarized in Algorithm 3.1.

Algorithm 3.1 Kalman Filter (KF)

1. Initialize: Set x̂0|0 = x0 and P0|0 = P0.

2. Time update:

x̂t|t−1 = Ft−1x̂t−1|t−1 +Gut−1ut−1 (3.23a)

Pt|t−1 = Ft−1Pt−1|t−1F
T
t−1 +Gvt−1Qt−1G

v
t−1

T (3.23b)

3. Measurement update:

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)−1 (3.23c)

x̂t|t = x̂t|t−1 +Kt(yt −Htx̂t|t−1 −Hu
t ut) (3.23d)

Pt|t = (I −KtHt)Pt|t−1 (3.23e)

4. Set t := t+ 1 and repeat from step 2.

3.5 Extended Kalman Filter

To be able to use the KF framework also for a nonlinear system, the model is linearized.
Linearizing the system around the estimated trajectory and then applying the KF gives the
Extended Kalman Filter, EKF. Given a nonlinear system

xt = ft−1(xt−1, ut−1, vt−1), (3.24a)
yt = ht(xt, ut) + et, (3.24b)

the linear system is a first order Taylor-expansion around the latest state estimate,

f(xt) ≈ f(x̂t|t, ut) + Ft(xt − x̂t|t), (3.25a)
g(xt) ≈ g(x̂t|t, ut) +Gvt vt, (3.25b)
h(xt) ≈ h(x̂t|t−1, ut) +Ht(xt − x̂t|t−1), (3.25c)



3.6 Particle Filter 31

where:

Ft ,
∂f(x, u, v)

∂x

∣∣∣∣∣
(x,u,v)=(x̂t|t,ut,0)

Gvt ,
∂f(x, u, v)

∂v

∣∣∣∣∣
(x,u,v)=(x̂t|t,ut,0)

Ht ,
∂h(x, u)
∂x

∣∣∣∣∣
(x,u)=(x̂t|t−1,ut)

Using this linearization, the state trajectory can be estimated by the EKF in Algorithm 3.2.
Observe that optimality is not guaranteed by the EKF, but it often performs good in prac-
tice.

Algorithm 3.2 Extended Kalman Filter (EKF)

1. Initialize: Set x̂0|0 = x0 and P0|0 = P0.

2. Time update:

x̂t|t−1 = ft−1(x̂t−1, ut−1) (3.26a)

Pt|t−1 = Ft−1Pt−1|t−1F
T
t−1 +Gvt−1Qt−1G

v
t−1

T (3.26b)

3. Measurement update:

x̂t|t = x̂t|t−1 +Kt

(
yt − h(x̂t|t−1, ut)

)
(3.26c)

Pt|t = (I −KtHt)Pt|t−1 (3.26d)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)−1 (3.26e)

4. Set t := t+ 1 and repeat from step 2.

3.6 Particle Filter

As discussed in Section 3.3, the recursive filtering problem cannot be computed analyti-
cally except for a few special cases. The PF solves this problem by using N samples from
the desired distribution

x
(i)
t ∼ p(xt|y1:t), i = 1, . . . , N, (3.27)

where x(i)
t denotes the samples or particles. The particles can be used to form an approx-

imative distribution as

p(xt|y1:t) ≈ p̂(xt|y1:t) =
N∑
i=1

qit|tδ(xt − x
(i)
t ),

N∑
i=1

q
(i)
t|t = 1, q

(i)
t|t ≥ 0,∀i, (3.28)
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where p̂( · ) denotes an approximative distribution, δ( · ) is the Dirac delta and q(i)
t|t denotes

weights dependent on the sampling method used. The Dirac delta δ(a) can be thought of
as a function that is zero except at a = 0 where it is infinitely large. Formally, it is a
distribution or measure with the following properties

∞∫
−∞

δ(x) dx = 1,

∞∫
−∞

f(x)δ(x− a) dx = f(a), (3.29)

where the last property is referred to as the sifting property. Having a particle represen-
tation of the filtering distribution, the integrals in (3.13) can be solved easily. The PF can
be shown to approach the exact solution to the filtering problem if the number of particles
goes to infinity, see discussions about convergence results in (Del Moral, 2004) and (Hu
et al., 2008). An approximation can be computed with a finite number of particles.

The PF was introduced in Gordon et al. (1993), where the missing key to the PF was
found. This was the resampling step that prevented the method to degenerate after a few
iterations. The PF stems from the Monte Carlo (MC) integration methods and the initial
steps were taken already in the 1940’s (Metropolis and Ulam, 1949). Further reading
about the PF can be done in the tutorials Arulampalam et al. (2002), Doucet and Johansen
(2008), Doucet (1998) and the books Doucet et al. (2001), Ristic et al. (2004).

3.6.1 Derivations

Remember the filtering posterior probability given by (3.13)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
. (3.30)

The following derivations will follow this decomposition of the filtering distribution.

Initialize

Initialize the PF by sampling from the initial distribution

x
(i)
0 ∼ p(x0), (3.31)

and depending on the sampling strategy assign values to q(i)
0|0. This gives the approxima-

tive initial distribution

p(x0) ≈
N∑
i=1

q
(i)
0|0δ(x0 − x(i)

0 ). (3.32)
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Time Update

The time update starts with computing the one-step ahead prediction by using (3.14) as

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1

≈
∫
p(xt|xt−1)

N∑
i=1

q
(i)
t−1|t−1δ(xt−1 − x(i)

t−1) dxt−1

=
N∑
i=1

q
(i)
t−1|t−1

∫
p(xt|xt−1)δ(xt−1 − x(i)

t−1) dxt−1 =
N∑
i=1

q
(i)
t−1|t−1p(xt|x

(i)
t−1). (3.33)

This is a continuous distribution, a sum of process noise distributions. To regain a particle
distribution, new samples must be generated. This can be done according to

x
(i)
t ∼ π(xt|x(i)

t−1, yt), i = 1, . . . , N, (3.34)

where π( · ) is a proposal distribution which should be selected so that it has appropri-
ate support. It is often an advantage to include the latest measurement yt in the pro-
posal distribution as this can improve the numerical properties of the PF (Doucet, 1998).
However, in the simplest case, the proposal distribution can be given by the dynamics as
π(xt|xt−1, yt) = p(xt|x(i)

t−1). To make the new particle distribution reflect the distribu-
tion in (3.33), the weights need to be updated according to

q
(i)
t|t−1 ∝

p(x(i)
t |x(i)

t−1)

π(x(i)
t |x(i)

t−1, yt)
q

(i)
t−1|t−1, i = 1, . . . , N. (3.35)

If the distribution of the prediction should be used for constructing an estimate, normal-
ization to ensure

∑
i q

(i)
t|t−1 = 1 is needed. Otherwise, the normalization is taken care

of in the measurement update. In the case where the proposal distribution is chosen as
π(xt|xt−1, yt) = p(xt|x(i)

t−1) the old weights are simply kept q(i)
t|t−1 = q

(i)
t−1|t−1. After

the time update, the following distribution is available

p̂(xt|y1:t−1) =
N∑
i=1

q
(i)
t|t−1δ(xt − x

(i)
t ). (3.36)

Measurement Update

The measurement update infers the latest measurement by completing the calculations in
(3.30). Observe that the denominator is only a normalizing constant since it is independent
of xt. Thus, it does not need to be calculated if the distribution is numerically normed.
Hence,

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) ≈
N∑
i=1

q
(i)
t|t−1p(yt|xt)δ(xt − x

(i)
t ) (3.37)
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where ∝ means proportional to. Here, we can see that the measurement update corre-
sponds to updating the particle weights. This can be done at the same time as normalizing
the distribution as

q
(i)
t|t =

q
(i)
t|t−1p(yt|x

(i)
t )∑N

j=1 q
(j)
t|t−1p(yt|x

(j)
t )

. (3.38)

Now the resulting particle distribution is

p̂(xt|y1:t) = q
(i)
t|t δ(xt − x

(i)
t ). (3.39)

Hence, the recursion is complete and starting over with the time update would lead to
the MC integration methods. However, this would lead to numerical difficulties which are
solved by the resampling step.

Resampling

The MC integration methods will degenerate after a few iterations since all but one particle
weight will become close to zero. It can be shown (Doucet, 1998) that this degeneracy
is impossible to avoid using these methods. When the PF was derived in Gordon et al.
(1993), a resampling step was therefore included to solve this problem. The problem is
that the particles can be spread over areas with very low probability and therefore get very
low weight. The idea with resampling is to copy likely particles and discard unlikely ones
in order to increase the particle density in areas with high probability.

There are several strategies for resampling. The most common are systematic re-
sampling (Kitagawa, 1996), residual resampling (Liu and Chen, 1998) and multinomial
resampling.

These steps can now be summarized in Algorithm 3.3.

3.6.2 Discussion

In the derivation of the particle filter above, the marginal distribution p(xt|y1:t) was de-
rived as in the original paper (Gordon et al., 1993). However, it is common in the litera-
ture to derive the distribution for the trajectory p(x1:t|y1:t), see for instance Doucet et al.
(2001). Also in this case it is only the variable xt that is sampled at time t while the set
{x(i)

1:t−1} remains fixed. During the resampling step the most likely trajectories x1:t are
copied and unlikely ones are discarded. This leads to sample impoverishment for the old
states, and already after a few iterations all particles will be equal. Thus, the estimate for
the trajectory cannot be trusted.

The algorithms for estimating the marginal distribution or the trajectory are very sim-
ilar. The only difference is that there is no need to save the old particles {x(i)

1:t−1} when
estimating the marginal distribution. However, when estimating the marginal distribution,
a continuous distribution is available for the prediction during the time update as

p̂(xt|y1:t−1) =
N∑
i=1

q
(i)
t−1|t−1p(xt|x

(i)
t−1). (3.43)
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Algorithm 3.3 Particle Filter

1. Initialize the particles according to x(i)
0 ∼ p(x0) and set appropriate weights q(i)

0|0
for all i = 1, . . . , N .

2. Time update: Generate new particles according to the proposal distribution

x
(i)
t ∼ π(xt|x(i)

t−1, yt), i = 1, . . . , N. (3.40)

Update the weights according to

q
(i)
t|t−1 =

p(x(i)
t |x(i)

t−1)

π(x(i)
t |x(i)

t−1, yt)
q

(i)
t−1|t−1, i = 1, . . . , N, (3.41)

which in case π(xt|xt−1, yt) = p(xt|x(i)
t−1) simplifies to q(i)

t|t−1 = q
(i)
t−1|t−1.

3. Measurement update: Calculate importance weights according to

q
(i)
t|t =

q
(i)
t|t−1p(yt|x

(i)
t )∑N

j=1 q
(j)
t|t−1p(yt|x

(j)
t )

, i = 1, . . . , N. (3.42)

4. Resampling: Use a method of choice, e.g., the ones discussed in Section 3.6.1.

5. Set t := t+ 1 and repeat from step 2.
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This allows us to sample from a proposal distribution of the form

x
(i)
t ∼

N∑
i=1

q
(i)
t−1|t−1π(xt|x(i)

t−1, yt), (3.44)

where the weights are updated according to

q
(i)
t|t−1 =

∑N
j=1 q

(j)
t−1|t−1p(x

(i)
t |x(j)

t−1)

N
∑N
j=1 q

(j)
t−1|t−1π(x(i)

t |x(j)
t−1, yt)

. (3.45)

The resulting filter is called the Marginal Particle Filter and was derived in Klaas et al.
(2005). For this filter, the resampling step is not necessary since the same type of opera-
tion is done directly in the sampling step. The numerical properties are also shown to be
better. The disadvantage is that the complexity of the sampling step is O(N2) compared
to O(N) for the ordinary PF.

3.7 Rao-Blackwellized Particle Filter

The particle filter requires large amounts of particles as the state dimension increases
to maintain a good approximation of the filtering distribution. It is therefore desirable
to keep the state dimension treated by the particle filter as low as possible. The Rao-
Blackwellized Particle Filter (RBPF) reduces the dimension of the state space treated by
the particle filter by partitioning the state space into two parts as xt = (xpt

T
xkt

T )T . The
posterior distribution can then also be partitioned into two parts as

p(xpt , x
k
t |y1:t) = p(xpt |y1:t)p(xkt |xpt , y1:t). (3.46)

The idea is to use different filters for computing the two parts of the posterior. If the
system is linear given the states xpt (i.e., conditionally linear), then the states xkt can be
calculated using a KF. The dimension in the particle filter is then limited to the dimension
of xpt . The RBPF is treated in Chen and Liu (2000), Andrieu and Doucet (2002) and is
also sometimes referred to as the Marginalized Particle Filter (Schön, 2006, Schön et al.,
2005). The implementation of the RBPF in this section can be seen as the filter bank
formulation derived in Hendeby (2008) and Hendeby et al. (2007).

3.7.1 Derivations

The RBPF traditionally estimates the distribution for the full trajectory of the nonlinear
states, i.e., p(xp1:t, x

k
t |y1:t). The derivation in this thesis is done for the marginal dis-

tribution p(xpt , xkt |y1:t). The motivation is the same as for the regular PF discussed in
Section 3.6.2.

The following model is used for RBPF since it fulfills the requirement on being condi-
tionally linear

xpt = fpt−1(xpt−1) + F pt−1(xpt−1)xkt−1 +Gpt−1(xpt−1)wpt−1, (3.47a)

xkt = fkt−1(xpt−1) + F kt−1(xpt−1)xkt−1 +Gkt−1(xpt−1)wkt−1, (3.47b)

yt = ht(x
p
t ) +Ht(x

p
t )x

k
t + et, (3.47c)
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where the noises are assumed to be zero-mean Gaussian with the following covariance(
wpt
wkt

)
∼ N(0, diag(Qpt , Q

k
t )︸ ︷︷ ︸

=Qt

), et ∼ N(0, Rt). (3.48)

In order to simplify the notation, we will make use of the following notation

ft(x
p
t ) =

(
fpt (xpt )
fkt (xpt )

)
, Ft =

(
F pt (xpt )
F kt (xpt )

)
, Gt =

(
Gpt (x

p
t ) 0

0 Gkt (xpt )

)
, wt =

(
wpt
wkt

)
.

The dynamic model in (3.47a–3.47b) can then be written as

xt =
(
xpt
xkt

)
= ft−1(xpt−1) + Ft−1x

k
t−1 +Gtwt−1. (3.49)

Initialize

Start with the initial distribution

p̂(xpt−1, x
k
t−1|y1:t−1) =

N∑
i=1

q
(i)
t−1 N(xkt−1;xk(i)

t−1|t−1, P
(i)
t−1|t−1)δ(xpt−1 − x

p(i)
t−1). (3.50)

Time Update

The time update starts with computing the one-step ahead prediction by using (3.14) as

p(xpt , x
k
t |y1:t−1) =

∫∫
p(xpt , x

k
t |xpt−1, x

k
t−1) p(xpt−1, x

k
t−1|y1:t−1)︸ ︷︷ ︸

(3.50)

dxkt−1 dx
p
t−1.

(3.51)
Since p(xpt−1, x

k
t−1|y1:t−1) is a Gaussian sum but sampled in the dimensions of xp, this

integral can be evaluated analytically. The obtained solution is a sum of Gaussians and
the evaluation is similar to the way a KF is derived. The result is

p̂(xpt , x
k
t |y1:t−1) =

∑
i

q
(i)
t−1 N(xt; x̄

(i)
t|t−1, P̄

(i)
t|t−1), (3.52)

where

x̄
(i)
t|t−1 = ft−1(xp(i)t−1|t−1) + F

(i)
t−1x

k(i)
t−1|t−1, (3.53a)

P̄
(i)
t|t−1 = F

(i)
t−1P

(i)
t−1|t−1F

(i)T
t−1 +G

(i)
t−1Qt−1G

(i)T
t−1 , (3.53b)

and the following split can be made analogously to the split of xt,

x̄ =
(
x̄p

x̄k

)
, P̄ =

(
P̄ p P̄ pk

P̄ pkT P̄ k

)
.
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This Gaussian mixture cannot be handled in the measurement update since the distribution
is continuous in the nonlinear part xp. Therefore, the Gaussian distributions in (3.52) are
split into two parts

p̂(xpt , x
k
t |y1:t−1) =

N∑
i=1

q
(i)
t−1 N(xk(i)

t ;xk(i)
t|t−1, P

(i)
t|t−1) N(xpt ; x̄

p(i)
t|t−1, P̄

p(i)
t|t−1), (3.54)

where

x
k(i)
t|t−1 = x̄

k(i)
t|t−1 − P̄

pk(i)T
t|t−1 (P̄ p(i)t|t−1)−1(xpt − x̄p(i)t|t−1), (3.55a)

P
(i)
t|t−1 = P̄

k(i)
t|t−1 − P̄

pk(i)T
t|t−1 (P̄ p(i)t|t−1)−1P̄

pk(i)
t|t−1 . (3.55b)

Note that the first part is conditioned on the second and the calculations are just a matter
of completing the squares in the exponential of the Gaussian distributions. For each term
in the sum (3.54) the distribution for xkt is sampled with one sample

x
p(i)
t ∼ N(x̄p(i)t|t−1, P̄

p(i)
t|t−1). (3.56)

Thus the distribution can finally be approximated as

p̂(xpt , x
k
t |y1:t−1) =

N∑
i=1

q
(i)
t−1 N(xkt ;xk(i)

t|t−1, P
(i)
t|t−1)δ(xpt − xp(i)t ), (3.57)

where xk(i)
t|t−1 and P (i)

t|t−1 are calculated using (3.55) for a specific particle xpt = x
p(i)
t .

Measurement update

Split the measurement updated distribution as follows

p(xpt , x
k
t |y1:t) = p(xpt |y1:t)p(xkt |xpt , y1:t). (3.58)

Now we can compute the two parts separately, start with the KF part which is calculated
for each particle

p(xkt |xp(i)t , y1:t) =
p(yt|xp(i)t , xkt )p(xkt |xp(i)t , y1:t−1)

p(yt|y1:t−1)
. (3.59)

All involved densities here are Gaussian, so this can be identified as a KF measurement
update resulting in the following solution

p(xkt |xp(i)t , y1:t) = N(xkt ;xk(i)
t|t , P

(i)
t|t ) (3.60)

where

x
k(i)
t|t = x

k(i)
t|t−1 +K

(i)
t (yt − ŷ(i)

t ), (3.61)

P
(i)
t|t = P

(i)
t|t−1 −K

(i)
t S

(i)
t K

(i)T
t , (3.62)
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and

ŷ
(i)
t = ht(x

p(i)
t ) +Ht(x

p(i)
t )xk(i)

t|t−1, (3.63)

S
(i)
t = Ht(x

p(i)
t )Pt|t−1Ht(x

p(i)
t )T +Rt, (3.64)

K
(i)
t = Pt|t−1Ht(x

p(i)
t )T (S(i)

t )−1. (3.65)

The measurement update for the nonlinear states corresponds to calculate

p(xpt |y1:t) =
p(yt|xpt )p(xpt |y1:t−1)

p(yt|y1:t−1)
, (3.66)

where it is observed that the denominator is only a normalizing constant since it is inde-
pendent of xpt . Thus, it does not need to be calculated if the distribution is numerically
normed. Again, the calculations are done per particle

p(xpt |y1:t) ∝ p(yt|xpt )p(xpt |y1:t−1) =
∫
p(yt|xpt , xkt )p(xkt |xpt , y1:t) dxkt p(x

p
t |y1:t−1)

=
∫
p(yt|xpt , xkt ) N(xkt ;xk(i)

t|t , P
(i)
t|t ) dxkt q

(i)
t−1δ(x

p
t − xp(i)t )

= q
(i)
t−1 N(yt; ŷ

(i)
t , S

(i)
t )δ(xpt − xp(i)t ), (3.67)

where ∝ means proportional to. Here, we can see that the measurement update corre-
sponds to updating the particle weights. This can be done at the same time as normalizing
the distribution as

q
(i)
t =

N(yt; ŷ
(i)
t , S

(i)
t )q(i)

t−1∑N
j=1 N(yt; ŷ

(j)
t , S

(j)
t )q(j)

t−1

. (3.68)

The final distribution is then given by

p̂(xpt , x
k
t |y1:t) =

N∑
i=1

q
(i)
t N(xkt ;xk(i)

t|t , P
(i)
t|t )δ(xpt − xp(i)t ). (3.69)

Resampling

The resampling step is analogous to the one for the ordinary PF. See Section 3.6.1 for
more information.

3.8 Hypothesis Testing

A common problem is to detect whether a change of some type has occurred. Common
applications are in the area of disturbance detection or fault detection. In this disserta-
tion, the Papers B and C address this issue. Paper B detects magnetic disturbances on a
magnetometer and Paper C detects errors in extraction of features in an image.

The detection problem is often formulated in a way that it is a question of deciding
between a number of hypotheses. To make the decision, measurement data from some
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Algorithm 3.4 Rao-Blackwellized Particle Filter (RBPF)

1. Initialize: For all particles i = 1, . . . , N , let xk(i)
0|0 = xk0 , P (i)

0|0 = P0 and xp(i)0 ∼
p(xp0).

2. Time update: Compute the Gaussian mixture by

x̄
(i)
t|t−1 = ft−1(xp(i)t−1) + F

(i)
t−1x

k(i)
t−1|t−1, (3.70a)

P̄
(i)
t|t−1 = F

(i)
t−1P

(i)
t−1|t−1F

(i)T
t−1 +G

(i)
t−1Qt−1G

(i)T
t−1 , (3.70b)

where the following split can be made x̄ =
(
x̄p

x̄k

)
and P̄ =

(
P̄ p P̄ pk

P̄ pkT P̄ k

)
.

Sample the PF states according to

x
p(i)
t ∼ N(x̄p(i)t|t−1, P̄

p(i)
t|t−1). (3.70c)

Update the KF states according to

x
k(i)
t|t−1 = x̄

k(i)
t|t−1 − P̄

pk(i)T
t|t−1 (P̄ p(i)t|t−1)−1(xp(i)t − x̄p(i)t|t−1), (3.70d)

P
(i)
t|t−1 = P̄

k(i)
t|t−1 − P̄

pk(i)T
t|t−1 (P̄ p(i)t|t−1)−1P̄

pk(i)
t|t−1 . (3.70e)

3. Measurement update:

q
(i)
t =

N(yt; ŷ
(i)
t , S

(i)
t )q(i)

t−1∑N
j=1 N(yt; ŷ

(j)
t , S

(j)
t )q(j)

t−1

(3.71a)

x
k(i)
t|t = x

k(i)
t|t−1 +K

(i)
t (yt − ŷ(i)

t ) (3.71b)

P
(i)
t|t = P

(i)
t|t−1 −K

(i)
t S

(i)
t K

(i)T
t (3.71c)

where
ŷ

(i)
t = ht(x

p(i)
t ) + Ht(x

p(i)
t )xk(i)

t|t−1, S(i)
t = Ht(x

p(i)
t )Pt|t−1Ht(x

p(i)
t )T + Rt and

K
(i)
t = Pt|t−1Ht(x

p(i)
t )T (S(i)

t )−1.

4. Resampling: Use a method of choice, e.g., the ones discussed in Section 3.6.1,
update q(i)

t .

5. Set t := t+ 1 and repeat from step 2
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sensors and a model of the process are often provided. If there are two hypotheses to
decide between, the problem is known as a binary hypothesis test. To detect faults in a
system, the hypotheses could be formulated as

H0 : The system works as normal,
H1 : The system is faulty,

where the hypothesesH0 andH1 usually are referred to as null hypothesis and alternative
hypothesis respectively. Using sensor measurements and the model of the system a test
statistic can be derived. The test statistic will have different distributions in case a fault
is present or not. If the distributions are completely known in both cases, we will have a
simple hypothesis test. Otherwise, if some parameters are unknown, we have a composite
hypothesis test.

3.8.1 Simple Hypothesis Testing

Consider the case where the binary variable θ = {θ0, θ1} is measured with additive noise
e which has a known distribution,

y = θ + e.

The hypothesis test

H0 : θ = θ0,

H1 : θ = θ1,

is an example of a simple hypothesis test if the parameters θ0 and θ1 are known. The
probability of the measurement can then be calculated depending on which hypothesis
that is assumed true. One approach to selection between the hypotheses is to select the
hypothesis that gives the highest probability for the measurement. Hence, if p(y|H1) >
p(y|H0), the alternative hypothesis is decided. Another approach would be to be more
restrictive with causing an alarm, so the requirement for an alarm is that p(y|H1) >
γp(y|H0) where γ > 1. This can also be expressed as a ratio between the probabilities,
the likelihood ratio

p(y|H1)
p(y|H0)

> γ.

In order to statistically describe these approaches, some definitions have to be made.

Definition 3.1. Define the following detection related terms

• False alarm (FA) is to decideH1 whenH0 is true.

• Miss (M) is to decideH0 whenH1 is true.

• Probability of false alarm (PFA); PFA = P (H1 |H0)

• Probability of miss (PM ); PM = P (H0 |H1)

• Probability of detection (PD); PD = P (H1 |H1) = 1− PM
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When designing a test to decide between the hypotheses, a trade-off between high PD
and low PFA has to be made. If it is decided to have PFA on a certain level, what is
the optimal test? This question is answered by the Neyman-Pearson, NP, lemma, which
was first published in the articles Neyman and Pearson (1928a,b). Here, the lemma is
presented in Theorem 3.1. The NP-lemma is referred to as the Likelihood Ratio Test,
LRT, and is the most powerful test for simple hypotheses. Most powerful means that it
maximizes PD, given a PFA.

Theorem 3.1 (Neyman-Pearson lemma)
To maximize PD for a given PFA = α decideH1 if

L(y) =
p(y|H1)
p(y|H0)

> γ, (3.72)

where the threshold γ is given by

PFA =
∫

y:L(y)>γ

p(y|H0) dy = α. (3.73)

Proof: See (Kay, 1998, Appendix 3A).

3.8.2 Composite Hypothesis Testing

Consider the measurement
y = θ + e, (3.74)

where the measurement noise e has a known distribution but θ is unknown. The one-sided
hypothesis

H0 : θ = 0, (3.75)
H1 : θ > 0, (3.76)

will have an unknown parameter in the distribution of y under the alternative hypothesis.
This test is therefore called a composite hypothesis test. It is sometimes possible to find
an optimal detector even for composite hypotheses. A detector that yields the highest PD
given PFA for all values of θ is known as Uniformly Most Powerful, UMP. A two-sided
hypothesis test could be

H0 : θ = 0, (3.77)
H1 : θ 6= 0, (3.78)

where the alternative hypothesis has two test regions for the parameter θ. It can be shown
that a UMP test does not exist for a two-sided hypothesis test, see Kay (1998). Thus, in
those cases suboptimal detectors have to be implemented.

To construct a detector for a composite hypothesis test, there are two major ap-
proaches:

1. Marginalization or Bayesian approach. If the unknown parameter has a known
distribution it can be marginalized.

2. Generalized Likelihood Ratio Test, GLRT.

The approaches will be discussed in the following sections.
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Marginalization

Consider again the measurement
y = θ + e, (3.79)

where e is noise with known distribution but θ is unknown. The hypotheses are

H0 : θ = θ0, (3.80a)
H1 : θ = θ1, (3.80b)

where θ0 and θ1 are unknown. Now, there are unknown parameters in the distribution of
y for both hypotheses. The marginal density function of y can be computed as

p(y|H0) =

∞∫
−∞

p(y|H0, θ0)p(θ0) dθ0, (3.81a)

p(y|H1) =

∞∫
−∞

p(y|H1, θ1)p(θ1) dθ1. (3.81b)

This can be thought of as computing the “expected distribution, p(y)”. Inserting this
density function in the LR test gives

L̃(y) =
p(y|H1)
p(y|H0)

. (3.82)

Generalized Likelihood Ratio

Another way of eliminating the unknown parameters in (3.80) is to use the maximum
likelihood estimate of the parameter. The parameters can then be calculated as

θ̂i = arg max
θi

p(y|θi). (3.83)

The estimated parameters θ̂i, where i ∈ {0, 1}, are then inserted into the Likelihood Ratio
test provided in the NP-lemma which yields the Generalized Likelihood Ratio test,

L̂(y) =
p(y|θ̂1)

p(y|θ̂0)
. (3.84)

Even though the NP-test is optimal, the GLRT is not always optimal but often works well
in practice. The test is shown to be optimal when infinite information is available, but
this is only of theoretical interest (Lehmann, 1986). An example of a GLRT is given in
Example 3.1.
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Example 3.1: Detection with GLR

Paper B deals with detection of magnetic disturbances on a magnetometer. A residual
which can be used for detection is constructed on the form

r = WTZ ∼ N(WT θ, I), (3.85)

where r is a vector of dimension nr, WT is a projector, Z contains a batch of measure-
ments, and θ is the fault parameter. The test to see if there is a fault present or not, can be
formulated as the hypothesis test

H0 : θ = 0, (3.86a)
H1 : θ 6= 0. (3.86b)

This is a composite hypothesis test since there is an unknown parameter θ. The GLRT can
be used for detection and the ML-estimate of θ is

θ̂ = arg max
θ

p(r|θ) = arg max
θ

1
(2π)nr/2

e−
1
2 (r−WT θ)T (r−WT θ)

= arg max
θ

‖r −WT θ‖22 = (WT )†r (3.87)

where (WT )† denotes the Moore-Penrose pseudo inverse of WT (see Golub and van
Loan (1996)). The logarithm of the GLR test statistic in (3.84) will also serve as a test
statistic since log is a strictly increasing function. Thus, the test statistic is

L̂(r) = 2 log
p(r|θ = θ̂)
p(r|θ = 0)

= 2 log
e−

1
2 (r−WT (WT )†r)T (r−WT (WT )†r)

e−
1
2 r
T r

= rTPWT r, (3.88)

wherePWT = WT (WT )† is an orthogonal projection (Meyer, 2000). Since the eigenval-
ues of a projection matrix is 1, the test statistic is distributed as the non-central chi-square
distribution

L̂(r) =∼ χ′2ν (λ), (3.89)

where ν = rank(WT ) and

λ = (WT θ)TPWTWT θ = (WT θ)TWT θ. (3.90)

Observe that λ = 0 in the fault-free case and then the test statistic is distributed according
to the central chi-square distribution L ∼ χ2

ν . The threshold is then chosen from the
chi-square distribution (see Appendix A.2) so that the fault-free hypothesis is rejected
erroneously only with a small probability.



4
Simultaneous Localization

and Mapping

A CHALLENGING PROBLEM for the robotics community over the last 20 years has
been the Simultaneous Localization and Mapping (SLAM) problem. The problem is

to have a robot can localize itself and at the same time build a map of its environment. The
solution to this problem would be an enabler for true autonomous systems that can explore
previously unknown environments. Although satellite systems such as GPS, Galileo and
GLONASS can be used for positioning, it is often an advantage and sometimes necessary to
have a positioning system that does not require any external infrastructure. Such a system
does not need a predefined map of its surroundings, it will work where the satellite signal
is jammed or shadowed, and it will also work at remote places like other planets.

This chapter is divided into three sections. The first poses the SLAM problem, ana-
lyzes the difficulties and points to solutions in the literature. The following two sections
comment more closely on two of the most common SLAM algorithms, EKF-SLAM and
FastSLAM.

4.1 Problem Formulation

A general formulation of the SLAM problem is to have a robot to localize itself and at
the same time build a map of its environment. The map could be represented in different
ways, but this chapter will primarily treat feature or landmark based maps. It is popu-
lar to treat the SLAM problem in the Bayesian framework, which will be adopted here
as well. For a feature based SLAM problem, the Bayesian estimation problem can be
mathematically defined as at time t finding the distribution

p(xrt ,m|y1:t), (4.1)

where xrt is the state of the robot, m is the map state and y1:t are the measurements up to
time t. A general state-space model for the SLAM-problem with static map is nonlinear

45
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and can be written as

xrt = fr(xrt−1, ut−1, vt−1), (4.2a)
mt = mt−1, (4.2b)

yit = h(xrt ,m
i
t) + et, (4.2c)

where ut is the input signal, vt is the process noise, and et is the measurement noise.
The SLAM problem has been extensively studied since the mid 1980’s by many tal-

ented researchers. Many solutions have been proposed during the years, but there are still
many open questions to be answered before SLAM can be used robustly in unstructured
environments. Three major difficulties with SLAM are:

1. Dependencies and high dimensionality

2. Nonlinearities

3. Processing of data from sensors that sense the environment

The first point is motivated with an example. If the system in (4.2) is linear, the solution
to the filtering problem is given by the Kalman Filter (KF). An example of a model for a
linear SLAM problem is given by

xrt =
(

pt
vt

)
=
(
I TI
0 I

)(
pt−1

vt−1

)
+
(
T 2

2 I
TI

)
vt−1, (4.3a)

mi
t = mi

t−1, (4.3b)

yit = pt −mi
t + et, if ‖pt −mi

t‖ ≤ 1, (4.3c)

where pt is the robot position, vt the robot velocity and mi
t the position of feature i. It is

assumed that the relative position to the features can be measured if the feature is closer
than 1 length unit, which is motivated since sensors often have limited range. Important
to note about the KF solution to this problem is that the features are strongly correlated
with each other and the robot states. This is intuitive since the position of the features
are measured relative to the robot position, thus the position of the features will depend
on the robot trajectory and vice versa. This dependence is also what makes SLAM work.
Figure 4.1 shows the event of a loop closure, i.e., the robot returns to a previously visited
area. Before the loop closure (Figure 4.1c), the feature positions have drifted away due
to accumulation of errors when only new features are seen. As the initial feature is seen
(Figure 4.1d), the entire map is corrected thanks to the cross-correlations present in the
map. The filter converges to a solution where the relative map has zero uncertainty, only
the initial uncertainty of the robot position remains. Discussions about the properties of
KF-SLAM and convergence can be found in Dissanyake et al. (2001) and Csorba (1997).
The fact that the map is highly correlated could be seen in this example. This important
property is also what make the problem hard to decompose. As the dimension of the map
m grows, the covariance matrix becomes large, which leads to computational problems.

The SLAM problem is seldom linear, both the robot dynamics and the measurement
relations are nonlinear in most real world examples. To solve the nonlinear filtering prob-
lem, approximations are used. The earliest attempts of solving the SLAM problem were



4.1 Problem Formulation 47

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

True map/trajectory

 

 
Trajectory
Map

(a) True map and true robot trajectory.
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(c) Just before loop closing
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(d) Just after loop closing
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(e) After four laps

Figure 4.1: Example of a solution to the linear SLAM problem. The robot trajectory
and the current covariance are plotted together with the mapped features (crosses)
and their associated covariance (ellipses).
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done using an Extended Kalman Filter (EKF) and theory presented in Smith et al. (1990)
and Durrant-Whyte (1988), see also Section 4.2. Another approach is built on the Particle
Filter (PF) where the true solution to the SLAM problem could be obtained if infinitely
many particles were used, see Montemerlo et al. (2002). In reality this is not possible due
to computational constraints, so a finite number of particles are used which gives an ap-
proximative solution. Besides handling nonlinearities, the PF solution has the advantage
of relatively low complexity with respect to the number of features. The PF solution is
referred to as FastSLAM and is further discussed in Section 4.3.

It is of course necessary to have a sensor that gives information about the surrounding
environment to solve the SLAM problem. Such a sensor could be a camera, radar, sonar,
laser etc. The problem with these sensors is that they give a very high dimensional mea-
surement that is hard to use unprocessed in a filter. Take the camera sensor as an example,
the sensor measurement consists of several thousands of pixels that cannot be used di-
rectly in the filter. Instead the image is preprocessed, interest points or features that easily
can be found in consecutive images are identified. Their positions in the image are then
used in the filter. How to select features that can be found again when the robot returns
to the same location from another angle or in different light settings is a very challenging
problem.

For the SLAM problem, there are different approaches regarding which sensors to
include. Some only uses one sensor, such as a camera, see e.g., Davison et al. (2007),
Davison (2003), Davison et al. (2004), Eade and Drummond (2006). Another approach
is to combine several sensors, such as an Inertial Measurement Unit (IMU) with a camera
and a barometer, this approach is taken in Paper A. Papers C and E also consider the use
of a camera in combination with other sensors. The advantage with combining the vision
sensor with other sensors is that there is less need for overlap between the images. Thus,
the frame rate of the camera can be lower and computer intensive image processing is
saved. Furthermore, the IMU allows for the ability to handle rapid movements.

A good overview of different SLAM approaches and the history of SLAM is given in
the paper series Durrant-Whyte and Bailey (2006) and Bailey and Durrant-Whyte (2006).
The recent book (Thrun et al., 2005) discusses many topics in robotics and SLAM. In
the subsequent sections, two of the most common solutions to the SLAM problem will be
discussed.

4.2 EKF-SLAM

The earliest approaches to solving the SLAM problem was by applying an EKF to the
model in (4.2). This solution has proved to work well when the number of features
is small. The convergence and consistency properties of the EKF based approach has
been analyzed in, for instance, Huang and Dissanayake (2007) and Bailey et al. (2006a).
Consistency can only be guaranteed in the linear case and the estimates are often overly
confident.

The EKF based approach has proved to be very sensitive to incorrect association of the
features. It is therefore important that incorrect associations are detected, see Neira and
Tardos (2001) and Paper C.

The quadratic complexity (see Section 4.2.1) of the EKF-SLAM algorithm has made
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it computationally demanding for big maps. Several variants of the EKF-SLAM approach
have therefore been proposed. Using the information form of the EKF, sparseness of the
information matrices can be used to lower the complexity (Thrun et al., 2004). Another
approach is to divide the map into regional maps in a hierarchical structure and thus treat
smaller subproblems, see for example Jensfelt (2001). Other authors have noticed that it is
possible to remove a large number of features and still maintain consistency (Dissanayake
et al., 2002).

4.2.1 Algorithm

The EKF-SLAM algorithm is given in Algorithm 4.1 and assumes a linearized model as
for the EKF in Section 3.5. The Jacobians of the model in (4.2) are defined as:

F rt =
∂f(xr, u, v)

∂xr

∣∣∣∣∣
(xr,u,v)=(x̂r

t|t,ut,0)

Gt ,
∂f(xr, u, v)

∂v

∣∣∣∣∣
(xr,u,v)=(x̂r

t|t,ut,0)

(4.4)

Ht =
∂h(xr,m)
∂(xr,m)

∣∣∣∣∣
(xr,m)=(x̂r

t|t−1,mt|t−1)

(4.5)

The first step of the algorithm is to detect features and associate them with previously
observed features. This step is of course very sensor specific. Once the features have
been associated, the previously seen features can be used in the measurement update step.
The map is incrementally built as new features are observed. A new feature i is initialized
with Pmi = ∞. All information about the feature positions are then inferred by the
measurements, making sure that the cross-correlations become correct. In practice, it is
not possible to set the covariance to infinity. Setting the covariance to a large value and
the initial estimate by inverting the measurement equation yields a good approximation.
The time update has been done noting that only the covariances affecting the robot states
have to be updated.

The complexity of the EKF is normally O(n3
x), where nx is the state dimension. In

EKF-SLAM, the special structure can be utilized to obtain a lower complexity. Note that
multiplication of an n1 × n2 and an n2 × n3 matrix has complexity O(n1n2n3). Then
it easy to see that the time update step has complexity O(n3

r + n2
rnm), where nr is the

number of states for the robot and nm is the number of states in the map so nx = nr+nm.
For the measurement update, the special structure of the measurement can be utilized. The
Jacobian of the measurement equation (4.5) will have the following sparse structure

Ht =

H11 H12 0 · · · 0 0 · · ·
H21 0 0 · · · H22 0 · · ·

...

 . (4.6)

The structure arises from the fact that each measured feature is only a function of the
robot state and the measured feature state. Using this, the complexity of the measurement
update step can be calculated to beO(n3

y +nxn
2
y +n2

xny), where ny is the measurement
dimension. Since nx = nr + nm, the computational complexity with respect to the size
of the map is O(n2

m).
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Algorithm 4.1 EKF-SLAM

An initial state consisting of only robot states, x̂0|−1 = x0, and an initial covariance,
P0|−1 = P0, are given. Then the algorithm is given by

1. Detect features and associate

2. Measurement update

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)−1 (4.7a)

x̂t|t = x̂t|t−1 +Kt

(
yt − h(x̂t|t−1)

)
(4.7b)

Pt|t = (I −KtHt)Pt|t−1 (4.7c)

3. Add new features

x̂t|t :=
(
x̂t|t
0

)
(4.7d)

Pt|t :=
(
Pt|t 0
0 ∞I

)
(4.7e)

4. Time update

x̂rt+1|t = f(x̂rt , ut) (4.7f)

Pt+1|t =

(
F rt P

r
t|tF

r
t
T F rt P

m
t|t

Pmt|tF
r
t
T Pmt|t

)
+
(
GQtG

T 0
0 0

)
(4.7g)

5. Set t := t+ 1 and repeat from step 1.
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4.2.2 Simulation Example

Consider an environment with stationary features according to Figure 4.1a. The robot is
assumed to move with constant velocity and constant angular velocity. The positions of
the features are measured relative the robot if the distance is less than 1 length unit. The
orientation is also measured. Thus, the model can be described as

pt
vt
θt
ωt

 =


I TI 0 0
0 I 0 0
0 0 1 T
0 0 0 1




pt−1

vt−1

θt−1

ωt−1

+


T 2

2 I 0
TI 0
0 T 2

2
0 T

 vt−1, (4.8a)

mi
t = mi

t−1, (4.8b)

ym,it = Rbe(θt)(pt −mi
t) + em,it , if ‖pt −mi

t‖ ≤ 1, (4.8c)

yθt = θ + eθt , (4.8d)

where

Rbe(θt) =
(

cos θt sin θt
− sin θt cos θt

)
, (4.9)

pt is the position, vt is the velocity, θt is the orientation, ωt is the angular velocity and
T = 1 s.

The SLAM problem is solved using the MATLAB code given in Listing 4.1, which is
intended to be pedagogical rather than optimal. The function meas and a function to
generate data can be found in Appendix C. Run the simulation with the following lines
of code:
[p theta ym yth]=sim2D;
[xhat P]=EKFslam(ym, yth);

Listing 4.1: EKF-SLAM code: EKFslam.m
1 function [xhat P]=EKFslam(ym, yth)

xhat{1}=[1; 0; -0.0314; 0.2487; 0; 0.25]; % Initial states
P{1}=0.01*eye(6); % Initial covariance
Q=diag([0.1 0.1 0.001]); % Process noise
Rf=0.01; % Measurement covariance, features

6 Rth=0.01; % Measurement covariance, orientation
indf=[]; % Index of seen features also order in state vector

F=[eye(2) 1*eye(2) zeros(2);
zeros(2) eye(2) zeros(2);

11 zeros(2) zeros(2) [1 1; 0 1]];
G=[0.5*eye(2) zeros(2,1); 1*eye(2) zeros(2,1);

zeros(1,2) 0.5; zeros(1,2) 1];

for t=1:size(ym,2) % Loop over the measurements
16 % Measurement update

[H,ymeas,addf]=meas(ym{t},yth(t),indf,xhat{t});
K=P{t}*H’*inv(H*P{t}*H’+blkdiag(Rth,Rf*eye(size(H,1)-1)));
xhat{t}=xhat{t}+K*(ymeas-H*xhat{t});
P{t}=P{t}-K*H*P{t};

21 P{t}=1/2*(P{t}+P{t}’); % Make sure P is symmetric
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Rbe=[cos(xhat{t}(5)) sin(xhat{t}(5));
-sin(xhat{t}(5)) cos(xhat{t}(5))];

for i=addf % Add new features to state vector
26 xhat{t}=[xhat{t}; xhat{t}(1:2)-Rbe’*ym{t}(:,i)];

P{t}=blkdiag(P{t},1e6*eye(2));
indf=[indf i];

end

31 % Time update
Ftilde=blkdiag(F,eye(size(P{t},2)-6));
xhat{t+1}=Ftilde*xhat{t};
P{t+1}=Ftilde*P{t}*Ftilde’+blkdiag(G*Q*G’,zeros(2*length(indf)));

end
36 end

The results of this simulation can be studied in Figure 4.2. It can be seen that the
uncertainty about the map and robot position grows with time if the robot is continuously
exploring new areas (Figure 4.2b). However, when coming back to a previously mapped
feature, the uncertainty is reduced and corrections are made to the map (Figure 4.2c).
After some rounds in the loop, a solution close to the true one is obtained (Figure 4.2d).

Compared to the linear problem in (4.3), the only difference in this example is that
the orientation (which affects the direction of the map measurements) has to be estimated.
The solution to the linear problem was shown in Figure 4.1 and it is clearly visible that this
problem is harder. The measurement equation has to be linearized based on a prediction
of the orientation. A small error in orientation can give a large error in position if the
feature is relatively far away.

4.3 FastSLAM

The approach of FastSLAM is to solve the SLAM problem using a particle filter and was
first presented in Montemerlo et al. (2002). The state dimension including both robot
states and map states is too high for applying the regular PF. However, making use of the
following factorization of the posterior probability

p(xr1:t,mt|y1:t) = p(xr1:t|y1:t)p(mt|xr1:t, y1:t), (4.10)

the RBPF, discussed in Section 3.7, can be used given that the measurements of the map
are linear given the robot states. The factorization can be taken one step further,

p(mt|xr1:t, y1:t) =
Nm∏
i=1

p(mi
t|xr1:t, y1:t), (4.11)

since all features are independent given the trajectory of the robot. For the SLAM problem,
we often have a nonlinear model of the measurements. If it is nonlinear in the map states,
the RBPF cannot be directly applied. Linearizing the measurement equation with respect
to the map states will then enable the use of RBPF. This gives the following model

xrt = f(xrt−1, ut−1) + vt, (4.12)

mi
t = mi

t−1, (4.13)

yit ≈ h(xrt , m̂
i
t|t−1) +Hm

t (mi
t − m̂i

t|t−1) + et, (4.14)
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Figure 4.2: Example of the EKF-SLAM algorithm. The robot trajectory and the
current covariance are plotted together with the mapped features (crosses) and their
associated covariance (ellipses).
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where:

Hm
t =

∂h(xrt ,mt)
∂mt

∣∣∣∣∣
mt=m̂t|t−1

(4.15)

With this model the RBPF can be applied and then only the robot states need to be treated
with the particle filter. The factorization in (4.11) makes it possible to use independent
Kalman filters for each mapped feature instead of a combined filter for all features since
they are independent. The computational complexity for this algorithm is O(Nnm),
where N is the number of particles and nm the number of features. By using a tree-based
implementation, the complexity can be reduced even further to O(N log nm) which is
significantly better than for EKF-SLAM (Montemerlo et al., 2002).

To improve the convergence properties of FastSLAM, an improved proposal distribu-
tion was suggested in Montemerlo and Thrun (2007). The new algorithm got the name
FastSLAM 2.0 and uses the latest measurements to propose new particles in the time up-
date step. The theory behind FastSLAM is collected in the book Montemerlo and Thrun
(2007).

Although the FastSLAM algorithm has proved to work well in practice, there is a de-
generation of the map over time. The resampling causes the map associated with the most
probable features to be copied and the others to be discarded. For mapped features that
have been out of sight for some time, the map will be the same for all particles. This leads
to missing information in the cross-correlations for the map and is especially problematic
in the case of a loop-closure. This problem is discussed in, e.g., Bailey et al. (2006b).

Traditional implementations of the FastSLAM filter are done for a robot model with
low-dimensional state vector, e.g., two-dimensional position and an orientation angle. In
order to use FastSLAM for a flying robot, three-dimensional position and three-dimensional
orientation must be used. In some cases a dynamic model including velocities, accelera-
tions, and biases is desirable as well. In such a case, the dimension of the state space
treated with the particle filter is too big to be computationally feasible. Further fac-
torizations of the posterior in (4.10) must then be done. If the robot state is split as
xrt = (xpt

T
xkt

T )T , it can be done as

p(xp1:t, x
k
t ,mt|y1:t) = p(xp1:t|y1:t)p(xkt |xp1:t, y1:t)p(mt|xkt , xp1:t, y1:t). (4.16)

The details of this approach are given in Paper A.



5
Concluding Remarks

THE FIRST PART of this thesis gave the theoretical background for the publications in
part two. This chapter first discusses the results of the thesis and then possible future

directions of research.

5.1 Results

The results of this thesis all have in common that they can be used for navigation applica-
tions. As discussed in the introductory part, estimation and detection are closely related
and necessary building blocks in robust robotic applications.

A factorization of the simultaneous localization and mapping problem was provided
in Paper A. This factorization made it possible to use high dimensional vehicle models
in the particle filter solution to SLAM. The results were applied to data from a helicopter
equipped with a vision sensor, an inertial measurement unit and a barometer. For navi-
gation with a vision sensor it is important to detect errors made in the image processing
step. It is essential that erroneously associated features are detected as the navigation filter
might diverge otherwise. The parity space method is applied to this detection problem in
Paper C. If a magnetometer is used to assist in estimating orientation it is important with
disturbance monitoring. Paper B presents a parity space formulation of the generalized
likelihood ratio test which is applied to monitoring of magnetic disturbances.

In many applications there are sensors with different sampling rate. For example,
visual navigation uses an often slow camera and an IMU with high update rate. Paper D
provides an efficient PF solution for this situation when the dynamics and the fast sensor
are linear with Gaussian noise and the slow sensor is nonlinear with non-Gaussian noise.

Positioning of a ground target with vision sensor is the subject of Paper E. The non-
parametric target distribution can represent both the case that the target was not seen in
an area and that the target is found. This is an enabler for information theoretic control,
where the target always is searched for in areas with high probability.
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5.2 Future Work

One of the big challenges in SLAM is how to lower the computational complexity. The na-
ture of the problem is such that a big map gives rise to maintenance of many dependences.
Even if the problem could be solved exactly, this would probably lead to high complexity.
The question is how to make an approximation that leads to low complexity and at the
same time affects the solution as little as possible. Another problem is the ability to do
robust association of features. This is especially a problem during loop closure, where the
predicted position of the feature might have drifted away from its actual position.

To create a computationally efficient solution to these problems, one way could be
to classify the information from the sensors. That is, to classify the objects seen by the
sensors as cars, houses, trees and so on. This object oriented framework will probably
solve many problems.

Using an object oriented framework, it is easier to understand which features that are
important in the image. Take an example with a human driving on a highway. Locally, we
remember what we just saw in order to make dead-reckoning possible. But after driving
a long distance, only more significant (information rich) things as road crossings, signs
and such are remembered. Removing features to lower the complexity was proposed in
Dissanayake et al. (2002), but doing this based on the type of object would take SLAM to
a new level.

Another area where an object oriented approach would help is for robust feature as-
sociation. Understanding what the robot sees would help in selecting features that can
robustly be found again. Again, compare with a human. We see things around us that we
recognize and by experience we can tell how these things are expected to behave. A car is
moving and is therefore bad to use for map building, a house has pretty high probability
of being stationary and is good for map building and so on.

The particle filter based SLAM methods that are used today have problems with loop
closing. This is due to the dependence on the estimate of the trajectory which is poor
when using a PF. If the map is conditioned on only the last state, the covariance matrix
for the whole map must be calculated which is computer intensive. The advantage is that
the cross-correlations in the map are saved which would help during a loop closure. What
if the Kalman filter part is represented using the information form? Perhaps the sparse
structure can be utilized to make the problem computationally tractable.

The Rao-Blackwellized particle filter was derived for the marginal state in this thesis,
opposed to the normal case where the full trajectory of the nonlinear states is estimated.
Sampling was still done on a per particle basis. An interesting extension would be to
sample from the full distribution as is done for the marginal particle filter (Klaas et al.,
2005).
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A
Probability Distributions

A.1 Gaussian Distribution

The most widely used distribution for random variables is the Gaussian or Normal dis-
tribution. Consider the stochastic variable X which is Gaussian distributed with mean µ
and variance σ2, denoted

X ∼ N(µ, σ2).

The probability density function, PDF, for X is then

fX(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

. (A.1)

This means that the probability for X to have a value in the interval [a, b] is

P (a ≤ X ≤ b) =

b∫
a

fX(x) dx.

In a more general case, X is an n × 1 vector. The distribution of the Gaussian vector is
then represented by the multivariate Gaussian PDF

fX(x) =
1

(2π)n/2 det1/2(S)
e−

1
2 (x−µ)TS−1(x−µ), (A.2)

where µ is the mean vector and S is the positive definite covariance matrix. An example
of the PDF for a variable distributed with the parameters µ =

(
0 0

)T
and S = diag(1, 2)

is plotted in Figure A.1.
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Figure A.1: The multivariate Gaussian distribution with parameters µ = (0 0)T

and P = diag(1, 2).

A.2 Chi-square Distribution

Squared Gaussian variables are common, especially in detection theory. Often are sums
of squared Gaussian residuals used as a test statistic and the result will then be chi-square
distributed if the residuals are white and Gaussian. If the residuals have zero mean, the
test statistic will have a central chi-square distribution. In case of non-zero mean, the
distribution will be the noncentral chi-square.

A.2.1 Central Chi-square

Sums of squared independent and identically distributed, IID, Gaussian variables with
zero mean will become chi-square distributed. That is,X =

∑ν
i=1X

2
i withXi ∼ N(0, 1)

will be chi-square distributed with ν degrees of freedom, denoted X ∼ χ2
ν . The probabil-

ity density function is

fX(x) =

{
1

2
ν
2 Γ( ν2 )

x
ν
2−1e−

1
2x x > 0

0 x < 0
, (A.3)

where Γ(u) is the Gamma function, which is defined as

Γ(u) =

∞∫
0

tu−1e−t dt. (A.4)

The mean and variance of this distribution are

Ex = ν, (A.5)
Var(x) = 2ν. (A.6)
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A.2.2 Noncentral Chi-square

When taking the sum of squared IID Gaussian random variables with non-zero mean,
the distribution of the result will be represented by the noncentral chi-square distribution.
Consider the case whereXi ∼ N(µi, 1), then the variableX =

∑ν
i=1X

2
i has ν degrees of

freedom and the noncentrality parameter λ =
∑ν
i=1 µ

2
i . The distribution of X is denoted

X ∼ χ′2ν (λ) and the PDF can be expressed as

fX(x) =

{
1
2

(
x
λ

) ν−2
4 I ν

2−1(
√
λx)e−

1
2 (x+λ) x > 0

0 x < 0
, (A.7)

where Ir(u) is the modified Bessel function of the first kind and order r. This function is
defined as

Ir(u) =

(
1
2u
)r

√
πΓ
(
r + 1

2

) π∫
0

sin2r(θ)eu cos θ dθ. (A.8)

The mean and variance of this distribution are

Ex = ν + λ, (A.9)
Var(x) = 2ν + 4λ. (A.10)





B
Quaternion Preliminaries

THE QUATERNIONS WERE INVENTED by Sir William Rowan Hamilton as a way to
extend the imaginary numbers, see Hamilton (1844). The unit quaternion have later

shown to be a useful tool for orientation representations. A comprehensive description
of unit quaternions is given by Kuipers (1999) and a nice survey of orientation repre-
sentations is given by Shuster (1993). A good primer on unit quaternions for orientation
representations of airplanes is given by Stevens and Lewis (2003).

This appendix starts with a short review of the mathematics needed for the quaternion
derivations. The quaternions are then introduced and the mathematics for rotations and
dynamics is then derived.

B.1 Prerequisites in Vector Kinematics and
Mathematics

B.1.1 Cross-product

Note the following properties of the cross-product

u× v = −v × u, (B.1)
a(u× v) = (au)× v = u× (av), (B.2)

u× (v + w) = (u× v) + (u×w), (B.3)
u · (v ×w) = v · (w × u) = w · (u× v), (B.4)

u× (v ×w) = v(w ·u)−w(u ·v). (B.5)

Note also that it is possible to write the cross-product as a matrix multiplication

u× v = −

 0 u3 −u2

−u3 0 u1

u2 −u1 0

v1

v2

v3

 . (B.6)
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B.1.2 Vector Rotation

The vector u is rotated about n as shown in Figure B.1. The new vector v can be described
as

v = ON +NW +WV =

= (u ·n)n +
u− (u ·n)n
|u− (u ·n)n| |NV | cosµ︸ ︷︷ ︸

|NW |

+
u× n
|u| sinφ︸ ︷︷ ︸

WV
|WV |

|NV | sinµ︸ ︷︷ ︸
|WV |

, (B.7)

where ON denotes the vector that points from O to N and so on. Note that

|NV | = |NU | = |u− (u ·n)n| = |u| sinφ.

Then,
v = (1− cosµ)n(n ·u) + cosµu− sinµ(n× u), (B.8)

which is often referred to as the rotation formula.

n

u

v

N
U

V

W

φ

µ

Figure B.1: The vector u is rotated about n.

B.1.3 Direction Cosines

To describe the direction of a vector in a unique way, the direction cosines is a useful
tool. The angles α, β and γ in Figure B.2 are used. The cosine of the angles will be the
projections onto the basis axes. It is possible to describe the direction of n using only two
angles, this is the case when using spherical coordinates as in the right part of Figure B.2.
The problem with this description is that a vector pointing in the direction of fz can have
any angle ρ, which is clearly not a unique description.

Observe the following property of the direction cosines. The theorem of Pythagoras
can be written

|n|2 cos2 α+ |n|2 cos2 β + |n|2 cos2 γ = |n|2.
This yields that

cos2 α+ cos2 β + cos2 γ = 1. (B.9)
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Figure B.2: Describing the direction of the vector n can be done using the direction
angles α, β, and γ (left), or using only two angles (right).

B.2 Operations and Properties of Quaternions

The quaternion is a four-tuple with the elements q0, . . . , q3. It can also be viewed as a
vector consisting of the scalar q0 and the vector q.

q =


q0

q1

q2

q3

 =
(
q0

q

)
. (B.10)

Multiplication of two quaternions, denoted with �, is defined as

p� q =
(
p0

p

)
�
(
q0

q

)
=
(

p0q0 − p ·q
p0q + q0p + p× q

)
. (B.11)

The quaternions have the following properties:

p� q 6= q � p (in general) (B.12)

norm(q) =
3∑
i=0

q2
i (B.13)

norm(p� q) = norm(p) · norm(q) (B.14)
(p� q)� r = p� (q � r) (B.15)

(B.16)

The inverse is defined such that

q−1 � q = q � q−1 =
(

1
0

)
. (B.17)

Thus, the inverse can be calculated as

q−1 =
(
q0

q

)−1

=
(
q0

−q

)/
norm(q) (B.18)
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B.3 Describing a Rotation with Quaternions

If q is a unit quaternion, that is, norm(q) = 1, it can be written as

q =
(

cos δ
sin δn

)
, (B.19)

where n is a unit vector. Hence it can be used to represent a δ rotation about n. The unit
vector n can be described as in Section B.1.3 with the directional cosines

n =

cosα
cosβ
cos γ

 . (B.20)

Note that
norm(q) = cos2 δ + sin2 δ(cos2 α+ cos2 β + cos2 γ) = 1, (B.21)

which is also a necessity for the quaternion in order to represent a rotation. The variable
δ is a measure of the rotation angle as we will see later.

There are two ways of visually describing a rotation. Either a vector is rotated about
another vector or the coordinate frame is rotated about a vector, see Figure B.3. When a
vector is rotated the transformation gives the new vector coordinates in the frame which
remains fixed. When the frame is rotated the vector coordinates are transformed to the
new frame. Mathematically, the difference is only the sign of the rotation angle.

x

y

u

vµ

x

y

u

x′

y′

Figure B.3: In the left figure, a vector is rotated the angle µ counterclockwise. In
the right figure, the coordinate frame is rotated the angle µ clockwise.

To rotate the vector u about n, (B.8) and Figure B.1 can be used. Observe that the
vector rotation is done counterclockwise, which could equally be seen as rotating the
coordinate frame clockwise. This rotation can be done using quaternion algebra. If q
represents a rotation about n, the rotated vector can be described as

v = q−1 � u� q, (B.22)

where

v =
(

0
v

)
and u =

(
0
u

)
. (B.23)

An alternative description is to use

v = q � u� q−1. (B.24)
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With this representation vector rotation becomes clockwise and coordinate frame rotation
counterclockwise. However, in this work, (B.22) is viewed as the standard rotation.

The result of the quaternion multiplication in (B.22) is

v =
(

q ·uq0 − (q0u− q× u) ·q
(q ·u)q + q0(q0u− q× u) + (q0u− q× u)× q

)
, (B.25)

which simplifies to (note the use of (B.5) for the last term in the second row)

v =
(

0
2(q ·u)q + (q2

0 − q ·q)u− 2q0q× u

)
. (B.26)

If (B.19) is used, this can be rewritten as

v =
(

0
2 sin2 δn(n ·u) + (cos2 δ − sin2 δ)u− 2 cos δ sin δ(n× u)

)
. (B.27)

This should be compared with (B.8), since the second row should give the same result.
If δ = µ/2 and some trigonometric identities are applied the results are equal. Thus,
inserting δ = µ/2 in (B.19), the unit quaternion

q =
(

cos(µ/2)
sin(µ/2)n

)
(B.28)

describes a counterclockwise vector rotation or a clockwise coordinate frame rotation
about n with angle µ.

Observe that rotating first with qa and then with qb can be done in one step by rotating
by qa � qb. Using (B.17) this is easily seen since

q−1
b � (q−1

a � u� qa)� qb = (qa � qb)−1 � u� (qa � qb). (B.29)

B.4 Rotation Matrix

It is possible to rewrite the quaternion multiplication in (B.22) as a matrix multiplication.
Rewriting (B.26) in the form (

0
v

)
=
(

0
R(q)u

)
(B.30)

using (B.6) yields

R(q) =

(q2
0 + q2

1 − q2
2 − q2

3) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) (q2
0 − q2

1 − q2
2 + q2

3)

 .

(B.31)
This is also described in (Kuipers, 1999, p. 158).
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B.5 Dynamics of Quaternions

Consider a moving body system. The description of the rotation between the F-system
(fixed system) and the B-system (body system) will then contain some dynamics. In order
to derive the dynamic equations, the time derivative of the elements of the unit quaternion
needs to be calculated.

Let qbf (t) represent the rotation of the B-system with respect to the F-system at time
t. Furthermore, let the instantaneous angular velocity of the B-system be in the direction
of the unit vector ŝb, with magnitude ω, which is represented in the B-system. Then,
the unit quaternion δqbf describes the rotation about ŝb during the small time interval δt.
Using small angles approximation and (B.28) this can be written as

δqbf (δt) ≈
(

1
ŝbωδt/2

)
. (B.32)

Then, the rotated unit quaternion can be represented as

qbf (t+ δt) = qbf (t)� δqbf (δt). (B.33)

The derivative of qbf (t) can then be written as

dqbf (t)
dt

= lim
δt→0

qbf (t+ δt)− qbf (t)
δt

= lim
δt→0

qbf (t)� (δqbf (δt)− Iq)
δt

=

= lim
δt→0

qbf (t)�
(
δqbf (δt)
δt

− Iq
δt

)
=

1
2
qbf (t)�

(
0

ŝbω

)
=

1
2
qbf (t)� ωbbf , (B.34)

where Iq represents the unit quaternion and ωbbf represents the angular velocity of the
B-system relative to the F-system expressed in the B-system. Decompose the unit quater-
nions as

qbf =


q0

q1

q2

q3

 =
(
q0

q

)
and ωbbf =


0
ωx
ωy
ωz

 =
(

0
ω

)
. (B.35)

Then, the quaternion multiplication in (B.34) can be written as a matrix multiplication
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with help of (B.11), (B.6) and (B.1).

q̇bf (t) =
1
2
qbf (t)� ωbbf =

1
2

(
−q ·ω

q0ω + q× ω

)
=

=
1
2


−(q1ωx + q2ωy + q3ωz)

q0ω −

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

q1

q2

q3


 =

=
1
2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0


︸ ︷︷ ︸

S(ωbbf )


q0

q1

q2

q3

 =

=
1
2


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


︸ ︷︷ ︸

,S′(qbf )

ωxωy
ωz

 (B.36)





C
Code for SLAM-Example

The following functions are used to generate the example in Section 4.2.2.

Listing C.1: meas.m
function [H,ymeas,addf]=meas(ym, yth, indf, xhat)
nf=size(ym,2); % Total number of features
H=zeros(1,6+2*length(indf));

4 H(5)=1;
ymeas=yth; % This vector contains all measurements
addf=[]; % Contains the indices of features seen for the first time
Rbe=[cos(xhat(5)) sin(xhat(5)); -sin(xhat(5)) cos(xhat(5))];
Rdiff=[-sin(xhat(5)) cos(xhat(5)); -cos(xhat(5)) -sin(xhat(5))];

9 for i=1:nf
if ~isnan(ym(1,i)) % Feature is seen at time t

j=find(indf==i); % Check if feature i has been seen before
if isempty(j) % If not, initialize new feature

addf=[addf i];
14 else % Otherwise, update observation model

H=[H; Rbe*eye(2) Rdiff*(xhat(1:2)-xhat(6+2*j-1:6+2*j)) ...
zeros(2,1) zeros(2,2+2*(j-1)) -Rbe*eye(2) ...
zeros(2,2*(length(indf)-j))];

ymeas=[ymeas; ym(:,i)];
19 end

end
end

end

Listing C.2: sim2D.m
function [p theta ym yth]=sim2D
% Build the true map

3 m(:,1)=[1 0].’;
m(:,2)=[1 1].’;
m(:,3)=[0 1].’;
m(:,4)=[-1 1].’;
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m(:,5)=[-1 0].’;
8 m(:,6)=[-1 -1].’;

m(:,7)=[0 -1].’;
m(:,8)=[1 -1].’;

Rf=0.01*eye(2); % Measurement covariance, features
13 Rth=0.01; % Measurement covariance, orientation

% Build the trajectory
N=100; % Number of samples
theta=0:8*pi/N:8*pi;

18 p=[cos(theta); sin(theta)];

for t=1:size(p,2)
yth(t)=theta(t)+sqrt(Rth)*randn;
Rbe=[cos(theta(t)) sin(theta(t)); -sin(theta(t)) cos(theta(t))];

23 for i=1:size(m,2)
if norm(p(:,t)-m(:,i))<1.01 % Check if visible

ym{t}(:,i)=Rbe*(p(:,t)-m(:,i))+sqrtm(Rf)*randn(2,1);
else

ym{t}(:,i)=[NaN; NaN];
28 end

end
end

end
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Abstract

This work presents a particle filter (PF) method closely related to FastSLAM
for solving the simultaneous localization and mapping (SLAM) problem. Us-
ing the standard FastSLAM algorithm, only low-dimensional vehicle models
can be handled due to computational constraints. In this work an extra fac-
torization of the problem is introduced that makes high-dimensional vehi-
cle models computationally feasible. Results using experimental data from
a UAV (helicopter) are presented. The algorithm fuses measurements from
on-board inertial sensors (accelerometer and gyro), barometer, and vision in
order to solve the SLAM problem.

1 Introduction

The main task in localization/positioning and tracking is to estimate, for instance, the po-
sition and orientation of the object under consideration. The particle filter (PF), (Gordon
et al., 1993, Doucet et al., 2001a), has proved to be an enabling technology for many
applications of this kind, in particular when the observations are complicated nonlinear
functions of the position and heading (Gustafsson et al., 2002). Furthermore, the Rao-
Blackwellized particle filter (RBPF) also denoted the marginalized particle filter (MPF),
(Doucet et al., 2000, Casella and Robert, 1996, Doucet et al., 2001b, Chen and Liu, 2000,
Andrieu and Doucet, 2002, Schön et al., 2005) enables estimation of velocity, accelera-
tion, and sensor error models by utilizing any linear Gaussian sub-structure in the model,
which is fundamental for performance in applications as surveyed in Schön et al. (2006).
As described in Schön et al. (2005), the RBPF splits the state vector xt into two parts, one
part xpt which is estimated using the particle filter and another part xkt where Kalman fil-
ters are applied. Basically, it uses the following factorization of the posterior distribution
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Figure 1: The Yamaha RMAX helicopter used in the experiments. The on-board
system is equipped with an IMU sensor (accelerometer and gyro) and a vision sensor.
The on-board GPS receiver is used for evaluation only.

of the state vector, which follows from Bayes’ rule,

p(xp1:t, x
k
t |y1:t) = p(xkt |xp1:t, y1:t)p(x

p
1:t|y1:t), (1)

where y1:t , {y1, . . . , yt} denotes the measurements up to time t. If the model is con-
ditionally linear Gaussian, i.e., if the term p(xkt |xp1:t, y1:t) is linear Gaussian, it can be
optimally estimated using the Kalman filter, whereas for the second factor we have to
resort to the PF.

Simultaneous localization and mapping (SLAM) is an extension of the localization
or positioning problem to the case where the environment is unmodeled and has to be
mapped on-line. An introduction to the SLAM problem is given in the survey papers Bailey
and Durrant-Whyte (2006), Durrant-Whyte and Bailey (2006) and the recent book Thrun
et al. (2005). From a sensor point of view, there are two ways of tackling this problem.
The first way is to use only one sensor, such as vision, see e.g., Davison et al. (2007),
Davison (2003), Davison et al. (2004), Eade and Drummond (2006) and the second way is
to fuse measurements from several sensors. This work considers the latter. The FastSLAM
algorithm introduced in Montemerlo et al. (2002) has proved to be an enabling technology
for such applications. FastSLAM can be seen as a special case of RBPF/MPF, where the
map state mt, containing the positions for all landmarks used in the mapping, can be
interpreted as a linear Gaussian state. The main difference is that the map vector is a
constant parameter with a dimension increasing over time, rather than a time-varying
state with a dynamic evolution over time. The derivation is completely analogous to (1),
and makes use of the following factorization

p(x1:t,mt|y1:t) = p(mt|x1:t, y1:t)p(x1:t|y1:t). (2)



2 Problem Formulation 85

The FastSLAM algorithm was originally devised to solve the SLAM problem for mobile
robots, where the dimension of the state vector is small, typically consisting of three states
(2D position and a heading angle) (Thrun et al., 2005). This implies that all platform states
must be estimated by the PF, which is computationally demanding for high order models.

Paralleling the evolution of PF applications to high dimensional state vectors, the aim
of this contribution is to build on our earlier work (Schön et al., 2007a) which unify the
ideas presented in Schön et al. (2005) and Schön et al. (2007b). This is done in order to
extend the FastSLAM algorithm (Montemerlo et al., 2002) to be able to cope with high
dimensional state vectors as well. Basically, the main result follows from

p(xp1:t,x
k
t ,mt|y1:t) = p(mt|xkt , xp1:t, y1:t)p(xkt |xp1:t, y1:t)p(x

p
1:t|y1:t). (3)

The derived algorithm is applied to experimental data from an autonomous aerial vehicle
using the RMAX helicopter platform (Figure 1) although the framework is general and
could be applied to other platforms as well. The main navigation sensor unit consists of
three accelerometers, three gyros, a pressure sensor, and a camera. GPS is used only for
evaluation purposes.

In Section 2 the problem under consideration is formulated in more detail. The pro-
posed algorithm is given and explained in Section 3. This algorithm is then applied to an
application example in Section 4. Finally, the conclusions are given in Section 5.

2 Problem Formulation

The aim of this work is to solve the SLAM problem when the state dimension of the
platform (UAV) is too large to be estimated by the PF. This section provides a more
precise problem formulation and introduces the necessary notation.

The total state vector to be estimated at time t is

xt =
(
(xpt )T (xkt )T mT

t

)T
, (4)

where xpt denotes the states of the platform that are estimated by the particle filter, and
xkt denotes the states of the platform that are linear-Gaussian given information about xpt .
These states together with the map (landmarks) mt are estimated using Kalman filters.
The map states mt consists of the entire map at time t, i.e.,

mt =
(
mT

1,t . . . mT
Mt,t

)T
, (5)

where mj,t denotes the position of the jth map entry and Mt denotes the number of
entries in the map at time t.

The aim of this work can be formalized as trying to estimate the following filtering
probability density function (PDF),

p(xpt , x
k
t ,mt|y1:t). (6)

In other words, we are trying to solve the nonlinear filtering problem, providing an es-
timate of (6). The key factorization, which allows us to solve this problem successfully
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is

p(xp1:t, x
k
t ,mt|y1:t) =

Mt∏
j=1

p(mj,t|xp1:t, x
k
t , y1:t)p(xkt |xp1:t, y1:t)︸ ︷︷ ︸

(extended) Kalman filter

p(xp1:t|y1:t)︸ ︷︷ ︸
particle filter

(7)

In order to devise an estimator for (6) a system model and a measurement model are
needed. The former describes the dynamic behavior of the platform, that is how the state
xt evolves over time. The measurement model describes the sensors, i.e., it consists of
equations relating the measurements yt to the state xt. We want a general algorithm,
which is applicable to many different platforms (aircraft, helicopters, cars, etc.). Hence,
the model structure should be as general as possible,

xpt+1 = fpt (xpt ) +Apt (x
p
t )x

k
t +Gpt (x

p
t )w

p
t , (8a)

xkt+1 = fkt (xpt ) +Akt (xpt )x
k
t +Gkt (xpt )w

k
t , (8b)

mj,t+1 = mj,t, (8c)

y1,t = h1,t(x
p
t ) + C1,t(x

p
t )x

k
t + e1,t, (8d)

y
(j)
2,t = h2,t(x

p
t ) +Hj,t(x

p
t )mj,t + e

(j)
2,t , (8e)

where j = 1, . . . ,Mt and the noise for the platform states is assumed white and Gaussian
distributed with

wt =
(
wpt
wkt

)
∼ N (0, Qt), Qt =

(
Qpt Qpkt

(Qpkt )T Qkt

)
. (8f)

To simplify the notation in the rest of the paper, denote fpt (xpt ) with fpt , Apt (x
p
t ) with Apt

and so on. The measurement noise is assumed white and Gaussian distributed according
to

e1,t ∼ N (0, R1,t), (8g)

e
(j)
2,t ∼ N (0, Rj2,t), j = 1, . . . ,Mt. (8h)

Finally, xk0 is Gaussian,

xk0 ∼ N (x̄0, P̄0), (8i)

and the density for xp0 can be arbitrary, but it is assumed known.
There are two different measurement models, (8d) and (8e), where the former only

models quantities related to the platform, whereas the latter also involve the map states.
Section 4 describes a detailed application example using experimental data, where (8d) is
used to model inertial sensors and a pressure sensor and (8e) is used to model a camera.

3 Particle Filter for SLAM Utilizing Structure

This section is devoted to deriving and explaining the proposed SLAM algorithm on a
rather detailed level. However, when we make use of standard results we just provide the
necessary references. The algorithm is given first and the steps are then discussed in more
detail.
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3.1 Algorithm

The algorithm presented in this paper draws on several rather well known algorithms. It
is based on the RBPF/MPF method (Doucet et al., 2000, Casella and Robert, 1996, Doucet
et al., 2001b, Chen and Liu, 2000, Andrieu and Doucet, 2002, Schön et al., 2005). The
FastSLAM algorithm (Montemerlo et al., 2002) is extended by not only including the map
states in the linear part, but also the states corresponding to a linear Gaussian sub-structure
present in the model for the platform. Assuming that the platform is modeled in the form
(8), the SLAM algorithm utilizing structure is given in Algorithm 1.

Note that yt denotes the measurements present at time t. The following theorem will
give all the details for how to compute the Kalman filtering quantities. It is important to
stress that all embellishments available for the particle filter can straightforwardly incor-
porated into Algorithm 1. To give one example, the so-called FastSLAM 2.0 makes use of
an improved proposal distribution in step 6b (Montemerlo et al., 2003).

Theorem 1
Using the model given in (8), the conditional probability density functions for xkt and
xkt+1 are given by

p(xkt |xp1:t, y1:t) = N (x̂kt|t, Pt|t), (10a)

p(xkt+1|xp1:t+1, y1:t) = N (x̂kt+1|t, Pt+1|t), (10b)

where

x̂kt|t = x̂kt|t−1 +Kt(y1,t − h1,t − Ctx̂kt|t−1), (11a)

Pt|t = Pt|t−1 −KtS1,tK
T
t , (11b)

S1,t = CtPt|t−1C
T
t +R1,t, (11c)

Kt = Pt|t−1C
T
t S
−1
1,t , (11d)

and

x̂kt+1|t = Ākt x̂
k
t|t +Gkt (Qkpt )T (GptQ

p
t )
−1zt + fkt + Lt(zt −Apt x̂kt|t),

Pt+1|t = ĀktPt|t(Ā
k
t )T +Gkt Q̄

k
t (Gkt )T − LtS2,tL

T
t , (12a)

S2,t = AptPt|t(A
p
t )
T +GptQ

p
t (G

p
t )
T , (12b)

Lt = ĀktPt|t(A
p
t )
TS−1

2,t , (12c)

where

zt = xpt+1 − fpt , (13a)

Ākt = Akt −Gkt (Qkpt )T (GptQ
p
t )
−1Apt , (13b)

Q̄kt = Qkt − (Qkpt )T (Qpt )
−1Qkpt . (13c)

Proof: The proof is derived in Schön et al. (2005) for the case without map features,
but with linear Gaussian dynamics as a sub-structure. The extension, including the linear
Gaussian map sub-structure, falls within the same framework.
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Algorithm 1 Particle filter for SLAM utilizing structure

1. Initialize N particles according to

x
p,(i)
1|0 ∼ p(x

p
1|0),

x
k,(i)
1|0 = x̄k1|0,

P
k,(i)
1|0 = P̄1|0, i = 1, . . . , N.

2. If there are new map related measurements available, compute the necessary corre-
spondences to the existing states, otherwise proceed to step 3.

3. Compute the importance weights according to

γ
(i)
t = p(yt|xp,(i)1:t , y1:t−1), i = 1, . . . , N,

and normalize γ̃(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t .

4. Draw N new particles with replacement (resampling) according to, for each i =
1, . . . , N

Pr(x(i)
t|t = x

(j)
t|t ) = γ̃

(j)
t , j = 1, . . . , N.

5. If there is a new map related measurement, perform map estimation and manage-
ment (detailed below), otherwise proceed to step 6.

6. Particle filter prediction and Kalman filter (for each particle i = 1, . . . , N )

(a) Kalman filter measurement update,

p(xkt |xp1:t, y1:t) = N (xkt |x̂k,(i)t|t , P
(i)
t|t ),

where x̂k,(i)t|t and P (i)
t|t are given in (11).

(b) Time update for the nonlinear state,

x
p,(i)
t+1|t ∼ p(xt+1|xp,(i)1:t , y1:t).

(c) Kalman filter time update,

p(xkt+1|xp1:t+1, y1:t) = N (xkt+1|t|x̂
k,(i)
t+1|t, P

(i)
t+1|t),

where x̂k,(i)t+1|t and P (i)
t+1|t are given by (12).

7. Set t := t+ 1 and repeat from step 2.
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3.2 Likelihood Computation

In order to compute the importance weights {γ(i)
t }Ni=1 in Algorithm 1, the following like-

lihoods have to be evaluated

γ
(i)
t = p(yt|xp,(i)1:t , y1:t−1), i = 1, . . . , N. (14)

The standard way of performing this type of computation is simply to marginalize the
Kalman filter variables xkt and {mj,t}Mt

j=1 according to

p(yt|xp,(i)1:t , y1:t−1) =
∫
p(yt, xkt ,mt|xp,(i)1:t , y1:t−1)dxkt dmt, (15)

where

p(yt, xkt ,mt|xp,(i)1:t , y1:t−1) = p(yt|xkt ,mt, x
p,(i)
t )×

p(xkt |xp,(i)1:t , y1:t−1)
Mt∏
j=1

p(mj,t|xp,(i)1:t , y1:t−1). (16)

Let us consider the case where both y1,t and y2,t are present, i.e., yt =
(
yT1,t yT2,t

)T
.

Note that the cases where either y1,t or y2,t are present are obviously special cases. First
of all, the measurements are conditionally independent given the state, implying that

p(yt|xkt ,mt, x
p,(i)
t ) = p(y1,t|xkt , xp,(i)t )

Mt∏
j=1

p(y(j)
2,t |x

p,(i)
t ,mj,t). (17)

Now, inserting (17) into (16) gives

p(yt, xkt ,mt|xp,(i)1:t , y1:t−1) = p(y1,t|xkt , xp,(i)t )p(xkt |xp,(i)1:t , y1:t−1)×
Mt∏
j=1

p(mj,t|xp,(i)1:t , y1:t−1)p(y(j)
2,t |x

p,(i)
t ,mj,t), (18)

which inserted in (15) finally results in

p(yt|xp,(i)
1:t , y1:t−1) =

∫
p(y1,t|xk

t , x
p,(i)
t )p(xk

t |x
p,(i)
1:t , y1:t−1)dxk

t

×
Mt∏
j=1

∫
p(y

(j)
2,t |x

p,(i)
t , mj,t)p(mj,t|xp,(i)

1:t , y1:t−1)dm1,t · · · dmMt,t. (19)

All the densities present in (19) are known according to

p(xkt |xp1:t, y1:t−1) = N (xkt |x̂kt|t−1, Pt|t−1), (20a)

p(mj,t|xp1:t, y1:t−1) = N (mj,t|m̂j,t−1,Σj,t−1), (20b)

p(y1,t|xkt , xpt ) = N (y1,t|h1,t + Ctx
k
t , R1), (20c)

p(y(j)
2,t |xpt ,mj,t) = N (y(j)

2,t |h2,t +Hj,tmj,t, R
j
2). (20d)
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Here it is important to note that the standard FastSLAM approximation (linearization) has
been invoked in order to obtain (20d). That is, the measurement equation often has to be
linearized with respect to the map statesmj,t in order to comply with (8e). The reason for
this approximation is that we want to use a model suitable for the RBPF/MPF, otherwise
the dimension will be much too large for the particle filter to handle. Using (20), the
integrals in (19) can now be solved, resulting in

p(yt|xp,(i)1:t , y1:t−1) = N (y1,t|h1,t + Ctx̂
k,(i)
t|t−1, CtP

(i)
t|t−1C

T
t +R1)

×
Mt∏
j=1

N (y(j)
2,t |h2,t +Hj,tm̂j,t−1, Hj,tΣj,t−1(Hj,t)T +Rj2). (21)

3.3 Map Estimation and Map Management

A simple map consists of a collection of map point entries {mj,t}Mt
j=1, each parameterized

by:

• m̂j,t – estimate of the position (three dimensions).

• Σj,t – covariance for the position estimate.

Note that this is a very simple map parametrization. Each particle has an entire map
estimate associated to it. Step 5 of Algorithm 1 consists of updating these map estimates
in accordance with the new map-related measurements that are available. First of all, if a
measurement has been successfully associated to a certain map entry, it is updated using
the standard Kalman filter measurement update according to

mj,t = mj,t−1 +Kj,t

(
y

(j)
2,t − h2,t

)
, (22a)

Σj,t =
(
I −Kj,tH

T
j,t

)
Σj,t−1, (22b)

Kj,t = Σj,t−1H
T
j,t

(
Hj,tΣj,t−1H

T
j,t +R2

)−1
. (22c)

If an existing map entry is not observed, the corresponding map estimate is simply prop-
agated according to its dynamics, i.e., it is unchanged

mj,t = mj,t−1, (23a)
Σj,t = Σj,t−1. (23b)

Finally, initialization of new map entries have to be handled. If h2,t(x
p
t ,mj,t) is bijec-

tive with respect to the map mj,t this can be used to directly initialize the position from
the measurement y2,t. However, this is typically not the case, implying that we cannot
uniquely initialize the position of the corresponding map entry. This can be handled in
different ways. In Section 4 the vision sensor and different techniques are briefly dis-
cussed.
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4 Application Example

In this section we provide a description of the SLAM application, where Algorithm 1 is
used to fuse measurements from a camera, three accelerometers, three gyros and an air-
pressure sensor. The sensors are mounted on the RMAX helicopter shown previously in
Figure 1. The main objective is to find the position and orientation of the sensor from
sensor data only, despite problems such as biases in the measurements. The vision system
can extract and track features that are used in SLAM to reduce the inertial drift and the
bias in the IMU sensor.

4.1 Model

The basic part of the state vector consists of position pt ∈ R3, velocity vt ∈ R3, and
acceleration at ∈ R3, all described in an earth-fixed reference frame. Furthermore, the
state vector is extended with bias states for acceleration ba,t ∈ R3, and angular velocity
bω,t ∈ R3 in order to account for sensor imperfections. The state vector also contains the
angular velocity ωt and a unit quaternion qt, where the latter is used to parametrize the
orientation of the UAV.

In order to relate the model to the RBPF/MPF framework, the state vector is split into
two parts, one estimated using Kalman filters xkt and one estimated using the particle filter
xpt . Hence, define

xkt =
(
vTt aTt (bω,t)T (ba,t)T ωTt

)T
, (24a)

xpt =
(
pTt qTt

)T
, (24b)

which means xkt ∈ R15 and xpt ∈ R7. In inertial estimation it is essential to clearly
state which coordinate frame an entity is expressed in. Here the notation is simplified by
suppressing the coordinate frame for the earth-fixed states, which means that

pt = pet , vt = vet , at = aet , (25a)

ωt = ωbt , bω,t = bbω,t, ba,t = bba,t. (25b)

Likewise, the unit quaternions represent the rotation from the earth-fixed system to the
body (IMU) system, since the IMU is rigidly attached to the body (strap-down),

q = qbe =
(
q0 q1 q2 q3

)T
, (26)

where time indices are omitted. The quaternion estimates are normalized, to make sure
that they still parametrize an orientation. Further details regarding orientation and coor-
dinate systems are given in Appendix A.1.
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Dynamic Model

The dynamic model describes how the platform and the map evolve over time. These
equations are given below, in the form (8a) – (8d), suitable for direct use in Algorithm 1.


vt+1

at+1

bω,t+1

ba,t+1

ωt+1


︸ ︷︷ ︸

xkt+1

=


I TI 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


︸ ︷︷ ︸

Akt


vt
at
bω,t
ba,t
ωt


︸ ︷︷ ︸

xkt

+


T 2

2 0 0 0
TI 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


︸ ︷︷ ︸

Gkt


w1,t

w2,t

w3,t

w4,t


︸ ︷︷ ︸

wkt

(27a)

(
pt+1

qt+1

)
︸ ︷︷ ︸
xpt+1

=
(
pt
qt

)
︸ ︷︷ ︸
fpt (xpt )

+
(
TI T 2

2 I 03×9

04×3 04×9
T
2 S̃(qt)

)
︸ ︷︷ ︸

Apt (xpt )


vt
at
bω,t
ba,t
ωt


︸ ︷︷ ︸

xkt

+
(
T 3

6 I 0
04×3

T
2 S̃(qt)

)(
w1,t

w2,t

)
,

(27b)

mj,t+1 = mj,t, j = 1, . . . ,Mt, (27c)

where

S̃(q) =


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 , (28)

T denotes the sampling time, I denotes the 3× 3 identity matrix and 0 denotes the 3× 3
zero matrix, unless otherwise stated. The process noise wkt is assumed to be independent
and Gaussian, with covariance Qkt = diag(Qa, Qbω , Qba , Qω).

Measurement Model – Inertial and Air Pressure Sensors

The IMU consists of accelerometers measuring accelerations ya,t in all three dimensions,
a gyroscope measuring angular velocities yω,t in three dimensions and a magnetometer
measuring the direction to the magnetic north pole. Due to the magnetic disturbances from
the environment it is just the accelerometers and gyroscopes that are used for positioning.
There is also a barometer available yp,t, measuring the altitude via the air pressure. The
measurements from these sensors are anti-alias filtered and down-sampled to 20 Hz. The
frequency used is a tradeoff between computational load and lost accuracy. This sampling
rate has shown to give good accuracy at reasonable computational load. For further details
on inertial sensors, see for instance Titterton and Weston (1997), Grewal et al. (2001) and



4 Application Example 93

Chatfield (1997). The measurements are related to the states according to,

y1,t =

yp,tyω,t
ya,t

 =

 p3,t

0
−R(qt)ge


︸ ︷︷ ︸

h(xpt )

+

 01×15

0 0 I 0 I
0 R(qt) 0 I 0


︸ ︷︷ ︸

C(xpt )


vt
at
bω,t
ba,t
ωt


︸ ︷︷ ︸

xkt

+

e1,t

e2,t

e3,t


︸ ︷︷ ︸

et

,

which obviously is in the form (8). The measurement noise et is assumed Gaussian with
covariance Rt = diag(Rω, Ra).

Measurement Model – Camera

Before the camera images are used they are adjusted according to the calibration. This
allows us to model the camera using the pinhole model with focal length f = 1, according
to Ma et al. (2006) and Hartley and Zisserman (2003),

y2,t = ymj ,t =
1
zct

(
xct
yct

)
︸ ︷︷ ︸

hc(mj,t,pt,qt)

+ e3,t, (29)

where

mc
j,t =

xctyct
zct

 = R(qcbt )R(qbet )(mj,t − pt) + rc, (30)

is the position of map entry mj,t resolved in the camera frame. Here, rc is a fixed vec-
tor representing the translation between the camera and the IMU (body), qcbt is the unit
quaternion describing the rotation from the IMU to the camera and R( · ) is the rotation
matrix in (38). The measurement noise is distributed as

e3,t ∼ N(0, Rc). (31)

The UAV is equipped with a camera, which is synchronized in time with the inertial
measurements. Images are available at 4 Hz in a resolution of 384× 288 pixels. In order
to use vision for feature extraction and estimation we have made use of standard camera
calibration techniques, see e.g., Zhang (2000).

The features are not exactly in the form suitable for the RBPF. Hence, we are forced to
use an approximation in order to obtain a practical algorithm. The standard approximation
is in this case simply to linearize the camera measurement equations according to,

ymj,t = hc(mj,t, pt, qt) + e3,t (32)
≈ hcj(m̂j,t|t−1, pt, qt)−Hj,tm̂j,t|t−1︸ ︷︷ ︸

h(xpt )

+Hj,tmj,t + e3,t, j = 1, . . . ,Mt,
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where the Jacobian matrix Hj,t is straightforwardly computed using the chain rule,
i.e.,

Hj,t =
∂hc

∂mj
=

∂hc

∂mc
j

∂mc
j

∂mj
. (33)

The two partial derivatives in (33) are given by

∂hc

∂mc
j

=

(
1
zc 0 − xc

(zc)2

0 1
zc − yc

(zc)2

)
, (34a)

∂mc
j

∂mj
= R(qcbt )R(qbet ). (34b)

“Computing Vision Measurements”

In order to receive a camera measurement in the form (29), interest points or features have
to be identified in the image. This is step 2 in Algorithm 1. In this application example,
features are found using the Harris detector (Harris and Stephens, 1988), which basically
extracts well-defined corners in an image. These feature points are then searched for in
the subsequent images according to Algorithm 2.

Algorithm 2 Extracting and Managing Map Entries

1. Initialization. Search the entire image for features using the Harris detector. Save
an 11-by-11 pixel patch around each corner.

2. Predict positions of features detected in previous images. Match saved patches
in small search regions around the predicted positions using normalized cross-
correlations. Also, apply a weighted criterion to the matching procedure so that
a match close to the prediction is more likely.

3. Outlier rejection. If a matched feature is far from the predicted position compared
to other features, the measurement is discarded.

4. In areas of the image without features, search for new features using the Harris
detector. Around each detected corner an 11-by-11 pixel patch is extracted and
stored.

5. Initialize the detected features in the map.

The feature detection in Algorithm 2 is performed in the 2-D image plane. However,
the features found have to be initialized into the filter 3-D map. In this application, the
features are known to be close to the ground and we have a good estimate of the altitude
thanks to the air pressure sensor. The features are therefore initialized on the estimated
ground level and adjustment are made by implicit triangulation in the particle filter. In a
more general case, where the depth of the features are unknown, there are several methods
available for intialization. For example, the initialization can be delayed a few time steps
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until the feature has been seen from several angles and its depth can be estimated by
triangulation. Another alternative is to use an inverse depth parametrization for some
time as in Civera et al. (2007).

This algorithm has shown to work reliably on our flight data. However, improvements
can be achieved in both computational speed and detection reliability. There are more
elaborate detectors available, for example the scale-invariant feature transform (SIFT)
(Lowe, 2004), the speeded up robust features (SURF) (Bay et al., 2006) or the fast corner
detector (Rosten and Drummond, 2006, 2005). It is also possible to refine the feature
detection process even further by estimating the orientation of the patches (Davison et al.,
2007). From a computer vision perspective the current environment is rather simple,
hence fast and simple corner detectors can be successfully applied.

4.2 UAV Platform

The algorithm proposed has been tested using flight-test data collected from an autonomous
helicopter (UAV) developed during the WITAS Project (Doherty et al., 2004). The UAV is
based on a commercial Yamaha RMAX helicopter (Figure 1). The total helicopter length
is 3.6 m (including main rotor), it is powered by a 21 hp two-stroke engine and it has a
maximum take-off weight of 95 kg.

The avionics developed during the WITAS Project is integrated with the RMAX plat-
form and it is based on three computers and a number of sensors. The platform developed
is capable of fully autonomous flight from take-off to landing.

The sensors used for the navigation algorithm described in this paper consist of an
inertial measurement unit (three accelerometers and three gyros) which provides heli-
copter’s acceleration and angular rate along the three body axes, a barometric altitude
sensor and a monocular CCD video camera. GPS position information is not used in the
navigation filter described here.

The primary flight computer is a PC104 PentiumIII 700 MHz. It implements the
low-level control system, which includes the control modes (take-off, hovering, path
following, landing, etc), sensor data acquisition and communication with the helicopter
platform. The second computer is also a PC104 PentiumIII 700 MHz, handling the im-
age processing functionalities and controls the camera pan-tilt unit. The third computer
is a PC104 Pentium-M 1.4 GHz, taking care of high-level functionalities such as path-
planning, task-planning, etc.

4.3 Experiment Setup

The flight data were collected during a flight-test campaign in a training area in south
of Sweden. Sensor data and on-board video were recorded during an autonomous flight.
The helicopter flew autonomously a pre-planned path using a path following functionality
implemented in the software architecture (Wzorek et al., 2006). The helicopter altitude
was 60 m above the ground and the flight speed 3 m/s. The video camera was look-
ing downwards and fixed to the helicopter body. The video was recorded on-board and
synchronized with the sensor data. The synchronization is performed by automatically
turning on a light diode when the sensor data start to be recorded. The light diode is visi-
ble in the camera image. The video is recorded on tape using an on-board video recorder
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Table 1: Available characteristics of the sensor used in the navigation algorithm.

Sensor Output Rate Resolution Bias
Accelerometers 66 Hz 1 mG 13 mG

Gyros 200 Hz 0.1◦/s < 0.1◦/s
Barometer 40 Hz 0.1 m -

Vision 4 Hz 384x288 pixels -
t=156

Figure 2: The scenario seen from the on-board vision sensor, together with particle
clouds representing the landmarks/map features and crosses showing the measured
landmark positions.

and the synchronization with the sensor data is done manually off-line. This procedure
allows for synchronization accuracy of about 40 ms. The video sequence is recorded at
25 Hz frame rate. For the experiment described here the video frames were sampled at
4 Hz. The on-board sensor data are recorded at different sample rates. Table 1 provides
the characteristics of the sensors used in the experiment.

4.4 Experimental Results

In Figure 2 the landmarks/map are depicted using the particle clouds overlayed on the
current camera image.

In Figure 3(a) the Cartesian 2D position is depicted for the RBPF SLAM method, and
compared against a GPS based solution. Since the SLAM method, without closing the loop,
is a dead-reckoning solution it is expected to have some drift. Here, the drift is greatly
reduced, compared to dead-reckoning using the inertial sensors alone. In Figure 3(b) the
altitude (relative to the starting height) is depicted for the SLAM method and compared
against the GPS based reference and measured air pressure.

Estimating the altitude using only vision and inertial data is problematic, since the
vision measurement model will not get sufficient information in this direction. This is a
well-known drawback of a monocamera solution. Hence, in order to reduce or remove a
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Figure 3: Position and altitude of the RMAX helicopter.
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substantial drift in altitude a pressure sensor is used.
Another thing to note with the particle filter implementation of SLAM is the degen-

eration of the map over time. The resampling causes the map associated with the most
probable features to be copied and the others to be discarded. For mapped features that
have been out of sight for a while the map will then be the same for all particles after some
time. This is not a problem in our example, but would be in the case of a loop-closure.
The cross-correlation between the mapped features would in such an event correct even
out-of-sight features. This capability would be limited here since the information about
the cross-correlation among the features lies in the diversity of maps in the particles. This
has been previously noted in, e.g., Bailey et al. (2006).

5 Conclusion

In this paper a PF solution to SLAM that can handle high dimensional vehicle models is
presented. The solution includes an extra factorization of the filtering density compared
to the standard FastSLAM algorithm. The FastSLAM algorithm factorizes the filtering dis-
tribution into two parts. Then a PF is used for filtering the states of the vehicle platform
and a Kalman filter bank handles the landmarks (map). In the approach presented here, a
linear Gaussian substructure in the vehicle dynamics is handled in the Kalman filter bank
as well. Thus, lowering the dimension of the PF which decreases the computational load.

The UAV application consists of an RMAX helicopter, equipped with an IMU sensor
(accelerometer and gyro), a pressure sensor, and a vision sensor. An on-board GPS sensor
is used for evaluation, i.e., the solution presented in this paper does not rely on GPS.
In an experiment the proposed sensor fusion particle filter based SLAM algorithm was
successfully evaluated. Without the SLAM method the poor IMU performance would not
be sufficient for navigation, whereas the SLAM technique reduces the drift introduced by
the dead-reckoning sensor.

A Appendix

A.1 Coordinate Systems

Three coordinate frames are used in this paper. An earth-fixed (denoted with e), body or
inertial sensor system (denoted with b), and camera system (denoted c).

The following convention is used to rotate a vector from a coordinate frame A to a
coordinate frame B,

xB = RBAxA. (35)

where RBA is used to denote the rotation matrix describing the rotation from A to B.
Hence, the rotation from A to C, via B can be described as

RCA = RCBRBA. (36)

Another way to represent rotations is using a unit quaternion qA. In this framework a
vector can be rotated from A to B via

uB = q̄A � uA � qA, (37)
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where uA is the quaternion extension of the vector xA, i.e., uA = (0 xTA )T , and �
denotes quaternion multiplication. Furthermore, ū denotes the quaternion conjugate. See
e.g., Shuster (1993) and Kuipers (1999) for an introduction to unit quaternions and other
rotation parameterizations.

It is straightforward to convert a given quaternion into the corresponding rotation
matrix,

R(q) =

(q2
0 + q2

1 − q2
2 − q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) (q2
0 − q2

1 − q2
2 + q2

3)

 , (38)

where q = (q0 q1 q2 q3)T .
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Abstract

Using the parity-space approach, a residual is formed by applying a projec-
tion to a batch of observed data and this is a well established approach to
fault detection. Based on a stochastic state space model, the parity-space
residual can be put into a stochastic framework where conventional hypoth-
esis tests apply. In an on-line application, the batch of data corresponds to
a sliding window and in this contribution we develop an improved on-line
algorithm that extends the parity-space approach by taking prior informa-
tion from previous observations into account. For detection of faults, the
Generalized Likelihood Ratio (GLR) test is used. This framework allows for
including prior information about the initial state, yielding a test statistic with
a significantly higher sensitivity to faults. Another key advantage with this
approach is that it can be extended to nonlinear systems using an arbitrary
nonlinear filter for state estimation, and a linearized model around a nomi-
nal state trajectory in the sliding window. We demonstrate the algorithm on
data from an Inertial Measurement Unit (IMU), where small and incipient
magnetic disturbances are detected using a nonlinear system model.

1 Introduction

The parity-space method is a widely used method to find a residual for fault detection.
It was first described in Chow and Willsky (1984), but is described and used in many
publications for example Basseville and Nikiforov (1993), Ding et al. (1999), Gertler
(1997, 1998). The parity-space approach is a well established approach to fault detection,
and one of its main features is the intuitive geometrical interpretation of the residual that
is obtained by projecting a batch of observations onto the parity space. The projection
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assures that the influence of the unknown initial state in the data batch as well as external
disturbances do not affect the residual from which diagnosis decisions are made.

The classical parity-space approach applies to linear deterministic models, and has
been extended to a statistical framework (Gustafsson, 2002, 2007, Fouladirad and Niki-
forov, 2005), which makes it applicable to stochastic linear state-space models with ad-
ditive faults. The performance limits for various noise distributions have been studied
in Hendeby and Gustafsson (2006). Its main limitations are:

• It may have a poor sensitivity to faults, in particular for short data batches.

• It cannot handle prior knowledge about the initial state. For instance, a state esti-
mate may be available from observations outside the sliding window.

• It is not easily extended to nonlinear systems.

It is the purpose of this contribution to extend the stochastic parity-space approach to
handle these drawbacks.

The main idea is to incorporate prior information of the state when forming the resid-
ual. In this way, the sensitivity to faults increases automatically. This increased sensitivity
can be used to keep the batch window short while keeping a sufficient sensitivity to faults
and in this way decrease the delay until detection. The final result is an algorithm which
is related to one of the methods suggested in Willsky and Jones (1976). This seminal
paper applies the Generalized Likelihood Ratio (GLR) test to the same stochastic state-
space model, and to limit the computational complexity, the authors propose an algorithm
where faults are restricted to a sliding time window. The final algorithm consists of two
filters from which all relevant test statistics can be computed.

Further, with a good prior of the initial state and a short batch window, nonlinear
systems can be linearized along a nominal trajectory and the parity-space residual is ap-
proximated using the linearized model. The shorter window, the better approximation.
This means that a nonlinear filter, as the Extended Kalman Filter (EKF), the Unscented
Kalman Filter (UKF) or the Particle Filter (PF), can be run on-line with a time lag corre-
sponding to the batch window, and the residual is continuously monitored on this batch
window. If a fault is detected, the filter can be put in simulation mode. The ability to han-
dle nonlinear models in a natural way is a clear improvement to the GLR test in Willsky
and Jones (1976).

To demonstrate the algorithm, an application of estimating orientation based on mea-
surements from an Inertial Measurement Unit (IMU) is studied. The unit consists of ac-
celerometers, gyroscopes and magnetometers. This is a classical filtering problem, where
the state-space model basically says that the orientation is the integral of measured gyro-
scope values. This model is subject to a drift which evolves linearly in time, and needs
external support. Here, the magnetic field sensors normally functions as a compass and
provides a measurement with two degrees of freedom, and the accelerometer can, if there
is no external acceleration, be used as an inclinometer providing a measurement relation
with three degrees of freedom.

The outline is as follows. Section 2 defines the models used. Using these models, var-
ious ways of estimating the initial state in a time window is described in Section 3. The
parity-space approach and its relation to different initial state estimates is then described
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in Section 4. Using the parity-space residuals formed in Section 4, the GLR test in Sec-
tion 5 can be used for detection. A simulation example in Section 6 shows the detection
performance and the framework is applied to detect magnetic disturbances in Section 7.
Finally, conclusions are provided in Section 8.

2 Modeling

This section describes the relation between state-space modeling and modeling over a
sliding window or batch. An efficient fault parameterization is also introduced.

2.1 System Model

Let us consider a discrete-time dynamical system in the form

xt+1 = Ftxt +Gut ut +Gft ft +Gvt vt, (1a)

yt = Htxt +Hu
t ut +Hf

t ft + et, (1b)

where xt is the state vector, ut an input signal, ft a scalar time-varying fault profile, yt a
measurement, vt process noise and et the measurement noise. The fault detection test can
here be stated as testing if ft = 0 or ft 6= 0.

2.2 Batch Model

The batch form is often used in fault detection and diagnosis Chow and Willsky (1984),
Gertler (1998), Gustafsson (2001). Stack L signal values to define the batched signal
vectors like Y =

(
yTt−L+1, . . . , y

T
t

)T
, for all signals. Then, the outputs in that window

will be given by
Y = Otxt−L+1 + H̄u

t U + H̄f
t F + H̄v

t V + E, (2)

with the extended observability matrix

Ot =


Ht−L+1

Ht−L+2Ft−L+1

...
Ht

∏t−L+1
k=t−1 Fk

 . (3)

The matrices determining how the remaining signals affect the system are described by

H̄s
t =


Hs
t−L+1 0 · · · 0

Ht−L+2G
s
t−L+1 Hs

t−L+2 · · · 0
...

. . .
...

Ht

∏t−L+2
k=t−1 FkG

s
t−L+1 · · · HtG

s
t−1 Hs

t

 , (4)

where s = {u, f, v}. For simplicity, denote Z = Y− H̄u
t U, implying that the system (2)

can be written as
Z = Otxt−L+1 + H̄f

t F + H̄v
t V + E. (5)
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The system is assumed to be observable, that is,Ot has full column rank and all states will
have a unique influence in the output. However, it is often possible to observe a subspace
of the state space and the system can therefore be partially observable. In order to handle
such a system, the observable subspace has to be determined. It is given by the singular
value decomposition

Ot = U1ΣV T1 , (6)

where U1 spans the observable subspace. The state x̄ , ΣV T1 x (dim(x̄) < dim(x)) is
now an observable state. The system (2) can then be rewritten as

Y = U1x̄+ H̄u
t U + H̄f

t F + H̄v
t V + E. (7)

Now, all methods described in this article can be used with Ot exchanged for U1. When
a prior estimate of the original estimate is available, as in Section 3.4, the state estimate
and its covariance have to be transformed as

ˆ̄x(1) = ΣV T1 x̂
(1) (8)

P
(1)
ˆ̄x(1) = ΣV T1 P

(1)V1Σ. (9)

2.3 Fault Model

It is convenient for the analysis to assume that the fault is constant over time, while in
practice a fault is often increasing or decreasing slowly in magnitude over time. To in-
clude such incipient faults, the fault profile ft can be modeled with a low dimensional
parametrization as

F = ΦT θt ⇒ H̄θ , H̄fΦT . (10)

For the batch model, this model implies that the fault parameter can be considered con-
stant over the data window. Thus, a scalar time-varying parameter is replaced with a
constant vector. This facilitates the analysis significantly.

In this paper, the Chebyshev polynomial is used as basis functions, see Abramowitz
and Stegun (1965), Rivlin (1974). An example of the first three basis functions which are
orthogonal Chebyshev polynomials over a window of 10 samples is given in Figure 1(a)
and a parameterized disturbance from a magnetometer is shown in Figure 1(b).

2.4 Model Summary

Combining the batch data model with the fault model, the total model that will be studied
in the sequel can be summarized as

Z = Otxt−L+1 + H̄θ
t θt + Nt, (11)

where
Nt , H̄v

t V + E, (12)

and
S , Cov(Nt). (13)
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Figure 1: The basis functions (a) are used to parameterize the fault from a magnetic
disturbance (b).

3 State Estimation

There are two unknowns in the data model (11), the initial state xt−L+1 and the fault
profile parameter vector θt. This section describes different ways to estimate the initial
state that are instrumental for the results in the next section. Time indices are here omitted
for simplicity, e.g., x = xt−L+1.

3.1 Least Squares Estimation

The least squares estimate of the initial state is given by

x̂ = arg min
x

‖Ox− Z‖22, (14)

which gives the solution
x̂ = O†Z. (15)

Here, O† denotes the Moore-Penrose pseudo inverse of O (see Golub and van Loan
(1996)). This estimate does not account for the noise covariance S, and is included here
because it is closely related to the original parity-space approach.

This estimate is unbiased in case of no fault, since

E x̂ = EO†Z = E
(
x+O†N

)
= Ex, (16)

and
Cov(x̂) = O†SO†T . (17)

Observe that O†O = I since the system is assumed to be observable and hence O has
full column rank. In presence of faults, the expected value would be

E x̂ = EO†Z = x+O†H̄θθ. (18)
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3.2 Minimum Variance State Estimation

The equation system Ox + N = Z is known as the general Gauss-Markov linear model.
If S � 0, the parameters x can be estimated with minimum variance by solving the
generalized least squares problem

x̂ = arg min
x

(Ox− Z)TS−1(Ox− Z), (19)

see Björck (1996). This can be rewritten as the least squares problem

x̂ = arg min
x

‖S−1/2Ox− S−1/2Z‖22, (20)

which has the solution
x̂ = (S−1/2O)†S−1/2Z. (21)

This estimate is distributed according to

x̂ ∼ N
(
x+ (S−1/2O)†S−1/2H̄θθ, (OTS−1O)−1

)
. (22)

3.3 Filtered Estimate from Past Data

Given that the data before the sliding time window are not affected by a fault (the fault
detection test assumes a fault in the batch window), a suitable filter can be applied to the
original model (1). For a nonlinear system a nonlinear filter, e.g., EKF, UKF, or PF, can be
applied. This yields another estimate of the initial state in the batch window, independent
of (21). The distribution for the initial state can then be approximated by a Gaussian
distribution

x̂ ∼ N(x, P ), (23)

to facilitate the linear framework in the parity-space methods.

3.4 Smoothed State Estimate

Given the two estimates (22) and (23) based on independent data sets, a combined esti-
mate can be formed similar to smoothing. Combining two independent estimates is often
referred to as the sensor fusion problem, see for instance Gustafsson (2001).

Denote the two distributions in (22) and (23)

x̂(i) ∼ N(x, P (i)), i = 1, 2. (24)

Then, the smoothed initial state is estimated by

x̂ = P
(
P (1)−1

x̂(1) + P (2)−1
x̂(2)

)
, (25)

where
P ,

(
P (1)−1

+ P (2)−1
)−1

. (26)
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The expected value of this estimate is derived using (22) and (24)

E x̂ = P (P (1)−1
+ P (2)−1

)︸ ︷︷ ︸
=I

x+ PP (2)−1
(S−1/2O)†S−1/2H̄θθ

= x+ POTS−1H̄θθ (27)

Note that Cov(x̂) = P � P (2) which means that the covariance of the estimate is de-
creased when prior information is used.

4 Fault Detection with Parity Space

The classical parity space uses a projection to construct a residual insensitive to the initial
state. This section shows that this is equivalent to estimate the initial state by least squares
from data in the batch and substract the estimated influence. The parity-space framework
is also extended for the use of prior information about the initial state.

4.1 Classical Parity Space

The parity-space idea is to project the output on a space that is orthogonal to the influence
of the initial state, the parity space. The space influenced by the initial state is spanned
by O, see (5). Thus, define BO⊥ as an orthonormal basis for R(O⊥). Now, a residual
insensitive to the initial state can be defined as

r = BTO⊥ Z. (28)

The batch model (11) gives an expression for the residual suitable for analysis as

r = BTO⊥ H̄θθ + BTO⊥ N ∼ N(BTO⊥ H̄θθ,BTO⊥ S BO⊥). (29)

The normalized residual is then

r̄ = (BTO⊥ S BO⊥)−1/2 BTO⊥︸ ︷︷ ︸
,W̄T

1

Z ∼ N(W̄T
1 H̄

θθ, I). (30)

4.2 Parity Space as Least Squares State Estimation

By inserting the least squares estimate (15) into the batch model (11), the model error is
obtained as

ε = Z−Ox̂ = Z−OO†︸︷︷︸
PO

Z = (I − PO)Z = PO⊥Z. (31)

Note that PO = OO† is an orthogonal projection onto the space spanned by O and
PO⊥ = I − PO is the orthogonal projection onto the complementary to O, denoted O⊥
Meyer (2000). The projector can also be written as

PO⊥ = BO⊥ BTO⊥ , (32)
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where BO⊥ is an orthonormal basis forR(O⊥).
Since the model error is computed by a rank deficient projection, the information

in the prediction error can be represented by a vector of lower dimension. This low-
dimensional vector is here denoted the residual. Note that BTO⊥ BO⊥ = I due to or-
thonormality and that the dimension is the rank of the projection in (32). The residual can
be written as

r = BTO⊥ ε = BTO⊥ BO⊥ BTO⊥ Z = BTO⊥ Z. (33)

This expression equals the residual created by the classical parity-space method in Sec-
tion 4.1. That is, we have shown that a hypothesis test on the model error can be reduced
to a hypothesis test on the residual from the parity-space approach. Thus, these two ap-
proaches coincide.

4.3 Parity Space with Smoothing

To construct the test statistic, it is desirable to have the model error ε as a function of the
measurements, Z, and the state estimate from the previous data, x̂(1). Thus,

ε = Z−Ox̂ = Z−OP
(
P (1)−1

x̂(1) + P (2)−1
x̂(2)

)
=
(
I −OPP (2)−1

(S−1/2O)†S−1/2
)

︸ ︷︷ ︸
,WT

2

Z−OPP (1)−1
x̂(1)

= WT
2 Z−OPP (1)−1

x̂(1) (34)

and the covariance is

Cov(ε) = WT
2 SW2 +O PP (1)−1

P︸ ︷︷ ︸
,Q

OT =
(
WT

2 O
)(S 0

0 Q

)(
W2

OT
)
. (35)

It is important to note that the matrix WT
2 is time varying due to the dependence of the

covariance from the filter used on data before the window. However, if a Kalman filter is
used it will become stationary and then the covariance converges to a matrix which can
be computed by solving the Riccati equation.

Lemma 1
Assume that S andQ are both positive definite matrices, then the matrix in (35) is positive
definite.

Proof: See Appendix A.1.

Since Q = PP (1)−1
P where P (1) and P are positive definite matrices, Q is also

positive definite. Then, according to Lemma 1, the covariance of ε is positive definite and
thus invertible. The normalized residual can therefore be expressed as

r̄ = Cov(ε)−1/2ε = Cov(ε)−1/2WT
2︸ ︷︷ ︸

,W̄T
2

Z− Cov(ε)−1/2OPP (1)−1
x̂(1). (36)
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5 GLR Test

Detecting faults is done using the residuals derived in Section 4. Using the information
about the noise distribution of the residuals, a GLR test statistic is formed. To make the
decision if a fault is present or not, the test statistic is compared to a threshold from the
chi-square distribution.

5.1 Test Statistic

Fault detection is here considered as detecting whether the fault is zero or not. This
approach corresponds to the hypothesis test

H0 : θ = 0 (37a)
H1 : θ 6= 0. (37b)

Using the normalized residuals (30) or (36), the hypothesis test can be written as

H0 : r̄ ∼ N(0, I) (38a)

H1 : r̄ ∼ N(W̄T
i H̄

θθ, I). (38b)

where i ∈ {1, 2} (depending on method). This yields the log-likelihood ratio

L = sup
θ

2 log
(
p(r̄|H1)
p(r̄|H0)

)
= sup

θ
2 log

e−
1
2‖r̄−W̄

T
i H̄

θθ‖22

e−
1
2‖r̄‖

2
2

= sup
θ
−
(
‖r̄ − W̄T

i H̄
θθ‖22 − ‖r̄‖22

)
, (39)

which is maximized for θ = (W̄T
i H̄

θ)†r̄. Then

L = −
(
‖(I − W̄T

i H̄
θ(W̄T

i H̄
θ)†︸ ︷︷ ︸

P
W̄T
i
H̄θ

)r̄‖22 − ‖r̄‖22
)

= r̄TPW̄T
i H̄

θ r̄ (40)

5.2 Statistics

To choose suitable thresholds for the test statistics above, it is necessary to compute
their distributions. While having Gaussian noise, the test statistics will be chi-square
distributed variables, see Kay (1998). The normalized residual is distributed as

r̄ ∼ N(W̄T
i H̄

θθ, I), (41)

where θ = 0 under the null hypothesis (38a). The test statistic is then distributed as the
non-central chi-square distribution

L = r̄TPWT
i H̄

θ r̄ ∼ χ′2ν (λ), (42)

where ν = rank(WT
i H̄

θ) and

λ = (WT
i H̄

θθ)TPWT
i H̄

θWT
i H̄

θθ = (WT
i H̄

θθ)TWT
i H̄

θθ. (43)
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Observe that λ = 0 in the fault-free case and then the test statistic is distributed according
to the central chi-square distribution L ∼ χ2

ν . The threshold is then chosen from the
chi-square distribution so that the fault-free hypothesis is rejected erroneously only with
a small probability.

6 Simulation Example

To show the performance of the fault detection algorithms, a DC-motor has been simu-
lated. The DC-motor can have a fault which is interpreted as a torque disturbance or a
fault in the voltage supply.

6.1 Modeling

The continuous-time transfer function from input voltage to axle angle is

G(s) =
1

s(s+ 1)
. (44)

Using the state variables x1 (angle) and x2 (angular velocity), a sampled version of the
DC-motor can be written as

xt+1 = Fxt +Guut +Gfft +Gwwt (45a)
yt = Hxt + et, (45b)

with the system matrices

F =
(

1 1− e−T
0 e−T

)
, Gu =

(
T − (1− e−T )

1− e−T
)
,

Gw = Gf = Gu, H =
(
1 0

)
,

where wt ∼ N
(

0,
(
π

180

)2)
, et ∼ N

(
0,
(
π

180

)2)
and the sample interval used is T =

0.4 s.

6.2 Simulations

In the simulation, the system has been simulated for 200 samples in time with the unit step
as input. After 100 fault-free samples, a constant fault is introduced with the magnitude of
2π
180 , which is present until the last sample. The fault can be seen as a torque disturbance
which causes a drop in the angular velocity, x2, and a slope change in the angle, x1. With
this setup, 2000 Monte Carlo (MC) simulations have been carried out. One instance of
the state trajectory realizations is shown in Figure 2 where also the fault-free trajectory
is shown using the same noise realization. The drop in angular velocity when the fault
is present can be seen in Figure 2(b). The angle, which is measured, has a small change
in the slope which is hardly noticeable in Figure 2(a). The fault detection method using
smoothing, includes a time-varying term dependent on the estimation covariance from
the Kalman filter. After a transient period the Kalman filter will become stationary which
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Figure 2: Plots of the state trajectories with and without fault influence for the DC-
motor in (45).

means that the estimation covariance converges. Figure 3 shows
√

trP (1), a measure
of the state covariance, P (1). Note that P (1) converges already after approximately 15
samples and the smoothing method can then be considered time invariant.
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Figure 3:
√

trP (1) is used as a measure of the state estimation covariance.

6.3 Fault Detection

Fault detection on the simulated data has been made both with and without making use of
the known fault structure. Since the fault is a step disturbance, a basis of dimension one
can be used to describe its behavior. For fault detection a sliding window of 8 samples is
used and for the smoothed method the Kalman filter estimate from previous data is used
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as well. For the discussions below, some definitions have to be made. The alarm rate is
computed as

ar(t) =
# L(t) > γ

# MC-simulations
, (46)

where L(t) is the test statistic and γ the threshold for detection. The probability of detec-
tion, PD, is defined as the alarm rate during presence of fault. Probability of false alarm,
PFA, is defined as the alarm rate during fault-free periods.

No Knowledge about Fault Structure (Case A)

First, the fault detection methods are used without assuming knowledge about the struc-
ture of the fault. The results can be seen in Figures 4(a)–4(c). The average over the
MC-simulations of the test statistics (40) is shown in Figure 4(a). Note that the difference
in average during the fault-free part between the methods is due to different degrees of
freedom of the test statistic. The parity-space method has 6 degrees of freedom whereas
the smoothed method has 7. The alarm rate versus time is shown in Figure 4(b). The false
alarm rate has been set to 1% and it and the actual alarm rate during the fault-free parts
of the simulation corresponds to this value. The method with smoothing outperforms the
parity-space approach, but the comparison is unfair since the estimation is based on a
different amount of data. In Figure 4(c), the Receiver Operation Characteristics (ROC)
is plotted. The ROC-curve shows how the probability of detection for a fault varies ver-
sus the probability of false alarm. Guessing corresponds to a the straight line between
PFA = PD. In this case the values for PD is estimated one window after the entrance of
the fault. This is done since the Kalman filter estimate, used in the smoothed method, will
be influenced by the fault afterward. More about ROC-curves can be found in Kay (1998).

Using the Structure of the Faults (Case B)

Secondly, the structure of the fault is used to enhance the fault detectability. Since it is
here assumed that the fault is a step, a one dimensional basis function is used to describe
the fault. It is discussed in Section 5.2 that the average of the test statistics should equal
the degrees of freedom for the test statistic. Due to the parameterization, the degree of
freedom is 1 and the effect of this can be seen in Figure 4(a) where the averages of the
test statistics (40) are 1 in the fault-free part. The lower average during the fault-free
part makes the relative increase to the faulty part larger and the probability of detection is
therefore higher than without structure. Figure 4(b) shows that the probability of detection
is considerably increased for both methods due to the use of the fault structure. The ROC-
curves in Figure 4(c) have therefore also shifted toward higher detection rates.

7 Application Example: Detection of Magnetic
Disturbances

In many situations, the orientation of a system is of interest. To estimate the orientation,
an IMU can be used. The IMU normally contains three dimensional accelerometers and
gyroscopes. However, the measurements in this example are made with an IMU from
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Figure 4: The averages of the test statistics (40) are given in (a), the alarm rate in
(b) and a plot of the ROC curve in (c). A and B denote with and without using the
structure of the fault respectively.
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Xsens Technologies, see (Xsens Technologies B.V.), which is augmented with a magne-
tometer (compass) to enhance the orientation estimation. The magnetometer measures
the weak magnetic field of the earth and is therefore very sensitive to disturbances from
ferro-magnetic objects or electric fields. The purpose of this example is to show how
these disturbances can be detected.

7.1 Modeling

To describe the behavior of the IMU, two coordinate systems are used, one fixed to the
world and one fixed in the IMU (body). Denote the two coordinate systems with w and b
respectively. The quaternion, qt, is used to describe the rotation between the two coordi-
nate systems. For a thorough review of quaternions, see Kuipers (1999). The following
quaternion dynamics was derived in Törnqvist (2006)

qt+1 =
(
I4 +

T

2
S(ωbbw,t)

)
︸ ︷︷ ︸

,Ft

qt +
T

2
S′(qt)︸ ︷︷ ︸
,Gvt

vt, (47)

where

S(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 , S′(qt) =


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 .

The sensors that are available in the system are gyroscopes, accelerometers and mag-
netometers (compass). The measurements from the gyroscopes are, as seen in (47), di-
rectly incorporated in the dynamics and are therefore not described in the measurement
equations.

The accelerometers measures the earth gravitational field described in the b-system.
For this example, it is assumed that the sensor is not accelerated or that the acceleration
is known. The measurement equation can therefore be written as

ya,t = gb + ea,t = R(qbw)gw︸ ︷︷ ︸
,ha(qbw)

+ea,t, (48)

where the rotation matrix

R(q) =

(q2
0 + q2

1 − q2
2 − q2

3) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) (q2
0 − q2

1 − q2
2 + q2

3)

 , (49)

g is the gravity vector and ea is the measurement noise.
The reading from the magnetometer is a normalized vector, n̄bnp, given in the b-system

and pointing along the earth magnetic field. Since the earth magnetic field is very weak,
it can easily be disturbed by an electric motor or ferromagnetic objects such as beams or
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other iron constructions. Such a disturbance can be represented by an unknown vector,
here denoted dm,t. The measurement equation can thus be written as

ym,t = n̄bnp,t + dm,t + em,t = R(qbw,t)n̄wnp︸ ︷︷ ︸
,hm(qbw)

+dm,t + em,t, (50)

whereR(?) is the rotation matrix given in (49), n̄np is the normalized earth magnetic field
vector and em,t is the measurement noise.

The total measurement equation becomes

yt =
(
ya,t
ym,t

)
= h(qbw,t) +

(
0
I

)
︸︷︷︸
,Hd,t

dm,t + et. (51)

Linearization

To estimate the orientation using the EKF and to use linear theory for fault detection, the
system must be linearized. The dynamic equation (47) is already linear and time-varying,
but the measurement equation (51) is nonlinear. It is therefore linearized with a first order
Taylor series

yt = h(qt) + et ≈ h(q̂t|t−1) +Ht(qt − q̂t|t−1) +Hd,tdm,t + et, (52)

where:

Ht =
∂h(q)
∂q

∣∣∣∣∣
q=q̂t|t−1

(53)

To form the linearized system, a new measurement variable is computed with known
information as

ỹt , yt − h(q̂t|t−1) +Htq̂t|t−1 = Htqt +Hd,tdm,t + et. (54)

Then the linearized system can now be written as

qt+1 = Ftqt +Gvt vt (55a)

ỹt =
(
Ha
t

Hm
t

)
︸ ︷︷ ︸

=Ht

qt +
(

0
I

)
︸︷︷︸
=Hdt

dm,t + et. (55b)

The batched form discussed in Section 2.2 will have the following form

Ỹ = Otxt−L+1 + H̄u
t U + H̄d

t D + H̄v
t V + E. (56)

The linearization is done around a predicted trajectory, that is, given an estimate of the
initial state in the window the trajectory is predicted in the window only using (55a).

If the fault is parameterized, it is assumed that the profile of the disturbance is a
smooth function with respect to time. Thus, the disturbance could be parameterized as
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in Section 2.3. Each dimension in the disturbance vector is modeled separately, so H̄di

t

denotes the stacked system matrix for dimension i. This matrix is built up as (4) but using
the i:th column of H̄d

t . The stacked system can now be written as

Ỹ = Otxt−L+1 +
nd∑
i=1

H̄di

t Di + H̄v
t V + E, (57)

where Di =
(
dit−L+1

T
, . . . , dit

T
)T

. Each component of the disturbance is then modeled
as

dit = φTi,tθi. (58)

The influence of the disturbances can now be described as

nd∑
i=1

H̄di

t Di =
(
H̄d1

t · · · H̄dnd
t

)
diag

(
φT1,t · · ·φTnd,t

)
︸ ︷︷ ︸

,H̄θ

 θ1

...
θnd


︸ ︷︷ ︸

,Θ

. (59)

In the tests in Section 7.3, a third order basis is chosen for the fault. A plot of the basis
functions are shown in Figure 1.

7.2 Detection Algorithm

The state estimation filter, including the disturbance detection, can be described as in
Algorithm 1. The fault parameterization, described above can either be used or not in
step 3.

Algorithm 1 Detection Filter

1. Time update according to an EKF.

2. Measurement update using non-disturbed sensors. This is done according to an
EKF, but the measurement equation is limited to the set of non-disturbed sensors,
S. That is

y =


...

hi(qt)
...

 , i ∈ S. (60)

3. Detection of disturbed sensors. Detection is done either according to the parity-
space method or using the smoothing approach. The set S is updated accordingly.

7.3 Test Results

To show the performance of the disturbance detection algorithms described in previous
chapter and to show the characteristics of the sensors, some measurement data is collected.
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The data is collected under different circumstances, i.e., when the sensor is at rest, is
slowly rotated, with and without disturbances. All data is collected with a sampling rate
of 100 Hz and the length of the testing window is 10 samples in all tests. Table 1 presents
the datasets.

Table 1: Data sets collected using the IMU.

Data Set Disturbance Movement
UD1 Undisturbed At rest
D1 Magnetometer dist At rest
UD2 Undisturbed Rotated around ebx
D2 Magnetometer dist Rotated around ebx

Sensor at Rest

The purpose of the first data set, UD1, is to explore the noise characteristics of the sensors.
The IMU is here lying still at a table and data is collected during 9 seconds. The orientation
of the sensor is set so that the ebz-axis is pointing outwards from the earth along the gravity
field (perpendicular to the table). The test statistics are shown in Figure 5. The average
of the test statistic should equal the degrees of freedom in the residual, see Section 5.2.
This number is plotted as a dotted line in the figure and corresponds well to the actual
outcome. Note that the fault profile lowers the average of the test statistic.
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Figure 5: Test statistics for the data set UD1. Theoretical averages for undisturbed
operation is plotted with dotted line.
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The experiment setup for data set D1 is similar to UD1. The difference is that the
magnetometer is disturbed. The disturbance was caused by a ferro-magnetic object (a
pair of scissors), which was moved towards the sensor. The closest distance was approxi-
mately 30 cm. The components of the magnetometer reading are plotted in Figure 6. The
test statistics are shown in Figure 7, where the disturbance is clearly detected especially
when smoothing is used. Note that the average for the test statistic with fault profile is
lower during the undisturbed periods, but are equal during the disturbance since the fault
profile can describe this smooth type of disturbance.
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Figure 6: The components of the disturbed magnetometer readings in data set D1.

Rotating Sensor

To show the performance of detection when the sensor is rotating, data sets UD2 and D2
are collected when the IMU is rotated around the ebx-axis. The 3-dimensional magnetome-
ter readings form a circle when it is not disturbed and a disturbance will make it deviate
from the circle. The magnetometer readings are shown in Figure 8, where a disturbance
can be seen to the right hand side in 8(b).

To accurately estimate the orientation of the sensor, the accelerometer measurements
has to be disregarded during acceleration of the sensor as described in Section 7.2. Even
though the sensor is just rotated in this example, the accelerometer show some accelera-
tion since they are not centered in the sensor unit. The accelerometer is therefore ignored
during most of the circular movement. Figure 9 shows the test statistics for data set UD2.
It can be seen here that the actual averages are a little bit higher than the theoretical
average. Possible explanations are linearization errors and misalignments in the sensor
configuration. The disturbance in data set D2 is clearly seen in Figure 10 both with parity
space and smoothing.
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Figure 7: Test statistics for data set D1, the disturbance is clearly visible when
smoothing is used. Theoretical averages for undisturbed operation is plotted with
dotted line.
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Figure 8: Magnetometer readings from data set UD2 (a) and D2 (b). The light
disturbance for D2 is visible as a small deviation from the circle in (b).



124 Paper B Unifying the Parity-Space and GLR Approach to Fault Detection. . .

0 500 1000 1500 2000 2500 3000 3500
10

0

10
1

10
2

10
3

10
4

T
es

t s
ta

t
Parity space

 

 
No fault profile
Fault profile

0 500 1000 1500 2000 2500 3000 3500
10

0

10
1

10
2

10
3

10
4

T
es

t s
ta

t

Smoothing

 

 
No fault profile
Fault profile

Figure 9: Test statistic for data set UD2. Theoretical averages for undisturbed oper-
ation is plotted with dotted line.
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Figure 10: Test statistic for data set D2. Theoretical averages for undisturbed oper-
ation is plotted with dotted line.
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8 Conclusions and Discussion

This work started with deriving parity-space residuals using different estimates of the
initial state in a batch of data. This residual and its stochastic properties were then used
for creating a GLR test. This test is highly related to the GLR test in Willsky and Jones
(1976). This test is defined in terms of the state space model (1) for a step fault at an
unknown time t−L. That is, the change time is unknown, which leads to a bank of filters,
each one matched to a certain change time t− L. To limit computational complexity, the
authors propose to only consider one fix change time t − L. The proposed algorithm
consists of a nominal Kalman filter that runs to time t, in contrast to the Kalman filter
with time lag in (23), and a matched filter that computes both an estimate of the fault and
a state compensation term.

The advantage of parity space with smoothing is the geometrical interpretations and in
particular its natural application to nonlinear systems. We have further pointed out how a
smooth parameterization of the fault profile can improve the detection performance. Both
simulations on a DC-motor and a real world example on fault detection on a magnetometer
has shown to work well.

A Appendix

A.1 Proof of Lemma 1

If (35) is a positive definite matrix, the following must hold

xT
(
WT

2 O
)(S 0

0 Q

)(
W2

OT
)
x > 0 ∀x 6= 0. (61)

Since it is known that S and Q are positive definite, it suffices to show that

xT
(
WT

2 O
)
6= 0 ∀x 6= 0. (62)

The matrixWT
2 can be written as I−OM whereM is an arbitrary matrix. If x ∈ N (OT )

and x 6= 0 then
xT
(
WT

2 O
)

=
(
xT 0

)
6= 0. (63)

If x /∈ N (OT ) and x 6= 0 then

xT
(
WT

2 O
)

=
(
xT − xTOM xTO

)
6= 0 (64)

since at least the second element is nonzero. Thus, we have shown that there is no x 6= 0
such that (62) is invalidated.
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Abstract

Detection of spurious features is instrumental in many computer vision ap-
plications. The standard approach is feature based, where extracted features
are matched between the image frames. This approach requires only vision,
but is computer intensive and not yet suitable for real-time applications. We
propose an alternative based on algorithms from the statistical fault detection
literature. It is based on image data and an inertial measurement unit (IMU).
The principle of analytical redundancy is applied to batches of measurements
from a sliding time window. The resulting algorithm is fast and scalable, and
requires only feature positions as inputs from the computer vision system.
It is also pointed out that the algorithm can be extended to also detect non-
stationary features (moving targets for instance). The algorithm is applied to
real data from an unmanned aerial vehicle in a navigation application.

1 Introduction

Computer vision algorithms are today used in a large number of applications within ar-
eas of tracking, navigation, augmented reality and simultaneous localization and mapping
(SLAM). In common for these applications is that features in the image frames are de-
tected and used as observations in a (Kalman) filter to estimate camera pose or target
bearings. For a feature to be useful, it has to be stationary in space and clearly shaped
so its position is unambiguously computed in consecutive frames by the feature detection
algorithm. If the latter is not the case, the feature is called a spurious feature.

The classical approach is a stand-alone computer vision feature-based solution. One
standard approach for avoiding spurious features is to use the so called random sample
consensus (RANSAC) algorithm Fischler and Bolles (1981). A problem with this algo-
rithm is that it is not directly suitable for real-time algorithms. Some interesting recent
work on reducing the computational complexity have been presented in Nistér (2005).
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To mention a few applications, where RANSAC type outlier detection is used we have
Kanade et al. (2004), Maimone et al. (2007), Nistér et al. (2006). For image to image
comparisons the difference between the predicted feature location and its actual location
can be used to detect outliers. Another idea is to make use of the epipolar geometry to
detect outliers, simply by computing the distance to the epipolar lies for each correspon-
dance. Is this distance is larger than a certain threshold the feature is detected as a spurious
feature Torr et al. (1995).

For real-time applications with limited computational resources, methods based on
correlation maximization of patch templates in each frame for a large number of features
should be avoided.

The approach we suggest is prediction based, combining IMU measurements with
a model to obtain the predictions. The detection part is an application of the stochastic
parity space approach in fault detection. The stochastic parity space approach as described
in Gustafsson (2007) extends the classical parity space approach in fault detection Chow
and Willsky (1984) to stochastic measurement errors and process noise. The proposed
algorithm consists of the following components:

• An IMU for predicting how the features move from frame to frame.

• A list of feature points for each frame is used as measurement vector. Here, for
instance, the Harris detector Harris and Stephens (1988) can be used.

• A sliding window where the feature points are monitored for outliers.

• A parity space approach where the feature observations are projected onto a smaller
subspace which eliminates unknown inputs, attenuates the noise and highlights out-
liers.

In a way, the analytical redundancy in the parity space extends the concept of projective
geometry to a sequence of frames, utilizing a temporal motion model for the camera pose.

The algorithm is applied to airborne images in a SLAM application, where the goal
is to navigate an unmanned aerial vehicle (UAV) back to home-base without infrastruc-
ture, as described in Karlsson et al. (2008). This case is particularly challenging, since
the ground scene is rich of spurious features. Yet, the algorithm is quite successful in
detecting spurious features.

The outline is as follows. Section 2 surveys the stochastic parity space approach to
fault detection in linear systems. Section 3 presents a kinematic model suitable for fusion
of IMU and camera information, and gives a state space model suitable for the parity space
approach. Section 4 illustrates the method on artificial data from the realistic scenario, on
which the method is evaluated on real data in Section 5.

2 Parity Space

If a model of a system is available, it is possible to determine in which part of the output
space an output from a healthy system can reside. If there is signal energy in other parts
of the output space, it is not in accordance with the model and a fault must therefore be
present. This is exploited within the parity space framework Chow and Willsky (1984),
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where an orthogonal projection of the output is used to create a residual that is non-
sensitive to healthy outputs.

2.1 Modeling

Let us consider a discrete-time dynamical system in the form

xt+1 = Ftxt +Gut ut +Gft ft +Gvt vt, (1a)

yt = Htxt +Hu
t ut +Hf

t ft + et, (1b)

where xt is the state vector, ut an input signal, ft a fault vector, yt a measurement, vt
process noise and et the measurement noise. Since we are interested in monitoring how
the system behaves over time, the system can be written in batch form. The batch form
is often used in fault detection and diagnosis Chow and Willsky (1984), Gertler (1998),
Gustafsson (2000). Stack L signal values to define the batched signal vectors like Y =(
yTt−L+1, . . . , y

T
t

)T
, for all signals. Then, the outputs in that window will be given by

Y = Otxt−L+1 + H̄u
t U + H̄f

t F + H̄v
t V + E, (2)

with the extended observability matrix

Ot =


Ht−L+1

Ht−L+2Ft−L+1

...
Ht

∏t−L+1
k=t−1 Fk

 . (3)

The matrices determining how the remaining signals affect the system are described by

H̄s
t =


Hs
t−L+1 0 · · · 0

Ht−L+2G
s
t−L+1 Hs

t−L+2 · · · 0
...

. . .
...

Ht

∏t−L+2
k=t−1 FkG

s
t−L+1 · · · HtG

s
t−1 Hs

t

 , (4)

where s = {u, f, v}. For simplicity, denote Z = Y− H̄u
t U, implying that the system (2)

can be written as
Z = Otxt−L+1 + H̄f

t F + H̄v
t V + E. (5)

If the system can be written in the form (5), where Cov(V + E) = S, we can compute an
estimate of the initial state according to

x̂t−L+1 = O†tZ. (6)

In this work, the standard parity space approach with orthogonal projection is used. This
implies that the initial state in the test window is estimated using the pseudo-inverse as
shown above. An interesting extension would be to make a minimum variance estimate of
the initial state which corresponds to an oblique projection in the parity space framework,
see Törnqvist and Gustafsson (2006). Note that in the special case S = σI , (6) is in fact
the minimum variance estimate.
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2.2 Residual Generation

A residual for detecting abnormal behavior of the output yt can now be formed as

r̃ = Z−Otx̂t−L+1 = Z−OtO†t︸ ︷︷ ︸
POt

Z = (I − POt)︸ ︷︷ ︸
PO⊥t

Z. (7)

Since PO⊥t is rank deficient, the information in r̃ can be expressed using a lower dimen-
sional residual

r = BTO⊥ Z, (8)

where the columns of BO⊥ forms an orthonormal basis forR(O⊥) (This can be computed
with an SVD). The residual r has the covariance

Cov(r) = BTO⊥ S BO⊥ . (9)

A normalized residual is then given by

r̄ = (BTO⊥ S BO⊥)−1/2 BTO⊥︸ ︷︷ ︸
,WT

Z. (10)

2.3 Statistical tests

To test whether a fault has occurred or not, the following hypothesis test is formed,

H0 : r̄ ∼ N(0, I), (11a)

H1 : r̄ ∼ N(WT H̄fF, I). (11b)

To decide between the hypotheses, a GLR test will be performed using the following test
statistic

L = 2 log
(

supF p(r̄ −WT H̄fF)
p(r̄)

)
= sup

F
2 log

1
(2π)n/2 e

− 1
2‖r̄−W

T H̄fF‖22

1
(2π)n/2

e−
1
2‖r̄‖

2
2

= sup
F
−‖r̄ −WT H̄fF‖22 + ‖r̄‖22, (12)

where n denotes the dimension of r̄. This function is maximized for F = (WT H̄f )†r̄,
which gives

L = −‖r̄ −WT H̄f (WT H̄f )†︸ ︷︷ ︸
P
WT H̄f

r̄‖22 + ‖r̄‖22 = r̄TPWT H̄f r̄. (13)

To choose suitable thresholds for the test statistics above, it is necessary to compute
their distributions. While having Gaussian noise, the test statistics will be chi-square dis-
tributed variables. For a thorough review of statistics in signal processing, see e.g., Kay
(1998). The normalized residual is distributed as

r̄ ∼ N(WT H̄fF, I), (14)
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where F = 0 under the null hypothesis (11). The test statistic is then distributed as the
non-central χ2-distribution

L = r̄TPWT H̄f r̄ ∼ χ′2ν (λ), (15)

where ν = rank(WT H̄f ) and

λ = (WT H̄fF)TPWT H̄fW
T H̄fF = (WT H̄fF)TWT H̄fF. (16)

Note that λ = 0 in the fault-free case and then the test statistic is distributed according to
the central χ2-distribution L ∼ χ2

ν . The threshold is then chosen from the χ2-distribution
so that the fault-free hypothesis is rejected erroneously only with a small probability.

3 Detection of Spurious Features

In this work we assume that stationary features are observed through a pinhole camera.
As states in the model, the three-dimensional position of the feature mi,t is used and the
full state vector is mt =

(
mT

1,t, . . . ,m
T
nm,t

)T
. The pinhole camera Ma et al. (2006),

Hartley and Zisserman (2003) is assumed to be calibrated and have unit focal length. The
system equations can be written as

mt+1 = mt, (17a)

yi,t =
1

zci,t

(
xci,t
yci,t

)
︸ ︷︷ ︸

hi(mci,t)=hi(mi,t,pt)

+ei,t =
1

zci,t

(
I 0

)
Rt(mi,t − pt) + ei,t, (17b)

where

mc
i,t =

xci,t
yci,t
zci,t

 = Rt(mi,t − pt). (18)

Here, Rt is the rotation matrix between the world and the camera coordinate frame, pt is
the translation between the coordinate frames and mc

i,t the feature position in the camera
coordinate frame. This model could be extended to include dynamics for mt if we want
to model moving objects as well. To use the parity space framework, the measurement
equation is simply linearized according to,

yi,t = hi(mc
i,t) + ei,t ≈ hi(m̂c

t) +Hi,t(mc
i,t − m̂c

i,t) + eci,t, (19)

for j = 1, . . . , nm, where eci,t is the noise from the camera sensor and the Jacobian matrix
Hi,t is

Hi,t =
∂hi(mc

i,t)
∂mc

i,t

∣∣∣∣∣
mci,t=m̂

c
i,t

=
1

ẑci,t

1 0 − x̂ci,t
ẑci,t

0 1 − ŷci,t
ẑci,t

 . (20)
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Note that m̂c
i,t =

(
x̂ci,t ŷci,t ẑci,t

)T
denotes the one-step ahead prediction from the filter.

Evaluation of (19) gives

yi,t ≈ hi(m̂c
i,t) +Hi,t(mc

i,t − m̂c
i,t) + ei,t

=
1

ẑci,t

(
xci,t
yci,t

)
+

ẑci,t − zci,t
ẑci,t

(
x̂ci,t/ẑ

c
i,t

ŷci,t/ẑ
c
i,t

)
︸ ︷︷ ︸

ezi,t

+eci,t. (21)

The term ezi,t has zero mean and covariance

Cov(ezi,t) =
Pzci,t

(ẑci,t)2

(
x̂ci,t/ẑ

c
i,t

ŷci,t/ẑ
c
i,t

)(
x̂ci,t/ẑ

c
i,t

ŷci,t/ẑ
c
i,t

)T
, (22)

where Pzci,t
= Cov(zci,t). Hence, we can make the approximation that this term is only

a contribution to the measurement noise. Define the total measurement noise as ei,t =
ezi,t + eci,t. Using this approximation, the measurement equation can be written as

yi,t ≈
1

ẑci,t

(
xci,t
yci,t

)
+ ei,t =

1
ẑci,t

(
I 0

)
Rt(mi,t − pt) + ei,t. (23)

Now, define Ẑ = diag(ẑc1,tI2, ẑ
c
2,tI2, . . .) and premultiply the total measurement equation

with this matrix. This equation can then be written as

Ẑyt = diag
((
I 0

)
Rt,
(
I 0

)
Rt, . . .

)︸ ︷︷ ︸
Ht

mt−


(
I 0

)
Rt(

I 0
)
Rt

...


︸ ︷︷ ︸

Hut

pt︸︷︷︸
ut

+Ẑet, (24)

This linearized model can be used in the parity space framework from Section 2, use the
notation xt = mt, Ft = I and the rest of the definitions in (24).

3.1 Known Translation

In case the translation is known, it is modeled as a deterministic input. The system can be
written in batch form (2), but using Y as stacked Ẑyt and observing that H̄vV = 0 since
the system has no process noise (17),

Y = Oxt−L+1 + H̄uU + H̄fF + E. (25)

The residual is then formed according to Section 2.2

r̄1 = (BTO⊥ S BO⊥)−1/2 BTO⊥︸ ︷︷ ︸
,WT

Z, (26)
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where Z = Y − H̄uU. For nm = 3, L = 3 and R0 = I (without loss of generality), O
will have the following form

O =

Ht−2

Ht−1

Ht

 =



(
I 0

)
0 0

0
(
I 0

)
0

0 0
(
I 0

)(
I 0

)
R1 0 0

0
(
I 0

)
R1 0

0
(
I 0

)
R1(

I 0
)
R2 0 0

0
(
I 0

)
R2 0

0 0
(
I 0

)
R2


. (27)

The rank of this matrix is 3 · 3 = 9 and it is easy to see that the rank in the general case is
rank(O) = 3nm. The number of rows of O is 2nmL, so the dimension of the orthogonal
column-space O⊥ is 2nmL − 3nm = (2L − 3)nm. This is also the dimension of the
residual r̄1 in (26).

3.2 Unknown Translation

When the translation is unknown, the predictions of the feature position in the camera
coordinate frame will become more uncertain. The covariance in (22) depends on these
predictions so in order to limit this we will make the following pragmatic approximation

Cov(ezi,t) =
Pzci,t

(ẑci,t)2

(
x̂ci,t/ẑ

c
i,t

ŷci,t/ẑ
c
i,t

)(
x̂ci,t/ẑ

c
i,t

ŷci,t/ẑ
c
i,t

)T
≈ Pz

(ẑci,t)2
yi,ty

T
i,t. (28)

This can be motivated by the fact that the sensor noise is fairly small and this noise term
depends on the position of the feature in the image, see section 4 for an illustration. In
the detection problem, the translation can no longer be seen as a known input to the
system and the residual should therefore be insensitive to it. Hence, the batched system is
rewritten as

Y = Ox+ H̄uU + H̄fF + E =
(
O H̄u

)︸ ︷︷ ︸
Õ

(
x
U

)
+ H̄fF + E. (29)

A residual can now be constructed by an orthogonal projection onto Õ as

r̄2 = (BTÕ⊥ S BÕ⊥)−1/2 BTÕ⊥︸ ︷︷ ︸
,W̃T

Y, (30)

where the columns of the orthonormal matrix BÕ⊥ spans the orthogonal image space to
Õ. For nm = 3, L = 3 and R0 = I (without loss of generality), Õ would have the
following form

Õ =
(
O O2

)
(31)
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where O was given in (27) and

O2 =



(
I 0

)
0 0(

I 0
)

0 0(
I 0

)
0 0

0
(
I 0

)
R1 0

0
(
I 0

)
R1 0

0
(
I 0

)
R1 0

0 0
(
I 0

)
R2

0 0
(
I 0

)
R2

0 0
(
I 0

)
R2


(32)

Using row operations, (32) can be transformed into

0 0 0
(
I 0

)
0 0(

I 0
)

0 0 0 0 0
0 0

(
I 0

)
0 0 0

0 0 0 0
(
I 0

)
R1 0(

I 0
)
R1 0 0 0 0 0

0
(
I 0

)
R1 0 0 0

0 0 0 0 0
(
I 0

)
R2(

I 0
)
R2 0 0 0 0 0

0 0
(
I 0

)
R2 0 0 0


(33)

The rank of this matrix is 3 · 2 + 2 · 3 = 12, or in the general case 3(nm− 1) + 2L. Since
the number of rows are 2nmL, the dimension of the orthogonal image space to Õ will be
2nmL − 3(nm − 1) + 2L = (2L − 3)nm − 2L + 3. This will also be the dimension of
the residual r̄2 in (30).

4 Simulations

For the simulations, a map of features similar to the real flight scenario in Section 5 is cre-
ated. The scenario is a helicopter flying at an altitude of 58 m, with a downward-looking
camera attached to it. The features are uniformly spread out over an area of 40× 40 m
and the altitude is generated from a Gaussian distribution N(58, 1). A fault is introduced
with the direction k(−1 1)T for one of the features, the magnitude k is varied between
the values {0, 0.02, 0.03}. The measurement noise is distributed as ei,t ∼ N(0, 0.0052).
Figure 1 shows 300 measurements Ẑyt as in (24), both with exact knowledge of zci,t
(Cov(zci,t) = 0) and when there is uncertainty present (Cov(zci,t) = 32). The difference
between these cases is if the noise term ezi,t in (22) is present or not. A faulty measurement
is also shown, where the fault magnitude is 0.02. It can be noted that the measurement
noise is increased radially when Cov(zci,t) is increased. To make diagnosis of spurious
features possible, the features are divided into groups of three. Detection is then made for
each group and if a fault is detected, the measurements from the group are discarded.
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ẑy

2

(b) Cov(zc
i,t) = 32

Figure 1: Simulated measurements Ẑyt of the features are shown (300 realizations).
The ellipsoids show the confidence region corresponding to 3 standard deviations.

4.1 Known Translation

If the translation is known, the dimension of the residual will be (2L − 3)nm = 3. This
will also be the degrees of freedom in the χ2-test used for detection, see Section 2.3. In
Figure 2, the Receiver Operation Characteristics (ROC) curves are plotted. The ROC-curve
shows how the probability of detection Pd for a fault varies versus the probability of false
alarm Pfa. The ROC-curve is a straight line for the no fault case. This is natural, since
Pd = Pfa for any threshold if there is nothing to detect. It can be noted that the probability
of detection decreases with uncertainty of zc. This is due to the increased measurement
noise, illustrated in Figure 1.
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Figure 2: ROC-curves showing the detection performance with known translation.
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4.2 Unknown Translation

In the case of unknown translation, the degrees of freedom in the χ2-test is decreased to
(2L − 3)nm − 2L + 3 = 2. This somewhat reduces the power of the test which can be
seen in Figure 3. Given a certain Pfa, the Pd is lower here compared to the case of known
translation in Figure 2. The strength with this test is that no knowledge of the translation
is needed. In reality, the estimate of the position change between two frames is often poor.
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Figure 3: ROC-curves showing the detection performance with unknown transla-
tion.

5 Real World Experiment

In this example, simultaneous localization and mapping (SLAM) is performed using a
Yamaha RMAX helicopter with an IMU and a camera looking at the ground. The task is
to be able to localize the helicopter by combining inertial measurements with the camera
image. During the process, landmarks are found in the image and the 3D positions of
these are estimated. The setup and the SLAM algorithm are explained in Karlsson et al.
(2008).

The detection of spurious features within the SLAM framework is the focus of the
present work. Features in two consecutive frames are compared. The IMU computes the
change in rotation of the camera between the frames, but the translation is considered
unknown since the integrated accelerations gives high uncertainty. The theory derived in
Section 3.2 can therefore be applied. To form the test, the features are divided into several
groups. If a test indicates that there is an inconsistency in one of the groups, these features
will be discarded.

The image sequence and IMU data that we have used for this paper are collected
when flying a 300 m distance. Without using this detection method, the estimated posi-
tion diverges, since spurious features contaminate the filter. When spurious features are
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detected, the position is estimated without problems. Figure 4 shows an example of when
spurious features are detected. The eight features in view are grouped into three groups
and a consistency test between image one and two is performed for each group. In this
example, the group consisting of feature 1 and 2 is not consistent and the features are
therefore discarded. Feature 1 is detected on an edge and the feature tracker makes a
common mistake, which is to move the feature along this edge.

1 2

3

4 56

7 8

(a) Features detected in the first image.

1

2

3

4 56

7 8

(b) Features detected in the second image, the
group consisting of feature 1 and 2 are de-
tected as inconsistent with the first image.

Figure 4: Example of spurious feature detection.

6 Conclusions and Future Work

The contribution of this paper has been to show how the parity space framework from the
statistical fault detection literature can be applied to find spurious features. The character-
istics and performance have been shown in simulation examples. Furthermore, it has also
been successfully implemented in a real-world example where it is necessary to estimate
the helicopter position.
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Abstract

Computational complexity is a major concern for practical use of the ver-
satile particle filter (PF) for nonlinear filtering applications. Previous work
to mitigate the inherent complexity includes the marginalized particle filter
(MPF), with the fastSLAM algorithm as one important case. MPF utilizes a
linear Gaussian sub-structure in the problem, where the Kalman filter (KF)
can be applied. While this reduces the state dimension in the PF, the present
work aims at reducing the sampling rate of the PF. The algorithm is derived
for a class of models with linear Gaussian dynamic model and two multi-
rate sensors, with different sampling rates, one slow with a nonlinear and/or
non-Gaussian measurement relation and one fast with a linear Gaussian mea-
surement relation. For this case, the KF is used to process the information
from the fast sensor and the information from the slow sensor is processed
using the PF. The problem formulation covers the important special case of
fast dynamics and one slow sensor, which appears in many navigation and
tracking problems.

1 Introduction

The nonlinear filtering problem deals with estimation of the states xt, using the infor-
mation in the measurements up to time t, y1:t , {y1, · · · , yt}, for a nonlinear dynamic
system,

xt+1 = ft(xt, ut, wt), (1a)
yt = ht(xt, ut, et). (1b)

Here, ut denotes a known input signal, et and wt denote the stochastic measurement
and process noise, respectively. Furthermore, the functions f and h contain the dynamic
equations for the system and the measurement equations, respectively.
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All information about the state that is present in the measurements is contained in the
filtering probability density function (PDF) p(xt|y1:t). The particle filter Gordon et al.
(1993), Doucet et al. (2000) provides an arbitrary good approximation to this PDF. How-
ever, it is a well-known fact from applications that the number of particles that are needed
to get a good approximation of the true filtering PDF increases rapidly with the state
dimension. Therefore, efficient implementations of the PF have to utilize some kind of
structure inherent in the problem. An example of such a structure is when there is a lin-
ear Gaussian sub-structure available in (1). This is exploited in the marginalized particle
filter (also referred to as the Rao-Blackwellized particle filter Doucet et al. (2000)) by the
observation that conditioned on the nonlinear states it is a linear Gaussian system, which
can be optimally estimated using the Kalman filter Kalman (1960). The resulting algo-
rithm applies a PF to a low-dimensional part of the state vector, where each particle has
an associated Kalman filter estimate of the remaining part of the state vector. For more
information on the marginalized particle filter we refer to Schön et al. (2005), Chen and
Liu (2000).

In the present contribution we consider a different structure, which arises when there
are multi-rate sensors (sensors providing measurements with different sampling times)
available. It will be shown that if the inherent structure is exploited by the algorithm
the quality of the estimates will be better at a lower computational cost, compared to
the direct use of the PF. Algorithmically, there are several similarities between the present
contribution and the MPF. We will study a class of filtering problems, where the model (1)
has the following structure

xt+1 = Atxt +Btut +Gtwt, t = 0, 1, . . . (2a)
y1,t = Ctxt +Dtut + e1,t, t = 1, 2, . . . (2b)
y2,t = h(xt, ut, t) + e2,t, t = r, 2r, . . . . (2c)

More specifically,

• The dynamic model is linear with Gaussian process noise wt ∈ N (0, Qt).

• The fast sensor y1,t is linear with Gaussian measurement noise e1,t ∈ N (0, R1,t).

• The slow sensor provides measurements y2,t a factor r times slower than the fast
sensor, and is a nonlinear function of the state and the input signal, with possibly
non-Gaussian measurement noise e2,t ∼ pe2,t( · ).

The typical application area we have in mind is navigation, where the fast sensor delivers
measurements of the relative movements (inertial measurement unit or odometer) and the
slow sensor provides measurements of absolute reference to given landmarks (camera,
bearings-only or range sensors). This includes important specific applications, such as
Simultaneous Localization and Mapping (SLAM) Thrun et al. (2005), Durrant-Whyte
and Bailey (2006) and navigation in sensor networks.

We also want to mention that the special case when the fast sensor is missing, given by
(2a, 2c) alone, covers all the navigation and tracking applications surveyed in Gustafsson
et al. (2002). The presented algorithm then basically propagates the particles available
after the measurement equation to a Gaussian mixture, which is resampled at the time of
the next measurement.
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2 Nonlinear State Filtering

The solution to the nonlinear state filtering problem is given by the filtering PDF and its
conceptual form is given in the subsequent section. Furthermore, a popular approximation
to this solution, the particle filter, is briefly introduced in Section 2.2.

2.1 Conceptual Solution

In discussing the conceptual solution to the nonlinear state estimation problem it is conve-
nient to work either with the PDF’s or the distribution functions of the involved stochastic
variables. In the present work we will work with PDF’s. Hence, the first step is to describe
model (1) using PDF’s. This can be done according to,

xt+1 ∼ pt(xt+1|xt), (3a)
yt ∼ pt(yt|xt), (3b)

where ∼ denotes distribution according to. Here, pt(xt+1|xt) and pt(yt|xt) are com-
monly referred to as the transition PDF and likelihood, respectively. Note that the deter-
ministic input signal ut is seen as a part of the model and the conditioning on the model is
implicit in the PDF’s. More specifically for the model under consideration in this work (2)
we have the following transition PDF pt(xt+1|xt) and likelihood pt(yt|xt),

pt(xt+1|xt) = pGtwt(xt+1 −Atxt −Btut), (4a)
pt(y1,t|xt) = pe1,t(yt − Ctxt −Dtut), (4b)
pt(y2,t|xt) = pe2,t(yt − h(xt, ut, t)), (4c)

The solution to the nonlinear state estimation problem using the model representation
in (3) follows rather straightforwardly using Bayes’ theorem and the Markov property,
(see e.g., Jazwinski (1970) for details). The resulting recursions for the filtering and
prediction densities are given by

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (5a)

p(xt+1|y1:t) =
∫
p(xt+1|xt)p(xt|y1:t)dxt. (5b)

The reason for referring to this as a conceptual solution is that the multidimensional in-
tegrals in (5) typically do not allow for an analytical solution. However, there are a few
special cases allowing for analytical solutions, such as the linear Gaussian case, when
the solution is given by the Kalman filter Kalman (1960). For the more interesting non-
linear and/or non-Gaussian case we are forced to approximations of some kind and the
particle filter provides a very interesting and powerful approximation, especially when the
problem has an inherent structure which can be exploited.
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2.2 Particle Filter

The main idea underlying the particle filter is to approximate the filtering PDF using a
finite number of so called particles {x(i)

t|t}Ni=1 according to

p̂N (xt|y1:t) =
N∑
i=1

γtδ(xt − x(i)
t|t), (6)

where each particle x(i)
t|t has an importance weight γt associated to it. Note that δ(xt −

x
(i)
t|t), denotes the delta-Dirac function located at x(i)

t|t . The importance weight contains
information about how probable the corresponding particle is. Due to the delta-Dirac
form used in (6), a finite sum is obtained when this approximation is passed through
an integral, i.e., the multidimensional integrals are simplified to finite sums, enabling an
approximation to (5). All the details of the particle filter were independently discovered
by Gordon et al. (1993), Kitagawa (1996), Isard and Blake (1996). However, the main
ideas, save for the crucial resampling step have been around since the 1940’s Metropolis
and Ulam (1949).

For an introduction to and derivation of the the particle filter we refer to e.g., Arulam-
palam et al. (2002), Doucet et al. (2000). A rather basic form, used in this contribution, is
given in Algorithm 1.

Algorithm 1 Particle filter

1. Initialize the particles, {x(i)
1|0}Ni=1 ∼ p(x0).

2. Compute the importance weights {γ(i)
t }Ni=1,

γ
(i)
t = pt(yt|x(i)

t|t−1), i = 1, . . . , N,

and normalize γ̃(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t

3. Draw N new particles with replacement, for each i = 1, . . . , N ,

Pr(x(i)
t|t = x

(j)
t|t−1) = γ̃

(j)
t , j = 1, . . . , N.

4. Predict the particles by drawing independent samples according to

x
(i)
t+1|t ∼ pt(xt+1|x(i)

t|t), i = 1, . . . , N.

5. Set t := t+ 1 and iterate from step 2.

It is worth stressing that this is the basic form of the particle filter and that there are
several embellishments available in the literature. However, for the contribution in this
paper there is no reason to depart from the basic form and our ideas can of course be used
together with most of the existing particle filters.
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3 Multi-rate Particle Filter

Obviously one solution to the problem considered in this paper is simply to neglect the
inherent structure and apply the particle filter directly. However, if we choose to make
use of the inherent structure we can obtain better estimates at a lower computational cost.
In the subsequent section we describe how this can be done and in Section 3.2 an efficient
way of computing the estimates is given.

3.1 Algorithm

The algorithm will be explained using an induction type of reasoning. Let us start by
assuming that the information in the slow, nonlinear measurement (2c) has just been used.
The approximation of the filtering PDF is then given by (6). Now, during the time until
the next slow measurement arrives, i.e., for the times k = t+1, t+2, . . . , t+r, model (2)
is obviously reduced to

xk+1 = Akxk +Bkuk +Gkwk, wk ∼ N (0, Qk), (7a)
y1,k = Ckxk +Dkuk + e1,k, e1,k ∼ N (0, Rk), (7b)

which is a linear Gaussian model. This implies, as is well known, that the solution to (5)
is available in closed form via the Kalman filter Kalman (1960). Hence, there is no reason
to use an approximate method such as the particle filter to compute the estimates for
p(xk|y1,1:k, y2,1:t), k = t+ 1, . . . , t+ r, since the Kalman filter will produce the optimal
estimate. Furthermore, this can be performed at a lower computational cost using the
Kalman filter. The fact that p̂N (xt|y1:t), given by (6) is non-Gaussian prevents us from
direct application of the Kalman filter. However, this can be efficiently handled using
parallel Kalman filters, initiated with

x̂
(i)
k|k = x

(i)
k|k, i = 1, . . . , N, (8a)

P
(i)
k|k = 0, i = 1, . . . , N. (8b)

Note that despite of (8b) the uncertainty is still present, since we run several Kalman filters
in parallel. Hence, the uncertainty is inherent in the representation. Furthermore, (8b) is
crucial since it implies that we can use the same covariance matrices Pk|k, Pk+1|k and
Kalman gains Kk for all particles and their computations can be performed off-line, once
and for all, before the filter is employed. This is important, since it allows us to save
computational resources for the on-line computations. The Kalman filtering computations
can be performed using the standard recursions, the square-root implementation or any
other form. Regardless of which form that is used the particle updates are in the following
form

x
(i)
t+r|t+r = g(x(i)

t|t , y1,t+1:t+r, ut:t+r), i = 1, . . . , N, (9)

where g denotes a general function. More specifically, if the standard recursions for the
Kalman filters are used it is straightforward to verify that the particle updates (9) are given
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by

x
(i)
t+r|t+r = Lx

(i)
t|t +

r∑
j=0

Jjut+j +
r∑
j=1

Mjy1,t+j , (10)

where i = 1, . . . , N and

L =
1∏
j=r

(I −Kt+jCt+j)At+j−1, (11a)

J0 =

(
2∏
i=r

(I −Kt+iCt+i)At+i−1

)
(I −Kt+1Ct+i)Bt, (11b)

Jj =

(
j+2∏
i=r

(I −Kt+iCt+i)At+i−1

)
(I −Kt+j+1Ct+j+1)×

(At+jKt+jDt+j +Bt+j), j = 1, . . . , r − 2, (11c)
Jr−1 = (I −Kt+rCt+r)(At+jKt+jDt+j +Bt+j) (11d)
Jr = Kt+r, (11e)

Mj =

(
j+1∏
i=r

(I −Kt+iCt+i)At+i−1

)
Kt+j , j = 1, . . . , r − 1, (11f)

Mr = Kt+r. (11g)

The covariance matrices and the Kalman gain are given by

Pk+1|k = AkPk|kA
T
k +GkQkG

T
k , (12a)

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +R1,k)−1, (12b)

Pk|k = Pk|k−1 −KkCkPk|k−1. (12c)

Note that the term
∑r
j=0 Jjut+j +

∑r
j=1Mjy1,t+j in (10) is the same for all particles,

allowing us to save computations.
The final step is at time t + r, before the next measurement from the slow sensor

delivers its next measurement y2,t+r. In order to make use of this nonlinear measurement
the result from the Kalman filters has to be assembled into a new set of particles. This is
accomplished simply by drawing a set of particles from the current approximation of the
filtering PDF p(xt+r|y1,1:t+r, y2,1:t),

p̂N (xt+r|y1,1:t+r, y2,1:t) =
N∑
i=1

q̃
(i)
t+rN (xt+r|x(i)

t+r|t+r, Pt+r|t+r). (13)

and the induction is complete. Note that the weights q(i)
t+r are given by (see Orguner

(2006) for details)

q̃
(i)
t+r =

∏r
k=0 p(y1,t+k; ŷ(i)

1,t+k, St+k)∑N
j=1

∏r
k=0 p(y1,t+k; ŷ(i)

1,t+k, St+k)
. (14)
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Algorithm 2 Multi-rate particle filter

1. Initialize the particles, {x(i)
1|0}Ni=1 ∼ p(x0).

2. Compute the importance weights {γ(i)
t }Ni=1

γ
(i)
t = pt(y2,t|x(i)

t|t−1), i = 1, . . . , N, (15)

and normalize γ̃(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t .

3. Draw N new particles with replacement, for each i = 1, . . . , N ,

Pr(x(i)
t|t = x

(j)
t|t−1) = γ̃

(j)
t , j = 1, . . . , N. (16)

4. Update the particles using the information in {y1,t+i}ri=1 and {ut+i}ri=1according
to (10).

5. Draw N new particles,

x
(i)
t+r|t+r ∼ p̂N (xt+r|y1,1:t+r, y2,1:t), i = 1, . . . , N,

where p̂N (xt+r|y1,1:t+r, y2,1:t) is given by (13).

6. Set t := t+ r and iterate from step 2.
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To sum up, we have now motivated Algorithm 2 below.
An obvious extension is the combined use of the marginalized particle filter and the

ideas presented in this paper. The application of such an algorithm to the SLAM problem
for a robot moving in 3D equipped with vision and inertial sensors could probably result
in interesting results, see Schön et al. (2007). Note that this might require linearization of
certain equations to get a model in the form (2).

3.2 Computing Estimates

The, in many respects, optimal estimate for the state at time t is the conditional expecta-
tion,

x̂t|t = E(xt|y1:t). (17)

Using the standard particle filter (Algorithm 1) this estimate is computed after step 2 and
it is given by

x̂t|t =
N∑
i=1

γ̃tx
(i)
t|t . (18)

When the slow measurement y2,t has just been used in step 2 in the multi-rate particle
filter (Algorithm 2) the conditional mean estimate (17) is of course given by (18) as well.
The intermediate estimates, between two slow measurements can be computed in a similar
fashion. However, that would be very computationally intensive. Using the fact that the
order of linear operations can be interchanged will save a lot of computations here. To be
more specific,

x̂t+l|t+l =
N∑
i=1

q̃
(i)
t+lx

(i)
t+l|t+l =

N∑
i=1

(Llq̃
(i)
t+lx

(i)
t|t +Ml) (19)

= Ll

N∑
i=1

q̃
(i)
t+lx

(i)
t|t +Ml, (20)

where

Ll =
1∏
j=l

(I −Kt+jCt+j)At+j−1, (21)

Hence, the intermediate estimates can be computed at almost no cost at all.

4 Simulations

In this section, the multi-rate particle filter (Algorithm 2) will be compared to the standard
particle filter (Algorithm 1). This is done using Monte Carlo simulations for an illustrative
example.
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4.1 Setup

Consider a vehicle moving in a two dimensional world. Information about this vehicle is
obtained using two multi-rate sensors. One sensor measures the range to a fixed object at a
known position (the origin in this case) at 1 Hz and the other sensor measures the velocity
(vx,t, vy,t) at 10 Hz. For convenience we assume that the vehicle can be modelled using
a constant velocity model according to,

px,t+1

py,t+1

vx,t+1

vy,t+1

 =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A


px,t
py,t
vx,t
vy,t

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

G

(
w1,t

w2,t

)
, (22a)

y1,t =
(

0 0 1 0
0 0 0 1

)
︸ ︷︷ ︸

C


px,t
py,t
vx,t
vy,t

+ e1,t, (22b)

y2,t =
√
p2
x,t + p2

y,t︸ ︷︷ ︸
h(xt)

+e2,t, (22c)

where (px,t, py,t) and (vx,t, vy,t) denote the position and velocity, respectively. Hence,
the model is in the form (2) and the multi-rate particle filter given in Algorithm 2 can be
applied. Model (22) is time-invariant and there are no input signals present. Hence, (10) –
(11) can be simplified according to

x
(i)
t+r|t+r = Lx

(i)
t|t +

r∑
j=1

Mjy1,t+j , (23)

where i = 1, . . . , N and

L =
1∏
j=r

(I −Kt+jC)A, (24a)

Mj =

(
j+1∏
l=r

(I −Kt+lC)A

)
Kt+j , j = 1, . . . , r − 1, (24b)

Mr = Kt+r. (24c)

Furthermore, the sampling time is set to be Ts = 1/10 s, the covariance for the process
noise is set to be Cov

(
(w1,t w2,t)T

)
= 0.5I2 and the covariance for the measurement

noise is Cov
(
(eT1,t e2,t)T

)
= I3. We have used 1000 Monte Carlo simulations in order to

obtain reliable results.

4.2 Simulation Results

The root mean square errors (RMSE) over the Monte Carlo simulations for the position
and velocity estimates are shown in Figure 1. The error in position estimates is lower for
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the multi-rate particle filter, whereas the velocity errors are almost identical. Note that
the sawtooth pattern in the position error is due to a rapidly improved estimate every time
an update on the range is available. The increasing error over time is due to incomplete
observability. Measuring the range and velocity is not enough to estimate the position
without drift.
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Figure 1: RMSE in position (top) and velocity (bottom) for 1000 Monte Carlo sim-
ulations, using 3000 particles.

0 500 1000 1500 2000 2500 3000
2

2.5

3

3.5

4

# particles [N]

P
o

s
it
io

n
 R

M
S

E

 

 

PF

MRPF

Figure 2: Position RMSE as a function of the number of particles, using 1000 Monte
Carlo simulations.

In Figure 2 the RMSE for the position is provided as a function of the number of
particles used in the filters. Here, we can see that the multi-rate particle filter performs
better, but the difference becomes smaller as the number of particles increases. This is
expected and in accordance to theory, since the particle filter converges to the optimal
filter as the number of particles tends to infinity.

The computational time using the multi-rate particle filter is decreased, especially
when a large number of particles are used. This is illustrated in Figure 3.

In studying particle filters it is always interesting to study the rate of divergence as
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Figure 3: Illustration of the computational time as a function of the number of par-
ticles. The multi-rate particle filter requires fewer computations for large number of
particles, compared to the standard particle filter.

a function of the number of particles used in the filter. First of all, let us define what is
meant by divergence in this context. The filter is said to diverge whenever the sum of the
importance weights fall below a certain problem dependent threshold λt > 0, i.e., when

N∑
i=1

p(y2,t|x(i)
t|t−1) =

N∑
i=1

γ
(i)
t < λt. (25)

The motivation for this choice of divergence test is simply that it indicates when the
particle cloud is too far from what is indicated by the present measurement. This is more
likely to happen if there are fewer particles. Figure 4 shows the rate of divergence as a
function of the number of particles. The performance of the multi-rate particle filter is
significantly better for small N and slightly worse for large N . This makes sense since
there is no resampling during the Kalman updates, effectively giving higher variance to
the weights. To redeem this, resampling can be performed more often at the cost of
computational speed.
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Figure 4: Rate of divergence as a function of the number of particles used in the
filters.
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5 Conclusion

We have proposed a new algorithm for state estimation, which can be used when the un-
derlying dynamical model has a certain structure. The algorithm is based on the particle
filter and exploits a linear Gaussian sub-structure. The resulting algorithm produces es-
timates of better quality at a lower computational cost, when compared to the standard
particle filter. Finally, the structure commonly arises in sensor fusion applications, when
there is one slow (nonlinear) and one fast (linear) sensor available.
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Abstract

The contribution of this paper is an experimentally verified real-time algo-
rithm for combined probabilistic search and track using multiple unmanned
aerial vehicles (UAVs). Distributed data fusion provides a framework for
multiple sensors to search for a target and accurately estimate its position.
Vision based sensing is employed, using fixed downward-looking cameras.
These sensors are modeled to include vehicle state uncertainty and produce
an estimate update regardless of whether the target is detected in the frame
or not. This allows for a single framework for searching or tracking, and
requires non-linear representations of the target position probability den-
sity function (PDF) and the sensor model. While a grid-based system for
Bayesian estimation was used for the flight demonstrations, the use of a par-
ticle filter solution has also been examined.

Multi-aircraft flight experiments demonstrate vision-based localization of a
stationary target with estimated error covariance on the order of meters. This
capability for real-time distributed estimation will be a necessary component
for future research in information-theoretic control.

1 Introduction

Unmanned Aerial Vehicles (UAVs) have proven successful in information gathering tasks,
such as target search or environmental sensing. To robustly estimate a target state, an
information gathering system must incorporate models for uncertainty in the sensor, target
model and a model for its own state. Robust estimation becomes more important as teams
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of agents use these estimates to plan their own motion, as in Hoffmann et al. (2006),
Grocholsky (2005), Mathews and Durrant-Whyte (2007). In the case where an agent has
noisy sensors, or a limited sensor field of view, the use of probabilistic estimation becomes
more important to develop accurate target estimates.

Traditionally, probabilistic ‘search’ problems represent the unknown state of a target
by decomposing the search space into as many regions as is computationally feasible and
updating each region as it is observed. ‘Track’ problems generally represent target state
as a multivariate parameterized PDF (often Gaussian), but the choice of representation
precludes incorporation of sensor readings that do not detect the target. In this work, we
present a unified framework that accounts for ‘search’ by updating the target probability
density function even when the target is not detected, but also achieves localization or
tracking by updating an estimate using multiple observations of the target.

Campbell et. al. Campbell and Wheeler (2006) demonstrate a UAV based system
for geolocation; a sigma point filter is used to filter sensor data from a gimbaled camera
to estimate target location. Low-level target tracking guarantees that the target will be
observed at all times. The work presented here differs from the work of Campbell and
Wheeler (2006) in that the search for targets is addressed in addition to target localiza-
tion. Additionally, this work uses a decentralized multi-sensor approach, in which sensor
readings are fused across a team of vehicles.

Probabilistic maps for search have been used extensively; recently the authors in Vi-
dal et al. (2002) used probabilistic maps for pursuit evasion games using unmanned he-
licopters. While search was explicitly addressed, localization was not examined in the
framework of this paper.

The development of a unified framework for search and track was first proposed in
Furukawa et al. (2006). Furukawa et. al. use a grid-based PDF to represent target position
in the plane; this approach is effective for search, but falls short computationally once
the target has been effectively localized. The precision of the estimate is limited by the
resolution of the grid, and states with more than two dimensions (such as position and
velocity in two dimensions) are difficult to model. In this work, a particle filter is used, in
addition to a grid, in the hope that better localization results may be obtained in a search
and localization framework, with similar computational effort.

The major contributions of this paper are the development and demonstration of a
UAV based system for decentralized Bayesian search and localization. A grid-based
Bayesian filter and a particle filter are used to maintain a target estimate. This system
uses off the shelf hardware components to search for targets, and once detected, localize
their position. High localization accuracy is achieved using low-cost UAVs by modeling
the sensor uncertainty and fusing multiple observations using a Bayesian estimator.

2 Decentralized Filtering for Search and Track

A decentralized estimator provides a method to update an estimate using multiple obser-
vations and a process model of the target state evolution. Recursive Bayes estimation is
a method to update the filtering density p(xk|z1:k) using a sensor model p(zk|xk), and a
process model p(xk+1|xk). The observation zk is applied in the update step (1a) and the
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process model is applied in the prediction step (1b).

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(1a)

p(xk+1|z1:k) =
∫
p(xk+1|xk)p(xk|z1:k)dxk (1b)

The sensor fusion problem is also easily solved in this framework using the sensor model
p(zk|xk) to relate the sensors. In our problem, the measurements (z1

k and z2
k) from the

two airplanes are independent so

p(zk|xk) = p(z1
k, z

2
k|xk) = p(z1

k|xk)p(z2
k|xk). (2)

In the case where our distributions are Gaussian and the models are linear, (1) can
be solved analytically and results in the well-known Kalman Filter Kalman (1960). For
almost all other cases, analytical solutions cannot be obtained and approximations have to
be used. The most common approximation is the Extended Kalman Filter (EKF) Kailath
et al. (2000), that linearizes the system around the current state estimate and assume
Gaussian distributions. To treat more complex distributions, the Unscented Kalman Filter
(UKF) can be used Julier (2002). This filter uses sigma points to represent the distribution
undergoing a non-linear transform. While this approach has been used successfully in
Campbell and Wheeler (2006), Frew (2006), the EKF and UKF are unable to model highly
multi-modal or skewed distributions. Other methods for treating arbitrary distributions
with non-linear models are approximating the distributions spatially as a grid or with
movable gridpoints (particles). In the grid-case, (1) is computed for each grid point. The
case with particles result in the particle filter, see Gordon et al. (1993).

In this paper, where a search task is treated, the distributions are far from Gaussian. A
grid-based or particle filter approach are therefore more suited, since they better captures
the successive application of ‘no detection’ updates on a prior target distribution that
might be uniform over a wide area.

Numerous approaches to data fusion have been explored by Durrant-Whyte et. al.
Grocholsky et al. (2000, 2003). These techniques, such as the information filter and chan-
nel filter, often exploit the filtering technique to minimize the information communicated
between nodes. In the work presented here, a parameterization of the likelihood function
p(zk|xk) is available and the parameters are distributed among the aircraft. The estimate
is then updated using (1a). The likelihood function is given by one of two functional forms
for the vision sensor: the case in which the target is observed at some camera coordinates
and the case where it is not observed.

3 Modeling and Implementation

An accurate model that captures the inherent uncertainty of an imperfect sensor is a cru-
cial component of any real-world estimation system. Including observations in which the
target is not detected enables probabilistic search and localization using all available in-
formation and requires sensor models for both the ‘detect’ (D) and ‘no detect’ (D̄) cases.
The ‘detect’ sensor model p(Dk, zk|xk) is used to update the estimate when the target
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Figure 1: Coordinate systems. There is a fixed coordinate system and an image co-
ordinate system, the rotation between them is described by the Euler angles ψ, θ, φ.

is detected at image coordinates zk = (u, v). The ‘no detect’ sensor model p(D̄k|xk)
provides the update when the target is not detected in the frame. The time subscript will
be dropped, assuming that all values correspond to the present time.

The sensor is modeled as a standard pinhole camera and the probability of detecting
a target in the field of view is based on the image resolution at the target location. The
visibility of a target in the field of view depends on the aircraft position T and orientation
defined by the Euler angle vector q = [ψ θ φ]. When the aircraft state is unknown, the
visibility is a random variable which can be conditioned on the aircraft state estimates. We
derive a probability of true detection, p(D,V |x), and assume that the probability of false
detection is constant per frame, p(D, V̄ |x) = Pfalse. We also assume that the location of
a false detection is uniformly distributed over the image area

p(D, z|x) = p(z|x,D, V )p(D,V |x) + p(z|x,D, V̄ )p(D, V̄ |x)

= p(z|x,D, V )p(D,V |x) + (image area)−1Pfalse. (3)

The detection likelihood p(D,V |x) and localization likelihood p(z|x,D, V ) compo-
nents of the model are derived separately.

3.1 Target Localization Model

The aircraft translation T = [TXY h] and Euler angle vector q define a transforma-
tion UT (x, T, q) : R2 → R2 from ground to image coordinates, as shown in Fig.
1. This transformation also depends on the intrinsic camera parameters such as focal
length, which are estimated using standard calibration procedures, see e.g., Horn (2000).
If T and q are known, we expect to observe the target at z = UT (x, T, q), and so
p(z|x,D, V ) = δz(z − UT (x, T, q)), where δz is a two-dimensional delta function in
image coordinates.

When the aircraft state is unknown, p(z|x,D, V ) requires marginalizing over state
estimates (4). We assume that each of the Euler angles, altitude, and ground position are
estimated independently, breaking down p(T, q) by individual state estimates.
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p(z|x,D, V ) =
∫
T,q

p(z|x,D)p(T, q) =
∫
T,q

δz(z − UT (x, T, q))p(T, q)

=
∫
δz(z − UT (x, T, q))p(TXY )p(h)p(ψ)p(θ)p(φ) dTXY dh dψ dθ dφ (4)

For small estimation errors, the transformation UT (x, T, q) can be approximated by a
first order Taylor expansion about the state estimate, so that P (z|x,D, V ) for uncertain
aircraft state becomes a series of one-dimensional convolutions. The partial derivatives
of UT (x, T, q) with respect to translation are simply components of the rotation matrix,
and derivatives with respect to the Euler angles are obtained by differentiating the rotation
matrix.

When the UAV state estimation errors can be approximated as Gaussian or Gaussian
mixture models (GMMs), the PDF p(z|x,D, V ) will be Gaussian (or GMM) in image
coordinates z because the set of Gaussians is closed under convolution. However, the
likelihood function on ground coordinates x will not be Gaussian or GMM due to the
non-linear dependance on the Euler angles. This is similar to the effect seen in range-
bearing sensors, where the likelihood function has a characteristic banana-like shape due
to the bearing angle estimate uncertainty.

3.2 Target Detection Model

The probability of a true detection p(D,V |x) is a function of the image resolution r(z, T, q)
at the target’s image coordinates, z = UT (x, T, q), as well as the visibility of the target.
The product of four step functions si(z) along the edges of the image defines the visible
region in image coordinates. For uncertain aircraft state, marginalization is required as in
the previous section.

p(D,V |x) =
∫
T,q

p(D|V, x, T, q)p(V |x, T, q)p(T, q)

=
∫
T,q

p(D|V, r(z, T, q))
4∏
i=1

si(z)p(T, q) (5)

The dependence on resolution can be fitted to experimental data including true and
missed detections using Bayes’ rule (6). p(D) is the detection rate for the data set and
p(r(z, T, q)|D) and p(r(z, T, q)|D̄) can each be fitted as a parametric distribution (in this
case Gaussian) from the data set.

p(D|r(z, T, q)) =
p(r(z, T, q)|D)p(D)

p(r(z, T, q)|D)p(D) + p(r(z, T, q)|D̄)p(D̄)
(6)

With the resolution and camera coverage expressed in image coordinates, the air-
craft state uncertainties will be modeled independently as in the previous section and
represented as a two-dimensional convolution mask in image coordinates. Therefore the
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Table 1: Detection modeling based on calibration data set.

p(res|D) N (60, 40.06)
p(res|D̄) N (60, 62.03)
P (D|V ) 0.96
Pfalse 0.004

marginalization in (5) corresponds to application of the convolution mask M(T̂ , q̂). We
convolve the aircraft state uncertainty with the nominal likelihood function p(D|x; T̂ , q̂)
based on the estimated state (T̂ , q̂). Recall that detection likelihood function p(D|x) in-
cludes both true and false detection.

p(D|x) = p(D,V |x) + p(D, V̄ |x)

= p(D|V, r(z, T̂ , q̂))
4∏
i=1

si(z) ∗M(T̂ , q̂) + Pfalse (7)

For Gaussian state estimates, the form of the detection likelihood is convolution of a
Gaussian and a step function in two dimensions, resulting in cumulative Gaussian distri-
butions. As these have no closed form equation, Sigmoid functions are used to approxi-
mate the image boundaries, where the Sigmoid function parameters may vary for best fit
along each edge.

Fig. 2 shows an example no-detect likelihood function used in the flight experiments.
Dark areas of the plot indicate values close to 1, whereas the lighter areas indicate values
closer to zero. The effect of decreasing camera resolution may be seen in the upper right
side of the field of view. The camera and aircraft parameters for this example are shown
in Tables 1 and 2, respectively. Representations such as a particle filter or grid based filter
are better suited than EKF methods for this type of likelihood, which is obviously neither
Gaussian or convex.

3.3 Target Model

In this work, it is assumed that only a single target is in the area of interest. Multiple
targets have been consider in Wong et al. (2005). The primary difficulty in dealing with
multiple targets is dealing with the problem of data association, or determining which
sensor measurement comes from which target. In this work, we will not examine the data
association problem, as there is already a rich literature on the topic. Also, the target is
assumed to be static; no update step is necessary.

4 Experimental Results and Analysis

Flight tests of a two-aircraft team with fixed downward-looking cameras were performed
at Camp Roberts, CA in August of 2007. The airframe and infrastructure have been
previously described in Ryan et al. (2006), Tisdale et al. (2006). A series of flight tests
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Figure 2: An example of a no-detect likelihood function. Dark areas indicate values
close to 1, whereas the lighter areas indicate values closer to zero.

were performed to verify sensor modeling, localization accuracy and system performance.
Both grid-based Bayesian estimation and particle filtering were tested as representations
for the estimated target state.

The grid representations were tested in flight, to update the target position in real-time.
Real-time target position data was relayed over an 802.11b wireless link to a ground-
based visualization GUI. The particle filter representation was tested post-flight, on the
same data collected from the grid-based flight; while the particle filter was not run in real
time, testing indicates that is fast enough to do so. Video was processed at roughly four
frames per second.

For the sake of real-time data fusion, likelihoods were distributed between aircraft via
an ad-hoc wireless network. Flight tests indicated that the wireless network was sufficient
to ensure that all likelihoods were communicated between aircraft.

4.1 Grid-based Estimation

Fig. 5 shows the evolution of the searching process with dark areas representing high
probability. Snapshots of the search density function and aircraft trajectories are shown
during the ’search’ portion of the mission, at 70 and 105 seconds, before the target has
been detected. UAV 2 detects and localizes the target at roughly 120 seconds. For this
flight experiment, the prior was uniform over a one kilometer by one kilometer square.
Each grid cell has a width of 12.5 meters. In this flight, the system effectively localized
the target to within the resolution of the filter; a red star is used to indicate target position
when the target has been localized to a single grid cell. Clearly, the granularity of the grid
is a limitation on the possible localization accuracy.

For the purposes of path planning for target search, Bourgault et al. (2003) demon-
strated that cumulative probability of detection, p(D) is an appropriate metric for deter-
mining the a priori value of a search trajectory. When the target is not detected over a
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Figure 3: Cumulative Probability of Detection.

series of k steps, the probability of detection may be found by (8). Fig. 3 shows the
cumulative probability of detection.

P (D) = 1−
∫
p(xk|z1:k = D̄) dxk = 1−

∫
p(xk)

k∏
j=1

p(zj = D̄|X) dxk (8)

Fig. 4 shows post processing of the same flight data using a grid cell size of 0.67
meters. Four consecutive filtering PDFs are shown, beginning with the first observation
of the target. Coverage of the entire search area at this grid density would require over
two million cells, which is not feasible for real time performance on the current flight
computer. However, this post processing provides an idea of the system performance
that could be achieved with more computing power using the same sensors. Because
the quantization error for the fine grid is greatly reduced, this implementation can be
used as a benchmark for comparing the accuracy of the original grid and particle filter
implementations.

4.2 Particle Filter Implementation

The particle filter used is the standard Sampling Importance Resampling (SIR) particle
filter first introduced by Gordon et al. (1993). For a more recent overview, see Arulam-
palam et al. (2002). The SIR version of the particle filter resamples the particles after
each time step, maintaining an equal weight for all particles. This makes the probability
proportional to the density of particles in a certain area. The number of particles used is
6400, which is equal to the number of cells in the one square kilometer grid.

The initial probability is again uniform as in the previous section. The target position
is modeled as a random walk according to

xk+1 = xk + wk, (9)

with Cov(wk) = diag(1, 1) because the resampling step requires process noise. Fig. 5(b)
shows the target location estimate using a particle filter.
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Figure 4: Evolution of filtering PDF over four consecutive observations, beginning
with the first observation of the target. Dark area represents high probability, and the
mean of each PDF is marked.
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Figure 5: (a) Evolution of the grid-based PDF throughout the search and localiza-
tion process, with high probability shown as dark (b) Evolution of the particle filter
throughout the search and localization process.
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4.3 Error Analysis and Comparison

The implemented grid cell size of 12.5 meters limits the localization accuracy through
quantization effects, and cannot be significantly reduced using the current flight com-
puter. The interpretation of the particle filter as an adaptive grid suggests that bias in
the estimate due to quantization can be reduced without increasing computation cost by
moving particles to represent areas of interest in greater detail. This is demonstrated in
Fig. 5, where the particles concentrate around the observed location of the target, and in
Fig. 6 where the particle filter produces an estimate which closely corresponds to that of
the post-processed high-resolution grid. Covariance ellipses corresponding to the filtering
PDFs also show the effect of a large grid size.

Fig. 7 shows time evolution of a scalar measure of covariance for the three imple-
mentations. Again considering the fine grid as a benchmark, we observe that the estimate
uncertainty decreases with the observations from each sensor and otherwise remains con-
stant for the stationary target. The initial covariance for the fine grid represents a reduced
search area. After the target is observed, the square kilometer grid always has higher
uncertainty due to quantization. The covariance of the particle filter becomes very small
when the target is observed, but then increases due to the required artificial process noise.
This increased uncertainty is an artifact of the filter implementation and is a drawback
of particle filtering of a stationary target. The uncertainty ellipse shown in Fig. 6 rep-
resents the minimum particle filter uncertainty, which is achieved immediately after the
final observation.

In addition to quantization, aircraft state estimate uncertainty also contributes to the
estimation error. To analyze the contribution of aircraft state uncertainty, we assume that
the camera is aligned with the aircraft e3 (local down) axis and the target appears in
the center of the image. Therefore, the target position x lies along the e3 direction with
x · e3 = 0, where {ei} are fixed world coordinates. The partial derivatives of the resulting
expression (10) for x result in the target position estimate uncertainties shown in Table 2,
based on linearization at a set of nominal parameter values.

The largest contributor to target estimate uncertainty is the UAV’s position along the
direction of motion, which has high uncertainty due to 4 Hz GPS updates. This uncer-
tainty will be reduced in future work by filtering the GPS using angular data. Pitch and
roll angle also contribute significantly, especially for larger nominal angles or low quality
INS sensors.

x = T̂Xe1 + T̂Y e2 +
h

cosφ cos θ
(cosφ sin θ cosψ + sinφ sinψ)e1+

h

cosφ cos θ
(cosφ sin θ sinψ − sinφ cosψ)e2 (10)

5 Conclusions

This work presents a decentralized approach to target search and localization using low-
cost UAVs and sensors. Using low-resolution fixed cameras, a team of UAVs can suc-
cessfully search a significant area and localize a target with high accuracy by filtering
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Table 2: Error modeling for localization

Parameter nominal σ σ localization (m)
TX (along-track) n/a 10.5 m 10.5
TY (cross-track) n/a 5.5 m 5.5
h 90 m 5.5 m 1.77
ψ 0 r 0.01 r 0.29
θ 0.17 r 0.05 r 4.65
φ 0.26 r 0.02 r 1.96
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Figure 6: Mean and covariance ellipse (sigma squared) for fine grid, coarse grid,
and particle filter final estimates. Note that the particle filter representation achieves
smaller bias error with computation cost similar to the coarse grid.
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Figure 7: Time evolution of covariance for fine grid, coarse grid, and particle filter.
The particle filter covariance increases over time, due to a random walk target model.

multiple observations. This work has demonstrated the importance of choosing an appro-
priate representation for the target PDF. The grid-based distribution is effective for the
search problem, the particle filter approach was shown to produce superior localization
under the same computational constraints.
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Notation

Abbreviations and Acronyms

Abbreviation Meaning
BLUE Best Linear Unbiased Estimator
DARPA Defense Advanced Research Projects Agency
EKF Extended Kalman Filter
FA False Alarm
GLR Generalized Likelihood Ratio
GLRT Generalized Likelihood Ratio Test
HMM Hidden Markov Model
IMU Inertial Measurement Model
KF Kalman Filter
LIDAR LIght Detection And Ranging
LR Likelihood Ratio
LRT Likelihood Ratio Test
LS Least Squares
M Miss
MAP Maximum APosteriori
MC Monte Carlo
ML Maximum Likelihood
MPF Marginalized Particle Filter
NP Neyman-Pearson
PDF Probability Density Function
PF Particle Filter
RBPF Rao-Blackwellized Particle Filter
SLAM Simultaneous Localization And Mapping
UAV Unmanned Aerial Vehicle
UMP Uniformly Most Powerful
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174 Notation

Symbols and Mathematical Notation

Notation Meaning
Y Stacked variables in a window of length L, Y =(

yTt−L+1, . . . , y
T
t

)T
.

y1:t The set of variables {y1, y2, . . . , yt}.
, Defined as.
� Quaternion product, see (B.11).
x ∼ y x is distributed as y.
arg maxx f(x) The x maximizing f(x).
arg minx f(x) The x minimizing f(x).
Cov(x) Covariance of x.
δ( · ) Dirac delta.
diag(x1, . . . , xn) A diagonal matrix with xi in the diagonal.
et Measurement noise at time t.
E(x) Expected value of x.
f( · ) State propagation function.
ft Deterministic but unknown fault at time t.
H̄s System matrix for inputs in batch formulation, see (2.9).
Hi A hypothesis.
h( · ) Measurement function.
L( · ) Likelihood ratio.
L Window size.
N(x;µ,Σ) Gaussian PDF for mean µ and covariance Σ.
N(µ,Σ) Gaussian distribution with mean µ and covariance Σ.
nx Dimension of the variable x.
O Extended observability matrix, see (2.7).
O( · ) Denotes computational complexity.
p( · ) Probability density function.
p̂( · ) Approximative probability density function.
π( · ) Proposal distribution.
Qt Covariance of process noise at time t.
Rt Covariance of measurement noise at time t.
rank(A) Rank of A.
AT A transposed.
ut Known input at time t.
Var(x) Variance of x.
vt Process noise at time t.
xt State at time t.
x̂t|τ Estimate of xt given the measurements y1:τ .
χ2
ν Chi-square distribution with ν degrees of freedom.
χ′2ν (λ) Noncentral chi-square distribution with ν degrees of free-

dom and noncentrality parameter λ.
yt Measurement at time t.
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