
Andreas Svensson

Machine learning with
state-space models, Gaussian
processes and Monte Carlo

methods
Uno�cial1 but reader-friendly version of my PhD thesis

Please cite this in bibtex/biblatex as

@phdthesis{Svensson2018,

author = {Svensson, Andreas},

title = {Machine learning with state-space models,

{Gaussian} processes and {Monte} {Carlo} methods},

school = {Uppsala University},

year = {2018},

}

1The o�cial online version contains only the introductory background chapters, and the reader is
supposed to �nd the actual papers on her own.

Abstract
Numbers are present everywhere, and when they are collected and recorded we refer
to them as data. Machine learning is the science of learning mathematical models
from data. Such models, once learned from data, can be used to draw conclusions,
understand behavior, predict future evolution, and make decisions. This thesis is
mainly concerned with two particular statistical models for this purpose: the state-
space model and the Gaussian process model, as well as a combination thereof. To
learn these models from data, Monte Carlo methods are used, and in particular
sequential Monte Carlo (SMC) or particle �lters.

The thesis starts with an introductory background on state-space models, Gaussian
processes and Monte Carlo methods. The main contribution lies in seven scienti�c
papers. Several contributions are made on the topic of learning nonlinear state-space
models with the use of SMC. An existing SMC method is tailored for learning in
state-space models with little or no measurement noise. The SMC-based method
particle Gibbs with ancestor sampling (PGAS) is used for learning an approximation
of the Gaussian process state-space model. PGAS is also combined with stochastic
approximation expectation maximization (EM). This method, which we refer to as
particle stochastic approximation EM, is a general method for learning parameters in
nonlinear state-space models. It is later applied to the particular problem of maximum
likelihood estimation in jump Markov linear models. An alternative and non-standard
approach for how to use SMC to estimate parameters in nonlinear state-space models
is also presented.

There are also two contributions not related to learning state-space models. One
is how SMC can be used also for learning hyperparameters in Gaussian process
regression models. The second is a method for assessing consistency between model
and data. By using the model to simulate new data, and compare how similar that
data is to the observed one, a general criterion is obtained which follows directly from
the model speci�cation. All methods are implemented and illustrated, and several are
also applied to various real-world examples.

To everybody who contributes to a
happier and more sustainable world

Populärvetenskaplig
sammanfa�ning

”Saken är den, eller snarare, är det väl mer
adekvat, att så att säga säga att saken är
bi� (trots att det inte handlar ommat). Vad
jag vill säga, mera konkret – och nu ska jag
gå rakt på sak och vara rak! – är väl helt
enkelt att saken är klar. Ja, det vill säga, i
sak.”
Claes Eriksson

Maskininlärning, eller ofta bara ”machine learning”, handlar om att automatiskt
ta fram och använda matematiska modeller från insamlad statistik. Statistiken

kan vara lite vad som helst, till exempel temperaturer, tra�kintensitet, opinionsun-
dersökningar, bilder från övervakningskameror, internettra�k, aktiepriser, röstinspel-
ningar, elektricitetsanvändning eller hur snabbt ett virus sprids. Statistiken, eller
datan, kan även ha i stort sett vilket format som helst så länge den bara går att spara i
en dator. De matematiska modellerna, som maskininlärningen plockar fram ur datan,
kan sedan användas för att säga något om ny data som samlas in (”visar den nya bilden
från övervakningskameran någon person vi har på bild sedan tidigare?”), förutsäga
hur utvecklingen kommer att fortsätta (”kommer viruset att spridas ännu snabbare,
eller dö ut?”), eller dra andra slutsatser (”vad skulle hända om tra�ken gick längs den
här vägen istället?”).

Att ta fram matematiska modeller från den insamlade datan utgör kärnan inom
maskininlärning. Det första steget för att göra det, är att vi som användare väljer
en klass av modeller som vi vill använda. Det �nns många olika modellklasser, och
olika modellklasser passar olika bra för olika situationer. Ett populärt exempel, som
har fått ganska mycket uppmärksamhet även utanför forskningsvärlden, är faltade
neurala nätverk som har visat sig fungera bra för att matematiskt beskriva bilder.

I den här avhandlingen tänker vi oss att den insamlade datan består av si�ror
som är uppmätta och förändrar sig över tid. Det kan till exempel vara mätningar
av koldioxidhalter och börsindex, eller dynamiken i hur ett �ygplan reagerar på en
förändrad rodervinkel eller hur snabbt en bassäng fylls med vatten när strömmen till
en pump slås på. För sådan typ av dynamisk data �nns det modelklasser som fungerar
särskilt bra, och den här avhandlingen handlar om två av dem: tillståndsmodeller och
Gaussprocesser.

Idén med tillståndsmodeller är att matematiskt beskriva det väsentliga i en förän-
dring som sker över tid. Det förklaras nog bäst med ett exempel: Om du får ett foto
på en bil, kan du då tala om var bilen skulle be�nna sig en sekund senare? Nej, det är
svårt, eftersom du från ett vanligt foto inte kan avgöra hur snabbt bilen åker. Men om
du får en sekvens av bilder tagna med en sekunds mellanrum så kan du jämföra dem
med varandra och få en uppfattning om bilens hastighet, och därifrån göra en ganska
noggrann förutsägelse om var bilen skulle be�nna sig en sekund efter det sista fotot.
Problemet med ett ensamt foto är alltså att det inte innehåller all relevant information.
Men om fotot hade innehållit även en radarmätning av bilens hastighet (eller en
bild på hastighetsmätaren), så hade detta enda foto varit tillräckligt för att göra en
bra förutsägelse om bilens position i nästa sekund. Det är det här som är poängen
med tillståndsmodeller: de är konstruerade för att i varje ögonblick innehålla all
matematisk information som är relevant för framtiden. En väldigt kraftfull egenskap

v

x
y

x

y

x

y

x

y

Den här �guren visar hur en Gaussprocess (blått skuggat område) kan användas för att lära sig ett
samband mellan x (horisontell axel) och y (vertikal axel). Målet är att kunna leka leken ”om du säger
x , så kan jag säga vad y kommer att bli” (utöver att vara en fånig lek, är det också ett vanligt problem
i maskininlärning) och till vår hjälp kommer vi att få orangea datapunkter som talar om sanningen y
för vissa värden på x .

I rutan uppe till vänster �nns det ingen data, och Gaussprocessen säger att vi vet väldigt lite, eftersom
det blåa skuggade området är förhållandevis brett. I rutan uppe till höger, däremot, �nns det två
orangea datapunkter och Gaussprocessen har där anpassat sig till dem: i närheten av punkterna är
bredden på det blåa skuggade området, det vill säga osäkerheten om vad y är, liten. Skulle vi däremot
be Gaussprocessen om en förutsägelse om vad som händer mitt emellan de två datapunkterna, så är
osäkerheten fortfarande ganska stor där.

I den nedre vänstra rutan �nns det fem datapunkter, och osäkerheten i Gaussprocessen har minskat
ganska mycket på sina håll. En förutsägelse i området mellan de två punkterna längst till vänster
innehåller inte mycket osäkerhet alls: eftersom de två punkterna ligger så nära varandra, anser sig
Gaussprocessen veta ganska väl vad som händer även i det lilla intervallet emellan dem. Slutligen, i
rutan längst ned till höger, har vi fått 100 datapunkter, och Gaussprocessen har anpassat sig till dem
alla.

Själva Gaussprocessen är de�nierad betydligt mer matematiskt än vad som presenteras här, men
poängen är att det är en modell som är kapabel att resonera kring osäkerheter om vad y är, vilket är
något som efterfrågas i många moderna maskininlärningstillämpningar.

hos tillståndsmodeller är därför att förutsägelser om framtiden inte förbättras ens om
det visar sig �nnas mer historisk data att tillgå; de har redan sorterat ut allt som är
“värt att veta”. De här modellerna har visat sig vara användbara och kraftfulla för att
beskriva tidsserier och dynamik för många olika tillämpningar, och används �itigt
inom så skilda områden som ekonometri och reglerteknik. I den här avhandlingen
förekommer tillståndsmodeller många gånger, och vi tittar på och vidareutvecklar
metoder att lära sig tillståndsmodeller från insamlade data.

Gaussprocesser är en annan klass av modeller, vars styrka ligger i att kunna
interpolera bra mellan olika datapunkter, som illustreras i �guren högst upp på
sidan. Med Gaussprocesser beskrivs sannolikheter för olika matematiska funktioner,
och på så sätt blir det en modell som kan hantera osäkerheter (att inte veta, en
osäkerhet, kan matematiskt beskrivas som att de möjliga alternativen alla har en
viss sannolikhet). Gaussprocesser är en relativt ny klass av modeller, och har än så
länge kanske haft sin största plats inom maskininlärningsforskningen, men börjar allt
mer hitta tillämpningar inom vitt skilda områden där det �nns ett behov av att göra
förutsägelser om hur stor osäkerhet som �nns i ett problem. I den här avhandlingen
tittar vi dels på hur Gaussprocesser kan läras från insamlade data, och dels hur de
kan kombineras med tillståndsmodeller på ett användbart sätt.

vi

I maskininlärningen, när datan kombineras med en modellklass, används alltså
datan för att lära sig okända storheter, parametrar, i modellklassen. Att till exempel
anpassa en rät linje till några punkter är att lära sig en modell (alltså att lära sig
hur mycket linjen ska luta). Principen är densamma även för tillståndsmodeller och
Gaussprocesser – att hitta parametrar så att modellen stämmer bra överens med den
insamlade datan – men beräkningarna som behöver utföras är ofta mer invecklade.

För att automatiskt lära sig modeller från data, alltså att hitta lämpliga parame-
tervärden, har (kanske lite oväntat?) metoder som bygger på slumpen visat sig vara
användbara. Det är nämligen så att de beräkningar som behöver göras för många
modellklasser, däribland tillståndsmodeller och Gaussprocesser, är såpass invecklade
att de sällan kan göras exakt, och då �nns det olika tekniker för att räkna ungefärligt.

Om vi (av någon oklar anledning) har fått i uppgift att slå 3,5 på en vanlig tärning,
kan vi välja mellan att leta upp sidan med fyra prickar och säga ”tyvärr, det här var
det närmaste jag kunde komma”, eller att kasta tärningen många gånger och säga
”tyvärr, det �nns ingen sida som är 3,5, men vi får titta på genomsnittet av många
tärningskast istället” (vilket kommer att vara ungefär 3,5). Den första metoden skulle
kunna sägas vara en klassisk metod, medan den senare metoden är en metod som
bygger på slumpen (att kasta tärningen) och har egenskapen att den ”är i genomsnitt
exakt” (vi gör det många gånger); även om tärningen aldrig kommer att visa tre och
en halv prick i något enskilt kast, så är det genomsnittet vi tittar på. (Det här exemplet
är ju förstås lite fånigt, men liknande situationer kan faktiskt uppstå när man försöker
lära sig parametervärden från data.)

Metoder som systematiskt utnyttjar slumpen kallas för Monte Carlo-metoder
(efter kasinot i staden med samma namn). Många av Monte Carlo-metoderna2 har
utvecklats just för att lära sig parametrar i matematiska modeller. De är ofta mer
beräkningstunga än de klassiska metoderna, men kan ha egenskaper (till exempel
att ”göra i genomsnitt rätt”) som gör det värt den extra beräkningskraften, särskilt
nuförtiden när det �nns snabba datorer som kan användas.

Bidragen i den här avhandlingen handlar till stor del om att utveckla, anpassa och
använda sådana här Monte Carlo-metoder för att lära sig parametrar i olika varianter
av tillståndsmodeller och Gaussprocesser. I avhandlingen �nns det dessutom även ett
bidrag som handlar om att utvärdera hur väl en modellklass passar till den insamlade
datan.

2De olika Monte Carlo-metoderna har mer eller mindre lustiga namn, som till exempel avslagsdragning,
viktighetsdragning, Markovkedje-Monte Carlo, partikel�lter, partikel-Markovkejde-Monte Carlo, partikel-
Gibbs med förfädersdragning, sekventiell Monte Carlo, sekventiell Monte Carlo upphöjd till två, studsig
partikeldragare, och så vidare. . .

vii

viii

Acknowledgments“Danke shön!”
Angela Merkel

First of all, I would like to thank professor Thomas Schön. It has been a great
pleasure to pursue my doctoral studies under your supervision. I am particularly
grateful for your positive attitude, support and coaching whenever I have taken on
new (more or less research-related) challenges. It has also been a pleasant journey
from starting as your second student here in Uppsala, to now graduating from a vivid
and growing machine learning group with a two-digit number of members.

I am also very happy that dr Fredrik Lindsten has served as my co-supervisor.
With your deep technical knowledge and willingness to share it, it has been a joy
working with you, I have learned a lot!

Thanks also to all my co-authors Dave, Petre, Johan D, Arno, Simo, Manon,
Lawrence, Niklas, Dennis and Mahmoud for fruitful (and more or less intense) collab-
orations. Thanks also to Anna and Calle J who helped with the proofreading of the
introductory chapters of this thesis.

This thesis had not been written, had not the Swedish Foundation for Strategic
Research (SSF, via the project ENSEMBLE, nr RIT15-0012) and Uppsala University
generously funded my position. I hope you �nd it was worth it. Thanks!

As a part of a Swedish PhD education, I have been undertaking some courses. Some
were really good. Thank you Erik Broman, Nicolas Chopin, Omiros Papaspiliopoulos
and Henrik Hult for your teaching e�orts. A special thanks also goes to the organizers
of the Machine Learning Summer School in Tübingen 2015.

The most important part of a workplace is probably the colleagues. Thank you
Johan W for many interesting discussions (and sorry for interrupting you all the time
you’re in your o�ce). Thank you Anna, Niklas, Thomas and Fredrik L for fun times
teaching together. In addition to some of you already mentioned, thank you Calle A,
Fredrik, Koen and David for nice running sessions. A big thanks also to Calle J, Diana,
Guo, Helena, Jack, Johan A, Juozas, Lawrence, Marcus, Maria, Niklas, Pelle, Rubén,
Tatiana and Viktor for making it worth to walk all the way to the co�ee room three
times a day (even though I don’t even drink co�ee myself). Thanks also to Katarina,
Dick and Marina for helping out with all administrative and practical issues.

I would also like to thank some people from my life outside the thesis, Jonathan
& Elisabet, Julia & Robert, Lina & Bernhard, David, Diana and Victor, for your nice
and more or less regular company during these years!

A big thanks of course also goes to my parents, Bosse & Christina, for your
encouragement and support throughout my life. Without you, literally, neither me
nor this thesis would exist. My sisters, Brita and Anna, also played an inevitable role
in fostering me to the one I am today. Whether that is a good or bad thing, I leave to
other to decide, but thank you anyway!

And, �nally, thank you Sanna, for your existence, patience and love!
Andreas

Uppsala, August 2018

ix

x

Table of contents“Learn—that’s a trendy word.”
Andrew Gelman

1 Introduction 1
1.1 Focus of the thesis . 2
1.2 Outline of the introductory chapters 3
1.3 Main contributions . 3
1.4 Articles included in the thesis . 4
1.5 Related but not included work . 5
1.6 A word on notation . 7

2 Learning models from data 9
2.1 Data y . 10
2.2 Models p(y | θ) . 10
2.3 Two paradigms for deducing unknown parameters 11

2.3.1 Finding a point estimate for θ : θ̂ 11
2.3.2 Finding the posterior distribution for θ : p(θ |y) 12

2.4 Posterior distributions vs. point estimates 13
2.5 Priors and regularization . 15

2.5.1 When the prior does not matter 15
2.5.2 When the prior does matter 15
2.5.3 Circumventing the prior assumptions? 18

2.6 Summary of the chapter . 19

3 State-space models 21
3.1 The general state-space model . 21
3.2 Linear Gaussian state-space models 22
3.3 Jump-Markov linear state-space models 23
3.4 Learning state-space models . 23

3.4.1 Quantities to learn: states and model parameters 23
3.4.2 A Bayesian approach or point estimates? 24

3.5 Summary of the chapter . 26

4 Gaussian processes 27
4.1 Introducing the Gaussian process . 27
4.2 Noise density, mean and covariance functions 32
4.3 Hyperparameter learning . 33

4.3.1 Empirical Bayes: Finding a point estimate η̂ 33
4.3.2 Hyperpriors: Marginalizing out η 34

4.4 Computational aspects . 34
4.5 Two remarks . 35

4.5.1 A posterior variance independent of observed values? 35
4.5.2 What is a typical sample of a GP? 35

4.6 Gaussian-process state-space models 36

xi

4.7 Summary of the chapter . 37

5 Monte Carlo methods for machine learning 39
5.1 The Monte Carlo idea . 39
5.2 The bootstrap particle �lter . 41

5.2.1 Resampling . 41
5.2.2 Positive and unbiased estimates of p(y1:T | ϑ) 42

5.3 The Markov chain Monte Carlo sampler 43
5.3.1 The Metropolis-Hastings kernel 44
5.3.2 The Gibbs kernel . 44
5.3.3 Convergence . 45

5.4 The Sequential Monte Carlo sampler 45
5.4.1 Connection to particle �lters 46
5.4.2 Constructing a sequence {πp }Pp=0 46
5.4.3 Propagating the particles . 47
5.4.4 Convergence . 47

5.5 Markov Chain or Sequential Monte Carlo? 48
5.6 Monte Carlo for state-space model parameters ϑ 49

5.6.1 MCMC for nonlinear state-space models: PMCMC 49
5.6.2 Particle Gibbs for maximum likelihood estimation 50
5.6.3 SMC for state-space model parameters: SMC2 51

5.7 Summary of the chapter . 51

6 Conclusions and future work 53
6.1 Conclusions . 53
6.2 Future work . 54

A The unbiased estimator p̂Nx (y1:T) 55

B TheMNIW distribution in linear regression 59
B.1 The matrix normal and inverse Wishart distributions 59

B.1.1 The scalar case: NIG . 60
B.1.2 Generalizing to the matrix case:MNIW 61

B.2 Scalar linear regression: yt = axt + et 63
B.3 Multivariable linear regression: yt = Axt + et 64

Notation list 65

References 67

Paper I – A �exible state-space model for learning nonlinear dynamical
systems I–1
Abstract . I–3
1 Introduction . I–3
2 Related work . I–5
3 Constructing the model . I–7

3.1 Basis function expansion . I–7
3.2 Encoding prior assumptions—regularization I–9

xii

3.3 Model summary . I–12
4 Learning . I–13

4.1 Sequential Monte Carlo for system identi�cation I–13
4.2 Parameter posterior . I–14
4.3 Inferring the posterior—Bayesian learning I–15
4.4 Regularized maximum likelihood I–16
4.5 Convergence and consistency I–18
4.6 Initialization . I–18

5 Experiments . I–19
5.1 A �rst toy example . I–19
5.2 Narendra-Li benchmark . I–19
5.3 Water tank data . I–21

6 Conclusions and further work . I–23
A Appendix: Technical details . I–24

A.1 Derivation of (24) . I–24
A.2 Invariant distribution of Algorithm 2 I–24

References . I–28

Paper II – Data consistency approach to model validation II–1
Abstract . II–3
Introduction . II–3
Data consistency check for a single model II–5
Data consistency check for the best models in a class II–6
Examples . II–9
Discussion . II–14
References . II–16

Paper III – Learning dynamical systems with particle stochastic approxi-
mation EM III–1
Abstract . III–3
1 Introduction . III–3
2 Problem formulation and conceptual solution III–6
3 Related work and contributions . III–8
4 Particle stochastic approximation EM III–9

4.1 Sampling the latent variables using PGAS III–9
4.2 Combining PGAS and EM . III–11
4.3 PSAEM for exponential family models III–14

5 Convergence . III–16
5.1 Theoretical results . III–17
5.2 Practical considerations . III–18

6 Experiments and applications . III–19
6.1 Linear Gaussian state-space model III–19
6.2 Cascaded water tanks . III–21
6.3 Hyperparameter estimation in in�nite factorial dynamical

models . III–22
6.4 Hyperparameter estimation in GP state-space models III–23

7 Conclusions . III–25

xiii

A Proof of Theorem 1, Lipschitz continuity of PGAS III–26
B Proof of Theorem 2, convergence of PSAEM III–28
C Details about experiments . III–30
References . III–34

Paper IV – Identi�cation of jump Markov linear models using particle
�lters IV–1
Abstract . IV–3
1 Introduction . IV–3
2 Expectation maximization algorithms IV–5
3 Smoothing using Monte Carlo methods IV–6

3.1 Inferring the linear states: p(z1:T |s1:T ,y1:T) IV–6
3.2 Inferring the jump sequence: p(s1:T |y1:T) IV–7
3.3 Rao-Blackwellization . IV–8

4 Identi�cation of jump Markov linear models IV–9
4.1 Maximizing the intermediate quantity IV–11
4.2 Computational complexity . IV–13

5 Numerical examples . IV–13
5.1 Example 1 - Comparison to related methods IV–13
5.2 Example 2 - Identi�cation of multidimensional systems IV–13

6 Conclusions and future work . IV–14
References . IV–17

Paper V – Learning of state-space models with highly informative obser-
vations: a tempered Sequential Monte Carlo solution V–1
Abstract . V–3
1 Introduction . V–3
2 Background on particle �ltering and tempering V–5

2.1 Particle �ltering, PMCMC and SMC2 V–5
2.2 Challenges with highly informative observations V–6
2.3 Tempering . V–7
2.4 Using a tempering sequence in an SMC sampler V–8

3 Solution strategy . V–8
3.1 A tempering sequence for our problem V–8
3.2 Automatically determining the tempering pace V–10
3.3 Termination . V–11
3.4 Proposed algorithm – preliminary version V–11

4 Full algorithm and details . V–12
4.1 Initialization . V–13
4.2 Re-visiting the particle �lter V–13

5 Numerical experiments . V–16
5.1 Toy example . V–16
5.2 A more challenging nonlinear example V–17
5.3 Evaluating the performance with growing T V–18
5.4 The Wiener-Hammerstein benchmark with process noise . . V–19

6 Discussion . V–21
References . V–24

xiv

Paper VI – Learning nonlinear state-space models using smooth particle-
�lter-based likelihood approximations VI–1
Abstract . VI–3
1 Introduction . VI–3
2 Background on particle �ltering . VI–4
3 Related work . VI–6
4 The proposed solution . VI–7

4.1 Solving the maximization problem VI–7
5 Analysis . VI–8

5.1 Convergence as N →∞ and k = 1 VI–8
5.2 Convergence as k →∞ and �nite N VI–9
5.3 Stability . VI–10
5.4 Stochastic gradient descent VI–10

6 Numerical experiments . VI–10
6.1 Example 1 . VI–11
6.2 Example 2 . VI–11

7 Conclusions . VI–14
A Appendix: Proof sketch . VI–14
References . VI–16

Paper VII – Marginalizing Gaussian process hyperparameters using se-
quential Monte Carlo VII–1
Abstract . VII–3
1 Introduction . VII–3
2 Sampling hyperparameters using SMC VII–5
3 Examples and results . VII–7

3.1 Simulated example . VII–7
3.2 Learning a robot arm model VII–8
3.3 Fault detection of oxygen sensors VII–9

4 Conclusion . VII–11
References . VII–12

xv

xvi

1
Introduction

“I’m being quoted to introduce something, but
I have no idea what it is and certainly don’t
endorse it.”
Randall Munroe

Data, in the format of recorded numbers, is literally present everywhere. Examples
range from temperature measurements, tra�c intensity, polls, internet tra�c and

stock market prices, to speech recordings, electricity usage and epidemiological data.
To process such data in computer systems, mathematical models can be helpful.

A mathematical model is a set of equations. Those equations can—if carefully
chosen—be a compact and powerful tool to describe links and causalities of the
data. Thus, by learning a mathematical model from recorded data, the learned model
can—sometimes—help in explaining the mechanisms behind the data, answer ‘what if’-
questions and make predictions for the future evolution. For this reason, mathematical
models are an essential tool for making sense of data. This thesis has a focus on a subset
of mathematical models which are motivated by probability theory and statistics.
Such models are referred to as statistical models. Statistical models learned from
recorded data can, for example, be used to predict future weather, advise on how
to drive to avoid congestion, make scenario analysis to decide on future network
designs, price assets automatically, translate speech to text, solve energy aggregation
problems and predict disease spread.

Di�erent words for the same thing

In Swedish there is a saying ‘kärt barn har många namn’, meaning ‘we have many
names for the things we love’. That is de�nitely true for this topic. Depending on
context, names such as machine learning, statistical learning, system identi�cation,
parameter estimation, cybernetics and many more, are used to describe the science of
learning mathematical models from data. Somewhat (at least historically) incorrect is
also the term arti�cial intelligence used nowadays. Also the term learning has many
synonyms itself, including training, calibration, inference and estimation.

1

Chapter 1. Introduction

1.1 Focus of the thesis

The �eld of machine learning is vast and ever increasing. Of course, this thesis
cannot cover everything, and not even close to. This thesis is primarily about learning
statistical models from data when the data has a sequential nature (such as time series
and input-output relationships of dynamical systems). In a technical lingo, the models
concerned in this thesis are primarily state-space models (hidden Markov models)
and Gaussian processes. The learning, which is done by a computer, is nothing but
a set of mathematical computations. There are di�erent methods to perform these
computations, and this thesis focuses on a set of methods which makes clever use of
randomness, namely Monte Carlo methods. A pictorial view could perhaps look like
this, where the shaded red regions are the focus of the thesis:

Monte Carlo
methods

State-space
models

Gaussian
processes

This thesis, and also the research behind it, is focused on methods rather than ap-
plications. That does not mean there are no applications, and examples of applications
are given in several of the papers.

2

1.2. Outline of the introductory chapters

1.2 Outline of the introductory chapters

The �rst part of the thesis contains �ve introductory chapters (including this chapter)
and one concluding chapter. The purpose of these introductory chapters is to summa-
rize the background and put the papers into a broader perspective. The concluding
chapter, number 6, is meant to be read after the papers.

After this �rst chapter, we start in Chapter 2 by dissect machine learning into its
main pieces data, models and how to learn models from data. Two statistical models
are then introduced in detail, the state-space model in Chapter 3 and the Gaussian-
process model in Chapter 4. We thereafter devote Chapter 5 to Monte Carlo methods,
which are used to make the computations required for the learning. Appendix A
contains a central result for sequential Monte Carlo (Chapter 5), and Appendix B
contains a derivation of the conjugate prior for Gaussian linear regression; important
expressions for Paper I.

1.3 Main contributions

The main scienti�c contributions in this thesis are the following:

• A numerically feasible approximative implementation of the Gaussian process
state-space model (Paper I).

• A novel criterion for assessing consistency between data and model (Paper II).

• An introduction to and theoretical analysis of the particle stochastic approxi-
mation EM algorithm, as well as its formulation for jump Markov linear models
and the empirical Bayes problem (Paper III and IV).

• A novel alternative to SMC2 for state-space models with highly informative
observations (Paper V).

• A novel approach to parameter estimation in non-linear state-space models
using particle �lters (Paper VI).

• The use of an SMC sampler to learn hyperparameters for the Gaussian process
model (Paper VII).

3

Chapter 1. Introduction

1.4 Articles included in the thesis

The second part of this thesis contains scienti�c articles. The articles are listed below,
together with a brief summary and statement of my (the thesis author’s) contributions.

Paper I

Andreas Svensson and Thomas B. Schön (2017). “A �exible state-space model
for learning nonlinear dynamical systems”. In: Automatica 80, pp. 189–199.

A conceptually interesting combination of the state-space model and the Gaussian process
model is provided by the Gaussian process state-space model (Section 4.6). This article
presents a numerically feasible approximation of that combination, from a system iden-
ti�cation perspective. My contributions to this paper are the mathematical derivations,
implementation and experiments. I have written the major part, but also Thomas B.
Schön, to whom the original idea should be attributed, has contributed to the writing.

Paper II

Andreas Svensson, Dave Zachariah, Petre Stoica, and Thomas B. Schön (2018).
“Data consistency approach to model validation”. Submitted for publication.

This paper presents a criterion to assess if a given data set and a model class are consistent,
in the sense that the given data should be ‘similar’ to data arti�cially generated from the
model. The writing, as well as the coining of the technical idea, was done jointly with
Dave Zachariah and Petre Stoica. The implementations are mine.

Paper III

Andreas Svensson and Fredrik Lindsten (2018). “Learning dynamical systems
with particle stochastic approximation EM”. Submitted for publication.

The particle stochastic approximation EM (PSAEM) is a method for learning state-space
models, based on particle �lters and the Expectation-Maximization (EM) algorithm. I
have written the major part of the paper and performed the experiments. The idea was
originally coined by Fredrik Lindsten, who has also done most of the theoretical analysis.

Paper IV

Andreas Svensson, Thomas B. Schön, and Fredrik Lindsten (2014). “Identi�ca-
tion of jump Markov linear models using particle �lters”. In: Proceedings of
the 53rd IEEE Conference on Decision and Control (CDC). Los Angeles, CA, USA,
pp. 6504–6509.

The PSAEM method, which is the topic of Paper III, is here adapted to jump Markov
linear models, a special class of state-space models. The original idea is due to Thomas B.
Schön and Fredrik Lindsten, whereas I have done the major part of the writing and all
implementations.

4

1.5. Related but not included work

Paper V

Andreas Svensson, Thomas B. Schön, and Fredrik Lindsten (2018). “Learning of
state-space models with highly informative observations: a tempered Sequential
Monte Carlo solution”. In: Mechanical Systems and Signal Processing 104, pp. 915–
928.

State-space models with very little or nomeasurement noise turn out, perhaps surprisingly,
to be very hard to learn with methods based on the particle �lter. To this end, a scheme
is proposed where arti�cial measurement noise is introduced and gradually decreased, in
a consistent way. The original idea, analysis and implementation are all my work, and I
have also done the major part of the writing.

Paper VI

Andreas Svensson, Fredrik Lindsten, and Thomas B. Schön (2018). “Learn-
ing nonlinear state-space models using smooth particle-�lter-based likelihood
approximations”. In: Proceedings of the 18th IFAC symposium on system identi�-
cation (SYSID). Stockholm, Sweden, pp. 652–657.

This paper is a novel approach to maximum likelihood estimation of unknown parameters
in non-linear state-space models. By scrutinizing the particle-�lter algorithm, a slightly
di�erent interpretation of it can be found, which can be used to formulate a maximization
problem to which conventional optimization methods can be applied. The original idea
and implementation are all my work, and I have also written the major part of the paper.
The analysis was done jointly with Fredrik Lindsten and Thomas B. Schön.

Paper VII

Andreas Svensson, Johan Dahlin, and Thomas B. Schön (2015). “Marginalizing
Gaussian process hyperparameters using sequential Monte Carlo”. In: Pro-
ceedings of the 6th IEEE International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP). Cancún, Mexico, pp. 489–492.

The hyperparameters in the Gaussian process model can, if unknown, either be estimated
or marginalized. This paper suggests the use of the sequential Monte Carlo sampler
for the latter. The original idea should be attributed to Johan Dahlin, whereas I have
implemented the examples and written the major part of the paper.

1.5 Related but not included work

Beyond the articles included in the thesis, the following research (to which I have
contributed) is also relevant to this thesis:

[A] Andreas Svensson, Dave Zachariah, and Thomas B. Schön (2018). “How con-
sistent is my model with the data? Information-theoretic model check”. In:
Proceedings of the 18th IFAC symposium on system identi�cation (SYSID). Stock-
holm, Sweden, pp. 407–412.

5

Chapter 1. Introduction

[B] Thomas B. Schön, Andreas Svensson, Lawrence M. Murray, and Fredrik Lindsten
(2018). “Probabilistic learning of nonlinear dynamical systems using sequential
Monte Carlo”. In: Mechanical Systems and Signal Processing 104, pp. 866–883.

[C] Dennis W. van der Meer, Mahmoud Shepero, Andreas Svensson, Joakim Widén,
and Joakim Munkhammar (2018). “Probabilistic forecasting of electricity con-
sumption, photovoltaic power generation and net demand of an individual
building using Gaussian Processes”. In: Applied Energy 213, pp. 195–207.

[D] Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas B. Schön (2016). “Com-
putationally e�cient Bayesian learning of Gaussian process state space models”.
In: Proceedings of the 19th International Conference on Arti�cial Intelligence and
Statistics (AISTATS). Cádiz, Spain, pp. 213–221.

[E] Andreas Svensson, Thomas B. Schön, Arno Solin, and Simo Särkkä (2015).
“Nonlinear state space model identi�cation using a regularized basis function
expansion”. In: Proceedings of the 6th IEEE International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP). Cancún, Mexico,
pp. 493–496.

[F] Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A.
Naesseth, Andreas Svensson, and Liang Dai (2015). “Sequential Monte Carlo
methods for system identi�cation”. In: Proceedings of the 17th IFAC Symposium
on System Identi�cation (SYSID). Beijing, China, pp. 775–786.

[G] Andreas Svensson and Thomas B. Schön (2016). Comparing two recent particle
�lter implementations of Bayesian system identi�cation. Tech. rep. 2016-008. (Pre-
sented at Reglermöte 2016, Gothenburg, Sweden). Department of Information
Technology, Uppsala University.

[H] Andreas Svensson, Thomas B. Schön, and Manon Kok (2015). “Nonlinear state
space smoothing using the conditional particle �lter”. In: Proceedings of the 17th
IFAC Symposium on System Identi�cation (SYSID). Beijing, China, pp. 975–980.

[I] Andreas Svensson (2016). “Learning probabilistic models of dynamical phe-
nomena using particle �lters”. Licentiate thesis. Department of Information
Technology, Uppsala University.

In addition, I have also contributed to some pedagogic work also of relevance to this
thesis:

[J] Fredrik Lindsten, Andreas Svensson, Niklas Wahlström, and Thomas B. Schön
(2018). Statistical Machine Learning. Lecture notes on linear regression, logistic
regression, deep learning & boosting. Department of Information Technology,
Uppsala University.

[K] Fredrik Lindsten, Thomas B. Schön, Andreas Svensson, and Niklas Wahlström
(2017). Probabilistic modeling—linear regression & Gaussian processes. Depart-
ment of Information Technology, Uppsala University.

[L] Andreas Svensson (2013). Particle Filter Explained without Equations. url:
https://www.youtube.com/watch?v=aUkBa1zMKv4.

6

https://www.youtube.com/watch?v=aUkBa1zMKv4

1.6. A word on notation

1.6 A word on notation

The �rst part of the thesis (Chapter 1–5) are meant to have a consistent notation
(a complete list can be found on page 65). The notation in the included articles is,
however, slightly di�erent, and introduced separately for each article.

In general we use a probabilistic language and notation, and use the word ‘model’
mainly to refer to some (possibly complicated) probability distribution. We work in
the �rst place with probability distributions in terms of their densities (or mass) p(·),
and thereby we implicitly assume its existence. The generalization to the case when
the density does not exist is often possible, but not covered. Also the existence of a
σ -algebra and dominating measure is implicit. Di�erent densities are distinguished
by their arguments, and p(· | ·) denotes a conditional density.

All random variables are written with lowercase letters x , θ , etc., and no distinction
between random variables and their realizations is made in the notation. Integrals
without any explicit limits are over the entire domain of the integration variable.

7

Chapter 1. Introduction

8

2
Learning models from data

“All models are wrong
but some are useful.”
George E. P. Box

Machine learning is a a multifaceted term, but in this thesis we will understand
it as the processing of observed data into a statistical model. The key elements in

this process are

(i) the recorded data y (Section 2.1),

(ii) the statistical model p(y | θ), which has some degrees of freedom expressed via
a parameter θ (Section 2.2),

(iii) the learning which links the model to the data by drawing conclusions about θ
from y (Sections 2.3–2.5).

Loosely speaking, one could say that learning is to extract the essence of the data
y, and put that information into the parameters θ . In this chapter, we think in the
�rst place of θ as being �nite-dimensional and real-valued. In Chapter 4, we consider
a model where θ is in�nite-dimensional.

The purpose of this chapter is to give an introduction to the way we think about
data and models, and also to cover some background on the learning side. We use a
statistical perspective, and sometimes use the more technical term statistical inference
for learning. We cover two di�erent paradigms for how to perform the inference,
namely the point estimation approach and the Bayesian approach.

We remain on a rather general level in this chapter. Particular examples of data
and models will be introduced �rst in Chapter 3 and 4, as well as in some of the
papers. We also leave integrals and optimization problems hanging in midair without
attempting to compute them for now. Methods for performing these computations
are be introduced in Chapter 5 and in some of the papers.

9

Chapter 2. Learning models from data

2.1 Data y

The �rst and foremost thing in machine learning is the data y. The data could
in principle be anything that can be recorded, but we limit ourselves to numbers,
typically (but not necessarily) recorded sequentially during some period of time, as1

y = {y1, . . . ,yT }. The data could be arti�cially generated by a computer, but in most
(if not all) cases of interest for the broader society, the data is recorded from some
real phenomenon which is not yet completely understood. Examples of typical data
could be logs of outdoor temperatures, measured forces in a mechanical system, or
stock prices. We make no assumptions on the data, other than that it exists and has
a certain format (such as y ∈ Rny×T or similar). Throughout this thesis, we will be
in the position that the data is already recorded and available to us, meaning that
questions on how to record the data or how to design experiments to ‘reveal as much
information as possible’ falls outside of the scope of this thesis (see, e.g., Chaloner
and Verdinelli 1995; Hjalmarsson 2009; Pukelsheim 1993).

Throughout the �rst part of this chapter, we use a toy example to illustrate the
concepts. Let us therefore say that we have data which consists of two observations
y1 = 1.54 and y2 = 3.72 (ny = 1,T = 2).

2.2 Models p(y | θ)
Next, we introduce a model for the data y, which we denote by p(y | θ). The notation
p(y | θ) encodes a probability distribution which is assumed to be able to describe y
in some respect. Crucially, the model might depend on some unknown parameter θ .
This unknown parameter will later be learned, and for that result to be as relevant
as possible, it is good if the present knowledge (and ignorance) about the problem
is included in the model: if the data exhibits strong saturation e�ects, the learned
parameters in a linear model might carry very little insights.

The model can be derived from �rst principles (such as Newton’s laws of motions,
Leavitt’s law or the ideal gas law) where the unknown parameters have some physical
interpretation. The model can also be of a more generic �exible type, where the
parameters carry no direct physical interpretation. The latter is perhaps more of a
typical machine-learning case.

Let us demystify the abstract notion of a model by using the toy example. Say that
we decide to model the data points as independent draws from the same Gaussian
distribution. The unknown parameters are then the mean µ and the variance σ 2 of
the Gaussian distribution, i.e., θ , {µ,σ 2}, and we write the model as

p(y | θ) = N (
y1; µ,σ 2) · N (

y2; µ,σ 2) . (2.1)

Note that we have not limited ourselves to data actually generated by p(y | θ): the
model is only an assumption within the learning procedure. We are, in fact, free to
make arbitrary model assumptions, perhaps in the interest of feasible computations!
This means that inference results should always be read with the model assumptions
in mind. To validate a model assumption p(y | θ) for some data y, we present a new
method in Paper II.

1We later use the notation y1:t = {y1, . . . , yt } when there is a need to emphasize exactly which data
points are under consideration. For now, we settle with only y to denote all the available data.

10

2.3. Two paradigms for deducing unknown parameters

2.3 Two paradigms for deducing unknown parameters

In our notation, we prepared for the learning by including the possible dependence
on a parameter θ in the model p(y | θ). The big question throughout the rest of this
chapter is the following: if an unknown parameter θ is present in the model, how
should the data y and the model p(y | θ) be used for drawing conclusions about θ?

This question is at the core of statistical inference, and some textbook references
are Casella and R. L. Berger (2002), Gelman et al. (2014), and Schervish (1995). The �eld
has traditionally been divided into several paradigms, ultimately di�ering perhaps in
their interpretation of probabilities. We will pursue two alternative ways of handling
the unknown parameters θ throughout the thesis. The two following questions are
meant to re�ect the underlying alternative reasoning about how to learn θ ,

(i) which estimate θ̂ �ts the data y the best?

(ii) after digesting the information brought to us by the data y, what degree of
belief p(θ |y) do we have in di�erent values of θ?

We will refer to these alternatives as (i) the point estimation and (ii) the Bayesian
approach, respectively. The distinction between the di�erent paradigms is not always
entirely clear in the literature, but below we give an explanation of the way in which
we use the terms. Some texts on the major paradigms in statistical inference, in
addition to the discussion below, are Efron (1986), Efron (2013), Efron and Hastie
(2016), and Lindley (1990).

2.3.1 Finding a point estimate for θ : θ̂

The �rst learning approach we review, is that of �nding a point estimate θ̂ that �ts the
observed data as well as possible. Which particular point estimate θ̂ to choose, i.e.,
the meaning of ‘�t’ in the rhetoric question above, might however vary. One choice
(common in this thesis) is to maximize the likelihood function

L(θ) , p(y | θ), (2.2)

an alternative that we will refer to as maximum likelihood. Note that even though the
likelihood function L(θ) is a function of θ , the object p(y | θ) describes how ‘likely’ y
(not θ) is. Also note that in (2.2), the data y is �xed2, in contrast to when we talk about
the model p(y | θ). Two alternatives to maximum likelihood are to either optimize the
predictive capabilities of the model, or to maximize the likelihood function subject to
some additional constraints, such as keeping the numerical values close to zero or
promote sparsity in θ̂ . The latter alternatives are often referred to as regularization, a
theme we will return to in Section 2.5.2. The choice of which point estimate to use
can be formalized mathematically using decision theory, a topic not considered in
this thesis (see, e.g., Schervish 1995, Chapter 3).

Computing point estimates θ̂ is often at the heart of the classical/frequentist/
Neyman-Pearson-Wald school in the literature, whereas inference based on the likeli-
hood function historically is separated into the Fisherian tradition. In the statistical

2In the traditional notation with uppercase letter for random variables, and lowercase for their realiza-
tions, we could write (2.2) as L(θ) , p(Y = y | θ), whereas the term ‘model’ refers to p(Y | θ).

11

Chapter 2. Learning models from data

literature, it is also common to introduce con�dence regions expressing uncertainty
about θ̂ (not θ). In this thesis, we group these schools together as the point estima-
tion approach. We refrain from putting focus on con�dence regions, because of the
tradition and available computational tools for the models to be presented later on.

In the toy example from above, a maximum likelihood point estimate θ̂ , {µ̂, σ̂ 2}
is found by solving the problem

θ̂ = arg max
θ

L(θ) = arg max
µ, σ 2

N (
1.54; µ,σ 2) · N (

3.72; µ,σ 2) . (2.3)

The solution turns out to be µ̂ = 2.63 and σ̂ 2 = 1.09, i.e., some numbers θ̂ that can be
used to analyze the data, making subsequent predictions, etc.

2.3.2 Finding the posterior distribution for θ : p(θ |y)
The second approach relates to the interpretation of probabilities as degrees of belief,
and makes use of Bayes’ theorem (named after Thomas Bayes 1763)

p(θ |y) = p(y | θ)p(θ)
p(y) (2.4)

to update the prior belief p(θ) into the posterior belief p(θ |y). Going from the prior
to the posterior can be understood as conditioning the belief on data. The right hand
side of (2.4) contains, apart from the prior p(θ), the likelihood (or data density) p(y | θ)
and3 p(y).

Bayesian inference is all about computing the posterior p(θ |y). The central role
of Bayes’ theorem is the obvious reason behind the name of the paradigm. However,
also the name of Pierre-Simon de Laplace (1820) (Stigler 1986) and Bruno de Finetti
(1992) occurs in the literature.

There is nothing conceptually di�erent between the prior p(θ) and the posterior
p(θ |y): they both re�ect a degree of belief about θ , before and after observing the
data y, respectively. If more data is observed subsequently, Bayes’ theorem may be
applied repeatedly to incorporate the new observations into the belief. However,
Bayes’ theorem only provides a mechanism for updating beliefs, not creating beliefs
from nothing. Therefore, the prior p(θ) has to be chosen4. To obtain a useful result,
the choice of prior should preferably re�ect present ignorance and knowledge, in the
very same way as the model p(y | θ) should be chosen carefully.

3Note that p(y), the denominator, can be written as an integral over the numerator with respect to θ ,
p(y) =

∫
p(y | θ)p(θ)dθ . p(y) can thus be thought of as a normalization to ensure that

∫
p(θ | y) = 1,

and can be ignored if it is su�cient to compute (2.4) up to proportionality.
4The (inevitably subjective) prior choice is, according to the authors personal experience, one of the

main criticisms that is brought up towards the Bayesian paradigm. It is, however, unclear to the author why
the prior choice should be subject to criticism, whereas the equally subjective model choice (present in both
paradigms) mostly is kept out of the discussion. J. O. Berger (2006) comments to this concern as follows:
‘[The model choice] will typically have a much greater e�ect on the answer than will such things as choice of
prior distributions for model parameters. Model-building is not typically part of the objective/subjective debate,
however—in part because of the historical success of using models, in part because all the major philosophical
approaches to statistics use models and, in part, because models are viewed as “testable,” and hence subject to
objective scrutiny. It is quite debatable whether these arguments are su�cient to remove model choice from the
objective/subjective debate, but I will simply follow statistical (and scienti�c) tradition and do so.’

12

2.4. Posterior distributions vs. point estimates

It should, however, be remembered that all degree of belief in θ is still conditional
on the choice of model p(y | θ). A popular sales pitch for the Bayesian approach is that
the posterior distribution provides uncertainty about the parameters. That is indeed
true, but note that the use of Bayes’ theorem does not imply a question whether
p(y | θ) is relevant for modeling y; if no choice of the unknown θ gives a reasonable
model for y, the posterior belief p(θ |y) will only concentrate around the ‘least bad’
parameter value.

It is also possible to extract point estimates of θ from the posterior p(θ |y). Popular
estimates of that kind are the posterior mean and the posterior mode, where the latter
usually is referred to as maximum a posteriori (MAP) estimation. However, since a
point estimate does not represent a degree of belief (which is a core component in
the Bayesian approach), we do not consider it to be a Bayesian method here. It does,
however, bear some resemblances to the regularized maximum likelihood approach,
as we will see in Section 2.5.2.

Let us have a look at the little toy example again, now from the Bayesian point of
view. First, we have to append our assumption p(y | θ) also with assumptions about
µ and σ 2. Let us assume a normal-inverse-gamma prior distribution (Appendix B),
p(µ,σ 2) = NIG (

µ,σ 2; 0, 1, 1, 1
)
. By inserting all expressions into Bayes’ theorem (2.4)

and performing some algebraic manipulations, we �nd the posterior p(µ,σ 2 |y) =
NIG (

µ,σ 2; 1.75, 3, 2, 4.49
)
. This is a distribution, which we may use subsequently to

analyze the data, do predictions, etc.
The particular choice of prior in the toy example was a so-called conjugate prior

since the prior, aNIG distribution, together with the likelihood model (2.1), a Gaussian
distribution with unknown mean and variance, yields anotherNIG distribution as the
posterior. For some priors, the posterior may not admit a closed form, and conjugate
priors only exist for a limited set of models.

2.4 Posterior distributions vs. point estimates

The most striking di�erence between the point estimates and the Bayesian paradigm
for a user, is perhaps not the di�erent underlying philosophies about the meaning of
probabilities, nor the presence or absence of priors. Instead, the major di�erence for
a user is that point estimates θ̂ and distributions p(θ |y) are very di�erent objects: A
point estimate θ̂ is a number, whereasp(θ |y) is, well, a distribution. If the user interest
is, for example, to predict a future observation y?, the point estimation approach is to
put θ̂ into the model and take the mean

ŷ? = E
[
p(y? | θ̂)] (2.5)

as the (point) prediction y?. For the Bayesian case on the contrary5, the prediction of
y? is the predictive distribution

p(y? |y) =
∫

p(y? | θ)p(θ |y)dθ . (2.6)

5Indeed, p(y? | θ̂) is also a distribution. However, as it bears no meaning akin to (2.6), and the point
estimation approach is more concerned with point estimates, the entire distribution p(y? | θ̂) is typically
not considered, but only its mean (2.5), or similar.

13

Chapter 2. Learning models from data

In many cases, the predictive distribution (and often also the posterior) admits no
closed form expression. Instead, those distributions have to be approximated. Two
such approximative alternatives are provided by the variational approach (e.g., Blei
et al. 2016) and the Monte Carlo approach (Chapter 5).

Whether to take the point estimate or the Bayesian approach, may depend on
several aspects. Often, but not always, point estimation can be less computationally
intensive compared to the Bayesian approach, an argument for preferring the former.
However, if the computational aspect allows a choice, one may consider questions
such as

• What is the intended use of the obtained results: does a posterior distribution
p(θ |y) provide valuable information in the solution, which is not preserved by
a single point estimate θ̂?

• Is it sensible, or even crucial, to include prior beliefs about θ into the solution?
(See Section 2.5.2)

Personal preferences may of course also in�uence the choice: point estimates have, for
example, traditionally dominated the system identi�cation community (an interesting
uphill struggling paper arguing for the Bayesian approach is Peterka (1981)).

If the data is highly informative about the parameters θ , the di�erences between
the two paradigms may be small. Consider a toy example withT observations {yt }Tt=1
of a one-dimensional parameter θ , µ. We model the observations to be exchangeable
(see, e.g., Section 1.2 in Schervish 1995) and all have a Gaussian distribution with mean
µ and variance 1, and we assume a prior p(µ) = N (µ; 0, 1). This yields the posterior

p(µ |y) ∝ N (θ ; 0, 1)︸ ︷︷ ︸
p(µ)

T∏
t=1
N (µ;yt , 1)

︸ ︷︷ ︸
p(y | µ),

(2.7a)

which after some algebraic manipulations can be written

p(µ |y) = N
(
µ;

∑T
t=1 yt
T+1 ,

1
T+1

)
. (2.7b)

That is, the posterior variance tends to 0 as the number of observationsT →∞. Thus,
with a large number of observations T , it may (from a practical point of view) su�ce to
represent the (Bayesian) posterior (2.7b) with a single point estimate!

By this argument, one may catch a sight of a bridge between the two paradigms.
The argument is often relevant when T → ∞, not only for the toy case (2.7). It is,
however, not completely generally applicable, for instance not if

(i) the number of parameters is large, so that the ‘information per parameter’ is
still low despite a large number of observations T ,

(ii) the data cannot determine the parameters uniquely, e.g., θ = {α , β}, but only
information about the product α · β is observed (a problem sometimes referred
to as non-identi�ability),

(iii) the variance in the example model would have been proportional to T instead
of 1, which would yield a posterior variance that does not decrease with T .

14

2.5. Priors and regularization

2.5 Priors and regularization

Let us now consider the role of the prior. The prior has a central role in the Bayesian
approach, and is not present at all when computing maximum likelihood point es-
timates. Its presence may therefore appear as a major di�erence between the two
approaches. The role of the prior is, however, not always crucial when it comes to
the practical aspects, as we will discuss in this section.

2.5.1 When the prior does not ma�er

From the previous section, we have the example of T exchangeable observations of µ
with Gaussian noise, where we also could write (cf. (2.7b))

p(µ |y) = N
(
µ;

∑T
t=1 yt
T+1 ,

1
T+1

)
≈ N

(
µ;

∑T
t=1 yt
T , 1

T

)
= p(y | µ) = L(θ), (2.8)

i.e., the posterior and the likelihood function are approximately equal, and the mode
of the posterior is approximately the same as the maximum likelihood solution when
there is a large amount of data available (T large). One may say that ‘the prior is
swamped by the data’ or refer to the situation as ‘stable estimation’ (J. O. Berger
1985, Section 4.7.8; Vaart 1998, Section 10.2). It is, however, possible to construct
counterexamples, such as pathological cases with Dirac priors etc.

2.5.2 When the prior does ma�er

The point estimation, and in particular the maximum likelihood approach, might
seem intuitively appealing: ‘�nding the parameter θ for which the data y is as likely
as possible’ sounds very reasonable. It is, however, important to realize that this is
not equivalent to ‘�nding the most likely parameter θ given the data y’. The latter
statement is related to the posterior p(θ |y), whereas the former is related to the
likelihood function L. Failing to distinguish between these is sometimes referred to
as ‘the fallacy of the transposed conditional’. We illustrate this by the toy example in
Figure 2.1: Consider 8 data points on the form (x ,y). We make the decision to model
the data using an nth order polynomial and Gaussian measurement noise as

p(y | θ) = N (
y; c0 + c1x + c2x

2 + · · · + cnxn ,σ 2
n
)
. (2.9)

We let the polynomial order be undecided, meaning that θ = {n, c0, . . . , cn ,σ
2
n}. This

is arguably a very �exible model, which is able to take many di�erent shapes: a feature
that might be desired by the user who wishes not to make too many restrictions
beforehand. The maximum likelihood solution is n = 7 (i.e., as many degrees of
freedoms as data points), σ 2

n = 0 (i.e., no noise) and c0, . . . , c7 chosen to �t the
data perfectly. This is illustrated by the solid blue line in Figure 2.1. Two suboptimal
solutions, not maximizing the likelihood function for this �exible model of polynomials
with arbitrary orders, are n = 2 (green) and n = 1 (orange), also shown in Figure 2.1.

Studying Figure 2.1, we may ask ourselves if the 7th order polynomial, the max-
imum likelihood solution, actually is able to capture and generalize the data well?
Indeed all data points are exactly on the blue line, but the behavior in between the
data points is not very appealing to our intuition—instead the 2nd or perhaps even

15

Chapter 2. Learning models from data

x

y

Data points
The optimal solution to the maximum likelihood problem, n = 7
A suboptimal solution to the maximum likelihood problem, n = 2
Another suboptimal solution to the maximum likelihood problem, n = 1

Figure 2.1: Eight data points marked with black dots, modeled using nth order polynomials and
Gaussian noise, where the polynomial order n is undecided. The optimal maximum likelihood
solution is n = 7, with the 8 polynomial coe�cients chosen such that it (blue curve) �ts the 8
data points perfectly. Two suboptimal solutions are n = 2 (green curve) and n = 1 (orange curve),
which—despite their suboptimality in a maximum likelihood sense—both might appear to be
more sensible models, in terms of inter- and extrapolating the behavior seen in the data. The key
aspect here is that the maximum likelihood solution is explaining the data the best exactly as it
is seen; indeed, the blue curve �ts the data perfectly. There is, however, no claim that the blue
curve is the ‘most likely solution’ (cf. the Bayesian approach). The green and orange curves could,
however, have been obtained as regularized maximum likelihood estimates, if a regularization
term penalizing large values of n had been added to the objective function (2.2).

the 1st order polynomial would be more reasonable, even though none of them �t
the data exactly. The problem with the blue line, the maximum likelihood solution,
is often referred to as over�tting. Over�tting occurs when the parameter estimate is
adapted to some behavior in the data which we do not believe should be considered
as useful information, but rather as stochastic noise.

There are several solutions proposed for how to avoid over�tting, such as aborting
the optimization procedure prematurely (early stopping: e.g., Duvenaud, Maclaurin,
et al. 2016; Sjöberg and Ljung 1995), some ‘information criteria’ (e.g., the Akaike
information criterion, AIC: Akaike 1974, or the Bayesian information criterion, BIC:
Schwarz 1978) or the use of cross-validation (Hastie et al. 2009, Section 7.10). We will,
however, try to understand the over�t problem as an unfortunate ignorance during the
modeling process: From Figure 2.1, we realize that we may actually have a preference
for a lower order polynomial, and our mistake is that we have considered the maximum
likelihood approach when we actually had di�erent prior beliefs in di�erent parameter
values: we prefer the predictable behavior of a low order polynomial to avoid the
strange behavior of a higher order polynomial.6

6The related philosophical question whether simpler models (in this case, a 1st or 2nd order polynomial)
should be preferred over more advanced models (the 7th order polynomial) is often referred to as Occam’s
razor or the principle of parsimony, a discussion we leave aside.

16

2.5. Priors and regularization

In the Bayesian framework, on the other hand, the prior p(θ) is also taken into
consideration using Bayes’ theorem (2.4). Via Bayes’ theorem, it is (on the contrary to
maximum likelihood) possible to reason about likely parameters. A sensibly chosen
prior would in the example describe a preference for low order polynomials, and the
posterior would then dismiss the 7th order polynomial solution (unless it had �tted
the data signi�cantly better than a low order polynomial). Hence, there is no Bayesian
counterpart to the over�t problem, an advantage that comes at the price of instead
having to choose a prior and working with probability distributions rather than point
estimates.7

Either inspired by the Bayesian approach or heuristically motivated, a popular
modi�cation of the maximum likelihood approach is regularized maximum likeli-
hood, which appends the likelihood function with a regularization term R(·). The
regularization plays a role akin to that of the prior, by ‘favoring’ solutions of, e.g.,
low orders. There are a few popular choices of R(·) with a variety of names, such as
the ‖ · ‖1 norm (Lasso or L1 regularization: Tibshirani 1996), the ‖ · ‖2 norm (L2 or
Tikhonov regularization, ridge regression: Hoerl and Kennard 1970; Phillips 1962), or
a combination thereof (elastic net regularization: Zou and Hastie 2005).

The connection between regularization and the Bayesian approach can be detailed
as follows: If having a scalar θ with prior N (

θ ; 0,σ 2) , the logarithm of the posterior
becomes

logp(θ |y) = logp(y | θ) + logp(θ) − logp(y) = C + logp(y | θ) − |θ |2, (2.10)

which apart from the constant C is equivalent to the regularized (log) likelihood
function

Lr (θ) = logp(y | θ) − R(θ), (2.11)

if R(·) = ‖ · ‖2, i.e., L2 regularization. The same equivalence can be shown for L1 and
the use of a Laplace prior. Thus, regularization gives another connection between the
point estimation and the Bayesian approach.

In 1960, Bertil Matérn wrote in his thesis on stochastic models that ‘needless to
say, a model must often be almost grotesquely oversimpli�ed in comparison with the
actual phenomenon studied’ (Matérn 1960, p. 28). As long as the statement by Matérn
holds true and the model is rigid and much less complicated than the behavior of
the data (which perhaps was the case for most computationally feasible models in
1960), regularization is probably of limited interest. However, if the model class
under consideration is more complex and contains a huge number of parameters,
over�tting may be an actual problem. In such cases, additional information encoded in
priors or regularization has in several areas proven to be of great importance, such as
compressed sensing (Eldar and Kutyniok 2012) with applications in, e.g., MRI (Lustig
et al. 2007) and face recognition (Wright et al. 2009), machine learning (Hastie et al.
2009, Chapter 5) and system identi�cation (T. Chen et al. 2012, Paper I). The increased
access to cheap computational power during the last decades might therefore explain
the massive recent interest in regularization.

7There are two di�erent perspective one can take when understanding the absence of over�tting in the
Bayesian paradigm: Pragmatically seen, any sensible prior will (as argued in the text) have a regularizing
e�ect. From a more philosophical point of view, there is no over�tting since the posterior by de�nition
represents our (subjective) beliefs about the situation, and therefore contains nothing but useful information
(and hence no over�tting to non-informative noise).

17

Chapter 2. Learning models from data

2.5.3 Circumventing the prior assumptions?

Sometimes the user of the Bayesian approach might feel uncomfortable making prior
assumptions, perhaps in the interest of avoiding another subjective choice (in addition
to the model choice p(y | θ)). Several alternatives for avoiding, or at least minimizing
the in�uence of the prior choice, have therefore been investigated.

‘Noninformative’ priors

Attempts to formulate ‘noninformative’ priors containing ‘no’ prior knowledge have
been made. In the toy example above, a ‘noninformative’ prior for σ 2 would intuitively
perhaps be a �at prior p(σ 2) ∝ 1 for σ 2 > 0, since it puts equal mass on all feasible
values for σ 2. Apart from the obvious fact that such a density would not integrate to
1, there is also a more subtle and disturbing issue: why should the variance σ 2, and
not the standard deviation σ , have a �at prior? In fact, if the prior for the variance
σ 2 is p(σ 2) ∝ 1 for σ 2 > 0, it implies that the prior for the standard deviation σ is
p(σ) ∝ σ for σ > 0, which does not appear very ‘noninformative’.

To avoid this undesired e�ect, a prior that is invariant under re-parametrizations
has been proposed, the so-called Je�reys prior. Je�reys prior is, however, not always
‘noninformative’ in the sense that a �at prior intuitively is: Efron (2013) provides a
simple example where the Je�reys prior has a clear and perhaps unwanted in�uence
on the posterior. On this topic, Peterka (1981) writes ‘However, it turns out that it is
impossible to give a satisfactory de�nition of “knowing nothing” and that a model of an
“absolute ignorant”, in fact, does not exist. (Perhaps, for the reason that an ignorant has
no problems to solve.)’.

J. O. Berger (2006) argues, on the other hand, that the process of translating expert
knowledge into prior assumptions are typically costly (and not always very crucial
to the �nal result), and ‘standard’ priors (such as Je�reys) should for this reason be
considered by the practitioner: it is still far more useful than abandoning the Bayesian
approach entirely.

Hyperparameters and empirical Bayes

Another alternative is to chose a prior p(θ | η) with some undecided hyperparameters
η, and choose a point estimate η̂ which �ts the data. This is commonly referred
to as empirical Bayes or maximum likelihood type II. This combination of point
estimation and Bayesian inference is perhaps more pragmatic than faithful to any of
the paradigms, but can be seen as a promising combination of them, indeed proven
to work well in many situations (see, e.g., Paper III; Bishop 2006; Efron 2013 and
references therein).

Since empirical Bayes involves point estimation, over�tting may occur, in that
the prior becomes overly adapted to the data. In many situations, this only has minor
practical implications (typically not as severe as the situation in Figure 2.1), but the
user should be aware of the risk.

Hyperpriors

A third option on the topic of circumventing the explicit formulation of prior assump-
tions, is to take a Bayesian (rather than a point estimation) approach to hyperpa-

18

2.6. Summary of the chapter

rameters, and formulate hyperpriors on the hyperparameters η. Then, the inference
amounts to inferring

p(η |y) =
∫

p(y | θ)p(θ | η)p(η)
p(y) dθ (2.12)

rather thanp(θ |y). For a subsequent prediction, the predictionp(y? |y)would instead
of (2.6) be

p(y? |y) =
∬

p(y? | θ)p(θ | η)p(η |y)dθ dη. (2.13)

Obviously such a nested construction does not avoid the choice of a prior, but only
defers it to the level of p(η) instead of p(θ), and also adds to the computational
complexity of the sometimes already involved computations needed. However, in
cases shown to be computationally feasible, interesting and promising results have
been obtained, e.g., for the Gaussian process (Chapter 4) model, even with relatively
simple choices of hyperpriors: Heinonen et al. (2016), Shah et al. (2014) and Paper VII.
An insight from these developments is perhaps that the introduction of a hyperprior
p(η) may in some models open up for a signi�cantly more �exible modeling process
compared to directly choosing a prior p(θ).

2.6 Summary of the chapter

We have discussed three cornerstones of machine learning from a statistical per-
spective: data y, models p(y | θ) and two approaches for learning (or, equivalently,
inference). The data is given, whereas the model is chosen by us. The choice of model
is important in that it heavily in�uences which results we obtain. With data and
model in place, there are still di�erent options for how to learn the parameters θ from
the data, either the point estimation or the Bayesian approach, or possibly something
in between (regularization etc). We have, however, only discussed di�erent high-level
approaches for learning, and we return to some methods for performing the actual
computations later on in Chapter 5.

19

Chapter 2. Learning models from data

20

3
State-space models

“Models are to be used, not believed.”
Henri Theil

State-space models, or hidden Markov models, is a popular family of models. In this
chapter, we introduce the general state-space model, and thereafter also introduce

two important special cases, namely the linear and the jump-Markov linear state-
space models. (In the next chapter, also a third special case is introduced, namely the
Gaussian process state-space model.) We also devote a section to discuss learning for
state-space models.

3.1 The general state-space model

At the core of the state-space model we have a Markov process . . . ,xt−1,xt ,xt+1 . . . ,
which evolves as p(xt+1 | xt) = f (xt+1 | xt), where f (· | ·) is called the state transition
density. We refer to xt ∈ Rnx as the state, and t = 0, . . . ,T is an index typically
representing time in time-series data, but other interpretations are also possible.

The state xt may represent the physical state of an object under study, such as the
position, speed, heading and acceleration of a vehicle, but it can also be an abstract
representation without any clear physical interpretation. The Markov property means
that once xt is known, the previous states . . . ,xt−1 do not add any information about
the later states xt+1, . . . , i.e.,

p(xt+1 | . . . ,xt−1,xt) = p(xt+1 | xt). (3.1)

This Markov assumption is the key for e�ciency when learning state-space models.
The state-space model also includes the observation density д(· | ·), which mod-

els the relation between the state xt and the observation, or output, yt ∈ Rny , as
p(yt | xt) = д(yt | xt). Note that the Markov property (3.1) does not necessarily hold
for the observations . . . ,yt−1,yt ,yt+1, . . . !

To summarize the state-space model, we write

p(xt+1 | xt) = f (xt+1 | xt), (3.2a)
p(yt | xt) = д(yt | xt). (3.2b)

21

Chapter 3. State-space models

For completeness, the model also has to include a density p(x0) for the initial state x0.
An alternative naming of (3.2) is a hidden Markov model, where ‘hidden Markov’

refers to the unobserved states xt that obey the Markov assumption (3.1). The term is,
however, also (and perhaps more often) used for models where xt lives in a discrete
space rather than in Rnx .

In the automatic control literature, state-space models are often used with the
addition of an exogenous (and known) input signal ut ∈ Rν . Another �avor of (3.2) is
the time-varying state-space model, where f and д (and possibly also nx) explicitly
depends on t .

State-space models are typically used to model time-series data {y1, . . . ,yT }which
exhibits some dynamical behavior, i.e., there is a non-trivial correlation between di�er-
ent data points. In a common user case the data {y1, . . . ,yT } is far from obeying the
Markov assumption, but thanks to the state-space model a state sequence {x1, . . . ,xT }
can be (re)constructed. If the model describes the data well, the state sequence will
follow the Markov assumption. The reasons for using a state-space model may, at
least, be twofold:

• The states bear a physical meaning (e.g., the position and speed of a vehicle)
which is of interest.

• In the interest of making predictions, the states xt provide a compact summary
of all relevant history: rather than storing and processing all data y1, . . . ,yt , it
su�ces to consider xt for predicting the future observations yt+1, . . . , provided
that the Markov assumption for the states xt holds.

A relevant question is whether a state-space model, which accurately describes any
data set recorded from the same process, always exists? The answer is no; several
practically relevant counterexamples exist (e.g., Ljung and Glad 2004, Chapter 7)
where the state-space model is insu�cient. Nevertheless, the state-space model has
proven a practically useful model for many cases.

3.2 Linear Gaussian state-space models

The perhaps most well-studied version of the state-space model is the linear state-
space model with additive Gaussian noise,

xt+1 = Axt + But +wt , wt ∼ N (0,Q) , (3.3a)
yt = Cxt + Dut + et , et ∼ N (0,R) . (3.3b)

Here,A, B,C , D,Q and R are matrices of appropriate sizes, andwt and et are stochastic
noise, i.i.d. with respect to time. In (3.3) we have deviated from the probabilistic
notation, and also included an exogenous input signal ut , in order to conform with
the standard notation in the system identi�cation literature.

Entire books (e.g., Kailath 1980; Rugh 1993) have been written on models of the
type (3.3) and its almost equivalent alternative formulation as a transfer function. We
make no attempt on covering that literature here.

The linear Gaussian state-space model (3.3) has the advantage that many learning
problems can be carried out relatively easy, if not in closed form at least with relatively

22

3.3. Jump-Markov linear state-space models

e�cient algorithms. The downside, however, is its limited expressiveness (even though
it has turned out to be very useful, judging from its widespread use) compared to the
much more general model (3.2).

A compromise between the expressiveness of the nonlinear state-space model
and the analytical tractability of the linear Gaussian state-space model is to keep the
linear state transition (i.e., xt+1 = Axt + But +wt), but also append (3.3) with some
nonlinear feature. Two such examples are the jump-Markov linear state-space models
(which we discuss in the next section) and the Wiener and Hammerstein models.

3.3 Jump-Markov linear state-space models

To obtain an expressiveness beyond the linear state-space model (3.3), the jump-
Markov linear state-space model augments (3.3) with another Markov process (in
addition to xt), namely the mode sequence . . . , st−1, st , st+1, The sequence takes
values on the �nite discrete space {1, 2, . . . ,K}, and is de�ned via its transitions
probabilities

p(st+1 | st) = πst ,st+1 . (3.4a)

One linear state-space model belongs to each mode (all with the same state dimensions
nx), whose corresponding matrices we denote by a subscript. Conditioned on the
mode sequence, the states evolve as (cf. (3.3))

xt+1 = Astxt + Bstut +wt , wt ∼ N
(
0,Qst

)
, (3.4b)

yt = Cstxt + Dstut + et , et ∼ N
(
0,Rst

)
. (3.4c)

Clearly, (3.4) is a more general model than (3.3) (if k > 1), but it is still just a special
case of the general state-space model (3.2). Paper IV develops a particular inference
algorithm tailored for models on the form (3.4).

3.4 Learning state-space models

Due to the Markov structure of the state-space model (3.2), most inference problems in
state-space models take a particular form. We give an introduction here, and Paper I,
IV, III, V and VI are all concerned with particular aspects of learning state-space
models.

3.4.1 �antities to learn: states and model parameters

When we discussed learning in Chapter 2, we talked about parameters θ , referring to
some unknown numerical quantities in the model that remains to be determined using
observed data {y1, . . . ,yT } (and also inputs {u1, . . . ,uT } if applicable). It has, however,
not yet been said what θ correspond to in the state-space model: By construction,
the states xt are not observed and might be of interest to learn, but there might
also be unknown quantities in the model itself, i.e., f (· | ·) and д(· | ·) might be
parameterized by some unknown model parameters ϑ as fϑ (· | ·) and дϑ (· | ·).

23

Chapter 3. State-space models

There is no inherent di�erence between the states xt and the model parameters
ϑ from a learning perspective: they are both unknown quantities in the state-space
model. However, depending on the user’s case, di�erent settings are of interest:

(i) The state-space model (i.e., f (· | ·) and д(· | ·) in (3.2)) is completely known,
and only the state sequence {x1, . . . ,xT } remains to be determined. We refer
to this problem as state inference, a problem typically appearing if the model is
derived from �rst principles, implying that the states bear a physical meaning
(e.g., the position and velocity of a vehicle).

(ii) Only limited knowledge about the state-space model is present, and we have to
infer a set of unknown model parameters ϑ (the states are not available either1).
We refer to this case as model parameter learning, typically occurring if the
physical insight about the real process (from which the data is recorded) is
limited.

It should be noted that while the model parameters ϑ typically are of a rather low
dimension (say2, 1-20), the entire state sequence {x1, . . . ,xT } is of dimension T · nx ,
where T > 100 000 is not unrealistic. For this reason, the state inference and the
model parameter learning algorithms have to be designed di�erently, in order to gain
computationally feasible solutions.

The model parameter learning problem contains a spectrum of settings, ranging
from learning a single parameter value to determining the entire functional forms
of f (· | ·) or д(· | ·). In this thesis, Paper IV, Paper III and Paper VI represent the
former problem (in particular, inference of the numerical values in (3.4)), whereas
paper I deals with the latter case where no parametric form of f (· | ·) nor д(· | ·) is
known a priori. A very well studied case is inference of the matrices A, B, C , D, Q , R
in (3.3), referred to as linear system identi�cation (Ljung 1999; Söderström and Stoica
1989).

We assume the state dimension nx is known. Learning nx is another problem, not
considered in this thesis.

3.4.2 A Bayesian approach or point estimates?

Given the two learning problems in the state-space model, state and model parameter
inference respectively, we now turn to the next question: what inference paradigm to
use, the Bayesian or the point estimation approach?

The learning approach for the model parameter may vary with the amount of
data, properties of the model, intended use, etc., as discussed in Section 2.4. The point
estimation approach has historically been favored (e.g., Ljung 1999; Söderström and
Stoica 1989), but a discussion in favor of the Bayesian approach is given by Peterka
(1981). If the dimension of ϑ is low, a large amount of data is available (T is large), and
ϑ is identi�able (Söderström and Stoica 1989, Section 6.4), the maximum likelihood
and the Bayesian solution can often be expected to provide similar results in practice
(cf. Section 2.4). Also other point estimates than maximum likelihood are popular in
the literature, such as the one minimizing the simulation error of the model.

1For this reason, the case (i) can be seen as a subproblem of (ii).
2We explore much larger cases in Paper I.

24

3.4. Learning state-space models

For the state inference problem (i.e., �nding x1:T when given y1:T and ϑ), we may
once again refer back to the discussion in Section 2.4, and note that the problem is of the
peculiar form that with more data (i.e., larger T), the dimension of the state sequence
{x1, . . . ,xT } also grows. Thus, the argument from Section 2.4 about concentration
of the posterior towards a point as the data record grows is not applicable3, and we
should for this reason be cautious about applying a point estimation approach: we
may ignore important uncertainty information if we do so. Perhaps for this reason, the
state inference problem is almost exclusively approached by the Bayesian paradigm
in the literature, which we will review now.

Bayesian filtering

To alleviate the notation, we use the shorthand symbol x1:t , {x1, . . . ,xt }, and similar
for y1:t . The state inference in the Bayesian paradigm (2.4) can be written as

p(x1:T |y1:T) =
p(y1:T | x1:T)p(x1:T)

p(y1:T) . (3.5)

We may interpret this as (3.2a) providing the prior for the states p(x1:T) =∏T−1
t=1 f (xt+1 | xt), and (3.2b) giving the model4 for the data as p(y1:T | x1:T) =∏T
t=1 д(yt | xt). In a computational perspective, however, (3.5) is of very limited use.

Instead the recursion (see, e.g., Särkkä 2013)

p(xt |y1:t) = 1
p(yt |y1:t−1)д(yt | xt)

∫
f (xt | xt−1)p(xt−1 |y1:t−1)dxt−1 (3.6)

has proven useful for computing the (marginal) posterior distributions p(xt |y1:t). The
denominator in (3.6) only serves the purpose of normalization (and may in some com-
putational schemes be omitted), and the remaining quantities are known. The Kalman
�lter (below) as well as the particle �lter (Chapter 5) are direct implementations of (3.6).
We refer to (3.6) as the Bayesian �ltering recursion, a name commonly used5. The term
�ltering refers to the distributions p(x1 |y1), p(x2 |y1:2), . . . ,p(xT |y1:T), as opposed to
the (marginal) smoothing distributions p(x1 |y1:T), p(x2 |y1:T), . . . ,p(xT |y1:T) (note
the di�erent conditioning). For computing the smoothing distributions, there is a
variety of popular recursions used, for which we refer to the literature, e.g., Lindsten
and Schön 2013; Särkkä 2013; Svensson, Schön, et al. 2015.

The Kalman filter

Without doubt, the most popular implementation of the Bayesian �ltering recursion
is the Kalman �lter, named after Rudolf Kálmán (1960). The Kalman �lter is noth-
ing but (3.6) written down for the special case of the linear Gaussian state-space

3From a time-series perspective, we may use the argument that a data point yt does not necessarily
provide more information about the state xτ if t � τ or t � τ .

4For consistency, we should thus refer to (3.2b) as the model and (3.2a) as the prior. Maximum likelihood
estimation of some unknown parameters ϑ in f (· | ·) should then be termed empirical Bayes. Such a
terminology would perhaps provide some additional insight, but would probably cause more confusion
than clarity in the end.

5The Bayesian �ltering recursion is commonly also named ‘optimal’ �ltering, where ‘optimal’ only
re�ects that it is the Bayesian solution.

25

Chapter 3. State-space models

model6 (3.3). We refer to, e.g., Peterka (1981) and Schön and Lindsten (2011) for the
derivation and the �nal equations.

The Kalman �lter is often applied also to more general state-space models not
exactly on the linear Gaussian form (3.3), due to its relative simplicity. Often modi�-
cations are made to approximately handle more general formulations than (3.3), e.g.,
the extended Kalman �lter, the unscented Kalman �lter, etc. (Särkkä 2013).

The likelihood for the state space model

We also introduce the probability density for y1:T given ϑ , i.e., p(y1:T | ϑ). When we in
Chapter 5 discuss numerical methods for model parameter learning, this expression
is at the center of attention:

p(y1:T | ϑ) =
T∏
t=1

p(yt |y1:t−1,ϑ) =
T∏
t=1

∫
p(yt | xt−1,ϑ)p(xt−1 |y1:t−1,ϑ)dxt−1, (3.7)

where we have factorized the expression in such a way that we can see that �nding
p(xt |y1:t) might help in computing p(y1:T | ϑ). Thus, solving the state inference
problem in the Bayesian paradigm, i.e., �nding p(xt |y1:t), may help also when a
maximum likelihood point estimate of ϑ is sought!

3.5 Summary of the chapter

This chapter has introduced the general state-space model, as well as some special
cases of it; the linear state-space model and the jump-Markov linear state-space model.
We have also introduced and discussed two di�erent learning problems for state-space
models, the state inference problem and the model parameter learning problem.

6The Kalman �lter can alternatively also be derived as the optimal (in mean-square-error sense) linear
estimator for a more wide class than (3.3).

26

4
Gaussian processes

“I think it is much more interesting to live with
uncertainty than to live with answers that might
be wrong.”
Richard Feynman

The Gaussian process (GP) de�nes a probability distribution over functions f , and
is commonly used as a model for functional relationships between variables. The

GP is tightly connected with the Bayesian paradigm, and conditioning on data y, i.e.,
updating the prior p(f) into the posterior p(f |y), will be our most common usage of
the GP model.

The GP is a so-called nonparametric model, in that it does not rely on a �nite set
of parameters θ . A parametric model for f (e.g., a polynomial of �nite order) involves
a set of parameters θ acting as a ‘mid-layer’ between the data and the posterior
over f . In a parametric model, �nding the posterior p(f |y) amounts to �rst �nd
p(θ |y) and then compute p(f |y) =

∫
p(f | θ)p(θ |y)dθ (cf. (2.6)). In a nonparametric

model, however, the distribution p(f |y) is computed directly without (explicitly)
involving any parameters θ . One may alternatively understand this as the data (in a
nonparamteric model) takes the role of the parameters (in a parametric model). The
main advantage of a nonparametric model is perhaps that there is no upper limit on
‘how much information the model can contain’, in contrast to a parametric model.

4.1 Introducing the Gaussian process

The nonparametric GP can be understood as a limit of the k-dimensional multivariate
Gaussian distribution as k tends to in�nity. We will try to follow the intuition behind
this limit, in order to develop an understanding for the connections between the
Gaussian distribution and the GP. All technical details can be found in the literature
(MacKay 1998; Rasmussen and Williams 2006).

The density for the k-dimensional multivariate Gaussian distribution is

N
(
f ; µ, Σ

)
= (2π)−

k
2 det(Σ)−

1
2 exp

(
− 1

2 (f − µ)TΣ−1(f − µ)
)
, (4.1)

where f = [f1 · · · fk]T is a k-dimensional vector with random scalar elements
f1, · · · , fk , µ ∈ Rk is the mean, and Σ ∈ Rk×k is the (positive semide�nite) covariance

27

Chapter 4. Gaussian processes

f1 f2

(a)A two-dimensional Gaussian distribution for the random variables f1 and f2, with a blue surface
plot for the density, and the marginal distribution for each component sketched using dashed blue
lines along each axis. Note that the marginal distributions do not contain all information about
the distribution of f1 and f2, since the covariance information is lacking in that representation.

f1 f2

(b) The conditional distribution of f1 (green line), when f2 is observed (orange dot). The conditional
distribution of f1 is given by (4.3), which (apart from a normalizing constant) in this graphical
representation also is the green ‘slice’ of the joint distribution (blue surface). The marginals of the
joint distribution from Figure 4.1a are kept for reference (blue dashed lines).

Figure 4.1: A two-dimensional multivariate Gaussian distribution for f1 and f2 in (a), and the
conditional distribution for f1, when a particular value of f2 is observed, in (b).

matrix, which means that it has k+ k(k+1)
2 parameters. In the limit k →∞, the number

of parameters tends to in�nity, which can be intuitively understood as the transition
from the parametric Gaussian distribution to the nonparametric GP. (The technical
challenge in this limit, which we will not fully address here, is the generalization from
countable to measurable in�nity.)

Considering the Gaussian distribution (4.1), we can partition f into
[
f
T
1 f

T
2

]T
,

and µ and Σ similarly, and then write

p

([
f 1
f 2

])
= N

([
f 1
f 2

]
;
[
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])
. (4.2)

28

4.1. Introducing the Gaussian process

f1 f2

(a) The marginal distributions for f1 and f2
from Figure 4.1a.

f1 f2

(b) The distribution for f1 (green line) when f2
is observed (orange dot), as in Figure 4.1b.

Figure 4.2: The marginals of the distributions in Figure 4.1, here plotted slightly di�erently. Note
that this more compact plot comes with the cost of missing the information about the covariance
between f1 and f2.

f1 f2 f3 f4 f5 f6

(a)A 6-dimensional Gaussian distribution, plot-
ted in the same way as Figure 4.2a, i.e., only its
marginals are illustrated.

f1 f2 f3 f4 f5 f6

(b) The conditional distribution f1, f2, f3, f5
and f6 when f4 is observed (orange dot), il-
lustrated by its marginals (green lines), cf Fig-
ure 4.2b.

Figure 4.3: A 6-dimensional Gaussian distribution, illustrated in the same fashion as Figure 4.2.

If some elements of f , let us say the ones in f 2, are observed, the conditional distri-
bution for f 1 given the observation of f 2 is

p
(
f 1 | f 2

)
= N

(
f 1; µ1 + Σ12Σ

−1
22 (f 2 − µ2), Σ11 − Σ12Σ

−1
22 Σ21

)
. (4.3)

The conditional distribution is nothing but another Gaussian distribution with closed-
form expressions for the mean and covariance. This is particularly useful.

Figure 4.1 shows a 2-dimensional example where a multivariate Gaussian distribu-
tion is conditioned on data. In Figure 4.2, we have plotted the marginal distributions
from Figure 4.1, to prepare for the generalization to GP. It is also straightforward
to plot a 6-dimensional multivariate Gaussian distribution by its margins, akin to
Figure 4.2, as we do in Figure 4.3. Bear in mind that to fully illustrate the joint distribu-
tion for f1, . . . , f6, a 6-dimensional surface plot would be needed, whereas Figure 4.3a
only contains the marginal distributions for each component. As earlier, we may also
condition the 6-dimensional distribution underlying Figure 4.3a on an observation of,
e.g., f4. Once again, the conditional distribution is another Gaussian distribution, and
the marginals of the 5-dimensional distribution are plotted in Figure 4.3b.

29

Chapter 4. Gaussian processes

In Figure 4.2 and 4.3, we had a distribution over a �nite set of discrete points. If
we were to study a phenomenon taking values on a �nite set of discrete points, like
{1, 2, 3, 4, 5, 6} in Figure 4.3, we could use this as a probabilistic model. However, our
aim is the GP, a probabilistic model for functions on a continuous space.

The extension of the Gaussian distribution (de�ned on a �nite set) to the GP
(de�ned on a continuous space) is achieved by replacing the index set {1, 2, 3, 4, 5, 6}
in Figure 4.3 by a variable x taking values on the continuous real line. In the Gaussian
distribution, µ is a vector with k components (e.g., µ ∈ R2 in Figure 4.2, and µ ∈ R6 in
Figure 4.3), and similarly for the covariance matrices. In the GP, we replace µ by a
mean function µ(x) parameterized by x , and the covariance matrix Σ by a covariance
function κ(x ,x ′) parameterized by x and x ′. The GP is then de�ned as:

De�nition (the Gaussian process). Let {x1, . . . ,xn} be any �nite set of points for
which µ(xi) and κ(xi ,x j) are de�ned. Then,

p
©«

f (x1)
...

f (xn)

ª®®¬
= N

©«

f (x1)
...

f (xn)

;

µ(x1)
...

µ(xn)

,

κ(x1,x1) · · · κ(x1,xn)
...

...
κ(xn ,x1) · · · κ(xn ,xn)

ª®®¬
. (4.4)

That is, for any choice of {x1, . . . ,xn} , we have a multivariate Gaussian distribu-
tion, just like the one in Figure 4.3. Since {x1, . . . ,xn} can be chosen arbitrarily on
the continuous line, this implicitly de�nes a distribution for all points on that line.
Of course, for this de�nition to make sense, κ(· , ·) has to be such that a positive
semide�nite covariance matrix is obtained for any choice of {x1, . . . ,xn}.

We will use the notation

f ∼ GP (µ(·),κ(· , ·)) (4.5)

to express that the function f is distributed according to a GP with mean function
µ(·) and covariance function κ(· , ·). If we want to plot the GP, which we do in
Figure 4.4, we may choose {x1, . . . ,xn} to correspond to the pixels on the screen or
the printer dots on the paper, so that it appears as a continuous line to the eye (despite
that we actually can access the distribution only in a �nite, however arbitrary, set of
points).

The perhaps most interesting procedure is the calculation of the conditional distri-
bution given some observations { f (xd1), . . . , f (xdm)}, the GP counterpart to Figure 4.1b,
4.2b and 4.3b. We start by introducing the following more compact notation,

x? ,

x?1
...
x?n

, K?? ,

κ(x?1 ,x?1) · · · κ(x?1 ,x?n)
...

...
κ(x?n ,x?1) · · · κ(x?n ,x?n)

, (4.6a)

xd ,

xd1
...

xdm

, Kdd ,

κ(xd1 ,xd1) · · · κ(xd1 ,xdm)
...

...

κ(xdm ,xd1) · · · κ(xdm ,xdm)

, (4.6b)

K?d ,

κ(x?1 ,xd1) · · · κ(x?1 ,xdm)
...

...

κ(x?n ,xd1) · · · κ(x?n ,xdm)

= (Kd?)T. (4.6c)

30

4.1. Introducing the Gaussian process

x?1 x?2

f (x?1) f (x?2)

x

f (x)

(a) A GP de�ned on the real line parameterized
by x , not conditioned on any observations. The
intensity of the blue color is proportional to the
(marginal) density, and the marginal distribu-
tions for some x?1 and x?2 are pictured in red.
Akin to Figure 4.3, we only plot the marginal
distribution for each x?, but the GP de�nes a
full joint distribution for all points on the x-axis,
even though it is hard to illustrate.

x?1 xd1

f (x?1) f (xd1)

x

f (x)

(b) The conditional GP distribution given the ob-
servation of f (xd1) in the point xd1 correspond-
ing to x?2 in (a). The prior distribution from
Figure (a) is dashed gray. Note how the condi-
tional distribution adjusts to the observation,
both in terms of mean (closer to the observa-
tion) and (marginal) variance (smaller in the
proximity of the observation, but it remains
unchanged in areas distant from it).

Figure 4.4: A GP. Figure (a) shows the prior distribution (shaded blue), whereas (b) shows the
posterior distribution (shaded green) after conditioning on one observation (orange dot).

We can use this notation and the de�nition to write the joint distribution between
the values f (xd) in the points xd , and the value f (x?) in some other points x? as

p

([
f (x?)
f (xd)

])
= N

([
f (x?)
f (xd)

]
;
[
µ(x?)
µ(xd)

]
,

[
K?? K?d

Kd? Kdd

])
. (4.7)

Now, as we have observed f (xd), we can express the posterior distribution for f (x?)
conditional on the observations as

p
(
f (x?) | f (xd)

)
= (4.8)

N
(
f (x?); µ(x?) + K?d (Kdd)−1

(
f (xd) − µ(xd)

)
,K?? − K?d (Kdd)−1Kd?

)
,

i.e., nothing but another multivariate Gaussian distribution for any �nite set x?. We
illustrate this by Figure 4.4.

The GP, and in particular (4.8), now provides a way to probabilistically inter- and
extrapolate observations under the assumption that the observations are drawn from
a Gaussian process. In most practical cases this assumption is most likely not true,
but it has nevertheless proven to be a useful model. The typical use of the GP as a
modeling tool is illustrated in Figure 4.5.

The Gaussian process can alternatively also be introduced as a nonlinear and
nonparametric generalization of linear regression, which perhaps is more standard in
the literature (cf. Bishop 2006, Section 6.4; MacKay 1998; Rasmussen and Williams
2006).

31

Chapter 4. Gaussian processes

x

f (x)

x

f (x)

x

f (x)

x

f (x)

Figure 4.5: The GP as a modeling tool: the conditional distribution (shaded blue) for f (x) after
0, 2, 5 and 100 observations (orange dots) of y = f (x) + noise. (We have now left our earlier
convention of plotting the posterior distribution after conditioning on data in green, since the
prior–posterior notion becomes entangled when we sequentially condition on more and more data.)

4.2 Noise density, mean and covariance functions

We have in the previous section assumed the existence of a mean µ(·) and covariance
function1 κ(· , ·). When using the GP to model observed data, these functions some-
how have to be chosen by the user. If there is detailed domain knowledge present, it
can be incorporated into the covariance function: one such example is Solin, Kok, et al.
(2018), where the magnetic �eld is modeled using a GP covariance function tailored to
obey Maxwell’s equations (see also Jidling et al. 2018 for general constructions along
these lines). In many situations, however, such detailed knowledge is not present, and
one has to make a less informed choice of covariance function. Two common choices
are the exponentiated quadratic and the Matérn class2 of covariance functions; their
expressions are found in Table 4.1, and their properties have been widely discussed
in the literature (e.g., Rasmussen and Williams 2006, Section 4.2) and will not be
repeated here. There are also ways to combine di�erent covariance functions into
new ones, creating, e.g., periodic covariance functions (Rasmussen and Williams 2006,
Section 4.2.4; Duvenaud, Lloyd, et al. 2013). A standard terminology is that if κ(x ,x ′)
is a function of only x − x ′, it is referred to as stationary, and if it is only a function of
‖x − x ′‖, it is called isotropic.

A common choice for the mean function is µ(x) = 0, which at a �rst glance may
seem very restrictive. However, already by inspection of (4.8) or Figure 4.4b, it is clear
that the posterior mean (i.e., after conditioning on observations) may be non-zero
even though the prior is 0. In fact, µ(x) = 0 appears to work well in many situations.

1The covariance function is often referred to as a kernel in the literature. We refrain from that
terminology here to avoid confusion with the MCMC kernel in the next chapter.

2Named after the Swedish statistician Bertil Matérn (1960).

32

4.3. Hyperparameter learning

Function Meaning Limitations Examples

Mean
µ(x)

Prior
assumption
about mean

- C (constant)
a · x (linear)

Covariance
κ(x, x ′)

Assumption on
how correlated
two x -values
are

Must be positive
semide�nite

exp
(
− ‖x−x ′‖22`2

)
(exponentiated quadratic)
21−ν
Γ(ν)

(√
2ν ‖x−x ′‖

`

)ν
Kν

(√
2ν ‖x−x ′‖

`

)
(Matérn class)

Observation
noise

Assumption
about noise
level in
observed data

Analytically
tractable only if
Gaussian
distribution

ε = 0 (noiseless)
N (

ε ; 0, σ 2
n
)

(Gaussian distribution)

Table 4.1: A summary and some examples of functions involved in the GP model.

In addition to a mean and covariance function, also a third function can be in-
troduced: if f (xd) is not observed directly, but corrupted by some additive noise ε ,
as yd = f (xd) + ε , the distribution for ε also has to be modeled. In e�ect, the noise
model determines how much the observed data should be ‘trusted’. If the noise model
is chosen as a Gaussian distribution, it can be incorporated into the covariance func-
tion, and (4.8) is still valid. Other alternatives are possible, but gives no closed-form
expressions à la (4.8). All functions discussed here, including some typical examples,
are summarized in Table 4.1.

4.3 Hyperparameter learning

Most mean functions, covariance functions, and noise distributions contain some
parameters, such as the length scale parameter ` in the exponentiated quadratic
covariance function, or the noise variance σ 2

n in the Gaussian noise model. We will
refer to these as hyperparameters, denoted by η. The hyperparameters are often
interpretable (such as length scale or noise level, Rasmussen and Williams 2006,
Section 2.3), but due to ignorance (such as limited physical insight) when using the
GP as a model, the hyperparameters might e�ectively be unknown.

As discussed in the learning chapter in Section 2.5.3, there are two common alter-
natives for how to learn unknown hyperparameters: empirical Bayes or hyperpriors.

4.3.1 Empirical Bayes: Finding a point estimate η̂

The empirical Bayes approach can be applied to �nd a point estimate η̂ of η, by
maximizing the marginal likelihood3

p(yd | η) = N
(
yd ; µη(xd),Kdd

η

)
, (4.9)

3The convention to name (4.9) marginal likelihood is because of the following: In a parametric model,
the likelihood is p(y | θ), whereas p(y | η) is its marginal with respect to θ : p(y | η) =

∫
p(y | η)p(θ | η)dθ .

33

Chapter 4. Gaussian processes

where we have added the subscript η to stress the dependence on the hyperparameters.
Note that (4.9) is nothing but a multivariate Gaussian distribution. Due to the way
η enters into the problem, this is typically a highly non-convex problem, calling for
numerical optimization tools. The major bene�t with the point estimate is indeed
that a single numerical value η̂ is obtained, which is easy to use in, e.g., prediction

p(y? |yd , η̂) = N
(
y?; µη̂ (x?) + K?d

η̂

(
Kdd
η̂

)−1 (
yd − µη̂ (xd)

)
,K??

η̂ − K?d
η̂ (K

dd
η̂)
−1Kd?

η̂

)
,

(4.10)

a lengthy but computationally tractable expression. That a single numerical value for
the hyperparameters is chosen is however also a major drawback of the approach. In
many cases the ‘landscape’ of (4.9) is widespread and multimodal, which makes the
optimization very hard, and the global optimum sensitive to small changes in data
yd as well as initialization of the optimization procedure. A further discussion with
examples is found in Paper VII.

4.3.2 Hyperpriors: Marginalizing out η

The alternative approach to a point estimate is the Bayesian approach with hyperpriors.
This approach amounts to inferring the posterior distribution p(η |yd) ∝ p(yd | η)p(η),
and use this posterior distribution rather than a point estimate in subsequent tasks,
such as prediction

p(y? | yd) =
∫
N

(
y?; µη (x?) + K?d

η

(
Kdd
η

)−1 (
yd −µη (xd)

)
, K??

η −K?d
η (Kdd

η)−1Kd?
η

)
p(η | yd)dη .

(4.11)

Because of the integral over η in (4.11), we will also refer to this approach as marginal-
ization: the integrand of (4.11) is p(y?,η |yd), and the integral computes the marginal
distribution p(y? |yd). However, the marginalization (4.11) is in general not analyti-
cally tractable, in contrast to the prediction with a point estimate (4.10). Typically not
even the posterior distribution p(η |yd) itself is tractable, which perhaps is the major
drawback of this approach.

A numerical solution for this is to draw Monte Carlo samples from p(η |yd), and
then approximate the integral in (4.11) with a sum over these samples. One method for
acquiring such samples is presented in Paper VII. Other alternatives include variational
inference, see, e.g., Titsias and Lázaro-Gredilla (2014).

4.4 Computational aspects

The computational load of (4.8), the main workhorse of the GP model, is dominated by
the inversion of the matrix Kdd , an operation essentially of complexity O(m3). Thus,
the computational complexity of the GP grows with data in a rather unfavorable way,
which may prohibit its use in many applications. A rich literature on approximations
is therefore available, e.g., Rasmussen and Williams (2006, Chapter 8); Snelson (2007)
and Chalupka et al. (2013). In particular, we will make use of an approximation
proposed by Solin and Särkkä (2014) in Paper I.

34

4.5. Two remarks

Essentially, most approximative methods amount to creating a lower-dimensional
representation of the data. The lower-dimensional representation resembles a pa-
rameter θ . A naïve but illustrative such approximation method is the ‘subset of data’
method, where only a subset of all data y (chosen either randomly or in a more
systematic way) is considered. If the subset is of size p < m, the computational load
of the GP reduces from O(m3) to O(p3).

4.5 Two remarks

The GP provides a widely used and perhaps intuitively appealing model for nonlinear
functions. In this section, we will make two remarks that are important to keep in
mind when working with GPs for modeling.

4.5.1 A posterior variance independent of observed function values?

The Gaussian process is a �exible model, as seen in, e.g., Figure 4.5. However, in its use
with �xed hyperparameters η0, it has the peculiarity that its variance is independent
of the actually observed function values f (xd), for instance in the predictive variance4

in (4.8). This is nothing but a direct consequence of the prior assumption that the
data was generated by a GP with the speci�ed mean and covariance function with
hyperparameters η0. However, if the hyperparameters are not considered �xed, but
inferred from data (either using empirical Bayes or by assuming hyperpriors and
marginalizing them), the predictive variance depends on the observed function values,
somewhat indirectly via the hyperparameter learning procedure.

4.5.2 What is a typical sample of a GP?

The mean of the GP can be used to characterize the distribution. It is, however,
important to remember that the mean is a rather atypical sample of the GP, just
as 0 is a very particular sample of a N (0, 1) distribution. Furthermore, the GP also
encodes a smoothness assumption, which is not very clear in the plotting style of
Figure 4.5: in Figure 4.6, 5 samples are drawn from these distributions, where it is
clear that also the correlation (along the x-axis) contains important information in
the GP distribution as well. This is essentially the same point as we discussed when
we considered the 2-dimensional Gaussian distribution in Figure 4.1, and only plotted
its marginal distributions in 4.2 even though a full joint distribution is speci�ed by
the model.

4This point has its counterpart in the Kalman �lter, Section 3.4.2, where also the predictive covariance is
independent of the observed measurements. It is essentially the very same phenomenon, since the Kalman
�lter can be interpreted as a Gaussian process (Solin and Särkkä 2014).

35

Chapter 4. Gaussian processes

x

f (x)

x

f (x)

Figure 4.6: Five samples of the GP from Figure 4.5 (with a Matérn ν = 3/2 covariance function).
Note, in particular, that the samples are more wiggly than the mean function: a reminder that the
blue shades do not contain all information, but is only the marginal distribution for each x (cf.
Figure 4.1 and 4.2).

4.6 Gaussian-process state-space models

A combination of the state-space model and the GP is the relatively recent GP state-
space model,

p(xt+1 | xt) = N (xt+1; f (xt),Q) , f ∼ GP (
µf (·),κf (· , ·)

)
, (4.12a)

p(yt | xt) = N (yt ;д(xt),R) , д ∼ GP (
µд(·),κд(· , ·)

)
. (4.12b)

The somewhat cumbersome notation should simply be read as ‘xt+1 equals a GP of xt
plus Gaussian noise’, and similar for yt . The promising feature of the model is that
it combines the nonparametric �exibility of a GP with the dynamical nature of the
state-space model, allowing for complex and highly nonlinear dynamical phenomena
to be described. Currently the best overview of the GP state-space model is probably
found in the thesis by Frigola-Alcade (2015).

Due to the somewhat entangled use of the GP in (4.12a), where the output of the GP,
xt+1, is the input at the next time step, the inference problem becomes relatively hard.
Frigola, Lindsten, et al. (2013) proposed a conceptually interesting but computationally
brutal solution, and the subsequent Frigola, Y. Chen, et al. (2014) and Paper I (and in
particular, its predecessor Svensson, Solin, et al. 2016) present further developments in
di�erent directions; For a numerical example which took Frigola, Lindsten, et al. (2013)
about 10 hours of compuational time, Svensson, Solin, et al. 2016 and Paper Frigola,
Y. Chen, et al. (2014) only requires a few minutes.

36

4.7. Summary of the chapter

4.7 Summary of the chapter

This chapter has introduced the GP as a generalization of the multivariate Gaussian
distribution. A crucial aspect is that some important expressions are available in
closed form, such as (4.10). The use of the GP in machine learning is as a model for
(nonlinear) functions f , of which we only have observed the values in a few points (cf.
Figure 4.5). It can also be combined with the state-space model into the GP state-space
model (4.12).

37

Chapter 4. Gaussian processes

38

5
Monte Carlo methods
for machine learning

“Expose yourself to as much
randomness as possible.”
Ben Casnocha

Monte Carlo methods are a class of numerical methods named after the casino in
the capital of Monaco (Figure 5.1). They originated in physics research with dis-

putable purposes during the �rst half of the 20th century. An accessible introduction
from that era, still well worth reading, is ‘The Monte Carlo method’ by Metropolis
and Ulam (1949). Today, Monte Carlo methods are established tools within many
di�erent scienti�c �elds, in particular in machine learning and some related areas.

Monte Carlo methods are useful when the mathematical computations are not
analytically tractable, meaning, e.g., that an integral lacks a closed-form solution.
There are also other alternatives, such as the variational approach (see Blei et al.
2016 for an overview). The idea in the variational approach is to impose additional
assumptions until the modi�ed problem becomes tractable. This thesis, however,
focus on the Monte Carlo approach.

We give in this chapter an overview and introduction to sequential Monte Carlo
(SMC) and Markov chain Monte Carlo (MCMC) in general, as well as their application
for learning in state-space models.

5.1 The Monte Carlo idea

Consider a probability density π (·) over the space of a parameter θ , that is de�ned
in such a way that the analysis of interest (e.g., computing the variance of θ) is not
analytically tractable. The Monte Carlo idea is to approximately represent π by
random samples (an empirical measure). Those random samples should be generated
such that their properties resemble the properties of the distribution π . The samples
are nothing but numerical values stored in a computer, and it is (hopefully) easier to
analyze those samples than analyzing π directly.

39

Chapter 5. Monte Carlo methods for machine learning

Figure 5.1: Casino de Monte-Carlo in Monaco. A place of gambling and broken dreams, and
moreover the source of the name ‘Monte Carlo method’. Photo: Andreas Svensson.

Formally, we introduce the notation of N weighted1 samples {θ (i),w (i)}Ni=1. This
collection of weighted samples is a Monte Carlo (or particle) approximation of the
density π if it holds that the empirical measure is ‘close’ to π , by which we mean

1∑N
j=1 w (j)

N∑
i=1

w (i)IA (θi) ≈
∫
A
π (θ)dθ (5.1)

for every measurable set A, with equality almost surely in the limit as N →∞. This
is illustrated in Figure 5.2. If it is possible to draw samples from π directly, one may
simply draw N such samples and set all weights to 1. If samples cannot be drawn
from π directly, there are alternatives, of which we will review some.

For some methods, (5.1) does not only hold in the limit as N →∞, but also when
taking the expectation over di�erent realization of the Monte Carlo method itself as

E

[
1∑N

j=1 w (j)
∑N

i=1w
(i)IA (θi)

]
=

∫
A π (θ)dθ for a �xed N . That is a stronger property,

which holds for, e.g., rejection sampling but not p(xt |y1:t ,ϑ) in a particle �lter.

1Note that we use non-normalized weights throughout this chapter.

θ

π (θ)

random samples θ (i) (with area ∝ w(i))
θ

Figure 5.2: The Monte Carlo idea: A probability density π (θ) at the top, and weighted random
samples of that distribution below (the area of each sample is proportional to its weight). Each color
is a choice ofA in (5.1), so we expect each colored area in the upper part of the �gure (i.e.,

∫
A π (θ)dθ)

to be roughly proportional to the area of its corresponding samples (i.e.,
∑N
i=1w

(i)IA (θi)).

40

5.2. The bootstrap particle filter

Algorithm 1: Bootstrap particle �lter
Input: State space model f (· | ·), д(· | ·), p(x0), and data y1:T .
Output: Weighted samples {x (i)t ,w (i)t }Nxi=1 from p(xt |y1:t ,ϑ) for t = 1, . . . ,T .

1 Draw x (i)0 ∼ p(x0) and set w (i)0 = 1
2 for t = 1 to T do
3 Draw a(i)t with P

(
a(i)t = j

)
∝ w (j)t−1 resampling, {xa

(i)
t

t−1 , 1} ≈ p(xt−1 | y1:t−1, ϑ)

4 Draw x (i)t from f (xt |xa
(i)
t

t−1) propagation, {x (i)t , 1} ≈ p(xt | y1:t−1, ϑ)
5 Set w (i)t = д(yt |x (i)t) weighting, {x (i)t , w (i)t } ≈ p(xt | y1:t , ϑ)
6 end

All statements with (i) are for i = 1, . . . , Nx . The notation ≈ means that the weighted samples on
the left hand side are approximately (in the meaning of (5.1)) the density on the right hand side.

5.2 The bootstrap particle filter

As a popular example of a non-trivial Monte Carlo algorithm, we start by introducing
the particle �lter. The origin of the particle �lter is to be found in Gordon et al. (1993)
and Stewart and McCarty (1992). It is a Monte Carlo implementation of the Bayesian
�ltering recursion (3.6) solving the state inference problem, i.e., computing the �ltering
distributions p(x1 |y1,ϑ), . . . ,p(xT |y1:T ,ϑ) (cf. the generic π in the previous section)
in the state-space model, when the model parameters ϑ are known. An animated
beginner’s introduction to the particle �lter is found in Svensson (2013), and there is
a myriad of written introductions, e.g, Arulampalam et al. (2002), Gustafsson et al.
(2002), Haykin and Freitas (2004), and Särkkä (2013). A good overview (but perhaps
not a �rst introduction) is provided by Doucet and Johansen (2011).

The key idea of the particle �lter is to propagate a set of Nx weighted particles
{x (i)t ,w (i)t }Nxi=1 (samples of the state) along the time dimension t , by propagating them
from time t − 1 to the next time step t by drawing samples from f (· | x (i)t−1) (3.2a), and
adapt them to the measurements according to д(yt | x (i)t) (3.2b). An important step in
the implementation is also the resampling step, where (loosely speaking) particles
with small weights are discarded and particles with large weights are duplicated. This
is summarized in Algorithm 1, the so-called bootstrap particle �lter.2

5.2.1 Resampling

The resampling step ensures that computational resources are spent in the most
interesting parts of the state-space, and that a situation where all but one particle
eventually have zero weights is avoided. This can be seen as deciding a genealogy of
the particles, i.e., how many descendants a certain particle will have, and which of

2The connection between Algorithm 1 and the straps aimed for helping when putting on a pair of
leather boots may seem rather weak. The history involves the saying ‘pull oneself up by one’s bootstraps’
(often, but probably falsely, attributed to the �ctional character Baron Munchausen by Raspe 1786), which is
the background for the naming of the statistical idea ‘bootstrap’ (Efron 1979), which has a close connection
to the resampling.

41

Chapter 5. Monte Carlo methods for machine learning

the particle branches that will become extinct. (The genealogy analogue can be par-
ticularly helpful when considering the inference problem of the entire sequence x1:T ;
clearly, xt is correlated with xt−1). To obtain a consistent algorithm, the resampling
scheme has to be constructed such that

E
[
of descendants to x (i)t−1

]
=

Nx∑
j=1
P

(
a(j)t = i

)
∝ w (i)t−1. (5.2)

There are alternatives when it comes to designing a resampling algorithm that ful-
�lls (5.2), see, e.g., Douc and Cappé (2005) and Murray, Lee, et al. (2015) for overviews.
It is also possible to design resampling schemes where the duplicated particles are not
assigned unit weights (as implicitly done in Algorithm 1) see, Paige et al. (2014) for an
example. This is also the underlying key observation for the novel method proposed
in Paper VI.

In all non-trivial cases the resampling step is a stochastic procedure, which unfor-
tunately also adds to the variance of the �nal estimates obtained from the particle
�lter. It is therefore common to perform the resampling only when needed, which
is usually determined by monitoring the so-called e�ective sample size (ESS, Kong
et al. 1994)

(∑Nx
i=1(w (i)/

∑Nx
j=1w

(j))2
)−1

, taking values between 1 and Nx , and perform
resampling only when the ESS falls below a certain threshold, e.g, Nx/2. If an adaptive
resampling scheme is used, a slight modi�cation of the weight update in Algorithm 1
is needed.

5.2.2 Positive and unbiased estimates of p(y1:T | ϑ)
The particle �lter was �rst used as a tool for solving the �ltering problem in nonlinear
state-space models, but it can also be used to estimate the likelihood p(y1:T | ϑ) (3.7).
The estimate is created from the weights w (i)t in Algorithm 1 as

p̂Nx (y1:T | ϑ) =
T∏
t=1

(
1
Nx

Nx∑
i=1

w (i)t

)
, (5.3)

where we emphasize in the notation that it is a Monte Carlo-based estimate based on
Nx particles. It can be shown (see, e.g., Appendix A) that (5.3) is an unbiased estimate
of the likelihood, i.e.,

E
[
p̂Nx (y1:T | ϑ)

]
= p(y1:T | ϑ), (5.4)

This claim is not asymptotic in Nx , but holds for any �nite number Nx ≥ 1 of particles.
The expectation in (5.4) is over realizations of Algorithm 1 itself, i.e., the randomness
involved in the propagation and resampling step. It further holds (as can be seen by
inspection of (5.3)) that p̂(y1:T | ϑ) ≥ 0. This can, as we will see, be used in algorithms
for learning the model parameters ϑ . We will also mention a few more theoretical
properties about Algorithm 1 later in Section 5.4.4.

42

5.3. The Markov chain Monte Carlo sampler

Algorithm 2: Markov chain Monte Carlo sampler
Input: A transition kernel K with stationary distribution π .
Output: Unweighted samples {θ (k)}Kk=0 from (in the limit K →∞) π .

1 Draw θ (0) arbitrarily
2 for k = 1 to K do
3 Draw θ (k) from K (

θ | θ (k−1))
4 end

5.3 The Markov chain Monte Carlo sampler

Let us now leave the particle �lter and the state-space model aside, and return to the
general problem we formulated in Section 5.1. That is, we are interested in drawing
conclusions about some analytically intractable distribution π (θ), typically a posterior
p(θ |y). If we can not draw samples from π directly, but instead evaluate π point
wise (i.e., query the value of π (θ) for any θ , at least up to proportionality), we can
use the Markov chain Monte Carlo (MCMC) methodology to generate samples from
π . The MCMC sampler is an algorithm that stochastically explores the θ -space, and
thereby de�nes a stochastic process (a Markov chain) in that space. We denote the
realization of the stochastic process, i.e., the outcome of one run of the algorithm,
as {θ (0),θ (1), . . . ,θ (K)}. An MCMC sampler is designed such that {θ (0),θ (1), . . . ,θ (K)}
becomes an (unweighted) particle approximation of π in the limit3 as K →∞.

We brie�y review the essential ideas of how to construct an MCMC sampler.
A more complete treatment of the topic is found in, e.g., Tierney (1994), Andrieu,
Freitas, et al. (2003), Robert and Casella (2004, Chapter 6) and Liang et al. (2010).
The key ingredient in an MCMC algorithm is a transition kernel K (· | ·) with a
certain stationary distribution. A transition kernel is any function K (· | ·) (where
both arguments live in θ -space) such that K (· | θ ′) is a probability density for every
θ ′. A stationary distribution π of K is such that K (· | π) = π (·), where we use the
shorthand notation K (· | π) ,

∫
K (· | θ ′)π (θ ′)dθ ′. If K ful�lls certain technical

conditions, it can be applied in Algorithm 2 to produce samples from π in the limit
as K → ∞. The conditions are essentially that K should not admit periodic cycles
and that for any θ and θ ′, there should exist an n such that Kn (θ | θ ′) > 0 (where Kn

denotes an n-fold iterative application of K),
The transition kernel K in MCMC is often de�ned by an algorithm itself, rather

than a closed form expression. Many di�erent methods for designing MCMC kernels
exist, such as slice sampling (Neal 2003), Hamiltonian Monte Carlo (Duane et al. 1987;
Neal 2011), the bouncy particle sampler (Bouchard-Côté et al. 2017; Peters and With
2012), etc. We will now introduce the perhaps two most basic and standard algorithms
for designing K , Metropolis-Hastings and Gibbs sampling.

3The asymptotic behavior as K → ∞ is (if the sampler ful�lls certain conditions) independent of
the initialization θ (0), but in practice a so-called burn-in period of some length Kb typically has to be
considered, and the corresponding �rst Kb samples are discarded. For the performance in practice, it can
be crucial to consider and analyze this transient behavior of the MCMC sampler. We will, however, not
re�ect any more on this, but refer to, e.g., Chapter 12 of Robert and Casella (2004).

43

Chapter 5. Monte Carlo methods for machine learning

Algorithm 3: Metropolis-Hastings transition kernel K
Input: θ (k−1)

Output: θ (k)
1 Draw θ ′ from q(θ | θ (k−1)) A candidate for θ (k)

2 Compute α = min
(

γ (θ ′)
γ (θ (k−1))

q(θ (k−1) | θ ′)
q(θ ′ | θ (k−1))

)
The acceptance probability

3 Set θ (k) =
{
θ ′ with probability α
θ (k−1) with probability 1 − α Decide if candidate is accepted or not

Algorithm 4: Gibbs transition kernel K
Input: θ (k−1)

Output: θ (k)

1 Draw θ (k)1 from p(θ1 | θ (k−1)
2)

2 Draw θ (k)2 from p(θ2 | θ (k)1)

5.3.1 The Metropolis-Hastings kernel

The Metropolis-Hastings algorithm (named4 after Nicholas Metropolis, Rosenbluth,
et al. 1953 and Wilfred K. Hastings 1970) is a popular plug-in kernel, only requiring
that π can be evaluated point wise up to proportionality as π (θ) = γ (θ)/Z . A proposal
density q(· | θ (k−1)) is also needed, from which samples of θ can be drawn, and is
either symmetric (q(θ | θ ′) = q(θ ′ | θ)) or can be evaluated point wise. The Metropolis-
Hastings algorithm is outlined by Algorithm 3. The idea is to sample a candidate
θ ′ from the proposal, and always (with an adjustment to account for bias caused
by the proposal) accept the candidate as θ (k) if π (θ ′) ≥ π (θ (k−1)). However, also if
π (θ ′) < π (θ (k−1)), the candidate may be accepted with a certain acceptance probability,
designed in a way to create the correct stationary distribution. If the support of the
proposal q(· | θ (k−1)) covers the support of π , it can be proved (e.g., Robert and Casella
2004, Theorem 7.2) that π is the stationary distribution of Algorithm 3, and it can be
used in the MCMC sampler (Algorithm 2) to generate samples from π .

5.3.2 The Gibbs kernel

The Metropolis-Hastings algorithm has an element of rejection sampling, e�ectively a
trial and error approach where a large fraction of the computational resources may be
spent on computing γ (θ ′) for proposals that are never accepted. The Gibbs algorithm
(named after Josiah Willard Gibbs, coined by S. Geman and D. Geman 1984) is an
alternative kernel that does not su�er from this drawback, but produces samples that
are always accepted (but may on the other hand su�er from a high autocorrelation).
The Gibbs kernel requires that θ can be partitioned as θ = {θ1,θ2, . . . ,θM } (preferably
with low cross-dependence between the partitions) so that it is possible to draw
samples from p(θm | θ \ θm) = π (θ)∫

π (θ)dθm for every partitionm. Then, this sampling is

4It should, however, be remembered that the original article has 5 authors, and Metropolis happened to
be the �rst one in the alphabetical ordering.

44

5.4. The Seqential Monte Carlo sampler

iterated over allm, as summarized by Algorithm 4 for the case M = 2. The analysis
for the Gibbs sampler is, however, rather intricate (see, e.g., Robert and Casella 2004,
Chapter 9 and 10 and references therein), but the resulting Markov chain can under
certain conditions be proven to ful�ll the necessary conditions for producing samples
of π when used in the MCMC sampler (Algorithm 2) as K →∞.

It is also possible to construct combinations of the Metropolis-Hastings and Gibbs
algorithm (Liang et al. 2010, Section 3.4; Müller 1991 and Robert and Casella 2004,
Section 10.3), although care must be taken in order not to change the stationary
distribution (Dyk and Jiao 2014).

5.3.3 Convergence

The convergence of Algorithm 2 in the asymptotic case K →∞ follows, under some
additional assumptions on K , a central limit theorem. For a measurable test function
h(θ), the di�erence between the true (and after-sought) expectation E [h(θ)] and the
sample-based estimate of it hK ({θ (k)}Kk=1) = 1

K
∑K

k=1 h(θ (k)) is

√
K

(
hK ({θ (k)}Kk=1) − E [h(θ)]

)
d→ N (

0,σ 2
MCMC(h,π)

)
(5.5)

where σ 2
MCMC(h) is a bounded function of h and π (Tierney 1994, Theorem 4 and 5;

Robert and Casella 2004, Theorem 6.65 and 6.67).

5.4 The Sequential Monte Carlo sampler

As discussed in Section 3.4.1, the state inference in a state-space model is a particular
learning problem. Similarly, the particle �lter can be seen as a particular instance of
the more general sequential Monte Carlo (SMC) method. SMC can also be formulated
for other types of models, such as graphical models (Naesseth, Lindsten, and Schön
2014).

The most generic formulation of SMC can be found in the Feynman-Kac formalism
(Del Moral 2004; Del Moral and Doucet 2014). Yet another instance of SMC is the SMC
sampler (Del Moral, Doucet, and Jasra 2006), here presented as Algorithm 5. The SMC
sampler is formulated for the same problem as the MCMC sampler, namely to sample
from a static density π which only can be evaluated point wise up to proportionality.

The particle �lter targets the �ltering distributions (3.6) sequentially5. For the
SMC sampler, only a static distribution π is typically of user interest, but a sequence
of probability distributions {π0,π1, . . . ,πP } is introduced as an intermediate tool, and
the particles are then propagated along this sequence. It is assumed that all πp can be
evaluated up to proportionality, i.e., πp (θ) = γp (θ)/Zp , where γp (θ) can be computed
for any θ .

5Hence the name sequential Monte Carlo.

45

Chapter 5. Monte Carlo methods for machine learning

Algorithm 5: Sequential Monte Carlo sampler
Input: Sequence of densities {π0,π1, . . . ,πP } on the form πp (θ) = γp (θ)/Zp ,

with γp (θ) possible to evaluate point wise.
Output: Weighted samples {θ (i)p ,w (i)p }Nθi=1 from πp (θ), for each p = 0, . . . , P .

1 Draw θ (i)0 ∼ γ0(θ0) and set w (i)0 = 1
2 for p = 1 to P do

3 Draw a(i)p with P
(
a(i)p = j

)
∝ w (j)p−1 resampling, {θa

(i)
p

p−1 , 1} ≈ πp−1

4 Draw θ (i)p from Kp (θp | θa
(i)
p

p−1) propagation, {θ (i)p , 1} ≈ Kp (· | πp−1)

5 Set w (i)p =Wp (θ (i)p ,θ
a(i)p
p−1) weighting, {θ (i)p , w (i)p } ≈ πp

6 end
All statements with (i) are for i = 1, . . . , Nθ , and Kp can be taken as Algorithm 3.

5.4.1 Connection to particle filters

We can retrieve the bootstrap particle �lter (Algorithm 1) from the SMC sampler
(Algorithm 5) by letting θ = x , P = T , πp (θp) = p(xt |y1:t), Wp (θp ,θp−1) = д(yt | xt)
and Kp (θp ,θp−1) = f (xt | xt−1). More advanced versions of the particle �lter are
also possible to formulate, where f (xt | xt−1) is replaced by a more general proposal
density, and the weighting is adjusted accordingly (see, e.g., Doucet and Johansen
2011 for an overview). The aim of such a construction is typically to decrease the
variance of the particle weights and the �nal estimates.

5.4.2 Constructing a sequence {πp}Pp=0

The particle �lter sequentially targets the densities p(xt |y1:t ,ϑ). The SMC sampler,
on the other hand, targets a static density π . Therefore, we have to construct an
arti�cial sequence of distributions {πp }Pp=0 (with π0 easy to sample from and πP = π)
along which the particles can be propagated. Preferably, the distance between any
consecutive πp−1 and πp should be ‘small’ in order to guide the particles well towards
πP = π . This idea resembles simulated annealing (also introduced by Metropolis,
Rosenbluth, et al. 1953) and continuation methods (Richter and DeCarlo 1983).

If π (θ) is a posterior, i.e., ∝ p(θ)p(y | θ), one option is to construct {πp }Pp=0 as the
likelihood-tempered sequence

πp ∝ p(θ)p(y | θ)p/P . (5.6)

Another alternative is the data-tempered sequence

πp ∝ p(θ |yB0:p), (5.7)

where {Bp }Pp=0 is a sequence with batches of the data y, such that B0 is empty and
B0:P contains all data y. A third option is proposed in Paper V.

46

5.4. The Seqential Monte Carlo sampler

5.4.3 Propagating the particles

For the SMC sampler, there is no underlying state-space model as for the particle
�lter that can be used to propagate or weight the particles. Therefore,Wp and Kp has
to be chosen by the user. Di�erent alternatives are possible (Del Moral, Doucet, and
Jasra 2006, Section 3.3), but one choice is

Kp (· | ·)Metropolis-Hastings kernel with stationary distribution πp−1, (5.8a)

Wp (θp ,θp−1) =
πp (θp−1)
πp−1(θp−1) , (5.8b)

which can be shown to yield a consistent algorithm. The SMC sampler with the
choices (5.6-5.8) is a rather general scheme, which can be applied to a broad range of
problems. One example is found in Paper VII and another in Del Moral, Doucet, and
Jasra (2012a). We will later also review how it can be applied to the parameters ϑ in
the state-space model, resulting in the SMC2 algorithm (Chopin, Jacob, et al. 2013).

5.4.4 Convergence

We have already discussed an important property of the particle �lter (Algorithm 1),
namely that p̂Nx (y1:T | ϑ) is unbiased for any �nite Nx ≥ 1. In a similar manner, it is
possible to construct an unbiased estimator also for the normalizing constants Zp in
the SMC sampler. Results concerning the long-term stability of SMC, and in particular
particle �lters, also exist (Douc, Moulines, et al. 2014; Whiteley 2013).

Akin to the MCMC case, results are available also for the asymptotic case Nθ →∞.
As for MCMC (Section 5.4.4), we can for every measurable test function h(θ) establish
(under some technical assumptions) the central limit theorem for Algorithm 5

√
Nθ

(
hNθ ({θ (i)p ,w (i)p }Nθi=1) − E [h(θ)]

)
d→ N (

0,σ 2
SMC(h,π)

)
, (5.9)

when Nθ →∞, where σ 2
SMC(h) is a bounded function of h and π (Del Moral, Doucet,

and Jasra 2006, Proposition 2). This result is applicable to any SMC algorithm (Chopin
2004; Del Moral 2004), and in particular also for the particle �lter in Algorithm 1. The
case when resampling is performed only adaptively (as discussed in Section 5.2.1; also
applicable to Algorithm 5) is more intricate to analyze, but similar results have been
presented by Del Moral, Doucet, and Jasra (2012b).

To summarize, the bottom line is that the SMC sampler has a central limit theorem
on the same form as MCMC.

47

Chapter 5. Monte Carlo methods for machine learning

π (θ)

θ

π (θ)

θ

π (θ)

θ
· · ·

k = 1 k = 2 k = K
∑

π (θ)

θ

(a) The MCMC idea: propagate a single sample (red dot) through the landscape of π , such that its
random trace (summarized in the rightmost plot) eventually becomes samples of the distribution
of interest π . That is, the chain has to ‘visit’ areas where π is large more often than areas where π
is small. It will most likely have visited every mode of π as K →∞ , but not necessarily within a
reasonable �nite time (i.e., before the user’s computational budget is consumed).

π0(θ)

θ

π1(θ)

θ

πP (θ) , π (θ)

θ
· · ·

p = 1 p = 2 p = P

(b) The SMC idea: propagate a set of Nx (Nx = 6 in this illustration) particles (samples, red
dots) through a sequence of P distributions π0, . . . πP , to eventually end up with samples from the
distribution of interest π (·) , πP (·). By making a ‘smooth’ transition from the easy-to-sample
distribution π0 to the distribution of interest π the hope is that the samples represent π more
e�ciently than in the MCMC setting (by exploring di�erent modes in parallel, etc.).

Figure 5.3: The key concept of the MCMC (a) and SMC samplers (b). The idea of MCMC is to
make a (more or less informed) stochastic walk with a single particle in θ -space such that the walk
will be proportional to the density π . The SMC idea is to propagate a whole bunch of particles
through an evolving landscape (cf. how the particle �lter solves the state inference problem), which
after a pre-de�ned number of iterations P ends up in π .

5.5 Markov Chain or Sequential Monte Carlo?

MCMC has been around since the 1950’s, whereas SMC is younger than the author
of this thesis6. With that perspective, it is perhaps not surprising that the MCMC
sampler can essentially be seen as the special case of the SMC sampler with πp = π
and Nθ = 1. For this reason, we may also expect (as con�rmed by Svensson and Schön
2016 for a particular case) that the SMC sampler requires more user e�ort, in terms of
implementation time. It is also worth highlighting that the number of iterations K
in the MCMC sampler (Algorithm 2) does not have to be speci�ed beforehand, but
the algorithm can be run until the computational budget is consumed, a so-called
anytime algorithm. For the SMC sampler (Algorithm 5), both Nθ and P have to be
speci�ed before beforehand, and is thereby not an anytime algorithm.

The di�erent underlying ideas on how the samples are drawn are illustrated in
Figure 5.3. Any attempt to claim superiority of one approach in general is probably
fruitless. However, a rudimentary knowledge about both alternatives can probably
help in making wise choices: the historical timeline might have given MCMC an
advantage.

6Who would like to claim that he is rather young.

48

5.6. Monte Carlo for state-space model parameters ϑ

5.6 Monte Carlo for state-space model parameters ϑ

The particle �lter (Section 5.2) with its various extensions and generalizations provides
an often unbeaten Monte Carlo solution for inferring the states xt in the state-space
model (3.2). (MCMC may, however, be bene�cial for some particular problem settings,
such as the case in Svensson, Schön, et al. 2015.) For the problem of �nding model
parameters ϑ , on the other hand, the particle �lter cannot provide a solution on its
own7. However, the particle �lter can be a very useful building block of an MCMC or
SMC sampler to construct well-performing and theoretically consistent algorithms
for inferring the posterior p(ϑ |y1:T), as well as the maximum likelihood estimate ϑ̂ .

5.6.1 MCMC for nonlinear state-space models: PMCMC

For inferring ϑ in linear state-space models (3.3), MCMC can be used essentially
out of the box. The use of a Metropolis-Hastings sampler is shown in Ninness and
Henriksen (2010) (although formulated for transfer functions; a state-space model
formulation is found in Schön, Lindsten, et al. 2015, Example 4), and the Gibbs sampler
in Wills et al. 2012. In both cases the Kalman �lter (and some extensions of it)
provides the required expressions for p(ϑ |y1:T) (for the Metropolis-Hastings solution)
and p(x1:T | ϑ ,y1:T) (for the Gibbs solution). In the Gibbs solution we also need an
expression for p(ϑ | x1:T ,y1:T), which is (if the conjugate prior is used) provided by
the matrix normal inverse Wishart distribution (Appendix B).

The two cases in the previous paragraph are special cases in that the required ex-
pressions are available analytically. For the general nonlinear state-space model (3.2),
neither the likelihood p(y1:T | ϑ) nor the conditional distribution p(x1:T | ϑ ,y1:T) are
available in closed form, nor can they be computed exactly. It turns out that the
particle �lter provides a good approach for approximating these distributions, in the
combined particle-�lter-within-MCMC framework8, PMCMC (Andrieu, Doucet, et al.
2010).

Pseudo-marginal Metropolis-Hastings

What happens to the Metropolis-Hastings sampler (Algorithm 3) if π (θ) cannot be
evaluated exactly, but only stochastically estimated π̂ (θ)? A naïve approach would
perhaps be to pretend that π̂ (θ) is exact (i.e., contains no stochastic element) and
apply Algorithm 3. (Another attempt could be to average over a few realizations of
π̂ (θ) for every θ , and use that average when computing the acceptance probability
α .) It turns out (Andrieu and Roberts 2009), somewhat surprisingly, that if π̂ (θ) is
positive and unbiased, i.e., E [π̂ (θ)] = π (θ) and π̂ (θ) > 0, using π̂ (θ) as if it were exact
(the approach suggested above) creates a consistent algorithm, in the sense that the
stationary distribution of Algorithm 3 remains unchanged!

7If the unknown parameters have a low dimensionality, they can possibly be considered as part of the
state xt (and modeled to be slowly time-varying), and the problem is thereby transferred to a vanilla state
inference setting. This solution highlights the (mild) arbitrariness of splitting unknown parameters θ in
the state-space model into model parameters ϑ and states xt .

8The original meaning of PMCMC is simply ‘particle Markov chain Monte Carlo’, but ‘particle-�lter-
within-MCMC’ is a more explanatory interpretation.

49

Chapter 5. Monte Carlo methods for machine learning

This quite remarkable fact can be proven by handling the randomness of π̂ (θ)
explicitly by introducing another random variable v , and considering π̂ (θ) to be
deterministic when conditioned on v . Then, it is possible to show that the Metropolis-
Hastings sampler targets an extended distribution p(θ ,v), and that π (θ) can be ob-
tained by integrating v out. Thus the name of the approach, pseudo-marginal.

Particle marginal Metropolis-Hastings

Following the pseudo-marginal Metropolis-Hastings approach with π̂ (θ) ∝
p̂Nx (y1:T | ϑ)p(ϑ) from (5.3), the particle marginal Metropolis-Hastings approach
is obtained (Andrieu, Doucet, et al. 2010, Section 2.4.2). Although not a�ecting
the asymptotical properties, the choice of the number of particles Nx ≥ 1 and the
proposal density q(· | ·) are crucial for its practical performance. Some discussion
on how to choose Nx can be found in Andrieu, Doucet, et al. (2010), and some
design methods for q can be found in Dahlin, Lindsten, et al. (2015). Two beginner’s
introduction to particle Metropolis-Hastings are provided by Dahlin and Schön (2016)
and Schön, Svensson, et al. (2018).

Particle Gibbs

It is also possible to construct a Gibbs sampler, Algorithm 4, for state-space model
parameters ϑ . Such a construction is possible by taking θ in Algorithm 4 as {x1:T ,ϑ },
i.e., iteratively sample x (k)1:T conditional on the model parameters ϑ (k−1), and the model
parameters ϑ (k) conditional on the state x (k)1:T . Thus, we need to draw samples from
p(x1:T | ϑ (k)) as well as p(ϑ | x (k)1:T).

For certain state-space model structures (e.g., the linear model in Wills et al. 2012,
the models in Section 7 in Lindsten, Jordan, et al. 2014 and the model in Paper I),
p(ϑ | x (k)1:T) is available in closed form and possible to sample from. If that is not the
case, other sampling strategies can be used, see, e.g., Example 8 of Schön, Lindsten,
et al. (2015).

To sample approximately from p(x1:T | ϑ (k)), a particle �lter can be used: the
approximation is due to the �nite number of particles Nx in the particle �lter. However,
with a slightly more involved Gibbs sampling scheme it is possible to draw MCMC
samples of x1:T with a kernel (constructed using the so-called conditional particle �lter)
with exactly p(x1:T | ϑ (k)) as its stationary distribution. A particularly well-performing
conditional particle �lter construction has proven to be the one introduced by Lindsten,
Jordan, et al. (2014), the conditional particle �lter with ancestor sampling. We will not
detail this construction any further here, but we refer to Andrieu, Doucet, et al. (2010)
and Lindsten, Jordan, et al. (2014) for all technical details on this so-called particle
Gibbs construction.

5.6.2 Particle Gibbs for maximum likelihood estimation

If the maximum likelihood estimate ϑ̂ (rather than the posterior p(ϑ |y1:T)) is of in-
terest, Lindsten (2013) and Paper III presents a combination of particle Gibbs and a
stochastic approximation (Robbins and Monro 1951) version of the expectation maxi-
mization (EM) algorithm (Dempster et al. 1977). The construction makes use of particle

50

5.7. Summary of the chapter

Gibbs only for the state inference problem, and uses the stochastic approximation EM
framework (Delyon et al. 1999; Kuhn and Lavielle 2004) for the maximum likelihood
estimation of ϑ . The use of EM for maximum likelihood estimation of ϑ in nonlinear
state-space models has been around since at least Ghahramani and Roweis (1998), and
the combination of SMC and EM for this purpose has been proposed by Cappé et al.
(2005), Olsson et al. (2008), and Schön, Wills, et al. (2011). The combination of particle
Gibbs and stochastic approximation EM, as proposed by Lindsten (2013), improves
the convergence properties and reduces the computational load compared to previous
algorithms. A more detailed introduction is given in Paper III, and Papers I and IV
both use the method for two particular model structures.

5.6.3 SMC for state-space model parameters: SMC2

In the same spirit as the MCMC methodology can be used for sampling the posterior
p(ϑ |y1:T) of the state-space model parameters, so can the SMC sampler. The SMC
sampler can be applied directly to a linear state-space model, akin to the MCMC
sampler case, since p(y1:T | ϑ) is explicitly available from the Kalman �lter. A natural
way to construct a sequence of densities is the data-tempered alternative P = T ,
π0(ϑ) = p(ϑ), π1(ϑ) = p(ϑ |y1), . . . , πT (ϑ) = p(ϑ |y1:T). An alternative construction,
for the special case when the state-space model has very little measurement noise, is
proposed in Paper V. For the general case with a nonlinear state-space model, the
particle �lter is required to approximately evaluate p(y1:t | ϑ) as p̂Nx (y1:t | ϑ), yielding
the SMC2 algorithm9 (Chopin, Jacob, et al. 2013; Fulop and Li 2013). For propagating the
particles in step 4 in Algorithm 5, the particle Metropolis-Hastings kernel (Algorithm 3)
can be used. Once again the unbiasedness E

[
p̂Nx (y1:t | ϑ)

]
= p(y1:t | ϑ) is key to

obtaining a consistent algorithm; the details are found in Section 3.1 in Chopin, Jacob,
et al. (2013).

This somewhat involved construction leaves the user with several design choices,
for instance the trade-o� between the number of particles Nx in the particle �lters
and the number of particles Nϑ at the SMC sampler level. Chopin, Ridgway, et al.
(2015) have suggested how to automatically adapt these numbers.

SMC2 is not to be confused with nested SMC (Naesseth, Lindsten, and Schön 2015),
which is a general framework for using SMC to construct proposal densities within
an SMC algorithm.

5.7 Summary of the chapter

This chapter has introduced some Monte Carlo ideas useful for machine learning,
and we have in particular considered the particle �lter (for state inference in the
state-space model) as well as the MCMC and SMC samplers (for general problems).
We have also introduced the combinations PMCMC and SMC2, both primarily aimed
for learning model parameters ϑ in state-space models.

9The naming should be read as ‘SMC square’, i.e., SMC to the power of two; a particle �lter (an SMC
algorithm) is used within an SMC sampler (another SMC algorithm).

51

Chapter 5. Monte Carlo methods for machine learning

52

6
Conclusions and future work

“Wait, what if these quote marks are inside out,
so everything in the rest of the document is the
quotation and this part isn’t? Duuuuude.”
Randall Munroe

This chapter contains some overall conclusions of the research presented in Paper I–
VII. In addition to what is written in each paper, this chapter also has an outlook

into further possible research directions.

6.1 Conclusions

The contributions of this thesis include applications of state-of-the art learning meth-
ods to non-trivial models, new versions of learning methods themselves, as well as a
contribution to model validation methodology. At the heart of all methods lies the use
of Monte Carlo approximations to handle otherwise intractable integrals, and often
the sequential Monte Carlo method in particular. The results are often promising, but
the existence of this thesis suggests that:

• The work is most likely not done yet, but there are probably more problems
where (sequential) Monte Carlo can make a di�erence than the ones included
in this thesis. With increasing access to computational power, together with a
raised interest for the Bayesian approach, there are probably plenty of opportu-
nities.

• Applications and tweaking of Monte Carlo, and sequential Monte Carlo in
particular, is apparently complicated enough to be topic for a doctoral thesis.
There is probably work to be done in packaging and providing sequential Monte
Carlo as an o�-the-shelf method to practitioners not having a PhD degree on
the topic.

53

Chapter 6. Conclusions and future work

6.2 Future work

As suggested above, sequential Monte Carlo is potentially useful for a wider range
of situations than those where it is used today. Its use is, however, probably limited
by the relative complexity of implementing it. A natural research direction would
therefore be to provide a ‘user interface’ to sequential Monte Carlo, accessible for an
application domain expert not knowledgeable within Monte Carlo methods. Indeed,
such initiatives already exist (I have partly been funded by such a project: ASSEMBLE,
Murray and Schön 2018), but the work is nowhere close to be �nished.

Parts of this thesis are focused around Bayesian learning in somewhat compli-
cated state-space models. However, to the best of my knowledge, little research has
been done on how to interpret and e�ciently transform the posterior p(ϑ |y) into a
‘posterior’ for the dynamical behavior (such as the input-output relationship). Such
results would be of particular interest when the parameters ϑ themselves do not bear
a physical meaning (such as in Paper I).

A common argument for the Bayesian approach is the quanti�cation of the present
uncertainty provided by the posterior distribution. It is, however, important to bear
in mind that the posterior distribution, and thereby also the uncertainty, is conditional
on the choice of model. (This conditioning is not only a formality, but critical for
the results obtained.) This re�ection was part of the inspiration behind Paper II, but
several (fundamental) questions still remain: Are there more aspects of a model that
should (and can) be validated than the one proposed in Paper II? Is it possible to judge
the severity of model misspeci�cations from a posterior distribution? As a tough and
applied question, consider decision making in self-driving cars based on posterior
uncertainties from a ‘Bayesian neural network’ (whatever that would mean): what
aspects of the data/reality have to be present in the model (the neural network), in
order to guarantee that the posterior uncertainty represents something meaningful?

54

A
The unbiased estimator p̂Nx(y1:T)

“Policy should always be rooted
in unbiased science.”
Christine Todd Whitman

This chapter contains a proof of the fact that (5.3),

p̂Nx (y1:T | ϑ) =
T∏
t=1

(
1
Nx

Nx∑
i=1

w (i)t

)
, (A.1)

with w (i)t generated by the bootstrap particle �lter Algorithm 1 in Chapter 5, is an
unbiased estimator of the likelihood p(y1:T | ϑ) (3.7) of a state-space model with model
parameters ϑ , for any �nite Nx ≥ 1. With unbiasedness, we mean E

[
p̂Nx (y1:T | ϑ)

]
=

p(y1:T | ϑ), where the expectation is over the randomness in the particle �lter algorithm
itself. This result was �rst presented by Del Moral (2004, Section 7.4.2) and is important
to many parameter learning strategies, such as particle marginal Metropolis-Hastings
(Section 5.6.1) and Paper VI. The proof here follows closely that of Pitt et al. (2012),
which is written for the more general case of the auxiliary particle �lter.

In the following, ϑ will be suppressed in the notation, since all expressions are
conditioned on ϑ . We start by introducing the estimator1

p̂Nx (yt |y1:t−1) = 1
Nx

Nx∑
i=1

w (i)t , (A.2)

which has the natural property that
∏T

t=1 p̂Nx (yt |y1:t−1) = p̂Nx (y1:T). We also de�ne
p̂Nx (yt−h:t |y1:t−h−1) naturally as

∏t
t ′=t−h p̂Nx (yt ′ |y1:t ′−1) for h ≥ 0.

The structure of the proof is as follows: First, in Lemma 1, it will be proved that

E
[
p̂Nx (yt |y1:t−1) | {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

Nx∑
i=1

w (i)t−1∑Nx
j=1w

(j)
t−1

p(yt | x (i)t−1), (A.3)

1Note the somewhat subtle notation: p denotes probability densities, whereas p̂Nx denotes deterministic
functions (which we distinguish by their di�erent arguments) of quantities stochastically generated by the
particle �lter. The point with the proof is to show that the p̂Nx -function (A.1) is an unbiased estimator of
the corresponding p .

55

Appendix A. The unbiased estimator p̂Nx (y1:T)

i.e., p̂Nx (yt |y1:t−1) (the contribution to (A.1) from iteration t of the particle �lter) is
unbiased, if conditioned on a realization of particles from the previous iteration at time
t − 1. Then, in Lemma 2, we prove that it also holds for h ≥ 1 sequential iterations of
the particle �lter, once again conditioned on a realization of particles at time t −h − 1.
Finally, by letting h = T , we conclude in Theorem 1 that if {x (i)0 }Nxi=1 are unbiased
samples from p(x0), then must p̂Nx (y1:T) (A.1) also be unbiased.
Lemma 1. With the de�nition of p̂Nx (yt |y1:t−1) in (A.2), it holds that

E
[
p̂Nx (yt |y1:t−1) | {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

Nx∑
i=1

w (i)t−1∑Nx
j=1w

(j)
t−1

p(yt | x (i)t−1). (A.4)

Proof.

E
[
w (j)t | {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

= E
[
E

[
w (j)t | a(j)t , {x (i)t−1,w

(i)
t−1}Nxi=1

]
| {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

= Ea(j)t

[
E
x (j)t ∼f (x (j)t | x

a(j)t
t−1)

[
д(yt | x (j)t) | a(j)t , {x (i)t−1,w

(i)
t−1}Nxi=1

]
| {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

= Ea(j)t

[
p(yt | xa

(j)
t

t−1) | {x (i)t−1,w
(i)
t−1}Nxi=1

]
=

Nx∑
k=1

p(a(j)t = k | {x (i)t−1,w
(i)
t−1}Nxi=1)p(yt | x (k)t−1).

(A.5)

Then,

E

[
Nx∑
j=1

w (j)t | {x (i)t−1,w
(i)
t−1}Nxi=1

]
=

Nx∑
j=1
E

[
w (j)t | {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

/
(A.5)

/
=

=

Nx∑
k=1

(
Nx∑
j=1

p(a(j)t = k | {x (i)t−1,w
(i)
t−1}Nxi=1)

)
p(yt | x (k)t−1) =

=
/

(5.2)
/
= Nx

Nx∑
k=1

w (k)t−1∑Nx
i=1w

(i)
t−1

p(yt | x (k)t−1), (A.6)

and the lemma follows. �

We have now proved that given a realization of weighted particles {x (i)t−1,w
(i)
t−1}Nxi=1

representing p(xt−1 |yt−1), the estimator p̂Nx (yt |y1:t−1) (A.2), i.e., the contribution
to (A.1) from one single iteration of the particle �lter for the following time t , is unbi-
ased. We now present the next lemma, concerning the corresponding unbiasedness
of p̂Nx (yt−h:t |y1:t−h−1).
Lemma 2. With the de�nitions of p̂Nx (yt |y1:t−1) and p̂Nx (yt−h:t |y1:t−h−1) from above,
it holds that

E
[
p̂Nx (yt−h:t |y1:t−h−1) | {x (i)t−h−1,w

(i)
t−h−1}Nxi=1

]
=

Nx∑
k=1

w (k)t−h−1∑Nx
i=1w

(i)
t−h−1

p(yt−h:t | x (k)t−h−1).

(A.7)

56

Proof. The proof is by induction. For h = 0, (A.7) is true by Lemma 1. We now assume
that (A.7) holds also for an arbitrary h, and show that it implies that (A.7) also holds
for h + 1. For h + 1, the left hand side of (A.7) is

E
[
p̂Nx (yt−h−1:t |y1:t−h−2) | {x (i)t−h−2,w

(i)
t−h−2}

Nx
i=1

]
=

= E
[
p̂Nx (yt−h:t |y1:t−h−1)p̂Nx (yt−h−1 |y1:t−h−2) | {x (i)t−h−2,w

(i)
t−h−2}

Nx
i=1

]
=

= E
[
E

[
p̂Nx (yt−h:t |y1:t−h−1) | {x (i)t−h−1,w

(i)
t−h−1}

Nx
i=1

]
×

p̂Nx (yt−h−1 |y1:t−h−2) | {x (i)t−h−2,w
(i)
t−h−2}

Nx
i=1

]
=

=
/

Induction assumption and (A.2)
/
=

= E

Nx∑
j=1

w
(j)
t−h−1∑Nx

i=1w
(i)
t−h−1

p(yt−h:t | x (j)t−h−1)
1
Nx

Nx∑
i=1

w
(i)
t−h−1 | {x

(i)
t−h−2,w

(i)
t−h−2}

Nx
i=1

=

= E

Nx∑
j=1

w
(j)
t−h−1p(yt−h:t | x (j)t−h−1)

1
Nx
| {x (i)t−h−2,w

(i)
t−h−2}

Nx
i=1

=

=
/

akin to (A.5) : E
[
w
(j)
t−h−1p(yt−h:t | x (j)t−h−1) | {x

(i)
t−h−2,w

(i)
t−h−2}

Nx
i=1

]
=

=

Nx∑
k=1

p(a(j)t−h−1 = k | {x
(i)
t−h−2,w

(i)
t−h−2}

Nx
i=1)p(yt−h−1:t | x (k)t−h−2)

/
=

=
1
Nx

Nx∑
k=1

©«
Nx∑
j=1

p(a(j)t−h−1 = k | {x
(i)
t−h−2,w

(i)
t−h−2}

Nx
i=1)ª®¬

p(yt−h−1:t | x (k)t−h−2) =

=

Nx∑
k=1

w
(k)
t−1∑Nx

i=1w
(i)
t−1

p(yt−h−1:t | x (k)t−h−2), (A.8)

and the lemma follows. �

We have proved that the result from Lemma 1 also holds for h ≥ 1 iterations of
the particle �lter. From Lemma 2, we now have that (with t = T and h = t − 1)

E
[
p̂Nx (y1:T) | {x (i)0 ,w

(i)
0 }Nxi=1

]
=

Nx∑
k=1

w
(k)
0∑Nx

i=1w
(i)
0

p(y1:T | x (k)0) =
Nx∑
k=1

p(y1:T | x (k)0)
1
Nx
. (A.9)

If x (k)0 ∼ p(x0), we can conclude that

E

[
1
Nx

Nx∑
k=1

p(y1:T | x (k)0)
]
=

∫
p(y1:T | x0)p(x0)dx0 = p(y1:T). (A.10)

We can now formulate the following theorem (where we have re-introduced ϑ to the
notation).
Theorem 1. For the estimator p̂Nx (y1:T | ϑ), as de�ned by (A.1) and Algorithm 1 in
Chapter 5, it holds that

E
[
p̂Nx (y1:T | ϑ)

]
= p(y1:T | ϑ), (A.11)

for any �nite Nx ≥ 1.

57

Appendix A. The unbiased estimator p̂Nx (y1:T)

58

B
The matrix normal inverse

Wishart distribution in linear
regression

“The most important questions of life (...) are
indeed for the most part only problems of
probability.”
Pierre-Simon Laplace

This appendix gives an introduction to the matrix normal inverse Wishart distribu-
tion (and its scalar case normal inverse gamma). The normal inverse gamma and some
of its generalizations is often in the literature highlighted as the conjugate prior for a
data likelihood model on the form p(y | µ,σ 2) = N (

y; µ,σ 2) , where both µ and σ 2 are
unknown. In this appendix, we will derive the expressions for the slightly more in-
volved case of a linear regression model, i.e., p(y | a,σ 2) = N (

y;ax ,σ 2) , with x known
and a and σ 2 unknown, and also its multivariable extension. Similar expressions can
also be found in Quintana (1987).

B.1 The matrix normal and inverse Wishart distributions

In this section, we introduce the matrix normal inverse Wishart distribution, by �rst
considering the scalar case, and thereafter its multivariable generalization. Intro-
ductions can also be found in Dawid (1981) and Press (1982). We will assume a basic
familiarity with the Gaussian and the gamma distributions.

59

Appendix B. TheMNIW distribution in linear regression

B.1.1 The scalar case: NIG
The Gaussian distribution,

N (
y; µ,σ 2) = 1√

2πσ
exp

(
−(y − µ)

2

2σ 2

)
, (B.1)

is a probability with support on the entire real line, however with a clear preference for
values around its mean µ ± a few standard deviationsσ . Because of these easy-to-grasp
properties, in combination with its frequent appearance as a limiting distribution
(cf. the central limit theorem) and its analytically tractable form, it is ubiquitous in
statistical modeling.

A simple problem is that of inferring θ = µ when we observe data y1:T as
exchangeable observations p(yt | θ) = N

(
yt ; µ,σ 2) . If we decide to follow the

Bayesian way of reasoning, we formulate a prior p(θ). A natural choice for the prior
might be p(µ) = N (

µ;m, ς2) , and the posterior then becomes (after some algebra)

p(θ |y1:T) = N
(
µ;

(
m
ς 2 +

∑
tyt
σ 2

) (
1
ς 2 +

T
σ 2

)−1
,
(

1
ς 2 +

T
σ 2

)−1
)
, i.e., another Gaussian dis-

tribution. Thus, the Gaussian distribution is the conjugate prior for a Gaussian
likelihood model with unknown mean.

The above example is, however, somewhat unrealistic, since the mean is unknown
whereas the variance is assumed to be known! A less arti�cial situation would be
the problem of inferring θ = {µ,σ 2} jointly. However, the Gaussian distribution is
clearly not a good prior for σ 2, since the Gaussian distribution has support on the
entire real line, whereas a negative variance bears no meaning in our model. A way of
constructing a distribution with support only on the positive real line, is Proceedings
of 26th to consider the square of a standard Gaussian random variable z, or more
generally, the sum of ` such squared Gaussian random variables zj ,

q =
∑̀
j=1

z2
j , p(zj) ∼ N

(
zj ; 0, 1

)
. (B.2)

The density for q can be written as

p(q) = 1

2`/2Γ
(
`
2

) (q)`/2−1 exp
(
−q2

)
, G (q; 1, `) , (B.3)

where we use G to be the notation for the so-called gamma distribution. By its
construction (B.2), we may realize that the mean of G (q; 1, `) is `, and its variance
increases with `. The gamma distribution can be generalized to non-integer ` > 1,
and also a scale parameter λ > 0 can be introduced, as

G (q; λ, `) = λ`/2

2`/2Γ
(
`
2

) (q)`/2−1 exp
(
−qλ2

)
. (B.4)

Now, this distribution could be used as a prior for σ 2. However, to retain conjugacy
properties, we have to work with the inverse of q: if q is gamma distributed, then is

60

B.1. The matrix normal and inverse Wishart distributions

its inverse σ 2 , 1/q, distributed as

IG (
σ 2; λ, `

)
=

λ`/2

2`/2Γ
(
`
2

) (σ 2)−`/2−1 exp
(
− λ

2σ 2

)
, (B.5)

the so-called inverse gamma (IG) distribution1, with support on (0,∞), mean 2λ
`−1 and

variance increasing with λ and decreasing with `.
The inverse gamma distribution can now be combined with the Gaussian distri-

bution into the normal inverse gamma distribution (NIG) in the following way:

NIG (
µ,σ 2;m,v, λ, `

)
, N (

µ;m,vσ 2) IG (
σ 2; λ, `

) ∝
∝ (σ 2)−`/2−3/2 exp

(
−

1
v (µ −m)2 + λ

2σ 2

)
(B.6)

Note that this is a hierarchical construction on the form p(µ,σ 2) = p(µ | σ 2)p(σ 2),
and not the independent form p(µ,σ 2) = p(µ)p(σ 2). If we again assume the
observations y1:T are exchangeable and observed as p(yt | θ) = N

(
yt ; µ,σ 2) ,

now with both mean and variance unknown, the posterior becomes p(θ |y) =
NIG

(
µ,σ 2; m/v+

∑
tyt

1/v+T , 1
1/v+T , λ +

∑
ty

2
t +m

2/v − (m/v+
∑

tyt)2
1/v+T , ` +T)

)
. That is, the

posterior is just another normal inverse gamma distribution, which indeed is the
conjugate prior to N (

yt ; µ,σ 2) with unknown mean and variance.

B.1.2 Generalizing to the matrix case:MNIW
The generalization of the univariate Gaussian distribution to the multivariate Gaussian
distribution is well established. The generalization to the matrix case is, however,
perhaps less so. Following Dawid (1981), we introduce the matrix normal (MN)
distribution as follows: If the random k × p matrix Z has independent standard
Gaussian entries, we write p(Z) =MN (

Z ; 0, Ik , Ip
)
. If, more generally, the rows of Z

are independent, and each column has a multivariate GaussianN (0,V) distribution (V
isp×p), we writep(Z) =MN (Z ; 0, Ik ,V). Similarly, we writep(Z) =MN (

Z ; 0,U , Ip
)

if each column ofZ is independent, and each row has a multivariate GaussianN (0,U)
distribution (U is k × k).

In the most general form, we may say that if all elements zi, j of the k × p random
matrix Z have a jointly Gaussian distribution, element zi, j has the marginal distri-
bution p(zi, j) = N

(
zi, j ;mi, j ,ui,i · vj, j

)
, and the covariance between zi, j and zm,T is

cov
[
zi, j , zm,T

]
= ui,m · vj,T , then the distribution of Z is p(Z) = MN (Z ;M,U ,V).

We may write its density as

MN (Z ;M,U ,V) = (2πv)−kp/2 |U |−p/2 |V |−k/2 exp
(− 1

2 tr
((A −M)TU −1(A −M)V −1)) . (B.7)

1Note that this is not the most common parameterization of the inverse gamma distribution.

61

Appendix B. TheMNIW distribution in linear regression

Analogously to the gamma G(1, `) distribution, we can construct the Wishart
distributionW(Ik , `) (named after John Wishart 1928) as follows: Let Z be distributed
as p(Z) =MN (Z ; 0, Ik , I`). Then ZZT is distributed asW(Ik , `). As in the scalar case,
we can generalize to non-integer `, introduce a scale parameter (in the matrix case, a
k × k symmetric positive de�nite matrix Λ) and consider the inverse (ZZT)−1 (which
exists with probability 1 if ` > k − 1), yielding the inverse Wishart distribution with
density

IW (Σ;Λ, `) = |Λ|`/2

2`/2Γk
(
`
2

) |Σ|− `+k+1
2 exp

(
−1

2 tr
(
ΛΣ−1)) (B.8)

if Σ is symmetric positive de�nite, and Γk (·) is the multivariate gamma function.
IW (Σ;Λ, `) has a mean Λ/(` − k − 1) (for ` > k − 1) and a variance increasing
(element-wise) with Λ and decreasing with ` (e.g., Rosen 1988). The diagonal elements
of Σ are distributed as inverse gamma (e.g., Theorem 5.2.1 in Press 1982).

Following the scalar case, we construct theMNIW distribution as

MNIW (A, Σ;M,V ,Λ, `) ,MN (A;M, Σ,V) IW (Σ;Λ, `) ∝

∝ |Σ|−(`+p)/2−1 exp
(
−1

2 tr
(
Σ−1

(
(A −M)V −1(A −M)T + Λ

)))
. (B.9)

The special case p = 1, whenMN (M, Σ, 1) = N (M, Σ) is often referred to as the
normal inverse Wishart distribution, the conjugate prior2 for the case when observing
vector-valued data p(yt | θ) = N (yt ; µ, Σ) (e.g., Gelman et al. 2014, Section 3.6).

2The inverse Wishart is indeed the conjugate prior, but whether it is a sensible choice of prior is subject
to debate, e.g, Alvarez et al. (2014) and Yang and J. O. Berger (1994) and references therein.

62

B.2. Scalar linear regression: yt = axt + et

B.2 Scalar linear regression: yt = axt + et

We now consider the problem of scalar linear regression with T exchangeable ob-
servations:, i.e., yt = axt + et , et ∼ N

(
0,σ 2) and xt is known. That is, we have

the model p(y1:T | a,σ 2) = ∏T
t=1N

(
yt ;axt ,σ 2) . We want to infer a ∈ R and σ 2 ∈

R+ with the Bayesian approach, and assume a normal inverse gamma (B.6) prior
NIG (

a,σ 2;m,v, λ, `
)
. This yields the posterior

p(a,σ 2) ∝ NIG (
a,σ 2;m,v, λ, `

) · T∏
t=1
N (

yt ;axt ,σ 2) ∝
∝ (

σ 2)−l/2−3/2−T /2 exp
(
−

1
v (a −m)2 + λ +

∑T
t=1(yt − axt)2

2σ 2

)
=

/
1
v (a−m)2+λ+

∑
t (yt −axt)2 = 1

v (a2−2am+m2)+λ+∑
ty

2
t −2a

∑
tytxt +a

2∑
tx

2
t =

(1
v +

∑
tx

2
t
) (
a − m/v+

∑
tyt xt

1/v+
∑

t x
2
t

)2
+ λ +

∑
ty

2
t +

m2

v −
(
m/v+

∑
t xtyt

)2∑
t x

2
t+1/v

/

= (σ 2)−(`+T)/2−3/2 exp
©«
−

(1
v +

∑
t x 2

t

) (
a−m/v+

∑
t yt xt

1/v+
∑

t x2
t

)2

+λ+
∑
t y2

t+
m2
v −
(m/v+∑t xt yt)2∑

t x2
t +1/v

2σ 2

ª®®®¬
∝

∝ /
cf. (B.6)

/ ∝ NIG (
a,σ 2;m,v, λ, `

)
(B.10)

with

m =
m/v +∑

tytxt

1/v +∑
tx

2
t
, (B.11a)

1
v =

1
v +

∑
tx

2
t , (B.11b)

λ = λ +
∑

ty
2
t +

m2

v
− (m/v +

∑
txtyt)2

1/v +∑
tx

2
t
, (B.11c)

` = ` +T . (B.11d)

63

Appendix B. TheMNIW distribution in linear regression

B.3 Multivariable linear regression: yt = Axt + et

We now consider the matrix case, where we observe T exchangeable observations

yt

︸︷︷︸
k×1

=

A

︸ ︷︷ ︸
k×p

xt

︸︷︷︸
p×1

+

et

︸︷︷︸
k×1

, et ∼ N (0, Σ) , (B.12)

with known xt . The data likelihood is given by

p(y1:T |A, Σ) =
∏T

t=1N (yt ;Axt , Σ) =
=

∏T
t=1 |Σ|−k/2 exp

(− 1
2 (yt −Axt)TΣ−1(yt −Axt)

)
(B.13)

We want to infer A ∈ Rk×p and the k ×k a covariance matrix Σ, in a Bayesian fashion.
As a prior, we assumeMNIW (A, Σ;M,V ,Λ, `) (B.9). This gives the posterior
p(A, Σ |y1:T) ∝ MNIW (A, Σ;M,V ,Λ, `) ·∏T

t=1N (yt ;Axt , Σ) ∝
∝ |Σ |−(`+p+kn)/2−1 exp

(
− 1

2 tr
(
Σ−1

(
(A −M)V −1(A −M)T + Λ +∑T

t=1(yt − Axt)(yt − Axt)T
)))
=

=

/
(A −M)V −1(A −M)T + Λ +∑T

t=1(yt − Axt)(yt − Axt)T =

=

[
A-

(
MV −1+

∑
tyt x

T
t

) (
V -1 +

∑
t xt x

T
t

) -1
] (
V -1+

∑
t xt x

T
t

) [
A-

(
MV -1+

∑
tyt x

T
t

) (
V -1+

∑
t xt x

T
t

) -1
]T

︸ ︷︷ ︸
(?)

+

+ Λ +
∑
tyty

T
t +MV −1MT −

(
MV −1 +

∑
tyt x

T
t

) (
V −1 +

∑
t xt x

T
t

)−1 (
MV −1 +

∑
tyt x

T
t

)T
︸ ︷︷ ︸

(??)

/
=

= |Σ|−(`+p+kn)/2−1 exp
(− 1

2 tr ((?) + (??))) ∝ /
cf. (B.9)

/ ∝
∝ NIW

(
a, Σ;M,V ,Λ, `

)
(B.14)

with

M =
(
MV −1 +

∑
tytx

T
t

) (
V −1 +

∑
txtx

T
t

)−1
, (B.15a)

V
−1
= V −1 +

∑
txtx

T
t , (B.15b)

Λ = (??), (B.15c)
` = ` + kT . (B.15d)

64

Notation list“We could, of course, use any notation we want.”
Richard Feynman

The notation used in the introductory chapters is summarized below. The notation
used in the papers is introduced separately in each paper.

Symbol Meaning

General

a A scalar or vector
A A matrix or a set

IA (θ) Indicator function: 1 if θ ∈ A, 0 otherwise
\ Relative complement
R The set of real numbers

‖ · ‖ The Euclidean distance
Γ(·) Gamma function

Kν (·) Modi�ed Bessel function (Rasmussen and Williams 2006, p.
84)

p Probability density or mass
P Probability

E [·] The expected value of the argument
N (· ; µ,σ 2) The density for a univariate Gaussian distribution with

mean µ and variance σ 2.
N (· ; µ, Σ) The density for a multivariate Gaussian distribution with

mean µ and covariance matrix Σ.
d→ Convergence in distribution

Data, models and learning

y Data
yt The data sample with index t
T The number of data samples

y1:T {yt }Tt=1
ny The dimension of one data sample
θ Parameters in a model
η Hyperparameters in a model

p(θ) Prior distribution for θ
p(θ |y) Posterior distribution for θ
p(y | θ) Density for y given θ
L(θ) Likelihood function for θ (2.2)

θ̂ Point estimate of θ

65

Notation list

State-space models

xt The state (at time t) in a state-space model
nx The dimension of the state in a state-space model
nu The dimension of the input to a state-space model

f (· | ·) The state transition function in a state-space model
д(· | ·) The observation function in a state-space model

ϑ The parameters in a state-space model
Gaussian processes

x? The points where the value of the Gaussian process is
predicted

xd The points where the Gaussian process has been observed
µ(·) The mean function

κ(· , ·) The covariance function
ε Observation noise

K??,K?d ,Kd?,Kdd Shorthand notation for κ evaluated in certain points; see
de�nitions on page 30

Monte Carlo

N The number of particles in a general particle approximation
w (i) The weight of particle i in a weighted particle

approximation
Nx The number of particles in the particle �lter, Algorithm 1 in

Chapter 5
K The number of iterations of the MCMC sampler,

Algorithm 2 in Chapter 5
K (· | ·) The transition kernel in the MCMC sampler, Algorithm 2 in

Chapter 5
Nθ The number of particles in the SMC sampler, Algorithm 5

in Chapter 5
P The number of iterations of the SMC sampler, Algorithm 5

in Chapter 5

66

References“Citing an author whose ideas or information
you used is paying a debt.”
Umberto Eco

Hirotugu Akaike (1974). “A new look at the statistical model identi�cation”. In: IEEE
Transactions on Automatic Control 19.6, pp. 716–723.

Ignacio Alvarez, Jarad Niemi, and Matt Simpson (2014). “Bayesian inference for a co-
variance matrix”. In: Proceedings of the 26th Annual Conference on Applied Statistics
in Agriculture. Manhattan, KS, USA, pp. 71–82.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle Markov
chain Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72.3, pp. 269–342.

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan (2003).
“An introduction to MCMC for machine learning”. In: Machine Learning 50.1,
pp. 5–43.

Christophe Andrieu and Gareth O. Roberts (2009). “The pseudo-marginal approach
for e�cient Monte Carlo computations”. In: Annals of Statistics 37.2, pp. 967–725.

M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp (2002). “A
tutorial on particle �lters for online nonlinear/non-Gaussian Bayesian tracking”.
In: IEEE Transactions on Signal Processing 50.2, pp. 174–188.

Thomas Bayes (1763). “An essay towards solving a problem in the doctrine of chances”.
In: Philosophical Transactions (1683-1775) 53, pp. 370–418.

James O. Berger (1985). Statistical decision theory and Bayesian analysis. 2nd ed. New
York, NY, USA: Springer.

James O. Berger (2006). “The case for objective Bayesian analysis”. In: Bayesian
Analysis 1.3, pp. 385–402.

Christopher M. Bishop (2006). Pattern recognition and machine learning. New York,
NY, USA: Springer.

David M. Blei, Alp Kucukelbir, and Jon D. McAuli�e (2016). “Variational Inference:
A Review for Statisticians”. In: Journal of the American Statistical Association 112
(518), pp. 859–877.

Alexandre Bouchard-Côté, Sebastian J. Vollmer, and Arnaud Doucet (2017). “The
Bouncy Particle Sampler: A non-reversible rejection-free Markov chain Monte
Carlo method”. In: arXiv:1510.02451.

Olivier Cappé, Éric Moulines, and Tobias Rydén (2005). Inference in hidden Markov
models. Springer Series in Statistics. New York, NY, USA: Springer.

George Casella and Roger L. Berger (2002). Statistical inference. 2nd ed. Paci�c Grove,
CA, USA: Duxbury.

Kathryn Chaloner and Isabella Verdinelli (1995). “Bayesian experimental design: a
review”. In: Statistical Science 10.3, pp. 273–304.

Krzysztof Chalupka, Christopher K. I. Williams, and Iain Murray (2013). “A framework
for evaluating approximation methods for Gaussian process regression”. In: The
Journal of Machine Learning Research (JMLR) 14.2, pp. 333–350.

67

References

Tianshi Chen, Henrik Ohlsson, and Lennart Ljung (2012). “On the estimation of trans-
fer functions, regularizations and Gaussian processes—Revisited”. In: Automatica
48.8, pp. 1525–1535.

Nicolas Chopin (2004). “Central limit theorem for sequential Monte Carlo methods
and its application to Bayesian inference”. In: Annals of Statistics 36.6, pp. 2385–
2411.

Nicolas Chopin, Pierre E. Jacob, and Omiros Papaspiliopoulos (2013). “SMC2: an
e�cient algorithm for sequential analysis of state space models”. In: Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 75.3, pp. 397–426.

Nicolas Chopin, James Ridgway, Mathieu Gerber, and Omiros Papaspiliopoulos (2015).
“Towards automatic calibration of the number of state particles within the SMC2

algorithm”. In: arXiv:1506.00570.
Johan Dahlin, Fredrik Lindsten, and Thomas B. Schön (2015). “Particle Metropolis-

Hastings using gradient and Hessian information”. In: Statistics and Computing
25.1, pp. 81–92.

Johan Dahlin and Thomas B. Schön (2016). “Getting started with particle Metropolis-
Hastings for inference in nonlinear models”. In: arXiv:1511:01707.

A. Philip Dawid (1981). “Some matrix-variate distribution theory: notational consider-
ations and a Bayesian application”. In: Biometrika 68.1, pp. 265–274.

Bruno de Finetti (1992). “Foresight: its logical laws, its subjective sources”. In: Break-
throughs in Statistics: Foundations and Basic Theory. Ed. by Samuel Kotz and
L. Norman Johnson. Trans. by Henry E. Kyberg. Vol. 1. (Originally published in
1937 as “La prévision: ses lois logiques, ses sources subjectives” in Annales de
l’Institut Henri Poincaré 7, pp. 1–68.) New York, NY, USA: Springer, pp. 134–174.

Pierre Del Moral (2004). Feynman-Kac formulae: genealogical and interacting particle
systems with applications. New York, NY, US: Springer.

Pierre Del Moral and Arnaud Doucet (2014). “Particle methods: an introduction with
applications”. In: ESAIM: Proceedings 44.1, pp. 1–46.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2006). “Sequential Monte Carlo sam-
plers”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
68.3, pp. 411–436.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2012a). “An adaptive sequential
Monte Carlo method for approximate Bayesian computation”. In: Statistics and
Computing 22.5, pp. 1009–1020.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2012b). “On adaptive resampling
strategies for sequential Monte Carlo methods”. In: Bernoulli 18.1, pp. 252–278.

Bernard Delyon, Marc Lavielle, and Éric Moulines (1999). “Convergence of a stochastic
approximation version of the EM algorithm”. In: Annals of Statistics 27.1, pp. 94–
128.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (1977). “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society. Series B (Methodological) 39.1, pp. 1–38.

Randal Douc and Olivier Cappé (2005). “Comparison of resampling schemes for
particle �ltering”. In: Proceedings of the 4th International Symposium on Image and
Signal Processing and Analysis (ISPA). Zagreb, Croatia, pp. 64–69.

68

Randal Douc, Éric Moulines, and Jimmy Olsson (2014). “Long-term stability of se-
quential Monte Carlo methods under veri�able conditions”. In: Annals of Applied
Probability 24.5, pp. 1767–1802.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle �ltering and
smoothing: �fteen years later”. In: Nonlinear Filtering Handbook. Ed. by D. Crisan
and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth (1987). “Hybrid
Monte Carlo”. In: Physics Letter B 195.2, pp. 216–222.

David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Zoubin Ghahra-
mani (2013). “Structure discovery in nonparametric regression through compo-
sitional kernel search”. In: Proceedings of the 30th International Conference on
Machine Learning (ICML). Atlanta, GA, USA, pp. 1166–1174.

David Duvenaud, Dougal Maclaurin, and Ryan Adams (2016). “Early stopping as
nonparametric variational inference”. In: Proceedings of the 19th International
Conference on Arti�cial Intelligence and Statistics (AISTATS). Cádiz, Spain, pp. 1070–
1077.

David A. van Dyk and Xiyun Jiao (2014). “Metropolis-Hastings within partially col-
lapsed Gibbs samplers”. In: Journal of Computational and Graphical Statistics 24.2,
pp. 301–327.

Bradley Efron (1979). “Bootstrap methods: another look at the jackknife”. In: Annals
of Statistics 7.1, pp. 1–26.

Bradley Efron (1986). “Why isn’t everyone a Bayesian?” In: The American Statistician
40.1. Including discussion by H. Cherno�, D. V. Lindley, C.N. Morris, S. J. Press
and A. F. M. Smith, pp. 1–5.

Bradley Efron (2013). “A 250-year argument: belief, behavior, and the bootstrap”. In:
Bulletin of the American Mathematical Society 50.1, pp. 129–146.

Bradley Efron and Trevor Hastie (2016). Computer age statistical inference. Cambridge,
UK: Cambridge University Press.

Yonina C. Eldar and Gitta Kutyniok, eds. (2012). Compressed sensing: theory and
applications. Cambridge, UK: Cambridge University Press.

Roger Frigola-Alcade (2015). “Bayesian time series learning with Gaussian processes”.
PhD thesis. UK: University of Cambridge.

Roger Frigola, Yutian Chen, and Carl Rasmussen (2014). “Variational Gaussian process
state-space models”. In: Advances in Neural Information Processing Systems 27
(NIPS). Montréal, QC, Canada, pp. 3680–3688.

Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl Rasmussen (2013).
“Bayesian inference and learning in Gaussian process state-space models with
particle MCMC”. In: Advances in Neural Information Processing Systems 26 (NIPS).
Lake Tahoe, NV, USA, pp. 3156–3164.

Andras Fulop and Junye Li (2013). “E�cient learning via simulation: a marginalized
resample-move approach”. In: Journal of Econometrics 176.2, pp. 146–161.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and
Donald B. Rubin (2014). Bayesian data analysis. 3rd ed. Boca Raton, FL, USA:
Chapman & Hall/ CRC Press.

Stuart Geman and Donald Geman (1984). “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 6.6, pp. 721–741.

69

References

Zoubin Ghahramani and Sam T. Roweis (1998). “Learning nonlinear dynamical systems
using an EM algorithm”. In: Advances in Neural Information Processing Systems
(NIPS) 11. Denver, CO, USA, pp. 431–437.

Neil J. Gordon, David J. Salmond, and Adrian F.M. Smith (1993). “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation”. In: IEE Proceedings F - Radar
and Signal Processing, pp. 107–113.

Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas Jans-
son, Rickard Karlsson, and Per-Johan Nordlund (2002). “Particle �lters for posi-
tioning, navigation, and tracking”. In: IEEE Transactions on Signal Processing 50.2,
pp. 425–437.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2009). The elements of statis-
tical learning: data mining, inference, and prediction. 2nd ed. New York, NY, USA:
Springer.

Wilfred K. Hastings (1970). “Monte Carlo sampling methods using Markov chains and
their applications”. In: Biometrika 57.1.

“Sequential state estimation: From Kalman �lters to particle �lters” (2004). In: Pro-
ceedings of the IEEE 92.3. Ed. by Simon Haykin and Nando de Freitas. Special
issue.

Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, and Harri
Lähdesmäki (2016). “Non-stationary Gaussian process regression with Hamilto-
nian Monte Carlo”. In: Proceedings of the 19th International Conference on Arti�cial
Intelligence and Statistics (AISTATS). Cádiz, Spain, pp. 737–740.

Håkan Hjalmarsson (2009). “System identi�cation of complex and structured systems”.
In: European Journal of Control 15.3–4, pp. 275–310.

Arthur E. Hoerl and Robert W. Kennard (1970). “Ridge regression: biased estimation
for nonorthogonal problems”. In: Technometrics 42.1, pp. 80–86.

Carl Jidling, Niklas Wahlström, Adrian Wills, and Thomas B. Schön (2018). “Linearly
constrained Gaussian processes”. In: Advances in Neural Information Processing
Systems 30 (NIPS). Long Beach, CA, USA, pp. 217–224.

Thomas Kailath (1980). Linear systems. Englewood Cli�s, NJ, USA: Prentice Hall.
Rudolf E. Kálmán (1960). “A new approach to linear �ltering and prediction problems”.

In: Journal of Basic Engineering 82.1, pp. 35–45.
Augustine Kong, Jun S. Liu, and Wing Hung Wong (1994). “Sequential imputations and

Bayesian missing data problems”. In: Journal of the American Statistical Association
89.425, pp. 278–288.

Estelle Kuhn and Marc Lavielle (2004). “Coupling a stochastic approximation version
of EM with an MCMC procedure”. In: ESAIM: Probability and Statistics 8, pp. 115–
131.

Pierre Simon de Laplace (1820). Théorie analytique des probabilités. 3rd ed. Paris, France:
Mme Ve Courcier, imprimeur-libraire pour les mathématiques.

Faming Liang, Chuanhai Liu, and Raymond Carroll (2010). Advanced Markov chain
Monte Carlo methods: learning from past samples. West Sussex, United Kingdom:
John Wiley & Sons.

Dennis V. Lindley (1990). “The 1988 Wald memorial lectures: the present position in
Bayesian statistics”. In: Statistical Science 6.1, pp. 44–65.

Fredrik Lindsten (2013). “An e�cient stochastic approximation EM algorithm using
conditional particle �lters”. In: Proceedings of the 38th International Conference on

70

Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, BC, Canada, pp. 6274–
6278.

Fredrik Lindsten, Michael I. Jordan, and Thomas B. Schön (2014). “Particle Gibbs with
ancestor sampling”. In: The Journal of Machine Learning Research (JMLR) 15.1,
pp. 2145–2184.

Fredrik Lindsten and Thomas B. Schön (2013). “Backward simulation methods for
Monte Carlo statistical inference”. In: Foundations and Trends in Machine Learning
6.1, pp. 1–143.

Lennart Ljung (1999). System identi�cation: theory for the user. 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall.

Lennart Ljung and Torkel Glad (2004). Modellbygge och simulering. 2nd ed. Lund,
Sweden: Studentlitteratur.

Michael Lustig, David Donoho, and John M. Pauly (2007). “Sparse MRI: the application
of compressed sensing for rapid MR imaging”. In: Magnetic resonance in medicine
58.6, pp. 1182–1195.

David J. C. MacKay (1998). “Introduction to Gaussian processes”. In: Neural Networks
and Machine Learning. Ed. by C. M. Bishop. Vol. 168. NATO ASI Series F: Compu-
tational and Systems Sciences. Berlin, Germany: Springer-Verlag, pp. 133–165.

Bertil Matérn (1960). “Spatial Variation”. PhD thesis. Sweden: Statens skogsforskn-
ingsinstitut.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller (1953). “Equation of state calculations by fast computing
machines”. In: Journal of Chemical Physics 21.6, pp. 1087–1092.

Nicholas Metropolis and Stanisław Ulam (1949). “The Monte Carlo method”. In: Journal
of the American Statistical Association 44.247, pp. 335–341.

Peter Müller (1991). A generic approach to posterior intergration and Gibbs sampling.
Tech. rep. West Lafayette, IN, USA: Department of Statistics, Purdue University.

Lawrence M. Murray, Anthony Lee, and Pierre E. Jacob (2015). “Parallel resampling
in the particle �lter”. In: Journal of Computational and Graphical Statistics 25.3,
pp. 789–805.

Lawrence M. Murray and Thomas B. Schön (2018). “Automated learning with a
probabilistic programming language: Birch”. To be submitted.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön (2014). “Sequential
Monte Carlo for graphical models”. In: Advances in Neural Information Processing
Systems 27 (NIPS). Montréal, QC, Canada, pp. 1862–1870.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön (2015). “Nested sequen-
tial Monte Carlo methods”. In: Proceedings of the 32nd International Conference on
Machine Learning (ICML). Lille, France, pp. 1292–1301.

Radford M. Neal (2003). “Slice sampling”. In: Annals of Statistics 31.3, pp. 705–767.
Radford M. Neal (2011). “MCMC using Hamiltonian dynamics”. In:Handbook of Markov

Chain Monte Carlo. Ed. by Steve Brooks, Andrew Gelman, Galin jones, and Xiao-Li
Meng. Chapman & Hall/CRC Press.

Brett Ninness and Soren Henriksen (2010). “Bayesian system identi�cation via Markov
chain Monte Carlo techniques”. In: Automatica 46.1, pp. 40–51.

Jimmy Olsson, Olivier Cappé, Randal Douc, and Éric Moulines (2008). “Sequential
Monte Carlo smoothing with application to parameter estimation in nonlinear
state-space models”. In: Bernoulli 14.1, pp. 155–179.

71

References

Brooks Paige, Frank Wood, Arnaud Doucet, and Yee Whye Teh (2014). “Asynchronous
anytime sequential Monte Carlo”. In: Advances in Neural Information Processing
Systems 27 (NIPS). Montréal, QC, Canada, pp. 1–9.

Václav Peterka (1981). “Bayesian system identi�cation”. In: Automatica 17.1, pp. 41–53.
E. A. J. Frank Peters and Gijsbertus de With (2012). “Rejection-free Monte Carlo

sampling for general potentials”. In: Physical Review E 85.2, pp. 1–5.
David L. Phillips (1962). “A technique for the numerical solution of certain integral

equations of the �rst kind”. In: Journal of the ACM 9.1, pp. 84–97.
Michael K. Pitt, Ralph dos Santos Silva, Paolo Giordani, and Robert Kohn (2012). “On

some properties of Markov chain Monte Carlo simulation methods based on the
particle �lter”. In: Journal of Econometrics 171.2, pp. 134–151.

S. James Press (1982). Applied multivariate analysis: using Bayesian and frequentist
methods of inference. Malabar, FL, USA: Robert E. Krieger Publishing Company.

Friedrich Pukelsheim (1993). Optimal design of experiments. New York, NY, USA: Wiley.
José Mario Quintana (1987). “Multivariate Bayesian forecasting models”. PhD thesis.

UK: University of Warwick.
Carl E. Rasmussen and Christopher K. I. Williams (2006). Gaussian processes for

machine learning. Cambridge, MA, USA: MIT Press.
Rudolf Erich Raspe (1786). Baron Munchausen’s narrative of his marvellous travels and

campaigns in Russia. Oxford, UK: Smith.
Stephen L. Richter and Raymond A. DeCarlo (1983). “Continuation methods: theory

and applications”. In: IEEE Transactions on Circuits and Systems 30.6, pp. 347–352.
Herbert Robbins and Sutton Monro (1951). “A stochastic approximation method”. In:

The Annals of Mathematical Statistics 22.3, pp. 400–407.
Christian P. Robert and George Casella (2004). Monte Carlo statistical methods. 2nd ed.

New York, NY, USA: Springer.
Dietrich von Rosen (1988). “Moments for the inverted Wishart distribution”. In: Scan-

dinavian Journal of Statistics 15.2, pp. 91–109.
Wilson J. Rugh (1993). Linear system theory. Englewood Cli�s, NJ, USA: Prentice Hall.
Simo Särkkä (2013). Bayesian �ltering and smoothing. Cambridge, UK: Cambridge

University Press.
Mark J. Schervish (1995). Theory of statistics. New York, NY, USA: Springer.
Thomas B. Schön and Fredrik Lindsten (2011). Manipulating the multivariate Gaussian

density. Tech. rep. Linköping, Sweden: Division of Automatic Control, Linköping
University.

Thomas B. Schön, Andreas Svensson, Lawrence M. Murray, and Fredrik Lindsten
(2018). “Probabilistic learning of nonlinear dynamical systems using sequential
Monte Carlo”. In: Mechanical Systems and Signal Processing 104, pp. 866–883.

Thomas B. Schön, Adrian Wills, and Brett Ninness (2011). “System identi�cation of
nonlinear state-space models”. In: Automatica 47.1, pp. 39–49.

Gideon Schwarz (1978). “Estimating the dimension of a model”. In: Annals of Statistics
6.2, pp. 461–464.

Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani (2014). “Student-t
processes as alternatives to Gaussian processes”. In: Proceedings of the 17th Inter-
national Conference on Arti�cial Intelligence and Statistics (AISTATS). Reykjavik,
Iceland, pp. 877–885.

72

Jonas Sjöberg and Lennart Ljung (1995). “Overtraining, regularization and searching
for a minimum, with application to neural networks”. In: International Journal of
Control 62.6, pp. 1391–1407.

Edward Snelson (2007). “Flexible and e�cient Gaussian process models for machine
learning”. PhD thesis. UK: University College London.

Torsten Söderström and Petre Stoica (1989). System identi�cation. Hemel Hempstead,
UK: Prentice-Hall, Inc.

Arno Solin, Manon Kok, Niklas Wahlström, Thomas B. Schön, and Simo Särkkä (2018).
“Modeling and interpolation of the ambient magnetic �eld by Gaussian processes”.
In: IEEE Transations on Robotics. Accepted for publication.

Arno Solin and Simo Särkkä (2014). “Explicit link between periodic covariance func-
tions and state space models”. In: Proceedings of the 17th International Conference
on Arti�cial Intelligence and Statistics (AISTATS). Reykjavik, Iceland, pp. 904–912.

Arno Solin and Simo Särkkä (2014). “Hilbert space methods for reduced-rank Gaussian
process regression”. In: arXiv:1401.5508.

Leland Stewart and Perry Jr. McCarty (1992). “Use of Bayesian belief networks to
fuse continuous and discrete information for target recognition, tracking, and
situation assessment”. In: Proceedings of SPIE 1699, Signal Processing, Sensor Fusion,
and Target Recognition. Orlando, FL, USA, pp. 177–185.

Stephen M. Stigler (1986). “Laplace’s 1774 memoir on inverse probability”. In: Statistical
Science 1.3, pp. 359–378.

Andreas Svensson (2013). Particle Filter Explained without Equations. url: https://
www.youtube.com/watch?v=aUkBa1zMKv4.

Andreas Svensson and Thomas B. Schön (2016). Comparing two recent particle �lter
implementations of Bayesian system identi�cation. Tech. rep. 2016-008. (Presented
at Reglermöte 2016, Gothenburg, Sweden). Department of Information Technology,
Uppsala University.

Andreas Svensson, Thomas B. Schön, and Manon Kok (2015). “Nonlinear state space
smoothing using the conditional particle �lter”. In: Proceedings of the 17th IFAC
Symposium on System Identi�cation (SYSID). Beijing, China, pp. 975–980.

Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas B. Schön (2016). “Compu-
tationally e�cient Bayesian learning of Gaussian process state space models”.
In: Proceedings of the 19th International Conference on Arti�cial Intelligence and
Statistics (AISTATS). Cádiz, Spain, pp. 213–221.

Robert Tibshirani (1996). “Regression shrinkage and selection via the Lasso”. In: Journal
of the Royal Statistical Society. Series B (Statistical Methodology) 58.1, pp. 267–288.

Luke Tierney (1994). “Markov chains for exploring posterior distributions”. In: Annals
of Statistics 22.4, pp. 1701–1728.

Michail K. Titsias and Lázaro-Gredilla (2014). “Doubly Stochastic Variational Bayes
for non-Conjugate Inference”. In: Proceedings of the 31st International Conference
on Machine Learning (ICML). Beijing, China, pp. 1971–1979.

Aad W. van der Vaart (1998). Asymptotic Statistics. Cambridge, UK: Cambridge Univer-
sity Press.

Nick Whiteley (2013). “Stability properties of some particle �lters”. In: The Annals of
Applied Probability 23.6, pp. 2500–2537.

73

https://www.youtube.com/watch?v=aUkBa1zMKv4
https://www.youtube.com/watch?v=aUkBa1zMKv4

Adrian Wills, Thomas B. Schön, Fredrik Lindsten, and Brett Ninness (2012). “Estimation
of linear systems using a Gibbs sampler”. In: Proceedings of the 16th IFAC Symposium
on System Identi�cation (SYSID). Brussels, Belgium, pp. 203–208.

John Wishart (1928). “The generalised product moment distribution in samples from
a normal multivariate population”. In: Biometrika 20A.1/2, pp. 32–52.

John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma (2009).
“Robust face recognition via sparse representation”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 31.2, pp. 210–227.

Ruoyong Yang and James O. Berger (1994). “Estimation of a covariance matrix using
the reference prior”. In: Annals of Statistics 22.3, pp. 1195–1211.

Hui Zou and Trevor Hastie (2005). “Regularization and variable selection via the
elastic net”. In: Journal of the Royal Statistical Society. Series B (Methodological)
67.2, pp. 301–320.

References

76

Paper I

Title
A �exible state-space model for learning nonlinear dynamical systems

Authors
Andreas Svensson and Thomas B. Schön

Edited version of
Andreas Svensson and Thomas B. Schön (2017). “A �exible state-space model for learning
nonlinear dynamical systems”. In: Automatica 80, pp. 189–199.

Digital identity
doi:10.1016/j.automatica.2017.02.030

Parts of the content in this paper have previously been presented in
Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas B. Schön (2016). “Computationally e�cient
Bayesian learning of Gaussian process state space models”. In: Proceedings of the 19th International
Conference on Arti�cial Intelligence and Statistics (AISTATS). Cádiz, Spain, pp. 213–221
and

Andreas Svensson, Thomas B. Schön, Arno Solin, and Simo Särkkä (2015). “Nonlinear state space model
identi�cation using a regularized basis function expansion”. In: Proceedings of the 6th IEEE International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). Cancún, Mexico,
pp. 493–496.

Financial support
The Swedish Research Council (VR) via the project Probabilistic modeling of dynamical systems (contract
number: 621-2013-5524) and the Swedish Foundation for Strategic Research (SSF) via the project ASSEMBLE.

Thanks to
Dave Zachariah, Per Mattsson and the anonymous reviewers for useful comments on the manuscript.

Paper I – A �exible state-space model for learning nonlinear dynamical systems

I–2

A flexible state-space model for
learning nonlinear dynamical

systems

Abstract

We consider a nonlinear state-space model with the state transition and observation
functions expressed as basis function expansions. The coe�cients in the basis function
expansions are learned from data. Using a connection to Gaussian processes we also
develop priors on the coe�cients, for tuning the model �exibility and to prevent
over�tting to data, akin to a Gaussian process state-space model. The priors can
alternatively be seen as a regularization, and helps the model in generalizing the data
without sacri�cing the richness o�ered by the basis function expansion. To learn
the coe�cients and other unknown parameters e�ciently, we tailor an algorithm
using state-of-the-art sequential Monte Carlo methods, which comes with theoretical
guarantees on the learning. Our approach indicates promising results when evaluated
on a classical benchmark as well as real data.

1 Introduction

Nonlinear system identi�cation (Ljung 1999; Ljung 2010; Sjöberg et al. 1995) aims to
learn nonlinear mathematical models from data generated by a dynamical system.
We will tackle the problem of learning nonlinear state-space models with only weak
assumptions on the nonlinear functions, and make use of the Bayesian framework
(Peterka 1981) to encode prior knowledge and assumptions to guide the otherwise too
�exible model.

Consider the (time invariant) state-space model

xt+1 = f (xt ,ut) +vt , vt ∼ N(0,Q), (1a)
yt = д(xt ,ut) + et , et ∼ N(0,R). (1b)

The variables are denoted as the state xt ∈ Rnx , which is not observed explicitly, the
input ut ∈ Rnu , and the output yt ∈ Rny . We will learn the state transition function
f : Rnx × Rnu 7→ Rnx and the observation function д : Rnx × Rnu 7→ Rny as well as
Q and R from a set of training data of input-output signals {u1:T ,y1:T }.

Consider a situation when a �nite-dimensional linear, or other sparsely parame-
terized model, is too rigid to describe the behavior of interest, but only a limited data
record is available so that any too �exible model would over�t (and be of no help in
generalizing to events not exactly seen in the training data). In such a situation, a
systematic way to encode prior assumptions and thereby tuning the �exibility of the

I–3

Paper I – A �exible state-space model for learning nonlinear dynamical systems

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2
0

2
4

x

f
(x
)

Posterior

Posterior of f (x)
Samples from the posterior
Data

−2 −1 0 1 2

−2
0

2
4

x

f
(x
)

Prior

Prior of f (x)
Samples from the prior

−2 −1 0 1 2
−2

0
2

4
x

Data

Figure 1: The Gaussian process as a modeling tool for an one-dimensional function f : R 7→ R.
The prior distribution (upper left plot) is represented by the shaded blue color (the more intense
color, the higher density), as well as 5 samples drawn from it. By combining the prior and the data
(upper right plot), the posterior (lower plot) is obtained. The posterior mean basically interpolates
between the data points, and adheres to the prior in regions where the data is not providing any
information. This is clearly a desirable property when it comes to generalizing from the training
data—consider the thought experiment of using a 2nd order polynomial instead. Further, the
posterior also provides a quanti�cation of the uncertainty present, high in data-scarce regions and
low where the data provides knowledge about f (·).

I–4

model can be useful. For this purpose, we will take inspiration from Gaussian pro-
cesses (GPs, Rasmussen and Williams 2006) as a way to encode prior assumptions
on f (·) and д(·). As illustrated by Figure 1, the GP is a distribution over functions
which gives a probabilistic model for inter- and extrapolating from observed data.
GPs have successfully been used in system identi�cation for, e.g., response estimation,
nonlinear ARX models and GP state-space models (Frigola-Alcade 2015; Juš Kocijan
2016; Pillonetto and De Nicolao 2010).

To parameterize f (·), we expand it using basis functions

f (x) =
m∑
j=0

w (j)ϕ(j)(x), (2)

and similarly for д(·). The set of basis functions is denoted by {ϕ(j)(·)}mj=0, whose
coe�cients {w (j)}mj=0 will be learned from data. By introducing certain priors p(w (j)) on
the basis function coe�cients the connection to GPs will be made, based on a Karhunen-
Loève expansion (Solin and Särkkä 2014). We will thus be able to understand our
model in terms of the well-established and intuitively appealing GP model, but still
bene�t from the computational advantages of the linear-in-parameter structure of (2).
Intuitively, the idea of the priors p(w (j)) is to keep w (j) ‘small unless data convinces
otherwise’, or equivalently, introduce a regularization of w (j).

To learn the model (1), i.e., determine the basis function coe�cients w (j), we tailor
a learning algorithm using recent sequential Monte Carlo/particle �lter methods
(Kantas et al. 2015; Schön, Lindsten, et al. 2015). The learning algorithm infers the
posterior distribution of the unknown parameters from data, and come with theoretical
guarantees. We will pay extra attention to the problem of �nding the maximum mode
of the posterior, or equivalent, regularized maximum likelihood estimation.

Our contribution is the development of a �exible nonlinear state-space model
with a tailored learning algorithm, which together constitutes a new nonlinear system
identi�cation tool. The model can either be understood as a GP state-space model
(generalized allowing for discontinuities, Section 3.2), or as a nonlinear state-space
model with a regularized basis function expansion.

2 Related work

Important work using the GP in system identi�cation includes impulse response
estimation (T. Chen et al. 2012; Pillonetto, Chiuso, et al. 2011; Pillonetto and De Nicolao
2010), nonlinear ARX models (Bijl et al. 2016; Juš Kocijan et al. 2005), Bayesian learning
of ODEs (Calderhead et al. 2008; Macdonald et al. 2015; Wang and Barber 2014) and the
latent force model (Alvarez et al. 2013). In the GP state-space model (Frigola-Alcade
2015) the transition function f (·) in a state-space model is learned with a GP prior,
particularly relevant to this paper. A conceptually interesting contribution to the GP
state-space model was made by Frigola, Lindsten, et al. (2013), using a Monte Carlo
approach (similar to this paper) for learning. The practical use of Frigola, Lindsten,
et al. (2013) is however very limited, due to its extreme computational burden. This
calls for approximations, and a promising approach is presented by Frigola, Y. Chen,
et al. (2014) (and somewhat generalized by Mattos et al. (2016)), using inducing points

I–5

Paper I – A �exible state-space model for learning nonlinear dynamical systems

and a variational inference scheme. Another competitive approach is Svensson, Solin,
et al. (2016), where we applied the GP approximation proposed by Solin and Särkkä
(2014) and used a Monte Carlo approach for learning (Frigola-Alcade (2015) covers
the variational learning using the same GP approximation). In this paper, we extend
this work by considering basis function expansions in general (not necessarily with a
GP interpretation), introduce an approach to model discontinuities in f (·), as well as
including both a Bayesian and a maximum likelihood estimation approach to learning.

To the best of our knowledge, the �rst extensive paper on the use of a basis function
expansion inside a state-space model was written by Ghahramani and Roweis (1998),
who also wrote a longer unpublished version (Roweis and Ghahramani 2000). The
recent work by Tobar et al. (2015) resembles that of Ghahramani and Roweis (1998)
on the modeling side, as they both use basis functions with locally concentrated mass
spread in the state space. On the learning side, Ghahramani and Roweis (1998) use
an expectation maximization (EM, Dempster et al. 1977) procedure with extended
Kalman �ltering, whilst Tobar et al. (2015) use particle Metropolis-Hastings (Andrieu
et al. 2010). There are basically three major di�erences between Tobar et al. (2015) and
our work. We will (i) use another (related) learning method, particle Gibbs, allowing
us to take advantage of the linear-in-parameter structure of the model to increase
the e�ciency. Further, we will (ii) mainly focus on a di�erent set of basis functions
(although our learning procedure will be applicable also to the model used by Tobar et
al. (2015)), and – perhaps most important – (iii) we will pursue a systematic encoding
of prior assumptions further than Tobar et al. (2015), who instead assume д(·) to be
known and use ‘standard sparsi�cation criteria from kernel adaptive �ltering’ as a
heuristic approach to regularization.

There are also connections to Paduart et al. (2010), who use a polynomial basis
inside a state-space model. In contrast to our work, however, Paduart et al. (2010)
prevent the model from over�tting to the training data not by regularization, but
by manually choosing a low enough polynomial order and terminating the learning
procedure prematurely (early stopping). Paduart et al. are, in contrast to us, focused on
the frequency properties of the model and rely on optimization tools. An interesting
contribution by Paduart et al. is to �rst use classical methods to �nd a linear model,
which is then used to initialize the linear term in the polynomial expansion. We
suggest to also use this idea, either to initialize the learning algorithm, or use the
nonlinear model only to describe deviations from an initial linear state-space model.

Furthermore, there are also connections to our previous work (Svensson, Schön, et
al. 2015), a short paper only outlining the idea of learning a regularized basis function
expansion inside a state-space model. Compared to Svensson, Schön, et al. (2015),
this work contains several extensions and new results. Another recent work using
a regularized basis function expansion for nonlinear system identi�cation is that of
Delgado et al. (2015), however not in the state-space model framework. Delgado et al.
(2015) use rank constrained optimization, resembling an L0-regularization. To achieve
a good performance with such a regularization, the system which generated the data
has to be well described by only a few number of the basis functions being ‘active’,
i.e., have non-zero coe�cients, which makes the choice of basis functions important
and problem-dependent. The recent work by Mattsson et al. (2016) is also covering
learning of a regularized basis function expansion, however for input-output type of
models.

I–6

3 Constructing the model

We want the model, whose parameters will be learned from data, to be able to describe
a broad class of nonlinear dynamical behaviors without over�tting to training data.
To achieve this, important building blocks will be the basis function expansion (2)
and a GP-inspired prior. The order nx of the state-space model (1) is assumed known
or set by the user, and we have to learn the transition and observation functions f (·)
and д(·) from data, as well as the noise covariance matrices Q and R. For brevity, we
focus on f (·) and Q , but the reasoning extends analogously to д(·) and R.

3.1 Basis function expansion

The common approaches in the literature on black-box modeling of functions inside
state-space models can broadly be divided into three groups: neural networks (Bishop
2006; Narendra and Li 1996; Nørgård et al. 2000), basis function expansions (Ghahra-
mani and Roweis 1998; Paduart et al. 2010; Sjöberg et al. 1995; Tobar et al. 2015) and
GPs (Frigola-Alcade 2015; Rasmussen and Williams 2006). We will make use of a basis
function expansion inspired by the GP. There are several reasons for this: Firstly, a
basis function expansion provides an expression which is linear in its parameters,
leading to a computational advantage: neural networks do not exhibit this property,
and the naïve use of the nonparametric GP is computationally very expensive. Sec-
ondly, GPs and some choices of basis functions allow for a straightforward way of
including prior assumptions on f (·) and help generalization from the training data,
also in contrast to the neural network.

We write the combination of the state-space model (1) and the basis function
expansion (2) as

xt+1 =

w (1)1 · · · w (m)1
...

...

w (1)nx · · · w (m)nx

︸ ︷︷ ︸
A

ϕ(1)(xt ,ut)

...

ϕ(m)(xt ,ut)

︸ ︷︷ ︸
φ̄(xt ,ut)

+vt , (3a)

yt =

w (1)д,1 · · · w (m)д,1
...

...

w (1)д,ny · · · w (m)д,ny

︸ ︷︷ ︸
C

ϕ(1)д (xt ,ut)
...

ϕ(m)д (xt ,ut)

︸ ︷︷ ︸
φ̄д (xt ,ut)

+et . (3b)

There are several alternatives for the basis functions, e.g., polynomials (Paduart et al.
2010), the Fourier basis (Svensson, Schön, et al. 2015), wavelets (Sjöberg et al. 1995),
Gaussian kernels (Ghahramani and Roweis 1998; Tobar et al. 2015) and piecewise
constant functions. For the one-dimensional case (e.g., nx = 1, nu = 0) on the interval
[−L,L] ∈ R, we will choose the basis functions as

ϕ(j)(x) = 1√
L

sin
(
π j(x + L)

2L

)
. (4)

I–7

Paper I – A �exible state-space model for learning nonlinear dynamical systems

This choice, which is the eigenfunctions to the Laplace operator, enables a particularly
convenient connection to the GP framework (Solin and Särkkä 2014) in the priors
we will introduce in Section 3.2. This choice is, however, important only for the
interpretability1 of the model. The learning algorithm will be applicable to any choice
of basis functions.

Higher state-space dimensions

The generalization to models with a state space and input dimension such that nx +
nu > 1 o�ers no conceptual challenges, but potentially computational ones. The
counterpart to the basis function (4) for the space
[−L1,L1] × · · · × [−Lnx+nu ,Lnx+nu] ∈ Rnx+nu is

ϕ(j1, ..., jnx +nu)(x) =
nx+nu∏
k=1

1√
Lk

sin
(
π jk (xk+Lk)

2Lk

)
, (5)

(where xk is the kth component of x), implying that the number of terms m grows
exponentially with nx + nu . This problem is inherent in most choices of basis function
expansions. For nx > 1, the problem of learning f : Rnx+nu 7→ Rnx can be understood
as learning nx number of functions fi : Rnx+nu 7→ R, cf. (3).

There are some options available to overcome the exponential growth withnx +nu ,
at the cost of a limited capability of the model. Alternative 1 is to assume f (·) to
be ‘separable’ between some dimensions, e.g., f (xt ,ut) = f x (xt) + f u (ut). If this
assumption is made for all dimensions, the total number of parameters present grows
quadratically (instead of exponentially) with nx + nu . Alternative 2 is to use a radial
basis function expansion (Sjöberg et al. 1995), i.e., letting f (·) only be a function of
some norm ‖ · ‖ of (xt ,ut), as f (xt ,ut) = f (‖(xt ,ut)‖). The radial basis functions
give a total number of parameters growing linearly with nx + nu . Both alternatives
will indeed limit the space of functions possible to describe with the basis function
expansion. However, as a pragmatic solution to the otherwise exponential growth
in the number of parameters it might still be worth considering, depending on the
particular problem at hand.

Manual and data-driven truncation

To implement the model in practice, the number of basis functionsm has to be �xed
to a �nite value, i.e., truncated. However, �xingm also imposes a harsh restriction on
which functions f (·) that can be described. Such a restriction can prevent over�tting
to training data, an argument used by Paduart et al. (2010) for using polynomials
only up to 3rd order. We suggest, on the contrary, to use priors on w (j) to prevent
over�tting, and we argue that the interpretation as a GP is a preferred way to tune
the model �exibility, rather than manually and carefully tuning the truncation. We
therefore suggest to choosem as big as the computational resources allows, and let
the prior and data decide which w (j) to be nonzero, a data-driven truncation.

Related to this is the choice of L in (4): if L is chosen too small, the state space
becomes limited and thereby also limits the expressiveness of the model. On the

1Other choices of basis functions are also interpretable as GPs. The choice (4) is, however, preferred
since it is independent of the choice of which GP covariance function to use.

I–8

other hand, if L is too big, an unnecessarily large m might also be needed, wasting
computational power. To chose L to have about the same size as the maximum of ut
or yt seems to be a good guideline.

3.2 Encoding prior assumptions—regularization

The basis function expansion (3) provides a very �exible model. A prior might
therefore be needed to generalize from, instead of over�t to, training data. From a
user perspective, the prior assumptions should ultimately be formulated in terms
of the input-output behavior, such as gains, rise times, oscillations, equilibria, limit
cycles, stability etc. As of today, tools for encoding such priors are (to the best of
the authors’ knowledge) not available. As a resort, we therefore use the GP state-
space model approach, where we instead encode prior assumptions on f (·) as a GP.
Formulating prior assumptions on f (·) is relevant in a model where the state space
bears (partial) physical meaning, and it is natural to make assumptions whether the
state xt is likely to rapidly change (non-smooth f (·)), or state equilibria are known, etc.
However, also the truly black-box case o�ers some interpretations: a very smooth f (·)
corresponds to a locally close-to-linear model, and vice versa for a more curvy f (·),
and a zero-mean low variance prior on f (·) will steer the model towards a bounded
output (if д(·) is bounded).

To make a connection between the GP and the basis function expansion, a
Karhunen-Loève expansion is explored by Solin and Särkkä (2014). We use this to for-
mulate Gaussian priors on the basis function expansion coe�cientsw (j), and learning
of the model will amount to infer the posteriorp(w (j) |y1:T) ∝ p(y1:T |w (j))p(w (j)), where
p(w (j)) is the prior and p(y1:T |w (j)) the likelihood. To use a prior w (j) ∼ N(0,α−1)
and inferring the maximum mode of the posterior can equivalently be interpreted as
regularized maximum likelihood estimation

arg min
w (j)

− logp(y1:T |w (j)) + α |w (j) |2. (6)

Smooth GP-priors for the functions

The Gaussian process provides a framework for formulating prior assumptions on
functions, resulting in a non-parametric approach for regression. In many situations
the GP allows for an intuitive generalization of the training data, as illustrated by
Figure 1. We use the notation

f (x) ∼ GP(m(x),κ(x ,x ′)) (7)

to denote a GP prior on f (·), wherem(x) is the mean function and κ(x ,x ′) the covari-
ance function. The work by Solin and Särkkä (2014) provides an explicit link between
basis function expansions and GPs based on the Karhunen-Loève expansion, in the
case of isotropic2 covariance functions, i.e., κ(x ,x ′) = κ(|x − x ′ |). In particular, if the
basis functions are chosen as (4), then

f (x) ∼ GP(0,κ(x ,x ′)) ⇔ f (x) ≈
m∑
j=0

w (j)ϕ(j)(x), (8a)

2Note, this concerns only f (·), which resides inside the state-space model. This does not restrict the
input-output behavior, from u(t) to y(t), to have an isotropic covariance.

I–9

Paper I – A �exible state-space model for learning nonlinear dynamical systems

with3

w (j) ∼ N(0, S(λ(j))), (8b)

where S is the spectral density of κ, and λ(j) is the eigenvalue of ϕ(j). Thus, this gives a
systematic guidance on how to choose basis functions and priors onw (i). In particular,
the eigenvalues of the basis function (4) are

λ(j) =
(
π j

2L

)2
, and λ(j1:nx +nu) =

nx+nu∑
k=1

(
π jk
2Lk

)2
(9)

for (5). Two common types of covariance functions are the exponentiated quadratic
κeq and Matérn κM class (Rasmussen and Williams 2006),

κeq(r) = sf exp
(
− r 2

2l 2

)
, (10a)

κM(r) = sf 21−ν
Γ(ν)

(√
2νr
l

)ν
Kν

(√
2νr
l

)
, (10b)

where r , x−x ′, Kν is a modi�ed Bessel function, and `, sf and ν are hyperparameters
to be set by the user or to be marginalized out, see Svensson, Solin, et al. (2016) for
details. Their spectral densities are

Seq(s) = sf
√

2πl2 exp
(
− π 2l 2s2

2

)
, (11a)

SM(s) = sf
2π

1
2 Γ(ν+ 1

2)(2ν)ν
Γ(ν)l 2ν

(
2ν
l 2 + s

2
)−(ν+ 1

2)
. (11b)

Altogether, by choosing the priors for w (j) as (8b), it is possible to approximately
interpret f (·), parameterized by the basis function expansion (2), as a GP. For most
covariance functions, the spectral density S(λ(j)) tends towards 0 when λ(j) → ∞,
meaning that the prior for large j tends towards a Dirac mass at 0. Returning to the
discussion on truncation (Section 3.1), we realize that truncation of the basis function
expansion with a reasonably large m therefore has no major impact to the model, but
the GP interpretation is still relevant.

As discussed, �nding the posterior mode under a Gaussian prior is equivalent to
L2-regularized maximum likelihood estimation. There is no fundamental limitation
prohibiting other priors, for example Laplacian (corresponding to L1-regularization:
Tibshirani 1996). We use the Gaussian prior because of the connection to a GP prior
on f (·), and it will also allow for closed form expressions in the learning algorithm.

For book-keeping, we express the prior on w (j) as a Matrix normal (MN , Dawid
1981) distribution over A. TheMN distribution is parameterized by a mean matrix
M ∈ Rnx×m , a right covariance U ∈ Rnx×nx and a left covariance V ∈ Rm×m . The
MN distribution can be de�ned by the property that A ∼ MN(M,U ,V) if and only
if vec(A) ∼ N(vec(M),V ⊗ U), where ⊗ is the Kronecker product. Its density can be
written as

MN(A |M,U ,V) = exp
(− 1

2 tr
{(A −M)TU −1(A −M)V −1})
(2π)nxm |V |nx /2 |U |m/2 . (12)

3The approximate equality in (8a) is exact if m →∞ and L →∞, refer to Solin and Särkkä (2014) for
details.

I–10

By letting M = 0 and V be a diagonal matrix with entries S(λ(j)), the priors (8b) are
incorporated into this parametrization. We will let U = Q for conjugacy properties,
to be detailed later. Indeed, the marginal variance of the elements in A is then not
scaled only by V , but also Q . That scaling however is constant along the rows, and so
is the scaling by the hyperparameter sf (10). We therefore suggest to simply use sf as
tuning for the overall in�uence of the priors; letting sf →∞ gives a �at prior, or, a
non-regularized basis function expansion.

Prior for noise covariances

Apart from f (·), the nx × nx noise covariance matrix Q might also be unknown. We
formulate the prior over Q as an inverse Wishart (IW, Dawid 1981) distribution. The
IW distribution is a distribution over real-valued positive de�nite matrices, which
puts prior mass on all positive de�nite matrices and is parametrized by its number of
degrees of freedom ` > nx − 1 and an nx × nx positive de�nite scale matrix Λ. The
density is de�ned as

IW(Q | `,Λ) = |Λ|
`/2 |Q |−(nx+`+1)/2

2`nx /2Γnx (`/2)
exp

(
−1

2 tr
(
Q−1Λ

))
, (13)

where Γnx (·) is the multivariate gamma function. The mode of the IW distribution is
Λ

`+nx+1 . It is a common choice as a prior for covariance matrices due to its properties
(e.g., Shah et al. 2014; Wills et al. 2012). When theMN distribution (12) is combined
with the IW distribution (13) we obtain theMNIW distribution, with the following
hierarchical structure

MNIW(A,Q |M,V ,Λ, `) =MN(A |M,Q,V)IW(Q | `,Λ). (14)

TheMNIW distribution provides a joint prior for the A and Q matrices, com-
pactly parameterizing the prior scheme we have discussed, and is also the conjugate
prior for our model, which will facilitate learning.

Discontinuous functions: Sparse singularities

The proposed choice of basis functions and priors is encoding a smoothness as-
sumption of f (·). However, as discussed by Juditsky et al. (1995) and motivated by
Example 5.3, there are situations where it is relevant to assume that f (·) is smooth
except at a few points. Instead of assuming an (approximate) GP prior for f (·) on
the entire interval [−L,L] we therefore suggest to divide [−L,L] into a number np
of segments, and then assume an individual GP prior for each segment [pi ,pi+1],
independent of all other segments, as illustrated in Figure 2. The number of segments
and the discontinuity points dividing them need to be learned from data, and an im-
portant prior is how the discontinuity points are distributed, i.e., the number np (e.g.,
geometrically distributed) and their locations {pi }npi=1 (e.g., uniformly distributed).

I–11

Paper I – A �exible state-space model for learning nonlinear dynamical systems

−2 −1 0 p1 1 p2 2

0
5

x

f
(x
)

Figure 2: The idea of a piecewise GP: the interval [−2,−2] is divided by np = 2 discontinuity
points p1 and p2, and a GP is used to model a function on each of these segments, independently
of the other segments. For practical use, the learning algorithm have to be able to also infer the
discontinuity points from data.

3.3 Model summary

We will now summarize the proposed model. To avoid notational clutter, we omit ut
as well as the observation function (1b):

xt+1 =

np∑
i=0

Ai φ̄(xt)Ipi ≤xt <pi+1 +vt , (15a)

vt ∼ N(0,Q), (15b)

with priors

[Ai ,Qi] ∼ MNIW(0,V , `,Λ), i = 0, . . . ,np , (15c)
np , {pi }npi=1 ∼ arbitrary prior, (15d)

where I is the indicator function parameterizing the piecewise GP, and φ̄(xt) was
de�ned in (3). If the dynamical behavior of the data is close-to-linear, and a fairly
accurate linear model is already available, this can be incorporated by adding the
known linear function to the right hand side of (15a).

A good user practice is to sample parameters from the priors and simulate the
model with those parameters, as a sanity check before entering the learning phase.
Such a habit can also be fruitful for understanding what the prior assumptions mean
in terms of dynamical behavior. There are standard routines for sampling from the
MN as well as the IW distribution.

The suggested model can also be tailored if more prior knowledge is present, such
as a physical relationship between two certain state variables. The suggested model
can then be used to learn only the unknown part, as brie�y illustrated by Svensson,
Schön, et al. (2015, Example IV.B).

I–12

4 Learning

We now have a state-space model with a (potentially large) number of unknown
parameters

θ ,
{
{Ai ,Qi }npi=0,np , {pi }

np
i=1

}
, (16)

all with priors. (д(·) is still assumed to be known, but the extension follows analo-
gously.) Learning the parameters is a quite general problem, and several learning
strategies proposed in the literature are (partially) applicable, including optimization
(Paduart et al. 2010), EM with extended Kalman �ltering (Ghahramani and Roweis
1998) or sigma point �lters (Kokkala et al. 2016), and particle Metropolis-Hastings
(Tobar et al. 2015). We use another sequential Monte Carlo-based learning strategy,
namely particle Gibbs with ancestor sampling (PGAS, Lindsten, Jordan, et al. 2014).
PGAS allows us to take advantage of the fact that our proposed model (3) is linear in
A (given xt), at the same time as it has desirable theoretical properties.

4.1 Sequential Monte Carlo for system identification

Sequential Monte Carlo (SMC) methods have emerged as a tool for learning param-
eters in state-space models (Kantas et al. 2015; Schön, Lindsten, et al. 2015). At the
very core when using SMC for system identi�cation is the particle �lter (Doucet and
Johansen 2011), which provides a numerical solution to the state �ltering problem, i.e.,
�nding p(xt |y1:t). The particle �lter propagates a set of weighted samples, particles,
{x it ,ωi

t }Ni=1 in the state-space model, approximating the �ltering density by the empir-
ical distribution p̂(xt |y1:t) =

∑N
i=1ω

i
tδx it (xt) for each t . Algorithmically, it amounts

to iteratively weighting the particles with respect to the measurement yt , resample
among them, and thereafter propagate the resampled particles to the next time step
t + 1. The convergence properties of this scheme have been studied extensively (see
references in Doucet and Johansen (2011)).

When using SMC methods for learning parameters, a key idea is to repeatedly
infer the unknown states x1:T with a particle �lter, and interleave this iteration with
inference of the unknown parameters θ , as follows:

I. Use SMC to infer the states x1:T for given parameters θ .
II. Update the parameters θ to �t the states x1:T from the previous step.

(17)

There are several details left to specify in this iteration, and we will pursue two
approaches for updating θ : one sample-based for exploring the full posterior p(θ |y1:T),
and one EM-based for �nding the maximum mode of the posterior, or equivalently, a
regularized maximum likelihood estimate. Both alternatives will utilize the linear-in-
parameter structure of the model (15), and use the Markov kernel PGAS (Lindsten,
Jordan, et al. 2014) to handle the states in Step I of (17).

The PGAS Markov kernel resembles a standard particle �lter, but has one of
its state-space trajectories �xed. It is outlined by Algorithm 1, and is a procedure
to asymptotically produce samples from p(x1:T |y1:T ,θ), if repeated iteratively in a
Markov chain Monte Carlo (MCMC, Robert and Casella 2004) fashion.

I–13

Paper I – A �exible state-space model for learning nonlinear dynamical systems

Algorithm 1: PGAS Markov kernel.
Input: Trajectory x1:T [k], number of particles N ,

known state space model (f , д, Q , R).
Output: Trajectory x1:T [k + 1].

1 Sample x i1 ∼ p(x1), for i = 1, . . . ,N − 1.
2 Set xN1 = x1[k].
3 for t = 1 to T do
4 Set ωi

t = N
(
yt | д(x it),R

)
, for i = 1, . . . ,N .

5 Sample ait with P
(
ait = j

) ∝ ω j
t , for i = 1, . . . ,N − 1.

6 Sample x it+1 ∼ N
(
f (xaitt),Q

)
, for i = 1, . . . ,N − 1.

7 Set xNt+1 = xt+1[k].
8 Sample aNt with P

(
aNt = j

) ∝ ω j
tN

(
xNt+1 | f (x jt),Q

)
.

9 Set x i1:t+1 = {x
ait
1:t ,x

i
t+1}, for i = 1, . . . ,N .

10 end
11 Sample J with P (J = i) ∝ ωi

T and set x1:T [k + 1] = x J1:T .

4.2 Parameter posterior

The learning problem will be split into the iterative procedure (17). In this section, the
focus is on a key to Step II of (17), namely the conditional distribution of θ given states
x1:T and measurements y1:T . By utilizing the Markovian structure of the state-space
model, the density p(x1:T ,y1:T | θ) can be written as the product

p(x1:T ,y1:T | θ) = p(x1)
T−1∏
t=1

p(xt+1 | xt ,θ)p(yt | xt) =

= p(x1)
T−1∏
t=1

p(xt+1 | xt ,θ)
︸ ︷︷ ︸

p(x1:T | θ)

T∏
t=1

p(yt | xt)
︸ ︷︷ ︸
p(y1:T | x1:T)

. (18)

Since we assume that the observation function (1b) is known, p(yt | xt) is indepen-
dent of θ , which in turn means that (18) is proportional to p(x1:T | θ). Further, we
assume for now that p(x1) is also known, and therefore omit it. Let us consider
the case without discontinuity points, np = 0. Since vt is assumed to be Gaussian,
p(xt+1 | xt ,ut ,θ) = N(xt+1 |Aφ̄(xt ,ut),Q), we can with some algebraic manipulations
(Gibson and Ninness 2005) write

logp(x1:T |A,Q) =
= −Tnx2 log(2π) − T

2 log det(Q) − 1
2 tr

{
Q−1

(
Φ −AΨT − ΨAT +AΣAT

)}
, (19)

with the (su�cient) statistics

Φ =
T∑
t=1

xt+1x
T
t+1, Ψ =

T∑
t=1

xt+1φ̄(xt ,ut)T, Σ =
T∑
t=1

φ̄(xt ,ut)φ̄(xt ,ut)T. (20a)

I–14

The density (19) gives via Bayes’ rule and theMNIW prior distribution for A,Q from
Section 3

logp(A,Q) = logp(A |Q) + logp(Q) ∝
∝ − 1

2 (nx + ` +m + 1) log det(Q) − 1
2 tr

{
Q−1

(
Λ +AV −1AT

)}
, (21)

the posterior

logp(A,Q | x1:t) ∝ logp(x1:t |A,Q) + logp(A,Q) ∝
∝ − 1

2 (nx +T + ` +m + 1) log detQ − 1
2 tr

{
Q−1 (Λ + Φ − Ψ(Σ +V −1)−1ΨT+

+ (A − Ψ(Σ +V −1)−1)Q−1(A − Ψ(Σ +V −1)−1)T)}. (22)

This expression will be key for learning: For the fully Bayesian case, we will rec-
ognize (22) as anotherMNIW distribution and sample from it, whereas we will
maximize it when seeking a point estimate.

Remarks: The expressions needed for an unknown observation function д(·) are
completely analogous. The case with discontinuity points becomes essentially the
same, but with individual Ai ,Qi and statistics for each segment. If the right hand side
of (15a) also contains a known function h(xt), e.g., if the proposed model is used only
to describe deviations from a known linear model, this can easily be taken care of by
noting that now p(xt+1 | xt ,ut ,θ) = N(xt+1 − h(xt) |Aφ̄(xt ,ut),Q), and thus compute
the statistics (20) for (xt+1 − h(xt)) instead of xt+1.

4.3 Inferring the posterior—Bayesian learning

There is no closed form expression for p(θ |y1:T), the distribution to infer in the
Bayesian learning. We thus resort to a numerical approximation by drawing samples
from p(θ ,x1:T |y1:T) using MCMC. (Alternative, variational methods could be used,
akin to Frigola, Y. Chen, et al. (2014)). MCMC amounts to constructing a procedure
for ‘walking around’ in θ -space in such a way that the steps . . . ,θ [k],θ [k + 1], . . .
eventually, for k large enough, become samples from the distribution of interest.

Let us start in the case without discontinuity points, i.e., np ≡ 0. Since (21) is
MNIW, and (19) is a product of (multivariate) Gaussian distributions, (22) is also
anMNIW distribution (Dawid 1981; Wills et al. 2012). By identifying components
in (22), we conclude that

p(θ | x1:T ,y1:T) = (23)
=MNIW (

A,Q | Ψ(Σ +V −1)−1, (Σ +V −1)−1,Λ + Φ − Ψ(Σ +V −1)−1ΨT, ` +Tnx
)

We now have (23) for sampling θ given the states x1:T (cf. (17), step II), and Algorithm 1
for sampling the states x1:T given the model θ (cf. (17), step I). This makes a particle
Gibbs sampler (Andrieu et al. 2010), cf. (17).

If there are discontinuity points to learn, i.e., np is to be learned, we can do that
by acknowledging the hierarchical structure of the model. For brevity, we denote
{np , {pi }npi=1} by ξ , and {Ai ,Qi }npi=1 simply by A,Q . We suggest to �rst sample ξ from
p(ξ | x1:T), and next sample A,Q from p(A,Q | x1:T , ξ). The distribution for sampling

I–15

Paper I – A �exible state-space model for learning nonlinear dynamical systems

A,Q is theMNIW distribution (23), but conditional on data only in the relevant
segment. The other distribution, p(ξ | x1:T), is trickier to sample from. We suggest to
use a Metropolis-within-Gibbs step (Müller 1991), which means that we �rst sample
ξ ∗ from a proposal q(ξ ∗ | ξ [k]) (e.g., a random walk), and then accept it as ξ [k+1] with
probability min

(
1, p(ξ ∗ | x1:T)

p(ξ [k] | x1:T)
q(ξ [k] | ξ [k])
q(ξ ∗ | ξ [k])

)
, and otherwise just set ξ [k+1] = ξ [k]. Thus

we need to evaluate p(ξ ∗ | x1:T) ∝ p(x1:T | ξ ∗)p(ξ ∗). The prior p(ξ ∗) is chosen by the
user. The density p(x1:T | ξ) can be evaluated using the expression (see Appendix A.1)

p(x1:T | ξ) =

=

np∏
i=0

2nxTi /2

(2π)Ti /2
Γnx (l+N2)
Γnx (l2)

|V −1 |nx /2
|Σi +V −1 |nx /2 ×

|Λ|l/2
|Λ + Φi + Ψi (Σi +V −1)−1ΨT

i |
l+N

2
(24)

where Φi etc. denotes the statistics (20) restricted to the corresponding segment, and
Ti is the number of data points in segment i (

∑
i Ti = T). The suggested Bayesian

learning procedure is summarized in Algorithm 2.

Algorithm 2: Bayesian learning of (15).
Input: Data y1:T , priors on A,Q and ξ .
Output: K MCMC-samples with p(x1:T ,A,Q, ξ |y1:T) as invariant

distribution.
1 Initialize A[0],Q[0], ξ [0].
2 for k = 0 to K do
3 Sample x1:T [k+1]

�

�A[k],Q[k], ξ [k] Algorithm 1

4 Sample ξ [k+1]
�

� x1:T [k+1] Section 4.3

5 Sample Q[k+1]
�

� ξ [k+1],x1:T [k+1] by (23)
6 Sample A[k+1]

�

�Q[k+1], ξ [k+1],x1:T [k+1] by (23)
7 end

Our proposed algorithm can be seen as a combination of a collapsed Gibbs sampler
and Metropolis-within-Gibbs, a combination which requires some attention to be
correct (Dyk and Jiao 2014), see Appendix A.2 for details in our case. If the hyperpa-
rameters parameterizing V and/or the initial states are unknown, it can be included
by extending Algorithm 2 with extra Metropolis-within-Gibbs steps (see Svensson,
Solin, et al. (2016) for details).

4.4 Regularized maximum likelihood

A widely used alternative to Bayesian learning is to �nd a point estimate of θ maximiz-
ing the likelihood of the training data p(y1:T | θ), i.e., maximum likelihood. However,
if a very �exible model is used, some kind of mechanism is needed to prevent the
model from over�t to training data. We will therefore use the priors from Section 3 as
regularization for the maximum likelihood estimation, which can also be understood
as seeking the maximum mode of the posterior. We will only treat the case with no
discontinuity points, as the case with discontinuity points does not allow for closed
form maximization, but requires numerical optimization tools, and we therefore
suggest Bayesian learning for that case instead.

I–16

The learning will build on the particle stochastic approximation EM (PSAEM)
method proposed by Lindsten (2013), which uses a stochastic approximation of the
EM scheme (Delyon et al. 1999; Dempster et al. 1977; Kuhn and Lavielle 2004). EM
addresses maximum likelihood estimation in problems with latent variables. For
system identi�cation, EM can be applied by taking the states x1:T as the latent variables,
(Ghahramani and Roweis (1998); another alternative would be to take the noise
sequence v1:T as the latent variables, Umenberger et al. (2015)). The EM algorithm
then amounts to iteratively (cf. (17)) computing the expectation (E-step)

Q(θ ,θ [k]) = Ex1:T [logp(θ | x1:T ,y1:T) |y1:T ,θ [k]] , (25a)

and updating θ in the maximization (M-step) by solving

θ [k+1] = arg max
θ
Q(θ ,θ [k]), (25b)

In the standard formulation, Q is usually computed with respect to the joint likelihood
density forx1:T andy1:T . To incorporate the prior (our regularization), we may consider
the prior as an additional observation of θ , and we have thus replaced (19) by (22)
in Q. Following Gibson and Ninness (2005), the solution in the M-step is found as
follows: Since Q−1 is positive de�nite, the quadratic form in (22) is maximized by

A = Φ(Σ +V −1). (26a)

Next, substituting this into (22), the maximizing Q is

Q = 1
nx+Tnx+`+m+1

(
Λ + Φ − Ψ(Σ +V −1)−1Ψ

)
. (26b)

We thus have solved the M-step exactly. To compute the expectation in the E-step,
approximations are needed. For this, a particle smoother (Lindsten and Schön 2013)
could be used, which would give a learning strategy in the �avor of Schön, Wills, et al.
(2011). The computational load of a particle smoother is, however, unfavorable, and
PSAEM uses Algorithm 1 instead.

PSAEM also replaces and replace the Q-function (25a) with a Robbins-Monro
stochastic approximation of Q,

Qk (θ) = (1 − γk)Qk−1(θ) + γk logp(θ | x1:T [k],y1:T), (27)

where {γk }k≥1 is a decreasing sequence of positive step sizes, with γ1 = 1,
∑

k γk = ∞
and

∑
k γ

2
k < ∞. I.e., γk should be chosen such that k−1 ≤ γk < k−0.5 holds up to

proportionality, and the choiceγk = k−2/3 has been suggested in the literature (Delyon
et al. 1999, Section 5.1). Here, x1:T [k] is a sample from an ergodic Markov kernel
with p(x1:T |y1:T ,θ) as its invariant distribution, i.e., Algorithm 1. At a �rst glance,
the complexity of Qk (θ) appears to grow with k because of its iterative de�nition.
However, since p(x1:T ,y1:T | θ) belongs to the exponential family, we can write

p(x1:T [k],y1:T | θ) = h(x1:T [k],y1:T)c(θ) exp
(
ηT(θ)t[k]

)
, (28)

where t[k] is the statistics (20) of {x1:T [k],y1:T }. The stochastic approximation
Qk (θ) (27) thus becomes

Qk (θ) ∝ logp(θ) + log c(θ) + ηT(θ) (γkt[k] + (1 − γk)γk-1t[k − 1] + . . .) . (29)

I–17

Paper I – A �exible state-space model for learning nonlinear dynamical systems

Algorithm 3: Regularized maximum likelihood learning of (15).
1 Initialize θ [1].
2 for k > 0 do
3 Sample x1:T [k] with parameters θ [k]. Algorithm 1
4 Compute and update the statistics of x1:T [k] by (20, 30)
5 Compute θ [k+1] = arg maxθ Q(θ) by (26)
6 end

Now, we note that if keeping track of the statistics γkt[k] + γk-1t[k-1] + . . . , the
complexity of Q does not grow with k . We therefore introduce the following iterative
update of the statistics

Φk = (1 − γk)Φk−1 + γkΦ(x1:T [k]), (30a)
Ψk = (1 − γk)Ψk−1 + γkΨ(x1:T [k]), (30b)
Σk = (1 − γk)Σk−1 + γkΣ(x1:T [k]), (30c)

where Φ(x1:T [k]) refers to (20), etc. With this parametrization, we obtain
arg maxθ Qk (θ) as the solutions for the vanilla EM case by just replacing Φ by Φk ,
etc., in (26). Algorithm 3 summarizes.

4.5 Convergence and consistency

We have proposed two algorithms for learning the model introduced in Section 3. The
Bayesian learning, Algorithm 2, will by construction (as detailed in Appendix A.2)
asymptotically provide samples from the true posterior density p(θ |y1:T) (Andrieu
et al. 2010). However, no guarantees regarding the length of the burn-in period can
be given, which is the case for all MCMC methods, but the numerical comparisons
in Svensson, Solin, et al. (2016) and in Section 5.1 suggest that the proposed Gibbs
scheme is e�cient compared to its state-of-the-art alternatives. The regularized
maximum likelihood learning, Algorithm 3, can be shown to converge under additional
assumptions (Kuhn and Lavielle 2004; Lindsten 2013) to a stationary point of p(θ |y1:T),
however not necessarily a global maximum. The literature on PSAEM is not (yet)
very rich, and the technical details regarding the additional assumptions remains to
be settled, but we have not experienced any problems of non-convergence in practice.

4.6 Initialization

The convergence of Algorithm 2 is not relying on the initialization, but the burn-in
period can nevertheless be reduced. One useful idea by Paduart et al. (2010) is thus to
start with a linear model, which can be obtained using classical methods. To avoid
Algorithm 3 from converging to a poor local minimum, Algorithm 2 can �rst be
run to explore the ‘landscape’ and from that, a promising point for initialization of
Algorithm 3 can be chosen.

For convenience, we assumed the distribution of the initial states, p(x1), to be
known. This is perhaps not realistic, but its in�uence is minor in many cases. If needed,

I–18

they can be included in Algorithm 2 by an additional Metropolis-within-Gibbs step,
and in Algorithm 3 by including them in (22) and use numerical optimization tools.

5 Experiments

We will give three numerical examples: a toy example, a classic benchmark, and
thereafter a real data set from two cascaded water tanks. Matlab code for all examples
is available via the �rst authors homepage.

5.1 A first toy example

Consider the following example from Tobar et al. (2015),

xt+1 = 10sinc
(xt

7

)
+vt , vt ∼ N(0, 4), (31a)

yt = xt + et , et ∼ N(0, 4). (31b)

We generateT = 40 observations, and the challenge is to learn f (·), when д(·) and the
noise variances are known. Note that even though д(·) is known, y is still corrupted
by a non-negligible amount of noise.

In Figure 3 (a) we illustrate the performance of our proposed model using m = 40
basis functions on the form (4) when Algorithm 3 is used without regularization.
This gives a nonsense result that is over�tted to data, sincem = 40 o�ers too much
�exibility for this example. When a GP-inspired prior from an exponentiated quadratic
covariance function (10a) with length scale ` = 3 and sf = 50 is considered, we obtain
(b), that is far more useful and follows the true function rather well in regions were
data is present. We conclude that we do not need to choose m carefully, but can rely
on the priors for regularization. In (c), we use the same prior and explore the full
posterior by Algorithm 2, obtaining information about uncertainty as a part of the
learned model (illustrated by the a posteriori credibility interval), in particular in
regions where no data is present.

In the next �gure, (d), we replace the set ofm = 40 basis functions on the form (4)
with 8 Gaussian kernels to reconstruct the model proposed by Tobar et al. (2015).
As clari�ed by Tobar (2016), the prior on the coe�cients is a Gaussian distribution
inspired by a GP, which makes a close connection to out work. We use Algorithm 2
for learning also in (d) (which is possible thanks to the Gaussian prior). In (e), on the
contrary, the learning algorithm from Tobar et al. (2015), Metropolis-Hastings, is used,
requiring more computation time. Tobar et al. (2015) spend a considerable e�ort to
pre-process the data and carefully distribute the Gaussian kernels in the state space,
see the bottom of (d).

5.2 Narendra-Li benchmark

The example introduced by Narendra and Li (1996) has become a benchmark for
nonlinear system identi�cation, e.g., Pan et al. 2009; Roll et al. 2005; Stenman 1999;
The MathWorks, Inc. 2015; Wen et al. 2007; Xu et al. 2009. The benchmark is de�ned

I–19

Paper I – A �exible state-space model for learning nonlinear dynamical systems

−30 −20 −10 0 10 20 30−1
0

0
10

xt
x
t+

1
(a)Maximum likelihood estimation of our proposed model, without regularization; a useless model.

−30 −20 −10 0 10 20 30−1
0

0
10

xt

x
t+

1

(b) Maximum likelihood estimation of our proposed model, with regularization. A subset of the
m = 40 basis functions used are sketched at the bottom. Computation time: 12 s.

−30 −20 −10 0 10 20 30−1
0

0
10

xt

x
t+

1

(c) Bayesian learning of our proposed model, i.e., the entire posterior is explored. Computation
time: 12 s.

−30 −20 −10 0 10 20 30−1
0

0
10

xt

x
t+

1

(d) Posterior distribution for the basis functions (sketched at the bottom) used by Tobar et al. (2015),
but Algorithm 2 for learning. Computation time: 9 s.

−30 −20 −10 0 10 20 30−1
0

0
10

xt

x
t+

1

(e) The method presented by Tobar et al. (2015), using Metropolis-Hastings for learning. Computa-
tion time: 32 s.

Posterior model uncertainty
Learned model
True state transition function
State samples underlying data
Basis functions

Figure 3: True function (black), states underlying the data (red) and learned model (blue, gray)
for the example in Section 5.1.

I–20

Reference RMSE T

This paper 0.06* 2 000
Roll et al. (2005) 0.43 50 000
Stenman (1999) 0.46 50 000
Xu et al. (2009) (AHH) 0.31 2 000
Xu et al. (2009) (MARS) 0.49 2 000
*The number is averaged over 10 data realizations.

Table 7.1: Results of the Narendra-Li Benchmark (T is the number of data samples in training
data).

by the model

x1
t+1 =

(
x 1
t

1+(x 1
t)2
+ 1

)
sin(x2

t), (32a)

x2
t+1 =x

2
t cos(x2

t) + x1
t exp

(
− (x 1

t)2+(x 2
t)2

8

)
+

(ut)3
1+(ut)2+0.5 cos(x 1

t+x
2
t)
, (32b)

yt =
x 1
t

1+0.5 sin(x 2
t)
+

x 2
t

1+0.5 sin(x 1
t)
, (32c)

where xt = [x1
t x

2
t]T. The training data (only input-output data) is obtained with an

input sequence sampled uniformly and iid from the interval [−2.5, 2.5]. The input
data for the test data is ut = sin(2πt/10) + sin(2πt/25).

According to Narendra and Li (1996, p. 369), it ‘does not correspond to any real
physical system and is deliberately chosen to be complex and distinctly nonlinear’.
The original formulation is somewhat extreme, with no noise and T = 500 000 data
samples for learning. In the work by Stenman (1999), a white Gaussian measurement
noise with variance 0.1 is added to the training data, and less data is used for learning.
We apply Algorithm 2 with a second order state-space model, np = 0, and a known,
linear д(·). (Even though the data is generated with a nonlinear д(·), it turn out this
will give a satisfactory performance.) We use 7 basis functions per dimension (i.e.,
686 coe�cients w (j) to learn in total) on the form (5), with prior from the covariance
function (10a) with length scale ` = 1.

For the original case without any noise, but using only T = 500 data points, a
root mean square error (RMSE) for the simulation of 0.039 is obtained. Our result is
in contrast to the signi�cantly bigger simulation errors by Narendra and Li (1996),
although they use 1 000 times as many data points. For the more interesting case with
measurement noise in the training data, we achieve a result almost the same as for
the noise-free data. We compare to some previous results reported in the literature in
Table 7.1. It is clear that the proposed model is capable enough to well describe the
behavior of the system (32).

5.3 Water tank data

We consider the data sets provided by M. Schoukens et al. (2015), collected from
a physical system consisting of two cascaded water tanks, where the outlet of the
�rst tank goes into the second one. A training and a test data set is provided, both
with 1024 data samples. The input u (voltage) governs the in�ow to the �rst tank,

I–21

Paper I – A �exible state-space model for learning nonlinear dynamical systems

0 1,000 2,000 3,000 4,000

5
10

ou
tp
ut

(V
)

0 1,000 2,000 3,000 4,000

5
10

time (s)

ou
tp
ut

(V
)

Validation data
2nd order linear state space model. RMSE: 0.67
5th order NARX with sigmoidnet. RMSE: 0.73

" simulation focus. RMSE: 0.49
5th order NARX with wavelets. RMSE: 0.61

" simulation focus. RMSE: 0.64
The proposed model. RMSE: 0.45
Credibility interval for the proposed method.

Figure 4: The simulated and true output for the test data in the water tank experiment (Section 5.3).
The order of the NARX models refers to the number of regressors in u and y.

and the output y (voltage) is the measured water level in the second tank. This is a
well-studied system (e.g., Wigren and J. Schoukens 2013), but a peculiarity in this data
set is the presence of over�ow, both in the �rst and the second tank. When the �rst
tank over�ows, it goes only partly into the second tank.

We apply our proposed model, with a two dimensional state space. The following
structure is used:

x1
t+1 = f 1(x1

t ,ut) +v1
t , (33a)

x2
t+1 = f 2(x1

t ,x
2
t ,ut) +v2

t , (33b)
yt = x2

t + et . (33c)

It is surprisingly hard to perform better than linear models in this problem, perhaps
because of the close-to-linear dynamics in most regimes, in combination with the non-
smooth over�ow events. This calls for discontinuity points to be used. Since we can
identify the over�ow level in the second tank directly in the data, we �x a discontinuity
point at x2 = 10 for f 2(·), and learn the discontinuity points for f 1(·). Our physical
intuition about the water tanks is a close-to-linear behavior in most regimes, apart
from the over�ow events, and we thus use the covariance function (10a) with a rather
long length scale ` = 3 as prior. We also limit the number of basis functions to 5 per
dimension for computational reasons (in total, there are 150 coe�cients w (j) to learn).

Algorithm (2) is used to sample from the model posterior. We use all samples to
simulate the test output from the test input for each model to represent a posterior for

I–22

the test data output, and compute the RMSE for the di�erence between the posterior
mode and the true test output. A comparison to nonlinear ARX-models (NARX, Ljung
1999) is also made in Figure 4. It is particularly interesting to note how the di�erent
models handle the over�ow around time 3 000 in the test data. We have tried to
select the most favorable NARX con�gurations, and when �nding their parameters
by maximizing their likelihood (which is equivalent to minimizing their 1-step-ahead
prediction, Ljung 1999), the best NARX model is performing approximately 35% worse
(in terms of RMSE) than our proposed model. When instead learning the NARX
models with ‘simulation focus’, i.e., minimizing their simulation error on the training
data, their RMSE decreases, and approaches almost the one of our model for one of
the models4. While the di�erent settings in the NARX models have a large impact on
the performance, and therefore a trial-and-error approach is needed for the user to
determine satisfactory settings, our approach o�ers a more systematic way to encode
the physical knowledge at hand into the modeling process, and achieves a competitive
performance.

6 Conclusions and further work

During the recent years, there has been a rapid development of powerful parameter
estimation tools for state-space models. These methods allows for learning in complex
and extremely �exible models, and this paper is a response to the situation when
the learning algorithm is able to learn a state-space model more complex than the
information contained in the training data (cf. Figure 3a). For this purpose, we
have in the spirit of Peterka (1981) chosen to formulate GP-inspired priors for a basis
function expansion, in order to ‘softly’ tune its complexity and �exibility in a way that
hopefully resonates with the users intuition. In this sense, our work resembles the
recent work in the machine learning community on using GPs for learning dynamical
models (see, e.g., Bijl et al. 2016; Frigola-Alcade 2015; Mattos et al. 2016). However, not
previously well explored in the context of dynamical systems, is the combination of
discontinuities and the smooth GP. We have also tailored e�cient learning algorithms
for the model, both for inferring the full posterior, and �nding a point estimate.

It is a rather hard task to make a sensible comparison between our model-focused
approach, and approaches which provide a general-purpose black-box learning algo-
rithm with very few user choices. Because of their di�erent nature, we do not see
any ground to claim superiority of one approach over another. In the light of the
promising experimental results, however, we believe this model-focused perspective
can provide additional insight into the nonlinear system identi�cation problem. There
is certainly more to be done and understand when it comes to this approach, in
particular concerning the formulation of priors.

We have proposed an algorithm for Bayesian learning of our model, which renders
K samples of the parameter posterior, representing a distribution over models. A
relevant question is then how to compactly represent and use these samples to
e�ciently make predictions. Many control design methods provide performance

4Since the corresponding change in learning objective is not available to our model, this comparison
might only o�er partial insight. It would, however, be an interesting direction for further research to
implement learning with ‘simulation focus’ in the Bayesian framework.

I–23

Paper I – A �exible state-space model for learning nonlinear dynamical systems

guarantees for a perfectly known model. An interesting topic would hence be to
incorporate model uncertainty (as provided by the posterior) into control design and
provide probabilistic guarantees, such that performance requirements are ful�lled
with, e.g., 95% probability.

A Appendix: Technical details

A.1 Derivation of (24)
From Bayes’ rule, we have

p(x1:T | ξ) =
p(A,Q | ξ)p(x1:T |A,Q, ξ)

p(A,Q | ξ ,x1:T) . (34)

The expression for each term is found in (12-14), (18) and (23), respectively. All of them
have a functional form η(ξ) · |Q |χ (ξ) · exp

(− 1
2 tr

(
Q−1τ (A,x1:T , ξ)

))
, with di�erent η, χ

and τ . Starting with the |Q |-part, the sum of the exponents for all such terms in
both the numerator and the denominator sums to 0. The same thing happens to the
exp-part, which can either be worked out algebraically, or realized since p(x1:T | ξ)
is independent of Q . What remains is everything stemming from η, which indeed is
p(x1:T | ξ), (24).

A.2 Invariant distribution of Algorithm 2

where the problematic issue, obstructing the invariant distribution, is the joint condi-
tioning on a[k+1] and b[k] (marked in red), since a[k+1] has been sampled without
conditioning on b[k]. Spelling out the details from Algorithm 2 in Algorithm 4, it is
clear this problematic conditioning is not present.

1 Sample a[k+1] ∼ p(a | b[k]) Gibbs
2 Sample b[k+1] ∼ MH(b | a[k+1],b[k]) MH

So far, this is a valid sampler. However, if collapsing over b, the sampler becomes

1 Sample a[k+1] ∼ p(a) Partially collapsed Gibbs
2 Sample b[k+1] ∼ MH(b | a[k+1],b[k]) MH

where the problematic issue, obstructing the invariant distribution, is the joint condi-
tioning on a[k+1] and b[k] (marked in red), since a[k+1] has been sampled without
conditioning on b[k]. Spelling out the details from Algorithm 2 in Algorithm 4, it is
clear this problematic conditioning is not present:
Algorithm 4: Details of Algorithm 2.
2 for k = 0 to K do
3 Sample x1:T [k+1]

�

�A[k],Q[k], ξ [k] Algorithm 1

4 Sample ξ [k+1]
�

� x1:T [k+1] Section 4.3

5 Sample Q[k+1]
�

� ξ [k+1],x1:T [k+1] by (23)
6 Sample A[k+1]

�

�Q[k+1], ξ [k+1],x1:T [k+1] by (23)
7 end

I–24

References

Mauricio A. Alvarez, David Luengo, and Neil D. Lawrence (2013). “Linear latent force
models using Gaussian processes”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35.11, pp. 2693–2705.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle Markov
chain Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72.3, pp. 269–342.

Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden, and Michel Verhaegen (2016).
“Onlise sparse Gaussian process training with input noise”. In: arXiv:1601.08068.

Christopher M. Bishop (2006). Pattern recognition and machine learning. New York,
NY, USA: Springer.

Ben Calderhead, Mark Girolami, and Neil D. Lawrence (2008). “Accelerating Bayesian
inference over nonlinear di�erential equations with Gaussian processes”. In: Ad-
vances in Neural Information Processing Systems 21 (NIPS). Vancouver, BC, Canada,
pp. 217–224.

Tianshi Chen, Henrik Ohlsson, and Lennart Ljung (2012). “On the estimation of trans-
fer functions, regularizations and Gaussian processes—Revisited”. In: Automatica
48.8, pp. 1525–1535.

A. Philip Dawid (1981). “Some matrix-variate distribution theory: notational consider-
ations and a Bayesian application”. In: Biometrika 68.1, pp. 265–274.

Ramón A. Delgado, Juan C. Agüero, Graham C. Goodwin, and Eduardo M.A.M. Mendes
(2015). “Application of rank-constrained optimisation to nonlinear system identi�-
cation”. In: Proceedings of the 1st IFAC Conference on Modelling, Identi�cation and
Control of Nonlinear Systems (MICNON). Saint Petersburg, Russia, pp. 814–818.

Bernard Delyon, Marc Lavielle, and Éric Moulines (1999). “Convergence of a stochastic
approximation version of the EM algorithm”. In: Annals of Statistics 27.1, pp. 94–
128.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (1977). “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society. Series B (Methodological) 39.1, pp. 1–38.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle �ltering and
smoothing: �fteen years later”. In: Nonlinear Filtering Handbook. Ed. by D. Crisan
and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

David A. van Dyk and Xiyun Jiao (2014). “Metropolis-Hastings within partially col-
lapsed Gibbs samplers”. In: Journal of Computational and Graphical Statistics 24.2,
pp. 301–327.

Roger Frigola-Alcade (2015). “Bayesian time series learning with Gaussian processes”.
PhD thesis. UK: University of Cambridge.

Roger Frigola, Yutian Chen, and Carl Rasmussen (2014). “Variational Gaussian process
state-space models”. In: Advances in Neural Information Processing Systems 27
(NIPS). Montréal, QC, Canada, pp. 3680–3688.

Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl Rasmussen (2013).
“Bayesian inference and learning in Gaussian process state-space models with
particle MCMC”. In: Advances in Neural Information Processing Systems 26 (NIPS).
Lake Tahoe, NV, USA, pp. 3156–3164.

I–25

Paper I – A �exible state-space model for learning nonlinear dynamical systems

Zoubin Ghahramani and Sam T. Roweis (1998). “Learning nonlinear dynamical systems
using an EM algorithm”. In: Advances in Neural Information Processing Systems
(NIPS) 11. Denver, CO, USA, pp. 431–437.

Stuart Gibson and Brett Ninness (2005). “Robust maximum-likelihood estimation of
multivariable dynamic systems”. In: Automatica 41.10, pp. 1667–1682.

Anatoli Juditsky, Håkan Hjalmarsson, Albert Benveniste, Bernard Delyon, Lennart
Ljung, Jonas Sjöberg, and Qinghua Zhang (1995). “Nonlinear black-box models in
system identi�cation: mathematical foundations”. In: Automatica 31.12, pp. 1725–
1750.

Nikolas Kantas, Arnaud Doucet, Sumeetpal S. Singh, Jan M. Maciejowski, and Nicolas
Chopin (2015). “On particle methods for parameter estimation in state-space
models”. In: Statistical Science 30.3, pp. 328–351.

Juš Kocijan (2016). Modelling and control of dynamic systems using Gaussian process
models. Basel, Switzerland: Springer International.

Juš Kocijan, Agathe Girard, Blaž Banko, and Roderick Murray-Smith (2005). “Dynamic
systems identi�cation with Gaussian processes”. In: Mathematical and Computer
Modelling of Dynamical Systems 11.4, pp. 411–424.

Juho Kokkala, Arno Solin, and Simo Särkkä (2016). “Sigma-point �ltering and smooth-
ing based parameter estimation in nonlinear dynamic systems”. In: Journal of
Advances in Information Fusion 11.1, pp. 15–30.

Estelle Kuhn and Marc Lavielle (2004). “Coupling a stochastic approximation version
of EM with an MCMC procedure”. In: ESAIM: Probability and Statistics 8, pp. 115–
131.

Fredrik Lindsten (2013). “An e�cient stochastic approximation EM algorithm using
conditional particle �lters”. In: Proceedings of the 38th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, BC, Canada, pp. 6274–
6278.

Fredrik Lindsten, Michael I. Jordan, and Thomas B. Schön (2014). “Particle Gibbs with
ancestor sampling”. In: The Journal of Machine Learning Research (JMLR) 15.1,
pp. 2145–2184.

Fredrik Lindsten and Thomas B. Schön (2013). “Backward simulation methods for
Monte Carlo statistical inference”. In: Foundations and Trends in Machine Learning
6.1, pp. 1–143.

Lennart Ljung (1999). System identi�cation: theory for the user. 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall.

Lennart Ljung (2010). “Perspectives on system identi�cation”. In: Annual Reviews in
Control 34.1, pp. 1–12.

Benn Macdonald, Catherine Higham, and Dirk Husmeier (2015). “Controversy in mech-
anistic modelling with Gaussian processes”. In: Proceedings of the 32nd International
Conference on Machine Learning (ICML). Lille, France, pp. 1539–1547.

César L. C. Mattos, Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme A.
Barreto, and Neil D. Lawrence (2016). “Recurrent Gaussian processes”. In: 4th
International Conference on Learning Representations (ICLR). San Juan, Puerto Rico.

Per Mattsson, Dave Zachariah, and Petre Stoica (2016). “Recursive identi�cation of
nonlinear systems using latent variables”. In: arXiv:1606.04366.

Peter Müller (1991). A generic approach to posterior intergration and Gibbs sampling.
Tech. rep. West Lafayette, IN, USA: Department of Statistics, Purdue University.

I–26

Kumpati S. Narendra and Sai-Ming Li (1996). “Neural networks in control systems”.
In: ed. by Paul Smolensky, Michael C. Mozer, and David E. Rumelhart. Hillsdale,
NJ, USA: Lawrence Erlbaum Associates. Chap. 11, pp. 347–394.

Magnus Nørgård, Ole Ravn, Niels Kjølstad Poulsen, and Lars Kai Hansen (2000).Neural
networks for modelling and control of dynamic systems. London, UK: Springer-
Verlag.

Johan Paduart, Lieve Lauwers, Jan Swevers, Kris Smolders, Johan Schoukens, and Rik
Pintelon (2010). “Identi�cation of nonlinear systems using polynomial nonlinear
state space models”. In: Automatica 46.4, pp. 647–656.

Tian Hong Pan, Shaoyuan Li, and Ning Li (2009). “Optimal bandwidth design for
lazy learning via particle swarm optimization”. In: Intelligent Automation & Soft
Computing 15.1, pp. 1–11.

Václav Peterka (1981). “Bayesian system identi�cation”. In: Automatica 17.1, pp. 41–53.
Gianluigi Pillonetto, Alessandro Chiuso, and Giuseppe De Nicolao (2011). “Predic-

tion error identi�cation of linear systems: a nonparametric Gaussian regression
approach”. In: Automatica 47.2, pp. 291–305.

Gianluigi Pillonetto and Giuseppe De Nicolao (2010). “A new kernel-based approach
for linear system identi�cation”. In: Automatica 46.1, pp. 81–93.

Carl E. Rasmussen and Christopher K. I. Williams (2006). Gaussian processes for
machine learning. Cambridge, MA, USA: MIT Press.

Christian P. Robert and George Casella (2004). Monte Carlo statistical methods. 2nd ed.
New York, NY, USA: Springer.

Jacob Roll, Alexander Nazin, and Lennart Ljung (2005). “Nonlinear system identi�ca-
tion via direct weight optimization”. In: Automatica 41.3, pp. 475–490.

Sam T. Roweis and Zoubin Ghahramani (2000). “An EM algorithm for iden-
ti�cation of nonlinear dynamical systems”. Unpublished, available at
http://mlg.eng.cam.ac.uk/zoubin/papers.html.

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A. Naes-
seth, Andreas Svensson, and Liang Dai (2015). “Sequential Monte Carlo methods
for system identi�cation”. In: Proceedings of the 17th IFAC Symposium on System
Identi�cation (SYSID). Beijing, China, pp. 775–786.

Thomas B. Schön, Adrian Wills, and Brett Ninness (2011). “System identi�cation of
nonlinear state-space models”. In: Automatica 47.1, pp. 39–49.

Maarten Schoukens, Per Mattsson, Torbjörn Wigren, and Jean-Philippe Noël (2015).
Cascaded tanks benchmark combining soft and hard nonlinearities. Available:
homepages.vub.ac.be/ mschouke/benchmark2016.html.

Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani (2014). “Student-t
processes as alternatives to Gaussian processes”. In: Proceedings of the 17th Inter-
national Conference on Arti�cial Intelligence and Statistics (AISTATS). Reykjavik,
Iceland, pp. 877–885.

Jonas Sjöberg, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Delyon,
Pierre-Yves Glorennec, Håkan Hjalmarsson, and Anatoli Juditsky (1995). “Nonlin-
ear black-box modeling in system identi�cation: a uni�ed overview”. In: Automat-
ica 31.12, pp. 1691–1724.

Arno Solin and Simo Särkkä (2014). “Hilbert space methods for reduced-rank Gaussian
process regression”. In: arXiv:1401.5508.

I–27

Paper I – A �exible state-space model for learning nonlinear dynamical systems

Anders Stenman (1999). “Model on demand: Algorithms, analysis and applications”.
PhD thesis. Sweden: Linköping University.

Andreas Svensson, Thomas B. Schön, Arno Solin, and Simo Särkkä (2015). “Nonlinear
state space model identi�cation using a regularized basis function expansion”. In:
Proceedings of the 6th IEEE International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP). Cancún, Mexico, pp. 493–496.

Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas B. Schön (2016). “Compu-
tationally e�cient Bayesian learning of Gaussian process state space models”.
In: Proceedings of the 19th International Conference on Arti�cial Intelligence and
Statistics (AISTATS). Cádiz, Spain, pp. 213–221.

The MathWorks, Inc. (2015). Narendra-Li benchmark system: nonlinear grey box model-
ing of a discrete-time system. Example �le provided by Matlab® R2015b System Iden-
ti�cation ToolboxTM. Available at http://mathworks.com/help/ident/examples/narendra-
li-benchmark-system-nonlinear-grey-box-modeling-of-a-discrete-time-
system.html.

Robert Tibshirani (1996). “Regression shrinkage and selection via the Lasso”. In: Journal
of the Royal Statistical Society. Series B (Statistical Methodology) 58.1, pp. 267–288.

Felipe Tobar (2016). Personal communication.
Felipe Tobar, Petar M. Djurić, and Danilo P. Mandic (2015). “Unsupervised state-space

modeling using reproducing kernels”. In: IEEE Transactions on Signal Processing
63.19, pp. 5210–5221.

Jack Umenberger, Johan Wågber, Ian R. Manchester, and Thomas B. Schön (2015).
“On identi�cation via EM with latent disturbances and Lagrangian relaxation”. In:
Proceedings of the 17th IFAC Symposium on System Identi�cation (SYSID). Beijing,
China, pp. 69–74.

Yali Wang and David Barber (2014). “Gaussian processes for Bayesian estimation in
ordinary di�erential equations”. In: Proceedings of the 31st International Conference
on Machine Learning (ICML). Beijing, China, pp. 1485–1493.

Chengtao Wen, Shuning Wang, Xuexiang Jin, and Xiaoyan Ma (2007). “Identi�cation
of dynamic systems using piecewise-a�ne basis function models”. In: Automatica
43.10, pp. 1824–1831.

Torbjörn Wigren and Johan Schoukens (2013). “Three free data sets for development
and benchmarking in nonlinear system identi�cation”. In: Proceedings of the 2013
European Control Conference (ECC). Zurich, Switzerland, pp. 2933–2938.

Adrian Wills, Thomas B. Schön, Fredrik Lindsten, and Brett Ninness (2012). “Estimation
of linear systems using a Gibbs sampler”. In: Proceedings of the 16th IFAC Symposium
on System Identi�cation (SYSID). Brussels, Belgium, pp. 203–208.

Jun Xu, Xiaolin Huang, and Shuning Wang (2009). “Adaptive hinging hyperplanes and
its applications in dynamic system identi�cation”. In: Automatica 45.10, pp. 2325–
2332.

I–28

Paper II

Title
Data consistency approach to model validation

Authors
Andreas Svensson, Dave Zachariah, Petre Stoica and Thomas B. Schön

Edited version of
Andreas Svensson, Dave Zachariah, Petre Stoica, and Thomas B. Schön (2018). “Data consistency
approach to model validation”. Submitted for publication.

Digital identity
https://arxiv.org/abs/1808.05889

Financial support
This research was �nancially supported by the Swedish Foundation for Strategic Research (SSF), via the
project ASSEMBLE (contract number: RIT15-0012), and by the Swedish Research Council, via the project
NewLEADS - New Directions in Learning Dynamical Systems (contract number: 621-2016-06079).

Paper II – Data consistency approach to model validation

II–2

Data Consistency Approach to
Model Validation

Abstract

In scienti�c inference problems, the underlying statistical modeling assumptions have
a crucial impact on the end results. There exist, however, only a few automatic means
for validating these fundamental modelling assumptions. The contribution in this
paper is a general criterion to evaluate the consistency of a set of statistical models
with respect to observed data. This is achieved by automatically gauging the models’
ability to generate data that is similar to the observed data. Importantly, the criterion
follows from the model class itself and is therefore directly applicable to a broad
range of inference problems with varying data types. The proposed data consistency
criterion is illustrated and evaluated using three synthetic and two real data sets.

Introduction

In many scienti�c applications, statistical models provide a basis for inferences about
real world phenomena. These inferences are typically dependent on the model as-
sumptions being correct. However, there are few automatic means of evaluating these
assumptions. In this paper, we address the problem of model validation by developing
a method that automatically assesses the consistency of a set of models with respect
to the observed data.

Let the observed data set be denoted as

y = {y1, y2, . . . , yn}, (1)

which consists of n data blocks of equal dimension, referred to as data points. We
describe the mechanism that gave rise to the data by a probability density or mass
function p0(y), which is unknown to us. In many applications, the objective of
statistical inference is to determine certain properties of the unknown function p0(y).
Statistical methods typically specify a family or class of probability distributions that
aim to model p0(y). We denote this model class as

PΘ ,
{
p(y | θ) : θ ∈ Θ }

,

where each model p(y | θ) is indexed by the parameter vector θ . Our aim in this paper
is to assess whether the models in PΘ that best approximate p0(y) are consistent with
the observed data y or not. The idea behind the proposed data consistency criterion
(see below) is that if the best models in PΘ fail to generate data sets ỹ that are ‘similar’
to y, then PΘ can hardly be a valid modelling choice for y. This notion will be made
precise in the subsequent sections.

II–3

Paper II – Data consistency approach to model validation

Past research e�orts have mostly focused on comparing model classes, let us
say P ′Θ and P ′′Θ , using tools such as the Akaike or Bayesian information criteria and
Bayes factors (Akaike 1974; Schwarz 1978; Stoica and Moses 2004). These criteria
typically assume that some model class is well speci�ed, meaning that one of the
classes contains the unknown p0(y). While the consistency criterion proposed in this
paper also can be used for model comparison, our focus here is rather on validation
of one speci�ed model class PΘ.

One established approach to validation is to use a residual-based criterion which
assesses whether there is “any information left” in the data after �tting a model. In
the restricted context of linear dynamical systems models, such validation criteria are
capable of rejecting model classes that are inconsistent with the data, cf. G. Ljung
and Box (1978) and Söderström and Stoica (1989, Ch. 11). For models with assumption
of independent and identical distribution of the data points, classical tests such as
Cramér-von Mises, Anderson-Darling and Kolmogornov-Smirnov tests are applicable
(Anderson and Darling 1952; Lehmann 1975). Those tests are, however, constructed
only for a single model, not an entire model class. In the context of Bayesian modelling,
validation of a model class can also be performed using posterior predictive checks
which require the user to specify a discrepancy measure, cf. Box (1980), Gelman et al.
(2014), and Rubin (1984).

Our proposed data consistency criterion (Dcc) evaluates the ability of a model to
generate data similar to the observed one. In contrast to posterior predictive checks,
Dcc is automatic and does not require the user to specify any quantities except the
model class PΘ itself. Furthermore, it applies directly to a broad range of model
classes with various data types, e.g., linear regression models, count models, hidden
Markov models, autoregressive models, etc. In general, p(y | θ) can be factored as
p(y | θ) = ∏n

i=1 p(yi | y1, . . . , yi−1,θ). Dcc is applicable whenever it is possible to
point-wise evaluate p(yi | y1, . . . , yi−1,θ) for all i , and simulate new data ỹ from the
model, for any given θ ∈ Θ.

As an introductory application of our approach, we consider a modeling problem
in seismology. Then, we explain the principles behind Dcc for a single model p(y | θ?)
and, subsequently, for an entire model class PΘ. Dcc is thereafter applied to the
seismological problem as an illustration. We also discuss the implementation of the
method as well as illustrate how it can be applied to other model classes, includ-
ing regression, autoregressive and latent variables models. The source code for all
experiments is available online.1

Motivating example: Earthquake counts

A standard assumption in earthquake analysis is that earthquakes occur indepen-
dently as described by a Poisson point process. That is, the number of earthquakes
in a certain region during a certain time interval is Poisson distributed. How-
ever, it is also well-known that earthquakes tend to be clustered (both in time and
space), where each cluster typically has several ‘foreshocks’ and ‘aftershocks’ and
one larger ‘mainshock’. By modeling the earthquakes within a cluster as a branch-
ing process, the negative binomial distribution has been suggested for earthquake
counts (Kagan 2013). We consider both model classes, PΘ = Poisson distribution

1https://github.com/saerdna-se/consistency-criterion

II–4

https://github.com/saerdna-se/consistency-criterion

Magnitude 2012 2013 2014 2015 2016 2017

≥8 2 2 1 1 0 1
≥7 16 19 12 19 16 7
≥6 133 142 155 146 146 111
≥5 1680 1596 1729 1558 1696 1560

Figure 1: A snippet of the global earthquake count data, for di�erent magnitudes and years. Each
row (magnitude class) is a di�erent data set y. We would like to assess the consistency between
each of these data sets and the two model classes, the Poisson and negative binomial distributions,
respectively.

and PΘ = negative binomial distribution, which have one and two free parameters,
respectively. We will use our proposed method to assess whether these model classes
are consistent with the data y in the United States Geological Survey earthquake
catalog2 (partly shown in Table 1; for the full data set, see Fig. 8). We will return to
this example after developing the Dcc.

Data consistency check for a single model

We begin by considering a model class consisting of only a single model, i.e., PΘ =
{p(y | θ?)} where θ? is a speci�ed parameter. Let ỹ ∼ p(y | θ?) denote a sample
generated from the model and Pỹ |θ? (·) the probability of an event under the same
model.

Initially, consider the simpler case of models in which the data points i = 1, . . . ,n
in (1) are assumed to be independent. Let z̃i , lnp(ỹi | θ?) denote the log-likelihood
for the ith generated data point, and let its mean be denoted as E [z̃i]. For the ith
observed data point, let zi , lnp(yi | θ?). The observed and generated log-likelihoods,
zi and z̃i form the basis of our criterion. Intuitively, if the deviation of zi from E [z̃i]
is much larger or much smaller than the deviation of z̃i from E [z̃i], we consider the
observed data y to be atypical for the given model p(y | θ?). More formally, we de�ne
the following statistic

T (y;θ?) = 1
n

n∑
i=1

(
zi − E [z̃i]

)2

var [z̃i] , (2)

where var [z̃i] is variance of z̃i . Similarly, we de�ne the statisticT (ỹ;θ?) for generated
data by replacing y with ỹ. Let us now de�ne the random event of generating a larger
statistic than the observed one:

S(ỹ, y) : T (ỹ;θ?) > T (y;θ?). (3)

When the probability of this event Pỹ |θ?
(
S(ỹ, y)) is close to 0, it is highly improbable

that y could have been generated by p(y | θ?) and we deem the model to be inconsis-
tent with the observed data. See Fig. 2a for an illustration. This type of inconsistency
is due to under-dispersion of the generated log likelihoods, compared to the observed

2https://earthquake.usgs.gov/earthquakes/search/

II–5

https://earthquake.usgs.gov/earthquakes/search/

Paper II – Data consistency approach to model validation

ones. The probability of the complementary event Pỹ |θ?
(
Sc (ỹ, y)) = 1−Pỹ |θ?

(
S(ỹ, y))

indicates inconsistency as well, see Fig. 2b. Also in this case it is improbable that y
could have been generated by p(y | θ?). By contrast, if both aforementioned probabili-
ties are signi�cantly di�erent from 0, we do not reject the model as inconsistent, see
Fig. 2c.

The criterion above is readily generalized to models in which the data points in
(1) are dependent, by extending the de�nition of zi to

zi , lnp(yi | y1, . . . , yi−1,θ?). (4)

As above, the same symbolsE [z̃i] and var [z̃i] are used to de�ne the mean and variance
of z̃i .

If the model were a match of the unknown data-generating distribution, i.e.,
p(y | θ?) = p0(y), then the quantity Pỹ |θ?

(
S(ỹ, y)) would be uniformly distributed

between 0 and 1 with respect to the observed data y, see the proof below. In this
situation, the probability of falsely rejecting the model due to the generated log
likelihoods being under-dispersed would be

pfau (θ?) , Pỹ |θ?
(
S(ỹ, y)) . (5)

Thus, when p(y | θ) = p0(y), the probability of pfau to be less than ρ, is equal to
ρ. Symmetrically, the false alarm probability due to over-dispersion is pfao(θ?) =
1 − pfau (θ?). If neither pfau (θ?) nor pfao(θ?) are small, we cannot reject the model
p(y | θ?) on the ground that the observed data y is atypical, as discussed above.

This criterion, that neither pfau (θ?) nor pfao(θ?) is close to 0, follows automati-
cally from the speci�ed model class and does not require user choices speci�c to the
application scenario. The false alarm probabilities pfa above can be approximated
numerically using Monte Carlo methods, as we will detail later.

Proof of uniform distribution of PFA

Let ξ , T (ỹ;θ?), whose distribution is characterized by a cumulative density function
denoted Fξ (x). Further, let ξ , T (y;θ?), which allows us to write

Pỹ |θ?
(
S(ỹ, y)) = Pỹ |θ? (

ξ > ξ
)
= Fξ (ξ). (6)

Now, if y ∼ p(y | θ?), then also the distribution of ξ is characterized by Fξ , implying
that Fξ (ξ) ∼ U[0, 1] according to the probability integral transform (Casella and
Berger 2002, Thm. 2.1.10).

Data consistency check for the best models in a class

In most applications, θ? is not given. Instead PΘ may consist of a large number of
models, possibly an uncountable number when θ ∈ Θ is continuous. In such a case,
we will aim to evaluate the false alarm probabilities pfau (θ) and pfao(θ) with respect
to the models p(y | θ) that best approximate p0(y). A natural measure for quantifying

II–6

1st dim

2n
d
di
m

Level curves for model p(y|θ?)
Simulated samples ỹi
Observed data yi

zidi
st
rib

ut
io
n

Distribution for z̃i
zi = lnp(yi | θ?)

(a) The observed data points appear as atypical
with respect to the model, since they fall into
regions of low probability. We obtain T (y;θ?) =
14, and the probability of generating a higher
statistic is Pỹ |θ?

(
S(ỹ, y)) = 0.00. Thus, the dis-

persion of z̃i is signi�cantly lower than that of
zi and we reject the model as inconsistent with
the observed data.

1st dim

2n
d
di
m

zidi
st
rib

ut
io
n

(b) The observed data points appear as atypical
with respect to the model, since they are con-
centrated asymmetrically. We obtain T (y;θ?) =
0.24, and the probability of generating a lower
statistic is Pỹ |θ?

(
Sc (ỹ, y)) = 0.04. Thus, the

dispersion of z̃i is signi�cantly higher than that
of zi and we reject the model as inconsistent with
the observed data.

1st dim

2n
d
di
m

zidi
st
rib

ut
io
n

(c) The observed data points appear to be typical
samples from the model. We obtain T (y;θ?) =
0.51, and the probability of generating a lower
statistic is Pỹ |θ?

(
Sc (ỹ, y)) = 0.39. We do there-

fore not reject the model as inconsistent.

Figure 2: Consider a data set y = {yi } containing n = 7 two-dimensional data points (red
triangles, upper panels) and assume a Gaussian i.i.d. model p(y | θ?) =

∏
i p(yi | θ?) (green level

curves). The log-likelihoods zi = lnp(yi | θ?) for each data point are shown as red triangles in the
lower panels. The generated log-likelihoods z̃i follow the distribution illustrated in green in the
same panels. When the deviation of zi from E [z̃i] is signi�cantly di�erent from that of z̃i , it is
unlikely that the model could have generated the observed sample. The deviation is quanti�ed
by the statistic T (y;θ?). The �gure illustrates three cases: two cases of inconsistency (a, b) and a
balanced case (c).

II–7

Paper II – Data consistency approach to model validation

the accuracy of the approximation is the Kullback-Leibler divergence (Kullback 1959).
The best models are then de�ned as those that minimize the divergence:

θ? ∈ arg min
θ

E0 [lnp0(y) − lnp(y|θ)]︸ ︷︷ ︸
model divergence

, (7)

where the expectation E0 is with respect to y ∼ p0(y). In particular, if θ? exists such
that the model divergence attains the minimum value 0, it follows that p(y | θ?) =
p0(y).

Since p0(y) is unknown, (7) cannot be used to identify the best models. Conse-
quently we resort to an alternative approach. We assign weights to each model in
PΘ so as to average the false alarm probability pfau (θ) across those models that are
likely to be the best approximations of p0(y). The averaged false alarm probability
due to under-dispersion is given by

pfa?
u =

∫
Θ

pfau (θ)w(θ | y) dθ (8)

where the weights w(θ | y) ≥ 0 are high for models in the neighborhood of θ? and
integrate to unity. By de�ning

w(θ | y) , w0(θ)p(y | θ)∫
Θ
w0(θ)p(y | θ)dθ

, (9)

the weights re�ect the uncertainty about the location of θ? in the parameter space Θ
(Bissiri and Walker 2012; Casella and Berger 2002). The default choice of the initial
weights isw0(θ) ≡ 1. In certain applications, however, we may have prior information
about the location of θ? in Θ. Then the initial weightsw0(θ) can be chosen to describe
these prior beliefs. Under certain regularity conditions, the weights in (9) concentrate
at θ? as n →∞ if θ? is unique, cf. L. Ljung and Caines (1979) and Berk (1966).

As before, we still have pfa?
o = 1 − pfa?

u , and we denote our �nal criterion

(10)

In summary, the proposed data consistency criterion (Dcc) for the model class PΘ
is the minimum of pfa?

u and pfa?
o ((8)). A value close to 0 indicates that the observed

data y is atypical for the best models in PΘ, and thereby we consider the model class
PΘ to be inconsistent with y.

Implementation

The averaged pfa? is available in closed-form only in very few special cases, since
there are non-trivial integrals in (5), (8), and (9). However, the integrals can be
e�ciently approximated by Monte Carlo integration techniques, provided that data ỹ
can be generated from p(y | θ) and that p(yi | y1, . . . , yi−1,θ) can be evaluated point-
wise. We outline such a generic Monte Carlo-based implementation3 in Algorithm 1,
where N parameters are �rst drawn using w(θ | y), and then (for each such draw)

3Where I [·] denotes the indicator function.

II–8

Algorithm 1: Monte Carlo implementation of DCC (8)
1 Construct w(θ | y)
2 Draw N samples θ (j) ∼ w(θ | y), j = 1, . . . ,N
3 for j = 1, . . . ,N do
4 Simulate M ′ data sets ỹ′(k) ∼ p(y | θ (j)), k = 1, . . . ,M ′

5 Compute z̃ ′(k)i as (4) for all generated data points ỹ′(k)i
6 Compute sample mean m̂i and variance v̂i of z̃ ′i , i = 1, . . . ,n
7 Simulate M data sets ỹ(`) ∼ p(y | θ (j)), ` = 1, . . . ,M
8 Compute z̃(`)i as (4) for all generated data points ỹ(`)i
9 Compute zi as (4) for all observed data points yi

10 Compute T (j) = 1
n
∑n

i=1
(zi−m̂i)2

v̂i

11 Compute T̃ (j, `) = 1
n
∑n

i=1

(
z̃(`)i −m̂i

)2

v̂i
12 Set ˆpfa(i)u = 1

M
∑M

`=1 I
[
T̃ (j, `) > T (j)

]
13 end
14 Set ˆpfa?

u =
1
N

∑N
i=1 ˆpfa(i)u and ˆpfa?

= min
(

ˆpfa?
u , 1 − ˆpfa?

u
)

M +M ′ samples of ỹ are generated from p(y | θ), giving a computational complexity
on the order of N (M +M ′).

The operations needed to execute Algorithm 1 are common in most statistical
software packages. The weights w(θ | y) can be computed (at least approximately)
by methods that estimate or learn θ . Numerical evaluation of the (incremental)
likelihoods p(yi | y1, . . . , yi−1,θ), which in Algorithm 1 has to be performed both for
generated data ỹ (line 5) and observed data y (line 6), is possible for many statistical
models. If n is large compared to the number of parameters, it can be justi�ed to use
the following weights

w(θ | y) =
{

1, θ = θ̂

0, θ , θ̂
,

where θ̂ is the maximum likelihood/maximum a posteriori point estimate (in this case
N = 1).

Examples

Earthquake counts (cont’d)

To assess whether the Poisson or the negative binomial distribution is best suited
for the data (partly) presented in Fig. 1, we are now ready to apply the Dcc. We
use the Monte Carlo approach in Algorithm 1 with N = 200 and M = M ′ = 200,
and obtain the results in Table 3. From this table we draw the conclusion that the
Poisson distribution and the negative binomial distribution are both consistent with
the data for earthquakes with magnitude ≥ 7. However, only the negative binomial
distribution is consistent with the data for smaller magnitudes. This result supports

II–9

Paper II – Data consistency approach to model validation

Magnitude Poisson distribution Negative binomial distribution
≥8 ˆpfa?

= 0.40 ˆpfa?
= 0.39

≥7 ˆpfa?
= 0.29 ˆpfa?

= 0.38
≥6 ˆpfa?

= 0.00 ˆpfa?
= 0.30

≥5 ˆpfa?
= 0.00 ˆpfa?

= 0.13

Figure 3: Assessment of the two earthquake count models (Poisson and negative binomial) for
earthquakes of di�erent magnitudes. The low average false alarm probabilities ˆpfa? for the Poisson
distribution suggests that this model class is not consistent with the observed data for magnitudes
≤ 6.

the qualitative reasoning in the literature (Kagan 2013): the Poisson distribution does
not take the clustering e�ects into account, but since each cluster typically does not
contain more than one major earthquake, the number of really big earthquakes can
still follow the Poisson distribution.

Synthetic data: Gaussian models

To further illustrate the behavior of pfa?, we conduct a simulation study with two toy
model classes PΘ = {N (0, 1)} and P ′Θ = {N

(
µ,σ 2) : σ 2 > 0} with θ = {µ,σ 2}. Note

that PΘ contains only a single model. We consider data sets y ∼ p0(y) of di�erent
size n and consider two cases: a standard Gaussian distribution p0 = N (0, 1) and
a standard uniform distribution p0 = U[0, 1], respectively. We use N = 50 and
M = M ′ = 100, and evaluate Dcc in 1 000 experiments. The results are summarized
as histograms in Fig. 4.

In the case when data comes from p0 = N (0, 1) (Fig. 4a), both PΘ and P ′Θ contain
p0. However, the only model in PΘ is p0. Thus the averaged pfa? is uniformly
distributed across experiments (cf. the proof of uniform distribution for pfa). By
contrast, the weights w(θ | y) for P ′Θ concentrate at the best model p0 only as n →
∞. Thus the averaged pfa? approaches a uniform distribution only asymptotically.
Neither model class is falsely rejected more frequently than the pfa indicates.

In the case when data comes from p0 = U[0, 1] (Fig. 4b), neither PΘ nor P ′Θ con-
tains p0. Unlike PΘ, however, the best model in P ′Θ matches the mean and variance of
p0. The inconsistency of the best model are discernible only for data points generated
from the distribution tails. Consequently, it takes more samples n to reject the larger
model class P ′Θ than the PΘ. As n increases, both model classes are clearly rejected.

II–10

0.5 ˆpfa?
0.5 ˆpfa?

0.5 ˆpfa?
0.5 ˆpfa?

0.5 ˆpfa?
0.5 ˆpfa?

PΘ = {N (0, 1)} P ′Θ = {N
(
µ,σ 2)}

n
=

10
n
=

10
0

n
=

10
00

(a) Data generating process p0 = N (0, 1). Both model classes contain p0. As n
increases, pfa? approaches a uniform distribution also for P ′Θ.

0.5 ˆpfa?
0.5 ˆpfa?

0.5 ˆpfa?
0.5 ˆpfa?

0.5 ˆpfa?
0.5 ˆpfa?

PΘ = {N (0, 1)} P ′Θ = {N
(
µ,σ 2)}

n
=

10
n
=

10
0

n
=

10
00

(b) Data generating process p0 = U[0, 1]. Neither model class contain p0. As n
increases, pfa? concentrates at 0 and both model classes are rejected.

Figure 4: Histograms of Dcc obtained from 1000 experiments, when p0 is the standard Gaussian
distribution (a) and the standard uniform distribution (b). Two di�erent model classes are considered
in the left and right columns, respectively. Dcc is able to correctly identify the cases where the
model class is inconsistent with the data.

II–11

Paper II – Data consistency approach to model validation

−20 −10 0 10 20

−2,000

0

2,000

Data
Fitted polynomial
Fitted noise level

Figure 5: Data points from p0 (3rd order polynomial, blue dots) and model class PΘ =
{1st order polynomial + Gaussian noise} where θ contains the polynomial coe�cients and noise
variance. A �tted model is shown with θ estimated using the maximum likelihood method (black
solid line: estimated polynomial, dashed lines: 2 estimated noise standard deviations). While the
estimated noise variance produces a good �t in terms of likelihoods, this model class should ideally
be rejected. Using Dcc for PΘ, we obtain pfa? = 0.01 and can reject PΘ. Similarly, for a model
class P ′Θ containing 2nd order polynomials we obtain pfa? = 0.01. By contrast, for 3rd order
polynomials, P ′′Θ , we have pfa? = 0.37 and this class is correctly found not to be inconsistent with
the data.

Synthetic data: Regression models

We illustrate the capability of Dcc to reject model classes with an inappropriate
model order, using the example of polynomial regression. If the observed data is well
described by a high-order polynomial, the best model in PΘ, which contains models of
lower-order polynomials plus noise, will yield a good �t in the likelihood sense because
the noise variance is scaled to match the residuals. Such an example is shown in Fig. 5,
where PΘ contains 1st order polynomial models with independent Gaussian noise.
When assessing PΘ using Dcc, we obtain ˆpfa?

= 0.01 (with N = M = M ′ = 100),
which clearly indicates an inconsistency. On the other hand, for the model class
containing 3rd order polynomials we obtain ˆpfa?

= 0.37, which (correctly) indicates
no inconsistency.

Synthetic data: Time-series models

For the case of time-series models driven by white noise, whiteness tests such as the
Ljung-Box test (G. Ljung and Box 1978; see also Stoica 1977) are common validation
techniques. The Ljung-Box test constructs a p-value from the fact that the statistic
n(n + 2)∑h

k=1
r̂ 2
k

n−k will follow a χ 2
h−d distribution if the model is correct, with r̂k being

the lag k sample correlation of the prediction residuals, and d the dimension of θ . We
set the upper lag limit h to blogne.

We conduct a simulation study with data from the saturated �rst order autore-
gressive model yi = max(0.7yi−1 + ei , −0.3), where ei ∼ N (0, 1). We assume a
misspeci�ed model class which consists of �rst-order linear autoregressive models
PΘ = {p(y|θ) : yi = ayi−1 + ei , ei ∼ N

(
0,σ 2) : σ 2 > 0}, with unknown parameters

II–12

θ = {a,σ 2}. We consider cases where y contains di�erent amount of data samples n,
and use N = 200 and M = M ′ = 200 in Algorithm 1.

The results are shown in Fig. 6. As the amount of data n grows, both methods
correctly reject the misspeci�ed model, with the proposed Dcc needing slightly less
data to do so than the much more specialized Ljung-Box method.

0.5 0.5 0.5

n = 10 n = 100 n = 1000

(a) Results for the Ljung-Box method.

0.5 ˆpfa?
0.5 ˆpfa?

0.5 ˆpfa?

n = 10 n = 100 n = 1000

(b) Results for the Dcc.

Figure 6: Histograms for the Ljung-Box p-value (top) and ˆpfa? (bottom). For both methods, small
values indicate an inconsistency. The data y is generated by a saturated (non-linear) autoregressive
model, but the assumed model class PΘ consists of linear autoregressive models. In this example,
the amount of data required by the Ljung-Box method to detect the mismatch is slightly larger
than for the proposed criterion.

Latent-variable models: Evolution of a kangaroo population

Certain models are too complex to be described using closed-form expressions. Instead
these models are often parameterized using latent variablesη, with a prior distribution
p(η | θ). This includes, e.g., hidden Markov or state-space models, mixed-e�ect models,
latent topic models, etc. Then the data distribution can be written as the integral

p(y | θ) =
∫

p(y |η,θ)p(η | θ)dη. (11)

If the (incremental) likelihoods p(yi | y1, . . . , yi−1,θ) can be evaluated or well approx-
imated, Dcc can be computed also for this model class, as we will illustrate in the
following.

We consider the dynamics of a population of red kangaroos (Macropus rufus) in
New South Wales, Australia. The data y, from Bayliss (1987, Appendix 8.2; available in
Fig. 8), is a time series of n = 41 bi-variate observations from double transect counts
at irregular time intervals between 1973 and 1984. In Knape and Valpine (2012) the
authors propose three di�erent models for this data. These models are then compared
in a pairwise fashion using the Bayes factor. The comparison has recently been

II–13

Paper II – Data consistency approach to model validation

1974 1976 1978 1980 1982 1984
0

500

1,000

year

ka
ng

ar
oo

s

Figure 7: The kangaroo time series data (y, red), together with a few time series (grey) that are
generated from the model in (12) (parameters sampled from w(θ | y); cf. Step 7 of Algorithm 1).
Dcc indicates no inconsistency between the data and the model (ˆpfa? = 0.28), which resonates
with the intuition since the generated data behaves ‘similarly’ to the observed data.

repeated in Shao et al. (2017) using the Hyvärinen score. Both Knape and Valpine
(2012) and Shao et al. (2017) conclude that among the three di�erent models, the
preferred model is the following continuous-time stochastic di�erential equation

x1 = LN(0, 5), (12a)
dxt
xt
=
σ 2

2 dt + σdWt , (12b)

y1,t ,y2,t | xt i.i.d.∼ NB
(
τ − 1
τ
,

τxt
τxt + 1

)
, (12c)

where LN is the log-normal distribution,Wt is the standard Brownian motion, NB
is the negative binomial distribution, and θ = {σ ,τ } are unknown parameters. The
latent variables areη = {xt }t ≥1. Note that this model describes a bi-variate time-series
{yi }.

While Knape and Valpine (2012) and Shao et al. (2017) favor the model given in (12)
over other alternatives, we consider the di�erent question whether the model in (12)
is consistent with the observed data y or not. We �rst solve (12) analytically to obtain
a discrete-time nonlinear state-space model, and use the particle marginal Metropolis-
Hastings method (Andrieu et al. 2010) to sample the unknown parameters. A standard
particle �lter is used to approximate p(yi | y1, . . . , yi−1,θ). We use N = 1000 and
M ′ = M = 200 and obtain ˆpfa?

= 0.28. Thus the model in (12) is deemed to be
consistent with the observed kangaroo population data (also see Fig. 7 for intuitive
support of this conclusion).

Discussion

We have proposed a data consistency criterion (Dcc) to assess the consistency of
a model class PΘ with respect to the observed data y. By comparing the observed
(incremental) likelihoods p(yi | y1, . . . , yi−1,θ) to the ones of generated data ỹ, Dcc
rejects a model class for which y is atypical for the best models in the class. The
criterion follows automatically from the speci�cation of PΘ and does not require ad-
ditional application-speci�c choices. It yields an (approximate) false alarm probability
pfa? of erroneously declaring the best models to be inconsistent. When pfa? falls
below some set threshold, there is a sound ground for ruling out the model class PΘ.

II–14

By exploiting properties of the Fisher information matrix of PΘ, it is possible to
construct misspeci�cation tests, cf. White (1982). That is, decide whether p(y | θ?) =
p0(y) is true or not. Since all practical models are incomplete in some respect, such
tests may not always be relevant. Instead, what matters in many applications is
whether the model is accurate or not, and the proposed Dcc provides a practically
useful criterion in this respect.

Using a Bayesian interpretation of (8), Dcc can be understood as a certain posterior
predictive check (Box 1980; Gelman et al. 2014; Rubin 1984). Posterior predictive checks
are, however, not available for plug-and-play since they require the user to specify a
‘discrepancy variable’, in contrast to the fully automatic Dcc. The Dcc also readily
admits a frequentist interpretation in terms of false alarm probability as a sampling
property of p0(y).

The computational cost of the criterion increases indeed with the dimension of
θ and n. The operations required are, however, available for many models and well
devloped in most statistical software packages. Dcc could therefore be used as a
routine check in existing statistical modeling methods, in order to better guide the
end user to well-grounded scienti�c conclusions.

References

Hirotugu Akaike (1974). “A new look at the statistical model identi�cation”. In: IEEE
Transactions on Automatic Control 19.6, pp. 716–723.

Theodore W. Anderson and Donald A. Darling (1952). “Asymptotic Theory of Cer-
tain "Goodness of Fit" Criteria Based on Stochastic Processes”. In: The Annals of
Mathematical Statistics 23.2, pp. 193–212.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle Markov
chain Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72.3, pp. 269–342.

Peter Bayliss (1987). “Kangaroos - Their Ecology and Management in the Sheep
Rangelands of Australia”. In: ed. by Graeme Caughley, Neil Shepher, and Je�
Short. Cambridge University Press. Chap. Kangaroo dynamics.

Robert H. Berk (1966). “Limiting behavior of posterior distributions when the model
is incorrect”. In: The Annals of Mathematical Statistics 37.1, pp. 51–58.

Pier Giovanni Bissiri and Stephen G. Walker (2012). “Converting information into
probability measures with the Kullback–Leibler divergence”. In: Annals of the
Institute of Statistical Mathematics 64.6, pp. 1139–1160.

George E. P. Box (1980). “Sampling and Bayes’ inference in scienti�c modelling and
robustness”. In: Journal of the Royal Statistical Society, Series A 143.4, pp. 383–430.

George Casella and Roger L. Berger (2002). Statistical inference. 2nd ed. Paci�c Grove,
CA, USA: Duxbury.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and
Donald B. Rubin (2014). Bayesian data analysis. 3rd ed. Boca Raton, FL, USA:
Chapman & Hall/ CRC Press.

Yan Y. Kagan (2013). Earthquakes: models, statistics, testable forecasts. American Geo-
physical Union.

II–15

Paper II – Data consistency approach to model validation

Jonas Knape and Perry de Valpine (2012). “Fitting complex population models by
combining particle �lters with Markov chain Monte Carlo”. In: Ecology 93.2,
pp. 256–263.

Solomon Kullback (1959). Information Theory and Statistics. Dover Publications.
Erich L. Lehmann (1975). Nonparametrics: statistical methods based on ranks. San

Francisco, CA, USA: McGraw-Hill.
Greta Ljung and George E. P. Box (1978). “On a measure of lack of �t in time series

models”. In: Biometrika 65.2, pp. 297–303.
Lennart Ljung and Peter E. Caines (1979). “Asymptotic normality of prediction error

estimators for approximate models”. In: Stochastics 3, pp. 29–46.
Donald B. Rubin (1984). “Bayesianly justi�able and relevant frequency calculations

for the applied statistician”. In: The Annals of Statistics 12.4, pp. 1151–1172.
Gideon Schwarz (1978). “Estimating the dimension of a model”. In: Annals of Statistics

6.2, pp. 461–464.
Stephane Shao, Pierre E. Jacob, Jie Ding, and Vahid Tarokh (2017). “Bayesian

model comparison with the Hyvärinen score: computation and consistency”. In:
arXiv:1711.00136.

Torsten Söderström and Petre Stoica (1989). System identi�cation. Hemel Hempstead,
UK: Prentice-Hall, Inc.

Petre Stoica (1977). “A test for whiteness”. In: IEEE Transactions on Automatic Control
22.6, pp. 992–993.

Petre Stoica and Randolph Moses (2004). Spectral Analysis of Signals. Upper Saddle
River, NJ, USA: Prentice Hall.

Halbert White (1982). “Maximum likelihood estimation of misspeci�ed models”. In:
Econometrica 50.1, pp. 1–25.

Magnitude 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
≥8 0 0 0 0 0 2 1 0 0 1 0 0 0 0 2 2 1 0 1
≥7 6 10 7 14 14 15 11 13 11 8 18 17 13 12 13 20 15 16 12
≥6 96 88 90 139 141 162 140 173 126 139 154 137 179 148 159 201 164 136 121
≥5 1408 1265 1505 1802 1683 1806 1765 1572 1598 1561 1765 1583 1675 1564 1693 1501 1373 1234 1074

Magnitude 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
≥8 0 1 1 0 1 2 1 2 4 0 1 1 1 2 2 1 1 0 1
≥7 18 15 16 13 15 16 11 11 18 12 17 24 20 16 19 12 19 16 7
≥6 136 160 137 139 156 157 151 153 196 179 161 175 207 133 142 155 146 146 111
≥5 1192 1495 1352 1309 1364 1672 1843 1877 2283 1965 2075 2395 2692 1680 1596 1729 1558 1696 1560

(a) Data for the earthquake count example: The number of earthquakes above a certain magnitude
(left column) in the entire world for 1980-2017, retrieved from the U. S. Geological Survey earthquake
catalog.

Date 1973 Jul 1973 Oct 1974 Mar 1974 Jun 1974 Sep 1975 Jan 1975 Apr 1975 Jul 1975 Oct 1976 Feb 1976 May 1976 Aug 1976 Dec 1977 Apr
Counts 267 333 159 145 340 463 305 329 575 227 532 769 526 565

326 144 145 138 413 531 331 329 529 318 449 852 332 742

Date 1977 Jul 1977 Sep 1978 Jan 1978 May 1978 Aug 1978 Nov 1979 Feb 1979 Aug 1979 Nov 1980 Mar 1980 Jul 1980 Oct 1980 Dec 1981 Mar
Counts 466 494 440 858 599 298 529 912 703 402 669 796 483 700

479 620 531 751 442 824 660 834 955 453 953 808 975 627

Date 1981 Jul 1981 Sep 1981 Dec 1982 Mar 1982 Jun 1982 Sep 1982 Dec 1983 Mar 1983 Jun 1983 Sep 1983 Dec 1984 Mar 1984 Jun
Counts 418 979 757 755 517 710 240 490 497 250 271 303 386

851 721 1112 731 748 675 272 292 389 323 272 248 290

(b) Data for the kangaroo population example, adopted from Bayliss (1987, Appendix 8.2)

Figure 8: Complete data sets for the earthquake and kangaroo counting examples.

II–16

Paper III

Title
Learning dynamical systems with particle stochastic approximation EM

Authors
Andreas Svensson and Fredrik Lindsten

Edited version of
Andreas Svensson and Fredrik Lindsten (2018). “Learning dynamical systems with particle
stochastic approximation EM”. Submitted for publication.

Digital identity
https://arxiv.org/abs/1806.09548

Parts of the content in this paper have previously been presented in
Fredrik Lindsten (2013). “An e�cient stochastic approximation EM algorithm using conditional particle
�lters”. In: Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing
(ICASSP). Vancouver, BC, Canada, pp. 6274–6278.

Financial support
Swedish Foundation for Strategic Research (SSF) via the projects ASSEMBLE (contract number: RIT15-0012)
and Probabilistic Modeling and Inference for Machine Learning (contract number: ICA16-0015), and the
Swedish Research Council via the project Learning of Large-Scale Probabilistic Dynamical Models (contract
number: 2016-04278).

Paper III – Learning dynamical systems with particle stochastic approximation EM

III–2

Learning Dynamical Systems
with Particle Stochastic

Approximation EM

Abstract

We present the particle stochastic approximation EM (PSAEM) algorithm for learning
of dynamical systems. The method builds on the EM algorithm, an iterative procedure
for maximum likelihood inference in latent variable models. By combining stochastic
approximation EM and particle Gibbs with ancestor sampling (PGAS), PSAEM obtains
superior computational performance and convergence properties compared to plain
particle-smoothing-based approximations of the EM algorithm. PSAEM can be used
for plain maximum likelihood inference as well as for empirical Bayes learning of
hyperparameters. Speci�cally, the latter point means that existing PGAS implementa-
tions easily can be extended with PSAEM to estimate hyperparameters at almost no
extra computational cost. We discuss the convergence properties of the algorithm,
and demonstrate it on several machine learning applications.

1 Introduction

Learning of dynamical systems, or state-space models, is central to many machine
learning problems, such as reinforcement learning, sequence modeling, and au-
tonomous systems. Furthermore, state-space models are at the core of recent model
developments within the machine learning area, such as Gaussian process state-space
models (Frigola, Chen, et al. 2014; Mattos et al. 2016; etc.), in�nite factorial dynamical
models (Gael et al. 2009; Valera et al. 2015), and stochastic recurrent neural networks
(Fraccaro et al. 2016, for example). A strategy to learn state-space models, indepen-
dently suggested by Digalakis et al. (1993) and Ghahramani and Hinton (1996), is the
use of the Expectation Maximization (EM, Dempster et al. 1977) method. Even though
originally proposed only for maximum likelihood estimation of linear models with
Gaussian noise, the strategy can be generalized to the more challenging non-linear
and non-Gaussian cases, as well as the empirical Bayes setting. Many contributions
have been made during the last decade, and this paper takes another step along the
path towards a more computationally e�cient method with a solid theoretical ground
for learning of nonlinear dynamical systems.

III–3

Paper III – Learning dynamical systems with particle stochastic approximation EM

To set the notation for this article, we write a general (discrete-time, non-linear
and non-Gaussian) state-space model, or dynamical system, as

xt ∼ pθ (xt | xt−1), (1a)
yt ∼ pθ (yt | xt), (1b)

with transition density function pθ (xt | xt−1) and observation density function
pθ (yt | xt), parameterized by some unknown parameter θ ∈ Θ. Here, {xt ∈ X}t=0,1, ...
denotes the unobserved state and {yt ∈ Y}t=1,2... denotes the observations, and the
index t is referred to as ’time’. The initial state x0 is distributed according to p(x0)1.
We consider θ as unknown and the focus of this paper is to learn it from recorded
data (y1, ...,yT) , y1:T .

The EM algorithm, which is the strategy we will follow, iteratively solves an
integration problem and a maximization problem. When using EM for learning non-
linear state-space models (1), the integral includes the posterior distribution over
the unobserved states x0:T , and possibly also the parameter θ . This distribution is
in general analytically intractable, but it can be approximated using computational
methods such as particle �lters/sequential Monte Carlo (SMC).

The combination of EM and SMC, as suggested by Cappé et al. 2005; Olsson et al.
2008; Schön et al. 2011, has provided a principled solution to the challenging problem
of learning general state-space models (1), but is unfortunately ‘doubly asymptotic’; to
ensure convergence, it requires (i) an in�nite number of particles/Monte Carlo samples
in the approximation of the posterior of x0:T for each iteration of the EM algorithm,
and (ii) the EM algorithm itself converges only as its number of iterations goes to
in�nity. This is a theoretical as well as a practical issue, and we will in this paper
explore a solution where particle Markov chain Monte Carlo (PMCMC), rather than
plain SMC, is used, which allows the two asymptotical convergences to be ‘entangled’.
This will give us an algorithm which relies on asymptotics only in one dimension (its
number of iterations, not the number of particles), and thereby enjoys a signi�cantly
reduced computational cost and superior convergence properties compared to the
predecessors. This overall picture is also brie�y summarized in Figure 1. Further
discussion of related work is postponed to Section 3.

Throughout the paper we assume that the reader is familiar with Markov chain
Monte Carlo (MCMC, Robert and Casella 2004; Tierney 1994) as well as particle
�lters/sequential Monte Carlo (SMC, Doucet, Freitas, et al. 2001; Doucet and Johansen
2011).

1For notational brevity we assume that the initial density p(x0) is fully speci�ed and not parameterized
by θ , but the extension to an unknown initial density is straightforward.

III–4

Solve an integral with respect to
pθk−1 (x0:T |y1:T)

Solve a maximization problem (depending on the
integral) to get θk

k
←

k
+

1

3 convergence as k →∞

(a) EM

Approximate the integral by N samples from
pθk−1 (x0:T |y1:T)

Solve a maximization problem (depending on the
N samples) to get θk

k
←

k
+

1
! convergence as k →∞ and N →∞

(b) Monte Carlo EM

Draw a few samples from a Markov kernel with
invariant distribution pθk−1 (x0:T |y1:T)

Solve a maximization problem (depending on all
past samples) to get θk

k
←

k
+

1

3 convergence as k →∞

(c) SAEM

Figure 1: A brief summary of the di�erent �avors of Expectation Maximization (EM) methods
for maximum likelihood estimation of θ . When it is possible to solve the state inference problem
(computing pθk (x0:T |y1:T)) analytically, vanilla EM (a) is the preferred solution. For general
models of the form (1)) this is not possible and numerical approximations are required. Monte
Carlo EM (b) can be used with a particle smoother (an extension of the particle �lter/SMC) to
generate approximate samples from pθk (x0:T |y1:T), which has been proposed independently in
the literature several times. Alternatively, stochastic approximation EM (SAEM, (c)) can be used
(whose convergence properties are superior to Monte Carlo EM), and if the required Markov kernel
is built up using the particle �lter in Algorithm 1 we refer to it as PSAEM, the main contribution of
this paper.

III–5

Paper III – Learning dynamical systems with particle stochastic approximation EM

2 Problem formulation and conceptual solution

Given a batch of observationsy1:T we wish to learn the unknown parameters θ as well
as the unobserved states x0:T of the model (1). For the states x0:T we are interested
in their posterior distribution. For the parameters θ , we consider two cases: In the
frequentistic, or rather Fisherian, setting we are interested in a (possibly regularized)
maximum likelihood estimate θ̂ . In the Bayesian setting, we assign a prior distribution
to the parameters, θ ∼ pη(θ). The prior, in turn, is assumed to be parameterized by
some hyperparameter η, which needs to be estimated. Thus, we will address both of
the following two problems:

1. (Fisherian setting) Compute the maximum likelihood estimate of the model
parameters,

θ̂ = arg max
θ

logpθ (y1:T),

where the likelihood function is pθ (y1:T) =
∫
pθ (y1:T | x0:T)pθ (x0:T)dx0:T . If

desired, a regularization term, such as ‖θ ‖1 (Tibshirani 1996), may also be
included in the maximization criterion.

2. (Bayesian setting) Compute the posterior distribution of the model parameters
pη̂(θ |y1:T), where the hyperparameters are estimated using empirical Bayes
(a.k.a. type-II maximum likelihood)

η̂ = arg max
η

logpη(y1:T),

where the marginal likelihood function is

pη(y1:T) =
∫

pθ (y1:T | x0:T)pθ (x0:T)pη(θ)dθdx0:T .

These two problems are in fact strongly related and the computational algorithm that
we will propose can be used to address either one of the two problems. In either case,
the algorithm will compute a Monte Carlo/sampling-based approximation of the poste-
rior distribution over the latent variables. In the Fisherian setting, the latent variables
are the states x0:T , and their posterior is the smoothing distribution pθ̂ (x0:T |y1:T).
In the Bayesian approach, however, both the states x0:T and the parameters θ are
considered as latent variables, and we will compute the joint state and parameter
posterior distribution pη̂(θ ,x0:T |y1:T). From this latter distribution, the parameter
posterior pη̂(θ |y1:T) can be obtained by marginalization.

Both approaches, as seen above, involve the computation of a maximum likelihood
estimate; of the model parameters in the �rst case and of the hyperparameters in
the second case. A conceptual solution to these problems is given by the expectation
maximization (EM, Dempster et al. 1977) algorithm. EM is a data augmentation method,
meaning that it is based on the notion of a complete data, comprising the observed
data as well as the latent (or missing) variables. The EM algorithm iteratively updates
the (hyper-)parameters, and each iteration consists of two steps:

III–6

(E) Compute the expected value of the complete data log-likelihood for �xed
(hyper-)parameters

(M) Maximize the Q-function (which will be de�ned below) with respect to the
(hyper-)parameters

The observed data is always y1:T , and what di�ers between the Fisherian and the
Bayesian problem is what constitutes the latent variables. For the Fisherian problem,
the latent variables are x0:T and we obtain, at iteration k ,

(E) Let QFish
k (θ) :=

∫
logpθ (y1:T ,x0:T)pθk−1 (x0:T |y1:T)dx0:T , (2a)

(M) Solve θk ← arg max
θ

QFish
k (θ). (2b)

Note that the expectation in the (E)-step is w.r.t. the smoothing distribution
pθk−1 (x0:T |y1:T) parameterized by the previous parameter iterate θk−1. (If a regu-
larization term is present, it is added to logpθ (y1:T ,x0:T).) It is well known that
iterating this procedure results in a monotone increase of the likelihood pθ (y1:T), and
the iterates θk will under weak assumptions converge to a stationary point of the
likelihood function as k →∞ (see e.g., Wu 1983).

In the empirical Bayes setting we obtain similar expressions, but the latent vari-
ables now comprise both x0:T and θ . The E-step is thus modi�ed, and iteration k is

(E) Let QBay
k (η) :=

∫
logpη(y1:T ,x0:T ,θ)pηk−1 (θ ,x0:T |y1:T)dθdx0:T

=

∫
logpη(θ)pηk−1 (θ |y1:T)dθ + const., (3a)

(M) Solve ηk ← arg max
η

Q
Bay
k (η), (3b)

where the second line of (3a) follows from the fact that in the factorization of the
complete data likelihood, only the prior density pη(θ) depends on the hyperparameter
η. The M-step remains unchanged. In complete analogy to the Fisherian setting, (3)
will also under weak assumptions converge to a stationary point of the marginal
likelihood as k →∞.

Both (2) and (3) can be implemented and iterated until convergence, as long as
the integrals can be computed and the maximization problem solved. However, in
most cases—speci�cally for the type of dynamical systems we consider in this paper—
the integrals can not be solved analytically, and the topic for the rest of this paper
is essentially to design an e�cient method for approximating the integrals. The
solution will be based on PMCMC (Andrieu, Doucet, et al. 2010), but also a stochastic
approximation of the Q-function (Delyon et al. 1999) to ensure a computationally
e�cient solution with good convergence properties. Our solution will therefore be
more involved than just replacing the integrals in (2) or (3) with vanilla Monte Carlo
estimators.

A short word on notation: we will use subscripts to denote sequences of variables
for which we are seeking a maximum, like ηk , and brackets for samples of variables
for which we are seeking a posterior distributions, like x0:T [k].

III–7

Paper III – Learning dynamical systems with particle stochastic approximation EM

3 Related work and contributions

The use of EM for learning linear state-space models appears to have been indepen-
dently suggested by, at least, Digalakis et al. (1993) and Ghahramani and Hinton (1996).
In the linear case the state inference problem can be solved exactly using a Kalman
�lter, which is not the case for nonlinear models. To this end, the extended Kalman
�lter has been proposed (Delattre and Lavielle 2013; Ghahramani and Roweis 1998), as
well as SMC-based solutions (Cappé et al. 2005; Olsson et al. 2008; Schön et al. 2011),
the latter leading to a so-called Monte Carlo EM solution.

EM is a general strategy for latent variable models, and the standard choice in the
application of EM to state-space models is to select the states as the latent variable.
That is, however, not the only possible choice, and Umenberger et al. (2018) shows that
by considering the process noise realization (instead of the states) as latent variables,
it is possible to introduce stability guarantees for the learned model, at the cost of a
more involved maximization problem.

Stochastic approximation EM (SAEM, Delyon et al. 1999; Kuhn and Lavielle 2004)
can be used to improve the convergence properties and reduce the computational
cost, compared to Monte Carlo EM. This is particularly true when the Monte Carlo
simulation is computationally involved, which is the case for SMC-based solutions.
In the context of state-space models, SAEM appears to �rst have been proposed by
Donnet and Samson (2011) and Andrieu and Vihola (2014), who suggest to combine it
with a particle independent Metropolis–Hastings procedure (PIMH, Andrieu, Doucet,
et al. 2010) to infer the latent states. The idea to combine SAEM with particle Gibbs
with ancestor sampling (PGAS, Lindsten, Jordan, et al. 2014), which often has a
much lower computational cost compared to PIMH, was �rst suggested in a brief
conference paper by Lindsten (2013)—the present article is an extension of this paper.
Since its �rst publication, this method—which we will refer to as PSAEM—has found
applications in system identi�cation (Paper I and IV), causal inference (Gong et
al. 2017), and econometrics (Singor et al. 2017), to mention a few. In this paper,
we will introduce and study PSAEM more thoroughly, formulate it explicitly for
empirical Bayes learning, present a new theoretical result, and illustrate the method’s
applicability to some contemporary dynamical systems models from the machine
learning literature (Gaussian process state-space models (Frigola, Chen, et al. 2014;
Svensson, Solin, et al. 2016) and in�nite factorial dynamical models (Valera et al.
2015)).

III–8

4 Particle stochastic approximation EM

We will now build up and present the contribution of this paper, the particle stochastic
approximation EM (PSAEM) algorithm. The two main components are (i) an MCMC
kernel for simulating the latent variables from either pθ (x0:T |y1:T) or pη(θ ,x0:T |y1:T),
and (ii) a stochastic approximation version of the EM algorithm (SAEM, Delyon et al.
1999; Kuhn and Lavielle 2004), to update the (hyper-)parameter estimate. We will
start with the former (Section 4.1) and thereafter turn to the latter (Section 4.2).

4.1 Sampling the latent variables using PGAS

At the core of the EM algorithm is the posterior inference of the latent variables, which
is needed for the integrals in (2a) or (3a). For general non-linear or non-Gaussian
state-space models these posterior distributions are intractable and we are therefore
forced to numerical approximations. Fortunately, much research has been focused
on developing computational algorithms for addressing these problems over the past
decades and there are by now many powerful tools available. We will focus on one
class of methods which we believe is particularly well suited for the problem at
hand (as discussed below), namely PMCMC (Andrieu, Doucet, et al. 2010). This is a
framework for using particle �lters to construct e�cient high-dimensional Markov
kernels. Speci�cally, we will make use of the method PGAS, (Lindsten, Jordan, et al.
2014), which has been shown to have good empirical performance in many situations
(Linderman et al. 2014; Marcos et al. 2015; Meent et al. 2015; Valera et al. 2015, etc).

To start we assume that the parameters to estimate (θ or η) are �xed at some value,
and consider how pθ (x0:T |y1:T) or pη(θ ,x0:T |y1:T) can be approximated using PGAS.
Consider �rst the Fisherian setting. Just like any MCMC method would do, PGAS
makes use of an Markov kernel on the space XT+1 with pθ (x0:T |y1:T) as its unique
stationary distribution. This kernel is then applied iteratively, and if certain ergodicity
assumptions hold, this procedure will eventually produce samples from pθ (x0:T |y1:T).
In PGAS this Markov kernel is constructed using a particle �lter, or more precisely a
conditional particle �lter with ancestor sampling, given in Algorithm 1. One execution
of the entire Algorithm 1 will correspond to one iteration of the Markov kernel. The
conditional particle �lter resembles a standard particle �lter with N − 1 particles,
with the addition that there is also a conditional particle trajectory (for convenience
numbered N , line 2 and 8) which is speci�ed a priori. In the resampling step (line
5), this conditional trajectory can be replicated, but never discarded. At the end, one
single trajectory is extracted, which will be used as the new conditional trajectory for
the next iteration. The ancestor sampling (line 7) assigns ancestors to the contional
trajectory, similar to resampling but ‘backwards’ in time and only for the conditional
trajectory. We refer to Lindsten, Jordan, et al. (2014) for further details.

Remark: Algorithm 1 is formulated in its ‘bootstrap’ version, but a more general SMC
formulation is also possible, see Lindsten, Jordan, et al. (2014).

III–9

Paper III – Learning dynamical systems with particle stochastic approximation EM

Algorithm 1: Conditional particle �lter with ancestor sampling
Input: Conditional trajectory x ′0:T , parameter θ .
Output: Output: Trajectory x?0:T .

1 Draw x i0 ∼ p(x0), i = 1, . . . ,N − 1.
2 Set xN0 ← x ′0.
3 Set w i

0 ← 1, i = 1, . . . ,N .
4 for t = 1, 2, . . . ,T do
5 Draw ait with Pr(ait = j) ∝ w j

t−1 for i = 1, . . . ,N − 1.
6 Draw x it ∼ pθ (xt | x

ait
t−1) for i = 1, . . . ,N − 1.

7 Draw aNt with Pr(aNt = j) ∝ w j
t−1pθ (x ′t | x jt−1).

8 Set xNt ← x ′t .
9 Set w i

t ← pθ (yt | x it) for i = 1, . . . ,N .
10 end
11 Draw I with Pr(I = i) ∝ w i

T .
12 Set x?T = x IT .
13 for t = T − 1,T − 2, . . . , 0 do
14 Set I ← aIt+1.
15 Set x?t ← x It .
16 end

Formally we let Algorithm 1 de�ne a Markov kernel Πθ on the space of state
trajectories XT+1 given by

Πθ (x ′0:T ,B) = E
[
1(x?0:T ∈ B)

]
(4)

where the expectation is w.r.t. the random variables used in Algorithm 1. The Markov
kernel constructed by Algorithm 1 takes a state trajectory x0:T [j − 1] = x ′0:T ∈ XT+1

as input and outputs another state trajectory x0:T [j] = x?0:T ∈ XT+1. Put di�erently,
a sample x0:T [j] ∼ Πθ (x0:T [j − 1], ·) can be generated by executing Algorithm 1 with
�xed θ and x0:T [j − 1] as input reference trajectory. If this is iterated, an MCMC
procedure on the space XT+1 is obtained, and the trajectories x0:T [0], x0:T [1], x0:T [2],
. . . , will eventually (as j → ∞) be samples from the sought smoothing distribution
pθ (x0:T |y1:T). MCMC methods like this, which uses Markov kernels based on particle
�lters, are called PMCMC.

It is far from obvious that Πθ admits pθ (x0:T |y1:T) as its stationary distribution.
However, its properties (as well as those of its older sibling based on conditional
particle �ltering without ancestor sampling by Andrieu, Doucet, et al. 2010) have
been extensively studied, see for example Andrieu, Doucet, et al. 2010; Andrieu, Lee,
et al. 2018; Chopin and Singh 2015; Del Moral et al. 2014; Lindsten, Douc, et al. 2015;
Lindsten, Jordan, et al. 2014. The main results are: (i) pθ (x0:T |y1:T) is a stationary
distribution of Πθ , and (ii) Πθ is uniformly geometrically ergodic for any N ≥ 2 under
(weak) boundedness conditions on w i

t in Algorithm 1. We summarize this PMCMC
procedure to infer pθ (x0:T |y1:T) in Algorithm 2 (still assuming θ is �xed).

III–10

Algorithm 2: PMCMC inference for pθ (x0:T |y1:T) (Fisherian, �xed θ)
1 Initialize x0:T [0] arbitrarily, e.g., by running a standard particle �lter targeting

pθ (x0:T |y1:T).
2 for j = 1, 2, . . . , J do
3 Sample x0:T [j] ∼ Πθ (x0:T [j − 1], ·) (that is, run Algorithm 1 once)
4 end

So far we have only considered the Fisherian setting, in which the latent variables
only comprise the state trajectory. Turning to the Bayesian setting, we assume that
η (instead of θ) is �xed, and we see from (3a) that we have to compute the model
parameter posterior distribution pη(θ |y1:T). We will do this by �rst computing the
joint posterior over both the model parameters and the states, pη(θ ,x0:T |y1:T), using
Gibbs sampling. That is, we split the simulation problem into two steps, one in
which we sample x0:T conditionally on θ (and y1:T) and one in which we sample θ
conditionally on x0:T (and y1:T). The �rst step, sampling x0:T conditionally on θ , is
equivalent to the problem discussed for the Fisherian setting, and we can use the
Markov kernel Πθ de�ned in (4) and Algorithm 1. For the second step, sampling θ
conditionally on x0:T , exact solutions are often possible, leading to Gibbs smapling.
Otherwise, rejection sampling is possible, leading to Hastings-within-Gibbs sampling
(see, for instance, Tierney (1994, Section 2.4)). The particular choice depends on the
actual model, and we will later illustrate it by an example. Let the Markov kernel used
to simulate θ be denoted by Πη,x0:T (θ ′, ·). The resulting MCMC procedure used in the
Bayesian setting (still assuming a �xed value for η) is summarized in Algorithm 3,
and converges (in the same sense as Algorithm 2) to pη(θ ,x0:T |y1:T).
Algorithm 3: MCMC inference for pη(θ ,x0:T |y1:T) (Bayesian, �xed η)
1 Initialize θ [0] and x0:T [0] arbitrarily. For the latter e.g., by a particle �lter

targeting pθ [0](x0:T |y1:T)
2 for j = 1, 2, . . . do
3 Sample x0:T [j] ∼ Πθ [j−1](x0:T [j − 1], ·) (that is, run Algorithm 1 once)
4 Sample θ [j] ∼ Πη,x0:T [j](θ [j − 1], ·)
5 end

4.2 Combining PGAS and EM

We have so far assumed that the (hyper-)parameters are �x. The objective in this paper
is, however, to learn those, and we will for this purpose use a stochastic approximation
version of the EM algorithm.

A naive solution using EM and PMCMC

The problem with the preliminary EM solutions outlined in (2) and (3), respectively,
is the analytically intractable integrals in their Q-functions. A �rst idea would be to
replace the integrals with sums over J Monte Carlo samples. For the Fisherian setting,
this means replacing the (E)-step of (2) with a simulation (Si) step as follows:

III–11

Paper III – Learning dynamical systems with particle stochastic approximation EM

(Si)
{

Draw {x0:T [j]} Jj=1 ∼ pθk−1 (x0:T |y1:T)
and let Q̂Fish

k (θ) := 1
J
∑J

j=1 logpθ (y1:T ,x0:T [j]).
(5a)

(M) Solve θk ← arg max
θ

Q̂Fish
k (θ). (5b)

Note that this is our initial EM scheme (2), but with the analytically intractable integral
over logpθ (y1:T ,x0:T) approximated by a sum. This algorithm is commonly referred
to as Monte Carlo EM (Wei and Tanner 1990) or, if J = 1, stochastic EM (Diebolt
and Ip 1996). To draw the samples in the (Si)-step we can use PGAS from Section 4.1,
which would give Algorithm 4.
Algorithm 4: A Monte Carlo EM implementation for the Fisherian problem
1 Initialize θ0
2 for k = 1, 2, . . . do
3 Run Alg. 4 with θk−1 ‘until convergence’ to obtain J samples {x0:T [j]} Jj=1
4 Solve θk ← arg maxθ 1

J
∑J

j=1 logpθ (y1:T ,x0:T [j])
5 end

A similar algorithm could be devised for the Bayesian setting. Even though Algo-
rithm 4 might look promising, there are two issues with this solution:

(i) To guarantee that Algorithm 2 has converged to its stationary distribution, we
cannot bound its number of iterations at line 3.

(ii) For the sum in (5a)/line 4 to converge to the integral it approximates, we must
let J →∞.

Indeed, these two issues are related. We basically need to allow J → ∞ to ensure
convergence, whilst the convergence of the EM iteration happens as k → ∞. This
is not desirable since it, intuitively, gives a computational complexity of “∞ × ∞”;
see further Fort and Moulines 2003. Existing methods based on various types of
particle smoothing for approximating the integral with respect to pθ (x0:T |y1:T), for
instance (Olsson et al. 2008; Schön et al. 2011), su�er from the same issues. Indeed,
these methods can also be viewed as (SMC-based) instances of Monte Carlo EM.

We will now �rst address issue (ii) with stochastic approximation EM, and there-
after handle issue (i) by ‘entangling’ the convergence of Algorithm 2 (J →∞) with
the convergence of the EM algorithm (k →∞).

SAEM: Handling sample approximations within EM

Stochastic approximation, as introduced by Robbins and Monro (1951), is an averaging
procedure to solve a (deterministic) equation which can only be evaluated through
noisy (stochastic) observations. In stochastic approximation a step length γk ∈ [0, 1]
is used, which has to ful�ll

∞∑
k=1

γk = ∞,
∞∑
k=1

γ 2
k < ∞, γk = 1. (6)

III–12

Following Delyon et al. (1999), the SAEM algorithm can be introduced by making a
stochastic approximation of the Q-function. In SAEM, we transform Monte Carlo
EM (5) by introducing a stochastic approximation (SA)-step. For simplicity we only
use one sample (J = 1) in the simulation (Si)-step, but in practice it can be favorable
to use a small batch of samples. For iteration k this becomes

(Si) Draw x0:T [k] ∼ pθk−1 (x0:T |y1:T). (7a)
(SA) Let QFish

k (θ) ← (1 − γk)QFish
k−1(θ) + γk logpθ (y1:T ,x0:T [k]). (7b)

(M) Solve θk ← arg max
θ

QFish
k (θ). (7c)

To intuitively understand the stochastic approximation, let us �rst ignore the (M)-step
and assume γk = 1

k . In such a case, the (SA)-step would simply be online averaging,
equivalent to QFish

k (θ) = 1
k
∑k

`=1 logpθ (y1:T ,x0:T [`]), where x0:T [`] ∼ pθ (x0:T |y1:T),
which converges to

∫
logpθ (y1:T ,x0:T)pθ (x0:T |y1:T)dx0:T when k →∞ by the law of

large numbers. The introduction of the (M) step complicates the picture, but assuming
that θk will eventually converge to a stationary point, the in�uence from the transient
phase will vanish as k → ∞, and the averaging argument can still be applied. In
Section 5 we discuss the convergence properties in detail. Before that, in Section 4.3,
we will consider the important special case of exponential family models, for which
the (SA) step reduces to a convenient recursive update of su�cient statistics.

With (7) in place, we can make stronger theoretical claims (even though we are
using only a single sample, J = 1, from pθk−1 (x0:T |y1:T), at each iteration!) thanks to
the use of stochastic approximation (Delyon et al. 1999). However, for the problem
under study it is still of limited practical use since we cannot generate samples from
pθk−1 (x0:T |y1:T) by other means than using Algorithm 2 with an in�nite number of
iterations (in order to ensure that it has converged). Thus, our �nal step is to use
the method studied by Kuhn and Lavielle (2004) to combine SAEM with an MCMC
procedure in a more intricate way than (7).

PSAEM: Combining SAEM with PGAS

As suggested and analyzed by Kuhn and Lavielle (2004), the draw frompθk−1 (x0:T |y1:T)
in (7a) can be replaced with a draw from a Markov kernel which has pθk−1 (x0:T |y1:T)
as its invariant distribution. As discussed, this is exactly what the PGAS kernel Πθ
from (4) is, and we can thus assemble

(Si) Draw x0:T [k] ∼ Πθk−1 (x0:T [k − 1], ·) (that is, run Algorithm 1 once). (8a)
(SA) Let QFish

k (θ) ← (1 − γk)QFish
k−1(θ) + γk logpθ (y1:T ,x0:T [k]). (8b)

(M) Solve θk ← arg max
θ

QFish
k (θ). (8c)

Note that we do not make use of Algorithm 2 anymore, but only Algorithm 1. This
means that we do not run the Makov kernel “until convergence” at each iteration, but
it will (intuitively speaking) converge in parallel with the SAEM iterations indexed
with k . We summarize and present this as Algorithms 5 and 6, for the Fisherian and
Bayesian case, respectively.

III–13

Paper III – Learning dynamical systems with particle stochastic approximation EM

Algorithm 5: Particle stochastic approximation EM for the Fisherian setting
1 Initialize x0:T [0],θ0
2 for k = 1, 2, . . . do
3 Run Algorithm 1 conditional on x0:T [k − 1] and θk−1 to sample x0:T [k]
4 Update QFish

k (θ) ← (1 − γk)QFish
k−1(θ) + γk logpθ (y1:T ,x0:T [k])

5 Solve and update parameters θk ← arg maxθ QFish
k (θ)

6 end

Algorithm 6: Particle stochastic approximation EM for the Bayesian setting
1 Initialize x0:T [0],θ [0],η0
2 for k = 1, 2, . . . do
3 Run Algorithm 1 conditional on x0:T [k − 1] and θ [k − 1] to sample x0:T [k]
4 Sample θ [k] ∼ Πηk−1,x0:T [k](θ [k − 1], ·)
5 Update QBay

k (η) ← (1 − γk)Q
Bay
k−1(η) + γk logpη(θ [k])

6 Solve and update hyperparameters ηk ← arg maxη Q
Bay
k (η)

7 end

We have now obtained an algorithm which only relies on asymptotics as k →∞,
by ‘entangling’ the convergence of PGAS with the convergence of SAEM. As we will
see in Section 5, convergence can be shown under certain assumptions. We will now
consider the important special case of models (1) in the exponential family, for which
the recursively de�ned function Qk reduces to a much simpler expression.

4.3 PSAEM for exponential family models

Studying Algorithm 5 or 7, one may expect the computational cost of all computations
involving the Q-function to increase as k → ∞, since Qk is a function of all past
samples. This is, however, not the case if the model belongs to the exponential family,
which is an important special case discussed below.

When we write “the model belongs to the exponential family”, we mean that the
joint distribution for the latent and observed variables, pθ (x0:T ,y1:T) orpη(θ ,x0:T ,y1:T),
belongs to the exponential family with θ or η as its parameter, respectively. For
the Fisherian case, this is ful�lled if both equations in (1) can, with some choice of
Sx : X × X 7→ R`,ψx : Θ 7→ R,ϕx : Θ 7→ R` (for some `), and similarly for some
Sy ,ψy ,ϕy , be written as

pθ (xt | xt−1) θ∝ exp {−ψx (θ) + 〈Sx (xt−1,xt),ϕx (θ)〉} , (9a)

pθ (yt | xt) θ∝ exp
{−ψy (θ) + 〈Sy (xt ,yt),ϕy (θ)〉} . (9b)

Here, θ∝ reads “proportional (with respect to θ) to” and 〈·, ·〉 is an inner product. The
subscripts (x , y and θ) do not denote dependencies in this context, but are only names.

III–14

For the Bayesian case, the requirements are weaker, and it is enough that the prior
distribution for θ belongs to the exponential family,

pη(θ)
η∝ exp {−ψθ (η) + 〈Sθ (θ),ϕθ (η)〉} . (10)

We will now see how the Q function from the (SA)-step simpli�es for models which
can be written on one of these forms. First consider the Fisherian case. Using the
Markovian structure of (1), we can write

logpθ (y1:T ,x0:T) =
T∑
t=1

logpθ (yt | xt) + logpθ (xt | xt−1) + const. (11)

= −ψ (θ) + 〈S(x0:T ,y1:T),ϕ(θ)〉 + const. (12)

where

ψ (θ) = T {
ψx (θ) +ψy (θ)

}
, S(x0:T ,y1:T) =

T∑
t=1

(
Sx (xt−1,xt)
Sy (xt ,yt)

)
, ϕ(θ) =

(
ϕx (θ)
ϕy (θ)

)
.

Here we have used the fact that the initial distribution p(x0) is independent of θ (for
notational simplicity). It follows that

QFish
k (θ) = −ψ (θ) + 〈Sk ,ϕ(θ)〉 + constant, (13a)

where

Sk = (1 − γk)Sk−1 + γkS(x0:T [k],y1:T). (13b)

Note that this is a non-recursive de�nition of QFish
k (θ), but instead recursive in

Sk . For an algorithmic point of view, this means that we can compute and store Sk
as (13b), and solve the maximization problem for (13a) instead of the more intricate
and computationally challenging (8b). In fact, the maximizing argument to (13a) can
be expressed on closed form in many cases.

Analogously the Bayesian case is obtained as,

Q
Bay
k (η) = −ψθ (η) + 〈Sk ,ϕθ (η)〉 + constant. (14a)

where

Sk = (1 − γk)Sk−1 + γkSθ (θ [k]). (14b)

We summarize in Algorithms 7 and 8.

III–15

Paper III – Learning dynamical systems with particle stochastic approximation EM

Algorithm 7: PSAEM for exponential family models, Fisherian setting
1 Initialize x0:T [0] and θ0
2 for k = 1, 2, . . . do
3 Run Algorithm 1 conditional on x0:T [k − 1] and θk−1 to sample x0:T [k]
4 Update su�cient statistics Sk according to (13b)
5 Solve and update parameters θk ← arg maxθ QFish

k (θ) using (13a)
6 end

Algorithm 8: PSAEM for exponential family models, Bayesian setting
1 Initialize X [0], θ [0] and η0
2 for k = 1, 2, . . . do
3 Run Algorithm 1 conditional on x0:T [k − 1] and θ [k − 1] to sample x0:T [k]
4 Sample θ [k] ∼ Πηk−1,x0:T [k](θ [k − 1], ·)
5 Update su�cient statistics Sk according to (14b)
6 Solve and update hyperparameters ηk ← arg maxη Q

Bay
k (η) using (14a)

7 end

5 Convergence

The convergence of SAEM and its extensions, including MCMC-based implementa-
tions, has received a lot of attention in the research community (Andrieu, Moulines,
et al. 2005; Andrieu and Vihola 2014; Delyon et al. 1999; Kuhn and Lavielle 2004). In
Section 5.1 we present a basic convergence result for PSAEM. This is essentially an
application of Kuhn and Lavielle (2004, Theorem 1), however, we also add a missing
piece regarding the continuity of the PGAS Markov kernel. This will under certain
(strong) assumptions on X,Θ and the model (1) imply convergence of PSAEM as
k → ∞ (with �nite N ≥ 2 �xed in Algorithm 1). Some of these conditions could
possibly be weakened by using the algorithmic modi�cations proposed by Andrieu
and Vihola 2014, but we do not pursue this further here. We will also, in Section 5.2,
discuss some practical considerations regarding the choice of N and γk .

In the presentation below we write ‖ f ‖∞ = supx | f (x)| for the supremum norm
of function f and Π f (x) =

∫
Π(x ,dx ′)f (x ′) for the Markov kernel Π acting on f .

III–16

5.1 Theoretical results

We will for brevity present this section in the Fisherian setting, but the results extend
also to the Bayesian setting by considering {x0:T ,θ } as the latent variables instead
of x0:T , if ergodicity and continuity of the joint Markov kernel for x0:T and θ can be
shown.

Convergence of the SAEM algorithm has only been established for models in the
exponential family. The essence of the assumptions used by Kuhn and Lavielle (2004)
are:

(A1) The model belongs to the exponential family, and the log-likelihood function
and its atoms ϕ,ψ and S are su�ciently smooth, di�erentiable and integrable.

(A2) A unique solution to the maximization problem in the (M)-step exists.

(A3) X and Θ are compact.

(A4) The Markov kernel Πθ for sampling x0:T is uniformly ergodic and its density is
Lipschitz continuous w.r.t θ for all x0:T .

For a more precise statement of the assumptions, we refer to (SAEM3’) in Kuhn and
Lavielle (2004) and (M1-M5), (SAEM1)-(SAEM2) and, if applicable, (MAX1)-(MAX2) in
Delyon et al. (1999). Under (A(A1))-(A(A4)), Kuhn and Lavielle (2004) show that SAEM
converges to a stationary point of the likelihood surface. Assumption (A(A1))-(A(A3))
de�ne the class of models (1) for which convergence is proven. The compactness
assumptions on X and Θ are strong, but not strictly necessary, see Delyon et al. (1999,
Section 5), Andrieu, Moulines, et al. (2005) and also the more recent development by
Andrieu and Vihola (2014). Assumption (A(A4)) puts requirements (uniform ergodicity
and Lipschitz continuity) on the MCMC kernel that is used, which is PGAS in our
case. Uniform ergodicity has been shown for PGAS under a boundedness assumption
on the weights of the conditional particle �lter (Lindsten, Jordan, et al. 2014, Theorem
3). What has not previously been shown, though, is Lipschitz continuity of the PGAS
Markov kernel. To establish this we introduce the following additional assumptions.

(A5) There exists constants L1,L2 < ∞, δ1,δ2 > 0 and κ1,κ2 < ∞ such that, for all
(xt−1,xt) ∈ X2 and all t = 1, . . . ,T ,

(a) Lipschitz continuity of transition and likelihood densities:

|pθ (xt | xt−1) − pθ̃ (xt | xt−1)| ≤ L1‖θ − θ̃ ‖,
|pθ (yt | xt) − pθ̃ (yt | xt)| ≤ L2‖θ − θ̃ ‖.

(b) Strong mixing:
For all θ ∈ Θ, δ1 ≤ pθ (xt | xt−1) ≤ κ1 and δ2 ≤ pθ (yt | xt) ≤ κ2.

Remark: The lower bound on the state transition and likelihood functions in
(A(A5)b), commonly referred to as the strong mixing condition, are indeed strong but
standard for many theoretical results on SMC, see for instance Del Moral (2004).
Furthermore, this assumption essentially boils down to compactness of the state and
parameter spaces, which is assumed in (A(A3)) already.

III–17

Paper III – Learning dynamical systems with particle stochastic approximation EM

Theorem 1 (Lipschitz continuity of PGAS). Assume (A(A5)) and let Πθ denote the
PGAS Markov kernel (4). Then there exists a constant C < ∞ such that for any bounded
function f : XT+1 7→ R, it holds that

‖Πθ f − Πθ̃ f ‖∞ ≤ C‖ f ‖∞‖θ − θ̃ ‖.

Proof. See Appendix A. �

We may now piece all results together into the main theorem of this section,
which establishes the convergence of PSAEM.

Theorem 2 (Convergence of PSAEM). Assume (A(A1))-(A(A3)) and (A(A5)) and let
θk be computed by Algorithm 7. Then limk→∞ d(θk ,L) = 0, where d(θ ,L) denotes the
distance from θ to the set L = {θ ∈ Θ : ∂

∂θ pθ (y1:T) = 0}.
Proof. The big picture is that Theorem 1 (together with existing ergodicity results)
implies (A4), and therefore Theorem 2 follows from Kuhn and Lavielle (2004, Theo-
rem 1). The technical details of (A4) are, however, more intricate, and are found in
Appendix B. �

5.2 Practical considerations

Even though Theorem 2 gives a reassuring theoretical foundation for using PSAEM,
it does not give any practical advice on some of the (few) tuning parameters available:
the choice of step length {γk }∞k=1 or the number of particles N in Algorithm 1.

A common choice for step length isγk = k−α , and the requirements (6) are ful�lled
for any α ∈ (12 , 1]. In our experience, it is often advisable to choose α < 1, perhaps
α = 0.7, not to constrain the steps too much. Even though not necessary, the initial
convergence speed can sometimes be improved by setting some initial step lengths to
constant 1, before starting the sequence of decreasing step lengths.

For N , we have to make a balance between a well mixing Markov kernel (large
N) and the computational load (small N). Let K denote the number of iterations of
PSAEM, and assume that the computational budget available is such that the product
KN is limited. In such a situation, the general advice would be to take N ‘small’ and
K ‘large’. However, if N is too small, the Markov kernel will not mix well, a�ecting
the convergence speed. To monitor the mixing, the overlap between two consecutive
state trajectories x0:T [k − 1] and x0:T [k] could be computed, and if it exceeds a certain
threshold, say 90%, a warning could be raised that the mixing is not su�cient and N
should be increased.

III–18

6 Experiments and applications

We will in this section �rst (Section 6.1) illustrate the behavior of PSAEM on a small
toy example (where the maximum likelihood estimate can be found exactly), and
study the advantage over a standard Monte Carlo EM implementation for the same
problem. We will thereafter turn to three di�erent machine learning applications,
namely parameter estimation in a non-linear state-space model (the Fisherian setting,
Section 6.2), and hyperparameter estimation (Bayesian setting) in in�nite factorial
dynamical models (Section 6.3) and Gaussian process state-space models (Section 6.4),
respectively. Full details for all examples are found in Appendix C.

6.1 Linear Gaussian state-space model

We start with considering T = 300 data points from the model

xt+1 = θxt +wt , wt ∼ N(0, 1), (15a)
yt = xt + et , et ∼ N(0, 0.3), (15b)

with θ ∈ [−1, 1]. We apply PSAEM as well as PSEM (a Monte Carlo EM solution using a
particle smoother presented by Schön et al. 2011), and PIMH-SAEM (similar to PSAEM,
but using particle independent Metropolis–Hastings instead of PGAS; Andrieu and
Vihola 2014; Donnet and Samson 2011) with di�erent numbers of particles N . This
model is indeed toy, but is interesting since we can �nd the maximum likelihood
estimate θ̂ML of θ exactly and use as a reference.

In Figure 2, the evolution of the absolute error of the applied methods is shown
as a function of computational time on the same standard desktop computer with
comparable implementations, averaged over 100 realizations of each algorithm. Note
that PSAEM and PIMH-SAEM converge as k →∞ (for �xed N), whereas PSEM has a
non-vanishing bias which only decreases as N →∞, that is, k →∞ is not su�cient
for convergence in PSEM. Comparing PSAEM and PIMH-SAEM, the latter requires
a signi�cantly larger number of particles than PSAEM, and has therefore a higher
computational cost. This di�erence is believed to be even more pronounced for larger
values of T , due to superior scaling properties of PGAS compared to PIMH.

III–19

Paper III – Learning dynamical systems with particle stochastic approximation EM

10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

Computational time

A
bs
ol
ut
e
er
ro
r|
θ k
− θ̂

M
L|

PSAEM, N = 10
PSEM, N = 3
PSEM, N = 10
PSEM, N = 50

(a) Besides the superior computational time, PSAEM (orange) does not su�er
from the bias present in PSEM (green, blue, purple). The bias in PSEM is caused
by the Monte Carlo approximation of the integral in the Q-function. Because
of this, PSEM converges, and the bias vanishes, only as N → ∞, which is in
contrast to PSAEM, for which it su�cies that only k →∞.

10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

Computational time

PSAEM, N = 3
PSAEM, N = 10
PSAEM, N = 100
PSAEM, N = 1000
PIMH-SAEM, N = 100
PIMH-SAEM, N = 1000

(b) For this problem the optimal N for PSAEM is between 10 and 100 (orange,
yellow); smaller N causes poor mixing (red) and thereby slower convergence;
larger N (green) increases computational cost without improving convergence.
PIMH-SAEM with N = 100 (blue) struggles because of poor mixing, whereas
N = 1000 (purple) mixes well but has an unfavorably high computational cost.

Figure 2: Estimation of θ in (15) with three di�erent methods; the proposed PSAEM, PSEM (a
Monte Carlo EM solution using a particle smoother) and PIMH-SAEM (similar to PSAEM, but with
a PIMH Markov kernel instead of PGAS). The methods are run with various number of particles N .
Their average evolution of the absolute error |θk − θ̂ML | (over 100 runs), where θ̂ML is the exact
maximum likelihood estimate, is shown as a function of the wall clock time.

III–20

Model Simulation (test data)

Initial model to PSAEM 2.85
Estimated with PSAEM 0.29

Relan et al. (2017) 0.34

Table 9.1: The cascaded water tank setup and modeling results. We initialize the 9 unknown
parameters with an ad-hoc educated guess (top row), and then optimize them with PSAEM (middle
row). We also include the best performing result previously published (last row). The �gure of
merit is root-mean-squared error for simulation on the test data.

6.2 Cascaded water tanks

We consider the benchmark problem of learning a model for a cascaded water tank
system, using the data presented by2 Schoukens and Noël 2017. A training and a test
data set of input-output data samples {ut ,yt }, each with T = 1024 data points, are
provided. The data is recorded from an experimental setup where water is pumped
into an upper water tank, from which it �ows through a small opening into a lower
water tank, and from there through another small opening into a basin. During the
data collection, over�ow occasionally occurred in the tanks, and the excess water
from the upper tank partially �owed into the lower tank. Only the pump voltage
(input) and the water level in the lower tank (output) is measured each Ts = 4 second,
and the problem is to predict the water level in the lower tank given only the pump
voltage. A discrete-time nonlinear state-space model (partly adopted from Holmes,
Rogers, et al. 2016) based on physical principles is

xut+1 = 10 ∧ xut +Ts (−k1

√
10 ∧ xut − k2 {10 ∧ xut } + k5ut) +wu

t

x lt+1 = 10 ∧ x lt +Ts (k1

√
10 ∧ xut + k2 {10 ∧ xut } − k3

√
10 ∧ x lt − k4 {10 ∧ x lt } + k6 {(xut − 10) ∨ 0}) +w l

t

yt = 10 ∧ x lt + et , (16)

where the states xut ∈ R and x lt ∈ R are the water levels plus the in�ow in the upper
and lower tank, respectively. The parameters k1,k2,k3,k4,k5 represent unknown
physical quantities, such as tank and hole diameters, �ow constants, pump e�ciency,
etc. Each tank has height 10 (in the scale of the sensor), and k6 and 10 ∧ (. . .) is
motivated by the over�ow events. The initial level of the upper water tank is modeled
as xu0 ∼ N(ξ0,

√
0.1), with ξ0 unknown. Furthermore, w1

t , w2
t and et are assumed to

be zero mean white Gaussian noise with unknown variances σ 2
w and σ 2

e , respectively.
All in all, the unknown parameters are θ = {k1,k2,k3,k4,k5,k6,σ

2
e ,σ

2
w , ξ0}.

The model belongs to the exponential family, and we can thus apply PSAEM as
presented in Algorithm 6 to �nd a maximum likelihood estimate of θ . We initialize
θ randomly around physically reasonable values, and run PSAEM with N = 100
and K = 50 (taking a few seconds on a standard desktop computer). The obtained
results are reported in Table 9.1 together with the best performing result previously
published (to the best of the author’s knowledge). Most of the previously published
methods take a more data-driven approach, but the relatively small amount of data
available makes the encoding of physical knowledge important, as we have done here
by using (16) and PSAEM.

2See also http://www.nonlinearbenchmark.org

III–21

http://www.nonlinearbenchmark.org

Paper III – Learning dynamical systems with particle stochastic approximation EM

6.3 Hyperparameter estimation in infinite factorial dynamical models

The in�nite factorial dynamical model (iFDM), proposed by Valera et al. (2015), is
a Bayesian non-parametric model for separation of an aggregated time-series into
independent sources. By using a Markov Indian bu�et process, the number of sources
(dimensionality of the hidden state) does not have to be upper bounded a priori.
Each source is modeled as a (discrete or continuous) Markov chain which evolves
independently of the other. To solve the inference problem, that is performing the
actual source separation, PGAS has proven useful (Valera et al. 2015). There is, however,
a multitude of hyperparameters in this Bayesian setting, and we will demonstrate
how the procedure by Valera et al. (2015) easily can be extended with PSAEM to
automatically estimate hyperparameters on-the-�y, reducing the need for extensive
manual tuning.

We will consider the cocktail party problem originating from Gael et al. (2009),
to which iFDM has been applied (Valera et al. 2015, Section 4). The voices from 15
di�erent speakers is aggregated into a T = 1085 long sequence, together with some
noise, and the problem is to jointly infer (i) the number of speakers (dimension of
xt), (ii) when each speaker is talking (the trajectory xt) and (iii) the dynamics of each
speaker (how prone s/he is to talk).

Each speaker is modeled as a Markov chain with two states, ‘talking’ or ‘quiet’,
and the posterior distribution over its transition probabilities is inferred individually
for each speaker. The Beta distribution is used as prior for these probabilities, and the
hyperparameters for the Beta distribution are manually chosen by Valera et al. We
outline in Algorithm 9 how the inference procedure can be extended with PSAEM
(new lines are marked with blue). In addition to the lessened burden of manual hyper-
parameter tuning, we can also report slightly improved results: The hyperparameters
automatically found by PSAEM are such that the average number of switches between
‘quiet’ and ‘talking’ in the posterior samples are closer to the ground truth (84 instead
of 86, ground truth: 62) and the average value of the complete data likelihood of the
posterior samples increases, compared to the choice of hyperparameters by Valera
et al. (2015). Of course, PSAEM could be applied also to other hyperparameters in
the problem, following the very same pattern. Posterior samples of xt are shown in
Figure 3.

Algorithm 9: PSAEM for iFDM: the cocktail party example
1 for k = 0 to K do
2 Update the state dimensionality (number of speakers) M+ using slice

sampling.
3 Sample a state trajectory using PGAS.
4 Gibbs update of the transition probabilities {bm}M+m=1 for each speaker.
5 Sk ← (1 − γk)Sk−1 + γkS({bm}M+m=1), with S being su�cient statistics for

the Beta distribution.
6 ηk ← arg maxη Q

Bay
k (η) = arg maxη 〈Sk ,ϕ(η)〉 −ψ (η).

7 Gibbs update of noise variance parameters.
8 end

III–22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speaker index

Ti
m

e
Ground truth

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speaker index

Sample without EB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speaker index

Sample with EB

Figure 3: The cocktail problem, introduced by Gael et al. (2009) and Valera et al. (2015), amounts
to inferring the number of speakers (columns) and their periods of talking and being quiet (yellow
and blue, respectively) from an aggregated observation (not shown) during a time sequence (along
y-axis). The middle panel is a sample from the solution by Valera et al. (2015), and the right
panel a sample after we have extended that solution with PSAEM to automatically estimate some
hyperparameters. Both solutions infer the correct number of speakers (15), but the solution with
PSAEM is slightly less prone to switch between quiet and talking (closer to the ground truth). The
main advantage of PSAEM, not present in the plot, is however the lessened need for manual tuning
of hyperparameters, at almost no extra computational cost. (The problem is unsupervised, but the
columns are manually sorted to enhance comparisons between the panels.)

6.4 Hyperparameter estimation in GP state-space models

Gaussian process state-space models are a class of models constructed as a combination
of the state-space model and the Gaussian process (GP) model as

xt+1 = f (xt) +wt , f ∼ GP
(
m

f
η ,K

f
η

)
, wt ∼ N

(
0, Σfn

)
, (17a)

yt = д(xt) + et , д ∼ GP (
m
д
η ,K

д
η
)
, et ∼ N

(
0, Σдn

)
, (17b)

or variations thereof. As in any state-space model, only y1:T is observed and not x0:T ,
and standard GP regression methods (Rasmussen and Williams 2006) can therefore
not be used to learn the posterior pη(f ,д |y1:T). Consequently, learning of the GP
hyperparameters η—usually done via empirical Bayes η̂ = arg maxη pη(f ,д |y1:T)—is
not straightforward either.

Despite the computational challenges, it has been argued that the model is ver-
satile and powerful by its combination of the dynamic state-space model and the
nonparametric and probabilistic GP, and has for this reason achieved attention in
the machine learning literature. One proposed solution is to use PGAS for learning
the model (Frigola, Lindsten, Thomas B. Schön, et al. 2013; Frigola, Lindsten, Thomas
B Schön, et al. 2014; Svensson, Solin, et al. 2016), and we extended that solution
with PSAEM to also include estimation of the hyperparameters at almost no extra
computational cost.

We consider the solution proposed by Svensson, Solin, et al. (2016), in which
the nonparametric GP is approximated with a reduced-rank representation with a

III–23

Paper III – Learning dynamical systems with particle stochastic approximation EM

Algorithm 10: PSAEM for hyperparameters in GP state-space models
1 Initialize x1:T [0],θ [0],η0.
2 for k = 0 to K do
3 Sample x0:T [k]

�� θk−1,ηk−1 using Algorithm 1.
4 Sample θk

�� ηk−1,x0:T [k] with a closed-form expression.
5 Update Sk ← (1 − γk)Sk−1 + γkS(θ [k]).
6 Solve ηk ← arg maxη Q

Bay
k (η) = arg maxη 〈Sk ,ϕ(η)〉 −ψ (η).

7 end

−20 −10 0 10 20
−10
−5
0
5
10

xt

x
t+

1

True function

State-space samples (not part of training data)

GP mean with �x lengthscale 0.1

GP mean with estimated lengthscale 2.52

−20 −10 0 10 20
−10
−5
0
5
10

xt

x
t+

1

True function

State-space samples (not part of training data)

GP mean with �x lengthscale 8

GP mean with estimated lengthscale 0.158

Figure 4: Estimation of hyperparameters in two Gaussian process state-space models. Since the
states xt are unobserved in the GP-SSM, the learning is more challenging than standard GP regres-
sion. We have extended an PGAS procedure (Svensson, Solin, et al. 2016) to also include estimatation
of the hyperparameters with PSAEM. The blue line is the posterior mean of p(f |y1:T ,η) with
η being a �xed lengthscale, whereas the length scale η is estimated with PSAEM for the green
line. The true function is dashed yellow, alongside with the T = 40 samples x0:T (orange dots)
underlying the training data (only y1:T , not shown, is available when learning the model). Indeed,
the e�ect of the length scale hyperparameter is very similar to standard GP regression, but the
main point of this example is merely a proof of concept for hyperparameter estimation in the
challenging GP-SSM model.

�nite parameter set θ . We introduce PSAEM for this solution in Algorithm 7 (new
lines in blue). Since the computational burden in practice is dominated by running
the conditional particle �lter (line 2), the inclusion of PSAEM adds very little extra
computational cost. An example of estimation of the length scale in a Gaussian process
state-space model is shown in Figure 4, where the space of xt is one-dimensional and
д(x) = x is considered known, but the noise level is signi�cant with σ fn = σ

д
n = 1.

III–24

7 Conclusions

We have presented PSAEM (Algorithm 5 and 7) for learning nonlinear state-space
models, both in a maximum likelihood setting and in an empirical Bayes setting. We
have also summarized the available theoretical results, and added a missing piece
about continuity of the PGAS Markov kernel, in order to show convergence for the
case of exponential family models. We have, furthermore, illustrated how it can be
applied to some contemporary machine learning models. We believe that the proposed
PSAEM method can be particularly useful for models where PGAS is currently used.
Indeed, with small modi�cations of existing code and little computational overhead
it enables automatic estimation of hyperparameters, thereby avoiding the need of
di�cult and tedious manual tuning.

III–25

Paper III – Learning dynamical systems with particle stochastic approximation EM

A Proof of Theorem 1, Lipschitz continuity of PGAS

This appendix contains a proof of Theorem 1. It is based on the construction of a
coupling between the Markov kernels Πθ and Πθ̃ . A similar technique has previously
been used by Chopin and Singh (2015) to prove uniform ergodicity of the Particle
Gibbs kernel. Jacob et al. (2017) explicitly use couplings of conditional particle �lters
to construct (practical) algorithms for, among other things, likelihood estimation and
unbiased estimates of smoothing functionals.

We �rst review some basic properties of couplings and total variation. Let P and
Q be two probability measures with densities p and q, respectively, with respect to
some reference measure λ. Let C be the set of couplings of P and Q , that is, joint
probability measures with marginals P and Q . We can then write the total variation
distance between P and Q in the following equivalent ways:

‖P −Q ‖TV =
1
2 sup
|f | ≤1
|P f −Q f | (18a)

= λ(max{p − q, 0}) (18b)
= 1 − λ(min{p,q}) (18c)

= inf
ξ ∈C

∬
1(x , y)ξ (dx ,dy). (18d)

Note also that it is possible to explicitly construct a coupling attaining the in�mum in
(18d): let α = λ(min{p,q}), ν (dx) = α−1 min{p(x),q(x)}λ(dx), and

ξ (dx ,dy) = αν (dx)δx (dy) + (1 − α)−1(P(dx) − αν (dx))(Q(dy) − αν (dy)). (19)

A coupling ξ which attains the in�mum, or equivalently which maximizes the proba-
bility of X and Y being identical when (X ,Y) ∼ ξ , is referred to as a maximal coupling.
Finally, for a coupling ξ , the quantity

∬
1(x = y)ξ (dx ,dy)—that is, the probability

that X and Y are identical under ξ—is referred to as the coupling probability under ξ .
Now, to prove the Lipschitz continuity of the PGAS Markov kernel as stated in

Theorem 1 we will construct a coupling ξθ, θ̃ (x ′0:T ,dx
?
0:T ,dx̃

?
0:T) of the Markov kernels

Πθ (x ′0:T ,dx
?
0:T) and Πθ̃ (x ′0:T ,dx̃

?
0:T). This coupling is de�ned via Algorithm 11, which

takes x ′0:T as input and produces x?0:T and x̃?0:T as outputs, such that the marginal distri-
butions of the output trajectories are Πθ (x ′0:T ,dx

?
0:T) and Πθ̃ (x ′0:T ,dx̃

?
0:T), respectively.

For ease of notation in Algorithm 11, we write M[P ,Q] for any maximal coupling (for
instance the one given by (19)) of some distributions P and Q . With slight abuse of
notation, we also write M[p,q] for probability density functions p and q, even if they
are not normalized in which case it is understood that the coupling is between the
normalized probability distributions.

Note that for any bounded function f ,

‖Πθ f − Πθ̃ f ‖∞ ≤ ‖ f ‖∞ sup
x ′0:T

sup
|д | ≤1
|Πθд(x ′0:T) − Πθ̃д(x ′0:T)|

≤ 2‖ f ‖∞ sup
x ′0:T

∬
1(x?0:T , x̃?0:T)ξθ, θ̃ (x ′0:T ,dx

?
0:T ,dx̃

?
0:T)

= 2‖ f ‖∞ sup
x ′0:T

(
1 −

∬
1(x?0:T = x̃?0:T)ξθ, θ̃ (x ′0:T ,dx

?
0:T ,dx̃

?
0:T)

)

III–26

Algorithm 11: Coupled CPFs with ancestor sampling de�ning ξθ, θ̃ .

Input: Conditional trajectory x ′0:T , parameters θ and θ̃ .
Output: Trajectories x?0:T and x̃?0:T .

1 Draw x i0 ∼ p(x0) and set x̃ i0 ← x i0, i = 1, . . . ,N − 1.
2 Set xN0 ← x ′0 and x̃N0 ← x ′0.
3 Set w i

0 ← 1 and w̃ i
0 ← 1, i = 1, . . . ,N .

4 for t = 1, 2, . . . ,T do
5 Draw (ait , ãit) ∼ M

[
{w j

t−1}Nj=1, {w̃ j
t−1}Nj=1

]
for i = 1, . . . ,N − 1.

6 Draw (x it , x̃ it) ∼ M
[
pθ (· | xa

i
t

t−1), pθ̃ (· | x̃
ãit
t−1)

]
for i = 1, . . . ,N − 1.

7 Draw (aNt , ãNt) ∼ M
[
{w j

t−1pθ (x ′t | x jt−1)}Nj=1, {w̃ j
t−1pθ̃ (x ′t | x̃

j
t−1)}Nj=1

]
.

8 Set xNt ← x ′t and x̃Nt ← x ′t
9 Set w i

t ← pθ (yt | x it) and w̃ i
t ← pθ̃ (yt | x̃ it) for i = 1, . . . ,N .

10 end
11 Draw (J , J̃) ∼ M

[{w i
T }Ni=1, {w̃ i

T }Ni=1
]
.

12 Set x?T = x JT and x̃?T = x̃ J̃T .
13 for t = T − 1,T − 2, . . . , 0 do
14 Set J ← a Jt+1 and J̃ ← ã J̃t+1.
15 Set x?t ← x Jt and x̃?t ← x̃ J̃t .
16 end

where we have used (18a) and (18d) for the �rst and second lines, respectively. Hence,
it is su�cient to show that∬

1(x?0:T = x̃?0:T)ξθ, θ̃ (x ′0:T ,dx
?
0:T ,dx̃

?
0:T) ≥ 1 − C

2 ‖θ − θ̃ ‖, (20)

where C is the same constant as in the statement of the theorem.
Let αt−1 denote the coupling probability for the coupling at line 4 of Algorithm 11

(and thus αT is the coupling probability on line 10). On the set {x1:N
t = x̃1:N

t } we have
by (18c)

αt =
N∑
i=1

min
{

w i
t∑

k w
k
t
,

w̃ i
t∑

k w̃
k
t

}
≥

∑N
i=1 min

{
w i
t , w̃

i
t
}

∑N
i=1 max

{
w i
t , w̃

i
t
}

≥
∑N

i=1

(
max

{
w i
t , w̃

i
t
} − L2‖θ − θ̃ ‖

)
∑N

i=1 max
{
w i
t , w̃

i
t
} ≥ 1 − L2

δ2
‖θ − θ̃ ‖, (21)

where we have used the Lipschitz continuity of the likelihood (A6a) for the penultimate
inequality, and the lower bound on the likelihood (A6b) for the last inequality.

Similarly, let βt denote the coupling probability for the coupling on line 7. Under
assumption (A6), the product pθ (yt−1 | xt−1)pθ (xt | xt−1) (which constitutes the unnor-
malized ancestor sampling weights) is bounded from below by δ1δ2. The product is
also Lipschitz continuous in θ : since |ab−cd | = |ab−ad+ad−cd | ≤ |a | |b−d |+ |d | |a−c |

III–27

Paper III – Learning dynamical systems with particle stochastic approximation EM

we have

|pθ (yt−1 | xt−1)pθ (xt | xt−1) − pθ̃ (yt−1 | xt−1)pθ̃ (xt | xt−1)| ≤ (κ1L2 + κ2L1)‖θ − θ̃ ‖.
Therefore, on the set {x1:N

t−1 = x̃1:N
t−1 }, we have by a computation analogous to above,

βt ≥ 1 − κ1L2 + κ2L1
δ1δ2

‖θ − θ̃ ‖. (22)

Finally, let γ it denote the coupling probability for the coupling at line 5, for the ith
particle. By (18b) and (18d) we have, on the set {x1:N

t−1 = x̃1:N
t−1 ,a

1:N
t = ã1:N

t },

γ it = 1 − λ(max{pθ (xt | xa
i
t

t−1) − pθ̃ (xt | x
ait
t−1), 0}) ≥ 1 − L1λ(X)‖θ − θ̃ ‖,

where λ denotes Lebesgue measure and where the inequality follows by (A6a). By
(A3), λ(X) < ∞. Note that the bound on γ it is independent of i .

Now, if we write P for probability with respect to the random variables generated
by Algorithm 11, we can crudely bound (20) by

P({x1:N
t = x̃1:N

t ,a
1:N
t = ã1:N

t : t = 1, . . . ,T }, J = J̃) ≥ E
[
αT

T∏
t=1

(
βt

N−1∏
i=1

αtγ
i
t

)]

≥
(
1 − L2

δ2
‖θ − θ̃ ‖

)T (N−1)+1
×

(
1 − κ1L2 + κ2L1

δ1δ2
‖θ − θ̃ ‖

)T
×

(
1 − L1λ(X)‖θ − θ̃ ‖

)T (N−1)

≥ (1 − D‖θ − θ̃ ‖)2T (N−1)+T+1

where D = max{ L2
δ2
, κ1L2+κ2L1

δ1δ2
,L1λ(X)}.

Finally, we note that the coupling probability is trivially bounded from below by
0 and that (1 − D‖θ − θ̃ ‖)m ≥ 1 − Dm‖θ − θ̃ ‖ on ‖θ − θ̃ ‖ ∈ [0,D−1]. Thus,∬

1(x?0:T = x̃?0:T)ξθ, θ̃ (x ′0:T ,dx
?
0:T ,dx̃

?
0:T)

≥ P({x1:N
t = x̃1:N

t ,a
1:N
t = ã1:N

t : t = 1, . . . ,T }, J = J̃)
≥ 1 − D(2T (N − 1) +T + 1)‖θ − θ̃ ‖,

which proves Theorem 1.

B Proof of Theorem 2, convergence of PSAEM

Theorem 2 follows from Kuhn and Lavielle (2004, Theorem 1), by using the established
Lipschitz continuity of the PGAS kernel from Theorem 1. A slight di�erence, however,
is that Kuhn and Lavielle (2004, Theorem 1) assumes that the Markov transition kernel
admits a density with respect to Lebesgue measure and that this density function
is Lipschitz continuous; see their assumption (SAEM3’)2. Our continuity result is
instead expressed in terms of total variation distance. The condition (SAEM3’)2 is
used by Kuhn and Lavielle to prove their Lemma 2, see Kuhn and Lavielle (2004,
p. 129). Thus, to complete the picture we provide a lemma which replaces Kuhn and
Lavielle (2004, Lemma 2). The result—which extends the continuity of the PGAS
Markov kernel to the k-fold kernel—is a special case of Andrieu, Moulines, et al. (2005,
Proposition B.2), but for completeness we repeat the proof here.

III–28

Lemma 1. Assume that the conditions of Theorem 1 hold. Then, there exists a constant
D ≤ ∞ such that for any k ≥ 0 and any bounded function f ,

‖Πk
θ f − Πk

θ̃
f ‖∞ ≤ D‖ f ‖∞‖θ − θ̃ ‖.

Proof. De�ne f̄θ̃ (x0:T) = f (x0:T) −
∫
f (x0:T)pθ̃ (x0:T |y0:T)dx0:T . Since f̄θ̃ di�ers from

f by a constant (depending on θ̃) we can write,

‖Πk
θ f − Πk

θ̃
f ‖∞ = ‖Πk

θ f̄θ̃ − Πk
θ̃
f̄θ̃ ‖∞ ≤

k∑
j=1
‖Πk−j

θ (Πθ − Πθ̃)Π
j−1
θ̃

f̄θ̃ ‖∞.

We have,

‖Πk−j
θ (Πθ − Πθ̃)Π

j−1
θ̃

f̄θ̃ ‖∞ = sup
x0:T

����
∫

Πk−j
θ (x0:T ,dx

?
0:T)(Πθ − Πθ̃)Π

j−1
θ̃

f̄θ̃ (x?0:T)
����

≤ sup
x0:T

∫
Πk−j
θ (x0:T ,dx

?
0:T)

���(Πθ − Πθ̃)Πj−1
θ̃

f̄θ̃ (x?0:T)
���

≤ sup
x0:T

∫
Πk−j
θ (x0:T ,dx

?
0:T)‖(Πθ − Πθ̃)Π

j−1
θ̃

f̄θ̃ ‖∞

= ‖(Πθ − Πθ̃)Π
j−1
θ̃

f̄θ̃ ‖∞.

Now, consider the function Π`

θ̃
f̄θ̃ (x0:T) for some ` ≥ 0. Recall that f̄θ̃ is centered

around the posterior expectation of f with respect to pθ̃ (x0:T |y1:T), which is the
limiting distribution of Πθ̃ . Thus, by uniform ergodicity of Πθ̃ for any θ̃ ∈ Θ it follows
that

sup
θ̃ ∈Θ
‖Π`

θ̃
f̄θ̃ ‖∞ ≤ Mρ` ‖ f ‖∞

for some constants M < ∞ and ρ < 1. Consequently, the function Π`

θ̃
f̄θ̃ (x0:T) satis�es

the conditions of Theorem 1 and thus

‖(Πθ − Πθ̃)Π
j−1
θ̃

f̄θ̃ ‖∞ ≤ CMρ j−1‖θ − θ̃ ‖.

Plugging this into the expressions above completes the proof. �

From this, the results of Lemma 2 in Kuhn and Lavielle (2004) follows for our
assumptions, and hence also Theorem 1 of Kuhn and Lavielle (2004) and, ultimately,
Theorem 2 of our main article.

III–29

Paper III – Learning dynamical systems with particle stochastic approximation EM

C Details about experiments

This section contains additional details regarding the experiments in Section 6.

Experiment 6.1–Linear Gaussian state-space model

The step length in PSAEM, as well as PIMH-SAEM, is choosen as γk = k−0.99. PSEM
is implemented as a particle �lter with N particles and a backward simulator (Godsill
et al. 2004) with N backward trajectories. The su�cient statistics, as derived by for
instance, Ghahramani and Hinton (1996), are 1

T
∑

t xtx
T
t and 1

T
∑

t xt−1x
T
t , and the

maximization problem can be solved analytically.

Experiment 6.2–Cascaded water tanks

The step length in PSAEM is choosen as γk = 1 for k = 1, . . . , 30, and γk = (k −30)−0.7

for k = 31, The initial parameter values are initialized randomly around k1 =
k2 = k3 = k4 = 0.05, k5 = k6 = 0, σ 2

e = σ
2
w = 0.1, ξ0 = 6, and a slight L2-regularization

(corresponding to a N(0, 103) prior) is used for k4 to avoid problems if the state
trajectory contains no over�ow events in the lower tank. The su�cient statistics for
a model on the form xt+1 = a(xt) + θTb(xt) +wt , wt ∼ N(0,σ 2), where θ and σ 2

are unknown, are 1
T

∑
t (xt − a(xt−1))(xt − a(xt−1))T , 1

T
∑

t b(xt−1)(xt − a(xt−1))T and
1
T

∑
t b(xt−1)b(xt−1)T , and x0 for the initial value. The maximization problem can be

solved analytically.

Experiment 6.3–Hyperparameter estimation in iFDM

The exact setup is a replica of Valera et al. (2015), to which we refer for details. We
use γk = k−0.7, but let the PMCMC run for 500 iterations (which, by a very quick look
at the trace of PGAS, appears to be a rough estimate of the burn-in period) before
starting PSAEM. The initial value of η are the ones chosen by Valera et al. (2015). The
su�cient statistics for M number of Beta random variables θm is M ,

∑M
m=1 log(θm)

and
∑M
m=1 log(1 − θm). The maximization problem lacks an analytical solution, and

an o�-the-shelf numerical optimization routine (fmincon in Matlab) was applied to
solve the maximization problem.

Experiment 6.4–Hyperparameter estimation in GP state-space models

The true functions in the example are xt+1 ∼ N
(
−7 arctan(xt3) cos(xt3) exp(− |xt |10), 1

)
and xt+1 ∼ N

(−7 sin(xt10 , 1
)
, respectively.

In the approximate GP-SSM model used, the unknown function f is approximated
as a �nite basis function expansion, whose coe�cients θ (column vector) have a
certain multivariate zero mean Gaussian prior distribution with a variance depending
on η (see Svensson, Solin, et al. 2016 for details). Thus, the su�cient statistics is θθT ,
and the maximization problem to solve is arg maxη − 1

2 Tr(θθTV −1
η) − 1

2 log det(Vη)
(where Vη follows from the choice of covariance function, see again Svensson, Solin,
et al. 2016), which requires a numerical approach.

III–30

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle Markov
chain Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72.3, pp. 269–342.

Christophe Andrieu, Anthony Lee, and Matti Vihola (2018). “Uniform Ergodicity of the
Iterated Conditional SMC and Geometric Ergodicity of Particle Gibbs samplers”.
In: Bernoulli 24.2, pp. 842–872.

Christophe Andrieu, Éric Moulines, and Pierre Priouret (2005). “Stability of Stochastic
Approximation under Veri�able Conditions”. In: SIAM Journal on Control and
Optimization 44.1, pp. 283–312.

Christophe Andrieu and Matti Vihola (2014). “Markovian stochastic approximation
with expanding projections”. In: Bernoulli 20.2, pp. 545–585.

Olivier Cappé, Éric Moulines, and Tobias Rydén (2005). Inference in hidden Markov
models. Springer Series in Statistics. New York, NY, USA: Springer.

Nicolas Chopin and S. Sumeetpal Singh (2015). “On Particle Gibbs Sampling”. In:
Bernoulli 21.3, pp. 1855–1883.

Pierre Del Moral (2004). Feynman-Kac formulae: genealogical and interacting particle
systems with applications. New York, NY, US: Springer.

Pierre Del Moral, Robert Kohn, and Frédéric Patras (2014). “On particle Gibbs Markov
chain Monte Carlo models”. In: arXiv:1404.5733.

Maud Delattre and Marc Lavielle (2013). “Coupling the SAEM algorithm and the ex-
tended Kalman �lter for maximum likelihood estimation in mixed-e�ects di�usion
models”. In: Statistics and Its Interface 6, pp. 519–532.

Bernard Delyon, Marc Lavielle, and Éric Moulines (1999). “Convergence of a stochastic
approximation version of the EM algorithm”. In: Annals of Statistics 27.1, pp. 94–
128.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (1977). “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society. Series B (Methodological) 39.1, pp. 1–38.

Jean Diebolt and Eddie H. S. Ip (1996). “Stochastic EM: method and application”. In:
Markov Chain Monte Carlo in Practice. Ed. by W. R. Gilks, S. Richardson, and D. J.
Spiegelhalter. Boca Raton, FL, USA: Chapman & Hall/CRC, pp. 259–274.

Vassilios V. Digalakis, Jan Robin Rohlicek, and Mari Ostendorf (1993). “ML estimation
of a stochastic linear system with the EM algorithm and its application to speech
recognition”. In: IEEE Transactions on Speech and Audio Processing 1.4, pp. 431–442.

Sophie Donnet and Adeline Samson (2011). EM algorithm coupled with particle �lter
for maximum likelihood parameter estimation of stochastic di�erential mixed-e�ects
models. Tech. rep. hal-00519576, v2. Université Paris Descartes, MAP5.

Arnaud Doucet, Nando de Freitas, and Neil J. Gordon (2001). “An introduction to
sequential Monte Carlo methods”. In: Sequential Monte Carlo methods in practice.
Springer, pp. 3–14.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle �ltering and
smoothing: �fteen years later”. In: Nonlinear Filtering Handbook. Ed. by D. Crisan
and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

III–31

Paper III – Learning dynamical systems with particle stochastic approximation EM

Gersende Fort and Éric Moulines (2003). “Convergence of the Monte Carlo Expecta-
tion Maximization for Curved Exponential Families”. In: Annals of statistics 31.4,
pp. 1220–1259.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther (2016). “Sequen-
tial Neural Models with Stochastic Layers”. In: Advances in Neural Information
Processing Systems (NIPS) 29. Barcelona, Spain, pp. 2199–2207.

Roger Frigola, Yutian Chen, and Carl Rasmussen (2014). “Variational Gaussian process
state-space models”. In: Advances in Neural Information Processing Systems 27
(NIPS). Montréal, QC, Canada, pp. 3680–3688.

Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl Rasmussen (2013).
“Bayesian inference and learning in Gaussian process state-space models with
particle MCMC”. In: Advances in Neural Information Processing Systems 26 (NIPS).
Lake Tahoe, NV, USA, pp. 3156–3164.

Roger Frigola, Fredrik Lindsten, Thomas B Schön, and Carl Rasmussen (2014). “Identi-
�cation of Gaussian process state-space models with particle stochastic approxi-
mation EM”. In: Proceedings of the 19th IFAC World Congress. Cape Town, South
Africa, pp. 4097–4102.

Jurgen V. Gael, Yee W. Teh, and Zoubin Ghahramani (2009). “The In�nite Factorial
Hidden Markov Model”. In: Advances in Neural Information Processing Systems
(NIPS) 21. Vancouver, BC, ada, pp. 1967–1704.

Zoubin Ghahramani and Geo�rey E. Hinton (1996). Parameter Estimation for Linear
Dynamical Systems. Tech. rep. CRG-TR-96-2. Department of Computer Science,
University of Toronto.

Zoubin Ghahramani and Sam T. Roweis (1998). “Learning nonlinear dynamical systems
using an EM algorithm”. In: Advances in Neural Information Processing Systems
(NIPS) 11. Denver, CO, USA, pp. 431–437.

Simon J. Godsill, Arnaud Doucet, and Mike West (2004). “Monte Carlo Smoothing for
Nonlinear Time Series”. In: Journal of the American Statistical Association 99.465,
pp. 156–168.

Mingming Gong, Kun Zhang, Bernhard Schölkopf, Clark Glymour, and Dacheng Tao
(2017). “Causal discovery from temporally aggregated time series”. In: Proceedings
of the Conference on Uncertainty in Arti�cial Intelligence (UAI). Sydney, Australia.

Geo� Holmes, Tim Rogers, et al. (2016). Cascaded Tanks Benchmark: Parametric and
Nonparametric Identi�cation. Presentation at Workshop on Nonlinear System Iden-
ti�cation Benchmarks 2016, Vrije Universiteit Brussel. Brussels, Belgium.

Pierre E. Jacob, Fredrik Lindsten, and Thomas B. Schön (2017). “Smoothing with
Couplings of Conditional Particle Filters”. In: arXiv:1701.02002.

Estelle Kuhn and Marc Lavielle (2004). “Coupling a stochastic approximation version
of EM with an MCMC procedure”. In: ESAIM: Probability and Statistics 8, pp. 115–
131.

Scott W. Linderman, Christopher H. Stock, and Ryan P. Adams (2014). “A framework
for studying synaptic plasticity with neural spike train data”. In: Advances in
Neural Information Processing Systems (NIPS) 28. Montreal, QC, Canada.

Fredrik Lindsten (2013). “An e�cient stochastic approximation EM algorithm using
conditional particle �lters”. In: Proceedings of the 38th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, BC, Canada, pp. 6274–
6278.

III–32

Fredrik Lindsten, Randal Douc, and Éric Moulines (2015). “Uniform ergodicity of the
Particle Gibbs sampler”. In: Scandinavian Journal of Statistics 42.3, pp. 775–797.

Fredrik Lindsten, Michael I. Jordan, and Thomas B. Schön (2014). “Particle Gibbs with
ancestor sampling”. In: The Journal of Machine Learning Research (JMLR) 15.1,
pp. 2145–2184.

Marta Marcos, Francisco M. Calafat, Ángel Berihuete, and Sönke Dangendorf (2015).
“Long-term variations in global sea level extremes”. In: Journal of Geophysical
Research 120.12, pp. 8115–8134.

César L. C. Mattos, Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme A.
Barreto, and Neil D. Lawrence (2016). “Recurrent Gaussian processes”. In: 4th
International Conference on Learning Representations (ICLR). San Juan, Puerto Rico.

Jan-Willem van de Meent, Yang Hongseok, Vikash Mansinghka, and Frank Wood
(2015). “Particle Gibbs with Ancestor Sampling for Probabilistic Programs”. In:
Proceedings of the 18th International Conference on Arti�cial Intelligence and Statistics
(AISTATS). San Diego, CA, USA, pp. 986–994.

Jimmy Olsson, Olivier Cappé, Randal Douc, and Éric Moulines (2008). “Sequential
Monte Carlo smoothing with application to parameter estimation in nonlinear
state-space models”. In: Bernoulli 14.1, pp. 155–179.

Carl E. Rasmussen and Christopher K. I. Williams (2006). Gaussian processes for
machine learning. Cambridge, MA, USA: MIT Press.

Rishi Relan, Koen Tiels, Aanna Marconato, and Johan Schoukens (2017). “An Un-
structured Flexible Nonlinear Model for the Cascaded Water-Tanks Benchmark”.
In: Proceedings of the 20th International Federation of Automatic Control World
Congress (IFAC), pp. 454–459.

Herbert Robbins and Sutton Monro (1951). “A stochastic approximation method”. In:
The Annals of Mathematical Statistics 22.3, pp. 400–407.

Christian P. Robert and George Casella (2004). Monte Carlo statistical methods. 2nd ed.
New York, NY, USA: Springer.

Thomas B. Schön, Adrian Wills, and Brett Ninness (2011). “System identi�cation of
nonlinear state-space models”. In: Automatica 47.1, pp. 39–49.

Maarten Schoukens and Jean-Philippe Noël (2017). “Three Benchmarks Address-
ing Open Challenges in Nonlinear System Identi�cation”. In: Proceedings of the
20th World Congress of the International Federation of Automatic Control (IFAC).
Toulouse, France.

Stefan N. Singor, Alex Boer, J. S. C. Alberts, and Cornelis W. Oosterlee (2017). “On
the modelling of nested risk-neutral stochastic processes with applications in
insurance”. In: Applied Mathematical Finance 24.2, pp. 302–336.

Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas B. Schön (2016). “Compu-
tationally e�cient Bayesian learning of Gaussian process state space models”.
In: Proceedings of the 19th International Conference on Arti�cial Intelligence and
Statistics (AISTATS). Cádiz, Spain, pp. 213–221.

Robert Tibshirani (1996). “Regression shrinkage and selection via the Lasso”. In: Journal
of the Royal Statistical Society. Series B (Statistical Methodology) 58.1, pp. 267–288.

Luke Tierney (1994). “Markov chains for exploring posterior distributions”. In: Annals
of Statistics 22.4, pp. 1701–1728.

III–33

Paper III – Learning dynamical systems with particle stochastic approximation EM

Jack Umenberger, Johan Wågberg, Ian Manchester, and Thomas B. Schön (2018). “Max-
imum likelihood identi�cation of stable linear dynamical systems”. In: Automatica.
Accepted for publication.

Isabel Valera, Francisco J. R. Ruiz, Lennart Svensson, and Fernando Perez-Cruz (2015).
“In�nite Factorial Dynamical Model”. In: Advances in Neural Information Processing
Systems (NIPS) 28. Montreal, QC, Canada, pp. 1666–1674.

Greg CG Wei and Martin A Tanner (1990). “A Monte Carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms”. In: Journal of the
American Statistical Association 85.411, pp. 699–704.

C. F. Je� Wu (1983). “On the Convergence Properties of the EM Algorithm”. In: Annals
of Statistics 11.1, pp. 95–103.

III–34

Paper IV

Title
Identi�cation of jump Markov linear models using particle �lters

Authors
Andreas Svensson, Thomas B. Schön and Fredrik Lindsten

Edited version of
Andreas Svensson, Thomas B. Schön, and Fredrik Lindsten (2014). “Identi�cation of jump
Markov linear models using particle �lters”. In: Proceedings of the 53rd IEEE Conference on
Decision and Control (CDC). Los Angeles, CA, USA, pp. 6504–6509.

Digital identity
doi:10.1109/cdc.2014.7040409

Financial support
The Swedish Research Council (VR) via the project Probabilistic modeling of dynamical systems (contract
number: 621-2013-5524).

Paper IV – Identi�cation of jump Markov linear models using particle �lters

IV–2

Identification of jump Markov
linear models using particle

filters

Abstract

Jump Markov linear models consists of a �nite number of linear state space models
and a discrete variable encoding the jumps (or switches) between the di�erent linear
models. Identifying jump Markov linear models makes for a challenging problem
lacking an analytical solution. We derive a new expectation maximization (EM) type
algorithm that produce maximum likelihood estimates of the model parameters. Our
development hinges upon recent progress in combining particle �lters with Markov
chain Monte Carlo methods in solving the nonlinear state smoothing problem inherent
in the EM formulation. Key to our development is that we exploit a conditionally
linear Gaussian substructure in the model, allowing for an e�cient algorithm.

1 Introduction

Consider the following jump Markov linear model on state space form

st+1 | st ∼ p(st+1 |st), (1a)
zt+1 = Ast+1zt + Bst+1ut +vt , (1b)
yt = Cst zt + Dstut + et , (1c)

where ∼ means distributed according to and the (discrete) variable st takes values in
{1, . . . ,K} (which can be thought of as di�erent modes which the model is jumping
between) and the (continuous) variable zt lives in Rnz . Hence, the state variable
consists of xt , (zt , st). Furthermore, et ∈ Rny and vt ∈ Rnz are zero mean white
Gaussian noise and EvtvTt = Qst+1 , EeteTt = Rst and EvteTt ≡ 0. The output (or
measurement) is yt ∈ Rny , the input is ut ∈ Rnu . As K is �nite, p(st+1 |st) can be
de�ned via a matrix Π ∈ RK×K with entries πmn , p(st+1 = n |st =m).

We are interested in o�-line identi�cation of jump Markov linear models on the
form (1) for the case of an unknown jump sequence, but the number of modes K is
known. More speci�cally, we will formulate and solve the maximum likelihood (ML)
problem to compute an estimate of the static parameters θ of a jump Markov linear
model based on a batch of measurements y1:T , {y1, . . . ,yT } and (if available) inputs
u1:T by solving,

θ̂ML = arg maxθ ∈ Θpθ (y1:T). (2)

IV–3

Paper IV – Identi�cation of jump Markov linear models using particle �lters

Here θ , {{An ,Bn ,Cn ,Dn ,Qn ,Rn}Kn=1,Π}, i.e., all unknown static parameters in
model (1). Here, and throughout the paper, the dependence on the inputs u1:T is
implicit.

Solving (2) is challenging and there are no closed form solutions available. Our
approach is to derive an expectation maximization (EM, Dempster et al. 1977) type
of solution, where the strategy is to separate the original problem into two closely
linked problems. The �rst problem is a challenging, but manageable nonlinear state
smoothing problem and the second problem is a tractable optimization problem. The
nonlinear smoothing problem we can solve using a combination of sequential Monte
Carlo (SMC) methods (particle �lters and particle smoothers, Doucet and Johansen
2011) and Markov chain Monte Carlo (MCMC) methods (Robert and Casella 2004).
More speci�cally we will make use of particle MCMC (PMCMC), which is a systematic
way of exploring the strengths of both approaches by using SMC to construct the
necessary high-dimensional Markov kernels needed in MCMC (Andrieu, Doucet, et al.
2010; Lindsten, Jordan, et al. 2014).

Our main contribution is a new maximum likelihood estimator that can be used to
identify jump Markov linear models on the form (1). The estimator exploits the condi-
tionally linear Gaussian substructure that is inherent in (1) via Rao-Blackwellization.
More speci�cally we derive a Rao-Blackwellized version of the particle stochastic
approximation expectation maximization (PSAEM) algorithm recently introduced
in Lindsten (2013).

Jump Markov linear models, or switching linear models, is a fairly well studied
class of hybrid systems. For recent overviews of existing system identi�cation methods
for jump Markov linear models, see Garulli et al. (2012) and Paoletti et al. (2007).
Existing approaches considering the problem under study here include two stage
methods, where the data is �rst segmented (using e.g. change detection type of
methods) and the individual models are then identi�ed for each segment, see e.g.
Borges et al. (2005) and Pekpe et al. (2004). There has also been approximate EM
algorithms proposed for identi�cation of hybrid systems (Blackmore et al. 2007; Gil
and Williams 2009) and the very recent Ashley and Andersson (2014) (di�ering from
our method in that we use stochastic approximation EM and Rao-Blackwellization).
There are also relevant relationships to the PMCMC solutions introduced in Whiteley
et al. (2010) and the SMC-based on-line EM solution derived in Yildirim et al. (2013).

There are also many approaches considering the more general problem with an
unknown number of modes K and an unknown state dimension nz , see e.g. Fox et al.
(2011) and Bemporad et al. (2001), making use of Bayesian nonparametric models and
mixed integer programming, respectively.

IV–4

2 Expectation maximization algorithms

The EM algorithm (Dempster et al. 1977) provides an iterative method for computing
maximum likelihood estimates of the unknown parameters θ in a probabilistic model
involving latent variables. In the jump Markov linear model (1) we observe y1:T ,
whereas the state x1:T is latent.

The EM algorithm maximizes the likelihood by iteratively maximizing the inter-
mediate quantity

Q(θ ,θ ′) ,
∫

logpθ (x1:T ,y1:T)pθ ′(x1:T |y1:T)dx1:T . (3)

More speci�cally, the procedure is initialized in θ0 ∈ Θ and then iterates between
computing an expected (E) value and solving a maximization (M) problem,

(E) Compute Q(θ ,θk−1).
(M) Compute θk = arg max

θ ∈Θ
Q(θ ,θk−1).

Intuitively, this can be thought of as ‘selecting the new parameters as the ones that
make the given measurements and the current state estimate as likely as possible’.

The use of EM type algorithms to identify dynamical systems is by now fairly
well explored for both linear and nonlinear models. For linear models, there are
explicit expressions for all involved quantities, see e.g. Gibson and Ninness (2005)
and Shumway and Sto�er (1982). For nonlinear models the intermediate quantity
Q(θ ,θ ′) is intractable and we are forced to approximate solutions; see e.g. Cappé et al.
(2005), Lindsten (2013), Olsson et al. (2008), and Schön, Wills, et al. (2011). This is the
case also for the model (1) under study in this work. Indeed, the maximization step
can be solved in closed form for the model (1), but (3) is still intractable in our case.

It is by now fairly well established that we can make use of sequential Monte Carlo
(SMC, Doucet and Johansen 2011) or particle Markov chain Monte Carlo (PMCM,
Andrieu, Doucet, et al. 2010) methods to approximate the joint smoothing distribution
for a general nonlinear model arbitrarily well according to

p̂(x1:T |y1:T) =
N∑
i=1

w i
T δx i1:T

(x1:T), (4)

where x i1:T are random samples with corresponding importance weights w i
T , δx is

a point-mass distribution at x and we refer to {x i1:T ,w
i
T }Ni=1 as a weighted particle

system. The particle smoothing approximation (4) can be used to approximate the
integral in (3). Using this approach within EM, we obtain the particle smoothing EM
(PSEM) method (Olsson et al. 2008; Schön, Wills, et al. 2011). PSEM can be viewed as
an SMC-analogue of the well known Monte Carlo EM (MCEM) algorithm (Wei and
Tanner 1990).

However, it has been recognized that MCEM, and analogously PSEM, makes
ine�cient use of the generated samples (Delyon et al. 1999). This is particularly
true when the simulation step is computationally expensive, which is the case when
using SMC or PMCMC. To address this shortcoming, Delyon et al. (1999) proposed
to use a stochastic approximation (SA, Robbins and Monro 1951) of the intermediate

IV–5

Paper IV – Identi�cation of jump Markov linear models using particle �lters

quantity instead of a vanilla Monte Carlo approximation, resulting in the stochastic
approximation EM (SAEM) algorithm. The SAEM algorithm replaces the intermediate
quantity Q in EM with

Q̂k (θ) = (1 − γk)Q̂k−1(θ) + γk logpθ (y1:T ,x1:T [k]), (5)

with {γk }∞k=1 being a sequence of step sizes which ful�ls
∑∞

k=1 γk = ∞ and
∑∞

k=1 γ
2
k <∞. In the above, x1:T [k] is a sample state trajectory, simulated from the joint smooth-

ing distribution pθk (x1:T |y1:T). It is shown by Delyon et al. (1999) that the SAEM
algorithm—which iteratively updates the intermediate quantity according to (5) and
computes the next parameter iterate by maximizing this stochastic approximation—
enjoys good convergence properties. Indeed, despite the fact that the method requires
only a single sample x1:T [k] at each iteration, the sequence {θk }k≥1 will converge to
a maximizer of pθ (y1:T) under reasonably weak assumptions.

However, in our setting it is not possible to simulate from the joint smoothing
distribution pθk (x1:T |y1:T). We will therefore make use of the particle SAEM (PSAEM)
method (Lindsten 2013), which combines recent PMCMC methodology with SAEM.
Speci�cally, we will exploit the structure of (1) to develop a Rao-Blackwellized PSAEM
algorithm.

We will start our development in the subsequent section by considering the
smoothing problem for (1). We derive a PMCMC-based Rao-Blackwellized smoother
for this model class. The proposed smoother can, principally, be used to compute (3)
within PSEM. However, a more e�cient approach is to use the proposed smoother to
derive a Rao-Blackwellized PSAEM algorithm, see Section 4.

3 Smoothing using Monte Carlo methods

For smoothing, that is, �nding pθ (x1:t |y1:t) = pθ (s1:T , z1:T |y1:T), various Monte Carlo
methods can be applied. We will use an MCMC based approach, as it �ts very well in
the SAEM framework (see e.g. Andrieu, Moulines, et al. 2005; Kuhn and Lavielle 2004),
which together shapes the PSAEM algorithm. The aim of this section is therefore to
derive an MCMC-based smoother for jump Markov linear models.

To gain e�ciency, the jump sequence s1:T and the linear states z1:T are separated
using conditional probabilities as

pθ (s1:T , z1:T |y1:T) = pθ (z1:T |s1:T ,y1:T)pθ (s1:T |y1:T). (6)

This allows us to infer the conditionally linear states z1:T using closed form expressions.
Hence, it is only the jump sequence s1:T that has to be computed using approximate
inference. This technique is referred to as Rao-Blackwellization (Casella and Robert
1996).

3.1 Inferring the linear states: p(z1:T |s1:T ,y1:T)
State inference in linear Gaussian state space models can be performed exactly
in closed form. More speci�cally, the Kalman �lter provides the expressions for
the �ltering density pθ (zt |s1:t ,y1:t) = N(zt |ẑf ;t , Pf ;t) and the one step predictor
density pθ (zt+1 |s1:t+1,y1:t) = N(zt |ẑp ;t+1, Pp ;t+1). The marginal smoothing density

IV–6

Algorithm 1: MCMC smoother
1 Initialize s1:T [0] arbitrarily
2 for k ≥ 1 do
3 Generate s1:T [k] ∼ Kθ (·|s1:T [k − 1])
4 end

pθ (zt |s1:T ,y1:T) = N(zt |ẑs ;t , Ps ;t) is provided by the Rauch-Tung-Striebel (RTS)
smoother (Rauch et al. 1965). See, e.g., Kailath et al. (2000) for the relevant
results. Here, we use N(x | µ, Σ) to denote the density for the (multivariate) normal
distribution with mean µ and covariance matrix Σ.

3.2 Inferring the jump sequence: p(s1:T |y1:T)
To �nd p(s1:T |y1:T), an MCMC approach is used. First, the concept of using Markov
kernels for smoothing is introduced, and then the construction of the kernel itself
follows.

MCMC makes use of ergodic theory for statistical inference. Let Kθ be a Markov
kernel (to be de�ned below) on the T -fold product space {1, ...,K}T . Note that the
jump sequence s1:T lives in this space. Furthermore, assume that Kθ is ergodic with
unique stationary distribution pθ (s1:T |y1:T). This implies that by simulating a Markov
chain with transition kernel Kθ , the marginal distribution of the chain will approach
pθ (s1:T |y1:T) in the limit.

Speci�cally, let s1:T [0] be an arbitrary initial state with pθ (s1:T [0]|y1:T) > 0 and
let s1:T [k] ∼ Kθ (·|s1:T [k − 1])) for k ≥ 1, then by the ergodic theorem (Robert and
Casella 2004):

1
n

n∑
k=1

h(s1:T [k]) → Eθ [h(s1:T)|y1:T] , (7)

as n → ∞ for any function h : {1, ...,K}T 7→ R. This allows a smoother to be
constructed as in Algorithm 1.

We will use the conditional particle �lter with ancestor sampling (CPF-AS, Lindsten,
Jordan, et al. 2014) to construct the Markov kernel Kθ . The CPF-AS is similar to a
standard particle �lter, but with the important di�erence that one particle trajectory
(jump sequence), s ′1:T , is speci�ed a priori.

The algorithm statement for the CPF-AS can be found in, e.g., Lindsten, Jordan,
et al. (2014). Similar to an auxiliary particle �lter (Doucet and Johansen 2011), the
propagation of pθ (s1:t−1 |y1:t−1) (approximated by {si1:t−1,w

i
t−1}Ni=1) to time t is done

using the ancestor indices {ait }Ni=1. To generate sit , the ancestor index is sampled
according to P

(
ait = j

) ∝ w j
t−1, and sit as sit ∼ pθ (st |sa

i
t

t−1). The trajectories are then
augmented as si1:t = {s

ait
1:t−1, s

i
t }.

This is repeated for i = 1, . . . ,N − 1, whereas sNt is set as sNt = s ′t . To ‘�nd’ the
history for sNt , the ancestor index aNt is drawn with probability

P
(
aNt = i

)
∝ pθ (si1:t−1 |s ′t :T ,y1:T). (8)

IV–7

Paper IV – Identi�cation of jump Markov linear models using particle �lters

The probability density in (8) is proportional to

pθ (yt :T , s
′
t :T |si1:t−1,y1:t−1)pθ (si1:t−1 |y1:t−1), (9)

where the last factor is the importance weight w i
t−1.

By sampling s1:T [k + 1] = s J1:T from the rendered set of trajectories {si1:T ,w
i
T }Ni=1

with P (J = j) = w j
T , a Markov kernel Kθ mapping s1:T [k] = s ′1:T to s1:T [k + 1] is

obtained. For this Markov kernel to be useful for statistical inference we require that
(i) it is ergodic, and (ii) it admits pθ (s1:T |y1:T) as its unique limiting distribution. While
we do not dwell on the (rather technical) details here, we note that these requirements
are indeed ful�lled; see Lindsten, Jordan, et al. (2014).

3.3 Rao-Blackwellization

Rao-Blackwellization of particle �lters is a fusion of the Kalman �lter and the particle
�lter based on (6), and it is described in, e.g., Schön, Gustafsson, et al. (2005). However,
Rao-Blackwellization of a particle smoother is somewhat more involved since the
process xt |y1:T is Markovian, but not st |y1:T (with zt marginalized, see, e.g., Whiteley
et al. (2010) and Lindsten and Schön (2013) for various ways to handle this).

A similar problem as for the particle smoothers arises in the ancestor sam-
pling (8) in the CPF-AS. In the case of a non-Rao-Blackwellized CPF-AS, (8) re-
duces to w i

t−1p(x ′t |x it−1) (Lindsten, Jordan, et al. 2014). This does not hold in the
Rao-Blackwellized case.

To handle this, (8) can be rewritten as

w i
t−1p(yt :T , s

′
t :T |si1:t−1,y1:t−1). (10)

Using the results from Section 4.4 in Lindsten and Schön (2013) (adapted to model (1)),
this can be written (omitting w i

t−1, and with the notation ‖z‖2Ω , zTΩz, P , ΓΓT , i.e.
the Cholesky factorization, Qt , Ft F

T
t and At , As ′t etc.)

p(yt :T , s
′
t :T |si1:t−1,y1:t−1) ∝ Zt−1 |Λt−1 |−1/2 exp(−1

2ηt−1),

with

Λt = Γi,Tf ;t Ωt Γ
i
f ;t + I , (11a)

ηt = ‖ẑif ;t ‖2Ωt
− 2λTt ẑ

i,T
f ;t − ‖Γnf ;t (λt − Ωt ẑ

n
f ;t)‖2M−1

t
, (11b)

where

Ωt = ATt+1

(
I − Ω̂t+1Ft+1M

−1
t+1F

T
t+1

)
Ω̂t+1At+1, (11c)

Ω̂t = Ωt +C
T
t R
−1
t Ct , Mt = FTt Ω̂Ft + I , (11d)

λt = ATt+1

(
I − Ω̂t+1Ft+1M

−1
t+1F

T
t+1

)
mt , (11e)

λ̂t = λt +C
T
t R
−1
t (yt − Dtut), (11f)

mt = (λ̂t+1 − Ω̂t+1Bt+1ut+1). (11g)

IV–8

Algorithm 2: Rao-Blackwellized CPF-AS
Input: s ′1:T = s1:T [k].
Output: s1:T [k + 1] (A draw from Kθ (·|s1:T [k]) and {si1:T ,w

i
T }Ni=1.

1 Draw si1 ∼ p1(s1 |y1) for i = 1, . . . ,N − 1.
2 Compute {Ωt , λt }Tt=1 for s ′1:T according to (11c) - (11g).
3 Set (sN1 , . . . , sNT) = (s ′1, . . . , s ′T).
4 Compute ẑif ,1 and P if ,1 for i = 1, . . . ,N .
5 Set w i

1 ∝ pθ (y1 |si1) (12) for i = 1, . . . ,N s.t.
∑

i w
i
1 = 1.

6 for t = 2 to T do
7 Draw ait with P

(
ait = j

)
= w j

t−1 for i = 1, . . . ,N − 1.
8 Draw sit with P

(
sit = n

)
= πs it−1,n

for i = 1, . . . ,N − 1.
9 Compute {Λi

t−1,η
i
t } according to (11a)-(11b).

10 Draw aNt with P
(
aNt = i

) ∝ w i
t−1πs it−1,s

N
t
|Λi

t−1 |−1/2 exp(− 1
2η

i
t−1).

11 Set si1:t = {s
ait
1:t−1, s

i
t } for i = 1, . . . ,N .

12 Set ẑif ,1:t−1 = ẑ
ait
f ,1:t−1, P if ,1:t−1 = P

ait
f ,1:t−1, ẑip,1:t−1 = ẑ

ait
p,1:t−1 and

P ip,1:t−1 = P
ait
p,1:t−1 for i = 1, . . . ,N .

13 Compute ẑip ;t , P ip ;t , ẑif ;t and P if ;t for i = 1, . . . ,N .
14 Set w i

t ∝ pθ (yt |sit ,y1:t−1) for i = 1, . . . ,N s.t.
∑

i w
i
t = 1.

15 end
16 for t = T to 1 do
17 Compute ẑis ;t , P is ;t for i = 1, . . . ,N .
18 end
19 Set s1:T [k + 1] = s J1:T with P (J = j) = w j

T .

and ΩT = 0 and λT = 0. The Rao-Blackwellization also includes an RTS smoother for
�nding pθ (z1:T |s1:T ,y1:T).

Summarizing the above development, the Rao-Blackwellized CPF-AS (for the jump
Markov linear model (1)) is presented in Algorithm 2, where

pθ (yt |si1:t ,y1:t−1) = N(yt ;Cs it
ẑnp ;t + Ds it

ut ,Cs it
Pp ;tC

T
s it
+ Rs it)

is used. Note that the discrete state st is drawn from a discrete distribution de�ned by
Π, whereas the linear state zt is handled analytically. The algorithm implicitly de�nes
a Markov kernel Kθ that can be used in Algorithm 1 for �nding p(s1:T |y1:T), or, as
we will see, be placed in an SAEM framework to estimate θ (both yielding PMCMC
constructions).

4 Identification of jump Markov linear models

In the previous section, an ergodic Markov kernel Kθ leaving pθ (s1:T |y1:T) invariant
was found as a Rao-Blackwellized CPF-AS summarized in Algorithm 2. This will be
used together with SAEM, as it allows us to make one parameter update at each step

IV–9

Paper IV – Identi�cation of jump Markov linear models using particle �lters

Algorithm 3: Rao-Blackwellized PSAEM
1 Initialize θ̂0 and s1:T [0], and Q̂0(θ) ≡ 0.
2 for k ≥ 1 do
3 Run Algorithm 2 to obtain {si1:T ,w

i
T }Ni=1

4 and s1:T [k].
5 Compute Q̂k (θ) according to (12).
6 Compute θ̂k = arg maxθ ∈Θ Q̂k (θ) .
7 end

of the Markov chain smoother in Algorithm 1, as presented as PSAEM in Lindsten
(2013). (However, following Lindsten (2013), we make use of all the particles generated
by CPF-AS, and not only s1:T [k + 1], to compute the intermediate quantity in the
SAEM.)

This leads to the approximation (cf. (5))

Q̂k (θ) = (1 − γk)Q̂k−1(θ) + γk
N∑
i=1

w i
TEθk

[
logpθ (y1:T , z1:T , s

i
1:T)|si1:T ,y1:T

]
, (12)

where the expectation is with respect to z1:T . Putting this together, we obtain a
Rao-Blackwellized PSAEM (RB-PSAEM) algorithm presented in Algorithm 3. Note
that this algorithm is similar to the MCMC-based smoother in Algorithm 1, but with
the di�erence that the model parameters are updated at each iteration, e�ectively
enabling simultaneous smoothing and identi�cation.

(For notational convenience, the iteration number k is suppressed in the variables
related to {si1:T ,w

i
T }Ni=1.)

With a strong theoretical foundation in PMCMC and Markovian stochastic approx-
imation, the RB-PSAEM algorithm presented here enjoys very favourable convergence
properties. In particular, under certain smoothness and ergodicity conditions, the
sequence of iterates {θk }k≥1 will converge to a maximizer of pθ (y1:T) as k → ∞,
regardless of the number of particles N ≥ 2 used in the internal CPF-AS procedure
(see Proposition 1 of Lindsten 2013 together with Kuhn and Lavielle 2004 for details).
Furthermore, empirically it has been found that a small number of particles can
work well in practice as well. For instance, in the numerical examples considered in
Section 5, we run Algorithm 3 with N = 3 with accurate identi�cation results.

For the model structure (1), there exists in�nitely many solutions to the problem
(2); all relevant involved matrices can be transformed by a linear transformation
matrix and the modes can be re-ordered, but the input-output behaviour will remain
invariant. The model is therefore over-parametrized, or lacks identi�ability, in the
general problem setting. However, it is shown in Pintelon et al. (1996) that the Cramér-
Rao Lower Bound is not a�ected by the over-parametrization. That is, the estimate
quality, in terms of variance, is una�ected by the over-parametrization.

IV–10

4.1 Maximizing the intermediate quantity

When making use of RB-PSAEM from Algorithm 3, one major question arises from
Step 6, namely the maximization of the intermediate quantity Q̂k (θ). For the jump
Markov linear model, the expectation in (12) can be expressed using su�cient statistics,
as will be shown later, as an inner product

N∑
i=1

w i
TEθk

[
logpθ (y1:T , z1:T , s

i
1:T)|si1:T ,y1:T

]
= 〈Sk ,η(θ)〉, (13)

for a su�cient statistics S and corresponding natural parameter η(θ). Hence Q̂k can
be written as

Q̂k (θ) = (1 − γk)Q̂k−1(θ) + γk 〈Sk ,η(θ)〉 = 〈Sk ,η(θ)〉 (14)

if the transformation

Sk = (1 − γk)Sk−1 + γkS
k (15)

is used. In detail,

N∑
i=1

w i
TEθk

[
logpθ (y1:T , z1:T , s

i
1:T)|si1:T ,y1:T

]
=

K∑
n=1

K∑
m=1

S (1)n,m logπn,m −
K∑
n=1

1
2

(
S (2)n log(|Qn | |Rn |) + Tr(Hθ

nS
(3)
n)

)
(16a)

neglecting constant terms in the last expression. This can be veri�ed to be an inner
product (as indicated in (13)) in S = {S (1), S (2), S (3)}. Here the su�cient statistics

S (1)n,m =
N∑
i=1

w i
T

T∑
t=1
Is it=m,s it−1=n

, (16b)

S (2)n =
N∑
i=1

w i
T

T∑
t=1
Is it=n , (16c)

S (3)n =
N∑
i=1

w i
T

T∑
t=1
Is it=n(ξ̂

i
t ξ̂

i,T
t +M i

t |T), (16d)

with

ξ̂ it =
(
ẑi,Ts ;t

[
ẑi,Ts ;t−1 u

T
t−1

]
yTt

[
ẑi,Ts ;t uTt

])T
, (16e)

and

Hθ
n =

©«
[I ATn BTn]Q−1

n

[
I
An
Bn

]
0

0 [I CT
n DT

n]R−1
n

[
I
Cn
Dn

] ª®®®¬
(16f)

IV–11

Paper IV – Identi�cation of jump Markov linear models using particle �lters

have been used. Further notation introduced is I· as the indicator function, and

M i
t |T =

©«

P is ;t P is ;t,t−1 0 0 P is ;t 0
P is ;t,t−1 P is ;t−1 0 0 P is ;t,t−1 0

0 0 0 0 0 0
0 0 0 0 0 0

P is ;t P is ;t,t−1 0 0 P is ;t−1 0
0 0 0 0 0 0

ª®®®¬
. (16g)

For computing this, the RTS-smoother in step 17 in Algorithm 2 has to be extended
by calculation of Ps ;t+1,t , cov

[
ẑs,t+1ẑ

T
s ;t

]
, which can be done as follows (Shumway

and Sto�er 2006, Property P6.2)

Ps ;t,t−1 = Pf ;t J
T
t−1 + Jt (Ps ;t+1,t −At+1Pf ;t)JTt−1, (17)

initialized with PT ,T−1 |T = (I − KTCT)AT Pf ;t−1.
For notational convenience, we will partition S (3)n as

S (3)n =

(Φn Ψn
ΨTn Σn

Ωn Λn
ΛTn Ξn

)
. (18)

Lemma 1. Assume for all modes n = 1, . . . ,K , that all states z are controllable and
observable and

∑
t Ist=nu

T
t ut > 0. The parameters θ maximizing Q̂k (θ) for the jump

Markov linear model (1) are then given by

π j
n,m =

S
(1),k
n,m∑

l S
(1),k
n,l

, (19a)

[
An Bn

]
= ΨnΣ

−1
n , (19b)[

Cn Dn
]
= ΛnΞ

−1
n , (19c)[

Qn
]
= (S(2),kn)−1

(
Φn − ΨnΣ−1

n ΨT
n

)
, (19d)[

Rn
]
= (S(2),kn)−1

(
Ωn − ΛnΞ

−1
n ΛTn

)
, (19e)

for n,m = 1, . . . ,K .

Φn ,Ψn , . . . are the partitions of S(3),kn indicated in (18), and S(i) are the ‘SA-updates’
(15) of the su�cient statistics (16b)-(16d).

Remark: If B ≡ 0, the �rst square bracket in (16e) can be replaced by
[
ẑi,Ts ;t−1

]
, and

(19b) becomes
[
An

]
= ΨnΣ

−1
n . The case with D ≡ 0 is fully analogous.

Proof. With arguments directly from Gibson and Ninness (2005, Lemma 3.3), the
maximization of the last part of (16a) for a given st = n (for any su�cient statistics Z
in the inner product, and in particular Z = Sk), is found to be (19b)-(19e).

Using Lagrange multipliers and that
∑

i πn,m = 1, the maximum w.r.t. Π of the
�rst part of (16a) is obtained as

πn,m =
S
(1),k
n,m∑

l S
(1),k
n,l

. (20)

�

IV–12

4.2 Computational complexity

Regarding the computational complexity of Algorithm 3, the most important result is
that it is linear in the number of measurements T . It is also linear in the number of
particles N .

5 Numerical examples

Some numerical examples are given to illustrate the properties of the Rao-
Blackwellized PSAEM algorithm. The Matlab code for the examples is available via
the homepage of the �rst author1.

5.1 Example 1 - Comparison to related methods

The �rst example concerns identi�cation using simulated data (T = 3 000) for a
one-dimensional (nz = 1) jump Markov linear model with 2 modes (K = 2) (with
parameters randomly generated according to An ∼ U[−1,1], Bn ∼ U[−5,5], Cn ∼
U[−5,5], Dn ≡ 0,Qn ∼ U[0.01,0.1],Rn ∼ U[0.01,0.1]) with low-pass �ltered white noise as
ut . The following methods are compared:

1. RB-PSAEM from Algorithm 3, with (only) N = 3 particles,

2. PSAEM as presented in Lindsten (2013) with N = 20,

3. PSEM (Schön, Wills, et al. 2011) with N = 100 forward particles and M = 20
backward simulated trajectories.

The initial parameters θ̂0 are each randomly picked from [0.5θ?, 1.5θ?], where θ?
is the true parameter value. The results are illustrated in Figure 1, which shows the
mean (over all modes and 7 runs)H2 error for the transfer function from the input u
to the output y.

From Figure 1 (note the log-log scale used in the plot) it is clear that our new
Rao-Blackwellized PSAEM algorithm has a signi�cantly better performance, both
in terms of mean and in variance between di�erent runs, compared to the previous
algorithms.

5.2 Example 2 - Identification of multidimensional systems

Let us now consider a two-dimensional system (nz = 2) with K = 3 modes. The
eigenvalues for An are randomly picked from [−1, 1]. The other parameters are
randomly picked as Bn ∼ U[−5,5], Cn ∼ U[−5,5], Dn ≡ 0,Qn ∼ I2 · U[0.01,0.1],Rn ∼
U[0.01,0.1], and the system is simulated for T = 8 000 time steps with input ut being
a low-pass �ltered white noise. The initialization of the Rao-Blackwellized PSAEM
algorithm is randomly picked from [0.6θ?, 1.4θ?] for each parameter. The number
of particles used in the particle �lter is N = 3. Figure 2a shows the mean (over 10
runs)H2 error for each mode, similar to Figure 1. Figure 2b shows the estimated Bode
plots after 300 iterations. As is seen from Figure 2b, the RB-PSAEM algorithm has the
ability to catch the dynamics of the multidimensional system fairly well.

1http://www.it.uu.se/katalog/andsv164

IV–13

Paper IV – Identi�cation of jump Markov linear models using particle �lters

10
1

10
2

10
3

10
4

10
−2

10
−1

Computation time [s]

M
ea
n
/
0
.5

st
d
H

2
er
ro
r

RB-PSAEM, N = 3
PSAEM, N = 20
PSEM, N = 100

Figure 1: Numerical example 1. Mean (lines) and 0.5 standard deviation (�elds) H2 error for
7 runs of our RB-PSAEM using N = 3 particles (black) PSAEM (Lindsten 2013) using N = 20
particles (blue) and PSEM (Schön, Wills, et al. 2011) using N = 100 particles andM = 20 backward
trajectories (red).

10
2

10
3

10
4

10
−2

10
−1

Computation time [s]

M
ea
n
H

2
er
ro
r Mode 1

Mode 2
Mode 3

(a) MeanH2 error for each mode.

10
−1

10
0

10
−2

10
−1

10
0

Frequency ω

G
a
in

True
Estimated
Intial guess

(b) Bode plots of the estimates (black), true
(dashed grey) and the initializations (dotted
red).

Figure 2: Plots from Numerical example 2.

6 Conclusions and future work

We have derived a maximum likelihood estimator for identi�cation of jump Markov
linear models. More speci�cally an expectation maximization type of solution was
derived. The nonlinear state smoothing problem inherent in the expectation step
was solved by constructing an ergodic Markov kernel leaving the joint state smooth-
ing distribution invariant. Key to this development was the introduction of a Rao-
Blackwellized conditional particle �lter with ancestor sampling. The maximization
step could be solved in closed form. The experimental results indicate that we obtain
signi�cantly better performance both in terms of accuracy and computational time
when compared to previous state of the art particle �ltering based methods. The ideas
underlying the smoother derived in this work have great potential also outside the
class of jump Markov linear models and this is something worth more investigation.
Indeed, it is quite possible that it can turn out to be a serious competitor also in �nding
the joint smoothing distribution for general nonlinear state space models.

IV–14

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle Markov
chain Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72.3, pp. 269–342.

Christophe Andrieu, Éric Moulines, and Pierre Priouret (2005). “Stability of stochas-
tic approximation under veri�able conditions”. In: SIAM Journal on control and
optimization 44.1, pp. 283–312.

Trevor T. Ashley and Sean B. Andersson (2014). “A sequential Monte Carlo framework
for the system identi�cation of jump Markov state space models”. In: Proceedings
of the 2014 American Control Conference (ACC). Portland, OR, USA, pp. 1144–1149.

Alberto Bemporad, Jacob Roll, and Lennart Ljung (2001). “Identi�cation of hybrid sys-
tems via mixed-integer programming”. In: Proceedings of the 40th IEEE Conference
on Decision and Control (CDC). Orlando, FL, USA, pp. 786–792.

Lars Blackmore, Stephanie Gil, Seung Chung, and Brian Williams (2007). “Model
learning for switching linear systems with autonomous mode transitions”. In:
Proceedings of the 46th IEEE Conference on Decision and Control (CDC). New Orleans,
LA, USA, pp. 4648–4655.

José Borges, Vincent Verdult, Michel Verhaegen, and Miguel Ayala Botto (2005).
“A switching detection method based on projected subspace classi�cation”. In:
Proceedings of the 44th IEEE Conference on Decision and Control (CDC). Sevilla,
Spain, pp. 344–349.

Olivier Cappé, Éric Moulines, and Tobias Rydén (2005). Inference in hidden Markov
models. Springer Series in Statistics. New York, NY, USA: Springer.

George Casella and Christian P. Robert (1996). “Rao-Blackwellisation of sampling
schemes”. In: Biometrika 83.1, pp. 81–94.

Bernard Delyon, Marc Lavielle, and Éric Moulines (1999). “Convergence of a stochastic
approximation version of the EM algorithm”. In: Annals of Statistics 27.1, pp. 94–
128.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (1977). “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society. Series B (Methodological) 39.1, pp. 1–38.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle �ltering and
smoothing: �fteen years later”. In: Nonlinear Filtering Handbook. Ed. by D. Crisan
and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

Emily Fox, Erik B. Sudderth, Michael I. Jordan, and Alan Willsky (2011). “Bayesian non-
parametric inference of switching dynamic linear models”. In: IEEE Transactions
of Signal Processing 59.4, pp. 1569–1585.

Andrea Garulli, Simone Paoletti, and Antonio Vicino (2012). “A survey on switched and
piecewise a�ne system identi�cation”. In: Proceedings of the 16th IFAC Symposium
on System Identi�cation (SYSID). Brussels, Belgium, pp. 344–355.

Stuart Gibson and Brett Ninness (2005). “Robust maximum-likelihood estimation of
multivariable dynamic systems”. In: Automatica 41.10, pp. 1667–1682.

Stephanie Gil and Brian Williams (2009). “Beyond local optimality: an improved
approach to hybrid model learning”. In: Proceedings of the 48th IEEE Conference on
Decision and Control (CDC). Shanghai, China, pp. 3938–3945.

IV–15

Paper IV – Identi�cation of jump Markov linear models using particle �lters

Thomas Kailath, Ali H. Sayed, and Babak Hassibi (2000). Linear estimation. Upper
Saddle River, NJ, USA: Prentice Hall.

Estelle Kuhn and Marc Lavielle (2004). “Coupling a stochastic approximation version
of EM with an MCMC procedure”. In: ESAIM: Probability and Statistics 8, pp. 115–
131.

Fredrik Lindsten (2013). “An e�cient stochastic approximation EM algorithm using
conditional particle �lters”. In: Proceedings of the 38th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, BC, Canada, pp. 6274–
6278.

Fredrik Lindsten, Michael I. Jordan, and Thomas B. Schön (2014). “Particle Gibbs with
ancestor sampling”. In: The Journal of Machine Learning Research (JMLR) 15.1,
pp. 2145–2184.

Fredrik Lindsten and Thomas B. Schön (2013). “Backward simulation methods for
Monte Carlo statistical inference”. In: Foundations and Trends in Machine Learning
6.1, pp. 1–143.

Jimmy Olsson, Olivier Cappé, Randal Douc, and Éric Moulines (2008). “Sequential
Monte Carlo smoothing with application to parameter estimation in nonlinear
state-space models”. In: Bernoulli 14.1, pp. 155–179.

Simone Paoletti, Aleksandar Lj. Juloski, Giancarlo Ferrari-Trecate, and René Vidal
(2007). “Identi�cation of hybrid systems: a tutorial”. In: European Journal of Control
13.2, pp. 242–260.

Komi Midzodzi Pekpe, Gilles Mourot, Komi Gasso, and José Ragot (2004). “Identi�-
cation of switching systems using change detection technique in the subspace
framework”. In: Proceedings of the 43rd IEEE Conference on Decision and Control
(CDC). Vol. 4. Paradise Island, Bahamas, pp. 3838–3843.

Rik Pintelon, Joannes Schoukens, Tomas McKelvey, and Yves Rolain (1996). “Mini-
mum variance bounds for overparameterized models”. In: IEEE Transactions on
Automatic Control 41.5, pp. 719–720.

Herbert E. Rauch, Frank F. Tung, and Charlotte T. Striebel (1965). “Maximum likelihood
estimates of linear dynamic systems”. In: AIAA journal 3.8, pp. 1445–1450.

Herbert Robbins and Sutton Monro (1951). “A stochastic approximation method”. In:
The Annals of Mathematical Statistics 22.3, pp. 400–407.

Christian P. Robert and George Casella (2004). Monte Carlo statistical methods. 2nd ed.
New York, NY, USA: Springer.

Thomas B. Schön, Fredrik Gustafsson, and Per-Johan Nordlund (2005). “Marginalized
particle �lters for mixed linear/nonlinear state-space models”. In: IEEE Transactions
on Signal Processing 53.7, pp. 2279–2289.

Thomas B. Schön, Adrian Wills, and Brett Ninness (2011). “System identi�cation of
nonlinear state-space models”. In: Automatica 47.1, pp. 39–49.

Robert H. Shumway and David S. Sto�er (1982). “An approach to time series smoothing
and forecasting using the EM algorithm”. In: Journal of Time Series Analysis 3.4,
pp. 253–264.

Robert H. Shumway and David S. Sto�er (2006). Time series analysis and its applica-
tions: with R examples. 2nd ed. New York, NY, USA: Springer.

Greg C.G. Wei and Martin A. Tanner (1990). “A Monte Carlo implementation of the
EM algorithm and the poor man’s data augmentation algorithms”. In: Journal of
the American Statistical Association 85.411, pp. 699–704.

IV–16

Nick Whiteley, Christophe Andrieu, and Arnaud Doucet (2010). “E�cient Bayesian
inference for switching state-space models using discrete particle Markov chain
Monte Carlo methods”. In: arXiv:1011.2437.

Sinan Yildirim, Sumeetpal S. Singh, and Arnaud Doucet (2013). “An online expectation–
maximization algorithm for changepoint models”. In: Journal of Computational
and Graphical Statistics 22.4, pp. 906–926.

IV–17

Paper IV – Identi�cation of jump Markov linear models using particle �lters

18

Paper V

Title
Learning of state-space models with highly informative observations: a
tempered Sequential Monte Carlo solution

Authors
Andreas Svensson, Thomas B. Schön and Fredrik Lindsten

Edited version of
Andreas Svensson, Thomas B. Schön, and Fredrik Lindsten (2018). “Learning of state-space
models with highly informative observations: a tempered Sequential Monte Carlo solution”. In:
Mechanical Systems and Signal Processing 104, pp. 915–928.

Digital identity
doi:10.1016/j.ymssp.2017.09.016

Financial support
The Swedish Research Council via the projects Probabilistic modeling of dynamical systems (contract number:
621-2013-5524), Learning of Large-Scale Probabilistic Dynamical Models (contract number: 2016-04278), and
NewLEADS - New Directions in Learning Dynamical Systems (contract number: 621-2016-06079) and the
Swedish Foundation for Strategic Research (SSF) via the project ASSEMBLE (contract number: RIT15-0012).

Paper V – Learning of state-space models with highly informative observations

V–2

Learning of state-space models
with highly informative

observations: a tempered
Sequential Monte Carlo solution

Abstract

Probabilistic (or Bayesian) modeling and learning o�ers interesting possibilities for
systematic representation of uncertainty using probability theory. However, proba-
bilistic learning often leads to computationally challenging problems. Some problems
of this type that were previously intractable can now be solved on standard personal
computers thanks to recent advances in Monte Carlo methods. In particular, for
learning of unknown parameters in nonlinear state-space models, methods based on
the particle �lter (a Monte Carlo method) have proven very useful. A notoriously
challenging problem, however, still occurs when the observations in the state-space
model are highly informative, i.e. when there is very little or no measurement noise
present, relative to the amount of process noise. The particle �lter will then struggle
in estimating one of the basic components for probabilistic learning, namely the
likelihood p(data|parameters). To this end we suggest an algorithm which initially
assumes that there is substantial amount of arti�cial measurement noise present. The
variance of this noise is sequentially decreased in an adaptive fashion such that we, in
the end, recover the original problem or possibly a very close approximation of it. The
main component in our algorithm is a sequential Monte Carlo (SMC) sampler, which
gives our proposed method a clear resemblance to the SMC2 method. Another natural
link is also made to the ideas underlying the approximate Bayesian computation
(ABC). We illustrate it with numerical examples, and in particular show promising
results for a challenging Wiener-Hammerstein benchmark problem.

1 Introduction

Probabilistic (or Bayesian) modeling and learning o�ers interesting and promising pos-
sibilities for a coherent and systematic description of model and parameter uncertainty
based on probability theory (Peterka 1981; Robert 2001). The computational tools for
probabilistic learning in state-space models have lately been developed. In this paper,
we study probabilistic learning based on measured data {y1, . . . ,yT } , y1:T , which
we assume to be well described by a nonlinear state-space model with (almost) no

V–3

Paper V – Learning of state-space models with highly informative observations

measurement noise,

xt | (x1:t−1,θ) ∼ f (xt | xt−1,ut−1,θ), (1a)
yt = д(xt), (1b)

with some unknown parameters θ ∈ Θ which we want to learn. The lack of measure-
ment noise in (1b) gives a deterministic mappingд : X 7→ Y from the unobserved states
xt ∈ X to the measurement yt ∈ Y, on the contrary to (1a) which encodes uncertainty
about xt , mathematically represented as a probability density f over xt conditional
on xt−1 and possibly an exogenous input ut−1. We refer to this uncertainty as process
noise, but its origin does not have to be a physical noise, but possibly originating from
lack of information or model errors. The reasoning and contributions of this paper
will be applicable also to the case where the relationship (1b) does contain uncertainty,
measurement noise, but its variance is much smaller than the process noise. As a
general term, we refer to the model as having highly informative observations. Fur-
thermore, д could also be allowed to depend on θ and ut , but we omit that possibility
for notational clarity.

Models on the form (1) may arise in several practical situations, for instance in a
mechanical system where the measurements can be made with good precision but
some unobserved forces are acting on the system. The situation may also appear
if the measurements, yet again, can be made with good precision, but the user’s
understanding of the physical system is limited, which in the probabilistic framework
can be modeled as a stochastic element in f .

The model (1) de�nes, together with priors on θ , a joint probabilistic model
p(y1:T ,x1:T ,θ). Probabilistic learning of the parameters θ amounts to computing
the parameter posterior p(θ |y1:T), where we have conditioned on data y1:T and
marginalized over all possible states x1:T (we omit the knownu1:T to ease the notation).
Although conceptually clear, the computations needed are typically challenging, and
almost no cases exist that admit closed-form expressions for p(θ |y1:T).

For probabilistic learning, Monte Carlo methods have proven useful, as outlined
in the accompanying paper Schön, Svensson, et al. (2018). The idea underlying these
Monte Carlo methods is to represent the distributions of interest, such as the posterior
p(θ |y1:T), with samples. The samples can later be used to estimate functions of the
parameters θ , such as their mean, variance, etc., as well as making predictions of future
outputs yT+1, etc. For state-space models, the particle �lter is a tailored algorithm for
handling the unknown states xt , and in particular to compute an unbiased estimate z
of the likelihood

p(y1:T | θ) =
∫

p(y1:T ,x1:T | θ)dx1:T , (2)

which is a central object in probabilistic learning, see the accompanying paper Schön,
Svensson, et al. (2018) for a more thorough introduction (or, e.g., Kantas et al. 2015;
Schön, Lindsten, et al. 2015). The peculiarity in the problem studied in this paper is
the (relative) absence of measurement noise in (1) compared to the process noise level.
This seemingly innocent detail is, as we will detail in Section 2.2, a show-stopper for
the standard algorithms based on the particle �lter, since the quality of the likelihood
estimate z tends to be very poor if the model has highly informative observations.

The problem with highly informative observations has a connection to the liter-
ature on approximate Bayesian computations (ABC, Beaumont et al. 2002), where

V–4

some observations y are available, as well as a model (not necessarily a state-space
model) with some unknown parameters θ . In ABC problems, however, the model is
only capable of simulating new synthetic observations ŷ(θ) and the likelihood p(y | θ)
cannot be evaluated. The ABC idea is to construct a distance metric between the real
observations y and the simulated synthetic observations ŷ(θ), and take this distance
(which becomes a function of y and θ) as a substitute for p(y | θ). The accuracy of
the approximation is controlled by the metric with higher accuracy corresponding to
more informative observations, providing a clear link to the present work.

We propose in this paper a novel algorithm for the purpose of learning θ in (1).
Our idea is to start the algorithm by assuming that there is a substantial amount of
measurement noise which mitigates the computational problems, and then gradually
decrease this arti�cial measurement noise variance simultaneously as the parameters
θ are learned. The assumption of arti�cial measurement noise resembles the ABC
methodology. The sequence of gradually decreasing measurement noise variance can
be seen as tempering, which we will combine with a sequential Monte Carlo (SMC)
sampler (Del Moral, Doucet, et al. 2006) to obtain a theoretically sound algorithm
which generates samples from the posterior p(θ |y1:T).

In a sense, our proposed algorithm is a combination of the work by (Dean et al.
2015) on ABC for state-space models and the use of SMC samplers for ABC by Del
Moral, Doucet, et al. (2012), resulting in a SMC2-like algorithm (Chopin et al. 2013).

2 Background on particle filtering and tempering

In this section we will provide some background on particle �lters, Markov chain
Monte Carlo (MCMC) and related methods. For a more elaborate introduction, please
refer to, e.g., Dahlin and Schön (2016), Robert and Casella (2004), and Schön, Svensson,
et al. (2018). We will in particular discuss why models on the form (1) are problematic
for most existing methods, and also introduce the notion of tempering.

2.1 Particle filtering, PMCMC and SMC2

The bootstrap particle �lter was presented in the early 1990’s (Doucet and Johansen
2011; Gordon et al. 1993) as a solution to the state �ltering problem (computing
p(xt |y1:t)) in nonlinear state-space models. The idea is to propagate a set of Nx
Monte Carlo samples {xnt }Nxn=1 along the time dimension t = 1, 2, . . . ,T , and for each t
the algorithm follows a 3-stage scheme with resampling (sampling ancestor indices ant
based on weightswn

t−1), propagation (sampling xnt from x
ant
t−1 using (1a)) and weighting

(evaluate the ‘usefulness’ of xnt using (1b) and store it as the weightwn
t). This algorithm

will be given as Algorithm 2, and a more elaborate introduction can be found in Schön,
Svensson, et al. (2018). The samples are often referred to as particles, and provide
an empirical approximation p̂(xt |y1:t) = 1

Nx

∑Nx
n=1 δxnt (xt) (with δ the Dirac measure)

of the �ltering distribution p(xt |y1:t). Since the particle �lter itself builds on Monte
Carlo ideas, the outcome of the algorithm will be di�erent every time the algorithm
is run.

The particle �lter itself is only applicable when the state-space model does not contain
any unknown parameters. It has, however, been realized that the particle �lter does

V–5

Paper V – Learning of state-space models with highly informative observations

not only solve the �ltering problem, but it can also be used to estimate the likelihood
p(y1:T | θ) of a state-space model by using the empirical approximation p̂(xt |y1:t)
in (2) and hence approximate the integral with a sum. We will denote the obtained
estimate with z, and it can be shown (Del Moral 2004) that z is in fact an unbiased
estimator of the likelihood, E[z −p(y1:T | θ)] = E[z] −p(y1:T | θ) = 0. That is, unbiased
means that the average of the estimate z (if the particle �lter algorithm is run many
times for the same model, the same parameters and the same data) will be close to
the true (but intractable) p(y1:T | θ).

The use of the particle �lter as an estimator of the likelihood has opened up
possibilities for combining it with another branch of Monte Carlo methods, namely
Markov chain Monte Carlo (MCMC). This combination allows for inferring not only
unobserved states xt but also unknown parameters θ in nonlinear state-space models.
One such successful idea is to construct a high-level MCMC procedure concerned
with θ , and then run the particle �lter to estimate the likelihood for di�erent θ . The
high-level procedure can be a Metropolis-Hastings algorithm (Metropolis et al. 1953,
Schön, Svensson, et al. 2018, Section 5), essentially an informed random walk in Θ.
The Metropolis-Hastings algorithm is constructed such that after su�ciently long
time, the trace of the ‘walk’ (the ‘chain’) in Θ will be samples from the distribution
we are interested in, p(θ |y1:T).

The original Metropolis-Hastings algorithm assumes that the target distribution
can be evaluated exactly. In our state-space learning problem it would mean that
the stochastic estimate z from the particle �lter would not be su�cient for a valid
Metropolis-Hastings algorithm. However, it has lately been shown (Andrieu and
Roberts 2009) that valid algorithms can be constructed based also on stochastic
estimates with certain properties, which provides the ground for the particle (marginal)
Metropolis-Hastings (PMH, or PMMH, Andrieu, Doucet, et al. 2010) algorithm. We
will not go into further details here, but refer to Schön, Svensson, et al. (2018).

An alternative partner for the particle �lter, instead of MCMC, is SMC. Interest-
ingly enough, SMC is a family of methods that has been developed as a generalization
of the particle �lter. One SMC method is the SMC sampler (Del Moral, Doucet, et
al. 2006), which can be employed to handle the unknown θ instead of Metropolis-
Hastings. The SMC sampler will then query the particle �lter for likelihood estimates
z for di�erent values of θ . The SMC sampler itself is similar to a particle �lter, propa-
gating its Nθ samples {θ (j)}Nθj=1 through a sequence of distributions ending up in the
posterior p(θ |y). The sequence through which the samples of θ are propagated can
be a so-called tempering sequence. With a certain choice of tempering sequence, the
nested construction of the particle �lter and SMC sampler has been termed SMC2

(Chopin et al. 2013). The method that we propose in this paper bears close resemblance
to SMC2, but makes use of a di�erent tempering sequence.

2.2 Challenges with highly informative observations

The bootstrap particle �lter is often used to provide estimates z of the likelihood
p(y1:T | θ) in probabilistic learning methods. However, when there is (almost) no
measurement noise relative to the amount of process noise, and thus highly infor-
mative observations, these estimates become poor due to the importance sampling
mechanism inherent in the particle �lter. In the bootstrap particle �lter, Nx particles

V–6

{xnt }Nxn=1 are drawn from (1a), and then weighted by evaluating (1b). As long as there is
at least one particle xnt wich gives a reasonably high probability for the measurement
yt (and consequently gets assigned a large weight), the particle �lter will provide a
reasonable result, and the more such high-weight particles, the better (in terms of
variance of the estimate z). However, if no samples xt are drawn under whichyt could
have been observed with reasonably high probability, the estimate z will be very poor.
If there is very little measurement noise but non-negligible process noise in the model,
the chance of drawing any useful particles xnt by simulating the system dynamics
is typically small. The problem may become even more articulated if the bootstrap
particle �lter is run with a parameter θ which does not explain the measurements y1:T
well. The bottom line is that a model with highly informative observations causes the
bootstrap particle �lter to provide estimates z with high variance. This is in particular
true for values of θ that do not explain the measurements well. Considering that high
variance of z implies bad performance in the high-level MCMC or SMC sampler for θ ,
the model (1) is problematic to learn.

To this end, research has been done on how to improve the particle �lter by
drawing particles {xnt }Nxn=1 not from (1a) but instead from a tailored proposal which
also depend on yt , in order to better adapt to the measurement yt and make more
‘well-informed’ particle draws. In the interest of a maintained consistency, the weight
update is modi�ed accordingly. Such adaptation is not always simple, but proposed
methods include the fully adapted auxiliary particle �lter (Pitt and Shephard 1999)
(only possible for a limited set of model structures), the alive particle �lter (Del Moral,
Jasra, et al. 2015) and the bridging particle �lter (Del Moral and Murray 2015) (both
computationally more costly). In this work, we will not focus on this aspect, but
rather on how inference about θ can be constructed in order to (as far as possible)
avoid running the particle �lter for models with highly informative observations.
Ultimately, our suggested approach could be combined with methods like the fully
adapted, alive or bridging particle �lter to push the limits even further.

2.3 Tempering

To construct inference algorithms, the computational trick of tempering (or anneal-
ing) has proven useful. The name tempering was originally used for a certain heat
treatment method within metallurgy, but the term is also used in a �gurative sense
for a set of computational methods. The idea is to construct a ‘smooth’ sequence
{πp (θ)}Pp=0 starting in a user-chosen initial function π0(θ) and ending in the target
function πP (θ). In our case, these functions are probability densities, and our target is
πP (θ) = p(θ |y1:T), as illustrated in Figure 1a. There are several ways in which such
a sequence can be constructed. We do not have a formal de�nition of ‘smooth’, but
understand it as a sequence where every adjacent pair {πp (θ),πp+1(θ)} are similar
in, e.g., total variation sense. By tracking the evolution from the typically simple
and unimodal π0(θ) to the potentially intricate and multimodal target πP (θ), the risk
of getting stuck in zero-gradient regions or in local optima is reduced, compared to
standard methods starting directly in πP (θ) = p(θ |y1:T).

For state-space models, there are several generic choices for constructing tem-
pering sequences ending up in a posterior p(θ |y1:T). One choice (with P = T) is
the data-tempered sequence πp (θ) = p(θ |y1:p), which gives a sequence starting in

V–7

Paper V – Learning of state-space models with highly informative observations

the prior p(θ) and, by sequentially including one additional measurement yp , even-
tually ending up in the posterior p(θ |y1:T). Typically, the landscape of p(θ |y1:p)
does not change dramatically when including one extra measurement, and smooth-
ness of the sequence is thus ensured. Another choice is found by �rst noting that
p(θ |y1:T) ∝ p(y1:T | θ)p(θ), and then making the choice πp (θ) ∝ p(y1:T | θ)p/Pp(θ).
Such a sequence also starts, with p = 0, in the prior p(θ) and ends, with p = P , in
the posterior p(θ |y1:T). We will in this paper, Section 3.1, introduce a new tempering
sequence that is tailored for state-space models with highly informative observations,
inspired by the ABC approach.

2.4 Using a tempering sequence in an SMC sampler

A tempering sequence {πp (θ)}Pp=0 can be used in an SMC sampler to produce samples
from πP (θ) = p(θ |y1:T). The idea underlying the SMC sampler is to propagate a set of
Nθ samples {θ j }Nθj=1 along the tempering sequence, and—thanks to the smoothness of
the sequence—gain a high computational e�ciency by generating samples primarily
in the most relevant part of Θ, compared to more basic sampling schemes such as
importance sampling. One version of the SMC sampler is a sequential iteration
of importance sampling and resampling on the sequence {πp (θ)}Pp=0 , proceeding as
follows: samples {θ j }Nθj=1 are initially drawn from π0(θ), and assigned importance
weightsW (j)1 from the ratio π1(θ j)

π0(θ j) . The samples are then resampled and moved around
in the landscape of π1(θ) with one or a few steps with Metropolis-Hastings. They
are then weighted according to π2(θ j)

π1(θ j) , and the procedure is repeated. After P such
iterations, samples from πP (θ) are obtained. An illustration can be found in Figure 1b.

A reader familiar with PMH may understand this use of the SMC sampler as a
manager of Nθ parallel PMH chains, which aborts and duplicates the chains in order
to optimize the overall performance1.

3 Solution strategy

Provided the background on particle �lters, tempering and SMC samplers, we are now
ready to assemble our proposed solution. We will �rst propose our novel tempering
idea suited for learning parameters θ in models on the form (1), and then explore
how the tempering pace can be automatically adapted to the problem. Thereafter
we will provide an overview of the proposed algorithm, and detail some additional
connections to existing literature.

3.1 A tempering sequence for our problem

Our aim is to infer the posterior p(θ |y1:T) for the model (1). The absence of measure-
ment noise in (1b) gives the likelihood estimate z from the bootstrap particle �lter a
high variance (in particular for values of θ not explaining the data well), which is

1A subtle but important di�erence to vanilla PMH is that a PMH chain is typically initialized arbitrarily,
run until it converges, and thereafter its transient behavior (the burn-in period) is discarded. In the SMC
sampler, however, all chains are ‘warm-started’ thanks to the resampling mechanism, and it is therefore
not relying on asymptotics to avoid burn-in periods.

V–8

0 0.5 1
−2

−1

0

θ1

θ 2

π0, λ0 = 10

0 0.5 1
−2

−1

0

θ1

π1, λ1 = 1

0 0.5 1
−2

−1

0

θ1

π2, λ2 = 0.1

0 0.5 1
−2

−1

0

θ1

π3, λ3 = 0.01

(a) A tempering sequence shown by level curves for πp (θ). The tempering sequence used in this
�gure is the sequence (4) proposed in this paper, for a linear state-space model with two unknown
parameters θ1 and θ2. With decreasing λp , which is the variance of an arti�cial measurement
noise, tempering is obtained, starting in a distribution with a broad support, and ending in a more
narrow and peaky distribution.

0 0.5 1
−2

−1

0

θ1

θ 2

π0, λ0 = 10

0 0.5 1
−2

−1

0

θ1

π1, λ1 = 1

0 0.5 1
−2

−1

0

θ1

π2, λ2 = 0.1

0 0.5 1
−2

−1

0

θ1

π3, λ3 = 0.01

(b) The problem of localizing the peak of π3(θ) can be solved with an SMC sampler which propagates
samples (black dots) through the smooth evolution of the sequence from p = 0 to 3. This is instead
of starting to search directly in π3(θ), which would be challenging because of the large ‘�at’ areas.
The problem of large uninteresting regions becomes particularly articulated in high dimensional
problems.

Figure 1: An illustration of the tempering idea. The model used here will later be properly
introduced as an example in Section 5.1.

a problem when seeking p(θ |y1:T). We therefore suggest to introduce the modi�ed
model

p(xt | x1:t−1,θ) = f (xt | xt−1,ut−1,θ), (3a)
yt = д(xt) + et , et ∼ N(0, λp). (3b)

This model has an arti�cial Gaussian2 measurement noise with variance λp , and
our original model (1) is recovered for λp = 0. We denote the posterior distribution
under this model as p(θ |y1:T , λp), and the corresponding likelihood p(y1:T | θ , λp).
Furthermore, we will de�ne a decreasing sequence of λp , such that λP = 0, and get a
tempering sequence

πp (θ) = p(θ |y1:T , λp) ∝ p(y1:T | θ , λp)p(θ), (4)
2The choice of Gaussian noise is for convenience and clarity only. Other choices, for example heavy-

tailed distributions, are also possible. The only requirement is that its density can be evaluated point-wise.

V–9

Paper V – Learning of state-space models with highly informative observations

which we have illustrated in Figure 1. In this sequence, the target distribution (at
p = P) indeed becomes πP (θ)= p(θ |y1:T , λP = 0) = p(θ |y1:T), i.e., the posterior for
θ in the original model (1), the problem we study in this paper. Such a tempering
sequence bears clear resemblance to the ABC methodology proposed in Del Moral,
Doucet, et al. (2012). However, to the best of the authors knowledge, such a tempering
sequence has not previously been studied in the context of state-space models.

We will use the tempering sequence (4) in an SMC sampler. To this end, we need
to be able to evaluate πp (θ) up to proportionality. For this purpose, we propose to
use the particle �lter to estimate the likelihood p(y1:T | θ) (and assume that the prior
p(θ) can be evaluated). The algorithm will thus have a nested construction of SMC
algorithms: the particle �lter is used to generate likelihood estimates zp for di�erent
values of θ and λp , and the SMC sampler is used to infer θ by keeping track of the
samples {θ j }Nθj=1 and deciding for which values of θ to run the particle �lter. However,
to ease the presentation, we will throughout the rest of this section assume that
we do have access to the likelihood p(y1:T | θ , λp) exactly. That is indeed the case
if, for example, (1) is a linear Gaussian state-space model or a �nite discrete hidden
Markov model, in which cases the Kalman �lter (Rugh 1993) or the forward-backward
algorithm (Cappé et al. 2005) would provide p(y1:T | θ , λp) exactly. We will later return
(in Section 4) to the situation where we only have access to stochastic estimates zp ,
and expand the algorithm with a few more details to ensure theoretical soundness
also for the general (and practically interesting) case (1).

3.2 Automatically determining the tempering pace

Choosing a good sequence {λp }Pp=1 is fundamental to the performance of the proposed
algorithm. A sequence {λp }Pp=0 that is decreasing too fast will lead to rapid changes
in the landscape of πp (θ) = p(θ |y1:T , λp), obstructing the SMC sampler and adding
to the variance of the �nal results. On the other hand, a sequence {λp }Pp=0 that
is decreasing too slowly will be a waste of computational power. To this end, we
suggest to take inspiration from Del Moral, Doucet, et al. (2012), where they tackle a
somewhat similar problem with the same version of the SMC sampler. They argue
that a good tempering sequence would yield an e�ective sample size (ESS, Kong et al.
1994) somewhat constant throughout the sequence p = 0, . . . , P . The ESS is de�ned as

ESS
(
{W j

p }Nθj=1

)
=

©«
Nθ∑
j=1

(
W (j)p∑Nθ
k=1W

(k)
p

)2ª®¬
−1

, (5)

whereW j
p denotes the importance weight of sample j from πp (θ). The ESS takes values

between 1 and Nθ , with the interpretation that inference based on the Nθ weighted
samples is approximately equivalent to inference based on ESS

(
{W j

p }Nθj=1

)
equally

weighted samples. Consequently, if the weight of a single sample dominates all the
other, the ESS is 1, and if all samples have equal weights, the ESS is Nθ . Intuitively, it
is natural to expect that a smaller value of λp gives a lower ESS, if the particles xnt are
�xed in the particle �lter: the smaller λp , the fewer particles xnt are likely to explain
the measurement yt , yielding a higher variance in the particle weights, and thus a
low ESS. Furthermore, Del Moral, Doucet, et al. (2012) note that on their problem it is

V–10

possible to solve the equation of setting λp (note thatW j
p depends on λp) such that

ESS
(
{W j

p }Nθj=1

)
= αNθ , (6)

where α is some user-chosen coe�cient between 0 and 1. (A similar adaption can
also be found in Jasra et al. 2011.) It turns out, perhaps a bit surprisingly, that it is in
fact possible to solve (6) also in our case whenW j

p depends on z jp from the particle
�lter, which in turn depends on λp . We postpone the details to the subsequent section
where we discuss the details of the inner particle �lter algorithm which de�nes the
estimate z jp . By solving (6), we obtain an automated way to determine the tempering
pace ‘on the �y’, i.e., automatically determining the value of each λp with the aim
to achieve a constant ‘quality’ (constant ESS) of the Monte Carlo approximation in
runtime.

3.3 Termination

The variance of the estimates zp is likely to increase asp increases and λp approaches 0
(Section 2.2). The implications of an increased variance of zp will be that fewer of the
proposed samples will be accepted in the Metropolis-Hastings step, and the overall
performance of the SMC sampler will deteriorate. It may therefore be necessary to
terminate the sampler prematurely (at, say, λp = 0.01 instead of the desired λp = 0),
and take the obtained samples as an approximate solution. One heuristic suggested
by Del Moral, Doucet, et al. (2012) for determining a suitable termination point is to
monitor the rejection rate in the Metropolis-Hastings steps, and trigger a termination
when it reaches a certain threshold. The e�ect of such a premature termination is
analyzed (in a slightly di�erent setting) by, e.g., Dean et al. (2015).

3.4 Proposed algorithm – preliminary version

In Algorithm 1 we outline our proposed algorithm. Here, q is the proposal in the
Metropolis-Hastings sampler, proposing new values of the parameter θ which in a
later stage are either accepted or rejected. We have in Algorithm 1 assumed that
p(y1:T | θ , λp) can be evaluated exactly. However, in the general case of a nonlinear
state-space model the particle �lter has to be used, which results in an unbiased
stochastic estimate zp ≈ p(y1:T | θ , λp). We will address this fully in Section 4.

As mentioned earlier, a parallel to our problem with no measurement noise can be
found in the literature under the heading approximate Bayesian computations (ABC,
Beaumont et al. 2002). In ABC, the idea is to simulate data ŷ(θ) from a model and
compare it to the recorded data y. ABC, however, is originally not formulated for
state-space models, even though recent such contributions have been made (Dean
et al. 2015; Jasra 2015). The introduction of an arti�cial measurement noise in our
problem can be seen as an ABC-type of idea, but since the arti�cial measurement
noise interacts with the particle �lter (our analogy to simulate new data ŷ(θ)), our
method does not qualify as a standard ABC solution.

Another closely related algorithm is the SMC2 algorithm (Chopin et al. 2013).
SMC2 is also an SMC sampler using the particle �lter to estimate the likelihood z, but
it makes use of a data-tempered sequence (Section 2.3) instead of tempering based

V–11

Paper V – Learning of state-space models with highly informative observations

Algorithm 1: Strategy for particle �lter based learning of θ in (1)
Output: Samples {θ (j)}Nθj=1 from p(θ |y1:T , λp).

1 Set p ← 0 and λ0 large.
2 Sample initial {θ (j)}Nθj=1 ∼ p(θ |y1:T , λ0) using, e.g., Metropolis-Hastings.
3 while λ not su�ciently small (Section 3.3) do
4 Update p ← p + 1.
5 Let ω(j) ← p(y1:T | θ (j), λp−1)p(θ (j)).
6 Find λp such that ESS({ω(j)}Nθj=1 , {ω̃(j) = p(y1:T | θ (j), λp)p(θ (j))}Nθj=1)

= α · Nθ .
7 Let ω̃(j) ← p(θ (j) |y1:T , λp).
8 Draw a(j) with P

(
a(j) = k

) ∝ ω̃ (k)
ω (k) .

9 Sample θ (j) ←Metropolis-Hastings(λp ,θ
(j)).

10 end
0 Function ESS({ω(j)}Nθj=1 , {ω̃(j)}Nθj=1)

1 LetW (j) ← ω̃ (j)
ω (j) .

2 return
(∑Nθ

j=1

(
W (j)/∑Nθ

k=1W
(k)

)2
)−1

0 Function Metropolis-Hastings(λp ,θ
(j))

1 Propose a new θ ′ ∼ q(· | θ (j)).
2 Sample d ←U[0,1], i.e., uniformly on the interval [0, 1].
3 if d < p(y1:T | θ ′,λp)p(θ ′)

p(y1:T | θ (j),λp)p(θ (j))
q(θ (j) | θ ′)
q(θ ′ | θ (j)) then

4 Accept θ (j) ← θ ′.
5 end
6 return θ (j)

All operations are for n = 1, . . . , Nx .

on arti�cial measurement noise (4). For the problem of learning the parameters θ
in (1), the particle �lter is likely to face troubles for small values of the measurement
noise λp . For our proposed algorithm, this can be handled by terminating the algorithm
prematurely if necessary. Such a resort is not possible with a data-tempered sequence
in SMC2, since the problems with poor estimates z from the particle �lter would be
faced already from the �rst step of a data-tempered sequence.

4 Full algorithm and details

In this section, we will �rst consider how to initialize the algorithm, and thereafter
the details concerning the particle �lter required for the adaptation of λp . Next, we
present the proposed algorithm in detail and fully address the fact that the particle
�lter only provides stochastic estimates z, whereas Algorithm 1 requires thatp(y1:T | θ)
can be evaluated exactly. The key is to consider the proposed algorithm to be sampling
from an extended space explicitly encoding all randomness in the estimator z, and

V–12

Algorithm 2: Bootstrap particle �lter
Input: State space model f (· | · ,θ), д(·), λp , p(x1), number of particles Nx ,

and data y1:T .
Output: x1:T ,a2:T

1 Sample x (i)1 ∼ p(x1).
2 Compute w (i)1 ← N(y1 |д(x (i)1), λp).
3 for t = 2 to T do
4 Sample a(i)t with P

(
a(i)t = j

)
∝ w (j)t−1.

5 Sample x (i)t ∼ f (xt |xa
(i)
t

t−1,θ).
6 Compute w (i)t ← N(yt |д(x (i)t), λp).
7 end

All operations are for n = 1, . . . , Nx .

thereby reduce the problem to a standard SMC algorithm operating on an extended
space.

4.1 Initialization

To initialize the SMC sampler properly, samples {θ (j)}Nθj=1 from p(θ |y1:T , λ0) are re-
quired. However, that distribution is typically not available to draw samples from
directly. To this end, PMH (Schön, Svensson, et al. 2018) (or SMC2) can be used.
Since λ0 is user-chosen, we can choose it big enough such that p(y1:T | θ , λ0) has a
broad support and we can obtain low-variance estimates z0. However, in practice the
use of Metropolis-Hastings inside the SMC sampler makes the algorithm somewhat
‘forgiving’ with respect to initialization, and it may for practical purposes su�ce to
initialize the algorithm with samples {θ (j)}Nθj=1 that are only approximate samples from
p(θ |y1:T , λ0) obtained using, e.g., some suboptimal optimization-based method.

4.2 Re-visiting the particle filter

We have so far not fully justi�ed the use of the particle �lter inside the proposed
algorithm. The particle �lter provides a stochastic estimate zp of p(y1:T | θ , λp), and
the λp -adaptation requires that we can solve (6), ESS

(
{W j

p }Nθj=1

)
= αNθ , where W j

p

depends on the ratio between zp and zp−1, in turn depending on λp and λp−1, respec-
tively. Both estimates, zp and zp−1, are stochastic, which seems not to allow for a
well-de�ned numerical solution to (6). This also implies that the weightsW (j) in the
SMC sampler are random themselves. The latter problem of stochastic weights within
SMC is, however, already studied in the literature (Fearnhead et al. 2010), whereas
solving (6) is novel in this work.

The key point for solving (6) in our context with particle �lters, and also to
theoretically justify the random weights, is to consider the outcome of the particle
�lter (Algorithm 2) to be all its internal random variables, {xn1:T ,a

n
2:T }Nxn=1 , rather than

only z. By doing so, we can explicitly handle all randomness in the particle �lter,

V–13

Paper V – Learning of state-space models with highly informative observations

and understand our proposed algorithm as a standard algorithm on the non-standard
extended space Θ×XNxT ×ANx (T−1) (instead of only θ), where X is the space in which
xt lives, and similar for A and at . We will come back to this formalism, but let us �rst
give a more intuitive view on the construction.

In solving (6), we would like to run the particle �lter once (using λp−1), and
afterwards decide on a λp such that (6) is ful�lled. The random variables in the
particle �lter, {xn1:T ,a

n
2:T }Nxn=1 , are drawn with a certain distribution determined by the

particle �lter (Algorithm 2) and λp . That is, if we were given samples {xn1:T ,a
n
2:T }Nxn=1

, we could compute the probability (density) of {xn1:T ,a
n
2:T }Nxn=1 to be drawn by the

particle �lter. In particular, by inspection of Algorithm 2, we realize that if the
ancestor variables {an2:T }Nxn=1 were �xed, λp would not a�ect {xn1:T }Nxn=1 , but only the
computation of z. Thus, if we run a particle �lter with a measurement noise model with
variance λp−1 and save {xn1:T ,a

n
2:T }Nxn=1 , we may afterwards compute the probability

(density) of the resampling (i.e., the draw of {an2:T }Nxn=1) to have happened had it been
run with a measurement noise model with variance λp instead3. This turns out to be
enough for evaluating ESS

(
{W j

p }Nθj=1

)
conditionally on {xn1:T ,a

n
2:T }Nxn=1 , which can be

used to solve (6) using a numerical search, such as a bisection method.
This idea bears clear resemblances to the work by Le Gland (2007), but is not

identical. Whereas Le Gland (2007) considers �xed resampling weights across di�erent
models (in our context di�erent λp), the resampling weights are not �xed in our
approach, but changes with λp .

A useful perspective is to understand our idea as importance sampling of
{xn1:T ,a

n
2:T }Nxn=1 , using a particle �lter with λp−1 as proposal and a particle �lter with

λp as target.
We summarize our proposed method in Algorithm 3. Continuing the extended

space motivation, Algorithm 3 can in its most compact form be seen as a standard
SMC sampler on the extended space Θ × XNxT × ANx (T−1) with target distribution at
iteration p

p(θ , {x1:T ,a2:T }Nxn=1 |y1:T , λp) ∝ (7)

p(θ)
(
T∏
t=1

Nx∑
n=1

д(yt | xnt , λp)
) (

T−1∏
t=1

Nx∏
n=1
P

(
a(i)t+1 | {w (i)t }Nxn=1

)
︸ ︷︷ ︸
=

д(yt | x
ant+1
t ,λp)∑Nx

n=1 д(yt | x
n
t ,λp)

) (
T−1∏
t=1

Nx∏
n=1

f (xnt+1 | x
ant+1
t ,θ)

)
.

From this, Algorithm 3, and in particular the particle �lter (Algorithm 2) as well as
the weighting function w in Algorithm 3, can be derived.

The previous paragraph can be understood as follows. First of all, the particle
�lter algorithm itself contains random elements. If we consider all randomness in
the particle �lter explicitly as random variables, i.e., consider {xn1:T ,a

n
2:T }Nxn=1 and not

just z, Algorithm 3 is a standard SMC sampler (Del Moral, Doucet, et al. 2006) for the
distribution (7). This implies that available theoretical guarantees and convergence
results (e.g., Chopin 2004; Del Moral 2004; Del Moral, Doucet, et al. 2006) apply also to
our construction when the λp sequence is �xed. When λp is selected adaptively these

3For this answer not to be exactly 0 forbiddingly often, multinomial resampling has to be used.

V–14

Algorithm 3: Particle-�lter based learning of θ in (1)
Output: Samples {θ (j)}Nθj=1 from p(θ |y1:T , λ).

1 Set p ← 0 and λ0 large.
2 Sample initial {θ (j)}Nθj=1 ∼ p(θ |y1:T , λ0) using, e.g., particle

Metropolis-Hastings.
3 Run a particle �lter with λ0 for each θ (j), and save ξ (j) , {x (i)1:T ,a

(i)
2:T }Nxn=1 .

4 while λp not su�ciently small (Section 3.3) do
5 Update p ← p + 1.
6 Let ω(j) ← w(λp−1,θ

(j), ξ (j)).
7 Find λp such that ESS({ω(j)}Nθj=1 , {w(λp ,θ (j), ξ (j))}Nθj=1) = α · Nθ .
8 Let ω̃(j) ← w(λp ,θ

(j), ξ (j)).
9 Resample the (θ , ξ)-particles using weights ∝ ω̃ (k)

ω (k)

10 Sample {θ (j), ξ (j)} ←Particle Metropolis-Hastings(λp ,θ
(j), ξ (j)).

11 end
0 Function w(λp ,θ

(j), ξ (j))
1 Let w (i)t−1 ← д(yt |x (i)t , λp)
2 return p(θ (j))

(∏T
t=1

∑Nx
n=1w

(i)
t−1

) (∏T−1
t=1

∏Nx
n=1 P

(
a(i)t+1 | {w (i)t }Nxn=1

))
0 Function ESS({ω(j)}Nθj=1 , {ω̃(j)}Nθj=1)

1 LetW (j) ← ω̃ (j)
ω (j) for every j

2 return
(∑Nθ

j=1

(
W (j)/∑Nθ

k=1W
(k)

)2
)−1

0 Function Particle Metropolis-Hastings(λp ,θ
(j), ξ (j))

1 Let z jp ←
∏T

t=1
∑Nx

n=1 д(yt | x it , λp) (with x it from ξ (j))
2 Propose a new θ ′ ∼ q(· | θ (j))
3 Run a particle �lter with λp and θ ′ and save ξ ′

4 Let z ′p ←
∏T

t=1
∑Nx

n=1 д(yt | x it , λp) (with x it from ξ ′)
5 Sample d ←U[0,1], i.e., uniformly on the interval [0, 1].
6 if d < z′pp(θ ′)

z(j)p p(θ (j))
q(θ (j) | θ ′)
q(θ ′ | θ (j)) then

7 Update θ (j) ← θ ′, ξ (j) ← ξ ′

8 end
9 return θ (j), ξ (j)

results do not readily apply, but Beskos et al. (2016) have established convergence
results for adaptive SMC algorithms in a related setting, and these results could
possibly be extended to the adaptive scheme proposed in this article. Note also that
no practical problems caused by the proposed adaptation have been encountered in
the numerical examples.

V–15

Paper V – Learning of state-space models with highly informative observations

0 0.5 1 1.5

θ 1

λp ≈ 10

−2−1.5−1−0.5 0

θ 2

0 0.5 1 1.5

λp ≈ 1

−2−1.5−1−0.5 0

0 0.5 1 1.5

λp ≈ 0.1

−2−1.5−1−0.5 0

0 0.5 1 1.5

λp ≈ 0.01

−2−1.5−1−0.5 0

1 2 3 4 5 6
10−2
10−1
100
101

p

λ
p

Figure 2: Result from applying Algorithm 1 to T = 200 data points from the model (8). The upper
panels show how the marginals of the samples contracts as λp → 0 (cf. Figure 1), and the lower
panel shows the sequence {λp }Pp=1 automatically determined by our algorithm in an adaptive
manner.

5 Numerical experiments

In this section, we provide three numerical experiments illustrating and evaluating
the proposed method from various perspectives. First, we start with a simple numer-
ical example with a linear state-space model subject to Gaussian noise (implicitly
introduced by Figure 1) to illustrate the main ideas presented by Algorithm 1. We then
consider a more challenging nonlinear example, where we compare our proposed
method to the PMH algorithm (Andrieu, Doucet, et al. 2010) and SMC2 (Chopin et al.
2013), as well as a study on the in�uence of T . Finally we consider the challenging
Wiener-Hammerstein benchmark problem from M. Schoukens and Noël (2016). The
code for the examples is available via the �rst author’s homepage.

5.1 Toy example

We consider the linear state-space model on the form

xt+1 =

[
1 θ1
0 0.1

]
xt +

[
θ2
0

]
ut +vt , vt ∼ N (0, I2) , (8a)

yt =
[
1 0

]
xt , (8b)

where θ , {θ1,θ2} are the unknown parameters (true values: θ1 = 0.8, θ2 = −1)
and I2 denotes the identity matrix of dimension 2. This model was used to produce
Figure 1, where the propagation of samples {θ j }Nθj=1 was illustrated. Since this model
is linear and Gaussian, the computation of the likelihood p(y1:T | θ , λp) can be done
exactly4 and no particle �lter (with its potential problem due to small measurement
noise variance) is needed. Thus, Algorithm 1 can be applied directly, by using the
Kalman �lter to exactly compute p(y1:T | θ , λp). We now demonstrate Algorithm 1 by

4The choice of a linear and Gaussian model also made it possible to exactly plot the contours in Figure 1.

V–16

−2 −1 0 1 2

Pr
op

os
ed

m
et
ho

d

θ1

Posterior samples
True value

−2 −1 0 1 2

PM
M
H

−2 −1 0 1 2

SM
C2

0 1 2

θ2

0 1 2

0 1 2

Figure 3: Posterior samples from the problem in Section 5.2. The probability of acceptance
(empirically 0.026%) in the Metropolis-Hastings mechanism is very low due to the model (9) with
highly informative observations, which gives a high variance in the estimates z. Neither PMH nor
SMC2 therefore explore the posterior well, whereas the proposed method shows a better result due
to the proposed tempering scheme, which adds an arti�cial measurement noise to the model giving
it computational advantages with less variance in zp .

applying it to T = 200 data points simulated from (8). The arti�cial measurement
noise λp is automatically adapted such that ESS ≈ 0.5Nθ at each step. The priors for
both parameters are taken to be uniform on [0, 2.5] × [0, 2.5]. The resulting (marginal)
posteriors are summarized in Figure 2, which shows that the automatic tempering
seems to work as expected. Figure 1 shows the true (joint) posteriors, and we can
indeed con�rm that their marginals resembles Figure 2.

The main motivation behind our work was indeed to overcome the computational
di�culties for the particle �lter when the variance of the measurement noise is
very small. However, for probabilistic learning of θ also in linear Gaussian models
where the exact Kalman �lter can be applied, sampling methods can still be useful for
learning θ , see, e.g, Ninness and Henriksen (2010) and Wills et al. (2012) for the use
of Metropolis-Hastings and Gibbs samplers, respectively. Our proposed tempering
scheme for an SMC sampler thus presents yet another alternative for these models.

5.2 A more challenging nonlinear example

We now consider the following state-space model

xt+1 = atan(xt) + θ1ut +vt , vt ∼ N(0, 1), (9a)
yt = |xt | + θ1θ2 + et , et ∼ N(0, 10−2). (9b)

This model, with a 1-dimensional state space, has as an exogenous input ut , a signi�-
cant amount of process noisevt and an almost negligible measurement noise et . From
this model, T = 300 data points were simulated and the two unknown parameters

V–17

Paper V – Learning of state-space models with highly informative observations

θ = {θ1,θ2} are to be learned from the measured data {y1:T ,u1:T } with uniform priors.
The input u1:T is taken as a realization of a white noise random process.

The relatively short data record together with the presence of θ2 only in the
product θ1θ2 in (9b) suggest there is a certain amount of uncertainty present in the
problem, which we expect to be re�ected in the posterior. However, the highly
informative observations makes this a rather challenging problem for the standard
methods.

We apply our proposed method, and compare it to PMH (Del Moral, Doucet,
et al. 2006) and SMC2 (Chopin et al. 2013) on this problem. In all algorithms, we
use the bootstrap particle �lter (Algorithm 2) with Nx = 300, and a simple random
walk proposal. Furthermore, we let Nθ = 300, K = 40 and α = 0.3 in Algorithm 3,
as well as their counterparts in SMC2, and we run PMH until 100 000 samples are
obtained. We use the same Metropolis-Hastings proposal in all algorithms. For our
proposed algorithm, we adopt a similar heuristic as Del Moral, Doucet, et al. (2012)
and terminate the tempering once the acceptance rate in the Metropolis-Hastings
procedure goes below 5%.

The obtained posterior samples are shown in Figure 3. The mixing of PMH is
rather poor (the acceptance rate was recorded as 0.026%), and it has consequently not
managed to explore the posterior as well as our proposed method. A similar problem
occurs for SMC2, which performs even worse on this problem. Since the tempering in
our proposed method, however, follows a sequence of decreasing arti�cial measure-
ment noise, which terminates once the mixing becomes too bad, it does not su�er
from the same problem.

The settings of PMH can indeed be optimized by using more clever proposals
than random walks (see, e.g., Dahlin and Schön 2016 for an overview) and methods
for reducing the variance of z (such as adapted or bridging particle �lter Del Moral,
Jasra, et al. 2015; Del Moral and Murray 2015; Pitt and Shephard 1999). Such adaption
would indeed push the performance further. However, the adaption could be applied
to all three methods, and such tuning is therefore not crucial in a relative comparison
between the methods.

5.3 Evaluating the performance with growing T

As discussed in Section 4.2, the proposed method can essentially be understood as an
importance sampler producing {xn1:T ,a

n
2:T }Nx

n=1. Because of this, we could expect the
method to be less e�cient as the number of measurements T grows, since T is one of
the dimensions in the importance sampling space. We study this e�ect with a similar
state-space model as above, and record how many steps P that are required for the
arti�cial output noise to transition from the initial starting point λ0 = 1 to the true
λP = 0.05, when α is set to 0.4, and di�erent number of data points T are included
in the data set. The results are shown in Figure 4 and suggest a linear growth in the
number of steps P as T grows. In combination with a computational load growing
linearly with T for the particle �lter, the total computational load is ∝ T 2 for Nx
constant5.

5For optimal performance, possibly also Nx should be scaled with T , this is a question for further
research.

V–18

50 100 150 200
0
50
100
150
200

T
P

Figure 4: The number of steps (solid blue) required in Example 5.3 to transition from the initial
λ0 = 1 to the true �nal λP = 0.05 when di�erent number of data pointsT are included in the data
set, and α is �xed at 0.4. As expected the number of steps, P , required grows with the number of
data points included, T , seemingly in a rather linear way (dashed black).

ut G + f S yt

Hvt

(a) A block diagram describing the system. The blocks with
uppercase letters (G , H , S) are all linear dynamical systems,
whereas the block with lowercase f is a static nonlinearity.
Further, ut is a known input signal, vt is (white) process
noise and yt is the measured output.

(b) A picture of the electronic cir-
cuit

Figure 5: The Wiener-Hammerstein benchmark system.

5.4 The Wiener-Hammerstein benchmark with process noise

The Wiener-Hammerstein benchmark (M. Schoukens and Noël 2016) is a recent
benchmark problem for system identi�cation which is a particular special case of
the model (1). This problem has also served as the motivating problem for us to
propose this method. The benchmark is implemented as an electronic circuit, and the
challenge is to use recorded data from the system to estimate a model which is able
to imitate the behavior of the electric circuit well. The system can be described as a
Wiener-Hammerstein system, i.e., a linear dynamical system, a static nonlinearity, and
then another linear dynamical system in series. This is by now a fairly well-studied
model, see e.g. Bershad et al. (2001), Billings and Fakhouri (1982), Giri and Bai (2010),
and J. Schoukens et al. (2009) for earlier work. There was also a relatively recent
special section devoted to an earlier Wiener-Hammerstein benchmark problem in
Control Engineering Practice in 2012 Hjalmarsson et al. (2012). The key di�erence is
the signi�cantly higher process noise level in this newly proposed benchmark.

The input to the system is a (known) signal entering into the �rst linear system.
There is also an (unknown) colored process noise present, which enters directly
into the nonlinearity. The measurements are of rather high quality, so there is very
little measurement noise (when compared to the process noise) which makes the
measurements highly informative. The system is summarized in Figure 5.

V–19

Paper V – Learning of state-space models with highly informative observations

The structure of the Wiener-Hammerstein benchmark system can be brought into
the state-space formalism as

xGt+1

xHt+1

xSt+1

=

AG 0 0

0 AH 0

0 0 AS

xGt

xHt

xSt

+

BG

0

0

ut +

0

BH

0

vt

+

0

0

BS

M∑
m=1

c(m)ϕ(m)(CGxGt +C
HxHt + D

Gut), (10a)

yt = C
SxSt + D

SvSt , (10b)

where all As are 3 × 3-matrices, Bs are 3 × 1-matrices, Cs are 1 × 3-matrices, Ds are
scalars, {ϕ(m)} is a Fourier basis function expansion (truncated at M = 10), and vt
is a zero-mean scalar-valued white Gaussian process noise with unknown variance.
Adjusting for the overparametrization of the linear state-space model, the e�ective
number of unknown parameters is 30. For learning the parameters, a data set with
T = 8192 samples and ut a faded multisine input6 was used. We applied Algorithm 3
with Nθ = 50 and K = 10. For initialization purposes, an approximate model was
found essentially using the ideas by Paduart et al. (2010) (which is computationally
lighter, but cannot fully handle the presence of process noise, on the contrary to
Algorithm 3).

The obtained results are presented in Table 11.1 and Figure 6, where they are
reported according to the benchmark instructions M. Schoukens and Noël (2016), i.e.,
the simulation error for two test data sets measured on the system with no process
noise present and a swept sine and a multisine as input, respectively. For reference,
the performance of the model used to initialize Algorithm 3 is also included. The
results reported were obtained within a few hours on a standard personal computer.

The essentially non-existing measurement noise makes PMH (as well as SMC2)
incompatible with this problem.

Table 11.1: Wiener-Hammerstein benchmark: The root mean square error (RMSE) of the simulation
error on the provided test data sets.

RMSE of proposed method RMSE of initial model
Swept sine 0.014 0.039
Multisine 0.015 0.038

6Available as WH_MultisineFadeOut at
http://homepages.vub.ac.be/~mschouke/benchmarkWienerHammerstein.html

V–20

http://homepages.vub.ac.be/~mschouke/benchmarkWienerHammerstein.html

0.00 0.04 0.08 0.12 0.16 0.20
−0.3

0.0

0.3

ou
tp
ut

(V
) Measured output

Simulated output

0.00 0.01 0.02 0.03 0.04 0.05

−0.3

0.0

0.3

time (s)

ou
tp
ut

(V
)

Measured output
Simulated output

Figure 6: Simulated output from the model (red line) versus the recorded output (blue line) for the
Wiener-Hammerstein benchmark, for a multisine (top) and swept sine signal (bottom). The test
data sets are recorded with no process noise, as opposed to the training data sets which were used
for learning the model.

6 Discussion

We have proposed an algorithm for probabilistic learning of unknown parameters
in models of the structure (1), i.e., state-space models with highly informative ob-
servations. Our proposed algorithm can be understood as either an ABC-inspired
methodology (Dean et al. 2015; Del Moral, Doucet, et al. 2012), or as an alternative
tempering in an SMC sampler (akin to SMC2 Chopin et al. 2013). Its theoretical justi�-
cation follows from viewing it as a standard SMC sampler on an extended space, and
well established theoretical guarantees are thus available.

The importance sampling perspective (Section 4.2) raises the question of how well
the proposed adaptation of λp scales with dimensionality, in particular the number
of measurements T . This is partly investigated in Example 5.3 suggesting (at least)
a computational load ∝ T 2, but we also note that the method performs well in the
benchmark example containing T = 8192 samples. A more systematic numerical
evaluation of the proposed method, which however is beyond the scope of this paper,
would certainly be of interest.

For further research, connections with the idea of variational tempering (Mandt
et al. 2016) could possibly also be of interest to explore. It is also not obvious that the
ESS criterion (6) is the best criterion for deciding a well-performing tempering within
the SMC sampler, and other alternatives could be studied and compared.

For optimal performance, our proposed method could be combined with methods
for variance reduction of the estimate z, such as the adapted or bridging particle �lter
(Del Moral, Jasra, et al. 2015; Del Moral and Murray 2015; Pitt and Shephard 1999).
The combination with such methods would indeed be interesting to explore further.
However, while the use of such methods may indeed push the limits, for most cases
they will not remove the fundamental problem.

V–21

Paper V – Learning of state-space models with highly informative observations

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle Markov
chain Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72.3, pp. 269–342.

Christophe Andrieu and Gareth O. Roberts (2009). “The pseudo-marginal approach
for e�cient Monte Carlo computations”. In: Annals of Statistics 37.2, pp. 967–725.

Mark A. Beaumont, Wenyang Zhang, and David J. Balding (2002). “Approximate
Bayesian computation in population genetics”. In: Genetics 162.4, pp. 2025–2035.

Neil J. Bershad, Patrick Celka, and Stephen McLaughlin (2001). “Analysis of stochastic
gradient identi�cation of Wiener-Hammerstein systems for nonlinearities with
Hermite polynomial expansions”. In: IEEE Transactions on Signal Processing 49.5,
pp. 1060–1072.

Alexandros Beskos, Ajay Jasra, Nikolas Kantas, and Alexandre Thiery (2016). “On the
convergence of adaptive sequential Monte Carlo algorithms”. In: The Annals of
Applied Probability 26.2, pp. 1111–1146.

Stephen A. Billings and S. Y. Fakhouri (1982). “Identi�cation of systems containing
linear dynamic and static nonlinear elements”. In: Automatica 18.1, pp. 15–26.

Olivier Cappé, Éric Moulines, and Tobias Rydén (2005). Inference in hidden Markov
models. Springer Series in Statistics. New York, NY, USA: Springer.

Nicolas Chopin (2004). “Central limit theorem for sequential Monte Carlo methods
and its application to Bayesian inference”. In: Annals of Statistics 36.6, pp. 2385–
2411.

Nicolas Chopin, Pierre E. Jacob, and Omiros Papaspiliopoulos (2013). “SMC2: an
e�cient algorithm for sequential analysis of state space models”. In: Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 75.3, pp. 397–426.

Johan Dahlin and Thomas B. Schön (2016). “Getting started with particle Metropolis-
Hastings for inference in nonlinear models”. In: arXiv:1511:01707.

Thomas A. Dean, Sumeetpal S. Singh, Ajay Jasra, and Gareth W. Peter (2015). “Pa-
rameter estimation for hidden Markov models with intractable likelihoods”. In:
Scandinavian Journal of Statistics 41.4, pp. 970–987.

Pierre Del Moral (2004). Feynman-Kac formulae: genealogical and interacting particle
systems with applications. New York, NY, US: Springer.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2006). “Sequential Monte Carlo sam-
plers”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
68.3, pp. 411–436.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2012). “An adaptive sequential
Monte Carlo method for approximate Bayesian computation”. In: Statistics and
Computing 22.5, pp. 1009–1020.

Pierre Del Moral, Ajay Jasra, Anthony Lee, Christopher Yau, and Xiaole Zhang (2015).
“The alive particle �lter and its use in particle Markov chain Monte Carlo”. In:
Stochastic Analysis and Applications 33.6, pp. 943–974.

Pierre Del Moral and Lawrence M. Murray (2015). “Sequential Monte Carlo with highly
informative observations”. In: SIAM/ASA Journal on Uncertainty Quanti�cation
3.1, pp. 969–997.

V–22

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle �ltering and
smoothing: �fteen years later”. In: Nonlinear Filtering Handbook. Ed. by D. Crisan
and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

Paul Fearnhead, Omiros Papaspiliopoulos, Gareth O. Roberts, and Andrew Stuart
(2010). “Random-weight particle �ltering of continuous time processes”. In: Journal
of the Royal Statistical Society. Series B (Methodological) 72.4, pp. 497–512.

Fouad Giri and Er-Wei Bai, eds. (2010). Block-oriented nonlinear system identi�cation.
Berlin, Germany: Springer-Verlag.

Neil J. Gordon, David J. Salmond, and Adrian F.M. Smith (1993). “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation”. In: IEE Proceedings F - Radar
and Signal Processing, pp. 107–113.

Håkan Hjalmarsson, Cristian R. Rojas, and Daniel E. Rivera (2012). “System identi�ca-
tion: A Wiener-Hammerstein benchmark”. In: Control Engineering Practice 20.11,
pp. 1095–1096.

Ajay Jasra (2015). “Approximate Bayesian computation for a class of time series
models”. In: International Statistical Review 83.3, pp. 405–435.

Ajay Jasra, David A. Stephens, Arnaud Doucet, and Theodoros Tsagaris (2011). “Infer-
ence for Lévy-driven stochastic volatility models via adaptive sequential Monte
Carlo”. In: Scandinavian Journal of Statistics 38.1, pp. 1–22.

Nikolas Kantas, Arnaud Doucet, Sumeetpal S. Singh, Jan M. Maciejowski, and Nicolas
Chopin (2015). “On particle methods for parameter estimation in state-space
models”. In: Statistical Science 30.3, pp. 328–351.

Augustine Kong, Jun S. Liu, and Wing Hung Wong (1994). “Sequential imputations and
Bayesian missing data problems”. In: Journal of the American Statistical Association
89.425, pp. 278–288.

Francois Le Gland (2007). “Combined use of importance weights and resampling
weights in sequential Monte Carlo methods”. In: ESAIM: Proc. 19, pp. 85–100.

Stephan Mandt, James McInerney, Farhan Abrol, Rajesh Ranganath, and David Blei
(2016). “Variational tempering”. In: Proceedings of the 19th International Conference
on Arti�cial Intelligence and Statistics (AISTATS). Caáiz, Spain, pp. 704–712.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller (1953). “Equation of state calculations by fast computing
machines”. In: Journal of Chemical Physics 21.6, pp. 1087–1092.

Brett Ninness and Soren Henriksen (2010). “Bayesian system identi�cation via Markov
chain Monte Carlo techniques”. In: Automatica 46.1, pp. 40–51.

Johan Paduart, Lieve Lauwers, Jan Swevers, Kris Smolders, Johan Schoukens, and Rik
Pintelon (2010). “Identi�cation of nonlinear systems using polynomial nonlinear
state space models”. In: Automatica 46.4, pp. 647–656.

Václav Peterka (1981). “Bayesian system identi�cation”. In: Automatica 17.1, pp. 41–53.
Michael K. Pitt and Neil Shephard (1999). “Filtering via simulation: auxiliary particle

�lters”. In: Journal of the American Statistical Association 94.446, pp. 590–599.
Christian P. Robert (2001). The Bayesian choice: from decision-theoretic foundations to

computational implementation. 2nd ed. New York, NY, USA: Springer.
Christian P. Robert and George Casella (2004). Monte Carlo statistical methods. 2nd ed.

New York, NY, USA: Springer.
Wilson J. Rugh (1993). Linear system theory. Englewood Cli�s, NJ, USA: Prentice Hall.

V–23

Paper V – Learning of state-space models with highly informative observations

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A. Naes-
seth, Andreas Svensson, and Liang Dai (2015). “Sequential Monte Carlo methods
for system identi�cation”. In: Proceedings of the 17th IFAC Symposium on System
Identi�cation (SYSID). Beijing, China, pp. 775–786.

Thomas B. Schön, Andreas Svensson, Lawrence M. Murray, and Fredrik Lindsten
(2018). “Probabilistic learning of nonlinear dynamical systems using sequential
Monte Carlo”. In: Mechanical Systems and Signal Processing 104, pp. 866–883.

Johan Schoukens, Johan Suykens, and Lennart Ljung (2009). “Wiener-Hammerstein
Benchmark”. In: Proceedings of the 15th IFAC Symposium on system identi�cation
(SYSID). St. Malo, France.

Maarten Schoukens and Jean-Philippe Noël (2016). “Wiener-Hammerstein benchmark
with process noise”. In: Workshop on Nonlinear System Identi�cation Benchmarks.
Brussels, Belgium, pp. 15–19.

Adrian Wills, Thomas B. Schön, Fredrik Lindsten, and Brett Ninness (2012). “Estimation
of linear systems using a Gibbs sampler”. In: Proceedings of the 16th IFAC Symposium
on System Identi�cation (SYSID). Brussels, Belgium, pp. 203–208.

V–24

Paper VI
Title

Learning nonlinear state-space models using smooth particle-�lter-
based likelihood approximations

Authors
Andreas Svensson, Fredrik Lindsten and Thomas B. Schön

Edited version of
Andreas Svensson, Fredrik Lindsten, and Thomas B. Schön (2018). “Learning nonlinear state-
space models using smooth particle-�lter-based likelihood approximations”. In: Proceedings of
the 18th IFAC symposium on system identi�cation (SYSID). Stockholm, Sweden, pp. 652–657.

Digital identity
https://arxiv.org/abs/1711.10765

Financial support
The Swedish Foundation for Strategic Research (SSF) via the projects ASSEMBLE (contract number: RIT15-
0012) and Probabilistic Modeling and Inference for Machine Learning (contract number: ICA16-0015), and
the Swedish Research Council (VR) via the projects NewLEADS - New Directions in Learning Dynamical
Systems (contract number: 621-2016-06079) and Learning of Large-Scale Probabilistic Dynamical Models
(contract number: 2016-04278)

Paper VI – Learning state-space models using particle-�lter-based approximations

VI–2

Learning Nonlinear State-Space
Models Using Smooth

Particle-Filter-Based Likelihood
Approximations

Abstract

When classical particle �ltering algorithms are used for maximum likelihood parame-
ter estimation in nonlinear state-space models, a key challenge is that estimates of
the likelihood function and its derivatives are inherently noisy. The key idea in this
paper is to run a particle �lter based on a current parameter estimate, but then use the
output from this particle �lter to re-evaluate the likelihood function approximation
also for other parameter values. This results in a (local) deterministic approximation
of the likelihood and any standard optimization routine can be applied to �nd the
maximum of this approximation. By iterating this procedure we eventually arrive at
a �nal parameter estimate.

1 Introduction

Consider the nonlinear state-space model

xt | xt−1 ∼ fθ (xt | xt−1), (1a)
yt | xt ∼ дθ (yt | xt), (1b)

where the hidden states xt ∈ X ⊂ Rnx and observations yt ∈ Y ⊂ Rny evolves
over time t = 0, 1, We assume that the probability densities fθ and дθ are
parameterized by unknown parameters θ , which we are interested to learn from data.
More speci�cally we are seeking the maximum likelihood estimate of θ from given
observations {y1, . . . ,yT } , y1:T , i.e., �nding

θ̂ = arg max
θ

pθ (y1:T). (2)

We use pθ to denote probability densities conditional on θ , and shall refer to pθ (y1:T)
as the likelihood function when considered a function of θ . It follows from (1) and the
initial state density p(x0) that

pθ (y1:T) =
∫

p(x0)
T∏
t=1

fθ (xt | xt−1)дθ (yt | xt)dx0:T . (3)

VI–3

Paper VI – Learning state-space models using particle-�lter-based approximations

This can be evaluated analytically only for a few special cases. Approximations, such
as the particle �lter, are needed for the nonlinear case. For any given θ , the particle
�lter can be run to give a Monte Carlo based estimate ẑθ of (3). It is well-known
(Del Moral 2004) that ẑθ is unbiased, i.e., E [̂zθ] = pθ (y1:T), where the expectation is
over the stochasticity in the particle �lter algorithm itself. Even though unbiasedness
of ẑθ may sound promising, it is still stochastic (i.e., a di�erent value is obtained every
time the particle �lter algorithm is run, since it is a Monte Carlo solution), often with
a considerable variance and non-Gaussian characteristics. Because of this, the particle
�lter outcome ẑθ can not be used as objective function in standard optimization
routines. Indeed, schemes using optimization for noisy function evaluations have
been proposed (e.g., Dahlin and Lindsten 2014; Wills and Schön 2017), but the approach
of this paper will be to modify the objective function (the particle �lter) rather than
the optimization routine.

We propose in this paper to turn the stochastic estimator ẑθ into a deterministic
function by �rst running a particle �lter with some current parameter estimate θk−1
and then scrutinize the particle �lter algorithm to re-interpret ẑθ as a deterministic
function of arbitrary parameter values. In a sense we hereby manage to circumvent
the stochasticity from the Monte Carlo procedure in a consistent way, and can apply
standard optimization routines to search for a new parameter value which maximizes
this approximation of the likelihood function. We refer to the new parameter value
as θk , and proceed in an iterative fasion by running a new particle �lter for θk , etc.
The idea is outlined as Algorithm 1.

Algorithm 1: Identi�cation idea
1 for k = 1, . . . do
2 Run a particle �lter with θk−1 and save all the generated random numbers

{xn0:T ,a
n
1:T }Nn=1 .

3 Re-write the likelihood estimator ẑθ as a deterministic function of the
particle system {xn0:T ,a

n
1:T }Nn=1 , and use conventional optimization to �nd

its maximizing argument θk .
4 end

2 Background on particle filtering

The particle �lter was originally proposed as a Monte Carlo solution to the state
�ltering problem (Gordon et al. 1993), i.e., to compute pθ (xt |y1:t). It was soon (Kita-
gawa 1996) realized that the particle �lter could also be used to estimate the likelihood
function for given parameter values, essentially by inserting the particles (Monte
Carlo samples) into the integral in (3) and thereby obtain an estimate ẑθ of pθ (y1:T).
Thanks to this likelihood estimate, the particle �lter can be used for system identi�-
cation purposes.1 As mentioned, ẑθ is unbiased, but it often has a heavy-tailed and

1There are also several alternative ways in which the particle �lter can be used for system identi�cation,
for example approaches based on the EM algorithm or Gibbs sampling.

VI–4

asymmetric distribution with a non-negligible variance. Its exact properties depends
on the particle �lter settings and the model.

A textbook introduction to particle �lters is given in, e.g., Doucet, Freitas, et al.
(2001). We summarize a rather general formulation of the particle �lter in Algorithm 2,
a version of the auxiliary article �lter (Pitt and Shephard 1999). We use q(xt | xt−1,yt)
to denote an almost arbitrary2 proposal distribution. Furthermore, νnt are the resam-
pling weights, wn

t the importance weights, and C({νnt }Nn=1) denotes the categorical
distribution on the set {1, . . . ,N } with (possibly unnormalized) weights {νnt }Nn=1 , and
N is the number of particles.

Let us list all stochastic elements (‘draws’) of Algorithm 2: Particles are initially
drawn from the initial distribution p(x0) on line 1 (which we assume to be independent
of θ). Furthermore are the ancestor indices ant on line 3 drawn with respect to the
resampling weights νnt , and for the propagation of particles xn

t on line 4 are the new
particles drawn from the proposal q(xt | xt−1,yt).

Whereas fθ (xt | xt−1), дθ (yt | xt) and p(x0) in Algorithm 2 are given by the model
speci�cation and wn

t follows from the algorithm, the choices for q(xt | xt−1,yt), νnt
and N are left to the user. The number of particles N is usually taken as large as the
computational budget permits, and two common choices for proposals and resampling
weights

• the bootstrap particle �lter with

q(xt | xt−1,yt) = fθ (xt |yt)

and
νnt = w

n
t ,

and consequently wn
t = дθ (yt | xn

t). This choice is generic and requires very
little from the user, but has inferior performance compared to

• the fully adapted particle �lter with

q(xt | xt−1,yt) = pθ (xt | xt−1,yt)

and
νnt = pθ (yt | xt−1).

This choice is superior to the bootstrap choice in terms of variance of the
obtained approximation, but is only available for a quite limited set of models.
The literature on approximations to this choice is therefore rich (e.g., Doucet,
Godsill, et al. 2000; Naesseth, Lindsten, et al. 2015).

We will in this paper exploit the relatively large freedom that is available when it
comes to choosing the proposal density and the resampling weights—by making a
choice that only depends on a current parameter value θk−1 it is possible to evaluate
the likelihood estimator (which we will denote by ẑθk−1 (θ)) for new values of θ , while
at the same time making use of the same realization of {xn

0:T ,a
n
1:T }Nn=1 .

2The support of q has to cover the support of fθ .

VI–5

Paper VI – Learning state-space models using particle-�lter-based approximations

Algorithm 2: The auxiliary particle �lter
1 Draw xn0 ∼ p(x0) and set wn

0 = 1,νn0 = 1.
2 for t = 1 to T do
3 Draw ant ∼ C({ν jt−1}Nj=1).
4 Propagate xnt ∼ q(xt | x

ant
t−1,yt).

5 Set wn
t ←

w
ant
t−1/

∑N
j=1 w

j
t−1

ν
ant
t−1/

∑N
j=1 ν

ajt
t−1

fθ (xnt | x
ant
t−1)

q(xnt | x
ant
t−1,yt)

дθ (yt | xnt).

6 Set zt ← 1
N

∑N
n=1w

n
t .

7 end
8 Compute ẑθ =

∏T
t=1 zt .

All statements with n are for n = 1, . . . , N .

3 Related work

The use of the likelihood estimator ẑθ as an objective function in optimization, in
the search for a maximum likelihood estimate θ̂ , has been subject to several studies:
Doucet and Tadić (2003) di�erentiate ẑθ and use it in a stochastic gradient descent
scheme, whereas Dahlin and Lindsten (2014) and Wills and Schön (2017) use an
optimization scheme based on Gaussian processes. Malik and Pitt (2011) use a �xed
random seed and run the particle �lter for di�erent θ . For a �xed random seed,
ẑθ is indeed deterministic, however with discontinuous ‘jumps’ due to di�erent
resampling decisions being made for di�erent θ . To this end, Malik and Pitt proposes
an approximative smoothing to obtain a continuous function.

The idea used in this paper—to make the ancestor indices an1:T and particles xn
0:T

depending only on the current, or reference, parameter value θk−1 (instead of θ)—has
been theoretically analyzed by Le Gland (2007), but has (to the best of the authors
knowledge) not been applied in the iterative setting we propose. The work by Le
Gland concerns central limit theorems for the likelihood estimator ẑθk−1 (θ), and its
application to our work is subject for further studies. The work presented in this paper
shares similarities with the authors recent other work V, which however is concerned
with the di�erent topic of Bayesian identi�cation for state-space models with highly
informative observations. There are also potentially interesting connections to the
recent work on using particle �lters as proposal distributions in variational inference
(Anh Le et al. 2018; Maddison et al. 2017; Naesseth, Linderman, et al. 2018), where the
problem of parameter optimization conditional on a stochastic realization is similar
to our setting.

The Expectation Maximization (EM) algorithm is another iterative approach
to maximum likelihood estimation in nonlinear state-space models (Lindsten 2013;
Olsson et al. 2008; Schön et al. 2011). However, despite serious e�orts, we have not
been able to make a connection between our proposed method and the EM algorithm.

VI–6

4 The proposed solution

The key idea in this paper is to choose q(xt | xt−1,yt) and νnt such that they are inde-
pendent of θ . By such a choice, we note that all the random elements in Algorithm 2,
{xn

0:T ,a
n
1:T }Nn=1 , also become independent of θ . If we then condition on a certain real-

ization of {xn
0:T ,a

n
1:T }Nn=1 , the estimate ẑθ becomes a deterministic function in θ , and

any standard optimization routine can subsequently be applied to solve (3) and �nd θ̂ .
The strength of the particle �lter, however, lies in the sequential build-up of

the samples on the high-dimensional space XT+1, where the resampling operation
provides important ‘feedback’ on which parts of the state space to be explored further.
With an arbitrary choice of θ -independent resampling weights νnt , this feature will
be lost, and we may expect an extremely high variance in the obtained estimate. In
fact, a particle �lter with θ -independent resampling weights νnt can be understood as
importance sampling on the space XT+1, and we can in general not expect such an
approach to be successful.

In order to obtain a deterministic function in θ , but avoid the bad consequences
of a θ -independent resampling, we propose to let the resampling weights νnt and
proposal q(xt | xt−1,yt) depend on some current parameter estimate θk−1, as, e.g.,

q(xt | xt−1,yt) = fθk−1 (xt |yt) (4a)

and
νnt = дθk−1 (yt | xnt), (4b)

i.e., the bootstrap choice for θk−1 (instead of θ). If then θ is somewhat close to θk−1,
we can expect the variance of the corresponding estimate of the likelihood function,
which we denote by ẑθk−1 (θ), not to be forbiddingly large.

However, if the current θk−1 is far from the sought θ̂ (2), we cannot expect ẑθk−1 (θ)
to be a particularly good estimator at the value θ̂ , and in particular, not expect the
maximum of ẑθk−1 (θ) to lie at θ̂ . For this reason, we have to iterate the parameter
values over k to arrive in the vicinity of θ̂ . By inserting (4) into Algorithm 2, combined
with an outer optimization loop as discussed, we arrive (after some re-arrangement)
at Algorithm 3. For numerical reasons, we work with the logarithm of the likelihood
function. The conceptual idea is illustrated in Figure 1.

4.1 Solving the maximization problem

On line 4 in Algorithm 3, arg maxθ ẑθk−1 (θ) is to be solved. Importantly, this is now a
completely deterministic problem and it can be handled by any standard numerical
optimization tool. We will in the experiments demonstrate this by applying the
general-purpose optimization tool fminunc in Matlab3 out-of-the-box.

The particular structure of ẑθk−1 (θ) (de�ned implicitly in the function likelihood
in Algorithm 3) could possibly be utilized by a more tailored optimization scheme. Its
structure can be written as

ẑθk−1 (θ) =
1
N

T∏
t=1

N∑
n=1

cnt ω
n
t (θ) fθ (xt |xa

n
t

t−1)дθ (yt |xnt), (5)

3Similar functions in other languages are fminunc (Octave), scipy.optimize (Python), optim (R) and
optimize (Julia).

VI–7

Paper VI – Learning state-space models using particle-�lter-based approximations

Algorithm 3: Proposed method
1 Set θ0
2 for k = 1, . . . do
3 Call {xn0:T ,a

n
1:T }Nn=1 ← particle_filter(θk−1)

4 Solve θk ← arg maxθ log_likelihood(θ ,θk−1, {xn0:T ,a
n
1:T }Nn=1) using an

o�-the-shelf optimization routine.
5 end
1 Function particle_filter(θk−1)
2 Draw xn0 ∼ p(x0) and set wn

0 = 1.
3 for t = 1 to T do
4 Draw ant ∼ C({w j

t−1}Nj=1).
5 Propagate x it ∼ fθk−1 (xt | x

ant
t−1,yt).

6 Set wn
t ← дθk−1 (yt | xnt).

7 end
8 return {xn0:T ,a

n
1:T }Nn=1

1 Function log_likelihood(θ ,θk−1, {xn0:T ,a
n
1:T }Nn=1)

2 for t = 1 to T do

3 Set w i
t ←

w
ant
t−1/

∑
j w

ajt
t−1

(?)
fθ (xt |x

ant
t−1)

fθk−1 (xt |x
ant
t−1)

дθ (yt |xnt).
4 Set zt ← 1

N
∑N

n=1w
n
t .

5 end
6 return log ẑθk−1 (θ) ←

∑T
t=1 log zt .

(?) = дθk−1 (x
ant
t−1 | yt−1)/

∑
j дθk−1 (x

a jt
t−1 | yt−1)

where cnt is a constant that is independent of θ , ωn
t (θ) depends on θ but always ful�l∑N

n=1ω
n
t (θ) = 1, and fθ and дθ depends on the model. Whether this function exhibits

any particular properties that could be exploited in optimization is subject to further
research.

5 Analysis

We will now present a brief analysis of the proposed Algorithm 3. First, we conclude
in Section 5.1 that the proposed scheme has desirable asymptotic properties as N →∞.
Second, we make an attempt in Section 5.2 to understand the behavior also for �nite
N , and third in Section 5.4 we discuss an alternative solution that would place the
proposed method in the framework of stochastic gradient descent methods.

5.1 Convergence as N →∞ and k = 1
Asymptotically as N →∞ in the particle �lter, the proposed method becomes exact
and converges (in principle) in one iteration. This can be realized as follows: The

VI–8

0 10 20 30 40 50
θ

lo
gp

θ
(y 1

:T
)

log ẑθk−1 (θ)
log ẑθk−1 (θk−1) (independent particle �lters)

Figure 1: The gray dots are log likelihood estimates obtained by running individual bootstrap
particle �lters with N = 100 particles and parameter value θk−1. Conditioned on the particle
system underlying each particle �lter (gray dots), the likelihood function is approximated also
for other θ values (red lines), which we can expect to be practically useful in the vicinity of θk−1.
The idea of Algorithm 3 is as follows: Start with some θk−1 and sample a corresponding gray dot
(particle_filter), and then apply a standard optimization scheme to �nd the maximum of the
corresponding red line (log_likelihood). We save the result as θk , and start over again with a
new particle �lter for θk , etc.

log-likelihood is estimated by

logpθ (y1:T) ≈
T∑
t=1

log
(
N∑
i=1

wn
t p(yt | xnt)

)
. (6)

Assuming that the proposal distribution used to generate the particles {xnt }Tt=1 is
everywhere non-zero, this log-likelihood approximation is consistent under weak
conditions and converges point-wise in θ as N → ∞ (Del Moral 2004; Doucet and
Johansen 2011). Thus, as long as the global solution to arg maxθ can be found, it is
indeed the likelihood that has been maximized and θ̂ found, which happens in a single
iteration k = 1.

5.2 Convergence as k →∞ and finite N

It is indeed reassuring that our proposed scheme is consistent as the number of
particles N →∞, as discussed above. For practical purposes, however, the behavior
for a �nite N (which always is the case in an implementation) is probably more
interesting.

VI–9

Paper VI – Learning state-space models using particle-�lter-based approximations

We start by noting that for N < ∞, it holds that E [̂zθk−1 (θ)] = pθ (y1:T) (Del Moral
2004). Note, however, that this does not imply

E

[
arg max

θ
ẑθk−1 (θ)

]
= arg max

θ
pθ (y), (7)

so we do not have a theoretical justi�cation to simply average the obtained sequence
{θk } to obtain θ̂ .

To obtain some guidance on how to extract a �nal estimate from the obtained
sequence {θk }, we can make the simplifying assumption that the error log ẑθk−1 (θ) −
logpθ (y1:T), viewed as a stochastic process with index variable θ , is stationary. In
such a case, we can (under some technical assumptions) expect that θ̂ is equal to the
maximum mode of the distribution for θk = arg maxθ log ẑθk−1 (θ). A proof sketch for
this claim is found in Appendix A. This suggests that we should look at the maximum
mode in the histogram of {θk } to �nd a good estimate of θ̂ when we are using the
method in practice (i.e., with a �nite N). This will be illustrated in Example 2 and
Figure 3c.

5.3 Stability

Stability, i.e., that the sequence θ0,θ1, . . . does not diverge, is another important
property. We have not experienced any such issues with the proposed scheme. The
key to a stable algorithm is that the solution to the maximization problem on line 4
in Algorithm 3 is often not too far away from θk−1. To motivate that this is likely to
be the case, we note that while ẑθ (θ) is unbiased for all θ , its variance σ 2(θ) tends to
increase as the distance between θ and θk−1 increases. It is also known that log ẑθ (θ)
(rather than ẑθ (θ)) has approximately a Gaussian distribution, which implies that
log ẑθ (θ) has a bias in the order of −σ 2(θ). This motivates that for θ far from θk−1, the
value of log ẑθ (θ) is likely to be small, and hence cause the algorithm not to deviate
to much from the current iterate.

5.4 Stochastic gradient descent

An alternative approach would be not to solve the arg maxθ problem, but only use
ẑθk−1 (θ) to estimate a gradient around θk−1 and take an (inevitable stochastic) gradient
step. Indeed, this has already been proposed by Doucet and Tadić (2003). Design-
ing step lengths based on stochastic approximation ideas (Robbins and Monro 1951)
yields the well-studied stochastic gradient descent method. Our practical experience,
however, is that (stochastic) gradient steps have inferior performance compared to
the proposed arg maxθ scheme for our problem, including slower convergence and
severe stability issues.

6 Numerical experiments

We will in this section apply our proposed method to two simulated examples, in
order to illustrate and evaluate it. First a common example form the literature will be
considered, and comparisons to alternative methods made. Thereafter a more di�cult
example will be studied. The source code is available via the �rst author’s homepage.

VI–10

6.1 Example 1

In this �rst example, we consider T = 100 measurements generated by the model

xt+1 = 0.5xt + b xt
1+x 2

t
+ 8 cos(1.2t) + qwt , (8a)

yt = 0.05x2
t + et , (8b)

where wt ∼ N(0, 1), et ∼ N(0, 1), and θ = {b,q}. The true values of θ are {25,
√

0.1},
and this example (with q =

√
0.1 and θ = b) was also used to generate Figure 1. The

proposed Algorithm 3 is implemented with N = 100, and employing the generic
optimization routine fminunc in Matlab to solve the optimization problem on line 4
in Algorithm 3. The initial θ0 is chosen randomly on the intervals [10, 40] and (0, 4],
respectively, and the entire example is repeated 100 times. Each example took ap-
proximately 6 seconds on a standard laptop, and the results are found in Figure 2a.
We compare with two alternative methods for maximum likelihood estimation in
nonlinear state-space models: The results for particle stochastic approximation EM
(PSAEM, Lindsten 2013) applied to the very same problem are reported in Figure 2b.
The results for the same problem with a stochastic optimization approach using the
particle �lter to estimate the likelihood and a Gaussian process to model the likelihood
surface and its derivatives (Mahsereci and Hennig 2015; Wills and Schön 2017) are
found in Figure 2c. With the total number of iterations chosen as in the �gures, the
computational load are of the same order of magnitude for all three methods.

From this, we conclude that our proposed method tend to converge faster than
the alternatives (counting the number of iterations needed), but that each iteration is
computationally more involved. The computational load of our algorithm is partly
due to the use of a generic optimization routine (fminunc in Matlab), which makes no
use of the particular structure (5) of the objective function, as discussed in Section 4.1.

6.2 Example 2

Now, consider the following state-space model

xt+1 =
x

a + x2 + but +wt , wt ∼ N (() 0, 1), (9a)

yt = x + et , et ∼ N (() 0, 1). (9b)

with T = 1 000 and θ = {a,b}. One data set is generated with θ = {0.5,−2}, and our
method is applied, with di�erent initializations, 100 times to �nd θ̂ . This problem
is signi�cantly harder than Example 1 due to the location of a in the denominator
(and not the numerator) in (9a). As an illustration, independent particles �lter were
run to estimate the log-likelihood for di�erent values of a in Figure 3a, from which
we conclude that the likelihood estimate is rather noisy. This can be compared to
Example 1 and the gray dots in Figure 1, where the likelihood estimation is clearly
less challenging. Again, we use the proposed Algorithm 3 with fminunc in Matlab to
solve the optimization problem. The results are shown in Figure 3b and 3c. Despite
the challenging likelihood estimation, our proposed method manages to eventually
converge towards meaningful values, and following the guidance discussed in Sec-
tion 5.2, we take the �nal estimates as the maximum of the histograms in Figure 3c,
{0.59,−1.995}, which corresponds well to the true parameters.

VI–11

Paper VI – Learning state-space models using particle-�lter-based approximations

0 5 10 15 2010

20

30

40

k

b

0 5 10 15 200

2

4

k

q
(a) The proposed method.

0 20 40 60 80 10010

20

30

40

k

b

0 20 40 60 80 1000

2

4

k

q

(b) PSAEM (Lindsten 2013).

0 20 40 60 80 10010

20

30

40

k

b

0 20 40 60 80 1000

2

4

k

q

(c) GP-based optimization (Wills and Schön 2017).

Figure 2: Example 1. The results from each method is shown by red lines, and the true parameter
values are shown in black. The practical convergence properties of the proposed method appears to
be promising.

VI–12

0 5 10 15 20 25 30
a

lo
gp

θ
(y 1

:T
)

(a) Log-likelihood estimates (vertical axis) for the model (9a) in Ex-
ample 2 for di�erent a (horizontal axis, true a = 0.5) and b = −2,
obtained with independent particle �lters with N = 100. As can be
seen, the variance in ẑθ is rather high in this example, which is to
be compared with the gray dots in Figure 1, the corresponding plot
for Example 1. We thus expect maximum likelihood estimation to be
signi�cantly more challenging in this example.

0 20 40 60 80 1000
5
10
15
20

k

a

0 20 40 60 80 100
−4
−2
0
2

k

b

(b) The results for our proposed method on Example 2. Our proposed
method manages, despite the poor quality likelihood estimates (Fig-
ure 3a), to eventually converge towards sensible parameter values for
a wide range of initializations. These traces are shown as histograms
in the �gure below.

0 5 10 15 20
a

−2.01 −2 −1.99 −1.98
b

(c) The traces from Figure 3b above as a histograms, after discarding
the transient phase up to k = 50. Using the principle suggested in
Section 5.2, the �nal estimate θ̂ should be taken as the maximum of
the histograms, i.e., {0.59,−1.995} , which corresponds well to the
true parameter values {0.5,−2}.

Figure 3: Results for Example 2.

VI–13

Paper VI – Learning state-space models using particle-�lter-based approximations

7 Conclusions

We have proposed a novel method, Algorithm 3, to �nd maximum likelihood estimates
of unknown parameters in nonlinear state-space models. The method builds on the
particle �lter, and allows for parameter inference in any model where also a particle
�lter can be applied. In fact, the method can be understood as a particular choice of
θ -independent proposal and resampling weights in the auxiliary particle �lter.

One key reason for the promising results is probably that we propose to solve
an optimization problem at each iteration, instead of only taking a gradient step or
similar: heuristically this seems to lead to fast convergence, and avoids instability
issues. The theoretical analysis, however, becomes more involved. We have presented
an attempt to such an analysis in Section 5.2, but all questions have not been answered.
As mentioned, the work by Le Gland (2007) could potentially be useful in a more
thorough analysis of the proposed method.

A tailored choice of optimization routine would be interesting for further work.
Furthermore, the applicability of the proposed method for the particle marginal
Metropolis-Hastings sampler (Andrieu et al. 2010) would be another interesting
question.

A Appendix: Proof sketch

This is a sketch for a proof of the claim given in Section 5.2. Let θk−1 be �xed and
assume that ε(θ) = log ẑθk−1 (θ) − logpθ (y1:T) is a stationary stochastic process with
index set θ ∈ Θ. For any θ ′ ∈ Θ and δ > 0, let Bδ (θ ′) be a ball of radius δ centered at θ ′.
For notational simplicity, let h(θ) = logpθ (y1:T) and note that this is a deterministic
function of θ which is assumed to be Lipschitz continuous and attain its maximum
for θ = θ̂ . Now, take δ su�ciently small so that minθ ∈Bδ (θ̂) h(θ) ≥ maxθ<Bδ (θ̂) h(θ).
For any θ ′ with ‖θ ′ − θ̂ ‖ ≥ δ we then have

P

(
arg max

θ
{ε(θ) + h(θ)} ∈ Bδ (θ ′)

)
= P

(
max

θ ∈Bδ (θ ′)
{ε(θ) + h(θ)} ≥ max

θ ∈Θ
{ε(θ) + h(θ)}

)
≤

≤ P
(

max
θ ∈Bδ (θ ′)

ε(θ) + min
θ ∈Bδ (θ̂)

h(θ) ≥ max
θ ∈Θ
{ε(θ) + h(θ)}

)
=

= P

(
max

θ ∈Bδ (θ̂)
ε(θ) + min

θ ∈Bδ (θ̂)
h(θ) ≥ max

θ ∈Θ
{ε(θ) + h(θ)}

)
≤

≤ P
(

max
θ ∈Bδ (θ̂)

{ε(θ) + h(θ)} ≥ max
θ ∈Θ
{ε(θ) + h(θ)}

)
= P

(
arg max

θ
{ε(θ) + h(θ)} ∈ Bδ (θ̂)

)

where the fourth step follows from the assumed stationarity of ε(θ). Now, since δ is
arbitrary, it follows that if X = arg maxθ {ε(θ)+h(θ)} admits a density w.r.t. Lebesgue
measure, its density function pX (x) is maximized at x = θ̂ .

VI–14

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle Markov
chain Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72.3, pp. 269–342.

Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood (2018). “Auto-
encoding sequential Monte Carlo”. In: International Conference on Learning Repre-
sentations (ICLR). Vancouver, BC, Canada.

Johan Dahlin and Fredrik Lindsten (2014). “Particle �lter-based Gaussian process
optimisation for parameter inference”. In: Proceedings of the 19th IFAC World
Congress. Cape Town, South Africa, pp. 8675–8680.

Pierre Del Moral (2004). Feynman-Kac formulae: genealogical and interacting particle
systems with applications. New York, NY, US: Springer.

Arnaud Doucet, Nando de Freitas, and Neil J. Gordon (2001). “An introduction to
sequential Monte Carlo methods”. In: Sequential Monte Carlo methods in practice.
Springer, pp. 3–14.

Arnaud Doucet, Simon J. Godsill, and Christophe Andrieu (2000). “On sequential
Monte Carlo sampling methods for Bayesian �ltering”. In: Statistics and Computing
10.3, pp. 197–208.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle �ltering and
smoothing: �fteen years later”. In: Nonlinear Filtering Handbook. Ed. by D. Crisan
and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

Arnaud Doucet and Vladislav B. Tadić (2003). “Parameter estimation in general state-
space models using particle methods”. In: Annals of the Institute of Statistical
Mathematics 55.2, pp. 409–422.

Neil J. Gordon, David J. Salmond, and Adrian F.M. Smith (1993). “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation”. In: IEE Proceedings F - Radar
and Signal Processing, pp. 107–113.

Genshiro Kitagawa (1996). “Monte Carlo Filter and Smoother for Non-Gaussian Non-
linear State Space Models”. In: Journal of Computational and Graphical Statistics
5.1, pp. 1–25.

Francois Le Gland (2007). “Combined use of importance weights and resampling
weights in sequential Monte Carlo methods”. In: ESAIM: Proc. 19, pp. 85–100.

Fredrik Lindsten (2013). “An e�cient stochastic approximation EM algorithm using
conditional particle �lters”. In: Proceedings of the 38th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, BC, Canada, pp. 6274–
6278.

Chris J. Maddison, Dieterich Lawson, George Tucker, Heessm Nicolas, Mohammad
Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Whye Theh (2017). “Filtering
variational objectives”. In: Advances in Neural Information Processing Systems
(NIPS) 31. Long Beach, CA, USA.

Maren Mahsereci and Philipp Hennig (2015). “Probabilistic line searches for stochastic
optimization”. In: Advances in Neural Information Processing Systems 28 (NIPS).
Montréal, QC, Canada, pp. 181–189.

Sheheryar Malik and Michael K. Pitt (2011). “Particle �lters for continuous likelihood
evaluation and maximisation”. In: Journal of Econometrics 165.2, pp. 190–209.

VI–15

Paper VI – Learning state-space models using particle-�lter-based approximations

Christian A. Naesseth, Scott W. Linderman, Rajesh Ranganath, and David M. Blei
(2018). “Variational sequential Monte Carlo”. In: Proceedings of the 21st International
Conference on Arti�cial Intelligence and Statistics (AISTATS). Lanzarote, Canary
Islands, Spain, pp. 968–977.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön (2015). “Nested sequen-
tial Monte Carlo methods”. In: Proceedings of the 32nd International Conference on
Machine Learning (ICML). Lille, France, pp. 1292–1301.

Jimmy Olsson, Olivier Cappé, Randal Douc, and Éric Moulines (2008). “Sequential
Monte Carlo smoothing with application to parameter estimation in nonlinear
state-space models”. In: Bernoulli 14.1, pp. 155–179.

Michael K. Pitt and Neil Shephard (1999). “Filtering via simulation: auxiliary particle
�lters”. In: Journal of the American Statistical Association 94.446, pp. 590–599.

Herbert Robbins and Sutton Monro (1951). “A stochastic approximation method”. In:
The Annals of Mathematical Statistics 22.3, pp. 400–407.

Thomas B. Schön, Adrian Wills, and Brett Ninness (2011). “System identi�cation of
nonlinear state-space models”. In: Automatica 47.1, pp. 39–49.

Adrian Wills and Thomas B. Schön (2017). “On the construction of probabilistic
Newton-type algorithms”. In: Proceedings of the 56th IEEE Conference on Decision
and Control (CDC). Melbourne, Australia.

VI–16

Paper VII

Title
Marginalizing Gaussian process hyperparameters using sequential
Monte Carlo

Authors
Andreas Svensson, Johan Dahlin and Thomas B. Schön

Edited version of
Andreas Svensson, Johan Dahlin, and Thomas B. Schön (2015). “Marginalizing Gaussian process
hyperparameters using sequential Monte Carlo”. In: Proceedings of the 6th IEEE International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). Cancún,
Mexico, pp. 489–492.

Digital identity
doi:10.1109/camsap.2015.7383840

Financial support
The Swedish Research Council (VR) via the project Probabilistic modeling of dynamical systems (contract
number: 621-2013-5524).

Thanks to
Oscar Samuelsson and Dr. Jesús Zambrano for providing the sensor data in Section 3.3.

Paper VII – Marginalizing GP hyperparameters using SMC

VII–2

Marginalizing Gaussian process
hyperparameters using
sequential Monte Carlo

Abstract

Gaussian process regression is a popular method for non-parametric probabilistic
modeling of functions. The Gaussian process prior is characterized by so-called
hyperparameters, which often have a large in�uence on the posterior model and can
be di�cult to tune. This work provides a method for numerical marginalization of the
hyperparameters, relying on the rigorous framework of sequential Monte Carlo. Our
method is well suited for online problems, and we demonstrate its ability to handle
real-world problems with several dimensions and compare it to other marginalization
methods. We also conclude that our proposed method is a competitive alternative
to the commonly used point estimates maximizing the likelihood, both in terms of
computational load and its ability to handle multimodal posteriors.

1 Introduction

The Gaussian process (GP) is a non-parametric probabilistic model that can be used
to model an unknown nonlinear function f (·) from observed input data x and (noisy)
output data y = f (x). No explicit form of f (·) is assumed, but some assumptions
on f (·) are encoded through the GP prior and a mean functionmθ (x), a covariance
function κθ (x ,x ′), and their so-called hyperparameters θ ∈ Θ. In mathematical terms,
f is a priori modeled to be distributed as

f (x) ∼ GP
(
mθ (x),κθ (x ,x ′)

)
, (1)

i.e., an in�nite-dimensional Gaussian distribution. See Rasmussen and Williams (2006)
for a more general introduction to GPs.

The posterior distribution over f (·) given data (y,x) is also a GP. This is due to
the conjugacy property of the Gaussian distribution. The posterior is often greatly
in�uenced by the choice of hyperparameters θ , which typically are unknown. We
therefore propose a method to marginalize the hyperparameters in GPs. Marginaliza-
tion can be seen as averaging over the range of hyperparameters supported by the
data and by the prior; θ can be integrated out by treating it as a random variable with
prior p(θ) and likelihood p(y |x ,θ), giving rise to the posterior p(θ |y,x) ∝ p(y |x ,θ)p(θ).
For example, the predictive distribution is computed by

p(y∗ |x∗,y,x) =
∫

p(y∗ |x∗,y,x ,θ)p(θ |y,x)dθ , (2)

VII–3

Paper VII – Marginalizing GP hyperparameters using SMC

−4 0 4 8

−2

−1

0

x
∗

y
∗

−4 0 4 8

−2

−1

0

x
∗

y
∗

(a) Gaussian process regression for the data set de�ned by the red dots, using two di�erent
point estimates for the hyperparameters, each corresponding to a local minimum in (b,
left).

−4 0 4 8

−2

−1

0

x∗

y
∗

Posterior mean
Data point
Posterior pdf

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

(b) Left: the (multimodial) hyperparameter posterior conditional on the 9 data points.
Right: the posterior using the proposed method (which marginalizes the hyperparameters,
and thus handles the multimodality).

Figure 1: A small example illustrating the in�uence of the hyperparameters in the GP prior to the
posterior estimate.

which unfortunately is analytically intractable. However, using a Monte Carlo method
to obtain N (weighted) samples {w (i),θ (i)}Ni=1 of the distribution p(θ |y,x), the predic-
tive distribution (2) can be approximated by

p̂(y∗ |x∗,y,x) =
N∑
i=1

w (i)p(y∗ |x∗,y,x ,θ (i)), (3)

where the weights are normalized, i.e.,
∑

i w
(i) = 1.

A common alternative to marginalization is to choose a point estimate of θ using
an optimization procedure maximizing the likelihood p(y |x ,θ) (sometimes referred
to as empirical Bayes). This may be di�cult if the likelihood is multimodal. See the
small toy example in Figure 1 illustrating the robustness of marginalization compared
to point estimates. There are also situations where point estimates are not su�cient,
and marginalization is necessary, such as the change point detection problem in
Section 3.3.

Our contribution is a method for sampling from the hyperparameter posterior
distributionp(θ |y,x), based on sequential Monte Carlo (SMC) samplers. SMC samplers
and their convergence properties are well studied (Whiteley 2012).

VII–4

Several methods have previously been proposed in the literature for marginal-
ization of the GP hyperparameters: Bayesian Monte Carlo (BMC) (Osborne et al.
2008), slice sampling (Agarwal and Gelfand 2005), Hamiltonian Monte Carlo (Neal
2011; Saatçi et al. 2010), and adaptive importance sampling (AIS) (Petelin et al. 2014).
Particle learning which is closely related to SMC has been proposed by Gramacy and
Polson (2011) for this purpose. The work by Gramacy and Polson, however, is not
targeting the hyperparameters directly, and makes (possibly restrictive) assumptions
on conjugate priors and model structure.

In this paper, we compare our proposed method to some of these methods, and
apply it to two real-data problems: the �rst demonstrates that marginalization does
not have to be more computationally demanding than �nding point estimates. The
second example, which deals with a fault detection problem from industry, is possible
only with an e�cient method for marginalization. Our proposed method (and all
examples) are available as Matlab code via the �rst authors homepage1.

From the experiments, we conclude that the advantages of the proposed method
are (i) robustness towards multimodal hyperparameter posteriors, (ii) simpli�ed tuning
(compared to some other alternatives), (iii) competitive computational load, and (iv)
online updating of hyperparameters as the data record grows.

2 Sampling hyperparameters using SMC

For the numerical marginalization (3), we require N samples, known as particles, from
the posterior. In this section, we discuss how to use a SMC sampler (Del Moral et al.
2006) to generate such a particle system {θ (i),w (i)}Ni=1, where w (i) is the weight of
particle θ (i). The underlying idea is to construct a sequence of probability distributions
({π0, . . . ,πP }), starting from the prior, and ending up in the posterior. The particles
are then ‘guided’ through the sequence.

To construct a sequence {π0, . . . ,πP }, we use the fact that p(θ |y,x) depends on
the data (y,x), by partitioning the data points into P disjoint batches {Bn}Pn=1 and
adding them sequentially as πn(θ) ∝ p(yB1:n |xB1:n ,θ)p(θ).

To guide the particles through the smooth sequence {π0, . . . ,πP }, we will itera-
tively apply the three steps weighting, resampling and propagation, akin to a particle
�lter.

In the weighting step, the ‘usefulness’ of each particle is evaluated. To ensure
convergence properties, the particles can be evaluated as (Del Moral et al. 2006,
Section 3.3.2)

w (i)n =
πn(θ (i)n−1)
πn−1(θ (i)n−1)

w (i)n−1. (4)

To avoid numerical problems, the particles have to be resampled. The idea is to
duplicate particle with large weights, and discard particles with small weights.

To propagate the particles θ (i)n−1 from πn−1 to πn , a Metropolis-Hastings (MH)
kernel K : Θ 7→ Θ with invariant distribution πn can be used. The procedure
of propagating θn−1 (a sample of πn−1) to θn (a sample of πn) by K is as follows:

1http://www.it.uu.se/katalog/andsv164

VII–5

Paper VII – Marginalizing GP hyperparameters using SMC

π0

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

π1

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

π2

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

π3

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

(a) A transition from the prior p(θ) to the posterior p(θ |y,x) for the data in Figure 1b,
obtained by adding 3 data points in each step to the likelihood. The particles are obtained
from the SMC sampler.

−5 0 5 10

−3

−2

−1

0

1

x
∗

y
∗

−5 0 5 10

−3

−2

−1

0

1

x
∗

y
∗

−5 0 5 10

−3

−2

−1

0

1

x
∗

y
∗

−5 0 5 10

−3

−2

−1

0

1

x
∗

y
∗

(b) GP regression with marginalized hyperparameters from the corresponding posterior,
obtained as a by-product from the particles depicted in (a). From left to right, 0 data
points (i.e., the prior), 3 data points, 6 data points, and 9 data points. As we formulated
the problem, only the rightmost �gure is of interest. This illustrates however how this
method can be used in online problem in a natural way.

Figure 2: A small example illustrating the in�uence of the hyperparameters in the GP prior to the
posterior estimate.

(i) Sample a new particle θ ′ from a proposal q(·|θn−1), e.g., a random walk with
variance h. (ii) Compensate for the discrepancy between πn and q by setting θn = θ ′
with probability

α(θn ,θ ′) = min
{
1, πn (θ

′)
πn (θn)

q(θn |θ ′)
q(θ ′ |θn)

}
, (5)

and otherwise θn = θn−1. To improve the mixing, this procedure can be repeated K
times. For this, we use the notation θn−1 = θ

0
n → θ 1

n → · · · → θKn = θn .
We now have an SMC sampler to obtain samples from the hyperparameter pos-

terior, summarized in Algorithm 1 and illustrated by Figure 2. From the �gure, the
suitability to online applications is clear: If another data point is added to the data, the
sequence can be extended to π4 including the new data point, and only the transition
from π3 to π4 has to be performed.

We make use of the adaptive SMC sampler by Fearnhead and Taylor (2013) in the
numerical examples to adapt the proposal q automatically.

The computational cost of Algorithm 1 is in practice governed by the 2NPK
evaluations of the likelihood p(y |x ,θ). Hence, it is important to choose the number of
samples N , SMC steps P , and MH-moves per SMC-step K sensibly. An idea of sensible
numbers will be given along with the examples in the next section.

VII–6

Algorithm 1: Hyperparameter posterior sampler
Input: Data (y,x), GP prior, and prior p(θ).
Output: N samples {θ (i)}Ni=1 from p(θ |y,x) ∝ p(y |x ,θ)p(θ).
All statements with superscript (i) are for i = 1, . . . , N .

1 De�ne πn(θ) = p(yB1:n |xB1:n ,θ)p(θ) by partitioning the data into P batches
{Bn}Pn=1.

2 Sample θ (i)0 from p(θ) (= π0(θ)).
3 for n = 1 to P do
4 Update weights according to (4).
5 Resample {θ (i)n ,w (i)n }Ni=1 if needed.
6 for k = 1 to K do
7 Propose θ ′(i) from q(θ ′ |θk−1,(i)

n).
8 Set θk,(i)n = θ ′(i) with prob. α(θk−1,(i)

n ,θ ′(i)) (5).
9 end

10 end

3 Examples and results

We consider three examples for demonstrating our proposed approach. First, we
consider a small simulated example, also comparing to alternative sampling methods,
and thereafter two applications with real-world data. The �rst real-data example is a
benchmark problem to compare the marginalization approach in Algorithm 1 to the
point estimates obtained using optimization. In the third example, we illustrate how
we can make use of our solution within a GP-based online change point detection
algorithm. To this end, we require marginalization of the hyperparameters, so an
e�cient hyperparameter posterior sampler is indeed a key enabler for this. The
online nature of the problem also �ts well to the possibility to update the samples in
Algorithm 1 online, as discussed in Section 2.

3.1 Simulated example

We consider a small problem of 5 data points, and a covariance and mean function with
7 hyperparameters in total. We begin by considering the problem of marginalizing
out 7 hyperparameters in a GP prior given 5 data points. Here, we are interested
in comparing the performance of our SMC sampler (Algorithm 1) with some pop-
ular alternative methods; BMC (Osborne et al. 2008), AIS (Petelin et al. 2014), and
(deterministic) griding.

The results for 15 runs are presented in Figure 3; it is indeed good if the variance
between consecutive runs of the same algorithm gives similar results. The variations
between the runs decrease faster for Algorithm 1 than for the comparable methods.
When the GP prior has few hyperparameters, we conclude that the AIS and griding
might be competitive methods. We have not managed to obtain competitive results
with BMC for any problem size, but it should be noted that the computational load
of BMC can be substantially decreased if the hyperparameter prior is independent
between the dimensions.

VII–7

Paper VII – Marginalizing GP hyperparameters using SMC

x
∗

y
∗

Point estimates (0.62 s)

x
∗

y
∗

SMC, N = 6, P = 3, K = 2, (0.13 s)

x
∗

y
∗

AIS, N = 5, K = 5, (0.071 s)

x
∗

y
∗

SMC, N = 19, P = 5, K = 2, (0.49 s)
x
∗

y
∗

BMC, N = 128, (0.43 s)

x
∗

y
∗

Grid, N = 128, (0.39 s)

x
∗

y
∗

AIS, N = 12, K = 12, (0.31 s)

x
∗

y
∗

SMC, N = 47, P = 7, K = 2, (1.6 s)

x
∗

y
∗

AIS, N = 25, K = 25, (1.4 s)

x
∗

y
∗

SMC, N = 101, P = 11, K = 3, (7.3 s)

x
∗

y
∗

BMC, N = 2187, (30 s)

x
∗

y
∗

Grid, N = 2187, (4.8 s)

x
∗

y
∗

AIS, N = 47, K = 47, (4.6 s)

Figure 3: Comparison between 15 runs of SMC (Algorithm 1), BMC, AIS, and griding, as well
optimized point estimates. The predictions (mean, solid, and 3 standard deviations, dashed) are
shown, together with the red data points. The number of particles/samples/grid points is denoted
by N , while K and P are algorithm speci�c tuning parameters. The mean computation time is
also shown. All axis are equally scaled.

The quite ‘messy’ look in most of the plots indicates that the same method (with �xed
settings) behaves di�erently on each run, which of course is an unwanted e�ect. However, the SMC
sampler is not su�ering from this problem for N , P ,K large enough. This e�ect should also be
expected for AIS and BMC, but apparently they need more samples/iterations (and thus computing
time) than presented here before that e�ect can be seen.

The results for the conceptually di�erent point estimates are also presented in
Figure 3. The initialization point to the optimization algorithm is drawn from the
prior: although it is a deterministic method, it is obviously very sensitive to the
initialization.

3.2 Learning a robot arm model

We consider the problem of learning the inverse dynamics of a seven degrees-of-
freedom SARCOS antromorphic robot arm (Rasmussen and Williams 2006; Vijayaku-
mar and Schaal 2000). We use the same setup as Rasmussen and Williams (2006,
Section 2.5), i.e., a non-trivial setting involving 23 hyperparameters.

To handle the size of the data set (44 484 training and 4 449 test data points), we
make use of a subset of: (i) datapoints and (ii) regressors as discussed by Rasmussen
and Williams (2006, Section 8.3.1). To use our method, we sample the hyperparameters
from the posterior with a subset of m data points. For comparability, we have also
reproduced the results using point estimates from Rasmussen and Williams (2006).
The results are reported in Table 13.1. For Algorithm 1, N = 15, P = 20 and K = 5

VII–8

Method m SMSE (×10−2) MSLL Time (s)

Subset of datapoints
Point est. 256 8.36 ± 0.80 -1.38 ± 0.04 6.8
SMC 256 8.10 ± 1.32 -1.38 ± 0.56 7.1
Point est. 512 6.36 ± 1.13 -1.51 ± 0.05 26.4
SMC 512 6.13 ± 0.91 -1.49 ± 0.04 22.3
Point est. 1024 4.31 ± 0.16 -1.66 ± 0.02 101
SMC 1024 4.54 ± 0.33 -1.61 ± 0.03 92.5
Point est. 2048 2.99 ± 0.08 -1.78 ± 0.03 423
SMC 2048 3.33 ± 0.28 -1.69 ± 0.06 405

Subset of regressors
Point est. 256 3.67 ± 0.17 -1.63 ± 0.02 6.8
SMC 256 3.55 ± 0.28 -1.65 ± 0.05 7.1
Point est. 512 2.77 ± 0.44 -1.79 ± 0.07 26.4
SMC 512 2.89 ± 0.20 -1.77 ± 0.03 22.3
Point est. 1024 2.03 ± 0.11 -1.95 ± 0.03 101
SMC 1024 2.00? -1.95? 92.5

Table 13.1: Results for the SARCOS example in Section 3.2.

was used. The priors to the logarithms of the length-scale and the signal variance are
N(3, 3), and N(1, 1) for the noise variance.

Table 13.1 presents the results in the same way as Rasmussen and Williams (2006,
Table 8.1). SMSE is the standardized mean square error (i.e., mean square error
normalized by the variance of the target), and MSLL is the mean standardized log
loss; 0 if predicting using a Gaussian density with mean and variance of the training
data, and negative if ‘better’. The time is referring to the time required to sample
and optimize the hyperparameters, respectively (not including the test evaluation).
Numerical problems were experienced for large m, therefore ? indicates runs where
no interval can be reported.

Table 13.1 indicates no signi�cant di�erence between the performance of our
method and point estimates. It is however worth also to note the computational
load: As Algorithm 1 apparently makes an equally good job in �nding relevant
hyperparameters as the optimization, it is a con�rmation that our proposed method
is indeed a competitive alternative to point estimates even for large problems.

3.3 Fault detection of oxygen sensors

We now consider data from the wastewater treatment plant Käppalaverket, Sweden.
An oxygen sensor measures the dissolved oxygen (in mg/l) in a bioreactor, but the
sensor gets clogged because of suspended cleaning. The identi�cation of such events
is relevant to the control of wastewater treatment plants (Olsson et al. 2014). We
apply the GP-based online change point detection algorithm by Saatçi et al. (2010),
where the hyperparameters are marginalized using our proposed method.

The GP-based change point detection presented by Saatçi et al. (2010) can be
summarized as follows: If data y1:T undergo a change at time r , it is of interest to

VII–9

Paper VII – Marginalizing GP hyperparameters using SMC

(a)Measurements of dissolved oxygen (in mg/l) in a bioreactor with a sampling period of 15 minutes.
The indicated change points are marked in red. Especially as the algorithm is fully Bayesian, the
outcome is one probability distribution per data sample. This is comprehensively illustrated as
the occurrence of change points in ‘backwards simulations’ through these distributions. A more
intensive red color is a more likely change point.

(b) Left: the (multimodial) hyperparameter posterior conditional on the 9 data points. Right: the
posterior using the proposed method (which marginalizes the hyperparameters, and thus handles
the multimodality).

Figure 4: Results for the GP-based change point detection.

(online) detect r , i.e., estimate p(r |y1:t). The algorithmic idea is a recursive message
passing scheme, updating the probability p(rt ,y1:t), where rt ∈ {1, . . . , t} is the last
change point at time t .

To make predictions using a GP model, the hyperparameters either have to be
�xed across all data segments, or marginalized. As it is not relevant to use �xed
hyperparameters, an e�cient sampling algorithm is a key enabler in solving this
problem. The consecutive predictions p(yt |rt−1,yrt :t−1) and p(yt+1 |rt−1,yrt :t) are both
needed for the algorithm, hence our approach �t this problem well, as discussed in
Section 2. We used N = 25 particles. On average, sampling the hyperparameters, i.e.,
one run of Algorithm 1, took 0.55 seconds on a standard desktop computer.

The results are presented in Figure 4a. The expected points, suspension and
resuming of the cleaning, are indeed indicated. An interpretation of the result is
obtained by converting the results to point estimates by thresholding, and plotting at
the GP regression for each individual segment, see Figure 4b.

Note the data-driven nature of the algorithm, as no explicit model of the sensor
was used at all. The tuning parameters are the covariance and mean functions, the
prior of the change points and the hyperparameter priors.

VII–10

4 Conclusion

We have proposed and demonstrated an SMC-based method to marginalize hyperpa-
rameters in GP models. The observed bene�ts are robustness towards multimodal
posteriors (Figure 1) and a competitive computational load (Section 3.2), also compared
to the commonly used point estimates of the hyperparameters. We have been able to
cope with a hyperparameter space of dimension 23 (Section 3.2), and also concluded
a sound convergence behavior (Section 3.1). Finally, the online update of the hyper-
parameters has been shown useful within the industry-relevant data-driven fault
detection application (Section 3.3). As a future direction, it would be interesting to
apply our method to the challenging GP optimization problem of system identi�cation
(Dahlin and Lindsten 2014).

References

Deepak K. Agarwal and Alan E. Gelfand (2005). “Slice sampling for simulation based
�tting of spatial data models”. In: Statistics and Computing 15.1, pp. 61–69.

Johan Dahlin and Fredrik Lindsten (2014). “Particle �lter-based Gaussian process
optimisation for parameter inference”. In: Proceedings of the 19th IFAC World
Congress. Cape Town, South Africa, pp. 8675–8680.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2006). “Sequential Monte Carlo sam-
plers”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
68.3, pp. 411–436.

Paul Fearnhead and Benjamin M. Taylor (2013). “An adaptive sequential Monte Carlo
sampler”. In: Bayesian Analysis 8.2, pp. 411–438.

Robert B. Gramacy and Nicholas G. Polson (2011). “Particle learning of Gaussian pro-
cess models for sequential design and optimization”. In: Journal of Computational
and Graphical Statistics 20.1, pp. 102–118.

Radford M. Neal (2011). “MCMC using Hamiltonian dynamics”. In:Handbook of Markov
Chain Monte Carlo. Ed. by Steve Brooks, Andrew Gelman, Galin jones, and Xiao-Li
Meng. Chapman & Hall/CRC Press.

Gustaf Olsson et al. (2014). “Instrumentation, control and automation in wastewater—
from London 1973 to Narbonne 2013.” In: Water Science and Technology 69.7,
pp. 1373–1385.

Michael A. Osborne, Stephen J. Roberts, Alex Rogers, Sarvapali D. Ramchurn, and
Nicholas R. Jennings (2008). “Towards real-time information processing of sensor
network data using computationally e�cient multi-output Gaussian processes”.
In: Proceedings of the 7th international conference on information processing in sensor
networks. St. Louis, MO, USA, pp. 109–120.

Dejan Petelin, Matej Gašperin, and Václav Šmıdl (2014). “Adaptive importance sam-
pling for Bayesian inference in Gaussian process models”. In: Proceedings of the
19th IFAC World Congress. Cape Town, South Africa, pp. 5011–5015.

Carl E. Rasmussen and Christopher K. I. Williams (2006). Gaussian processes for
machine learning. Cambridge, MA, USA: MIT Press.

VII–11

Paper VII – Marginalizing GP hyperparameters using SMC

Yunus Saatçi, Ryan D. Turner, and Carl E. Rasmussen (2010). “Gaussian process change
point models”. In: Proceedings of the 27th International Conference on Machine
Learning (ICML). Haifa, Israel, pp. 927–934.

Sethu Vijayakumar and Stefan Schaal (2000). “Locally weighted projection regression:
Incremental real time learning in high dimensional space”. In: Proceedings of
the 7th International Conference on Machine Learning (ICML). Stanford, CA, USA,
pp. 1079–1086.

Nick Whiteley (2012). “Sequential Monte Carlo samplers: error bounds and insensi-
tivity to initial conditions”. In: Stochastic Analysis and Applications 30.5, pp. 774–
798.

VII–12

	Introduction
	Focus of the thesis
	Outline of the introductory chapters
	Main contributions
	Articles included in the thesis
	Related but not included work
	A word on notation

	Learning models from data
	Data y
	Models p(y|theta)
	Two paradigms for deducing unknown parameters
	Finding a point estimate for theta
	Finding the posterior distribution for theta: p(theta|y)

	Posterior distributions vs. point estimates
	Priors and regularization
	When the prior does not matter
	When the prior does matter
	Circumventing the prior assumptions?

	Summary of the chapter

	State-space models
	The general state-space model
	Linear Gaussian state-space models
	Jump-Markov linear state-space models
	Learning state-space models
	Quantities to learn: states and model parameters
	A Bayesian approach or point estimates?

	Summary of the chapter

	Gaussian processes
	Introducing the Gaussian process
	Noise density, mean and covariance functions
	Hyperparameter learning
	Empirical Bayes: Finding a point estimate eta
	Hyperpriors: Marginalizing out eta

	Computational aspects
	Two remarks
	A posterior variance independent of observed values?
	What is a typical sample of a GP?

	Gaussian-process state-space models
	Summary of the chapter

	Monte Carlo methods for machine learning
	The Monte Carlo idea
	The bootstrap particle filter
	Resampling
	Positive and unbiased estimates of p(y|theta)

	The Markov chain Monte Carlo sampler
	The Metropolis-Hastings kernel
	The Gibbs kernel
	Convergence

	The Sequential Monte Carlo sampler
	Connection to particle filters
	Constructing a sequence pi
	Propagating the particles
	Convergence

	Markov Chain or Sequential Monte Carlo?
	Monte Carlo for state-space model parameters theta
	MCMC for nonlinear state-space models: PMCMC
	Particle Gibbs for maximum likelihood estimation
	SMC for state-space model parameters: SMC2

	Summary of the chapter

	Conclusions and future work
	Conclusions
	Future work

	The unbiased estimator pN(y)
	The MNIW distribution in linear regression
	The matrix normal and inverse Wishart distributions
	The scalar case: NIG
	Generalizing to the matrix case: MNIW

	Scalar linear regression: y=ax+e
	Multivariable linear regression: y=Ax+e

	Notation list
	References
	Paper I – A flexible state-space model for learning nonlinear dynamical systems
	Abstract
	Introduction
	Related work
	Constructing the model
	Basis function expansion
	Encoding prior assumptions—regularization
	Model summary

	Learning
	Sequential Monte Carlo for system identification
	Parameter posterior
	Inferring the posterior—Bayesian learning
	Regularized maximum likelihood
	Convergence and consistency
	Initialization

	Experiments
	A first toy example
	Narendra-Li benchmark
	Water tank data

	Conclusions and further work
	Appendix: Technical details
	Derivation of (24)
	Invariant distribution of Algorithm 2

	References

	Paper II – Data consistency approach to model validation
	Abstract
	Introduction
	Data consistency check for a single model
	Data consistency check for the best models in a class
	Examples
	Discussion
	References

	Paper III – Learning dynamical systems with particle stochastic approximation EM
	Abstract
	Introduction
	Problem formulation and conceptual solution
	Related work and contributions
	Particle stochastic approximation EM
	Sampling the latent variables using PGAS
	Combining PGAS and EM
	PSAEM for exponential family models

	Convergence
	Theoretical results
	Practical considerations

	Experiments and applications
	Linear Gaussian state-space model
	Cascaded water tanks
	Hyperparameter estimation in infinite factorial dynamical models
	Hyperparameter estimation in GP state-space models

	Conclusions
	Proof of Theorem 1, Lipschitz continuity of PGAS
	Proof of Theorem 2, convergence of PSAEM
	Details about experiments
	References

	Paper IV – Identification of jump Markov linear models using particle filters
	Abstract
	Introduction
	Expectation maximization algorithms
	Smoothing using Monte Carlo methods
	Inferring the linear states: p(z|s,y)
	Inferring the jump sequence: p(s|y)
	Rao-Blackwellization

	Identification of jump Markov linear models
	Maximizing the intermediate quantity
	Computational complexity

	Numerical examples
	Example 1 - Comparison to related methods
	Example 2 - Identification of multidimensional systems

	Conclusions and future work
	References

	Paper V – Learning of state-space models with highly informative observations: a tempered Sequential Monte Carlo solution
	Abstract
	Introduction
	Background on particle filtering and tempering
	Particle filtering, PMCMC and SMC2
	Challenges with highly informative observations
	Tempering
	Using a tempering sequence in an SMC sampler

	Solution strategy
	A tempering sequence for our problem
	Automatically determining the tempering pace
	Termination
	Proposed algorithm – preliminary version

	Full algorithm and details
	Initialization
	Re-visiting the particle filter

	Numerical experiments
	Toy example
	A more challenging nonlinear example
	Evaluating the performance with growing T
	The Wiener-Hammerstein benchmark with process noise

	Discussion
	References

	Paper VI – Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations
	Abstract
	Introduction
	Background on particle filtering
	Related work
	The proposed solution
	Solving the maximization problem

	Analysis
	Convergence as N goes to infinity and k=1
	Convergence as k goes to infinity and finite N
	Stability
	Stochastic gradient descent

	Numerical experiments
	Example 1
	Example 2

	Conclusions
	Appendix: Proof sketch
	References

	Paper VII – Marginalizing Gaussian process hyperparameters using sequential Monte Carlo
	Abstract
	Introduction
	Sampling hyperparameters using SMC
	Examples and results
	Simulated example
	Learning a robot arm model
	Fault detection of oxygen sensors

	Conclusion
	References

