
IT Licentiate theses
2016-011

Learning probabilistic models of dynamical
phenomena using particle filters

A N D R E A S S V E N S S O N

Uppsala University
Department of Information Technology

Learning probabilistic models of dynamical
phenomena using particle filters

Andreas Svensson
andreas.svensson@it.uu.se

November 2016

Division of Systems and Control
Department of Information Technology

Uppsala University
Box 337

SE-751 05 Uppsala
Sweden

http://www.it.uu.se/

Dissertation for the degree of Licentiate of Philosophy in Electrical Engineering
with specialization in Automatic Control

© Andreas Svensson 2016
ISSN 1404-5117

Printed by the Department of Information Technology, Uppsala University, Sweden

Abstract

Dynamical behavior can be seen in many real-life phenomena, typically
as a dependence over time. This thesis studies and develops methods and
probabilistic models for statistical learning of such dynamical phenom-
ena.

A probabilistic model is a mathematical model expressed using probabil-
ity theory. Statistical learning amounts to constructing such models, as
well as adjusting them to data recorded from real-life phenomena. The
resulting models can be used for, e.g., drawing conclusions about the
phenomena under study and making predictions.

The methods in this thesis are primarily based on the particle filter and
its generalizations, sequential Monte Carlo (SMC) and particle Markov
chain Monte Carlo (PMCMC). The model classes considered are non-
linear state-space models and Gaussian processes.

The following contributions are included. Starting with a Gaussian-
process state-space model, a general, flexible and computationally fea-
sible nonlinear state-space model is derived in Paper I. In Paper II, a
benchmark is performed between the two alternative state-of-the-art
methods SMC2 and PMCMC. Paper III considers PMCMC for solving
the state-space smoothing problem, in particular for an indoor posi-
tioning application. In Paper IV, SMC is used for marginalizing the
hyperparameters in the Gaussian-process state-space model, and Paper
V is concerned with learning of jump Markov linear state-space models.
In addition, the thesis also contains an introductory overview covering
statistical inference, state-space models, Gaussian processes and some ad-
vanced Monte Carlo methods, as well as two appendices summarizing
some useful technical results.

i

Thanks to Thomas Schön, Fredrik Lindsten, Johan Dahlin, Niklas
Wahlström, AnnaWigren, Carl Andersson and Lawrence Murray for proof-
reading help and useful comments on the abstract and the introductory chap-
ters. This research has partially been supported by the Swedish Foundation
for Strategic Research (SSF) via the project ASSEMBLE.

ii

Contents

List of papers ix

1 Introduction 1

1.1 The papers: Contributions & a range of applications 2

1.2 Outline of the introductory chapters 6

1.3 A word on notation . 7

2 Statistical learning: Data, models & inference 9

2.1 Data y . 10

2.2 Models p(y | θ) . 10

2.3 Two paradigms for deducing unknown parameters 11

2.3.1 Finding a point estimate for θ : θ̂ 11

2.3.2 Finding the posterior distribution for θ : p(θ | y) 12

2.4 Posterior distributions vs. point estimates 14

2.5 Priors and regularization . 15

2.5.1 When the prior does not matter 15

2.5.2 When the prior does matter 16

2.5.3 Circumventing the prior assumptions? 19

3 State space models 23

3.1 The general state-space model . 23

3.2 Linear Gaussian state-space models 25

3.3 Jump-Markov linear state-space models 25

3.4 Wiener and Hammerstein models 26

3.5 Statistical inference in state-space models 26

3.5.1 Quantities to infer: states and model parameters 27

3.5.2 A Bayesian approach or point estimates? 28

4 Gaussian processes 31

4.1 Introducing the Gaussian process 31

4.2 Choosing noise density, mean and covariance functions 36

4.3 Hyperparameter inference . 38

4.3.1 Empirical Bayes: Finding a point estimate η̂ 38

4.3.2 Hyperpriors: Marginalizing out η 39

4.4 Computational aspects . 39

4.5 Two remarks . 40

4.5.1 A posterior variance independent of observed values? . . . 40

iii

4.5.2 What is a typical sample of a GP? 40

4.6 Extensions and generalizations . 41

4.6.1 Heteroscedasticity and non-stationarity 41

4.6.2 Student-t processes . 41

4.6.3 Dynamical GP models . 41

4.6.4 Other nonparametric models 42

4.7 Gaussian-process state-space models 42

5 Monte Carlo methods for statistical inference 43

5.1 The Monte Carlo idea . 44

5.2 The bootstrap particle filter . 45

5.2.1 Resampling . 46

5.2.2 Positive and unbiased estimates of p(y1:T | ϑ) 47

5.3 The Markov chain Monte Carlo sampler 47

5.3.1 The Metropolis-Hastings kernel 48

5.3.2 The Gibbs kernel . 49

5.3.3 Convergence . 50

5.4 The Sequential Monte Carlo sampler 50

5.4.1 Connection to particle filters 50

5.4.2 Constructing a sequence {πp}Pp=0 51

5.4.3 Propagating the particles 52

5.4.4 Convergence . 52

5.5 Markov Chain or Sequential Monte Carlo? 53

5.6 Monte Carlo for state-space model parameters ϑ 54

5.6.1 MCMC for nonlinear state-space models: PMCMC 54

5.6.2 Particle Gibbs for maximum likelihood estimation 56

5.6.3 SMC for state-space model parameters: SMC2 56

6 Conclusions and future work 59

6.1 Conclusions . 59

6.2 Future work . 60

A The unbiased estimator p̂Nx(y1:T) 61

B The matrix normal inverse Wishart distribution in linear regression 65

B.1 The matrix normal and inverse Wishart distributions 65

B.1.1 The scalar case: NIG . 65

B.1.2 Generalizing to the matrix case: MNIW 67

B.2 Scalar linear regression: yt = ax t + et 68

B.3 Multivariable linear regression: yt = Ax t + et 69

Notation list 71

iv

References 73

Paper I – A flexible state space model for learning nonlinear dynamical
systems 83

Abstract . 85

1 Introduction . 85

2 Related work . 88

3 Constructing the model . 89

3.1 Basis function expansion 89

3.2 Encoding prior assumptions—regularization 92

3.3 Model summary . 95

4 Learning . 96

4.1 Sequential Monte Carlo for system identification 96

4.2 Parameter posterior . 97

4.3 Inferring the posterior—Bayesian learning 99

4.4 Regularized maximum likelihood 100

4.5 Convergence and consistency 102

4.6 Initialization . 103

5 Experiments . 103

5.1 A first toy example . 103

5.2 Narendra-Li benchmark 105

5.3 Water tank data . 106

6 Conclusions and further work . 108

A Appendix: Technical details . 108

A.1 Derivation of (24) . 108

A.2 Invariant distribution of Algorithm 2 109

References . 114

Paper II – Comparing two recent particle filter implementations of Bayesian
system identification 115

Abstract . 117

1 Introduction . 117

2 The PMH and SMC2 algorithms 118

2.1 Particle Metropolis-Hastings 119

2.2 SMC2 . 119

3 Numerical comparison . 121

3.1 A simulated example . 121

3.2 A real world example . 123

3.3 Computational load and tuning 124

4 Conclusions . 125

References . 127

v

Paper III – Nonlinear state space smoothing using the conditional particle
filter 129

Abstract . 131

1 Introduction . 131

2 Particle methods . 133

2.1 Particle filters . 133

2.2 Forward – backward particle smoothers 134

3 Smoothing using the Conditional Particle Filter 135

3.1 Conditional particle filter with ancestor sampling 135

3.2 Markov chain Monte Carlo 137

3.3 Smoothing using MCMC 137

3.4 Convergence . 138

3.5 Computational complexity 138

4 Simulated examples . 139

4.1 Scalar linear Gaussian SSM 139

4.2 Nonlinear, multi-modal example 139

5 Indoor positioning application . 141

5.1 Problem setup . 141

5.2 Results . 143

6 Conclusions . 144

A Appendix: Simulated nonlinear, multimodal example 144

B Appendix: Indoor positioning . 144

B.1 Non-uniform sampling interval 145

B.2 Unknown transmission times 146

B.3 Sensor bias . 146

B.4 Evaluation of f (x t+1 |x t , ant , ωt) 147

B.5 Low chance of ‘new ancestor’ 147

B.6 Initialization . 147

References . 149

Paper IV – Marginalizing Gaussian process hyperparameters using sequen-
tial Monte Carlo 151

Abstract . 153

1 Introduction . 153

2 Sampling hyperparameters using SMC 155

3 Examples and results . 157

3.1 Simulated example . 158

3.2 Learning a robot arm model 159

3.3 Fault detection of oxygen sensors 159

4 Conclusion . 161

References . 162

vi

Paper V – Identification of jump Markov linear models using particle filters 163
Abstract . 165

1 Introduction . 165

2 Expectation maximization algorithms 167

3 Smoothing using Monte Carlo methods 168

3.1 Inferring the linear states: p(z1:T |s1:T , y1:T) 169

3.2 Inferring the jump sequence: p(s1:T |y1:T) 169

3.3 Rao-Blackwellization . 170

4 Identification of jump Markov linear models 171

4.1 Maximizing the intermediate quantity 173

4.2 Computational complexity 175

5 Numerical examples . 176

5.1 Example 1 - Comparison to related methods 176

5.2 Example 2 - Identification of multidimensional systems . . . 177

6 Conclusions and future work . 177

References . 180

vii

viii

List of Papers

The following published work is included in the thesis:

Paper I Andreas Svensson and Thomas B. Schön (2016a). “A flexible state space
model for learning nonlinear dynamical systems”. In: Automatica. Provi-
sionally accepted.

Paper II Andreas Svensson and Thomas B. Schön (2016b). Comparing two recent
particle filter implementations of Bayesian system identification. Tech. rep.
2016-008. (Presented at Reglermöte 2016, Gothenburg, Sweden). Depart-
ment of Information Technology, Uppsala University.

Paper III Andreas Svensson, Thomas B. Schön, and Manon Kok (2015b). “Non-
linear state space smoothing using the conditional particle filter”. In:
Proceedings of the 17th IFAC Symposium on System Identification (SYSID).
Beijing, China, pp. 975–980. (Including the tech. rep. 2015-019 Some de-
tails on state space smoothing using the conditional particle filter from De-
partment of Information Technology, Uppsala University, by the same
authors.)

Paper IV Andreas Svensson, Johan Dahlin, and Thomas B. Schön (2015a).
“Marginalizing Gaussian process hyperparameters using sequential Monte
Carlo”. In: Proceedings of the 6th IEEE International Workshop on Compu-
tational Advances in Multi-Sensor Adaptive Processing (CAMSAP). Cancún,
Mexico, pp. 489–492.

Paper V Andreas Svensson, Thomas B. Schön, and Fredrik Lindsten (2014). “Iden-
tification of jump Markov linear models using particle filters”. In: Pro-
ceedings of the 53rd IEEE Conference on Decision and Control (CDC). Los
Angeles, CA, USA, pp. 6504–6509.

The following published work is of relevance to the thesis, but not included:

Paper A Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas B. Schön
(2016). “Computationally efficient Bayesian learning of Gaussian process
state space models”. In: Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics (AISTATS). Cadiz, Spain, pp. 213–221.

Paper B Andreas Svensson, Thomas B. Schön, Arno Solin, and Simo Särkkä
(2015c). “Nonlinear state space model identification using a regularized
basis function expansion”. In: Proceedings of the 6th IEEE International

ix

Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP). Cancun, Mexico, pp. 493–496.

Paper C Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg,
Christian A. Naesseth, Andreas Svensson, and Liang Dai (2015). “Sequen-
tial Monte Carlo methods for system identification”. In: Proceedings of
the 17th IFAC Symposium on System Identification (SYSID). Beijing, China,
pp. 775–786.

x

1
Introduction

Will this thesis be of any use to you? Well, if you ever find yourself in the following
situation, there might be something relevant on the next 179 pages for you:

You have access to some data, consisting of numerical values which exhibits some
dynamical behavior (i.e., there is some correlation between nearby data points). Your
insights about the data source is also limited, and you would therefore like to have a
mathematical model (i.e., a set of equations) true to the data, so that the model can be
used to draw conclusions about the data generating mechanism.

This might happen, for instance, if you are in the business of, e.g., automatic
control (modern control methodology often relies on a model that describes what
would happen to the plant, if different actions are taken), meteorology (can the
temperature record from last week tell us anything about what is likely to happen
tomorrow?), economics (given the inflation rate and house prices, can we obtain any
indication on when the next bubble will burst?), or simply is curious about some
dynamical behavior you have seen.

Of course, statistical learning of dynamical behavior is a well-studied topic, and
if this is the first time you come across the topic, you might prefer one of the several
extensive textbooks that summarizes the researched made over the years (e.g., Box
et al. 2015; Hastie et al. 2009; Ljung 1999; Pintelon and Schoukens 2012; Schön
and Lindsten 2016; Söderström and Stoica 1989; Tsay 2010). This thesis is only a
contribution to the field with a particular focus on how to make use of the computer-
intensive sequential Monte Carlo algorithm, and makes no claim on covering the
topic completely.

1

2 1.1. The papers: Contributions & a range of applications

Tank 1

Tank 2

y

Pump

u
0 1 000 2 000 3 000 4 000

5

10

time (s)

w
at

er
le
ve

ly
(c

m
)

Observed output

Simluated output

Simulated output uncertainty

Figure 1.1. The water flow into tank 1 is controlled by the pump, which can be controlled by
changing the voltage u (the input). (A picture is shown in Figure 1.2.) The water flows from
tank 1 into tank 2, and from tank 2 into the basin, and only the water level in the second tank is
measured as the output. Sometimes overflow happens in one or another of the tanks, and the
overflow water may go partly from tank 1 into tank 2 and partly directly into the basin. First,
a data set was recorded (not in the figure), with observations of u and y during one hour.
This data set, called training data, was used by the algorithm designed in Paper I to learn a
model of the system (without using any deeper physical insight into the experimental setup
or fluid dynamics). Thereafter, another data set was recorded during another hour, of which
only the input u (not in the figure) were fed into the model, and a simulated output (red line
and light area in the plot) was obtained, which can be compared to the actual, measured,
output (dashed blue). As can be seen, the model is able to predict the output rather well.

1.1 The papers: Contributions & a range of applications

In the following chapters and papers, the main focus will be on theory and algorithms.
Unfortunately, the ultimate goal—its use in practice—will only be exemplified briefly
at the very end of each paper. In order not to forget the motivation behind all work,
we will kick off by a brief resume of the included papers, with a highlight on examples
of how they can be applied. We will also in parallel review the research contribution
of each papers.

Paper I

In Paper I, we devise a framework for learning a very flexible dynamical model from
data. The key for working with the flexibility is to beforehand make assumptions
about smoothness in the model, in order to help the model to extrapolate and gener-
alize the behavior seen in the data in a sensible way. This is illustrated by the coupled
water tanks in Figure 1.1. The contribution of the paper is twofold: the model itself
(which can be seen as an approximate Gaussian-process state-space model), as well as
its tailored learning algorithm.

Chapter 1. Introduction 3

0 200 400 600 800 1 000

0

10

w
at

er
le
ve

ly
1

(c
m

)

Training data

Simulated output distribution

Test data

0 200 400 600 800 1 000

0

5

w
at

er
le
ve

ly
2

(c
m

)

0 200 400 600 800 1 000

0

2

Training data Test data

time (s)

C
on

tr
ol

sig
na

lu
(v

)

Figure 1.2. The same water tanks as in Figure 1.1, but this time (in Paper II), no overflow
occurs, and we have measurements of the water level in both tanks, y1 and y2, respectively.
In this paper, knowledge about the setup, fluid dynamics, etc., was used to devise a set of
equations that could be expected to describe the system well. What remained unknown was
a set of 6 parameters, representing some physical quantities, such as the size of the tanks and
their outlets, etc. We used only the relatively short and seemingly not very informative data
in the leftmost part of the plot (solid lines) as training data, to infer all unknown parameters.
For the rest of the data set in the plot, the test data, only the input u was fed into the model,
and the shaded areas were obtained as a simulated output. These may be compared to the
actual measurements (dotted lines). Photo: Maarten Schoukens.

Paper II

Two different algorithms for finding unknown parameters in so-called state-space
models are reviewed and compared in Paper II. We use the same water tanks as in
Paper I, but with a slightly different setup, as described in Figure 1.2. The contribu-
tions in this paper lies in the comparison and application of the two state-of-the-art
algorithms, none of which (to the best of the author’s knowledge) yet has been
extensively used for real world problems.

4 1.1. The papers: Contributions & a range of applications

0 5 10 15 20

0

1

time (s)

z
(m

)

True position

Estimated position

Estimation uncertainty

1

2

3

4

5

x
(m

)
1

2

3

y
(m

)

Figure 1.3. The position of a human foot is measured using ultrawideband measurements, a
technology somewhat resembling the idea behind the GPS system: by accurately measuring
the time the ultrawideband signal takes to travel from the sender (on the foot) to the receiver
(at a fixed position), the distance between the sender and receiver can be determined. If
placing many such receivers in the room at known positions, the position of the foot can be
inferred ‘backwards’ by triangulation. All measurements are, however, corrupted by some
noise, and in Paper III we consider a method capable of not only determining the foot
position (solid red line), but also translating the noise in the measurements into uncertainty
about the foot position, as shown in the shaded areas in the plot. The true position (dashed
blue line) is measured as a reference with a much more expensive vision-based system (which
cannot handle situations when there is no line-of-sight, as in the lower photo). Photo courtesy
of Xsens Technologies.

Paper III

In Paper III, a method for determining the states in a nonlinear state-space model
is considered. In the example described in Figure 1.3, this boils down to finding the
position of a foot (on a human body), when measurements of the foot position are
only available indirectly via ultrawideband measurements. The contribution of this
paper is to consider and evaluate (both theoretically and on a realistic user case) the
so-called particle Gibbs with ancestor sampling algorithm (Lindsten et al. 2014) for
the particular case of state-space smoothing (when the model is known).

Chapter 1. Introduction 5

0 20 40 60 80 100 120 140 160 180
0

2

4

di
ss
ol

ve
d

ox
yg

en
(m

g/
l)

0 20 40 60 80 100 120 140 160 180
0

2

4

time (hours)

di
ss
ol

ve
d

ox
yg

en
(m

g/
l)

Figure 1.4. The upper plot shows measurements of dissolved oxygen recorded at a wastewater
treatment plant. The cleaning of the sensor have, however, been suspended, and it gradually
gets clogged. The challenge here is to automatically detect the clogging event, so that a
warning can be issued to an operator. In Paper IV, we apply a change detection scheme
to automatically subdivide the data into sequences of ‘similar behavior’ (without having
any detailed technical knowledge about the sensor or the wastewater treatment plant). The
segments obtained are illustrated by vertical green lines in the lower plot. The idea of ‘similar
behavior’ within each segment is defined via a Gaussian-process model. The obtained models
for the different segments are illustrated by the the red lines (the mean) and the shaded gray
areas (the variance).

Paper IV

A method to marginalize hyperparameters in the Gaussian-process model is con-
structed in Paper IV. The perhaps most common way to handle the hyperparameters
is the empirical Bayes approach, which (as discussed in the paper) can be very sen-
sitive to small changes in data. With marginalization, instead, a more robust model
can be obtained. This can be used for, e.g., data-driven change detection, as laid out
in Figure 1.4. The contribution of the paper is to use an SMC sampler (Del Moral
et al. 2006) to marginalize the hyperparameters in the Gaussian-process model.

6 1.2. Outline of the introductory chapters

st+1 = ς with probability πst ,ς
x t+1 = Ast x t + Bst ut + w t , w t ∼ N

�
0,Q st

�

yt = Cst x t + D st ut + et , et ∼ N
�
0,R st

�

102 103 104
10−2

10−1

computation time (s)

H
2

er
ro

r(
pe

rm
od

e
s)

Figure 1.5. In Paper V, we derive a method for finding the parameters As , Bs , Cs , D s , Q s ,
R s , πs,ς for s = 1, . . . ,K in the jump Markov state-space model equations to the left. It is
an iterative method (i.e., it is repeated until it has reached a solution). The right plot shows
how the estimated parameters (grouped per mode s , K = 3) approaches the true ones as the
iterations goes on, for a simulated case.

Paper V

In Paper V, a method for finding the parameters of a jump Markov state-space model
(Figure 1.5) is constructed. The jump Markov state-space model has a set of different
modes, and behaves linearly within each mode: a deliberate generalization of the
classical and very well-studied linear state-space model. The contribution of the paper
is the application of the particle stochastic approximation EM algorithm (Lindsten
2013) to parameter estimation in the particular model.

1.2 Outline of the introductory chapters

The first half of the thesis contains five introductory chapters (including this chapter),
one concluding chapter and two appendices with technical details. The purpose of
the introductory chapters is to summarize the background and put the papers in a
broader perspective. The concluding chapter, number 6, is meant to be read after
reading the papers. The appendices contain some useful technical results (already
existing in the literature), adapted to the notation and framework of this thesis.

After this first chapter, we will start in Chapter 2 by discussing the basic concepts
of data, models and how to use data for deducing unknown quantities in a model, a
topic called (statistical) inference. Two concrete models will thereafter be introduced,
the state-space model in Chapter 3 and the Gaussian-process model in Chapter 4.
We will thereafter return to the topic of inference again (Chapter 5) and focus on
Monte Carlo methods for the computations that are required for doing inference.
Appendix A contains a central result in the context of the so-called PMCMC method
(Chapter 5), and Appendix B contains a derivation of the conjugate prior for linear
regression: important expressions for Paper I.

Chapter 1. Introduction 7

1.3 A word on notation

The first part of the thesis (Chapter 1–5) are meant to have a consistent notation
(a complete list can be found on page 71). The notation in the included papers is,
however, slightly different, and introduced in each paper separately.

In general we use a probabilistic language and notation, and use the word ‘model’
mainly to refer to a probability distribution,which we assume somehow describes the
phenomenon under study. We work in the first place with probability distributions
in terms of their densities (or mass) p(·), and thereby we implicitly assume its
existence. The generalization to the case when the density does not exist is often
possible, but not in focus. Also the existence of a σ-algebra and dominating measure
is implicit. Different densities are distinguished by their arguments, and p(· | ·)
denotes a conditional density.

All random variables are written with lowercase letters x , θ , etc., and no dis-
tinction between random variables and their realizations is made in the notation.
Integrals without any explicit limits are over the entire domain of the integral vari-
able.

2
Statistical learning:

Data, models & inference

The topic of this thesis is statistical learning, for the special case of dynamical phe-
nomena. We understand statistical learning as the processing of recorded data into
a statistical model. The key elements in this process are the recorded data y (Sec-
tion 2.1), the model assumptions p(y | θ) with some degrees of freedom expressed via
a parameter θ (Section 2.2), and the inference which links the model to the data by
drawing conclusions about θ from y (Sections 2.3–2.5). In this chapter, we will in
the first place think of θ as being finite-dimensional and real-valued. However, in
Chapter 4 we will consider a model where θ is infinite-dimensional.

The purpose of this chapter is to give an introduction to the way we will think
about data and models, and also to cover some background of statistical inference in
order to put the thesis in a context and perspective. This chapter will be kept on a
rather general level mostly talking about data and models, and particular examples of
such are mostly deferred to the following chapters and the papers. We will also leave
integrals and optimization problems hanging in the midair without attempting to
actually compute them, and refer to Chapter 5 for some Monte Carlo-based methods
for these problems.

9

10 2.1. Data y

2.1 Data y

The first and foremost thing in all statistical methods is the data y . The data could
in principle be anything that allows to be recorded, but in this thesis, we will limit
ourselves to numbers, typically (but not necessarily) recorded sequentially during
some period of time, as1 y = {y1, . . . , yT }. The data could be artificially generated
by a computer, but in most (if not all) cases of interest for the society, the data
is recorded from some real phenomenon which is not yet completely understood.
Examples of typical data could be logs with outdoor temperatures, measured forces
in a mechanical system, or stock prices. We will make no assumptions on the data,
other than that it exists and has a certain format (such as y ∈ Rny×T or similar).
Throughout the thesis, we will assume the data is already recorded and available to
us. Thus, the topic on how to design experiments and record useful data containing
‘as much information as possible’ is not treated in this thesis (see, e.g., Chaloner and
Verdinelli 1995; Hjalmarsson 2009; Pukelsheim 1993).

Throughout the first part of this chapter, we will carry on with a toy example
in order to illustrate the concepts. We now introduce the data to the toy example by
saying that we have observed two data points y1 = 1.54 and y2 = 3.72.

2.2 Models p(y | θ)
Next, we introduce a model for the data y , which we denote by p(y | θ). With the
notation p(y | θ), we mean a (probabilistic) description of the data y , possibly de-
pending on some parameter θ . For the final result of the inference procedure to
be useful, all present knowledge (and ignorance) about how the data was generated
should be included in the model choice: if we suspect that the phenomenon under
study exhibits some strong saturation effects, a linear model will perhaps not be use-
ful. Also, if the present knowledge is very limited, a flexible model could be preferred
in order not to be too limiting on beforehand, etc. In many cases, first principles
(such as Newton’s laws of motions, Leavitt’s law or the ideal gas law) can be used
to derive a model, typically known up to some (yet) undetermined constants or
coefficients.

The abstract notion of a model is probably demystified most effectively by the
toy example: let us say that we decide (with or without insight into where the data
comes from) to model the data points as independent draws from the same Gaussian
distribution. The unknown parameters are then the mean µ and the variance σ2,
i.e., θ , {µ, σ2} of the Gaussian distribution, and we write the model as

p(y | θ) = N
�
y1 | µ, σ2� ·N �

y2 | µ, σ2�
. (2.1)

1We will later use the notation y1:t = {y1, . . . , yt } when there is a need to emphasize exactly which
data points are under consideration. For now, we settle with only y to denote all the available data.

Chapter 2. Statistical learning: Data, models & inference 11

Note that we have not, neither in the toy example nor elsewhere, limited our-
selves to data actually generated by a system with exactly the same behavior as the
model: the model is only an assumption within the inference procedure. We are, in
fact, even free to make model assumptions that we know are inconsistent with how
the data was generated (perhaps in the interest of feasible computations)! Inference
results should, for this reason, always be read with the model assumptions in mind.

2.3 Two paradigms for deducing unknown parameters

In the model notation, we prepared for the inference itself by including the possible
dependence on a parameter θ in the model p(y | θ). The big question throughout the
rest of this chapter is the following: if an unknown θ is present in the model, how
should the data y and the model p(y | θ) be used for drawing conclusions about θ?

This question is at the core of statistical inference, and some textbook references
are Casella and R. L. Berger (2002), Gelman et al. (2014), and Schervish (1995).
The field has traditionally been divided into several paradigms, ultimately differing
perhaps in their interpretation of probabilities. We will pursue two alternative ways
of handling the unknown parameters θ throughout the thesis. The two following
questions are meant to reflect the underlying alternative reasonings,

(i) which estimate θ̂ fits data y the best?

(ii) after digesting the information brought to us by the data y , what degree of
belief p(θ | y) do we have in different values of θ?

We will refer to these alternatives as (i) the point estimate and (ii) the Bayesian ap-
proach. The distinction between the different paradigms is not always entirely clear
in the literature, but we will below give an explanation of the way we will use the
terms. Some texts on the major paradigms in statistical inference, in addition to
the discussion below, are Efron (1986), Efron (2013), Efron and Hastie (2016), and
Lindley (1990).

2.3.1 Finding a point estimate for θ : θ̂

The first inference approach we review, is that of finding a point estimate θ̂ of θ
that fits the observed data as good as possible. Which particular point estimate θ̂
to choose, i.e., what ‘fit’ in the rhetoric question above means, might however vary.
One choice (common in this thesis) is to maximize the likelihood function

L(θ) , p(y | θ), (2.2)

an alternative that we will refer to as maximum likelihood. Note that the likelihood
function is a function of θ , whereas p(y | θ) is the likelihood of y (not θ). Also

12 2.3. Two paradigms for deducing unknown parameters

note that in (2.2), the data y is fixed2, in contrast to when we talk about the model
p(y | θ). Two alternatives to maximum likelihood are to either optimize the predic-
tive capabilities of the model, or to maximize the likelihood function subject to some
additional constraints, such as keeping the numerical values close to zero or promote
sparsity in θ̂ . The latter alternatives are often referred to as regularization, a theme
we will return to in Section 2.5.2. The choice of point estimates can be formalized
mathematically using decision theory, a topic not considered in this thesis (see, e.g.,
Schervish 1995, Chapter 3).

Computing point estimates θ̂ is often at the heart of the classical/frequentist/
Neyman-Pearson-Wald school in the literature, whereas inference based on the likeli-
hood function historically is separated into the Fisherian tradition. In the statistical
literature, it is also common to introduce confidence regions expressing uncertainty
about θ̂ (not θ). In this thesis, we group these schools together as the point estima-
tion approach, but refrain from putting focus on confidence regions, because of the
tradition and available computational tools for the models to be presented later on.

In the toy example from above, a maximum likelihood point estimate θ̂ ,
{ µ̂, σ̂2} is found by solving the problem

θ̂ = argmax
θ

L(θ) = arg max
µ, σ2

N
�
1.54; µ, σ2� ·N �

3.72; µ, σ2�
. (2.3)

The solution turns out to be µ̂ = 2.63 and σ̂2 = 1.09, i.e., some numbers θ̂ that can
be used to analyze the data, making subsequent predictions, etc.

2.3.2 Finding the posterior distribution for θ : p(θ | y)
The second approach relates to the interpretation of probabilities as degrees of belief,
and uses Bayes’ theorem (named after Thomas Bayes 1763)

p(θ | y) = p(y | θ)p(θ)
p(y) (2.4)

to update the prior belief p(θ) into the posterior belief p(θ | y). Going from the
prior to the posterior can be understood as conditioning the belief on data. The right
hand side of (2.4) contains, apart from the prior p(θ), the likelihood (or data density)
p(y | θ) and3 p(y).

Bayesian inference is all about computing the posterior p(θ | y). The central role
of Bayes’ theorem is the obvious reason behind the name of the paradigm. However,

2In the conventional notation with uppercase letter for random variables, and lowercase for their
reailzations, we may write (2.2) as L(θ) , p(Y = y | θ), whereas the term ‘model’ refers to p(Y | θ).

3Note that p(y), the denominator, can be written as an integral over the numerator with respect to θ ,
p(y) =

∫
p(y | θ)p(θ)dθ . If θ is the variable of interest, p(y) can thus be thought of as a normalization

to ensure that
∫
p(θ | y) = 1, and can be ignored if it is sufficient to compute (2.4) up to proportionality.

Chapter 2. Statistical learning: Data, models & inference 13

also the name of Pierre-Simon de Laplace (1820) (Stigler 1986) and Bruno de Finetti
(1992) occurs in the literature.

There is nothing conceptually different between the prior p(θ) and the posterior
p(θ | y): they both reflect the degree of belief about θ , before and after observing
the data y , respectively. If more data is observed subsequently, Bayes’ theorem may
be applied repeatedly to incorporate the new observations into the belief. However,
Bayes’ theorem only provides a mechanism for updating beliefs, not creating beliefs
from nothing. Therefore, the prior p(θ) has to be chosen4. To acquire a useful result,
the choice of prior should preferably reflect all present ignorance and knowledge, in
the very same way as the model p(y | θ) preferably should be chosen with all present
knowledge in mind.

It is indeed possible to extract point estimates of θ also from the posterior p(θ | y).
Popular such estimates are the posterior mean and the posterior mode, where the
latter usually is referred to as maximum a posteriori (MAP) estimation. However,
since a point estimate does not represent a degree of belief (which is a core component
in the Bayesian approach), we do not consider it to be a Bayesian method. It does,
however, bear some resemblances to the regularized maximum likelihood approach,
as we will see in Section 2.5.2.

Let us have a look at the little toy example again, now from the Bayesian point
of view. First, we have to append our assumption p(y | θ) also with assumptions
about µ and σ2. Let us assume a normal-inverse-gamma prior distribution (Ap-
pendix B), p(µ, σ2) = NIG

�
µ, σ2; 0, 1, 1, 1

�
. By inserting all expressions into Bayes’

theorem (2.4) and perform some algebraic manipulations, we find the posterior
p(µ, σ2 | y) = NIG

�
µ, σ2; 1.75, 3, 2, 4.49

�
, a distribution we may use subsequently

to analyze the data, do predictions, etc.
The particular choice of prior in the toy example was a so-called conjugate prior

since the prior, a NIG distribution, together with the likelihood model (2.1), a
Gaussian distribution with unknown mean and variance, yields another NIG distri-
bution as the posterior. For some priors, the posterior may not even admit a closed
form, and conjugate priors only exist for a limited set of models.

4The (inevitably subjective) prior choice is, according to the authors personal experience, one of
the main criticism that is brought up towards the Bayesian paradigm. It is, however, unclear to the
author why the prior choice should be subject to criticism, whereas the equally subjective model choice
(present in both paradigms) mostly is kept out of the discussion. J. O. Berger (2006) comments to this
concern as follows: ‘ [The model choice] will typically have a much greater effect on the answer than will
such things as choice of prior distributions for model parameters. Model-building is not typically part of the
objective/subjective debate, however—in part because of the historical success of using models, in part because
all the major philosophical approaches to statistics use models and, in part, because models are viewed as
“testable,” and hence subject to objective scrutiny. It is quite debatable whether these arguments are sufficient to
remove model choice from the objective/subjective debate, but I will simply follow statistical (and scientific)
tradition and do so.’

14 2.4. Posterior distributions vs. point estimates

2.4 Posterior distributions vs. point estimates

The most striking difference between the point estimates and the Bayesian paradigm
for a user, is perhaps not the different underlying philosophies about the meaning
of probabilities, nor the presence or absence of priors. That a point estimate θ̂ and
a distribution p(θ | y) are very different objects is, instead, most likely the major
difference for a user: A point estimate θ̂ is a number, whereas p(θ | y) is a distribution.
If the user interest, for example, is to predict a future observation y?, the point
estimation approach is typically to put θ̂ into the model and take the mean

ŷ? = E
[
p(y? | θ̂)

]
(2.5)

as the (point) prediction y?. For the Bayesian case on the contrary5, the prediction
of y? is the predictive distribution

p(y? | y) =
∫

p(y? | θ)p(θ | y)dθ. (2.6)

In many cases, the predictive distribution (and often also the posterior) admits no
closed form expression. Instead, those distributions have to be approximated. Two
such alternatives are the variational approach (e.g., Blei et al. 2016) and Monte Carlo
methods (Chapter 5).

Which approach to take, point estimates or Bayesian, may depend on several
aspects. Often, but not always, is point estimation less computationally intense than
the Bayesian approach, a reason that itself might be a ground for preferring the
former. However, if the computational aspect allows a choice, one may consider
questions such as

• What is the intended use of the obtained results: does a posterior distribution
p(θ | y) provide valuable information in the solution, which is not preserved
by a single point estimate θ̂?

• Is it sensible, or even crucial, to include prior beliefs about θ into the solution?
(See Section 2.5.2)

Also personal preferences may of course influence the choice: point estimates have,
for example, traditionally dominated the system identification community (an inter-
esting uphill struggling paper arguing for the Bayesian approach is Peterka 1981).

If the data is highly informative about the parameters θ , the differences between
the two paradigms may diminish. Consider a toy example with T observations
{yt }Tt=1 of a one-dimensional parameter θ , µ. We model the observations to be

5Indeed, p(y? | θ̂) is also a distribution. However, as it bears no meaning akin to (2.6), and the
point estimation approach is more concerned with point estimates, the entire distribution p(y? | θ̂) is
typically not considered, but only its mean (2.5), or similar.

Chapter 2. Statistical learning: Data, models & inference 15

exchangeable and all have a Gaussian distribution with mean µ and variance 1, and
we assume a prior p(µ) = N (µ; 0, 1). This yields the posterior

p(µ | y) ∝ N (θ ; 0, 1)︸ ︷︷ ︸
p(µ)

T∏

t=1
N

�
µ; yt , 1

�

︸ ︷︷ ︸
p(y | µ)

(2.7a)

which after some algebraic manipulation can be written

p(µ | y) = N
(
µ;

∑T
t=1 yt
T +1 , 1

T +1

)
. (2.7b)

That is, the posterior variance tends towards 0 as the number of observationsT → ∞.
Thus, with a large number of observationsT , it may (from a practical point of view) suffice
to represent the (Bayesian) posterior (2.7b) with a single point estimate!

By this argument, one may catch a sight of a bridge between the two paradigms.
It is relevant in many situations when T → ∞, not only the case (2.7). It is, however,
not completely generally applicable, for instance not if

(i) the number of parameters is large, so that the ‘information per parameter’ is
still low despite a large number of observations T ,

(ii) the data cannot determine the parameters uniquely, e.g., θ = {α, β}, but only
information about the product α · β is observed (a problem sometimes referred
to as non-identifiability),

(iii) the variance in the example model would have been proportional to T instead
of 1, which would yield a posterior variance that does not decrease with T .

2.5 Priors and regularization

Let us now consider the role of the prior. Albeit the prior has a central role in
the Bayesian approach, but is not even present when doing point estimates, the
differences sometimes diminishes when it comes to the practical aspects, as we will
discuss in this section.

2.5.1 When the prior does not matter

From the previous section, we have the example of T exchangeable observations of
µ with Gaussian noise, where we also could write (cf. (2.7b))

p(µ | y) ≈ N
(
µ;

∑T
t=1 yt
T , 1

T

)
= p(y | µ) = L(θ), (2.8)

16 2.5. Priors and regularization

i.e., the posterior and the likelihood function are approximately equal, and the mode
of the posterior is approximately the same as the maximum likelihood solution
when there is a large amount of data available (T large). One may say that ‘the prior
is swamped by the data’ or refer to the situation as ‘stable estimation’, a situation
occurring in a wide class of models (clearly with exception of pathological cases with
Dirac priors etc.) (J. O. Berger 1985, Section 4.7.8; Vaart 1998, Section 10.2).

2.5.2 When the prior does matter

The point estimation, and in particular the maximum likelihood approach, might
seem intuitively appealing: finding the parameter θ for which the data y is as likely
as possible sounds very reasonable. It is, however, important to realize that this is
not equivalent to finding the most likely parameter θ given the data y ! The latter
statement is related to the posterior p(θ | y), whereas the former is related to the
likelihood function L. Failing to distinguish between these is sometimes referred to
as ‘the fallacy of the transposed conditional’. We illustrate this by the toy example
in Figure 2.1:

Consider 8 data points on the form (x, y). We make the decision to model the
data using an nth order polynomial and Gaussian measurement noise in the following
way:

p(y | θ) = N
�
y ; c0 + c1x + c2x2 + · · · + cnxn, σ2

n
�
, (2.9)

where θ = {n, c0, . . . , cn, σ2
n}. This is arguably a very flexible model, which is able

to take many different shapes: a feature that might be desired by the user who wish
not to make too many restrictions beforehand. The maximum likelihood solution is
n = 7 (i.e., as many degrees of freedoms as data points), σ2

n = 0 (i.e., no noise) and
c0, . . . , c7 chosen to fit the data perfectly. This is illustrated by the solid blue line in
Figure 2.1. Two suboptimal solutions, not maximizing the likelihood function, are
n = 2 (green) and n = 1 (orange), also shown in Figure 2.1.

Studying Figure 2.1, we may ask ourselves if the 7th order polynomial, the max-
imum likelihood solution, actually is able to capture and generalize the data well?
Indeed all data points are exactly on the blue line, but the behavior in between the
data points is not very appealing to our intuition—instead the 2nd or perhaps even
the 1st order polynomial would be more reasonable, even though none of them fit
the data exactly. The problem with the blue line, the maximum likelihood solution,
is often referred to as overfitting. Overfitting occurs when the parameter estimate is
adapted to some behavior in the data which we do not believe should be considered
as useful information, but rather as stochastic noise.

There are several solutions proposed for how to avoid overfitting, such as abort-
ing the optimization procedure prematurely (early stopping: e.g., Duvenaud et al.
2016; Sjöberg and Ljung 1995), some ‘information criteria’ (e.g., the Akaike infor-
mation criterion, AIC: Akaike 1974, or the Bayesian information criterion, BIC:

Chapter 2. Statistical learning: Data, models & inference 17

x

y

Data points
The optimal solution to the maximum likelihood problem, n = 7
A suboptimal solution to the maximum likelihood problem, n = 2
Another suboptimal solution to the maximum likelihood problem, n = 1

Figure 2.1. Eight data points marked with black dots, modeled using nth order polynomi-
als and Gaussian noise. The optimal maximum likelihood solutions is n = 7, with the 8
polynomial coefficients chosen such that its blue curve fits the 8 data points perfectly. Two
suboptimal solutions are n = 2 (green curve) and n = 1 (orange curve), which—despite their
suboptimality in a maximum likelihood sense—both might appear to be a more sensible
model, in terms of inter- and extrapolating the behavior seen in the data. The key aspect
here is that the maximum likelihood finds the parameter explaining the data the best, exactly
as it is seen: indeed, the blue curve fits the data perfectly. There is, however, no notion of
‘likely parameters’, as opposed to the Bayesian approach. The green and orange curves could
have been obtained as regularized maximum likelihood estimates, if a regularization term
penalizing large values of n had been added to the objective function (2.2).

Schwarz 1978) or the use of cross-validation (Hastie et al. 2009, Section 7.10). We
will, however, try to understand the overfit problem as an unfortunate ignorance
during the modeling process: From Figure 2.1, we realize that we may actually have
a preference for a lower order polynomial, and our mistake is that we have consid-
ered maximum likelihood when we actually have different prior beliefs in different
parameter values: we prefer6 the predictable behavior of a low order polynomial to
avoid the strange behavior of a higher order polynomial. Note, however, that we
could have fixed the model class to n = 2, and searched for the maximum likelihood
solution only among {c0, . . . , c2, σ2

2}. In such a case, the green line would have been
the optimal solution, and we had not faced any problem with overfit. However, re-
stricting the model to n = 2 would at the same time make the model more rigid
and less flexible, with no possibilities of, e.g., describing any odd nonlinearities. To

6The related philosophical question whether simpler models (in this case, a 1st or 2nd order poly-
nomial) should be preferred over more advanced models (the 7th order polynomial) is often referred
to as Occam’s razor or the principle of parsimony, a discussion we leave aside.

18 2.5. Priors and regularization

summarize the example, we make the two observations:

• Maximum likelihood means searching for an estimate θ̂ that maximizes the
likelihood of the data y as it is exactly seen, which may differ significantly
from any intuitive idea about ‘likely parameters’.

• The (inevitably subjective) model choice plays a crucial role for the result.

In the Bayesian framework, on the other hand, the prior p(θ) is also taken into
consideration using Bayes’ theorem (2.4). Via Bayes’ theorem, it is (on the contrary
to maximum likelihood) possible to reason about likely parameters. A sensibly cho-
sen (and indeed subjective) prior would in the example describe a preference for
low order polynomials, and the posterior would then dismiss the 7th order poly-
nomial solution (unless it had fitted the data significantly better than a low order
polynomial). Hence, there is no Bayesian counterpart to the overfit problem7, an
advantage that comes at the price of choosing a prior and working with probability
distributions rather than point estimates.

Either inspired by the Bayesian approach or heuristically motivated, an increas-
ingly popular modification of the maximum likelihood approach is regularized max-
imum likelihood, which appends the likelihood function with a regularization term
R(·). The regularization plays a role akin to that of the prior, by ‘favoring’ solutions
of, e.g., low orders. In the signal processing and machine learning literature, there are
a few popular choices of R(·) with a variety of names, such as the ‖ · ‖1 norm (Lasso
or L1 regularization: Tibshirani 1996), the ‖ · ‖2 norm (L2 or Tikhonov regulariza-
tion, ridge regression: Hoerl and Kennard 1970; Phillips 1962), or a combination
thereof (elastic net regularization: Zou and Hastie 2005).

The connection between regularization and the Bayesian approach can be de-
tailed as follows: If having a scalar θ with prior N

�
θ ; 0, σ2�

, the logarithm of the
posterior becomes

log p(θ | y) = log p(y | θ) + log p(θ) − log p(y) = C + log p(y | θ) − |θ |2, (2.10)

which apart from the constant C is equivalent to the regularized (log) likelihood
function

Lr (θ) = log p(y | θ) − R(θ), (2.11)

if R(·) = ‖ · ‖2, i.e., L2 regularization. The same equivalence can be shown for L1
and the use of a Laplace prior. Thus, regularization constitutes another connection
between the point estimation and the Bayesian approach.

7There are two different perspective one can take when understanding the non-existence of overfit
in the Bayesian paradigm: Pragmatically seen, any sensible prior will (as argued in the text) have a
regularizing effect. From a more philosophical point of view, there is no overfit since the posterior by
definition represents our (subjective) beliefs about the situation, and therefore contains nothing but
useful information (and hence no overfit to non-informative noise).

Chapter 2. Statistical learning: Data, models & inference 19

In 1960, Bertil Matérn wrote in his thesis on stochastic models that ‘needless
to say, a model must often be almost grotesquely oversimplified in comparison with the
actual phenomenon studied’ (Matérn 1960, p. 28). As long as the statement by Matérn
holds true and the model is rigid and much less complicated than the behavior of
the data (which perhaps was the case for most computationally feasible models by
1960) regularization is probably of limited interest. However, if the model class
under consideration is more complex8 and contains a huge number of parameters,
overfit may be an actual problem. In such cases, additional information encoded
in priors or regularization has in several areas proven to be of great importance,
such as compressed sensing (Eldar and Kutyniok 2012) with applications in, e.g.,
MRI (Lustig et al. 2007) and face recognition (Wright et al. 2009), machine learning
(Hastie et al. 2009, Chapter 5) and system identification (Chen et al. 2012, Paper I).
The increased access to cheap computational power during the last decades might
therefore explain the massive recent interest in regularization.

2.5.3 Circumventing the prior assumptions?

Sometimes the user of the Bayesian approach might feel uncomfortable making prior
assumptions, perhaps in the interest of avoiding another subjective choice (in addi-
tion to the model design p(y | θ)) and thereby stay as objective as possible. Several
alternatives for avoiding, or at least minimizing the influence of the prior choice,
have therefore been researched.

‘Noninformative’ priors

Attempts to formulate ‘noninformative’ priors containing ‘no’ prior knowledge
have been made. In the toy example above, a ‘noninformative’ prior for σ2 would
intuitively perhaps be a flat prior p(σ2) ∝ 1 for σ2 > 0, since it puts equal mass
on all feasible values for σ2. Apart from the obvious fact that such a density would
not integrate to 1, there is also a more subtle and disturbing issue: why should the
variance σ2, and not the standard deviation σ, have a flat prior? In fact, if p(σ2) ∝ 1
for σ2 > 0, it implies that p(σ) ∝ σ for σ > 0, a prior choice that does not appear
very ‘noninformative’ at all.

To avoid this undesired effect, a prior that is invariant under re-parametrizations
have been proposed, the so-called Jeffreys prior. Jeffreys prior is, however, not always
‘noninformative’ in the sense that a flat prior intuitively is: Efron (2013) provides a
simple example where the Jeffreys prior has a clear and perhaps unwanted influence
on the posterior. On this topic, Peterka (1981) writes ‘However, it turns out that it is
impossible to give a satisfactory definition of “knowing nothing” and that a model of an

8The study of model flexibility is the core in the statistical learning theory or Vapnik–Chervonenkis
theory, which we will leave out from this thesis.

20 2.5. Priors and regularization

“absolute ignorant”, in fact, does not exist. (Perhaps, for the reason that an ignorant has no
problems to solve.)’

J. O. Berger (2006) argues, on the other hand, that the process of translating
expert knowledge into prior assumptions are typically costly (and not always very
crucial to the final result), and ‘standard’ priors (such as Jeffreys) should for this
reason be considered by the practitioner: it is still far more informative than not
performing any Bayesian inference at all.

Hyperparameters and empirical Bayes

Another alternative is to chose a prior p(θ | η) with some undecided hyperparameters
η , and choose a point estimate η̂ which fits the data. This is commonly referred to9
as empirical Bayes, a popular and currently emerging method. This combination of
point estimation and Bayesian inference is perhaps more pragmatic than faithful to
any of the paradigms, but can be seen as a promising combination of them, indeed
proven to work well in many situations (see, e.g., Bishop 2006; Efron 2013 and
references therein).

Due to the point estimation, overfit may occur when using empirical Bayes, in
that the prior becomes overly adapted to the data. In many situations, this only has
minor practical implications (typically not as severe as the situation in Figure 2.1),
but the user should be aware of the risk.

Hyperpriors

A third option on the topic of circumventing the explicit formulation of prior as-
sumptions, is to take a Bayesian (rather than a point estimation) approach to hyperpa-
rameters, and formulate hyperpriors on the hyperparameters η . Then, the inference
amounts to inferring

p(η | y) =
∫ p(y | θ)p(θ | η)p(η)

p(y) dθ (2.12)

rather than p(θ | y). For a subsequent prediction, the prediction p(y? | y) would
instead of (2.6) be

p(y? | y) =
∫∫

p(y? | θ)p(θ | η)p(η | y) dθ dη. (2.13)

Obviously such a nested construction does not avoid the choice of a prior, but only
defer it to the level p(η) instead of p(θ), and also adds to the computational com-
plexity of the sometimes already involved computations needed. However, in cases
shown to be computationally feasible, interesting and promising results have been

9Another term sometimes seen is ‘maximum likelihood type II’.

Chapter 2. Statistical learning: Data, models & inference 21

obtained for, e.g., the Gaussian-process (Chapter 4) model, even with relatively sim-
ple choices of hyperpriors: Heinonen et al. (2016), Shah et al. (2014) and Paper IV.
An insight from these developments is perhaps that the introduction of a hyperprior
p(η) may in some models open up for a significantly more flexible modeling process
compared to directly choosing a prior p(θ).

3
State space models

The state-space model is a popular and widely used model. In this chapter, we will in-
troduce the general state-space model, and thereafter turn the focus to four important
special cases, namely the linear, jump-Markov linear, and Wiener and Hammerstein
state-space models. We also devote a section to discuss statistical inference in the
particular context of state-space models.

3.1 The general state-space model

At the core of the state-space model is a Markov process . . . , x t−1, x t , x t+1 . . . , which
evolves as p(x t+1 | x t) = f (x t+1 | x t), where f (· | ·) is the state transition function.
We refer to x t as the state, and t = 0, . . . ,T is an index typically representing time in
time-series data, but other interpretations are also possible. We assume that x t ∈ Rnx

where nx is the dimension of the state space.
The state x t may represent the physical state of an object under study, such as the

position, speed, heading and acceleration of a vehicle, but can also be an abstract rep-
resentation without any clear physical interpretation. The Markov property means
that once x t is known, the previous states . . . , x t−1 do not add any information
about the later states x t+1, . . . , i.e.,

p(x t+1 | . . . , x t−1, x t) = p(x t+1 | x t). (3.1)

This Markov assumption is key for the efficiency of several algorithms that we will
introduce in the next chapter.

23

24 3.1. The general state-space model

The state-space model also includes the observation function g (· | ·), which
models the relation between the state x t and the observation, or output, yt ∈ Rny ,
as p(yt | x t) = g (yt | x t). Note that the Markov property (3.1) does not necessarily
hold for the observations . . . , yt−1, yt , yt+1, . . . !

To summarize the state-space model, we write

p(x t+1 | x t) = f (x t+1 | x t), (3.2a)
p(yt | x t) = g (yt | x t). (3.2b)

For completeness, the model also need to describe a density p(x0) for the initial state
x0. Once again, we have expressed the model in terms of its densities. This is merely
a matter of notation, and the extension to degenerate models (such as a deterministic
relationship between some components of x t and x t+1) is often possible.

An alternative naming of (3.2) is a hidden Markov model, where ‘hidden Markov’
refers to the unobserved states x t that obey the Markov assumption (3.1). The term
is, however, also (and perhaps more often) used for models where x t lives in a discrete
space rather than in Rnx .

In the automatic control literature, state-space models are often used with the ad-
dition of an exogenous (and known) input signal ut ∈ Rν , a case explicitly considered
in Paper I and V by adding a conditioning on ut in f (· | ·) and g (· | ·). Another
commonly seen flavor of (3.2) is the so-called time-varying state-space model, where
f and g (and possibly also nx) explicitly depends on t .

State space models are typically used to model time-series data {y1, . . . , yT }
which exhibits some dynamical behavior, i.e., there is a non-trivial correlation be-
tween different data points. In a common user case is the data {y1, . . . , yT } far from
obeying the Markov assumption, and a state-space model is fitted to the data so that
a (more or less artificial) state sequence {x1, . . . , xT } (with the Markov property)
can be (re)constructed. The reasons for using a state-space model may, at least, be
twofold:

• The states bear a physical meaning (e.g., the position and speed of a vehicle)
which is of interest.

• In the interest of making predictions, the states x t provide a compact summary
of all relevant history: rather than storing and processing all data y1, . . . , yt ,
it suffices to consider x t for predicting the future observations yt+1, . . . , pro-
vided that the Markov assumption for the states x t holds.

A relevant question is whether a state-space model always exists, which accurately
describes any data set recorded from the same process? The answer is no; several
practically relevant counterexamples exist (e.g., Ljung and Glad 2004, Chapter 7)
where the state space model is insufficient. Nevertheless, the state-space model has
proven a practically useful model for many cases.

Chapter 3. State space models 25

3.2 Linear Gaussian state-space models

The perhaps most well-studied version of the state-space model is the linear state-
space model with additive Gaussian noise,

x t+1 = Ax t + But + w t , w t ∼ N (0,Q) , (3.3a)
yt = C x t + Dut + et , et ∼ N (0,R) . (3.3b)

Here, A, B , C , D , Q and R are matrices of appropriate sizes, and w t and et are
stochastic noise, i.i.d. with respect to time. In (3.3) we have deviated from the proba-
bilistic notation, and also included an exogenous input signal ut , in order to conform
with the standard notation in the system identification literature.

Entire books (e.g., Kailath 1980; Rugh 1993) have been written on models of the
type (3.3) and its almost equivalent alternative formulation as a transfer function.
We make no attempt on covering that literature here.

The linear Gaussian state-space model (3.3) has the advantage that many infer-
ence problems can be carried out relatively easy, if not on closed form at least with
relatively efficient algorithms. The downside, however, is its limited expressiveness
(even though it has turned out to be very useful, judging from its widespread use)
compared to the much more general model (3.2).

A popular compromise between the expressiveness of the nonlinear state-space
model and the analytical tractability of the linear Gaussian state-space model is to
keep the linear state transition (i.e., x t+1 = Ax t + But + w t), but also append (3.3)
with some nonlinear feature. Two such examples, which we will discuss in the next
sections, are the jump-Markov linear state-space models, and the Wiener and Ham-
merstein models.

3.3 Jump-Markov linear state-space models

To obtain an expressiveness beyond the linear state-space model (3.3), the jump-
Markov linear state-space model augments (3.3) with another Markov process (in
addition to x t), namely the mode sequence . . . , st−1, st , st+1, The sequence takes
values on the finite discrete space {1, 2, . . . ,K }, and is defined via its transitions
probabilities

p(st+1 | st) = πst ,st+1 . (3.4a)

One linear state-space model belongs to each mode (all with the same state dimen-
sions nx), whose corresponding matrices we denote by a subscript. Conditioned on
the mode sequence, the states evolve as (cf. (3.3))

x t+1 = Ast x t + Bst ut + w t , w t ∼ N
�
0,Q st

�
, (3.4b)

yt = Cst x t + D st ut + et , et ∼ N
�
0,R st

�
. (3.4c)

26 3.4. Wiener and Hammerstein models

Clearly, (3.4) is a more general model than (3.3) (if k > 1), but it is still just a special
case of the general state-space model (3.2). Paper V develops a particular inference
algorithm tailored for models on the form (3.4).

Various versions of jumping/switching linear models are present in the literature,
of which (3.4) is one.

3.4 Wiener and Hammerstein models

Another common extension of (3.3) is the Wiener and Hammerstein models. The
models are named after Norbert Wiener (1958) and Adolf Hammerstein (1930), re-
spectively. These models preserve the linear dynamics of (3.3), but add a nonlinear
transformation ℎ(·) at either the input or the output, as

x t+1 = Ax t + ℎ(ut) + w t , w t ∼ N (0,Q) , (3.5a)
yt = C x t + Dut + et , et ∼ N (0,R) . (3.5b)

for the Hammerstein model, and

x t+1 = Ax t + But + w t , w t ∼ N (0,Q) , (3.6a)
yt = ℎ(x t , ut) + et , et ∼ N (0,R) . (3.6b)

for the Wiener model. In both models, ℎ(·) is some nonlinear function ℎ : Rnu 7→
Rnu or ℎ : Rnx ·nu 7→ Rny , respectively.

Both the Wiener and the Hammerstein model have received much attention in
the literature, perhaps due to their versatileness while still avoiding nonlinear dy-
namics á la (3.2a) – a showstopper for many inference methods. The Wiener and the
Hammerstein models lay the foundation of the block oriented system identification
(Giri and Bai 2010; Schoukens et al. 2003), and the Wiener structure has also gained
recent interest in the machine learning literature (Johnson et al. 2016). A reason for
the usefulness of the Wiener model can perhaps be found in that a broad class of
nonlinear state-space models can be well approximated by a Wiener model with a
finite, however sometimes large, dimension nx (Boyd and Chua 1985).

3.5 Statistical inference in state-space models

Due to the particular Markov structure of the state-space model (3.2), most inference
problems in state-space models take a particular form. We give an introduction here,
and Paper I, II, III and V are all concerned with particular aspects of inference in
state-space models.

Chapter 3. State space models 27

3.5.1 Quantities to infer: states and model parameters

When we discussed inference in Chapter 2, we talked about parameters θ , referring
to some unknown numerical quantities in the model that remains to be determined
using observed data {y1, . . . , yT } (and also inputs {u1, . . . , uT } if applicable). It
has, however, not yet been said what θ correspond to in the state-space model: By
construction, the states x t are not observed and might be of interest to infer, but there
might also be unknown quantities in the model itself, i.e., f (· | ·) and g (· | ·)might
be parameterized by some unknown model parameters ϑ as fϑ(· | ·) and gϑ(· | ·).

There is no inherent difference between the states x t and the model parameters
ϑ from an inference perspective: they are both unknown quantities in the state-space
model. However, depending on the user’s case, different inference problems may be
relevant. We will consider two alternative cases:

(i) The state-space model (i.e., f (· | ·) and g (· | ·) in (3.2)) is completely known,
and only the state sequence {x1, . . . , xT } remains to be determined. We refer
to this problem as state inference, a problem typically appearing if the model is
derived from first principles, implying that the states bear a physical meaning
(e.g., the position and velocity of a vehicle).

(ii) Only limited knowledge about the state-space model is present, and we have
to infer a set of unknown model parameters ϑ (the states are not available
either1). We refer to this case as model parameter inference, typically occurring
if the physical insight about the real process (from which the data is recorded)
is limited.

It should be noted that while the model parameters ϑ typically are of a rather low
dimension (say2, 1-20), the entire state sequence {x1, . . . , xT } is of dimension T · nx ,
where T > 100 000 is not unrealistic. For this reason, the state and the model
parameter inference algorithms will have to be designed differently, in order to gain
computationally feasible algorithms.

The model parameter inference problem contains a spectrum of settings, ranging
from inference of a single parameter value to determining the entire functional
forms of f (· | ·) or g (· | ·). In this thesis, Paper V represent the former problem
(in particular, inference of the numerical values in (3.4)), whereas paper I deals with
the latter case where no parametric form of f (· | ·) nor g (· | ·) is known a priori. A
very well studied case is inference of the matrices A, B ,C , D , Q , R in (3.3), referred
to as linear system identification (Ljung 1999; Söderström and Stoica 1989).

We assume the state dimension nx is known. Inference concerning nx is another
problem, not considered in this thesis.

1For this reason, the case (i) can be seen as a subproblem of (ii).
2We will explore much larger cases in Paper I.

28 3.5. Statistical inference in state-space models

3.5.2 A Bayesian approach or point estimates?

Given the two inference problems in the state-space model, state and model parame-
ter inference respectively, we now turn to the next question: what inference paradigm
to use, the Bayesian or the point estimation approach?

The inference approach for the model parameter may vary with the amount of
data, properties of the model, intended use, etc., as discussed in Section 2.4. The point
estimation approach has historically been favored (e.g., Ljung 1999; Söderström and
Stoica 1989), but a discussion in favor of the Bayesian approach is given by Peterka
(1981). If the dimension of ϑ is low, a large amount of data is available (T is large), and
ϑ is identifiable (Söderström and Stoica 1989, Section 6.4), the maximum likelihood
and the Bayesian solution can often be expected to provide similar results in practice
(cf. Section 2.4). Also other point estimates than maximum likelihood are popular
in the literature, such as the one minimizing the simulation error of the model.

For the state inference problem (i.e., finding x1:T when given y1:T and ϑ), we
may once again refer back to the discussion in Section 2.4, and note that the problem
is of the peculiar form that with more data (i.e., larger T), the dimension of the
state sequence {x1, . . . , xT } also grows. Thus, the argument from Section 2.4 about
concentration of the posterior towards a point as the data record grows is not appli-
cable3, and we should for this reason be cautious about applying a point estimation
approach: we may ignore important uncertainty information if we do so. Perhaps
for this reason, the state inference problem is almost exclusively approached by the
Bayesian paradigm in the literature, which we will review now.

Bayesian filtering

To alleviate the notation, we will use the shorthand symbol x1:t , {x1, . . . , x t }, and
similar for y1:t . The state inference in the Bayesian paradigm can be written (2.4) as

p(x1:T | y1:T) =
p(y1:T | x1:T)p(x1:T)

p(y1:T)
. (3.7)

We may interpret this as (3.2a) providing the prior for the states p(x1:T) =∏T −1
t=1 f (x t+1 | x t), and (3.2b) giving the model4 for the data as p(y1:T | x1:T) =∏T
t=1 g (yt | x t). In a computational perspective, however, (3.7) is of very limited

use. Instead the recursion (see, e.g., Särkkä 2013)

p(x t | y1:t) =
1

p(yt | y1:t−1)
g (yt | x t)

∫
f (x t | x t−1)p(x t−1 | y1:t−1)dx t−1 (3.8)

3From a time-series perspective, we may use the argument that a data point yt does not necessarily
provide more information about the state xτ if t � τ or t � τ.

4For consistency, we should thus refer to (3.2b) as the model and (3.2a) as the prior. Maximum
likelihood estimation of some unknown parameters ϑ in f (· | ·) should then be termed empirical Bayes.
Such a terminology would perhaps provide some additional insight, but would probably cause more
confusion than clarity in the end.

Chapter 3. State space models 29

has proven useful for computing the (marginal) posterior distributions p(x t | y1:t).
The denominator in (3.8) only serves the purpose of normalization (and may in
some computational schemes be omitted), and the remaining quantities are known.
The Kalman filter (below) as well as the particle filter (Chapter 5) are direct imple-
mentations of (3.8). We will refer to (3.8) as the Bayesian filtering recursion, a name
commonly used5. The term filtering refers to the distributions p(x1 | y1), p(x2 | y1:2),
. . . , p(xT | y1:T), as opposed to the (marginal) smoothing distributions p(x1 | y1:T),
p(x2 | y1:T), . . . , p(xT | y1:T) (note the different conditioning). For computing the
smoothing distributions, there is a variety of popular recursions used, for which
we refer to the literature (see, e.g., Lindsten and Schön 2013; Särkkä 2013 for an
overview) and Paper III.

The Kalman filter

Without doubt, the most popular implementation of the Bayesian filtering recur-
sion is the Kalman filter, named after Rudolf Kálmán (1960). The Kalman filter is
nothing but (3.8) written down for the special case of the linear Gaussian state-space
model6 (3.3). We refer to, e.g., Peterka (1981) and Schön and Lindsten (2011) for the
derivation and the final equations.

The Kalman filter is often applied also to more general state-space models not
exactly on the linear Gaussian form (3.3), due to its relative simplicity. Often modifi-
cations are made to approximately handle more general formulations than (3.3), e.g.,
the extended Kalman filter, the unscented Kalman filter, etc. (Särkkä 2013).

The likelihood for the state space model

We also introduce the likelihood for y1:T given ϑ, i.e., p(y1:T | ϑ). When we later,
in Chapter 5 will discuss numerical methods for model parameter inference, this
expression will be at the center of attention.

p(y1:T | ϑ) =
T∏

t=1
p(yt | y1:t−1, ϑ) =

T∏

t=1

∫
p(yt | x t−1, ϑ)p(x t−1 | y1:t−1, ϑ)dx t−1,

(3.9)

where we have factorized the expression in such a way that we can see that finding
p(x t | y1:t) might help in computing p(y1:T | ϑ). Thus, solving the state inference
problem in the Bayesian paradigm, i.e., finding p(x t | y1:t), may help also when a
maximum likelihood estimate of ϑ is sought!

5The Bayesian filtering recursion is commonly also named ‘optimal’ filtering, where ‘optimal’ only
reflects that it is the Bayesian solution.

6The Kalman can alternatively also be derived as the optimal (in mean-square-error sense) linear
estimator for a more wide class than (3.3).

4
Gaussian processes

The Gaussian process (GP) defines a probability distribution over functions f , and
is commonly used as a probabilistic model of functions. The GP is tightly connected
with the Bayesian paradigm, and conditioning on data y , i.e., updating the prior p(f)
into the posterior p(f | y), will be our most common usage of the GP model.

The GP is a so-called nonparametric model, in that it does not rely on a finite set
of parameters θ . A parametric model involves a set of parameters θ acting as a ‘mid-
layer’ between the data and the posterior over f , and finding the latter amount to first
infer p(θ | y) and then p(f | y) =

∫
p(f | θ)p(θ | y)dθ (cf. (2.6)). In a nonparametric

model, however, the distribution p(f | y) is computed directly without (explicitly)
involving any parameters θ . One may alternatively understand this as the data (in a
nonparamteric model) takes the role of the parameters (in a parametric model). The
main advantage of a nonparametric model is perhaps that there is no upper limit on
‘how much information the model can contain’, since there is no a priori limit on
the data record size.

4.1 Introducing the Gaussian process

The nonparametric GP can be understood as a limit of the k-dimensional multivari-
ate Gaussian distribution as k tends to infinity. We will try to follow the intuition
behind this limit, in order to develop an understanding for the connections between
the Gaussian distribution and the GP. All technical details can be found in the litera-
ture (MacKay 1998; Rasmussen and Williams 2006).

31

32 4.1. Introducing the Gaussian process

f1 f2

(a). A two-dimensional Gaussian distribution for the random variables f1 and f2, with a blue surface
plot for the density, and the marginal distribution for each component sketched using dashed blue
lines along each axis. Note that the marginal distributions do not contain all information about the
distribution of f1 and f2, since the covariance information is lacking in that representation.

f1 f2

(b). The conditional distribution of f1 (green line), when f2 is observed (orange dot). The conditional
distribution of f1 is given by (4.3), which (apart from a normalizing constant) in this graphical rep-
resentation also is the green ‘slice’ of the joint distribution (blue surface). The marginals of the joint
distribution from Figure 4.1a are kept for reference (blue dashed lines).

Figure 4.1. A two-dimensional multivariate Gaussian distribution for f1 and f2 in (a), and
the conditional distribution for f1, when a particular value of f2 is observed, in (b).

The density for the k-dimensional multivariate Gaussian distribution is

N
(
f ; µ,Σ

)
= (2π)−

k
2 det(Σ)−

1
2 exp

(
− 1

2 (f − µ)TΣ−1(f − µ)
)
, (4.1)

where f = [f1 · · · fk]T is a k-dimensional vector with random scalar elements
f1, · · · , fk , µ ∈ Rk is the mean, and Σ ∈ Rk×k is the (positive semidefinite) covari-
ance matrix, which means that it has k + k(k+1)

2 parameters. In the limit k → ∞, the
number of parameters tends to infinity, which can be understood as the transition
from the parametric Gaussian distribution to the nonparametric GP.

Chapter 4. Gaussian processes 33

f1 f2

(a). The marginal distributions for f1 and f2 from
Figure 4.1a.

f1 f2

(b). The distribution for f1 (green line) when f2
is observed (orange dot), as in Figure 4.1b.

Figure 4.2. The marginals of the distributions in Figure 4.1, here plotted slightly differently.
Note that this more compact plot comes with the cost of missing the information about the
covariance between f1 and f2.

Considering the Gaussian distribution (4.1), we can partition f into
[
f

T

1 f
T

2

]T
,

and µ and Σ similarly, and then write

p *
,



f 1
f 2


+
-
= N *

,



f 1
f 2


;

[
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

]
+
-
. (4.2)

If some elements of f , let us say the ones in f 2, are observed, the conditional distri-
bution for f 1 given the observation of f 2 is

p
(
f 1 | f 2

)
= N

(
f 1; µ1 + Σ12Σ

−1
22 (f 2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21

)
. (4.3)

The conditional distribution is nothing but another Gaussian distribution with
closed-form expressions for the mean and covariance. This is particularly useful.

Figure 4.1 shows a 2-dimensional example where a multivariate Gaussian dis-
tribution is conditioned on data. In Figure 4.2, we have now plotted the marginal
distributions from Figure 4.1, to prepare for the generalization to GP. It is also
straightforward to plot a 6-dimensional multivariate Gaussian distribution by its
margins, akin to Figure 4.2, as we do in Figure 4.3. Bear in mind that to fully il-
lustrate the joint distribution for f1, . . . , f6, a 6-dimensional surface plot would be
needed, whereas Figure 4.3a only contains the marginal distributions for each com-
ponent. As earlier, we may also condition the 6-dimensional distribution underlying
Figure 4.3a on an observation of, e.g., f4. Once again, the conditional distribution is
another Gaussian distribution, and the marginals of the 5-dimensional distribution
are plotted in Figure 4.3b.

In Figure 4.2 and 4.3, we had a distribution over a finite set of discrete points. If
we were to study a phenomenon taking values on a finite set of discrete points, like

34 4.1. Introducing the Gaussian process

f1 f2 f3 f4 f5 f6

(a). A 6-dimensional Gaussian distribution, plot-
ted in the same way as Figure 4.2a, i.e., only its
marginals are illustrated.

f1 f2 f3 f4 f5 f6

(b). The conditional distribution f1, f2, f3, f5 and
f6 when f4 is observed (orange dot), illustrated
by its marginals (green lines), cf Figure 4.2b.

Figure 4.3. A 6-dimensional Gaussian distribution, illustrated akin to Figure 4.2.

{1, 2, 3, 4, 5, 6} in Figure 4.3, we could use this as a probabilistic model. However,
our aim is the GP, a probabilistic model for functions on a continuous space.

The extension of the Gaussian distribution (defined on a finite set) to the GP
(defined on a continuous space) is achieved by replacing the index set {1, 2, 3, 4, 5, 6}
in Figure 4.3 by a parameter x taking values on the continuous real line. In the
Gaussian distribution, µ is a vector with k components (e.g., µ ∈ R2 in Figure 4.2,
and µ ∈ R6 in Figure 4.3), and similarly for the covariance matrices. In the GP, we
replace µ by a mean function µ(x) parameterized by x , and the covariance matrix Σ
by a covariance function κ(x, x ′) parameterized by x and x ′.The GP is then defined
in the following way:

Definition (the Gaussian process). Let {x1, . . . , xn} be any set of points for which
µ(x i) and κ(x i, x j) are defined. Then,

p
*..
,



f (x1)
...

f (xn)



+//
-
= N

*..
,



f (x1)
...

f (xn)


;



µ(x1)
...

µ(xn)


,



κ(x1, x1) · · · κ(x1, xn)
...

...

κ(xn, x1) · · · κ(xn, xn)



+//
-
. (4.4)

That is, for any choice of {x1, . . . , xn} , we have a multivariate Gaussian distribu-
tion, just like the one in Figure 4.3. Since {x1, . . . , xn} can be chosen arbitrarily on
the continuous line, this implicitly defines a distribution for all points on that line.
Of course, for this definition to make sense, κ(· , ·) has to be such that a positive
semidefinite covariance matrix is obtained for any choice of {x1, . . . , xn}.

If we want to plot the GP, which we will do in Figure 4.4, we may choose
{x1, . . . , xn} to correspond to the pixels on the screen or the printer dots on the
paper, so that it appears as a continuous line to the eye (despite that we actually can
access the distribution only in a finite, however arbitrary, set of points). We will use
the notation

f ∼ GP (µ(·), κ(· , ·)) (4.5)

Chapter 4. Gaussian processes 35

to express this assumption, i.e., f is distributed according to a GP with mean function
µ(·) and covariance function κ(· , ·).

The perhaps most interesting procedure is the calculation of the conditional
distribution given some observations { f (xd1), . . . , f (xdm)}, the GP counterpart to
Figure 4.1b, 4.2b and 4.3b. We start by introducing the following more compact
notation,

x? ,



x?1
...

x?n


, K?? ,



κ(x?1 , x?1) · · · κ(x?1 , x?n)
...

...

κ(x?n, x?1) · · · κ(x?n, x?n)


, (4.6a)

xd ,



xd1
...

xdm



, K dd ,



κ(xd1 , xd1) · · · κ(xd1 , xdm)
...

...

κ(xdm, xd1) · · · κ(xdm, xdm)



, (4.6b)

K?d ,



κ(x?1 , xd1) · · · κ(x?1 , xdm)
...

...

κ(x?n, xd1) · · · κ(x?n, xdm)



= (K d?)T. (4.6c)

We can use this notation and the definition to write the joint distribution between
the values f (xd) in the points xd , and the value f (x?) in some other points x? as

p
([

f (x?)
f (xd)

])
= N

([
f (x?)
f (xd)

]
;

[
µ(x?)
µ(xd)

]
,

[
K?? K?d

K d? K dd

])
. (4.7)

Now, as we have observed f (xd), we can express the distribution for f (x?) condi-
tional on the observations as

p
(
f (x?) | f (xd)

)
= (4.8)

N
(
f (x?); µ(x?) + K?d (K dd)−1

(
f (xd) − µ(xd)

)
,K?? − K?d (K dd)−1K d?

)
,

i.e., again nothing but another multivariate Gaussian distribution for any finite set x?.
We illustrate this by Figure 4.4.

The GP, and in particular (4.8), now provides a way to probabilistically inter-
and extrapolate observations under the assumption that the observations are drawn
from a Gaussian process. In most practical cases this assumption is most likely not
true, but it has nevertheless proven to be a useful model. The typical use of the GP
as a modeling tool is illustrated in Figure 4.5.

36 4.2. Choosing noise density, mean and covariance functions

x?1 x?2

f (x?1) f (x?2)

x

f (x)

(a). A GP defined on the real line parametrized
by x , not conditioned on any observations. The
intensity of the blue color is proportional to the
(marginal) density, and the marginal distributions
for some x?1 and x?2 are pictured in red. Akin to
Figure 4.3, we only plot the marginal distribution
for each x?, but the GP defines a full joint distri-
bution for all points on the x -axis, even though it
is hard to illustrate.

x?1 xd1

f (x?1) f (xd1)

x

f (x)

(b). The conditional GP distribution given the ob-
servation of f (xd1) in the point xd1 correspond-
ing to x?2 in (a). The prior distribution from
Figure (a) is dashed gray. Note how the condi-
tional distribution adjust to the observation, both
in terms of mean (closer to the observation) and
(marginal) variance (smaller in the proximity of
the observation, but unchanged in areas distant
from it).

Figure 4.4. A GP. Figure (a) shows the prior distribution (shaded blue), whereas (b) shows
the posterior distribution (shaded green) after conditioning on one observation (orange dot).

The construction of the Gaussian process can alternatively also be introduced as a
nonlinear and nonparametric generalization of linear regression. Of course, the final
model is the same, but the introduction made in this thesis is perhaps less standard
(cf. Bishop 2006, Section 6.4; MacKay 1998; Rasmussen and Williams 2006).

4.2 Choosing noise density, mean and covariance functions

We have in the previous section assumed the existence of a mean µ(·) and covariance
function1 κ(· , ·). When using the GP to model data, these functions somehow have
to be chosen by the user. If there is detailed domain knowledge present, it can be
incorporated into the covariance function: one such example is Wahlström et al.
(2013), where the magnetic field is modeled using a GP covariance function tailored
to obey Maxwell’s equations. In many situations, however, such detailed knowledge
is not present, and one has to make a less informed choice of covariance function
κ(· , ·). Two common choices are the exponentiated quadratic and the Matérn class2

1The covariance function is often referred to as a kernel in the literature. We refrain from that
terminology here to avoid confusion with the MCMC kernel in the next chapter.

2Named after the Swedish statistician Bertil Matérn (1960).

Chapter 4. Gaussian processes 37

x

f (x)

x

f (x)

x

f (x)

x

f (x)

Figure 4.5. The GP as a modeling tool: the conditional distribution (shaded blue) for f (x)
after 0, 2, 5 and 100 observations (orange dots) of y = f (x) + noise. (We have now left
our earlier convention of plotting the posterior distribution after conditioning on data in
green, since the prior–posterior notion becomes entangled when we sequentially condition
on more and more data.)

of covariance functions; their expressions are found in Table 4.1, and their properties
have been widely discussed in the literature (e.g., Rasmussen and Williams 2006,
Section 4.2) and will not be repeated here. There are also ways to combine different
covariance functions into new ones, creating, e.g., periodic covariance functions
(Rasmussen and Williams 2006, Section 4.2.4; Duvenaud et al. 2013). A standard
terminology is that if κ(x, x ′) is a function of only x−x ′, it is referred to as stationary,
and if only a function of ‖x − x ′‖, isotropic.

A common choice for the mean function is µ(x) = 0, which at a first glance
may seem very restrictive. However, already by inspection of (4.8) or Figure 4.4b,
it is clear that the posterior mean (i.e., conditional on data) may be non-zero even
though the prior is 0. In fact, µ(x) = 0 appears to work well in many situations.

In addition to a mean and covariance function, also a third function can be
introduced: if f (xd) is not observed directly, but corrupted by some additive noise
ε, as yd = f (xd) + ε, the distribution for ε also has to be modeled. In effect, the
noise model determines how much the observed data should be ‘trusted’. If the
noise model is chosen as a Gaussian distribution, it can be incorporated into the
covariance function, and (4.8) is still valid. Other alternatives are possible, but gives
no closed-form expressions à la (4.8). All functions discussed here, including some
typical examples, are summarized in Table 4.1.

38 4.3. Hyperparameter inference

Function Meaning Limitations Examples

Mean
µ(x)

Prior
assumption
about mean

- C (constant)
a · x (linear)

Covariance
κ(x, x ′)

Assumption
on how tightly
bounded two
x -values are

Must be positive
semidefinite

exp
(
− ‖x−x′‖2

2`2

)

(exponentiated quadratic)
21−ν
Γ(ν)

(√
2ν ‖x−x′‖

`

)ν
Kν

(√
2ν ‖x−x′‖

`

)

(Matérn class)

Observation
noise

Assumption
about noise
level in
observed data

Analytically
tractable only if
Gaussian
distribution

ε = 0 (noiseless)
N

�
ε; 0, σ2

n
�
(Gaussian

distribution)

Table 4.1. A summary and some examples of functions involved in the GP model.

4.3 Hyperparameter inference

Most mean functions, covariance functions, and noise distributions contains some
parameters, such as the length scale parameter ` in the exponentiated quadratic
covariance function, or the noise variance σ2

n in the Gaussian distributed noise model.
We will refer to these as hyperparameters, denoted by η . The hyperparameters are
often interpretable (such as length scale or noise level, Rasmussen and Williams 2006,
Section 2.3), but due to ignorance (such as limited physical insight) when using the
GP as a model, the hyperparameters might effectively be unknown.

As discussed in the inference chapter in Section 2.5.3, there are two common
alternatives for how to deal with unknown hyperparameters: namely empirical Bayes
or hyperpriors.

4.3.1 Empirical Bayes: Finding a point estimate η̂

The empirical Bayes approach can be applied to find a point estimate η̂ of η , by
maximizing the marginal likelihood3

p(yd | η) = N
(
yd ; µη (xd),K dd

η

)
, (4.9)

where we have added the subscript η to stress the dependence on the hyperparam-
eters. Note that (4.9) is nothing but a multivariate Gaussian distribution. Due to
the way η enters into the problem, this is typically a highly non-convex problem,

3The convention to name (4.9) marginal likelihood is because of the following: In a paramet-
ric model, the likelihood is p(y | θ), whereas p(y | η) is its marginal with respect to θ : p(y | η) =∫
p(y | η)p(θ | η)dθ .

Chapter 4. Gaussian processes 39

calling for numerical optimization tools. The major benefit with the point estimate
is indeed that a single numerical value η̂ is obtained, which is easy to use in, e.g.,
prediction

p(y? | yd, η̂) = N
(
y?; µη̂ (x?) + K?d

η̂

(
K dd
η̂

)−1 (
yd − µη̂ (xd)

)
,K??

η̂
− K?d

η̂
(K dd

η̂
)−1K d?

η̂

)
,

(4.10)

a lengthy but computationally tractable expression. That a single numerical value
for the hyperparameters is chosen is however also a major drawback of the approach.
In many cases the ‘landscape’ of (4.9) is widespread and multimodal, which makes
the optimization very hard, and the global optimum sensitive to small changes in
data yd . A further discussion with examples is found in Paper IV.

4.3.2 Hyperpriors: Marginalizing out η

The alternative approach to a point estimate is the Bayesian approach with hyper-
priors. This approach amounts to inferring the posterior distribution p(η | yd) ∝
p(yd | η)p(η), and use this posterior distribution rather than a point estimate in
subsequent tasks, such as prediction

p(y? | yd) =
∫

N
(
y?; µη (x?) + K?d

η

(
K dd
η

)−1 (
yd−µη (xd)

)
,K??

η −K?d
η (K dd

η)−1K d?
η

)
p(η | yd)dη.

(4.11)

Because of the integral over η in (4.11), we will also refer to this approach as marginal-
ization: the integrand of (4.11) is p(y?, η | yd), and the integral computes the marginal
distribution p(y? | yd). However, the marginalization (4.11) is in general not analyti-
cally tractable, in contrast to the prediction with a point estimate (4.10). Typically
not even the posterior distribution p(η | yd) itself is tractable, which perhaps is the
major drawback of this approach.

A numerical solution for this is to draw Monte Carlo samples from p(η | yd), and
then approximate the integral in (4.11) with a sum over these samples. One method
for acquiring such samples is presented in Paper IV.

4.4 Computational aspects

The computational load of (4.8), the main workhorse of the GP model, is governed
by the matrix inversion of K dd , an operation essentially of complexityO(m3). Thus,
the computational complexity of the GP grows with data in a rather unfavorable way,
which may prohibit its use in many applications. A rich literature on approximations
is therefore available, e.g., Chalupka et al. (2013);Rasmussen and Williams (2006,
Chapter 8) and Snelson (2007). In particular, we will make use of the approximation
proposed by Solin and Särkkä (2014b) in Paper I.

40 4.5. Two remarks

Essentially, all approximative methods amount to create a lower-dimensional rep-
resentation of the data. The lower-dimensional representation resembles a parameter
θ . A naïve but illustrative such approximation method is the ‘subset of data’ method,
where only a subset of all data y (chosen either randomly or in a more systematic
way) is considered. If the subset is of size p < m, the computational load of the GP
reduces from O(m3) to O(p3).

4.5 Two remarks

The GP provides a widely used and perhaps intuitively appealing model for nonlinear
functions. In this section, we will make two remarks that are important to keep in
mind when working with GP for modeling.

4.5.1 A posterior variance independent of the observed function values?

The Gaussian process is a flexible model, as seen in, e.g., Figure 4.5. However, in its
use with fixed hyperparameters η0, it has the peculiarity that its variance is indepen-
dent of the actually observed function values f (xd), for instance in the predictive
variance4 in (4.8). This is nothing but a direct consequence of the prior assumption
that the data was generated by a GP with the specified mean and covariance function
with hyperparameters η0. However, if the hyperparameters are not considered fixed,
but inferred from data (either using empirical Bayes or by assuming hyperpriors
and marginalizing them), the predictive variance depends on the observed function
values, somewhat indirectly via the hyperparameter inference procedure.

4.5.2 What is a typical sample of a GP?

The mean of the GP can be used to characterize the distribution. It is, however,
important to remember that the mean is a very unlikely sample of the GP, just as
0 is a very unlikely sample of a N (0, 1) distribution. Moreover does the GP also
encode a smoothness assumption, which is not very clear in the plotting style of
Figure 4.5: in Figure 4.6, 5 samples are drawn from these distributions, where it is
clear that also the correlation (along the x -axis) contains important information in
the GP distribution as well. This is essentially the same point as was made when we
considered the 2-dimensional Gaussian distribution in Figure 4.1, and only plotted
its marginal distributions in 4.2.

4This point has its counterpart in the Kalman filter, Section 3.5.2, where also the predictive covari-
ance is independent of the observed measurements. It is essentially the very same phenomenon, since
the Kalman filter can be interpreted as a Gaussian process (Solin and Särkkä 2014a).

Chapter 4. Gaussian processes 41

x

f (x)

x

f (x)

Figure 4.6. Five samples of the GP from Figure 4.5 (with a Matérn ν = 3/2 covariance
function). Note, in particular, that the samples are more wiggly than the mean function:
a reminder that the blue shades do not contain all information, but is only the marginal
distribution for each x (cf. Figure 4.1 and 4.2).

4.6 Extensions and generalizations

4.6.1 Heteroscedasticity and non-stationarity

The standard GP framework, as discussed so far, allows for non-stationary problems
(i.e., having properties depending explicitly on x) if (i) the noise level is independent
of x (homoscedastic), and (ii) a functional expression for the mean and covariance
function is available. The extension of the GP framework beyond the limitations
(i) and (ii) has received attention. Some work on the issue of heteroscedasticity, (i),
(beyond the references in Rasmussen and Williams 2006), is Kersting et al. (2007)
and Titsias and Lázaro-Gredilla (2011), and some recent work on (ii) is Heinonen
et al. (2016) and Saul et al. (2016).

4.6.2 Student-t processes

If there is no reason for choosing a particular covariance function, one alternative
would be to marginalize over all covariance functions. Perhaps surprisingly, it turns
out that this approach actually is analytically tractable, and yields the student-t
process. We refrain from the details here, but refer to Rasmussen and Williams (2006,
Section 9.9) and Shah et al. (2014).

4.6.3 Dynamical GP models

The vanilla use of the GP model is typically to encode a smoothness assumption on
f (·). However, the GP model can also be used to model more advanced dynamical
behavior along the x -dimension in f (x) (think of x as, e.g., representing time). For
such a use, it is of interest to understand the covariance function κ(· , ·) as a prior
assumption about the dynamical behavior of f (·). Such a covariance function design,
motivated by the physical notion of a ‘latent force’, is found in M. A. Alvarez et al.

42 4.7. Gaussian-process state-space models

(2009) and M. A. Alvarez et al. (2013), whereas Solin and Särkkä (2014a) focuses on
the connection between κ(· , ·) and a state-space model.

Another approach for dynamical modeling is the autoregressive GP, where yt =
f (yt−1, . . . , yt−k) and f ∼ GP (see, e.g., Frigola-Alcade 2015, Section 2.3 or Kocijan
2016 for an overview of such approaches).

4.6.4 Other nonparametric models

The GP is one member of the family of Bayesian nonparametric models, which
also contains other nonparametric models, such as the Dirichlet process (Ferguson
1973). Some introductions to this topic are, e.g., Broderick (2016), Gershman and
Blei (2012), and Hjort et al. (2010).

4.7 Gaussian-process state-space models

A relatively recent model is the GP state-space model,

p(x t+1 | x t) = N
�
x t+1; f (x t),Q

�
, f ∼ GP

(
µ f (·), κ f (· , ·)

)
, (4.12a)

p(yt | x t) = N
�
yt ; g (x t),R

�
, g ∼ GP

�
µg (·), κg (· , ·)

�
, (4.12b)

a combination of the GP and the state-space model. The somewhat cumbersome
notation should simply be read as ‘x t+1 equals a GP of x t plus Gaussian noise’,
and similar for yt . The promising feature of the model is that it combines the non-
parametric flexibility of a GP with the dynamical nature of the sate space model,
allowing for complex and highly nonlinear dynamical phenomena to be described
by the model. Currently the best overview of the GP state-space model is probably
found in the thesis by Frigola-Alcade (2015).

Due to the somewhat entangled use of the GP in (4.12a), where the output of the
GP, x t+1, is the input at the next time step, the inference problem becomes relatively
hard. Frigola et al. (2013) proposed a conceptually interesting but computationally
brutal solution, and the subsequent Frigola et al. (2014) and Paper I (and in partic-
ular, its predecessor Svensson et al. 2016) present further developments in different
directions. Both brings the computational load for an example requiring about 10
hours by Frigola et al. (2013) down to only a few minutes.

5
Monte Carlo methods

for statistical inference

Monte Carlo methods are a class of numerical methods named after the casino in the
capital of Monaco (Figure 5.1). They originated in physics research with disputable
purposes in the first half of the 20th century. An accessible introduction from that
era, still well worth reading, is ‘The Monte Carlo method’ by Metropolis and Ulam
(1949). Today, Monte Carlo methods are an established tool within many different
scientific fields, and they are also present in the undergraduate education (Svensson
2016).

Monte Carlo methods are applicable in cases when an analysis of a mathematical
model is not analytically tractable. There are also alternatives, such as the variational
approach (Blei et al. 2016), where additional assumptions are imposed on the quanti-
ties of interest until the modified problem becomes analytically tractable. This thesis,
however, focuses on the Monte Carlo approach.

We will in this chapter give an overview and introduction to sequential Monte
Carlo (SMC) and Markov chain Monte Carlo (MCMC) in general, and their appli-
cation to state-space models in particular.

43

44 5.1. The Monte Carlo idea

Figure 5.1. Casino de Monte-Carlo in Monaco. A place of gambling and broken dreams, and
moreover the source of the name ‘Monte Carlo method’. Photo: Andreas Svensson.

5.1 The Monte Carlo idea

Consider a probability density π(·) over the space of a parameter θ , that is defined in
such a way that the analysis of interest (e.g., computing its variance) is not analytically
tractable. The Monte Carlo idea is to approximately represent π by random samples
(an empirical measure). These samples are numerical values stored in the computer,
which hopefully are easier to manipulate or analyze than the intractable distribution
itself. The random samples should preferably be generated so that their properties
with high probability resemble the properties of the distribution π .

We introduce the notation of N weighted1 samples {θ (i),w (i)}Ni=1. This collec-
tion of weighted samples is a Monte Carlo (or particle) approximation of the density
π if it holds that the empirical measure is ‘close’ to π , by which we mean

1∑N
j=1 w

(j)

N∑

i=1
w (i)IA (θi) ≈

∫
A
π(θ)dθ (5.1)

for every measurable set A, with equality almost surely in the limit as N → ∞. This
is illustrated in Figure 5.2. If it is possible to draw samples from π directly, one may
simply draw N such samples and set all weights to 1. If samples cannot be drawn
from π directly, there are other more involved alternatives, of which we will review
some in this chapter.

For some methods, (5.1) does not only hold in the limit as N → ∞, but also
when taking the expectation over different realization of the Monte Carlo method

itself as E
[

1∑N
j=1 w

(j)
∑N

i=1 w
(i)IA (θi)

]
=
∫
A π(θ)dθ for a fixed N . This holds, e.g., for

p(y1:T | ϑ) but not for p(x t | y1:t , ϑ) when a particle filter has generated the samples.

1Note that we use un-normalized weights throughout this chapter.

Chapter 5. Monte Carlo methods for statistical inference 45

θ

π(θ)

random samples θ (i) (with area ∝ w (i))
θ

Figure 5.2. The Monte Carlo approximation: A probability density π(θ) at the top, and
weighted random samples of π(θ) below. Each color is a choice of A in (5.1), and we thus
expect the area in the upper part of the figure (i.e.,

∫
A π(θ)dθ) to be roughly proportional

to the total area of the corresponding samples (i.e.,
∑N

i=1 w
(i)IA (θi)).

5.2 The bootstrap particle filter

As an example of a Monte Carlo-based algorithm, we start by introducing the popu-
lar particle filter. The origin of the particle filter is to be found in Gordon et al. (1993)
and Stewart and McCarty (1992). It is a Monte Carlo implementation of the Bayesian
filtering recursion (3.8) solving the state inference problem, i.e., inferring the filter-
ing distributions p(x1 | y1, ϑ), . . . , p(xT | y1:T , ϑ) (cf. the generic π in the previous
section) in the state-space model, when the model parameters ϑ are known. An ani-
mated beginner’s introduction to the particle filter is found in Svensson (2013), and
there is a myriad of written introductions, e.g, Arulampalam et al. (2002), Gustafs-
son et al. (2002), Haykin and Freitas (2004), and Särkkä (2013). A good overview
(but perhaps not a first introduction) is provided by Doucet and Johansen (2011).

The key idea of the particle filter is to propagate a set of Nx weighted particles
{x (i)t ,w (i)

t }Nx
i=1 (samples of the state) along the time dimension t , by propagating them

from time t − 1 to the next time step t by drawing samples from f (· | x (i)t−1) (3.2a),
and adapt them to the measurements according to g (yt | x (i)t) (3.2b). An important
step in the implementation is also the resampling step, where (loosely speaking) par-
ticles with small weights are discarded and particles with large weights are duplicated.
This is summarized in Algorithm 1, the so-called bootstrap2 particle filter.

2The connection between the particle filter and the straps aimed for helping when putting on a
pair of leather boots may seem rather weak. The history involves the saying ‘pull oneself up by one’s
bootstraps’ (often, but probably falsely, attributed to the fictional character Baron Munchausen by
Raspe 1786), which is the background for the naming of the statistical idea ‘bootstrap’ (Efron 1979),
which has a close connection to the resampling.

46 5.2. The bootstrap particle filter

Algorithm 1: Bootstrap particle filter
Input: State space model f (· | ·), g (· | ·), p(x0), and data y1:T .
Output: Weighted samples {x (i)t ,w (i)

t }Nx
i=1 from p(x t | y1:t , ϑ) for t = 1, . . . ,T .

1 Draw x (i)0 ∼ p(x0) and set w (i)
0 = 1

2 for t = 1 to T do
3 Draw a(i)t with P

(
a(i)t = j

)
∝ w (j)

t−1 resampling, {x a
(i)
t

t−1, 1} ≈ p(x t−1 | y1:t−1, ϑ)

4 Draw x (i)t from f (x t |x a
(i)
t

t−1) propagation, {x (i)
t , 1} ≈ p(x t | y1:t−1, ϑ)

5 Set w (i)
t = g (yt |x (i)t) weighting, {x (i)

t ,w
(i)
t } ≈ p(x t | y1:t , ϑ)

6 end
All statements with (i) are for i = 1, . . . ,Nx . The notation ≈means that the weighted samples on
the left hand side are approximately (in the meaning of (5.1)) the density on the right hand side.

5.2.1 Resampling

The resampling step ensures that computational resources are spent in the most
interesting parts of the state-space, and that a situation where all but one particle
eventually have zero weights is avoided. This can be seen as deciding a genealogy of
the particles, i.e., how many descendants a certain particle will have, and which of
the particle branches that will become extinct. (The genealogy analogue can be par-
ticularly helpful when considering the inference problem of the entire sequence x1:T ;
clearly, x t is correlated with x t−1). To obtain a consistent algorithm, the resampling
scheme has to be constructed such that

E
[
of descendants to x (i)t−1

]
=

Nx∑

j=1
P

(
a(j)t = i

)
∝ w (i)

t−1. (5.2)

There are alternatives when it comes to designing a resampling algorithm that ful-
fills (5.2), see, e.g., Douc and Cappé (2005) and Murray et al. (2015) for overviews. It
is also possible to design resampling schemes where the duplicated particles are not
assigned unit weights, as is implicitly done in Algorithm 1, see, Paige et al. (2014) for
an example.

In all non-trivial cases the resampling step is a stochastic procedure, which unfor-
tunately also adds to the variance of the final estimates obtained from the particle
filter. It is therefore common to perform the resampling only when needed, which is
usually determined by monitoring the so-called effective sample size (ESS, Kong et al.

1994)
(∑Nx

i=1(w (i)/
∑Nx

j=1 w
(j))2

)−1
, taking values between 1 and Nx , and perform re-

sampling only when the ESS falls below a certain threshold, e.g, Nx/2. If an adaptive
resampling scheme is used, a slight modification of the weight update in Algorithm 1

is needed.

Chapter 5. Monte Carlo methods for statistical inference 47

5.2.2 Positive and unbiased estimates of p(y1:T | ϑ)
The particle filter was first used as a tool for solving the filtering problem in nonlinear
state-space models, but it can also be used to estimate p(y1:T | ϑ) (3.9) of the model.
The estimate is created from the weights w (i)

t in Algorithm 1 as

p̂Nx(y1:T | ϑ) =
T∏

t=1

*.
,

1
Nx

Nx∑

i=1
w (i)

t
+/
-
, (5.3)

where we emphasize it is a Monte Carlo-based estimate based on Nx particles in the
notation. It can be shown (see, e.g., Appendix A) that (5.3) is an unbiased estimate
of the data likelihood, i.e.,

E
�
p̂Nx(y1:T | ϑ)� = p(y1:T | ϑ). (5.4)

This claim is not asymptotic in Nx , but holds for any finite number Nx ≥ 1 of
particles. The expectation in (5.4) is over realizations of Algorithm 1 itself, i.e., the
randomness involved in the propagation and resampling step. It further holds (as
can be seen by inspection of (5.3)) that p̂(y1:T | ϑ) ≥ 0. This can, as we will see, be
used in algorithms for inferring the model parameters ϑ. We will also mention a few
more theoretical properties about Algorithm 1 later in Section 5.4.4.

5.3 The Markov chain Monte Carlo sampler

Let us now leave the state-space model, and return to the general problem we formu-
lated in Section 5.1, where we were interested in drawing conclusions about some
analytically intractable distribution π(θ), typically a posterior p(θ | y). We can use
the MCMC methodology to generate samples from π if it is impossible to draw
samples from π directly, but we can evaluate π pointwise (i.e., query the value of
π(θ) for any θ), at least up to proportionality. The MCMC sampler is an algorithm
that stochastically explores the θ -space, and thereby defines a stochastic process (a
Markov chain) in that space. We denote the realization of the stochastic process,
i.e., the outcome of one run of the algorithm, as {θ (0), θ (1), . . . , θ (K)}. An MCMC
sampler is designed such that {θ (0), θ (1), . . . , θ (K)} becomes an (unweighted) particle
approximation of π in the limit3 as K → ∞.

3The asymptotic behavior as K → ∞ is (if the sampler fulfills certain conditions) independent of
the initialization θ(0), but in practice a so-called burn-in period of some length Kb typically has to be
considered, and the corresponding first Kb samples discarded. For the performance in practice, it can
be crucial to consider and analyze this transient behavior of the MCMC sampler. We will, however,
not reflect any more on this, but refer to, e.g., Chapter 12 of Robert and Casella (2004).

48 5.3. The Markov chain Monte Carlo sampler

Algorithm 2: Markov chain Monte Carlo sampler
Input: A transition kernel K with stationary distribution π .
Output: Unweighted samples {θ (k)}Kk=0 from (in the limit K → ∞) π .

1 Draw θ (0) arbitrarily
2 for k = 1 to K do
3 Draw θ (k) from K

(
θ | θ (k−1)

)

4 end

Algorithm 3: Metropolis-Hastings transition kernel K
Input: θ (k−1)

Output: θ (k)

1 Draw θ ′ from q(θ | θ (k−1)) A candidate for θ(k)

2 Compute α = min
(

γ(θ′)
γ(θ(k−1))

q(θ(k−1) | θ′)
q(θ′ | θ(k−1))

)
The acceptance probability

3 Set θ (k) =



θ ′ with probability α
θ (k−1) with probability 1 − α Decide if candidate is accepted or not

We will briefly review the essential ideas of how to construct an MCMC sampler.
A more complete treatment of the topic is found in, e.g., Tierney (1994), Andrieu
et al. (2003), Robert and Casella (2004, Chapter 6) and Liang et al. (2010). The key
ingredient in an MCMC algorithm is a transition kernel K (· | ·) with a certain
stationary distribution. A transition kernel is any function K (· | ·) (where both
arguments live in θ -space) such that K (· | θ ′) is a probability density for every θ ′.
A stationary distribution π of K is such that K (· | π) , π(·), where we use the
shorthand notation K (· | π) = ∫

K (· | θ ′) π(θ ′)dθ ′. If K fulfills certain technical
conditions, it can be applied in Algorithm 2 to produce samples from π in the limit
as K → ∞. The conditions are essentially that K should not admit periodic cycles
and that for any θ and θ ′, there should exist an n such that Kn (θ | θ ′) > 0 (where
Kn denotes an n-fold iterative application of K to θ ′),

The transition kernel K in MCMC is often defined by an algorithm itself, rather
than a closed form expression. There are two popular algorithms for designing K,
Metropolis-Hastings and Gibbs, which we will introduce next.

5.3.1 The Metropolis-Hastings kernel

The Metropolis-Hastings algorithm (named4 after Nicholas Metropolis et al. 1953
and Wilfred K. Hastings 1970) is a popular plug-in kernel, only requiring that π can

4It should, however, be remembered that the original article has 5 authors, and Metropolis happened
to be the first one in the alphabetical ordering.

Chapter 5. Monte Carlo methods for statistical inference 49

Algorithm 4: Gibbs transition kernel K
Input: θ (k−1)

Output: θ (k)

1 Draw θ
(k)
1 from p(θ1 | θ (k−1)2)

2 Draw θ
(k)
2 from p(θ2 | θ (k)1)

be evaluated pointwise up to proportionality as π(θ) = γ(θ)/Z . A proposal density
q(· | θ (k−1)) is also needed, from which samples of θ can be drawn, and is either sym-
metric (q(θ | θ ′) = q(θ ′ | θ)) or can be evaluated pointwise. The Metropolis-Hastings
algorithm is outlined by Algorithm 3. The idea is to sample a candidate θ ′ from the
proposal, and always (with an adjustment to account for bias caused by the proposal)
accept the candidate as x (k) if π(θ ′) ≥ π(θ (k−1)). However, also if π(θ ′) < π(θ (k−1)),
the candidate may be accepted with a certain acceptance probability, designed in a
way to create the right stationary distribution. If the support of proposal q(· | θ (k−1))
covers the support of π , it can be proved (e.g., Robert and Casella 2004, Theorem
7.2) that π is the stationary distribution of Algorithm 3, and it can be used in the
MCMC sampler (Algorithm 2) to generate samples from π .

5.3.2 The Gibbs kernel

The Metropolis-Hastings algorithm has an element of rejection sampling, effectively a
trial and error approach where a large fraction of the computational resources may be
spent on computing γ(θ ′) for proposals that are never accepted. The Gibbs algorithm
(named after Josiah Willard Gibbs, coined by S. Geman and D. Geman 1984) is an
alternative kernel that does not suffer from this drawback, but produce samples that
are always accepted (but may on the other hand suffer from a high autocorrelation).
It requires, however, that θ can be partitioned as θ = {θ1, θ2, . . . , θM } (preferably
with low cross-dependence between the partitions) such that it is possible to draw
samples from p(θm | θ \θm) = π(θ)∫

π(θ)dθm for every partition m. Then, this sampling is
iterated over all m, as summarized by Algorithm 4 for the case M = 2. The analysis
for the Gibbs sampler is, however, rather intricate (see, e.g., Robert and Casella 2004,
Chapter 9 and 10 and references therein), but the resulting Markov chain can under
certain conditions be proven to fulfill the necessary conditions for producing samples
of π when used in the MCMC sampler (Algorithm 2) and K → ∞.

It is also possible to construct combinations of the Metropolis-Hastings and
Gibbs algorithm (Liang et al. 2010, Section 3.4; Müller 1991 and Robert and Casella
2004, Section 10.3), although care has to be taken in order not to change the station-
ary distribution (Dyk and Jiao 2014).

50 5.4. The Sequential Monte Carlo sampler

5.3.3 Convergence

The convergence of Algorithm 2 in the asymptotic case K → ∞ follows, under
some additional assumptions on K, a central limit theorem. For a measurable test
function ℎ(θ), we may compare the true expectation E

�
ℎ(θ)� (when θ is distributed

according to π) and the sample-based estimate of it ℎK ({θ (k)}Kk=1) =
1
K

∑K
k=1 ℎ(θ (k)),

as

√
K

(
ℎK ({θ (k)}Kk=1) − E

�
ℎ(θ)�

) d→ N
�
0, σ2

MCMC(ℎ, π)
�

(5.5)

where σ2
MCMC(ℎ) is a bounded function of ℎ and π (Tierney 1994, Theorem 4 and 5;

Robert and Casella 2004, Theorem 6.65 and 6.67).

5.4 The Sequential Monte Carlo sampler

As discussed in Section 3.5.1, the state inference in a state-space model is a particular
inference problem. Similarly, the particle filter can be seen as a particular instance of
the more general sequential Monte Carlo (SMC) method. Other SMC-based meth-
ods are particle smoothers (see, e.g., Paper III or Lindsten and Schön 2013), for
inferring the smoothing distribution p(x t | y1:T , ϑ) instead of the filtering distribu-
tion p(x t | y1:t , ϑ). SMC can also be formulated for other type of models, such as
graphical models (Naesseth et al. 2014).

The most generic formulation of SMC can be found in the Feynman-Kac for-
malism (Del Moral 2004; Del Moral and Doucet 2014). Yet another instance of the
SMC algorithm is the SMC sampler (Del Moral et al. 2006), here presented as Al-
gorithm 5. The SMC sampler is formulated for the same problem as the MCMC
sampler, namely sample from a static density π which only can be evaluated point-
wise up to proportionality.

The particle filter targets the filtering distributions (3.8) sequentially5. For the
SMC sampler, only a static distribution π is typically of user interest, but a sequence
of probability distributions {π0, π1, . . . , πP } is introduced as an intermediate tool,
and the particles are then propagated along this sequence. It is assumed that all πp
can be evaluated up to proportionality, i.e., πp(θ) = γp(θ)/Zp , where γp(θ) can be
computed for any θ .

5.4.1 Connection to particle filters

We can retrieve the bootstrap particle filter (Algorithm 1) from the SMC sampler
(Algorithm 5) by letting θ = x , P = T , πp(θp) = p(x t | y1:t), Wp(θp, θp−1) =
g (yt | x t) and Kp(θp, θp−1) = f (x t | x t−1). More advanced versions of the particle
filter are also possible to formulate, where f (x t | x t−1) is replaced by a more general

5Hence the name sequential Monte Carlo.

Chapter 5. Monte Carlo methods for statistical inference 51

Algorithm 5: Sequential Monte Carlo sampler
Input: Sequence of densities {π0, π1, . . . , πP } on the form πp(θ) = γp(θ)/Zp ,

with γp(θ) possible to evaluate pointwise.
Output: Weighted samples {θ (i)p ,w (i)

p }Nθ

i=1 from πp(θ), for each p = 0, . . . , P .

1 Draw θ
(i)
0 ∼ γ0(θ0) and set w (i)

0 = 1
2 for p = 1 to P do

3 Draw a(i)p with P
(
a(i)p = j

)
∝ w (j)

p−1 resampling, {θ a
(i)
p

p−1, 1} ≈ πp−1

4 Draw θ
(i)
p from Kp(θp | θ

a(i)p
p−1) propagation, {θ (i)p , 1} ≈ Kp (· | πp−1)

5 Set w (i)
p =Wp(θ (i)p , θ

a(i)p
p−1) weighting, {θ (i)p ,w (i)

p } ≈ πp
6 end

All statements with (i) are for i = 1, . . . ,Nθ , andKp can be taken as Algorithm 3.

proposal density, and the weighting is adjusted accordingly (see, e.g., Doucet and
Johansen 2011 for an overview). The aim with such a construction is typically to
decrease the variance of the particle weights and the final estimates.

5.4.2 Constructing a sequence {πp}Pp=0
The particle filter sequentially targets the densities p(x t | y1:t , ϑ). The SMC sampler,
on the contrary, a static density π . Therefore, we have to construct an artificial
sequence of distributions {πp}Pp=0 (with π0 easy to sample from and πP = π) along
which the particles can be propagated. Preferably, the distance between πp−1 and πp
should be ‘small’ in order to guide the particles towards πP = π . This idea resembles
simulated annealing (also introduced by Metropolis et al. 1953) and continuation
methods (Richter and DeCarlo 1983).

If π(θ) is a posterior, i.e., ∝ p(θ)p(y | θ), one option is to construct {πp}Pp=0 as
the likelihood-tempered sequence

πp ∝ p(θ)p(y | θ)p/P . (5.6)

Another alternative is the data-tempered sequence

πp ∝ p(θ | yB0:p), (5.7)

where {Bp}Pp=0 is a sequence with batches of the data y , such that B0 is empty and
B0:P contains all data y .

52 5.4. The Sequential Monte Carlo sampler

5.4.3 Propagating the particles

For the SMC sampler case, there is no underlying state-space model as for the particle
filter that can be used to propagate or weight the particles. Therefore,Wp andKp has
to be chosen by the user. Different alternatives are possible (Del Moral et al. 2006,
Section 3.3), but one choice is

Kp(· | ·) Metroplis-Hastings kernel with stationary distribution πp−1, (5.8a)

Wp(θp, θp−1) =
πp(θp−1)
πp−1(θp−1)

, (5.8b)

which can be shown to yield a consistent algorithm. The SMC sampler with the
choices (5.6-5.8) is a rather general scheme, which can be applied to a broad range of
problems. One example is found in Paper IV and another in Del Moral et al. (2012a).
We will later also review how it can be applied to the parameters ϑ in the state-space
model, resulting in the SMC2 algorithm (Chopin et al. 2013).

5.4.4 Convergence

We have already discussed an important property of the particle filter (Algorithm 1),
namely that p̂Nx(y1:T | ϑ) is unbiased for any finite Nx ≥ 1. An analogous unbiased
estimator is possible to construct for the normalizing constants Zp in the SMC
sampler. Results concerning the long-term stability of SMC, and in particular particle
filters, also exists (Douc et al. 2014; Whiteley 2013).

Akin to the MCMC case, results are also available for the asymptotic case
Nθ → ∞. As for MCMC (Section 5.4.4), we can for every measurable test func-
tion ℎ(θ) establish (under some technical assumptions) the central limit theorem for
Algorithm 5

√
Nθ

(
ℎNθ ({θ (i)p ,w (i)

p }Nθ

i=1) − E
�
ℎ(θ)�

) d→ N
�
0, σ2

SMC(ℎ, π)
�
, (5.9)

when Nx → ∞, where σ2
SMC(ℎ) is a bounded function of ℎ and π (Del Moral et al.

2006, Proposition 2). This result is applicable to any SMC algorithm (Chopin 2004;
Del Moral 2004), and in particular also for the particle filter in Algorithm 1. The
case when resampling is performed only adaptively (as discussed in Section 5.2.1; also
applicable to Algorithm 5) is more intricate to analyze, but similar results have been
presented by Del Moral et al. (2012b).

To summarize, the bottom line is that the SMC sampler has a central limit
theorem on the same form as MCMC.

Chapter 5. Monte Carlo methods for statistical inference 53

π(θ)

θ

π(θ)

θ

π(θ)

θ
· · ·

k = 1 k = 2 k = K
∑

π(θ)

θ

(a). The MCMC idea: propagate a single sample (the red dot) stochastically through the landscape of π ,
such that the realization of the so-called chain (summarized in the rightmost plot) eventually becomes
samples of the distribution of interest π . That is, the chain has to ‘visit’ areas where π is large more
often than areas where π is small. Clearly, it has to visit every mode of π : it will most likely happen
as K → ∞ , but not necessarily within a reasonable finite time (i.e., before the user’s computational
budget is consumed).

π0(θ)

θ

π1(θ)

θ

πP (θ) , π(θ)

θ
· · ·

p = 1 p = 2 p = P

(b). The SMC idea: propagate a set of Nx (Nx = 6 in this illustration) particles (samples, red dots)
through a sequence of P distributions π0, . . . πP , to eventually end up with samples from the distribu-
tion of interest π(·) , πP (·). By making a ‘smooth’ transition from the easy-to-sample distribution
π0 to the distribution of interest π the hope is that the samples represent π more efficiently than in the
MCMC setting (by exploring different modes in parallel, etc.).

Figure 5.3. The key concept of the MCMC (a) and SMC samplers (b). The idea of MCMC
is to make a (more or less informed) stochastic walk with a single particle in θ -space such
that the walk will be proportional to the density π . The SMC idea is to propagate a whole
bunch of particles through an evolving landscape (cf. how the particle filter solves the state
inference problem), which after a pre-defined number of iterations P ends up in π .

5.5 Markov Chain or Sequential Monte Carlo?

MCMC has been around since the 1950’s, whereas SMC is younger than the author
of this thesis6. With that perspective, it is perhaps not surprising that the MCMC
sampler can essentially be seen as the special case of the SMC sampler with πp =
π and Nθ = 1. For this reason, we may also expect (as confirmed by Paper II
for a particular case) that the SMC sampler requires more user effort, in terms of
implementation time. It is also worth to highlight that the number of iterations K
in the MCMC sampler (Algorithm 2) does not have to be specified beforehand, but
the algorithm can be run until the computational budget is consumed, a so-called
anytime algorithm. For the SMC sampler (Algorithm 5), both Nθ and P have to be
specified before beforehand, and is thereby not an anytime algorithm.

6Who would like to claim that he is rather young.

54 5.6. Monte Carlo for state-space model parameters ϑ

The different underlying ideas on how the samples are drawn are illustrated in
Figure 5.3. Any attempt to claim superiority of one approach in general, is probably
fruitless. However, a rudimentary knowledge about both alternatives can probably
help in making wise choices: due to the historical timeline, MCMC is perhaps unjus-
tifiably favored for certain problems.

5.6 Monte Carlo for state-space model parameters ϑ

The particle filter (Section 5.2) with its various extensions and generalizations pro-
vides an often unbeaten Monte Carlo solution for inferring the states x t in the
state-space model (3.2). (MCMC may, however, be beneficial for some particular
problem settings, such as the case in Paper III.) For the problem of finding model
parameters ϑ, on the other hand, the particle filter cannot provide a solution on its
own7. However, the particle filter can be a very useful building block of an MCMC or
SMC sampler to construct well-performing and theoretically consistent algorithms
for inferring the posterior p(ϑ | y1:T), as well as the maximum likelihood estimate ϑ̂.

5.6.1 MCMC for nonlinear state-space models: PMCMC

For inferring ϑ in linear state-space models (3.3), MCMC can be used essentially
out of the box. The use of a Metropolis-Hastings sampler is shown in Ninness and
Henriksen (2010) (although formulated for transfer functions; a state-space model
formulation is found in Schön et al. 2015, Example 4), and the Gibbs sampler in
Wills et al. 2012. In both cases the Kalman filter (and some extensions of it) provides
the required expressions for p(ϑ | y1:T) (for the Metropolis-Hastings solution) and
p(x1:T | ϑ, y1:T) (for the Gibbs solution). In the Gibbs solution we also need an
expression for p(ϑ | x1:T , y1:T), which is (if the conjugate prior is used) provided by
the matrix normal inverse Wishart distribution (Appendix B).

The two cases in the previous paragraph are special cases in that the re-
quired expressions are available analytically. For the general nonlinear state-space
model (3.2), neither the data likelihood p(y1:T | ϑ) nor the conditional distribution
p(x1:T | ϑ, y1:T) are available on closed form, nor can they be computed exactly. It
turns out that the particle filter provides a good approach for approximating these
distributions, in the combined particle-filter-within-MCMC framework8, PMCMC
(Andrieu et al. 2010). PMCMC can also be used for solely solving the state inference
problem, as discussed in Paper III for particle Gibbs.

7If the unknown parameters has a low dimensionality, they can however be considered as part of
the state x t (and modeled to be slowly time-varying), and thereby is the problem transferred to a
vanilla state inference setting. This solution highlights the (mild) arbitrariness of splitting unknown
parameters θ in the state-space model into model parameters ϑ and states x t .

8The original meaning of PMCMC is simply ‘particle Markov chain Monte Carlo’, but ‘particle-
filter-within-MCMC’ is a more explanatory interpretation.

Chapter 5. Monte Carlo methods for statistical inference 55

Pseudo-marginal Metropolis-Hastings

What happens to the Metropolis-Hastings sampler (Algorithm 3) if π(θ) cannot be
evaluated exactly, but only stochastically estimated π̂(θ)? A naïve approach would
perhaps be to pretend that π̂(θ) is exact (i.e., contains no stochastic element) and
apply Algorithm 3. (Another attempt could be to average over a few realizations of
π̂(θ) for every θ , and use the average when computing the acceptance probability
α.) It turns out (Andrieu and Roberts 2009), somewhat surprisingly, that if π̂(θ) is
positive and unbiased, i.e., E

�
π̂(θ)� = π(θ) and π̂(θ) > 0, using π̂(θ) as if it were

exact (the approach suggested above) creates a consistent algorithm, in the sense that
the stationary distribution of Algorithm 3 remains unchanged!

This quite remarkable fact can be proven by handling the randomness of π̂(θ)
explicitly by introducing another random variable v , and considering π̂(θ) to be de-
terministic when conditioned on v . Then, it is possible to show that the Metropolis-
Hastings sampler targets an extended distribution p(θ, v), and that π(θ) can be ob-
tained by integrating v out. Thus the name of the approach, pseudo-marginal.

Particle marginal Metropolis-Hastings

Following the pseudo-marginal Metropolis-Hastings approach with π̂(θ) ∝
p̂Nx (y1:T | ϑ)p(ϑ) from (5.3), the particle marginal Metropolis-Hastings approach
is obtained (Andrieu et al. 2010, Section 2.4.2). Although not affecting the asymp-
totical properties, the choice of the number of particles Nx ≥ 1 and the proposal
density q(· | ·) are crucial for its practical performance. Some discussion on how to
choose Nx can be found in Andrieu et al. (2010), and some design methods for q can
be found in Dahlin et al. (2015). A recent tutorial for getting started with particle
Metropolis-Hastings is provided by Dahlin and Schön (2016).

Particle Gibbs

It is also possible to construct a Gibbs sampler, Algorithm 4, for state-space model
parameters ϑ. Such a construction is possible by taking θ in Algorithm 4 as {x1:T , ϑ},
i.e., iteratively sample x (k)1:T conditional on the model parameters ϑ(k−1), and the

model parameters ϑ(k) conditional on the state x (k)1:T . Thus, we need to draw samples

from p(x1:T | ϑ(k)) as well as p(ϑ | x (k)1:T).
For certain state-space model structures (e.g., the linear model in Wills et al. 2012,

the models in Section 7 in Lindsten et al. 2014 and the model in Paper I), p(ϑ | x (k)1:T)
is available in closed form and possible to sample from. If that is not the case, other
sampling strategies can be used, see, e.g., Example 8 of Schön et al. (2015).

To sample approximately from p(x1:T | ϑ(k)), a particle filter can be used: the
approximation is due to the finite number of particles Nx in the particle filter. How-
ever, with a slightly more involved Gibbs sampling scheme it is possible to draw

56 5.6. Monte Carlo for state-space model parameters ϑ

MCMC samples of x1:T with a kernel (constructed using the so-called conditional
particle filter) with exactly p(x1:T | ϑ(k)) as its stationary distribution. A particularly
well-performing conditional particle filter construction has proven to be the one
introduced by Lindsten et al. (2014), the conditional particle filter with ancestor
sampling. We will not detail this construction any further here, but an introduction
is found in Paper III, and we refer to Andrieu et al. (2010) and Lindsten et al. (2014)
for all technical details on this so-called particle Gibbs construction.

5.6.2 Particle Gibbs for maximum likelihood estimation

If the maximum likelihood estimate ϑ̂ (rather than the posterior p(ϑ | y1:T)) is of
interest, Lindsten (2013) presents a combination of particle Gibbs and a stochastic
approximation (Robbins and Monro 1951) version of the expectation maximization
(EM) algorithm (Dempster et al. 1977). The construction only make us of particle
Gibbs for the state inference problem, and uses the stochastic approximation EM
framework (Delyon et al. 1999; Kuhn and Lavielle 2004) for the maximum likelihood
estimation of ϑ. The use of EM for maximum likelihood estimation of ϑ in nonlinear
state-space models has been around since at least Ghahramani and Roweis (1998),
and the combination of SMC and EM for this purpose has been proposed by Cappé
et al. (2005), Olsson et al. (2008), and Schön et al. (2011). The combination of
particle Gibbs and stochastic approximation EM, as proposed by Lindsten (2013),
improves the convergence properties and reduces the computational load compared
to previous algorithms. A more detailed introduction is given by Papers I and V,
where the method is also used for two particular model structures.

5.6.3 SMC for state-space model parameters: SMC2

In the same spirit as the MCMC methodology can be used for sampling the posterior
p(ϑ | y1:T) of the state-space model parameters, so can the SMC sampler be used. The
SMC sampler can be applied directly to a linear state-space model, akin to the MCMC
sampler case, since p(y1:T | ϑ) is explicitly available from the Kalman filter. A natural
way to construct a sequence of densities is the data-tempered alternative P = T ,
π0(ϑ) = p(ϑ), π1(ϑ) = p(ϑ | y1), . . . , πT (ϑ) = p(ϑ | y1:T). For the general case with
a nonlinear state-space model, the particle filter is required to approximately evaluate
p(y1:t | ϑ) as p̂Nx(y1:t | ϑ), yielding the SMC2 algorithm9 (Chopin et al. 2013; Fulop
and Li 2013). For propagating the particles in step 3 the particle Metropolis-Hastings
kernel (Algorithm 3) can be used. Once again the unbiasedness E

�
p̂Nx(y1:t | ϑ)

�
=

p(y1:t | ϑ) is key to obtaining a consistent algorithm; the details are found in Section
3.1 in Chopin et al. (2013).

9The naming should be read as ‘SMC square’, i.e., SMC to the power of two; a particle filter (an
SMC algorithm) is used within an SMC sampler (another SMC algorithm).

Chapter 5. Monte Carlo methods for statistical inference 57

This somewhat involved construction leaves the user with several design choices,
for instance the trade-off between the number of particles Nx in the particle filters
and the number of particles Nϑ at the SMC sampler level. Chopin et al. (2015) have
suggested how to automatically adapt these numbers. A more detailed introduction
to SMC2, as well as a comparison to particle Metropolis-Hastings, is given in Paper II.

SMC2 is not to be confused with nested SMC (Naesseth et al. 2015), which is a
general framework for using SMC to construct proposal densities within an SMC
algorithm.

6
Conclusions and future work

This chapter is a brief summary with overall conclusions of the research presented in
Paper I–V, as well as an outlook into further possible research directions, in addition
to the corresponding section in each paper.

6.1 Conclusions

The main contributions of this thesis are not the novelty of any SMC methods, nor
the novelty of any models. The contributions are, instead, the application of state-
of-the-art SMC methods to the nontrivial models and problems at hand: the GP
state-space model in Paper I, a watertank model in Paper II, the state-space smooth-
ing problem (and in particular the indoor positioning application) in Paper III, the
hyperparameters in a GP in Paper IV and the jump Markov linear state-space model
in Paper V. The resulting learning methods are arguably powerful, at least on par
with the existing state-of-the-art methods not based on SMC. This indeed suggests
that SMC is a promising construction, and its full potential is not yet utilized. How-
ever, this also suggest that despite being a powerful method, SMC is also far from
trivial to implement and use for several models.

59

60 6.2. Future work

6.2 Future work

As discussed above, the main contribution of this thesis is the application of SMC
methods to various models. The work is indeed rather involved—and obviously
publishable—but in a perfect world it should perhaps be less so. A natural future re-
search direction is therefore to investigate how the procedure of combining advanced
inference methods with complex models can be automated, for instance via a tailored
high level programming language.

There are also several other (in a sense more detailed) possible directions for
further research:

Parts of this thesis are focused around Bayesian inference in somewhat com-
plicated state-space models. However, to the best of the author’s knowledge, little
research has been done on how to interpret and efficiently convert the posterior
p(ϑ | y) in terms of a ‘posterior’ for the dynamical behavior (such as the input-output
relationship). Such results would most likely be of big interest in situation when the
parameters themselves do not bear a physical meaning of interest (such as in Paper I).
A further challenge is also how such information can be used for designing automatic
control strategies.

As briefly discussed at the end of Paper I, the classical system identification
framework has the concept of ‘prediction error method’ and ‘output error method’
(Söderström and Stoica 1989, Chapter 7). The former of these approaches can be seen
as optimizing the predictive performance of a model, and the latter as optimizing the
simulation performance of a model. In particular if the data generating mechanism
is different from the model, the different focuses can make a big difference. The
statistical modeling approach, however, only has the concept of one data likelihood
model (which for some model structures is close to the prediction error approach),
regardless of the intended use for the model. This discrepancy is clearly not satisfying,
and – to the best of the author’s knowledge – not properly addressed in the literature
either. An interesting perspective was recently presented by Rasmussen (2016).

Related to most algorithms used, and in particular the recent and little explored
PSAEM algorithm (used in Paper I and V), there are several unanswered questions,
such as the choice of the γk -sequence, initialization, etc.

A future direction could also be based on the question how to apply PMCMC
methods to models where the particle filter struggles, such as state-space models with
degenerate noise structure.

A
The unbiased estimator p̂Nx(y1:T)

This chapter contains a proof of the fact that (5.3),

p̂Nx(y1:T | ϑ) =
T∏

t=1

*.
,

1
Nx

Nx∑

i=1
w (i)

t
+/
-
, (A.1)

with w (i)
t generated by the bootstrap particle filter Algorithm 1 in Chapter 5, is an

unbiased estimator of the data likelihood p(y1:T | ϑ) (3.9) of a state-space model
with model parameters ϑ, for any finite Nx ≥ 1. With unbiasedness, we mean
E

�
p̂Nx(y1:T | ϑ)� = p(y1:T | ϑ), where the expectation is over different realizations

of the particle filter algorithm itself.
The proof follows closely that of Pitt et al. (2012), which is written for the more

general case of the auxiliary particle filter. Another proof can be found in Del Moral
2004, Section 7.4.2, using the Feyman-Kac framework.

In the sequel, ϑ will be suppressed in the notation, since every expression is
conditioned on ϑ. We start by introducing the estimator1

p̂Nx(yt | y1:t−1) =
1
Nx

Nx∑

i=1
w (i)

t , (A.2)

1Note the somewhat subtle notation: p denotes probability densities, whereas p̂Nx denotes determin-
istic functions (which we distinguish by their different arguments) of quantities stochastically generated
by the particle filter. The point with the proof is to show that the p̂Nx -function (A.1) is an unbiased
estimator of the corresponding p.

61

62

which has the natural property that
∏T

t=1 p̂Nx(yt | y1:t−1) = p̂Nx(y1:T). We also define
p̂Nx(yt−ℎ:t | y1:t−ℎ−1) naturally as

∏t
t ′=t−ℎ p̂Nx(yt ′ | y1:t ′−1) for ℎ ≥ 0.

The structure of the proof is as follows: First, in Lemma 1, it will be proved that

E
[
p̂Nx(yt | y1:t−1) | {x (i)t−1,w

(i)
t−1}Nx

i=1

]
=

Nx∑

i=1

w (i)
t−1

∑Nx
j=1 w

(j)
t−1

p(yt | x (i)t−1), (A.3)

i.e., p̂Nx(yt | y1:t−1) (A.2) (the contribution to (A.1) from the iteration of the particle
filter at time t) is unbiased, if conditioned on a realization of particles from the
previous iteration at time t − 1. Then, in Lemma 2, we prove that it also holds
for ℎ ≥ 1 sequential iterations of the particle filter, once again conditioned on a
realization of particles at time t − ℎ − 1. Finally, by letting ℎ = T , we conclude in
Theorem 1 that if x0 are unbiased samples from p(x0), then must p̂Nx(y1:T) (A.1) also
be unbiased.

Lemma 1. With the definition of p̂Nx(yt | y1:t−1) in (A.2), it holds that

E
[
p̂Nx(yt | y1:t−1) | {x (i)t−1,w

(i)
t−1}Nx

i=1

]
=

Nx∑

i=1

w (i)
t−1

∑Nx
j=1 w

(j)
t−1

p(yt | x (i)t−1). (A.4)

Proof.

E
[
w (j)

t | {x (i)t−1,w
(i)
t−1}Nx

i=1

]
=

= E
[
E

[
w (j)

t | a(j)t , {x (i)t−1,w
(i)
t−1}Nx

i=1

]
| {x (i)t−1,w

(i)
t−1}Nx

i=1

]
=

= Ea(j)t


E
x (j)t ∼ f (x (j)t | x a

(j)
t

t−1)

[
g (yt | x (j)t) | a(j)t , {x (i)t−1,w

(i)
t−1}Nx

i=1

]
| {x (i)t−1,w

(i)
t−1}Nx

i=1


=

= Ea(j)t

[
p(yt | x a

(j)
t

t−1) | {x
(i)
t−1,w

(i)
t−1}Nx

i=1

]
=

Nx∑

k=1

p(a(j)t = k | {x (i)t−1,w
(i)
t−1}Nx

i=1)p(yt | x (k)t−1).

(A.5)

Then,

E



Nx∑

j=1
w (j)

t | {x (i)t−1,w
(i)
t−1}Nx

i=1


=

Nx∑

j=1
E

[
w (j)

t | {x (i)t−1,w
(i)
t−1}Nx

i=1

]
=

/
(A.5)

/
=

=

Nx∑

k=1

*.
,

Nx∑

j=1
p(a(j)t = k | {x (i)t−1,w

(i)
t−1}Nx

i=1)+/
-
p(yt | x (k)t−1) =

=
/
(5.2)

/
= Nx

Nx∑

k=1

w (k)
t−1∑Nx

i=1 w
(i)
t−1

p(yt | x (k)t−1), (A.6)

Appendix A. The unbiased estimator p̂Nx(y1:T) 63

and the lemma follows. �

We have now proved that given a realization of weighted particles {x (i)t−1,w
(i)
t−1}Nx

i=1

representing p(x t−1 | yt−1), the estimator p̂Nx(yt | y1:t−1) (A.2), i.e., the contribution
to (A.1) from one single iteration of the particle filter for the following time t , is un-
biased. We now present the next lemma, concerning the corresponding unbiasedness
of p̂Nx(yt−ℎ:t | y1:t−ℎ−1).
Lemma 2. With the definitions of p̂Nx(yt | y1:t−1) and p̂Nx(yt−ℎ:t | y1:t−ℎ−1) from above,
it holds that

E
[
p̂Nx(yt−ℎ:t | y1:t−ℎ−1) | {x (i)t−ℎ−1,w

(i)
t−ℎ−1}

Nx
i=1

]
=

Nx∑

k=1

w (k)
t−ℎ−1∑Nx

i=1 w
(i)
t−ℎ−1

p(yt−ℎ:t | x (k)t−ℎ−1).

(A.7)

Proof. The proof is by induction. For ℎ = 0, (A.7) is true by Lemma 1. We now
assume that (A.7) holds also for an arbitrary ℎ, and show that it implies that (A.7)
also holds for ℎ + 1. For ℎ + 1, the left hand side of (A.7) is

E
[
p̂Nx(yt−ℎ−1:t | y1:t−ℎ−2) | {x (i)t−ℎ−2,w

(i)
t−ℎ−2}

Nx
i=1

]
=

= E
[
p̂Nx(yt−ℎ:t | y1:t−ℎ−1)p̂Nx(yt−ℎ−1 | y1:t−ℎ−2) | {x (i)t−ℎ−2,w

(i)
t−ℎ−2}

Nx
i=1

]
=

= E
[
E

[
p̂Nx(yt−ℎ:t | y1:t−ℎ−1) | {x (i)t−ℎ−1,w

(i)
t−ℎ−1}

Nx
i=1

]
×

p̂Nx(yt−ℎ−1 | y1:t−ℎ−2) | {x (i)t−ℎ−2,w
(i)
t−ℎ−2}

Nx
i=1

]
=

=
/
Induction assumption and (A.2)

/
=

= E



Nx∑

j=1

w (j)
t−ℎ−1∑Nx

i=1 w
(i)
t−ℎ−1

p(yt−ℎ:t | x (j)t−ℎ−1)
1
Nx

Nx∑

i=1
w (i)

t−ℎ−1 | {x
(i)
t−ℎ−2,w

(i)
t−ℎ−2}

Nx
i=1


=

= E



Nx∑

j=1
w (j)

t−ℎ−1p(yt−ℎ:t | x
(j)
t−ℎ−1)

1
Nx

| {x (i)t−ℎ−2,w
(i)
t−ℎ−2}

Nx
i=1


=

=
/
akin to (A.5) : E

[
w (j)

t−ℎ−1p(yt−ℎ:t | x
(j)
t−ℎ−1) | {x

(i)
t−ℎ−2,w

(i)
t−ℎ−2}

Nx
i=1

]
=

=

Nx∑

k=1

p(a(j)t−ℎ−1 = k | {x (i)t−ℎ−2,w
(i)
t−ℎ−2}

Nx
i=1)p(yt−ℎ−1:t | x (k)t−ℎ−2)

/
=

=
1
Nx

Nx∑

k=1

*.
,

Nx∑

j=1
p(a(j)t−ℎ−1 = k | {x (i)t−ℎ−2,w

(i)
t−ℎ−2}

Nx
i=1)+/

-
p(yt−ℎ−1:t | x (k)t−ℎ−2) =

=

Nx∑

k=1

w (k)
t−1∑Nx

i=1 w
(i)
t−1

p(yt−ℎ−1:t | x (k)t−ℎ−2), (A.8)

64

and the lemma follows. �

We have proved that the result from Lemma 1 also holds for ℎ ≥ 1 iterations of
the particle filter. From Lemma 2, we now have that (with t = T and ℎ = t − 1)

E
[
p̂Nx(y1:T) | {x (i)0 ,w

(i)
0 }Nx

i=1

]
=

Nx∑

k=1

w (k)
0∑Nx

i=1 w
(i)
0

p(y1:T | x (k)0) =
Nx∑

k=1

p(y1:T | x (k)0) 1
Nx

.

(A.9)

If x (k)0 ∼ p(x0), we can conclude that

E


1
Nx

Nx∑

k=1

p(y1:T | x (k)0)

=

∫
p(y1:T | x0)p(x0)dx0 = p(y1:T). (A.10)

We can now formulate the following theorem (where we have re-introduced ϑ to the
notation).

Theorem 1. The estimator p̂Nx(y1:T | ϑ), as defined by (A.1) and Algorithm 1 in Chap-
ter 5, is unbiased in the sense

E
�
p̂Nx(y1:T | ϑ)� = p(y1:T | ϑ), (A.11)

for any finite Nx ≥ 1.

B
The matrix normal inverse Wishart

distribution in linear regression

This appendix gives some introduction to the matrix normal inverse Wishart distri-
bution (and its scalar case normal inverse gamma). The normal inverse gamma and
some of its generalizations is often in the literature highlighted as the conjugate prior
for a data likelihood model on the form p(y | µ, σ2) = N

�
y ; µ, σ2�

, where both µ

and σ2 are unknown. In this appendix, we will derive the expressions for the slightly
more involved case of a linear regression model, i.e., p(y | a, σ2) = N

�
y ; ax, σ2�

,
with x known and a and σ2 unknown, and also its multivariable extension. Similar
expressions can also be found in Quintana (1987).

B.1 The matrix normal and inverse Wishart distributions

In this section, we introduce the matrix normal inverse Wishart distribution, by first
considering the scalar case, and thereafter its multivariable generalization. Introduc-
tions can also be found in Dawid (1981) and Press (1982). We will assume a basic
familiarity with the Gaussian and the gamma distributions.

B.1.1 The scalar case: NIG

The Gaussian distribution,

N
�
y ; µ, σ2�

=
1√
2πσ

exp
(
− (y − µ)

2

2σ2

)
, (B.1)

65

66 B.1. The matrix normal and inverse Wishart distributions

is a probability with support on the entire real line, however with a clear prefer-
ence for values around its mean µ ± a few standard deviations σ. Because of these
easy-to-grasp properties, in combination with its frequent appearance as a limiting
distribution (cf. the central limit theorem) and its analytically tractable form, it is
ubiquitous in statistical modeling.

A simple problem is that of inferring θ = µ when we observe data y1:T as
exchangeable observations p(yt | θ) = N

�
yt ; µ, σ2�

. If we decide to follow the
Bayesian way of reasoning, we formulate a prior p(θ). A natural choice for the
prior might be p(µ) = N

�
µ;m, ς2�

, and the posterior then becomes (after some

algebra) p(θ | y1:T) = N
(
µ;

(
m
ς2 +

∑
t yt
σ2

) (
1
ς2 +

T
σ2

)−1
,
(

1
ς2 +

T
σ2

)−1)
, i.e., another

Gaussian distribution. Thus, the Gaussian distribution is the conjugate prior for a
Gaussian likelihood model with unknown mean.

The above example is, however, somewhat unrealistic, since the mean is un-
known whereas the variance is assumed to be known! A less artificial situation
would be the problem of inferring θ = {µ, σ2} jointly. However, the Gaussian distri-
bution is clearly not a good prior for σ2, since the Gaussian distribution has support
on the entire real line, whereas a negative variance bears no meaning in our model.
A way of constructing a distribution with support only on the positive real line, is
Proceedings of 26th to consider the square of a standard Gaussian random variable
z , or more generally, the sum of ` such squared Gaussian random variables z j ,

q =
∑̀

j=1
z2
j , p(z j) ∼ N

�
z j ; 0, 1

�
. (B.2)

The density for q can be written as

p(q) = 1
2`/2Γ

� `
2

� (q)`/2−1 exp
(
−q

2

)
, G

�
q ; 1, `

�
, (B.3)

where we use G to be the notation for the so-called gamma distribution. By its
construction (B.2), we may realize that the mean of G

�
q ; 1, `

�
is `, and its variance

increases with `. The gamma distribution can be generalized to non-integer ` > 1,
and also a scale parameter λ > 0 can be introduced, as

G
�
q ; λ, `

�
=

λ`/2

2`/2Γ
� `
2

� (q)`/2−1 exp
(
−qλ

2

)
. (B.4)

Now, this distribution could be used as a prior for σ2. However, to retain conjugacy
properties, we have to work with the inverse of q : if q is gamma distributed, then is
its inverse σ2 , 1/q , distributed as

IG
�
σ2; λ, `

�
=

λ`/2

2`/2Γ
� `
2

� (σ2)−`/2−1 exp
(
− λ

2σ2

)
, (B.5)

Appendix B. The matrix normal inverse Wishart distribution in linear regression 67

the so-called inverse gamma (IG) distribution1, with support on (0,∞), mean 2λ
`−1

and variance increasing with λ and decreasing with `.
The inverse gamma distribution can now be combined with the Gaussian distri-

bution into the normal inverse gamma distribution (NIG) in the following way:

NIG
�
µ, σ2;m, v, λ, `

�
, N

�
µ;m, vσ2�

IG
�
σ2; λ, `

� ∝

∝ (σ2)−`/2−3/2 exp *
,
−

1
v (µ −m)2 + λ

2σ2
+
-

(B.6)

Note that this is a hierarchical construction on the form p(µ, σ2) = p(µ | σ2)p(σ2),
and not the independent form p(µ, σ2) = p(µ)p(σ2). If we again assume the
observations y1:T are exchangeable and observed as p(yt | θ) = N

�
yt ; µ, σ2�

,
now with both mean and variance unknown, the posterior becomes p(θ | y) =
NIG

(
µ, σ2; m/v+

∑
t yt

1/v+T , 1
1/v+T , λ +

∑
t y2

t +m2/v − (m/v+
∑

t yt)2
1/v+T , ` +T)

)
. That is,

the posterior is just another normal inverse gamma distribution, which indeed is
the conjugate prior to N

�
yt ; µ, σ2�

with unknown mean and variance.

B.1.2 Generalizing to the matrix case: MNIW

The generalization of the univariate Gaussian distribution to the multivariate Gaus-
sian distribution is well established. The generalization to the matrix case is, however,
perhaps less so. Following Dawid (1981), we introduce the matrix normal (MN)
distribution as follows: If the random k × p matrix Z has independent standard
Gaussian entries, we write p(Z) = MN

�
Z ; 0, Ik, Ip

�
. If, more generally, the rows

of Z are independent, and each column has a multivariate Gaussian N (0,V) dis-
tribution (V is p × p), we write p(Z) = MN (Z ; 0, Ik,V). Similarly, we write
p(Z) =MN

�
Z ; 0,U , Ip

�
if each column of Z is independent, and each row has a

multivariate Gaussian N (0,U) distribution (U is k × k).
In the most general form, we may say that if all elements z i, j of the k × p ran-

dom matrix Z have a jointly Gaussian distribution, element z i, j has the marginal
distribution p(z i, j) = N

�
z i, j ;mi, j, ui,i · v j, j

�
, and the covariance between z i, j

and zm,T is cov
�
z i, j, zm,T

�
= ui,m · v j,T , then the distribution of Z is p(Z) =

MNIW (Z ; M ,U ,V). We may write its density as

MN (Z ; M ,U ,V) = (2πv)−kp/2 |U |−p/2 |V |−k/2 exp
�− 1

2 tr
�(A − M)TU −1(A − M)V −1��

. (B.7)

Analogously to the gamma G(1, `) distribution, we can construct the Wishart
distribution W(Ik, `) (named after John Wishart 1928) as follows: Let Z be dis-
tributed as p(Z) = MN (Z ; 0, Ik, I`). Then ZZT is distributed as W(Ik, `). As in
the scalar case, we can generalize to non-integer `, introduce a scale parameter (in the

1Note that this is not the most common parametrization of the inverse gamma distribution.

68 B.2. Scalar linear regression: yt = ax t + et

matrix case, a k × k symmetric positive definite matrix Λ) and consider the inverse
(ZZT)−1 (which exists with probability 1 if ` > k − 1), yielding the inverse Wishart
distribution with density

IW (Σ;Λ, `) = |Λ|`/2
2`/2Γk

� `
2

� |Σ|−
`+k+1

2 exp
(
−1

2
tr

�
ΛΣ
−1�)

(B.8)

if Σ is symmetric positive definite, and Γk(·) is the multivariate gamma function.
IW (Σ;Λ, `) has a mean Λ/(` − k − 1) (for ` > k − 1) and a variance increasing
(elementwise) withΛ and decreasing with ` (e.g., Rosen 1988). The diagonal elements
of Σ are distributed as inverse gamma (e.g., Theorem 5.2.1 in Press 1982).

Following the scalar case, we construct the MNIW distribution as

MNIW (A,Σ; M ,V ,Λ, `) ,MN (A; M ,Σ,V) IW (Σ;Λ, `) ∝
∝ |Σ|−(`+p)/2−1 exp

(
−1

2
tr

(
Σ
−1 (

(A − M)V −1(A − M)T + Λ
)))

. (B.9)

The special case p = 1, when MN (M ,Σ, 1) = N (M ,Σ) is often referred to as the
normal inverse Wishart distribution, the conjugate prior2 for the case when observ-
ing vector-valued data p(yt | θ) = N

�
yt ; µ,Σ

�
(e.g., Gelman et al. 2014, Section 3.6).

B.2 Scalar linear regression: yt = ax t + et
We now consider the problem of scalar linear regression with T exchangeable ob-
servations:, i.e., yt = ax t + et , et ∼ N

�
0, σ2�

and x t is known. That is, we have
the model p(y1:T | a, σ2) = ∏T

t=1 N
�
yt ; ax t , σ2�

. We want to infer a ∈ R and
σ2 ∈ R+ with the Bayesian approach, and assume a normal inverse gamma (B.6)
prior NIG

�
a, σ2;m, v, λ, `

�
. This yields the posterior

p(a, σ2) ∝ NIG
�
a, σ2;m, v, λ, `

� ·
T∏

t=1
N

�
yt ; ax t , σ2� ∝

∝ �
σ2�−l/2−3/2−T /2 exp *

,
−

1
v (a −m)2 + λ +∑T

t=1(yt − ax t)2
2σ2

+
-
=

/
1
v (a−m)2+λ+∑t (yt−ax t)2 = 1

v (a2−2am+m2)+λ+∑t y2
t−2a

∑
t yt x t+a2∑

t x2
t =

� 1
v +

∑
t x2

t
� (

a − m/v+
∑

t yt x t
1/v+

∑
t x2

t

)2
+ λ +

∑
t y2

t +
m2

v −
(m/v+∑t x t yt)2∑

t x2
t+1/v

/

2The inverse Wishart is indeed the conjugate prior, but whether it is a sensible choice of prior is
subject to debate, e.g, I. Alvarez et al. (2014) and Yang and J. O. Berger (1994) and references therein.

Appendix B. The matrix normal inverse Wishart distribution in linear regression 69

= (σ2)−(`+T)/2−3/2 exp
*..
,
−

(
1
v +

∑
t x2

t

) (
a−m/v+

∑
t yt xt

1/v+
∑

t x2t

)2
+λ+

∑
t y2

t +
m2
v −

(m/v+∑t xt yt)2∑
t x2t +1/v

2σ2
+//
-
∝

∝
/
cf. (B.6)

/
∝ NIG

(
a, σ2;m, v, λ, `

)
(B.10)

with

m =
m/v +

∑
t yt x t

1/v +T
, (B.11a)

1
v =

1
v +

∑
t x2

t , (B.11b)

λ = λ +
∑

t y2
t +

m2

v
−

�
m/v +

∑
t x t yt

�2
∑

t x2
t + 1/v

, (B.11c)

` = ` +T . (B.11d)

B.3 Multivariable linear regression: yt = Ax t + et
We now consider the matrix case, where we observe T exchangeable observations


yt

︸︷︷︸
k×1

=


A

︸ ︷︷ ︸
k×p



x t

︸︷︷︸
p×1

+


et

︸︷︷︸
k×1

, et ∼ N (0,Σ) , (B.12)

with known x t . The data likelihood is given by

p(y1:T | A,Σ) =∏T
t=1 N

�
yt ; Ax t ,Σ

�
=

=
∏T

t=1 |Σ|−k/2 exp
�− 1

2 (yt − Ax t)TΣ−1(yt − Ax t)
�

(B.13)

We want to infer A ∈ Rk×p and the k×k a covariance matrix Σ, in a Bayesian fashion.
As a prior, we assume MNIW (A,Σ; M ,V ,Λ, `) (B.9). This gives the posterior

p(A,Σ | y1:T) ∝MNIW (A,Σ; M ,V ,Λ, `) ·∏T
t=1 N

�
yt ; Ax t ,Σ

� ∝
∝ |Σ|−(`+p+kn)/2−1 exp

(
−1

2
tr

(
Σ
−1 (

(A − M)V −1(A − M)T + Λ +∑T
t=1(yt − Ax t)(yt − Ax t)T

)))
=

=

/
(A − M)V −1(A − M)T + Λ +∑T

t=1(yt − Ax t)(yt − Ax t)T =

=

[
A-

(
MV −1+∑t yt xT

t
) (
V -1 +

∑
t x t xT

t
) -1] (

V -1+
∑

t x t xT
t
) [
A-

(
MV -1+

∑
t yt xT

t
) (
V -1+

∑
t x t xT

t
) -1]T

︸ ︷︷ ︸
(?)

+

+Λ +
∑

t yt yT
t + MV −1M T −

(
MV −1 +∑

t yt xT
t
) (

V −1 +∑
t x t xT

t
)−1 (

MV −1 +∑
t yt xT

t
)T

︸ ︷︷ ︸
(??)

/
=

70 B.3. Multivariable linear regression: yt = Ax t + et

= |Σ|−(`+p+kn)/2−1 exp
�− 1

2 tr ((?) + (??))� ∝
/
cf. (B.9)

/
∝

∝ NIW
(
a,Σ; M ,V ,Λ, `

)
(B.14)

with

M =
(
MV −1 +

∑
t yt xT

t
) (

V −1 +
∑

t x t xT
t
)−1

, (B.15a)

V
−1
= V −1 +

∑
t x t xT

t , (B.15b)

Λ = (??), (B.15c)

` = ` + kn. (B.15d)

Notation list

The notation used in the introductory chapters is summarized below. Note that the
notation in the papers may vary, and is defined separately within each paper.

Symbol Meaning

General

a A scalar or vector
A A matrix or a set

IA (θ) Indicator function: 1 if θ ∈ A, 0 otherwise
\ Relative complement
R The set of real numbers

‖ · ‖ The Euclidean distance
Γ(·) Gamma function

Kν (·) Modified Bessel function (Rasmussen and Williams 2006,
p. 84)

p Probability density or mass
P Probability

E [·] The expected value of the argument
N

� · ; µ, σ2�
The density for a univariate Gaussian distribution with
mean µ and variance σ2.

N (· ; µ,Σ) The density for a multivariate Gaussian distribution with
mean µ and covariance matrix Σ.

d→ Convergence in distribution

Data, models and inference

y Data
yt The data sample with index t
T The number of data samples

y1:T {yt }Tt=1
ny The dimension of one data sample
θ Parameters in a model
η Hyperparameters in a model

p(θ) Prior distribution for θ
p(θ | y) Posterior distribution for θ
p(y | θ) Density for y given θ
L(θ) Likelihood function for θ (2.2)

71

72 B.3. Multivariable linear regression: yt = Ax t + et

θ̂ Point estimate of θ

State space models

x t The state (at time t) in a state space model
nx The dimension of the state in a state space model
nu The dimension of the input to a state space model

f (· | ·) The state transition function in a state space model
g (· | ·) The observation function in a state space model

ϑ The parameters in a state space model

Gaussian processes

x? The points where the value of the Gaussian process is
predicted

xd The points where the Gaussian process has been observed
µ(·) The mean function

κ(· , ·) The covariance function
ε Observation noise

K??,K?d,K d?,K dd Shorthand notation for κ evaluated in certain points; see
definitions on page 35

Monte Carlo

N The number of particles in a general particle
approximation

w (i) The weight of particle i in a weighted particle
approximation

Nx The number of particles in the particle filter, Algorithm 1

in Chapter 5
K The number of iterations of the MCMC sampler,

Algorithm 2 in Chapter 5
K (· | ·) The transition kernel in the MCMC sampler, Algorithm 2

in Chapter 5
Nθ The number of particles in the SMC sampler, Algorithm 5

in Chapter 5
P The number of iterations of the SMC sampler,

Algorithm 5 in Chapter 5

References

Hirotugu Akaike (1974). “A new look at the statistical model identification”. In:
IEEE Transactions on Automatic Control 19.6, pp. 716–723.

Ignacio Alvarez, Jarad Niemi, and Matt Simpson (2014). “Bayesian inference for
a covariance matrix”. In: Proceedings of the 26th Annual Conference on Applied
Statistics in Agriculture. Manhattan, KS, USA, pp. 71–82.

Mauricio A. Alvarez, David Luengo, and Neil D. Lawrence (2009). “Latent force
models”. In: Proceedings of the 12th International Conference on Artificial Intelli-
gence and Statistics (AISTATS). Clearwater Beach, FL, USA, pp. 9–16.

Mauricio A. Alvarez, David Luengo, and Neil D. Lawrence (2013). “Linear latent
force models using Gaussian processes”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 35.11, pp. 2693–2705.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle
Markov chain Monte Carlo methods”. In: Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology) 72.3, pp. 269–342.

Christophe Andrieu,Nando de Freitas, Arnaud Doucet, and Michael I. Jordan (2003).
“An introduction to MCMC for machine learning”. In: Machine Learning 50.1,
pp. 5–43.

Christophe Andrieu and Gareth O. Roberts (2009). “The pseudo-marginal approach
for efficient Monte Carlo computations”. In: Annals of Statistics 37.2, pp. 967–
725.

M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp (2002). “A
tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking”.
In: IEEE Transactions on Signal Processing 50.2, pp. 174–188.

Thomas Bayes (1763). “An essay towards solving a problem in the doctrine of
chances”. In: Philosophical Transactions (1683-1775) 53, pp. 370–418.

James O. Berger (1985). Statistical decision theory and Bayesian analysis. 2nd ed. New
York, NY, USA: Springer.

James O. Berger (2006). “The case for objective Bayesian analysis”. In: Bayesian
Analysis 1.3, pp. 385–402.

Christopher M. Bishop (2006). Pattern recognition and machine learning. New York,
NY, USA: Springer.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe (2016). “Variational inference:
a review for statisticians”. In: arXiv:1601.00670.

George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung
(2015). Time series analysis: forecasting and control. 5th ed. Hoboken, NJ, USA:
Wiley.

73

74 References

Stephen Boyd and Leon O. Chua (1985). “Fading memory and the problem of
approximating nonlinear operators with Volterra series”. In: IEEE Transactions
on Circuits and Systems 32.11, pp. 1150–1161.

Tamara Broderick (2016). Tutorials. url: http://www.tamarabroderick.com/
tutorials.html.

Olivier Cappé, Éric Moulines, and Tobias Rydén (2005). Inference in hidden Markov
models. Springer Series in Statistics. New York, NY, USA: Springer.

George Casella and Roger L. Berger (2002). Statistical inference. 2nd ed. Pacific Grove,
CA, USA: Duxbury.

Kathryn Chaloner and Isabella Verdinelli (1995). “Bayesian experimental design: a
review”. In: Statistical Science 10.3, pp. 273–304.

Krzysztof Chalupka, Christopher K. I. Williams, and Iain Murray (2013). “A frame-
work for evaluating approximation methods for Gaussian process regression”. In:
The Journal of Machine Learning Research (JMLR) 14.2, pp. 333–350.

Tianshi Chen, Henrik Ohlsson, and Lennart Ljung (2012). “On the estimation of
transfer functions, regularizations and Gaussian processes—Revisited”. In: Auto-
matica 48.8, pp. 1525–1535.

Nicolas Chopin (2004). “Central limit theorem for sequential Monte Carlo methods
and its application to Bayesian inference”. In: Annals of Statistics 36.6, pp. 2385–
2411.

Nicolas Chopin, Pierre E. Jacob, and Omiros Papaspiliopoulos (2013). “SMC2: an
efficient algorithm for sequential analysis of state space models”. In: Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 75.3, pp. 397–426.

Nicolas Chopin, James Ridgway, Mathieu Gerber, and Omiros Papaspiliopoulos
(2015). “Towards automatic calibration of the number of state particles within
the SMC2 algorithm”. In: arXiv:1506.00570.

Johan Dahlin, Fredrik Lindsten, and Thomas B. Schön (2015). “Particle Metropolis-
Hastings using gradient and Hessian information”. In: Statistics and Computing
25.1, pp. 81–92.

Johan Dahlin and Thomas B. Schön (2016). “Getting started with particle Metropolis-
Hastings for inference in nonlinear models”. In: arXiv:1511:01707.

A. Philip Dawid (1981). “Some matrix-variate distribution theory: notational consid-
erations and a Bayesian application”. In: Biometrika 68.1, pp. 265–274.

Bruno de Finetti (1992). “Foresight: its logical laws, its subjective sources”. In: Break-
throughs in Statistics: Foundations and Basic Theory. Ed. by Samuel Kotz and
L. Norman Johnson. Trans. by Henry E. Kyberg. Vol. 1. (Originally published
in 1937 as “La prévision: ses lois logiques, ses sources subjectives” in Annales de
l’Institut Henri Poincaré 7, pp. 1–68.) New York, NY, USA: Springer, pp. 134–
174.

Pierre Del Moral (2004). Feynman-Kac formulae: genealogical and interacting particle
systems with applications. New York, NY, US: Springer.

http://www.tamarabroderick.com/tutorials.html
http://www.tamarabroderick.com/tutorials.html

References 75

Pierre Del Moral and Arnaud Doucet (2014). “Particle methods: an introduction
with applications”. In: ESAIM: Proceedings 44.1, pp. 1–46.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2006). “Sequential Monte Carlo
samplers”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 68.3, pp. 411–436.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2012a). “An adaptive sequential
Monte Carlo method for approximate Bayesian computation”. In: Statistics and
Computing 22.5, pp. 1009–1020.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2012b). “On adaptive resampling
strategies for sequential Monte Carlo methods”. In: Bernoulli 18.1, pp. 252–278.

Bernard Delyon, Marc Lavielle, and Éric Moulines (1999). “Convergence of a stochas-
tic approximation version of the EM algorithm”. In: Annals of Statistics 27.1,
pp. 94–128.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (1977). “Maximum like-
lihood from incomplete data via the EM algorithm”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 39.1, pp. 1–38.

Randal Douc and Olivier Cappé (2005). “Comparison of resampling schemes for
particle filtering”. In: Proceedings of the 4th International Symposium on Image
and Signal Processing and Analysis (ISPA). Zagreb, Croatia, pp. 64–69.

Randal Douc, Éric Moulines, and Jimmy Olsson (2014). “Long-term stability of
sequential Monte Carlo methods under verifiable conditions”. In: Annals of
Applied Probability 24.5, pp. 1767–1802.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle filtering
and smoothing: fifteen years later”. In: Nonlinear Filtering Handbook. Ed. by D.
Crisan and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Zoubin
Ghahramani (2013). “Structure discovery in nonparametric regression through
compositional kernel search”. In: Proceedings of the 30th International Conference
on Machine Learning (ICML). Atlanta, GA, USA, pp. 1166–1174.

David Duvenaud, Dougal Maclaurin, and Ryan Adams (2016). “Early stopping as
nonparametric variational inference”. In: Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS). Cadiz, Spain, pp. 1070–
1077.

David A. van Dyk and Xiyun Jiao (2014). “Metropolis-Hastings within partially
collapsed Gibbs samplers”. In: Journal of Computational and Graphical Statistics
24.2, pp. 301–327.

Bradley Efron (1979). “Bootstrap methods: another look at the jackknife”. In: Annals
of Statistics 7.1, pp. 1–26.

Bradley Efron (1986). “Why isn’t everyone a Bayesian?” In: The American Statistician
40.1. Including discussion by H. Chernoff, D. V. Lindley, C.N. Morris, S. J. Press
and A. F. M. Smith, pp. 1–5.

76 References

Bradley Efron (2013). “A 250-year argument: belief, behavior, and the bootstrap”. In:
Bulletin of the American Mathematical Society 50.1, pp. 129–146.

Bradley Efron and Trevor Hastie (2016). Computer age statistical inference. Cam-
bridge, UK: Cambridge University Press.

Yonina C. Eldar and Gitta Kutyniok, eds. (2012). Compressed sensing: theory and
applications. Cambridge, UK: Cambridge University Press.

Thomas S. Ferguson (1973). “A Bayesian analysis of some nonparametric problems”.
In: Annals of Statistics 1.2, pp. 209–230.

Roger Frigola, Yutian Chen, and Carl Rasmussen (2014). “Variational Gaussian pro-
cess state-space models”. In: Advances in Neural Information Processing Systems
27 (NIPS). Montréal, QC, Canada, pp. 3680–3688.

Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl Rasmussen (2013).
“Bayesian inference and learning in Gaussian process state-space models with par-
ticle MCMC”. In: Advances in Neural Information Processing Systems 26 (NIPS).
Lake Tahoe, NV, USA, pp. 3156–3164.

Roger Frigola-Alcade (2015). “Bayesian time series learning with Gaussian processes”.
PhD thesis. UK: University of Cambridge.

Andras Fulop and Junye Li (2013). “Efficient learning via simulation: a marginalized
resample-move approach”. In: Journal of Econometrics 176.2, pp. 146–161.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and
Donald B. Rubin (2014). Bayesian data analysis. 3rd ed. Boca Raton, FL, USA:
Chapman & Hall/ CRC Press.

Stuart Geman and Donald Geman (1984). “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 6.6, pp. 721–741.

Samuel J. Gershman and David M. Blei (2012). “A tutorial on Bayesian nonparamet-
ric models”. In: Journal of Mathematical Psychology 56.1, pp. 1–12.

Zoubin Ghahramani and Sam T. Roweis (1998). “Learning nonlinear dynamical
systems using an EM algorithm”. In: Advances in Neural Information Processing
Systems (NIPS) 11. Denver, CO, USA, pp. 431–437.

Fouad Giri and Er-Wei Bai, eds. (2010). Block-oriented nonlinear system identification.
Berlin, Germany: Springer-Verlag.

Neil J. Gordon, David J. Salmond, and Adrian F.M. Smith (1993). “Novel approach
to nonlinear/non-Gaussian Bayesian state estimation”. In: IEE Proceedings F -
Radar and Signal Processing, pp. 107–113.

Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas
Jansson, Rickard Karlsson, and Per-Johan Nordlund (2002). “Particle filters for
positioning, navigation, and tracking”. In: IEEE Transactions on Signal Processing
50.2, pp. 425–437.

Adolf Hammerstein (1930). “Nichtlineare Integralgleichungen nebst Anwendungen”.
In: Acta Mathematica 54.1, pp. 117–176.

References 77

Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2009). The elements of
statistical learning: data mining, inference, and prediction. 2nd ed. New York, NY,
USA: Springer.

Wilfred K. Hastings (1970). “Monte Carlo sampling methods using Markov chains
and their applications”. In: Biometrika 57.1.

“Sequential state estimation: From Kalman filters to particle filters” (2004). In: Pro-
ceedings of the IEEE 92.3. Ed. by Simon Haykin and Nando de Freitas. Special
issue.

Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, and Harri
Lähdesmäki (2016). “Non-stationary Gaussian process regression with Hamilto-
nian Monte Carlo”. In: Proceedings of the 19th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS). Cadiz, Spain, pp. 737–740.

Håkan Hjalmarsson (2009). “System identification of complex and structured sys-
tems”. In: European Journal of Control 15.3–4, pp. 275–310.

Nils Lid Hjort, Chris Holmes, and Peter Müller, eds. (2010). Bayesian nonparametrics.
Cambridge Series in Statistical and Probabilistic Mathematics 28. Cambridge,
UK: Cambridge University Press.

Arthur E. Hoerl and Robert W. Kennard (1970). “Ridge regression: biased estimation
for nonorthogonal problems”. In: Technometrics 42.1, pp. 80–86.

Matthew J. Johnson, David Duvenaud, Alexander B. Wiltschko, Sandeep R. Datta,
and Ryan P. Adams (2016). “Composing graphical models with neural networks
for structured representations and fast inference”. In: arXiv:1603:06277.

Thomas Kailath (1980). Linear systems. Englewood Cliffs, NJ, USA: Prentice Hall.
Rudolf E. Kálmán (1960). “A new approach to linear filtering and prediction prob-

lems”. In: Journal of Basic Engineering 82.1, pp. 35–45.
Kristian Kersting, Christian Plagemann, Patrick Pfaff, and Wolfram Burgard (2007).

“Most likely heteroscedastic Gaussian process regression”. In: Proceedings of the
24th International Conference on Machine Learning (ICML). Corvallis, OR, USA,
pp. 393–400.

Juš Kocijan (2016). Modelling and control of dynamic systems using Gaussian process
models. Basel, Switzerland: Springer International.

Augustine Kong, Jun S. Liu, and Wing Hung Wong (1994). “Sequential imputations
and Bayesian missing data problems”. In: Journal of the American Statistical Asso-
ciation 89.425, pp. 278–288.

Estelle Kuhn and Marc Lavielle (2004). “Coupling a stochastic approximation ver-
sion of EM with an MCMC procedure”. In: ESAIM: Probability and Statistics 8,
pp. 115–131.

Pierre Simon de Laplace (1820). Théorie analytique des probabilités. 3rd ed. Paris,
France: Mme Ve Courcier, imprimeur-libraire pour les mathématiques.

Faming Liang, Chuanhai Liu, and Raymond Carroll (2010). Advanced Markov chain
Monte Carlo methods: learning from past samples. West Sussex, United Kingdom:
John Wiley & Sons.

78 References

Dennis V. Lindley (1990). “The 1988 Wald memorial lectures: the present position
in Bayesian statistics”. In: Statistical Science 6.1, pp. 44–65.

Fredrik Lindsten (2013). “An efficient stochastic approximation EM algorithm us-
ing conditional particle filters”. In: Proceedings of the 38th International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, BC, Canada,
pp. 6274–6278.

Fredrik Lindsten, Michael I. Jordan, and Thomas B. Schön (2014). “Particle Gibbs
with ancestor sampling”. In: The Journal of Machine Learning Research (JMLR)
15.1, pp. 2145–2184.

Fredrik Lindsten and Thomas B. Schön (2013). “Backward simulation methods for
Monte Carlo statistical inference”. In: Foundations and Trends in Machine Learn-
ing 6.1, pp. 1–143.

Lennart Ljung (1999). System identification: theory for the user. 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall.

Lennart Ljung and Torkel Glad (2004). Modellbygge och simulering. 2nd ed. Lund,
Sweden: Studentlitteratur.

Michael Lustig, David Donoho, and John M. Pauly (2007). “Sparse MRI: the appli-
cation of compressed sensing for rapid MR imaging”. In: Magnetic resonance in
medicine 58.6, pp. 1182–1195.

David J. C. MacKay (1998). “Introduction to Gaussian processes”. In: Neural Net-
works and Machine Learning. Ed. by C. M. Bishop. Vol. 168. NATO ASI Series F:
Computational and Systems Sciences. Berlin, Germany: Springer-Verlag, pp. 133–
165.

Bertil Matérn (1960). “Spatial Variation”. PhD thesis. Sweden: Statens skogsforskn-
ingsinstitut.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller (1953). “Equation of state calculations by fast comput-
ing machines”. In: Journal of Chemical Physics 21.6, pp. 1087–1092.

Nicholas Metropolis and Stanisław Ulam (1949). “The Monte Carlo method”. In:
Journal of the American Statistical Association 44.247, pp. 335–341.

Peter Müller (1991). A generic approach to posterior intergration and Gibbs sampling.
Tech. rep. West Lafayette, IN, USA: Department of Statistics, Purdue University.

Lawrence M. Murray, Anthony Lee, and Pierre E. Jacob (2015). “Parallel resampling
in the particle filter”. In: Journal of Computational and Graphical Statistics 25.3,
pp. 789–805.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön (2014). “Sequential
Monte Carlo for graphical models”. In: Advances in Neural Information Processing
Systems 27 (NIPS). Montréal, QC, Canada, pp. 1862–1870.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön (2015). “Nested
sequential Monte Carlo methods”. In: Proceedings of the 32nd International Con-
ference on Machine Learning (ICML). Lille, France, pp. 1292–1301.

References 79

Brett Ninness and Soren Henriksen (2010). “Bayesian system identification via
Markov chain Monte Carlo techniques”. In: Automatica 46.1, pp. 40–51.

Jimmy Olsson, Olivier Cappé, Randal Douc, and Éric Moulines (2008). “Sequential
Monte Carlo smoothing with application to parameter estimation in nonlinear
state-space models”. In: Bernoulli 14.1, pp. 155–179.

Brooks Paige, Frank Wood, Arnaud Doucet, and Yee Whye Teh (2014). “Asyn-
chronous anytime sequential Monte Carlo”. In: Advances in Neural Information
Processing Systems 27 (NIPS). Montréal, QC, Canada, pp. 1–9.

Václav Peterka (1981). “Bayesian system identification”. In: Automatica 17.1, pp. 41–
53.

David L. Phillips (1962). “A technique for the numerical solution of certain integral
equations of the first kind”. In: Journal of the ACM 9.1, pp. 84–97.

Rik Pintelon and Johan Schoukens (2012). System identification: a frequency domain
approach. 2nd ed. New York, NY, USA: John Wiley & Sons.

Michael K. Pitt, Ralph dos Santos Silva, Paolo Giordani, and Robert Kohn (2012).
“On some properties of Markov chain Monte Carlo simulation methods based
on the particle filter”. In: Journal of Econometrics 171.2, pp. 134–151.

S. James Press (1982). Applied multivariate analysis: using Bayesian and frequentist
methods of inference. Malabar, FL, USA: Robert E. Krieger Publishing Company.

Friedrich Pukelsheim (1993). Optimal design of experiments. New York, NY, USA:
Wiley.

José Mario Quintana (1987). “Multivariate Bayesian forecasting models”. PhD thesis.
UK: University of Warwick.

Carl E. Rasmussen (2016). “The Bayesian method in system identification”. In: Euro-
pean Research Network on System Identification Workshop (ERNSI). Oral presen-
tation. Available: http://mlg.eng.cam.ac.uk/carl/talks/ernsi16.pdf.
Cison di Valmarino, TV, Italy.

Carl E. Rasmussen and Christopher K. I. Williams (2006). Gaussian processes for
machine learning. Cambridge, MA, USA: MIT Press.

Rudolf Erich Raspe (1786). Baron Munchausen’s narrative of his marvellous travels and
campaigns in Russia. Oxford, UK: Smith.

Stephen L. Richter and Raymond A. DeCarlo (1983). “Continuation methods: the-
ory and applications”. In: IEEE Transactions on Circuits and Systems 30.6, pp. 347–
352.

Herbert Robbins and Sutton Monro (1951). “A stochastic approximation method”.
In: The Annals of Mathematical Statistics 22.3, pp. 400–407.

Christian P. Robert and George Casella (2004). Monte Carlo statistical methods.
2nd ed. New York, NY, USA: Springer.

Dietrich von Rosen (1988). “Moments for the inverted Wishart distribution”. In:
Scandinavian Journal of Statistics 15.2, pp. 91–109.

Wilson J. Rugh (1993). Linear system theory. Englewood Cliffs, NJ, USA: Prentice
Hall.

http://mlg.eng.cam.ac.uk/carl/talks/ernsi16.pdf

80 References

Simo Särkkä (2013). Bayesian filtering and smoothing. Cambridge, UK: Cambridge
University Press.

Alan D. Saul, James Hensman, Aki Vehtari, and Neil D. Lawrence (2016). “Chained
Gaussian Processes”. In: Proceedings of the 19th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS). Cadiz, Spain, pp. 1431–1440.

Mark J. Schervish (1995). Theory of statistics. New York, NY, USA: Springer.
Thomas B. Schön and Fredrik Lindsten (2011). Manipulating the multivariate Gaus-

sian density. Tech. rep. Linköping, Sweden: Division of Automatic Control,
Linköping University.

Thomas B. Schön and Fredrik Lindsten (2016). “Learning of dynamical systems -
particle filters and Markov chain methods”.

Thomas B. Schön, Adrian Wills, and Brett Ninness (2011). “System identification of
nonlinear state-space models”. In: Automatica 47.1, pp. 39–49.

Johan Schoukens, Jozsef G. Nemeth, Philippe Crama, Yves Riolain, and Rik Pintelon
(2003). “Fast approximate identification of nonlinear systems”. In: Automatica
39.7, pp. 1267–1274.

Gideon Schwarz (1978). “Estimating the dimension of a model”. In: Annals of Statis-
tics 6.2, pp. 461–464.

Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani (2014). “Student-t
processes as alternatives to Gaussian processes”. In: Proceedings of the 17th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS). Reykjavik,
Iceland, pp. 877–885.

Jonas Sjöberg and Lennart Ljung (1995). “Overtraining, regularization and searching
for a minimum, with application to neural networks”. In: International Journal
of Control 62.6, pp. 1391–1407.

Edward Snelson (2007). “Flexible and efficient Gaussian process models for machine
learning”. PhD thesis. UK: University College London.

Torsten Söderström and Petre Stoica (1989). System identification. Hemel Hempstead,
UK: Prentice-Hall, Inc.

Arno Solin and Simo Särkkä (2014a). “Explicit link between periodic covariance
functions and state space models”. In: Proceedings of the 17th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS). Reykjavik, Iceland, pp. 904–
912.

Arno Solin and Simo Särkkä (2014b). “Hilbert space methods for reduced-rank
Gaussian process regression”. In: arXiv:1401.5508.

Leland Stewart and Perry Jr. McCarty (1992). “Use of Bayesian belief networks to
fuse continuous and discrete information for target recognition, tracking, and
situation assessment”. In: Proceedings of SPIE 1699, Signal Processing, Sensor Fusion,
and Target Recognition. Orlando, FL, USA, pp. 177–185.

Stephen M. Stigler (1986). “Laplace’s 1774 memoir on inverse probability”. In: Statis-
tical Science 1.3, pp. 359–378.

References 81

Andreas Svensson (2013). Particle filter explained without equations. url: http://
www.youtube.com/watch?v=aUkBa1zMKv4.

Andreas Svensson (2016). On the role of Monte Carlo methods in Swedish M. Sc. engi-
neering education. Tech. rep. 2016-009. Department of Information Technology,
Uppsala University.

Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas B. Schön (2016). “Com-
putationally efficient Bayesian learning of Gaussian process state space models”.
In: Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics (AISTATS). Cadiz, Spain, pp. 213–221.

Robert Tibshirani (1996). “Regression shrinkage and selection via the Lasso”. In: Jour-
nal of the Royal Statistical Society. Series B (Statistical Methodology) 58.1, pp. 267–
288.

Luke Tierney (1994). “Markov chains for exploring posterior distributions”. In: An-
nals of Statistics 22.4, pp. 1701–1728.

Michalis K. Titsias and Miguel Lázaro-Gredilla (2011). “Variational heteroscedastic
Gaussian process regression”. In: Proceedings of the 28th International Conference
on Machine Learning (ICML). Bellevue, WA, USA, pp. 841–848.

Ruey S. Tsay (2010). Analysis of financial time series. 3rd ed. Hoboken, NJ, USA:
Wiley.

Aad W. van der Vaart (1998). Asymptotic Statistics. Cambridge, UK: Cambridge
University Press.

Niklas Wahlström, Manon Kok, Thomas B. Schön, and Fredrik Gustafsson (2013).
“Modeling magnetic fields using Gaussian processes”. In: Proceedings of the 38th

International Conference on Acoustics, Speech and Signal Processing (ICASSP). Van-
couver, BC, Canada, pp. 3522–3526.

Nick Whiteley (2013). “Stability properties of some particle filters”. In: The Annals
of Applied Probability 23.6, pp. 2500–2537.

Norbert Wiener (1958). Nonlinear problems in random theory. Cambridge, MA, USA:
MIT Press.

Adrian Wills, Thomas B. Schön, Fredrik Lindsten, and Brett Ninness (2012). “Esti-
mation of linear systems using a Gibbs sampler”. In: Proceedings of the 16th IFAC
Symposium on System Identification (SYSID). Brussels, Belgium, pp. 203–208.

John Wishart (1928). “The generalised product moment distribution in samples from
a normal multivariate population”. In: Biometrika 20A.1/2, pp. 32–52.

John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma (2009).
“Robust face recognition via sparse representation”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 31.2, pp. 210–227.

Ruoyong Yang and James O. Berger (1994). “Estimation of a covariance matrix using
the reference prior”. In: Annals of Statistics 22.3, pp. 1195–1211.

Hui Zou and Trevor Hastie (2005). “Regularization and variable selection via the
elastic net”. In: Journal of the Royal Statistical Society. Series B (Methodological)
67.2, pp. 301–320.

http://www.youtube.com/watch?v=aUkBa1zMKv4
http://www.youtube.com/watch?v=aUkBa1zMKv4

82

Paper I

Title
A flexible state space model for learning nonlinear dynamical systems

Authors
Andreas Svensson and Thomas B. Schön

Edited version of
Andreas Svensson and Thomas B. Schön (2016). “A flexible state space model for learning
nonlinear dynamical systems”. In: Automatica. Provisionally accepted.

Digital identity
http://arxiv.org/abs/1603.05486

Parts of the content in this paper has previously been presented in
Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas B. Schön (2016). “Computationally efficient
Bayesian learning of Gaussian process state space models”. In: Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (AISTATS). Cadiz, Spain, pp. 213–221

and

Andreas Svensson, Thomas B. Schön, Arno Solin, and Simo Särkkä (2015). “Nonlinear state space
model identification using a regularized basis function expansion”. In: Proceedings of the 6th IEEE
International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
Cancun, Mexico, pp. 493–496.

Financial support
The Swedish Research Council (VR) via the project Probabilistic modeling of dynamical systems (con-
tract number: 621-2013-5524) and the Swedish Foundation for Strategic Research (SSF) via the project
ASSEMBLE.

Thanks to
Dave Zachariah, Per Mattsson and the anonymous reviewers for useful comments on the manuscript.

84

A flexible state space model for
learning nonlinear dynamical

systems

Abstract

We consider a nonlinear state space model with the state transition and observation
functions expressed as basis function expansions. The coefficients in the basis func-
tion expansions are learned from data. Using a connection to Gaussian processes
we also develop priors on the coefficients, for tuning the model flexibility and to
prevent overfitting to data, akin to a Gaussian process state space model. The priors
can alternatively be seen as a regularization, and helps the model in generalizing the
data without sacrificing the richness offered by the basis function expansion. To learn
the coefficients and other unknown parameters efficiently, we tailor an algorithm
using state-of-the-art sequential Monte Carlo methods, which comes with theoretical
guarantees on the learning. Our approach indicates promising results when evaluated
on a classical benchmark as well as real data.

1 Introduction

Nonlinear system identification (Ljung 1999; Ljung 2010; Sjöberg et al. 1995) aims
to learn nonlinear mathematical models from data generated by a dynamical system.
We will tackle the problem of learning nonlinear state space models with only weak
assumptions on the nonlinear functions, and make use of the Bayesian framework
(Peterka 1981) to encode prior knowledge and assumptions to guide the otherwise
too flexible model.

Consider the (time invariant) state space model

x t+1 = f (x t , ut) + vt , vt ∼ N (0,Q) , (1a)
yt = g (x t , ut) + et , et ∼ N (0,R) . (1b)

The variables are denoted as the state1 x t ∈ Rnx , which is not observed explicitly, the
input ut ∈ Rnu , and the output yt ∈ Rny . We will learn the state transition function
f : Rnx × Rnu 7→ Rnx and the observation function g : Rnx × Rnu 7→ Rny as well as
Q and R from a set of training data of input-output signals {u1:T , y1:T }.

1vt and et are iid with respect to t , and x t is thus Markov.

85

86

Consider a situation when a finite-dimensional linear, or other sparsely parame-
terized model, is too rigid to describe the behavior of interest, but only a limited data
record is available so that any too flexible model would overfit (and be of no help
in generalizing to events not exactly seen in the training data). In such a situation, a
systematic way to encode prior assumptions and thereby tuning the flexibility of the model
can be useful. For this purpose, we will take inspiration from Gaussian processes
(GPs, Rasmussen and Williams 2006) as a way to encode prior assumptions on f (·)
and g (·). As illustrated by Figure 1, the GP is a distribution over functions which
gives a probabilistic model for inter- and extrapolating from observed data. GPs have
successfully been used in system identification for, e.g., response estimation, nonlin-
ear ARX models and GP state space models (Frigola-Alcade 2015; Kocijan et al. 2005;
Pillonetto and De Nicolao 2010).

To parameterize f (·), we expand it using basis functions

f (x) =
m∑

j=0
w (j)φ(j)(x), (2)

and similarly for g (·). The set of basis functions is denoted by {φ(j)(·)}mj=0, whose

weights {w (j)}mj=0 will be learned from data. By introducing certain priors p(w (j)) on
the basis function weights the connection to GPs will be made, based on a Karhunen-
Loève expansion (Solin and Särkkä 2014). We will thus be able to understand our
model in terms of the well-established and intuitively appealing GP model, but still
benefit from the computational advantages of the linear-in-the-parameter structure
of (2). Intuitively, the idea of the priors p(w (j)) is to keep w (j) ‘small unless data
convinces otherwise’, or equivalently, introduce a regularization of w (j).

To learn the model (1), i.e., determine the basis function weights w (j), we tailor
a learning algorithm using recent sequential Monte Carlo/particle filter methods
(Kantas et al. 2015; Schön et al. 2015). The learning algorithm infers the posterior
distribution of the sought parameters from data, and come with theoretical guaran-
tees. We will pay extra attention to the problem of finding the maximum mode of
the posterior, i.e., regularized maximum likelihood estimation.

Our contribution is the development of a flexible nonlinear state space model
with a tailored learning algorithm,which together constitutes a new nonlinear system
identification tool. The model can either be understood as a GP state space model
(generalized allowing for discontinuities, Section 3.2), or as a nonlinear state space
model with a regularized basis function expansion.

Paper I – A flexible state space model for learning nonlinear dynamical systems 87

−2 −1 0 1 2

−2
0

2
4

x

f(
x)

Data

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2
0

2
4

x

f(
x)

Posterior

Posterior uncertainty of f (x)
Posterior mean of f (x)
Samples from posterior

−2 −1 0 1 2

−2
0

2
4

x

f(
x)

Prior

Prior uncertainty of f (x)
Prior mean of f (x)
Samples from prior

Figure 1. The Gaussian process as a modeling tool for an one-dimensional function f : R 7→
R. The prior (upper left plot) is shown in terms of its mean and 2 standard deviations, as
well as 10 samples drawn from it. By combining the prior and the data (upper right plot), the
posterior (lower plot) is obtained. The posterior mean basically interpolates between the data
points, and adhere to the prior in regions where the data is not providing any information.
This is clearly a desirable property when it comes to generalizing from the training data;
consider the thought experiment of using a 2nd order polynomial instead. Further, the
posterior also provides a quantification of the uncertainty present, here plotted as 2 standard
deviations, high in data-scarce regions and low where the data provides knowledge about
f (·).

88

2 Related work

Important work using the GP in system identification includes impulse response
estimation (Chen et al. 2012; Pillonetto et al. 2011; Pillonetto and De Nicolao 2010),
nonlinear ARX models (Bijl et al. 2016; Kocijan et al. 2005), Bayesian learning of
ODEs (Calderhead et al. 2008; Macdonald et al. 2015; Wang and Barber 2014) and
the latent force model (Alvarez et al. 2013). In the GP state space model (Frigola-
Alcade 2015) the transition function f (·) in a state space model is learned with a GP
prior, particularly relevant to this paper. A conceptually interesting contribution to
the GP state space model was made by Frigola et al. (2013), using a Monte Carlo
approach (similar to this paper) for learning. The practical use of Frigola et al. (2013)
is however very limited, due to its extreme computational burden. This calls for
approximations, and a promising approach is presented by Frigola et al. (2014) (and
somewhat generalized by Mattos et al. 2016), using inducing points and a variational
inference scheme. Another competitive approach is Svensson et al. (2016), where
we applied the GP approximation proposed by Solin and Särkkä (2014) and used
a Monte Carlo approach for learning (Frigola-Alcade (2015) covers the variational
learning using the same GP approximation). In this paper, we extend this work by
considering basis function expansions in general (not necessarily with a GP interpre-
tation), introduce an approach to model discontinuities in f (·), as well as including
both a Bayesian and a maximum likelihood estimation approach to learning.

To the best of our knowledge, the first extensive paper on the use of a basis func-
tion expansion inside a state space models was written by Ghahramani and Roweis
(1998), who also wrote a longer unpublished version (Roweis and Ghahramani 2000).
The recent work by Tobar et al. (2015) resembles that of Ghahramani and Roweis
(1998) on the modeling side, as they both use basis functions with locally concen-
trated mass spread in the state space, referred to as reproducing kernels by Tobar
et al. (2015). On the learning side, Ghahramani and Roweis (1998) use an expectation
maximization (EM, Dempster et al. 1977) procedure with extended Kalman filter-
ing, whilst Tobar et al. (2015) use particle Metropolis-Hastings (Andrieu et al. 2010).
There are basically three major differences between Tobar et al. (2015) and our work.
We will (i) use another (related) learning method, particle Gibbs, allowing us to take
advantage of the linear-in-parameter structure of the model to increase the efficiency.
Further, we will (ii) mainly focus on a different set of basis functions (although our
learning procedure will be applicable also to the model by Tobar et al. 2015), and
– perhaps most important – (iii) pursue systematic encoding of prior assumptions
further than Tobar et al. (2015), who instead assume g (·) is known and use ‘stan-
dard sparsification criteria from kernel adaptive filtering’ as a heuristic approach to
regularization.

There are also connections to Paduart et al. (2010), who use a polynomial basis
inside a state space model. In contrast to our work, however, Paduart et al. (2010)
prevents the model from overfitting to the training data not by regularization, but

Paper I – A flexible state space model for learning nonlinear dynamical systems 89

manually choosing a low enough polynomial order and terminate the learning proce-
dure prematurely (early stopping). Paduart et al. are, in contrast to us, focused on the
frequency properties of the model and relying on optimization tools. An interesting
contribution by Paduart et al. is to first use classical methods to find a linear model,
which is then used to initialize the linear term in the polynomial expansion. We
suggest to also use this idea, either to initialize the learning algorithm, or, in the case
of a close-to-linear behavior, use a nonlinear model only to describe deviations from
the linear model.

Furthermore, there are also strong connections to our previous work Svensson
et al. (2015), a short paper only outlining the idea of learning a regularized basis
function expansion inside a state space model. Compared to Svensson et al. (2015),
this work contains several extensions and new results. Another recent work using
a regularized basis function expansion for nonlinear system identification is that of
Delgado et al. (2015), however not in the state space model framework. Delgado
et al. (2015) use rank constrained optimization, resembling an L0-regularization. To
achieve a good performance with such a regularization, the system which generated
the data has to be well described by only a few number of the basis functions being
‘active’, i.e., have non-zero weights, which makes the choice of basis functions im-
portant and problem-dependent. The recent work by Mattsson et al. (2016) is also
covering learning of a regularized basis function expansion, however for input-output
type of models.

3 Constructing the model

We want the model, whose parameters will be learned from data, to be able to de-
scribe a broad class of nonlinear dynamical behaviors without overfitting to training
data. To achieve this, important building blocks will be the basis function expan-
sion (2) and a GP-inspired prior. The order nx of the state space model (1) is assumed
known or set by the user, and we have to learn the transition and observation func-
tions f (·) and g (·) from data, as well as the noise covariance matrices Q and R. For
brevity, we focus on f (·) and Q , but the reasoning extends analogously to g (·) and
R.

3.1 Basis function expansion

The common approaches in the literature on black-box modeling of functions inside
state space models can be divided into three groups: neural networks (Bishop 2006;
Narendra and Li 1996; Nørgård et al. 2000), basis function expansions (Ghahramani
and Roweis 1998; Paduart et al. 2010; Sjöberg et al. 1995; Tobar et al. 2015) and GPs
(Frigola-Alcade 2015; Rasmussen and Williams 2006). We will make use of a basis
function expansion inspired by the GP. There are several reasons for this: Firstly,
a basis function expansion provides an expression which is linear in its parameters,

90

leading to a computational advantage: neural networks do not exhibit this property,
and the naïve use of the nonparametric GP is computationally very expensive. Sec-
ondly, GPs and some choices of basis functions allow for a straightforward way of
including prior assumptions on f (·) and help generalizing the training data, also in
contrast to the neural network.

We write the combination of the state space model (1) and the basis function
expansion (2) as

x t+1 =



w (1)
1 · · · w (m)

1
...

...

w (1)
nx · · · w (m)

nx

︸ ︷︷ ︸
A



φ
(1)(x t , ut)

...

φ
(m)(x t , ut)

︸ ︷︷ ︸
ϕ̄(x t ,ut)

+vt , (3a)

yt =



w (1)
g,1 · · · w (m)

g,1
...

...

w (1)
g,ny · · · w (m)

g,ny

︸ ︷︷ ︸
C



φ
(1)
g (x t , ut)

...

φ
(m)
g (x t , ut)

︸ ︷︷ ︸
ϕ̄g (x t ,ut)

+et . (3b)

There are several alternatives for the basis functions, e.g., polynomials (Paduart et al.
2010), the Fourier basis (Svensson et al. 2015), wavelets (Sjöberg et al. 1995), Gaussian
kernels (Ghahramani and Roweis 1998; Tobar et al. 2015) and piecewise constant
functions. For the one-dimensional case (e.g., nx = 1, nu = 0) on the interval
[−L,L] ∈ R, we will choose the basis functions as

φ(j)(x) = 1√
L

sin
(
π j(x + L)

2L

)
. (4)

This choice, which is the eigenfunctions to the Laplace operator, enables a particu-
larly convenient connection to the GP framework (Solin and Särkkä 2014) in the
priors we will introduce in Section 3.2. This choice is, however, important only for
the interpretability2 of the model. The learning algorithm will, however, be applica-
ble to any choice of basis functions.

2Other choices of basis functions are also interpretable as GPs. The choice (4) is, however, preferred
since it is independent of the choice of GP covariance function.

Paper I – A flexible state space model for learning nonlinear dynamical systems 91

Higher state space dimensions

The generalization to models with a state space and input dimension such that
nx + nu > 1 offers no conceptual challenges, but potentially computational
ones. The counterpart to the basis function (4) for the space [−L1,L1] × · · · ×
[−Lnx+nu ,Lnx+nu] ∈ Rnx+nu is

φ(j1,..., jnx+nu)(x) =
nx+nu∏

k=1

1√
Lk

sin *
,

π jk(xk+Lk)
2Lk

+
-
, (5)

(where xk is the kth component of x), implying that the number of terms m grows
exponentially with nx + nu . This problem is inherent in most choices of basis func-
tion expansions. For nx > 1, the problem of learning f : Rnx+nu 7→ Rnx can be
understood as learning nx number of functions fi : Rnx+nu 7→ R, cf. (3).

There are some options available to overcome the exponential growth with
nx + nu , at the cost of a limited capability of the model. Alternative 1 is to assume
f (·) to be ‘separable’ between some dimensions, e.g., f (x t , ut) = f x (x t) + f u(ut).
If this assumption is made for all dimensions, the total number of parameters present
grows quadratically (instead of exponentially) with nx + nu . Alternative 2 is to use
a radial basis function expansion (Sjöberg et al. 1995), i.e., letting f (·) only be a
function of some norm ‖ · ‖ of (x t , ut), as f (x t , ut) = f (‖(x t , ut)‖). The radial basis
functions give a total number of parameters growing linearly with nx + nu . Both
alternatives will indeed limit the space of functions possible to describe with the basis
function expansion. However, as a pragmatic solution to the otherwise exponential
growth in the number of parameters it might still be worth to consider, depending
on the particular problem at hand.

Manual and data-driven truncation

To implement the model in practice, the number of basis functions m has to be fixed
to a finite value, i.e., truncated. However, fixingm also imposes a harsh restriction on
which functions f (·) that can be described. Such a restriction can prevent overfitting
to training data, an argument used by Paduart et al. (2010) for using polynomials
only up to 3rd order. We suggest, on the contrary, to use priors on w (j) to prevent
overfitting, and we argue that the interpretation as a GP is a preferred way to tune
the model flexibility, rather than manually and carefully tune the truncation. We
therefore suggest to choose m as big as the computational resources allows, and let
the prior and data decide which w (j) to be nonzero, a data-driven truncation.

Related to this is the choice of L in (4): if L is chosen too small, the state space
becomes limited and thereby also limits the expressiveness of the model. On the
other hand, if L is too big, an unnecessarily large m might also be needed, wasting
computational power. To chose L in the magnitude of ut or yt seems to be a good
guideline.

92

3.2 Encoding prior assumptions—regularization

The basis function expansion (3) provides a very flexible model. A prior might
therefore be needed to generalize, instead of overfit to, training data. From a user
perspective, the prior assumptions should ultimately be formulated in terms of the
input-output behavior, such as gains, rise times, oscillations, equilibria, limit cycles,
stability etc. As of today, tools for encoding such priors are (to the best of the authors’
knowledge) not available. As a resort, we therefore use the GP state space model
approach, where we instead encode prior assumptions on f (·) as a GP. Formulating
prior assumptions on f (·) is relevant in a model where the state space bears (partial)
physical meaning, and it is natural to make assumptions whether the state x t is likely
to rapidly change (non-smooth f (·)), or state equilibria are known, etc. However,
also the truly black-box case offers some interpretations: a very smooth f (·) corre-
sponds to a locally close-to-linear model, and vice versa for a more curvy f (·), and a
zero-mean low variance prior on f (·) will steer the model towards a bounded output
(if g (·) is bounded).

To make a connection between the GP and the basis function expansion, a
Karhunen-Loève expansion is explored by Solin and Särkkä (2014). We use this to
formulate Gaussian priors on the basis function expansion weightsw (j), and learning
of the model will amount to infer the posterior p(w (j) |y1:T) ∝ p(y1:T |w (j))p(w (j)),
where p(w (j)) is the prior and p(y1:T |w (j)) the data likelihood. To use a prior w (j) ∼
N

�
0, α−1

�
and inferring the maximum mode of the posterior can equivalently be

interpreted as regularized maximum likelihood estimation

argmin
w (j)

− log p(y1:T |w (j)) + α|w (j) |2. (6)

Smooth GP-priors for the functions

The Gaussian process provides a framework for formulating prior assumptions on
functions, resulting in a non-parametric approach for regression. In many situations
the GP allows for an intuitive generalization of the training data, as illustrated by
Figure 1. We use the notation

f (x) ∼ GP(m(x), κ(x, x ′)) (7)

to denote a GP prior on f (·), where m(x) is the mean function and κ(x, x ′) the
covariance function. The work by Solin and Särkkä (2014) provides an explicit link
between basis function expansions and GPs based on the Karhunen-Loève expansion,
in the case of isotropic3 covariance functions, i.e., κ(x, x ′) = κ(|x−x ′|). In particular,

3Note, this concerns only f (·), which resides inside the state space model. This does not restrict the
input-output behavior, from u(t) to y(t), to have an isotropic covariance.

Paper I – A flexible state space model for learning nonlinear dynamical systems 93

if the basis functions are chosen as (4), then

f (x) ∼ GP(0, κ(x, x ′))⇔ f (x) ≈
m∑

j=0
w (j)φ(j)(x), (8a)

with4
w (j) ∼ N

(
0, S(λ(j))

)
, (8b)

where S is the spectral density of κ, and λ(j) is the eigenvalue of φ(j). Thus, this
gives a systematic guidance on how to choose basis functions and priors on w (i). In
particular, the eigenvalues of the basis function (4) are

λ(j) =
(
π j
2L

)2

, and λ(j1:nx+nu) =
nx+nu∑

k=1

(
π jk
2Lk

)2

(9)

for (5). Two common types of covariance functions are the exponentiated quadratic
κeq and Matérn κM class (Rasmussen and Williams 2006),

κeq(r) = s f exp
(
− r 2

2l 2
)
, (10a)

κM(r) = s f 21−ν
Γ(ν)

(√
2ν r
l

) ν
Kν

(√
2ν r
l

)
, (10b)

where r , x − x ′, Kν is a modified Bessel function, and `, s f and ν are hyperparam-
eters to be set by the user or to be marginalized out, see Svensson et al. (2016) for
details. Their spectral densities are

Seq(s) = s f
√

2π l 2 exp
(
− π2l 2 s2

2

)
, (11a)

SM(s) = s f
2π

1
2 Γ(ν+ 1

2)(2ν)
ν

Γ(ν)l 2ν
(
2ν
l 2 + s2

)−(ν+ 1
2) . (11b)

Altogether, by choosing the priors for w (j) as (8b), it is possible to approximately
interpret f (·), parameterized by the basis function expansion (2), as a GP. For most
covariance functions, the spectral density S(λ(j)) tends towards 0 when λ(j) → ∞,
meaning that the prior for large j tends towards a Dirac mass at 0. Returning to
the discussion on truncation (Section 3.1), we realize that truncation of the basis
function expansion with a reasonably large m therefore has no major impact to the
model, but the GP interpretation is still relevant.

As discussed, finding the posterior mode under a Gaussian prior is equivalent to
L2-regularized maximum likelihood estimation. There is no fundamental limitation
prohibiting other priors, for example Laplacian (corresponding to L1-regularization).

4The approximate equality in (8a) is exact if m → ∞ and L → ∞, we refer to (Solin and Särkkä
2014) for details.

94

We use the Gaussian prior because of the connection to a GP prior on f (·), and it
will also allow for closed form expressions in the learning algorithm.

For book-keeping, we express the prior on w (j) as a Matrix normal (MN , Ap-
pendix B of the thesis) distribution over A. The MN distribution is parameter-
ized by a mean matrix M ∈ Rnx×m , a right covariance U ∈ Rnx×nx and a left
covariance V ∈ Rm×m . The MN distribution can be defined by the property that
A ∼ MN (M ,U ,V) if and only if vec(A) ∼ N (vec(M),V ⊗U), where ⊗ is the
Kronecker product. Its density can be written as

MN (A | M ,U ,V) =
exp

�− 1
2 tr

�(A − M)TU −1(A − M)V −1	�

(2π)nxm |V |nx/2 |U |m/2 . (12)

By letting M = 0 and V a diagonal matrix with entries S(λ(j)), the priors (8b) are
incorporated into this parametrization. We will letU = Q for conjugacy properties,
to be detailed later. Indeed, the marginal variance of the elements in A is then scaled
not only by V , but also Q . That scaling however is constant along the rows, and so
is the scaling by the hyperparameter s f (10). We therefore suggest to simply use s f
as tuning for the overall influence of the priors; letting s f → ∞ gives a flat prior, or,
a non-regularized basis function expansion.

Prior for noise covariances

Apart from f (·), the nx × nx noise covariance matrix Q might also be unknown.
We formulate the prior overQ as an inverse Wishart (IW , Appendix B of the thesis)
distribution. The IW distribution is a distribution over real-valued positive definite
matrices, which puts prior mass on all positive definite matrices and is parametrized
by its number of degrees of freedom ` > nx − 1 and an nx × nx positive definite
scale matrix Λ. The density is defined as

IW(Q | `,Λ) = |Λ|`/2 |Q |−(nx+`+1)/2

2`nx/2Γnx (`/2)
exp

(
−1

2
tr

�
Q−1Λ

)
, (13)

where Γnx (·) is the multivariate gamma function. The mode of the IW distribution
is Λ

`+nx+1 . It is a common choice as a prior for covariance matrices due to its prop-
erties (e.g., Shah et al. 2014; Wills et al. 2012). When the MN distribution (12) is
combined with the IW distribution (13) we obtain the MNIW distribution, with
the following hierarchical structure

MNIW(A,Q | M ,V ,Λ, `) =MN (A | M ,Q,V)IW(Q | `,Λ). (14)

The MNIW distribution provides a joint prior for the A and Q matrices, com-
pactly parameterizing the prior scheme we have discussed, and is also the conjugate
prior for our model, which will facilitate learning.

Paper I – A flexible state space model for learning nonlinear dynamical systems 95

−2 −1 0 p1 1 p2 2

0
5

x

f(
x)

Figure 2. The idea of a piecewise GP: the interval [−2,−2] is divided by np = 2 discontinuity
points p1 and p2, and a GP is used to model a function on each of these segments, indepen-
dently of the other segments. For practical use, the learning algorithm have to be able to
infer also the discontinuity points from data.

Discontinuous functions: Sparse singularities

The proposed choice of basis functions and priors is encoding a smoothness assump-
tion of f (·). However, as discussed by Juditsky et al. (1995) and motivated by Exam-
ple 5.3, there are situations where it is relevant to assume that f (·) is smooth except
at a few points. Instead of assuming an (approximate) GP prior for f (·) on the entire
interval [−L,L] we therefore suggest to divide [−L,L] into a number np of segments,
and then assume an individual GP prior for each segment [pi, pi+1], independent of
all other segment, as illustrated in Figure 2. The number of segments and the discon-
tinuity points dividing them need to be learned from data, and an important prior is
how the discontinuity points are distributed, i.e., the number np (e.g., geometrically
distributed) and their locations {pi}np

i=1 (e.g., uniformly distributed).

3.3 Model summary

We will now summarize the proposed model. To avoid notational clutter, we omit
ut as well as the observation function (1b):

x t+1 =
np∑

i=0
Ai ϕ̄(x t)Ipi ≤x t<pi+1 + vt , (15a)

vt ∼ N (0,Q) , (15b)

with priors

[Ai,Qi] ∼MNIW(0,V , `,Λ), i = 0, . . . , np, (15c)

np, {pi}np
i=1 ∼ arbitrary prior, (15d)

where I is the indicator function parameterizing the piecewise GP, and ϕ̄(x t) was
defined in (3). If the dynamical behavior of the data is close-to-linear, and a decent

96

linear model is already available, this can be incorporated by adding the known linear
function to the right hand side of (15a).

A good user practice is to sample parameters from the priors and simulate the
model with those parameters, as a sanity check before entering the learning phase.
Such a habit can also be fruitful for understanding what the prior assumptions mean
in terms of dynamical behavior. There are standard routines for sampling from the
MN as well as the IW distribution.

The suggested model can also be tailored if more prior knowledge is present,
such as a physical relationship between two certain state variables. The suggested
model can then be used to learn only the unknown part, as briefly illustrated by
Example IV.B in Svensson et al. (2015).

4 Learning

We now have a state space model with a (potentially large) number of unknown
parameters

θ ,
{
np, {pi}np

i=1, {Ai,Qi}np
i=0

}
, (16)

all with priors. (g (·) is still assumed to be known, but the extension follows anal-
ogously.) Learning the parameters is a quite general problem, and several learning
strategies proposed in the literature are (partially) applicable, including optimization
(Paduart et al. 2010), EM with extended Kalman filtering (Ghahramani and Roweis
1998) or sigma point filters (Kokkala et al. 2016), and particle Metropolis-Hastings
(Tobar et al. 2015). We use another sequential Monte Carlo-based learning strategy,
namely particle Gibbs with ancestor sampling (PGAS, Lindsten et al. 2014). PGAS
allows us to take advantage of the fact that our proposed model (3) is linear in A
(given x t), at the same time as it has desirable theoretical properties.

4.1 Sequential Monte Carlo for system identification

Sequential Monte Carlo (SMC) methods have emerged as a tool for learning param-
eters in state space models (Kantas et al. 2015; Schön et al. 2015). At the very core
in using SMC for system identification is the particle filter (Doucet and Johansen
2011), which provides a numerical solution to the state filtering problem, i.e., find-
ing p(x t | y1:t). The particle filter propagates a set of weighted samples, particles,
{x it , ωi

t }Ni=1 in the state space model, approximating the filtering density by the em-
pirical distribution p̂N (x t | y1:t) =

∑N
i=1ω

i
t δx it

(x t) for each t . Algorithmically, it
amounts to iteratively weigh the particles with respect to the measurement yt , resam-
ple among them, and thereafter propagate the resampled particles to the next time
step t + 1. The convergence properties of this scheme has been studied extensively
(see references in Doucet and Johansen 2011).

Paper I – A flexible state space model for learning nonlinear dynamical systems 97

Algorithm 1: Particle Gibbs Markov kernel.
Input: Trajectory x1:T [k], number of particles N ,

known state space model (f , g , Q , R).
Output: Trajectory x1:T [k + 1].

1 Sample x i1 ∼ p(x1), for i = 1, . . . ,N − 1.
2 Set xN1 = x1[k].
3 for t = 1 to T do
4 Set ωi

t = N
�
yt | g (x it),R

�
, for i = 1, . . . ,N .

5 Sample ait with P
�
ait = j

� ∝ ω j
t , for i = 1, . . . ,N − 1.

6 Sample x it+1 ∼ N
(
f (x a

i
t

t),Q
)
, for i = 1, . . . ,N − 1.

7 Set xNt+1 = x t+1[k].
8 Sample aNt with P

�
aNt = j

� ∝ ω j
tN

(
xNt+1 | f (x

j
t),Q

)
.

9 Set x i1:t+1 = {x a
i
t

1:t , x
i
t+1}, for i = 1, . . . ,N .

10 end
11 Sample J with P (J = i) ∝ ωi

T and set x1:T [k + 1] = x J
1:T .

The key of one set of SMC methods for learning parameters, is to repeatedly
infer the unknown states x1:T with a particle filter, and interleave this iteration with
inference of the unknown parameters θ , as follows:

I. Use SMC to infer the states x1:T for given parameters θ .
II. Update the parameters θ to fit the states x1:T from the previous step.

(17)

There are several details left to specify in this iteration, and we will pursue two ap-
proaches for updating θ : one sample-based for exploring the full posterior p(θ |y1:T),
and one EM-based for finding the maximum mode of the posterior, or equivalently,
a regularized maximum likelihood estimate. Both alternatives will utilize the linear-
in-parameter structure of the model (15), and use the particle Gibbs Markov kernel
derived by Lindsten et al. (2014) to handle the states in Step I of (17).

The particle Gibbs Markov kernel resembles a standard particle filter, but has one
of its state space trajectories fixed. It is outlined by Algorithm 1, and is a procedure
to asymptotically produce samples from p(x1:T | y1:T , θ), if repeated iteratively in a
Markov chain Monte Carlo (MCMC, Robert and Casella 2004) fashion.

4.2 Parameter posterior

The learning problem will be split into the iterative procedure (17). In this section,
the focus is on a key to Step II of (17), namely the conditional distribution of θ given
states x1:T and measurements y1:T . By utilizing the Markovian structure of the state

98

space model, the density p(x1:T , y1:T | θ) can be written as the product

p(x1:T , y1:T | θ) = p(x1)
T −1∏

t=1
p(x t+1 | x t , θ)p(yt | x t)

= p(x1)
T −1∏

t=1
p(x t+1 | x t , θ)

︸ ︷︷ ︸
p(x1:T | θ)

T∏

t=1
p(yt | x t)

︸ ︷︷ ︸
p(y1:T | x1:T)

. (18)

Since we assume that the observation function (1b) is known, p(yt | x t) is indepen-
dent of θ , which in turn means that (18) is proportional to p(x1:T | θ). Further, we
assume for now that p(x1) is also known, and therefore omit it. Let us consider
the case without discontinuity points, np = 0. Since vt is assumed to be Gaussian,
p(x t+1 | x t , ut , θ) = N (x t+1 | Aϕ̄(x t , ut),Q), we can with some algebraic manipula-
tions (Gibson and Ninness 2005) write

log p(x1:T | A,Q) = −T nx
2 log(2π) − T

2 log det(Q)−
1
2 tr

{
Q−1

(
Φ − AΨT − ΨAT + AΣAT

)}
, (19)

with the (sufficient) statistics

Φ =

T∑

t=1
x t+1xT

t+1, (20a)

Ψ =

T∑

t=1
x t+1ϕ̄(x t , ut)T, and (20b)

Σ =

T∑

t=1
ϕ̄(x t , ut)ϕ̄(x t , ut)T. (20c)

The density (19) gives via Bayes’ rule, with the MNIW prior distribution for A,Q
from Section 3

log p(A,Q) = log p(A |Q) + log p(Q) ∝ (21)

− 1
2 (nx + ` +m + 1) log det(Q) − 1

2 tr
{
Q−1

(
Λ + AV −1AT

)}
,

the posterior

log p(A,Q | x1:t) ∝ log p(x1:t | A,Q) + log p(A,Q) ∝
− 1

2 (nx +T nx + ` +m + 1) log detQ − 1
2 tr

�
Q−1

�
Λ + Φ − Ψ(Σ +V −1)−1ΨT+

(A − Ψ(Σ +V −1)−1)(Σ +V −1)−1(A − Ψ(Σ +V −1)−1)T�	
. (22)

Paper I – A flexible state space model for learning nonlinear dynamical systems 99

This expression will be key for learning: For the fully Bayesian case, we will rec-
ognize (22) as another MNIW distribution and sample from it, whereas we will
maximize it when seeking a point estimate.

Remarks: The expressions needed for an unknown observation function g (·) are
completely analogous. The case with discontinuity points becomes essentially the
same, but with individual Ai,Qi and statistics for each segment. If the right hand
side of (15a) also contains a known function ℎ(x t), e.g., if the proposed model is
used only to describe deviations from a known linear model, this can easily be taken
care of by noting that now p(x t+1 | x t , ut , θ) = N

�
x t+1 − ℎ(x t) | Aϕ̄(x t , ut),Q

�
,

and thus compute the statistics (20) for (x t+1 − ℎ(x t)) instead of x t+1.

4.3 Inferring the posterior—Bayesian learning

There is no closed form expression for p(θ | y1:T), the distribution to infer in Bayesian
learning. We thus resort to a numerical approximation by drawing samples from
p(θ, x1:T | y1:T) using MCMC. (An alternative is to use variational methods, akin
to Frigola et al. (2014)). MCMC amounts to constructing a procedure for ‘walking
around’ in θ -space in such a way that the steps . . . , θ[k], θ[k + 1], . . . eventually, for
k large enough, become samples from the distribution of interest.

Let us start in the case without discontinuity points, i.e., np ≡ 0. Since (21) is
MNIW , and (19) is a product of (multivariate) Gaussian distributions, (22) is also
an MNIW distribution (Appendix B of the thesis). By identifying components
in (22), we conclude that

p(θ | x1:T , y1:T) =MNIW
�
A,Q |Ψ(Σ +V −1)−1,

(Σ +V −1)−1,Λ + Φ − Ψ(Σ +V −1)−1ΨT, ` +T nx
�

(23)

We now have (23) for sampling θ given the states x1:T (cf. (17), step II), and Algo-
rithm 1 for sampling the states x1:T given the model θ (cf. (17), step I). This makes a
particle Gibbs sampler (Andrieu et al. 2010), cf. (17).

If there are discontinuity points to learn, i.e., np is to be learned, we can do that
by acknowledging the hierarchical structure of the model. For brevity, we denote
{np, {pi}np

i=1} by ξ , and {Ai,Qi}np
i=1 simply by A,Q . We suggest to first sample ξ

from p(ξ | x1:T), and next sample A,Q from p(A,Q | x1:T , ξ). The distribution for
sampling A,Q is the MNIW distribution (23), but conditional on data only in the
relevant segment. The other distribution, p(ξ | x1:T), is trickier to sample from. We
suggest to use a Metropolis-within-Gibbs step (Müller 1991), which means that we
first sample ξ∗ from a proposal q(ξ∗ | ξ[k]) (e.g., a random walk), and then accept

it as ξ[k+1] with probability min
(
1, p(ξ∗ | x1:T)

p(ξ[k] | x1:T)
q(ξ[k] | ξ[k])
q(ξ∗ | ξ[k])

)
, and otherwise just set

ξ[k +1] = ξ[k]. Thus we need to evaluate p(ξ∗ | x1:T) ∝ p(x1:T | ξ∗)p(ξ∗). The
prior p(ξ∗) is chosen by the user. The density p(x1:T | ξ) can be evaluated using the

100

Algorithm 2: Bayesian learning of (15).
Input: Data y1:T , priors on A,Q and ξ .
Output: K MCMC-samples with p(x1:T ,A,Q, ξ | y1:T) as invariant

distribution.
1 Initialize A[0],Q[0], ξ[0].
2 for k = 0 to K do
3 Sample x1:T [k+1]

�
A[k],Q[k], ξ[k] Algorithm 1

4 Sample ξ[k+1] � x1:T [k+1] Section 4.3
5 Sample Q[k+1] � ξ[k+1], x1:T [k+1] by (23)
6 Sample A[k+1] �Q[k+1], ξ[k+1], x1:T [k+1] by (23)

7 end

expression (see Appendix A.1 of this paper)

p(x1:T | ξ) =
np∏

i=0

2nxTi/2

(2π)Ti/2

Γnx (l+N2)
Γnx (l2)

|V −1 |nx/2

|Σi +V −1 |nx/2

× |Λ|l/2

|Λ + Φi + Ψi(Σi +V −1)−1ΨT
i |

l+N
2

(24)

where Φi etc. denotes the statistics (20) restricted to the corresponding segment, and
Ti is the number of data points in segment i (

∑
i Ti = T). The suggested Bayesian

learning procedure is summarized in Algorithm 2.
Our proposed algorithm can be seen as a combination of a collapsed Gibbs

sampler and Metropolis-within-Gibbs, a combination which requires some attention
to be correct (Dyk and Jiao 2014), see Appendix A.2 for details in our case. If the
hyperparameters parameterizing V and/or the initial states are unknown, it can be
included by extending Algorithm 2 with more Metropolis-within-Gibbs step (see
Svensson et al. 2016 for details).

4.4 Regularized maximum likelihood

A widely used alternative to Bayesian learning is to find a point estimate of θ maximiz-
ing the likelihood of the training data p(y1:T | θ), i.e., maximum likelihood. However,
if a very flexible model is used, some kind of mechanism is needed to prevent the
model from overfit to training data. We will therefore use the priors from Section 3

as regularization for the maximum likelihood estimation, which can also be under-
stood as seeking the maximum mode of the posterior. We will only treat the case
with no discontinuity points, as the case with discontinuity points does not allow
for closed form maximization, but requires numerical optimization tools, and we
therefore suggest Bayesian learning for that case instead.

Paper I – A flexible state space model for learning nonlinear dynamical systems 101

The learning will build on the particle stochastic approximation EM (PSAEM)
method proposed by Lindsten (2013), which uses a stochastic approximation of the
EM scheme (Delyon et al. 1999; Dempster et al. 1977; Kuhn and Lavielle 2004). EM
addresses maximum likelihood estimation in problems with latent variables. For
system identification, EM can be applied by taking the states x1:T as the latent vari-
ables, (Ghahramani and Roweis 1998; another alternative would be to take the noise
sequence v1:T as the latent variables, Umenberger et al. 2015). The EM algorithm
then amounts to iteratively (cf. (17)) computing the expectation (E-step)

Q(θ, θ[k]) = Eθ[k]
�
log p(θ | x1:T , y1:T) | y1:T

�
, (25a)

and updating θ in the maximization (M-step) by solving

θ[k+1] = argmax
θ

Q(θ, θ[k]). (25b)

In the standard formulation, Q is usually computed with respect to the joint likeli-
hood density for x1:T and y1:T . To incorporate the prior (our regularization), we may
consider the prior as an additional observation of θ , and we have thus replaced (19)
by (22) in Q. Following Gibson and Ninness (2005), the solution in the (M)-step
is found as follows: Since Q−1 is positive definite, the quadratic form in (22) is
maximized by

A = Φ(Σ +V −1). (26a)

Next, substituting this into (22), the maximizing Q is

Q = 1
nx+T nx+`+m+1

�
Λ + Φ − Ψ(Σ +V −1)−1Ψ�

. (26b)

We thus have solved the (M)-step exactly. To compute the expectation in the (E)-step,
approximations are needed. For this, a particle smoother (Lindsten and Schön 2013)
could be used, which would give a learning strategy in the flavor of Schön et al. (2011).
The computational load of a particle smoother is, however, unfavorable, and PSAEM
uses Algorithm 1 instead.

PSAEM also replaces and replace the Q-function (25a) with a Robbins-Monro
stochastic approximation of Q,

Qk(θ) = (1 − γk)Qk−1(θ) + γk log p(θ | x1:T [k], y1:T), (27)

where {γk}k≥1 is a decreasing sequence of positive step sizes, with γ1 = 1,
∑

k γk =

∞ and
∑

k γ
2
k < ∞. I.e., γk should be chosen such that k−1 ≤ γk < k−0.5 holds up

to proportionality, and the choice γk = k−2/3 has been suggested in the literature
(Delyon et al. 1999, Section 5.1). Here, x1:T [k] is a sample from an ergodic Markov
kernel with p(x1:T | y1:T , θ) as its invariant distribution, i.e., Algorithm 1. At a first
glance, the complexity of Qk(θ) appears to grow with k because of its iterative
definition. However, since p(x1:T , y1:T | θ) belongs to the exponential family,

p(x1:T [k], y1:T | θ) = ℎ(x1:T [k], y1:T)c(θ) exp
(
ηT(θ)t [k]

)
, (28)

102

Algorithm 3: Regularized maximum likelihood learning of (15).

1 Initialize θ[1].
2 for k > 0 do
3 Sample x1:T [k] with parameters θ[k]. Algorithm 1

4 Compute and update the statistics of x1:T [k] by (20, 30)
5 Compute θ[k+1] = argmaxθ Q(θ) by (26)

6 end

where t [k] is the statistics (20) of {x1:T [k], y1:T }. The stochastic approximation
Qk(θ) (27) thus becomes

Qk(θ) ∝ log c(θ) + ηT(θ) �
γk t [k] + γk-1t [k-1] + . . .

�
. (29)

Now, we note that if keeping track of the statistics γk t [k] + γk-1t [k-1] + . . . , the
complexity ofQ does not grow with k. We therefore introduce the following iterative
update of the statistics

Φk = (1 − γk)Φk−1 + γkΦ(x1:T [k]), (30a)
Ψk = (1 − γk)Ψk−1 + γkΨ(x1:T [k]), (30b)
Σk = (1 − γk)Σk−1 + γkΣ(x1:T [k]), (30c)

where Φ(x1:T [k]) refers to (20a), etc. With this parametrization, we obtain
argmaxθ Qk(θ) as the solutions for the vanilla EM case by just replacing Φ by Φk ,
etc., in (26). Algorithm 3 summarizes.

4.5 Convergence and consistency

We have proposed two algorithms for learning the model introduced in Sec-
tion 3. The Bayesian learning, Algorithm 2, will by construction (as detailed in
Appendix A.2) asymptotically provide samples from the true posterior density
p(θ | y1:T) (Andrieu et al. 2010). However, no guarantees regarding the length of
the burn-in period can be given, which is the case for all MCMC methods, but the
numerical comparisons in Svensson et al. (2016) and in Section 5.1 suggest that the
proposed Gibbs scheme is efficient compared to its state-of-the-art alternatives. The
regularized maximum likelihood learning, Algorithm 3, can be shown to converge
under additional assumptions (Kuhn and Lavielle 2004; Lindsten 2013) to a station-
ary point of p(θ |y1:T), however not necessarily a global maximum. The literature
on PSAEM is not (yet) very rich, and the technical details regarding the additional
assumptions remains to be settled, but we have not experienced any problems of
non-convergence in practice.

Paper I – A flexible state space model for learning nonlinear dynamical systems 103

4.6 Initialization

The convergence of Algorithm 2 is not relying on the initialization, but the burn-in
period can nevertheless be reduced. One useful idea by Paduart et al. (2010) is thus
to start with a linear model, which can be obtained using classical methods. To avoid
Algorithm 3 from converging to a poor local minimum, Algorithm 2 can first be
run to explore the ‘landscape’ and from that, a promising point for initialization of
Algorithm 3 can be chosen.

For convenience, we assumed the distribution of the initial states, p(x1), to be
known. This is perhaps not realistic, but their influence is minor in many cases. If
needed, they can be included in Algorithm 2 by an additional Metropolis-Hastings
step, and in Algorithm 3 by including them in (22) and use numerical optimization
tools.

5 Experiments

We will give three numerical examples: a toy example, a classic benchmark, and
thereafter a real data set from from two cascaded water tanks. Matlab code for all
examples is available via the first authors homepage5.

5.1 A first toy example

Consider the following example from Tobar et al. (2015),

x t+1 = 10sinc
(x t

7

)
+ vt , vt ∼ N (0, 4) , (31a)

yt = x t + et , et ∼ N (0, 4) . (31b)

We generate T = 40 observations, and the challenge is to learn f (·), when g (·)
and the noise variances are known. Note that even though g (·) is known, y is still
corrupted by a non-negligible amount of noise.

In Figure 3 (a) we illustrate the performance of our proposed model using
m = 40 basis functions on the form (4) when Algorithm 3 is used without regu-
larization. This gives a nonsense result that is overfitted to data, since m = 40 offers
too much flexibility for this example. When a GP-inspired prior from an exponen-
tiated quadratic covariance function (10a) with length scale ` = 3 and s f = 50 is
considered, we obtain (b), that is far more useful and follows the true function rather
well in regions were data is present. We conclude that we do not need to choose m
carefully, but can rely on the priors for regularization. In (c), we use the same prior
and explore the full posterior by Algorithm 2 obtaining information about uncer-
tainty as a part of the learned model (illustrated by a posteriori credibility interval),
in particular in regions where no data is present.

5http://www.it.uu.se/katalog/andsv164

104

−20 0 20−1
0

0
10

x t

x t
+
1

(a). Maximum likelihood estimation of our
proposed model, without regularization; a use-
less model.

−20 0 20−1
0

0
10

x t

x t
+
1

(b). Maximum likelihood estimation of our
proposed model, with regularization. A sub-
set of the m = 40 basis functions are used
sketched at the bottom. Computation time:
12 s.

−20 0 20−1
0

0
10

x t

x t
+
1

(c). Bayesian learning of our proposed model,
i.e., the entire posterior is explored. Computa-
tion time: 12 s.

−20 0 20−1
0

0
10

x t

x t
+
1

(d). Posterior distribution for the basis func-
tions (sketched at the bottom) used by To-
bar et al. (2015), but Algorithm 2 for learning.
Computation time: 9 s.

−20 0 20−1
0

0
10

x t

x t
+
1

(e). The method presented by Tobar et al.
(2015), using Metropolis-Hastings for learning.
Computation time: 32 s.

Posterior model uncertainty
Learned model
True state transition function
State samples underlying data
Basis functions

Figure 3. True function (black), states underlying the data (red) and learned model (blue,
gray) for the different settings of the example in Section 5.1.

In the next figure, (d), we replace the set of m = 40 basis functions on the
form (4) with 8 Gaussian kernels to reconstruct the model proposed by Tobar et
al. (2015). As clarified by Tobar (2016), the prior on the weights is a Gaussian dis-
tribution inspired by a GP, which makes a close connection to out work. We use
Algorithm 2 for learning also in (d) (which is possible thanks to the Gaussian prior).
In (e), on the contrary, the learning algorithm from Tobar et al. (2015), Metropolis-
Hastings, is used, requiring more computation time. Tobar et al. (2015) spend a
considerable effort to pre-process the data and carefully distribute the Gaussian ker-
nels in the state space, see the bottom of (d).

Paper I – A flexible state space model for learning nonlinear dynamical systems 105

5.2 Narendra-Li benchmark

The example introduced by Narendra and Li 1996 has become a benchmark for
nonlinear system identification, e.g., Pan et al. 2009; Roll et al. 2005; Stenman 1999;
The MathWorks, Inc. 2015; Wen et al. 2007; Xu et al. 2009. The benchmark is defined
by the model

x1
t+1 =

(
x1
t

1+(x1
t)2
+ 1

)
sin(x2

t), (32a)

x2
t+1 =x

2
t cos(x2

t) + x1
t exp

(
− (x1

t)2+(x2
t)2

8

)

+
(ut)3

1+(ut)2+0.5 cos(x1
t+x2

t)
, (32b)

yt =
x1
t

1+0.5 sin(x2
t)
+

x2
t

1+0.5 sin(x1
t)
, (32c)

where x t = [x1
t x2

t]T. The training data (only input-output data) is obtained with an
input sequence sampled uniformly and iid from the interval [−2.5, 2.5]. The input
data for the test data is ut = sin(2π t/10) + sin(2π t/25).

According to Narendra and Li (1996, p. 369), it ‘does not correspond to any real
physical system and is deliberately chosen to be complex and distinctly nonlinear’.
The original formulation is somewhat extreme, with no noise and T = 500 000 data
samples for learning. In the work by Stenman (1999), a white Gaussian measurement
noise with variance 0.1 is added to the training data, and less data is used for learning.
We apply Algorithm 2 with a second order state space model, np = 0, and a known,
linear g (·). (Even though the data is generated with a nonlinear g (·), it turn out this
will give a satisfactory performance.) We use 7 basis functions per dimension (i.e.,
686 weights w (j) to learn in total) on the form (5), with prior from the covariance
function (10a) with length scale ` = 1.

For the original case without any noise, but using only T = 500 data points, a
root mean square error (RMSE) for the simulation of 0.039 is obtained. Our result
is in contrast to the significantly bigger simulation errors by Narendra and Li (1996),
although they use 1 000 times as many data points. For the more interesting case with
measurement noise in the training data, we achieve a result almost the same as for
the noise-free data. We compare to some previous results reported in the literature
in Table 7.1.

It is clear that the proposed model is capable enough to well describe the behavior
of the system (32).

106

Reference RMSE T

This paper 0.06* 2 000
Roll et al. (2005) 0.43 50 000
Stenman (1999) 0.46 50 000
Xu et al. (2009) (AHH) 0.31 2 000
Xu et al. (2009) (MARS) 0.49 2 000
*The number is averaged over 10 data realizations.

Table 7.1. Results of the Narendra-Li Benchmark (T is the number of data samples in the
training data).

5.3 Water tank data

We consider the data set provided by M. Schoukens et al. (2015), collected from a
physical system consisting of two cascaded water tanks, where the outlet of the first
tank goes into the second one. A training and a test data set is provided, both with
1024 data samples. The input u (voltage) governs the inflow to the first tank, and
the output y (voltage) is the measured water level in the second tank. This is a well-
studied system (e.g., Wigren and J. Schoukens 2013), but a peculiarity in this data
set is the presence of overflow, both in the first and the second tank. When the first
tank overflows, it goes only partly into the second tank.

We apply our proposed model, with a two dimensional state space. The following
structure is used:

x1
t+1 = f 1(x1

t , ut) + v1
t , (33a)

x2
t+1 = f 2(x1

t , x2
t , ut) + v2

t , (33b)

yt = x2
t + et . (33c)

It is surprisingly hard to perform better than linear models in this problem, perhaps
because of the close-to-linear dynamics in most regimes, in combination with the
non-smooth overflow events. This calls for discontinuity points to be used. Since
we can identify the overflow level in the second tank directly in the data, we fix
a discontinuity point at x2 = 10 for f 2(·), and learn the discontinuity points for
f 1(·). Our physical intuition about the water tanks is a close-to-linear behavior
in most regimes, apart from the overflow events, and we thus use the covariance
function (10a) with a rather long length scale ` = 3 as prior. We also limit the
number of basis functions to 5 per dimension for computational reasons (in total,
there are 150 weights w (j) to learn).

Algorithm (2) is used to sample from the model posterior. We use all samples
to simulate the test output from the test input for each model to represent a poste-
rior for the test data output, and compute the RMSE for the difference between the

Paper I – A flexible state space model for learning nonlinear dynamical systems 107

0 1,000 2,000 3,000 4,000

5
10

ou
tp

ut
(V

)

0 1,000 2,000 3,000 4,000

5
10

time (s)

ou
tp

ut
(V

)

Validation data
2nd order linear state space model. RMSE: 0.67
5th order NARX with sigmoidnet. RMSE: 0.73

" simulation focus. RMSE: 0.49
5th order NARX with wavelets. RMSE: 0.61

" simulation focus. RMSE: 0.64
The proposed model. RMSE: 0.45
Credibility interval for the proposed method.

Figure 4. The simulated and true output for the test data in the water tank experiment
(Section 5.3). The order of the NARX models refers to the number of regressors in u and y .

posterior mode and the true test output. A comparison to nonlinear ARX-models
(NARX, Ljung 1999) is also made in Figure 4. It is particularly interesting to note
how the different models handle the overflow around time 3 000 in the test data. We
have tried to select the most favorable NARX configurations, and when finding their
parameters by maximizing their likelihood (which is equivalent to minimizing their
1-step-ahead prediction, Ljung 1999), the best NARX model is performing approx-
imately 35% worse (in terms of RMSE) than our proposed model. When instead
learning the NARX models with ‘simulation focus’, i.e., minimizing their simulation
error on the training data, their RMSE decreases, and approaches almost the one of
our model for one of the models6. While the different settings in the NARX models
have a large impact on the performance, and therefore a trial-and-error approach is
needed for the user to determine satisfactory settings, our approach offers a more
systematic way to encode the physical knowledge at hand into the modeling process,
and achieves a competitive performance.

6Since the corresponding change in learning objective is not available to our model, this comparison
might only offer partial insight. It would, however, be an interesting question for further research to
figure out how to implement learning with ‘simulation focus’ for our model.

108

6 Conclusions and further work

During the recent years, there has been a rapid development of powerful parameter
estimation tools for state space models. These methods allows for learning in complex
and extremely flexible models, and this paper is a response to the situation when
the learning algorithm is able to learn a more complex state space model than the
information contained in the training data (cf. Figure 3a). For this purpose, we have
in the spirit of Peterka (1981) chosen to formulate GP-inspired priors for a basis
function expansion, in order to ‘softly’ tune its complexity and flexibility in a way
that hopefully resonates with the users intuition. In this sense, our work resembles
the recent work in the machine learning community on using GPs for learning
dynamical models (see, e.g., Bijl et al. 2016; Frigola-Alcade 2015; Mattos et al. 2016).
We have also tailored efficient learning algorithms for the model, both for inferring
the full posterior, and finding a point estimate.

It is a rather hard task to make a sensible comparison between our model-focused
approach, and approaches which provide a general-purpose black-box learning algo-
rithm with very few user choices. Because of their different nature, we do not see any
ground to claim superiority of one approach over another. In light of the promising
experimental results, however, we believe this model-focused perspective can provide
additional insight into the nonlinear system identification problem. There is cer-
tainly more to be done and understand when it comes to this approach, in particular
concerning the formulation of priors.

We have proposed an algorithm for Bayesian learning of our model, which ren-
ders K samples of the parameter posterior, representing a distribution over models.
A relevant question is then how to compactly represent and use these samples to
efficiently make predictions. Many control design methods provides performance
guarantees for a perfectly known model. An interesting topic would hence be to
incorporate model uncertainty (as provided by the posterior) into control design and
provide probabilistic guarantees, such that performance requirements are fulfilled
with, e.g., 95% probability.

A Appendix: Technical details

A.1 Derivation of (24)

From Bayes’ rule, we have

p(x1:T | ξ) = p(A,Q | ξ)p(x1:T | A,Q, ξ)
p(A,Q | ξ, x1:T)

. (34)

The expression for each term is found in (12-14), (18) and (23), respectively. All of
them have a functional form η(ξ) · |Q | χ(ξ) · exp �− 1

2 tr
�
Q−1τ(A, x1:T , ξ)

	�
, with

different η, χ and τ. Starting with the |Q |-part, the sum of the exponents for all

Paper I – A flexible state space model for learning nonlinear dynamical systems 109

such terms in both the numerator and the denominator sums to 0. The same thing
happens to the exp-part, which can either be worked out algebraically, or realized
since p(x1:T | ξ) is independent of Q . What remains is everything stemming from η ,
which indeed is p(x1:T | ξ), (24).

A.2 Invariant distribution of Algorithm 2

As pointed out by Dyk and Jiao (2014), the combination of Metropolis-within-
Gibbs and partially collapsed Gibbs might obstruct the invariant distribution
of a sampler. In short, the reason is that a Metropolis-Hastings (MH) step is
conditioned on the previous sample, and the combination with a partially col-
lapsed Gibbs sampler can therefore be problematic, which becomes clear if we
write the MH procedure as the operator MH in the following simple exam-
ple from Dyk and Jiao (2014) of a sampler for finding the distribution p(a, b):

1 Sample a[k+1] ∼ p(a | b[k]) Gibbs
2 Sample b[k+1] ∼MH(b | a[k+1], b[k]) MH

So far, this is a valid sampler. However, if collapsing over b , the sampler becomes

1 Sample a[k+1] ∼ p(a) Partially collapsed Gibbs
2 Sample b[k+1] ∼MH(b | a[k+1], b[k]) MH

where the problematic issue, obstructing the invariant distribution, is the joint
conditioning on a[k +1] and b[k] (marked in red), since a[k +1] has been sam-
pled without conditioning on b[k]. Spelling out the details from Algorithm 2 in
Algorithm 4, it is clear this problematic conditioning is not present.

Algorithm 4: Details of Algorithm 2.

2 for k = 0 to K do
3 Sample x1:T [k+1]

�
A[k],Q[k], ξ[k] Algorithm 1

4 Sample ξ[k+1] � x1:T [k+1] Section 4.3
5 Sample Q[k+1] � ξ[k+1], x1:T [k+1] by (23)
6 Sample A[k+1] �Q[k+1], ξ[k+1], x1:T [k+1] by (23)

7 end

110

References

Mauricio A. Alvarez, David Luengo, and Neil D. Lawrence (2013). “Linear latent
force models using Gaussian processes”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 35.11, pp. 2693–2705.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle
Markov chain Monte Carlo methods”. In: Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology) 72.3, pp. 269–342.

Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden, and Michel Verhae-
gen (2016). “Onlise sparse Gaussian process training with input noise”. In:
arXiv:1601.08068.

Christopher M. Bishop (2006). Pattern recognition and machine learning. New York,
NY, USA: Springer.

Ben Calderhead, Mark Girolami, and Neil D. Lawrence (2008). “Accelerating
Bayesian inference over nonlinear differential equations with Gaussian processes”.
In: Advances in Neural Information Processing Systems 21 (NIPS). Vancouver, BC,
Canada, pp. 217–224.

Tianshi Chen, Henrik Ohlsson, and Lennart Ljung (2012). “On the estimation of
transfer functions, regularizations and Gaussian processes—Revisited”. In: Auto-
matica 48.8, pp. 1525–1535.

Ramón A. Delgado, Juan C. Agüero, Graham C. Goodwin, and Eduardo M.A.M.
Mendes (2015). “Application of rank-constrained optimisation to nonlinear sys-
tem identification”. In: Proceedings of the 1st IFAC Conference on Modelling, Iden-
tification and Control of Nonlinear Systems (MICNON). Saint Petersburg, Russia,
pp. 814–818.

Bernard Delyon, Marc Lavielle, and Éric Moulines (1999). “Convergence of a stochas-
tic approximation version of the EM algorithm”. In: Annals of Statistics 27.1,
pp. 94–128.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (1977). “Maximum like-
lihood from incomplete data via the EM algorithm”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 39.1, pp. 1–38.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle filtering
and smoothing: fifteen years later”. In: Nonlinear Filtering Handbook. Ed. by D.
Crisan and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

David A. van Dyk and Xiyun Jiao (2014). “Metropolis-Hastings within partially
collapsed Gibbs samplers”. In: Journal of Computational and Graphical Statistics
24.2, pp. 301–327.

Roger Frigola, Yutian Chen, and Carl Rasmussen (2014). “Variational Gaussian pro-
cess state-space models”. In: Advances in Neural Information Processing Systems
27 (NIPS). Montréal, QC, Canada, pp. 3680–3688.

Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl Rasmussen (2013).
“Bayesian inference and learning in Gaussian process state-space models with par-

Paper I – A flexible state space model for learning nonlinear dynamical systems 111

ticle MCMC”. In: Advances in Neural Information Processing Systems 26 (NIPS).
Lake Tahoe, NV, USA, pp. 3156–3164.

Roger Frigola-Alcade (2015). “Bayesian time series learning with Gaussian processes”.
PhD thesis. UK: University of Cambridge.

Zoubin Ghahramani and Sam T. Roweis (1998). “Learning nonlinear dynamical
systems using an EM algorithm”. In: Advances in Neural Information Processing
Systems (NIPS) 11. Denver, CO, USA, pp. 431–437.

Stuart Gibson and Brett Ninness (2005). “Robust maximum-likelihood estimation
of multivariable dynamic systems”. In: Automatica 41.10, pp. 1667–1682.

Anatoli Juditsky, Håkan Hjalmarsson, Albert Benveniste, Bernard Delyon, Lennart
Ljung, Jonas Sjöberg, and Qinghua Zhang (1995). “Nonlinear black-box mod-
els in system identification: mathematical foundations”. In: Automatica 31.12,
pp. 1725–1750.

Nikolas Kantas, Arnaud Doucet, Sumeetpal S. Singh, Jan M. Maciejowski, and Nico-
las Chopin (2015). “On particle methods for parameter estimation in state-space
models”. In: Statistical Science 30.3, pp. 328–351.

Juš Kocijan, Agathe Girard, Blaž Banko, and Roderick Murray-Smith (2005). “Dy-
namic systems identification with Gaussian processes”. In: Mathematical and
Computer Modelling of Dynamical Systems 11.4, pp. 411–424.

Juho Kokkala, Arno Solin, and Simo Särkkä (2016). “Sigma-point filtering and
smoothing based parameter estimation in nonlinear dynamic systems”. In: Jour-
nal of Advances in Information Fusion 11.1, pp. 15–30.

Estelle Kuhn and Marc Lavielle (2004). “Coupling a stochastic approximation ver-
sion of EM with an MCMC procedure”. In: ESAIM: Probability and Statistics 8,
pp. 115–131.

Fredrik Lindsten (2013). “An efficient stochastic approximation EM algorithm us-
ing conditional particle filters”. In: Proceedings of the 38th International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, BC, Canada,
pp. 6274–6278.

Fredrik Lindsten, Michael I. Jordan, and Thomas B. Schön (2014). “Particle Gibbs
with ancestor sampling”. In: The Journal of Machine Learning Research (JMLR)
15.1, pp. 2145–2184.

Fredrik Lindsten and Thomas B. Schön (2013). “Backward simulation methods for
Monte Carlo statistical inference”. In: Foundations and Trends in Machine Learn-
ing 6.1, pp. 1–143.

Lennart Ljung (1999). System identification: theory for the user. 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall.

Lennart Ljung (2010). “Perspectives on system identification”. In: Annual Reviews
in Control 34.1, pp. 1–12.

Benn Macdonald, Catherine Higham, and Dirk Husmeier (2015). “Controversy in
mechanistic modelling with Gaussian processes”. In: Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML). Lille, France, pp. 1539–1547.

112

César L. C. Mattos, Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme A.
Barreto, and Neil D. Lawrence (2016). “Recurrent Gaussian processes”. In: 4th

International Conference on Learning Representations (ICLR). San Juan, Puerto
Rico.

Per Mattsson, Dave Zachariah, and Petre Stoica (2016). “Recursive identification of
nonlinear systems using latent variables”. In: arXiv:1606.04366.

Peter Müller (1991). A generic approach to posterior intergration and Gibbs sampling.
Tech. rep. West Lafayette, IN, USA: Department of Statistics, Purdue University.

Kumpati S. Narendra and Sai-Ming Li (1996). “Neural networks in control systems”.
In: ed. by Paul Smolensky,Michael C. Mozer, and David E. Rumelhart. Hillsdale,
NJ, USA: Lawrence Erlbaum Associates. Chap. 11, pp. 347–394.

Magnus Nørgård, Ole Ravn, Niels Kjølstad Poulsen, and Lars Kai Hansen (2000).
Neural networks for modelling and control of dynamic systems. London, UK:
Springer-Verlag.

Johan Paduart, Lieve Lauwers, Jan Swevers, Kris Smolders, Johan Schoukens, and Rik
Pintelon (2010). “Identification of nonlinear systems using polynomial nonlinear
state space models”. In: Automatica 46.4, pp. 647–656.

Tian Hong Pan, Shaoyuan Li, and Ning Li (2009). “Optimal bandwidth design for
lazy learning via particle swarm optimization”. In: Intelligent Automation & Soft
Computing 15.1, pp. 1–11.

Václav Peterka (1981). “Bayesian system identification”. In: Automatica 17.1, pp. 41–
53.

Gianluigi Pillonetto, Alessandro Chiuso, and Giuseppe De Nicolao (2011). “Predic-
tion error identification of linear systems: a nonparametric Gaussian regression
approach”. In: Automatica 47.2, pp. 291–305.

Gianluigi Pillonetto and Giuseppe De Nicolao (2010). “A new kernel-based approach
for linear system identification”. In: Automatica 46.1, pp. 81–93.

Carl E. Rasmussen and Christopher K. I. Williams (2006). Gaussian processes for
machine learning. Cambridge, MA, USA: MIT Press.

Christian P. Robert and George Casella (2004). Monte Carlo statistical methods.
2nd ed. New York, NY, USA: Springer.

Jacob Roll, Alexander Nazin, and Lennart Ljung (2005). “Nonlinear system identifi-
cation via direct weight optimization”. In: Automatica 41.3, pp. 475–490.

Sam T. Roweis and Zoubin Ghahramani (2000). “An EM algorithm for
identification of nonlinear dynamical systems”. Unpublished, available at
http://mlg.eng.cam.ac.uk/zoubin/papers.html.

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A.
Naesseth, Andreas Svensson, and Liang Dai (2015). “Sequential Monte Carlo
methods for system identification”. In: Proceedings of the 17th IFAC Symposium
on System Identification (SYSID). Beijing, China, pp. 775–786.

Thomas B. Schön, Adrian Wills, and Brett Ninness (2011). “System identification of
nonlinear state-space models”. In: Automatica 47.1, pp. 39–49.

Paper I – A flexible state space model for learning nonlinear dynamical systems 113

Maarten Schoukens, Per Mattson, Torbjörn Wigren, and Jean-Philippe Noël (2015).
Cascaded tanks benchmark combining soft and hard nonlinearities. Available:
homepages.vub.ac.be/ mschouke/benchmark2016.html.

Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani (2014). “Student-t
processes as alternatives to Gaussian processes”. In: Proceedings of the 17th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS). Reykjavik,
Iceland, pp. 877–885.

Jonas Sjöberg, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Delyon,
Pierre-Yves Glorennec, Håkan Hjalmarsson, and Anatoli Juditsky (1995). “Non-
linear black-box modeling in system identification: a unified overview”. In: Auto-
matica 31.12, pp. 1691–1724.

Arno Solin and Simo Särkkä (2014). “Hilbert space methods for reduced-rank Gaus-
sian process regression”. In: arXiv:1401.5508.

Anders Stenman (1999). “Model on demand: Algorithms, analysis and applications”.
PhD thesis. Sweden: Linköping University.

Andreas Svensson, Thomas B. Schön, Arno Solin, and Simo Särkkä (2015). “Nonlin-
ear state space model identification using a regularized basis function expansion”.
In: Proceedings of the 6th IEEE InternationalWorkshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP). Cancun, Mexico, pp. 493–496.

Andreas Svensson, Arno Solin, Simo Särkkä, and Thomas B. Schön (2016). “Com-
putationally efficient Bayesian learning of Gaussian process state space models”.
In: Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics (AISTATS). Cadiz, Spain, pp. 213–221.

The MathWorks, Inc. (2015). Narendra-Li benchmark system: nonlinear
grey box modeling of a discrete-time system. Example file provided
by Matlab® R2015b System Identification ToolboxTM. Available at
http://mathworks.com/help/ident/examples/narendra-li-benchmark-system-
nonlinear-grey-box-modeling-of-a-discrete-time-system.html.

Felipe Tobar (2016). Personal communication.
Felipe Tobar, Petar M. Djurić, and Danilo P. Mandic (2015). “Unsupervised state-

space modeling using reproducing kernels”. In: IEEE Transactions on Signal Pro-
cessing 63.19, pp. 5210–5221.

Jack Umenberger, Johan Wågber, Ian R. Manchester, and Thomas B. Schön (2015).
“On identification via EM with latent disturbances and Lagrangian relaxation”. In:
Proceedings of the 17th IFAC Symposium on System Identification (SYSID). Beijing,
China, pp. 69–74.

Yali Wang and David Barber (2014). “Gaussian processes for Bayesian estimation in
ordinary differential equations”. In: Proceedings of the 31st International Confer-
ence on Machine Learning (ICML). Beijing, China, pp. 1485–1493.

Chengtao Wen, Shuning Wang,Xuexiang Jin, and Xiaoyan Ma (2007). “Identification
of dynamic systems using piecewise-affine basis function models”. In: Automatica
43.10, pp. 1824–1831.

114

Torbjörn Wigren and Johan Schoukens (2013). “Three free data sets for development
and benchmarking in nonlinear system identification”. In: Proceedings of the 2013
European Control Conference (ECC). Zurich, Switzerland, pp. 2933–2938.

Adrian Wills, Thomas B. Schön, Fredrik Lindsten, and Brett Ninness (2012). “Esti-
mation of linear systems using a Gibbs sampler”. In: Proceedings of the 16th IFAC
Symposium on System Identification (SYSID). Brussels, Belgium, pp. 203–208.

Jun Xu, Xiaolin Huang, and Shuning Wang (2009). “Adaptive hinging hyperplanes
and its applications in dynamic system identification”. In: Automatica 45.10,
pp. 2325–2332.

Paper II

Title
Comparing two recent particle filter implementations of Bayesian system
identification

Authors
Andreas Svensson and Thomas B. Schön

Edited version of
Andreas Svensson and Thomas B. Schön (2016). Comparing two recent particle filter imple-
mentations of Bayesian system identification. Tech. rep. 2016-008. (Presented at Reglermöte
2016, Gothenburg, Sweden). Department of Information Technology, Uppsala University.

Digital identity
Department of Information Technology, Uppsala University: 2016-008

Financial support
The Swedish Research Council (VR) via the project Probabilistic modeling of dynamical systems (contract
number: 621-2013-5524).

116

Comparing two recent particle filter
implementations of Bayesian

system identification

Abstract

Bayesian system identification is a theoretically well-founded and currently emerg-
ing area. We describe and evaluate two recent state-of-the-art sample-based methods
for Bayesian parameter inference from the statistics literature, particle Metropolis-
Hastings (PMH) and SMC2, and apply them to a non-trivial real world system identi-
fication problem with large uncertainty present. We discuss their different properties
from a user perspective, and conclude that they show similar performance in practice,
while PMH is significantly easier to implement than SMC2.

1 Introduction

In this paper, we are concerned with methods for learning unknown parameters in
nonlinear state space models, i.e., gray box identification. We write the state space
model as

x t+1 |x t ∼ fθ (x t+1 |x t), (1a)
yt |x t ∼ gθ (yt |x t), (1b)

where yt ∈ Rny is the observed output, x t ∈ Rnx is the state, and an exogenous input
ut ∈ Rnu may be included in f . We let f and g denote probability densities (i.e.,
including stochastic noise), depending on an (unknown) parameter vector θ ∈ Rnθ ,
and by ∼ we mean distributed according to the density. We write pθ (y1:T) to denote
the likelihood of the data y1:T , {y1, . . . , yT } under model (1) and the parameter θ .

Traditionally, the system identification literature (Ljung 1999; Söderström and
Stoica 1989) has mostly been focused on maximum likelihood (ML) point estimates
θ̂ML of the unknown parameter θ ,

θ̂ML = argmax
θ

pθ (y1:T) (2)

rather than inferring its posterior distribution using Bayes’ theorem as

p(θ |y1:T) ∝ pθ (y1:T)p(θ), (3)

117

118

where p(θ) denotes the prior belief on θ . An excellent introduction to Bayesian
system identification is given by Peterka (1981).

The traditional focus on the ML problem is indeed for a good reason; it is often
computationally easier (and more natural) to handle a single parameter value than a
full distribution. When the parameters are far from being uniquely determined by
the data, however, the posterior distribution automatically gives a quantification of
the amount of uncertainty present. Such situations may occur when, e.g., there is a
model mismatch, the system was not excited enough during data collection, or the
data record is very short.

The development of methods for Bayesian identification has made big advances in
recent years, in particular methods based on sequential Monte Carlo (SMC) (Kantas
et al. 2015; Schön et al. 2015). An important part of the advances has been published
in the statistics literature, with a distinct focus on theoretical properties, such as con-
sistency and convergence (Chopin 2004; Del Moral 2004). We believe these methods
have a potential of being of great use also in practice. This paper compares two dif-
ferent state-of-the-art algorithms, and evaluate their properties from an engineering
perspective.

We will focus on two popular methods, Particle Metropolis-Hastings (PMH,
Andrieu et al. 2010) and SMC2 (Chopin et al. 2013; Fulop and Li 2013). Both meth-
ods are developed for being off-the-shelf methods for parameter learning problems,
requiring nothing more than the ability to

(a) simulate from fθ (x t+1 |x t),
(b) evaluate gθ (yt |x t).

The requirements (a) and (b) are fulfilled in most engineering applications. We will
give a brief introduction (complete enough so the user can implement the methods
on her/his own), and evaluate their performance on two examples. A more extensive
introduction can be found in any of the recent tutorials by Schön et al. (2015), Kantas
et al. (2015) or Dahlin and Schön (2016).

2 The PMH and SMC2 algorithms

We assume the reader has some familiarity with particle filters (Doucet and Johansen
2011), and summarize the bootstrap particle filter as Algorithm 1. The particle filter
is perhaps most known in the signal processing literature as a tool for state space
filtering, but it can also be used as an unbiased (stochastic) estimator of pθ (y1:T), i.e.,
the likelihood of the parameters θ . The likelihood is estimated by the weights from
Algorithm 1 as

p̂θ (y1:T) =
∏T

t=1

(
1
Nx

∑Nx
i=1 w

(i)
t

)
. (4)

It can be shown (Appendix A) that E[p̂θ (y1:T)] = pθ (y1:T).

Paper II – Comparing two implementations of Bayesian system identification 119

Algorithm 1: The basic (bootstrap) particle filter

1 Draw x (i)0 ∼ p(x0) and set w (i)
0 = 1

2 for t = 1 to T do
3 Draw a(i)t−1 with P

(
a(i)t−1 = j

)
∝ w (j)

t−1 (resampling)

4 Draw x (i)t ∼ fθ (x t |x a
(i)
t−1

t−1) (propagation)

5 Set w (i)
t = gθ (yt |x (i)t) (weighting)

6 end
All statements with (i) are for i = 1, . . . ,Nx

2.1 Particle Metropolis-Hastings

The PMH algorithm (Andrieu et al. 2010) uses a Metropolis-Hastings sampler, a
Markov chain Monte Carlo (MCMC) method, to sample from the posterior distri-
bution p(θ |y1:T) (3).

The idea behind a Metropolis-Hastings sampler is to randomly ‘walk around’ in
the parameter space and thus produce samples from the posterior. This is achieved as
follows: While ‘standing’ at θ[k], propose a new parameter value θ ′ from a proposal
q(θ ′|θ[k]) (e.g., a random walk). Then, accept the proposed value, i.e. set θ[k + 1] =
θ ′, with probability

α = min
(
1, pθ′̂ (y1:T)p(θ′)

pθ[k]̂ (y1:T)p(θ[k])

)
, (5)

otherwise ‘stay’ and set θ[k + 1] = θ[k]. To do this, a particle filter has to be run
to evaluate (4) for each new proposed value θ ′. After repeating this procedure for
sufficiently many iterations, a series of samples {θ[k]}Kk=1 is obtained, consisting of
(correlated) samples of the sought distribution p(θ |y1:T). The PMH algorithm is
outlined as Algorithm 2.

There are in general two typical pitfalls with Metropolis-Hastings: It is hard
to a priori tell how long the initial transient, the burn-in period, will be. A typical
behavior is also that the chain gets ‘stuck’ for long periods of time, i.e., all proposals
are rejected. One can intuitively understand SMC2, which we will detail in the next
section, as addressing the first issue by ‘warm-starting’ the chain by sequentially
adding more and more data.

2.2 SMC2

SMC2 was proposed independently by Chopin et al. (2013) and Fulop and Li
(2013). In SMC2, an SMC sampler (Del Moral et al. 2006) is used instead of
Metropolis-Hastings. The SMC sampler is inspired by the particle filter, but can
be applied to sample from a general sequence of distributions, not necessarily orig-
inating from state space models. The SMC sampler is applied to the sequence

120

Algorithm 2: Particle Metropolis Hastings
Input: K (# steps), q (proposal), θ[0] initial parameter
Output: θ[1], . . . , θ[K] (samples from the posterior, including burn-in)

1 for k = 1 to K do
2 Draw θ ′ ∼ q(θ ′|θ[k − 1]).
3 Estimate pθ′̂ (y1:T) by a particle filter, Algorithm 1.
4 Compute α (5).
5 Draw d ∼ U(d | 0, 1).
6 if d < α then
7 Set θ[k] = θ ′ (accept θ ′)
8 else
9 Set θ[k] = θ[k − 1] (reject θ ′)
10 end

{p(θ), p(θ |y1), p(θ |y1:2), . . . , p(θ |y1:T)}, a data-tempered sequence, evolving from the
prior to the posterior.

The SMC sampler works in a similar fashion to the particle filter, with an iter-
ation of weighting – resampling – propagation. The particles, {θ (m)

t }Nθ

m=1, ‘live’ in
θ -space. However, the weighting for particle θ (m)

t should be done with respect to the
data likelihood, so a standard particle filter has to be ‘attached’ to every single θ (m)

particle to estimate its data likelihood, hence the name SMC2. Thus, the weighting
is with respect to

p
θ
(m)
t

̂ (yt |y1:t−1) = 1
Nx

∑Nx
i=1 w

(i)
t . (6)

The resampling in the SMC sampler is identical to the particle filter, but the propaga-
tion has to be performed differently, as there is no equivalent to the function f for
propagating the particles from p(θ |y1:t) to p(θ |y1:t+1). Instead PMH, Algorithm 2,
is used to propagate the particles. To reduce the computational load, it is proposed
by Chopin et al. (2013) to apply PMH only when some particle degeneracy criterion
(e.g.the effective sample size, ESS) is fulfilled. This is summarized in Algorithm 3.

By construction, SMC2 is an ‘online algorithm’ in the sense that it evolves along
the time index, and if stopped prematurely at t ′, samples from the posterior p(θ |y1:t ′)
are obtained. Similarly, if another data point yT +1 is added, the algorithm does not
have to start over from scratch, as opposed to the PMH. However, the computational
load of SMC2 is increasing with t , prohibiting use in online implementations with
real-time requirements.

Paper II – Comparing two implementations of Bayesian system identification 121

Algorithm 3: SMC2

Input: Nθ (# θ particles), q (proposal)
Output: {ω(m)

T , θ
(m)
T }Nθ

m=1 (samples from posterior)
1 Draw θ

(m)
0 ∼ p(θ) and set ω(m)

0 = 1.
2 Run Step 1 of Algorithm 1 for each θ (m)

0 .
3 for t = 1 to T do
4 One iteration of the loop in Alg. 1 for each θ (m)

t−1 .
5 Compute p

θ
(m)
t

̂ (yt |y1:t−1) (6).
6 Set ω(m)

t = ω
(m)
t−1pθ(m)

t
̂ (yt |y1:t−1).

7 if ESS is too low then
8 Draw b (m)

t with P
(
b (m)
t = n

)
∝ ω(n)

t .

9 Run PMH, Alg. 2, for each θb
(m)
t

t−1 to obtain θ (m)
t .

10 Set ω(m)
t = 1.

11 else
12 Set θ (m)

t = θ
(m)
t−1

13 end
All statements with (m) are form = 1, . . . ,Nθ .

3 Numerical comparison

In this section, we will first apply PMH and SMC2 to a small simulated example, and
then to the problem of learning parameters in a water tank model from real data. We
will also discuss their different properties from a user perspective. The Matlab code
for all examples can be found on the first authors homepage1.

3.1 A simulated example

We will start the comparison by a simulated numerical example. Consider the one-
dimensional state space model

x t+1 = |x t | β + ut + w t , w t ∼ N (0, 1) (7a)
yt = x t + et et ∼ N (0, 1), (7b)

where ut is a known input signal, drawn from a Gaussian. We want to learn the
parameter β, which we believe is drawn from N (0, 1). This is thus our prior p(β).

We simulate T = 200 data points y1:T from the model with β = 0.4. As the
data record is relatively short in this example, we expect the posterior distribution
to contain a non-negligible amount of uncertainty.

1http://www.it.uu.se/katalog/andsv164

122

0 1,000 2,000

0.
5

1
Iteration k

β
[k
]

(a). Trace plot for 2000 iterations of the PMH.

1 20 40 60 80 100 120 140 160 180 200−0
.5

0.
5

1.
5

Time t

β
t

(b). Trace plot for 50 θ -particles in the SMC2, at certain time points. The particles are plotted with a
diameter proportional to their importance weights. Note how the posterior evolves along t as more
measurements are added, from a quite non-informative prior to a distribution in the region around the
true value.

SMC2 PMH

Nθ = 10, K = 3
(0.01 min)

0.2 0.4ML 0.8

0
0.

7 K = 100, Nx = 5
(0.04 min)

0.2 0.4ML 0.8

0
0.

7
Nθ = 100, K = 3

(0.2 min)

0.2 0.4ML 0.8

0
0.

5 K = 1 000,
Nx = 20 (0.4

min)
0.2 0.4ML 0.8

0
0.

5

Nθ = 1 000,
K = 3 (2 min)

0.2 0.4ML 0.8

0
0.

3

β

K = 10 000,
Nx = 80 (5 min)

0.2 0.4ML 0.8

0
0.

3

β

(c). The final samples for the simulated numerical example, for different settings of SMC2 and PMH. A
ML estimate is also indicated. Studying the samples, it is clear that the methods suffers from too few
particles/iterations, except for the settings in the last row.

Figure 1. Trace plots for PMH (a) and SMC2 (b), and final samples (c) for Example 3.1, for
different settings of the methods.

We apply the PMH algorithm to the problem, with proposal q(θ ′|θ) taken as
the random walk θ ′ ∼ N (θ ′|θ, 0.01). The trace plot for 2 000 iterations is shown
in Figure 1a. Note the burn-in period; the Markov chain starts at 1.5, but moves
eventually to the relevant part of the parameter space. In more complicated problems,
the burn-in period is typically much longer. Also note the sequences of some hundred
consecutive samples, where all proposals are rejected, a typical Metropolis-Hastings
behavior.

Paper II – Comparing two implementations of Bayesian system identification 123

Also SMC2 was applied to the problem. A resulting trace plot is shown as Fig-
ure 1b. To evaluate the methods, we explore three different settings (in PMH the
number of iterations K and particles Nx in each particle filter, for SMC2 the number
of θ -particles Nθ and PMH step K) and plot the samples as histograms in Figure 1c.
The reported time are for a standard desktop computer2.

The methods only show similar results in the last row of Figure 1c, and the poor
results in the first and second row are due to shortcomings of the methods when
not run with sufficiently many particles/iterations. In this example, SMC2 seems
to have a slight advantage as it runs faster. For comparison, we also apply the ML
method proposed by Schön et al. (2011) to the same data, and obtain the ML estimate
β̂ML = 0.54. Note that while the ML method only gives a point estimate of 0.54
(approximately corresponding to the peak of the posterior distribution), the full
posterior also indicates the true value 0.4 to be quite likely, and also quantifies the
uncertainty present.

3.2 A real world example

We also evaluate the methods in a real-world scenario. We use the first T = 40 data
samples from the two water tank data presented by Wigren and Schoukens (2013),
to learn a discretized version of the model with 6 unknown parameters

*
,
ẋ (1)t
ẋ (2)t

+
-
=

*..
,

−k1

√
x (1)t

k2

√
x (1)t − k3

√
x (2)t

+//
-
+

(
k4ut
0

)
+ w t , (8a)

yt = x t + et , w t ∼ N (0, k5I2), et ∼ N (0, k6I2). (8b)

(I2 is the 2-dimensional unit matrix, and k5 and k6 are scalar.) From the physical in-
terpretation of the parameters (Wigren and Schoukens 2013), our prior assumptions
on k1, k2 and k3 are a uniform distribution on [0, 1], and k4 is N (0, 1). As the noise
parameters k5 and k6 are strictly positive, we formulate priors on their logarithms
as log k5 ∼ N (0, 0.1) and log k6 ∼ N (−1, 0.1) respectively.

We run the PMH sampler for K = 50 000 iterations with N = 40 particles, and
SMC2 with Nθ = 1 000 and K = 30 (requiring 12 and 27 minutes on a standard
desktop computer, respectively). The samples obtained by the algorithms are plotted
in Figure 2a. The results are quite similar, indicating similar ranges of possible values,
but one can guess (by comparing the results for, e.g., k3) that SMC2 would benefit
from an even bigger number Nθ .

In this example, PMH seems to be the preferred option, as it requires less com-
putational time, still not suffering from the particle degeneracy problem as SMC2

with, e.g., k3.

2Intel i7-4600 2.1 GHz CPU

124

0 0.30 0.3 0 0.3

0 0.6

k3

0 0.3

k4

0 0.3

0
0.

5
SM

C
2

0 0.6

0 0.3

k5

0 0.6

0 0.6

k2

0 0.3

k6

0 0.3

0
0.

5
PM

H

k1

(a).The marginals of the posterior distributions for the six unknown parameters in the watertank model,
inferred using PMH (top) and SMC2 (bottom) from the data in (a). The data record is indeed short,
but the posterior distribution provides useful information on possible ranges, much more informative
than the prior k1 ∈ [0, 1], etc.

0 200 400 600 800 1000

0
10

O
ut

pu
ty

1
(c

m
)

Training data
Simulated output distribution
Test data

0 200 400 600 800 1000

0
5

O
ut

pu
ty

2
(c

m
)

Training data Test data

0 200 400 600 800 1000

0
2

Time t (s)

In
pu

tu
(v

)

(b).The input-output data in the watertank data. The first 40 samples (200 s) are used as the training data,
for inferring the posterior distribution of the parameters. The model learned with PMH (including
the uncertainties) was here used to simulate the behavior of the tanks for another 800 s. (SMC2 yields
similar results.) The more intensive gray color, the more likely simulated output.

Figure 2. The inferred posterior distribution of the parameters (a) are used to simulate the
output in (b).

3.3 Computational load and tuning

The computational load pf PMH is governed by O(KT Nx), i.e., proportional to the
number of iterations K , the number of data points T and the number of particles
Nx . The PMH is an anytime algorithm, in the sense that K does not have to be
determined a priori, but can be run as long as the time permits. It has been shown

Paper II – Comparing two implementations of Bayesian system identification 125

that the choice of Nx in PMH affects the acceptance rate, and that Nx should be
chosen ∝ T to keep an acceptance rate not varying with T (Chopin et al. 2013).
Following this rule of thumb, the computational load of PMH becomes O(KT 2).

SMC2 has the computational load O(KT 2NxNθ). The rule of thumb for Nx for
PMH also applies to the PMH within SMC2, giving the load O(KT 3Nθ). Although
SMC2 provides the user with p(θ |y1:t) for all t from 0 toT , it is not suited for online
problems with real-time requirements, as it grows forbiddingly fast with increasing
T .

The time for implementation does usually not count as a part of the computa-
tional load, but is nevertheless of big relevance in practice. Our experience from
implementing the two examples is that SMC2 is significantly harder to implement,
due to the quite involved interaction between the two nested levels of SMC. PMH,
on the other hand, only requires a particle filter algorithm, computation of the ac-
ceptance probability α and some storage. The implementation of PMH therefore
also has the advantage of being easier to debug than SMC2.

As an alternative for the user to implement the methods on her/his own, there
are currently a few software packages designed for off-the-shelf use of PMH, SMC2

and related methods available, such as LibBi3 (Murray 2013) and Biips4 (Todeschini
et al. 2014).

The tuning of both algorithms is indeed crucial for their performance. A perhaps
subtle, but important, design choice is the proposal q inside the PMH. Suggestions
on how to improve the proposal have been proposed in the literature, e.g Dahlin et al.
(2015) for PMH, and Fearnhead and Taylor (2013) for SMC samplers. The number
of particles, Nx and Nθ , are of course also of great importance, and a recent work on
automatic adaption of Nθ in SMC2 is presented by Chopin et al. (2015). Further, the
rule of thumb Nx ∝ T applies, and a recent work with more extensive guidelines is
Doucet et al. (2015).

4 Conclusions

PMH has a clear computational advantage over SMC2 for large T . For small T , as
illustrated in the numerical examples, the methods are more comparable. In the ex-
amples, there are no clear advantage neither for PMH nor SMC2: they both perform
similarly, with a computational time of the same magnitude. SMC2 does indeed offer
more flexibility in the tuning, and might thus have a greater potential in adaption
to certain problems. If all sequential posteriors p(θ |y1), . . . , p(θ |y1:T) are of inter-
est, SMC2 is indeed preferable. However, as discussed, SMC2 is considerably more
challenging to implement and debug than PMH.

3http://libbi.org
4http://alea.bordeaux.inria.fr/biips/

126

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle
Markov chain Monte Carlo methods”. In: Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology) 72.3, pp. 269–342.

Nicolas Chopin (2004). “Central limit theorem for sequential Monte Carlo methods
and its application to Bayesian inference”. In: Annals of Statistics 36.6, pp. 2385–
2411.

Nicolas Chopin, Pierre E. Jacob, and Omiros Papaspiliopoulos (2013). “SMC2: an
efficient algorithm for sequential analysis of state space models”. In: Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 75.3, pp. 397–426.

Nicolas Chopin, James Ridgway, Mathieu Gerber, and Omiros Papaspiliopoulos
(2015). “Towards automatic calibration of the number of state particles within
the SMC2 algorithm”. In: arXiv:1506.00570.

Johan Dahlin, Fredrik Lindsten, and Thomas B. Schön (2015). “Particle Metropolis-
Hastings using gradient and Hessian information”. In: Statistics and Computing
25.1, pp. 81–92.

Johan Dahlin and Thomas B. Schön (2016). “Getting started with particle Metropolis-
Hastings for inference in nonlinear models”. In: arXiv:1511:01707.

Pierre Del Moral (2004). Feynman-Kac formulae: genealogical and interacting particle
systems with applications. New York, NY, US: Springer.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2006). “Sequential Monte Carlo
samplers”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 68.3, pp. 411–436.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle filtering
and smoothing: fifteen years later”. In: Nonlinear Filtering Handbook. Ed. by D.
Crisan and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

Arnaud Doucet, Michael K. Pitt, George Deligiannidis, and Robert Kohn (2015).
“Efficient implementation of Markov chain Monte Carlo when using an unbiased
likelihood estimator”. In: Biometrika 102.2, pp. 295–313.

Paul Fearnhead and Benjamin M. Taylor (2013). “An adaptive sequential Monte
Carlo sampler”. In: Bayesian Analysis 8.2, pp. 411–438.

Andras Fulop and Junye Li (2013). “Efficient learning via simulation: a marginalized
resample-move approach”. In: Journal of Econometrics 176.2, pp. 146–161.

Nikolas Kantas, Arnaud Doucet, Sumeetpal S. Singh, Jan M. Maciejowski, and Nico-
las Chopin (2015). “On particle methods for parameter estimation in state-space
models”. In: Statistical Science 30.3, pp. 328–351.

Lennart Ljung (1999). System identification: theory for the user. 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall.

Lawrence M. Murray (2013). “Bayesian state-space modelling on high-performance
hardware using LibBi”. In: arXiv:1306.3277.

Paper II – Comparing two implementations of Bayesian system identification 127

Václav Peterka (1981). “Bayesian system identification”. In: Automatica 17.1, pp. 41–
53.

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A.
Naesseth, Andreas Svensson, and Liang Dai (2015). “Sequential Monte Carlo
methods for system identification”. In: Proceedings of the 17th IFAC Symposium
on System Identification (SYSID). Beijing, China, pp. 775–786.

Thomas B. Schön, Adrian Wills, and Brett Ninness (2011). “System identification of
nonlinear state-space models”. In: Automatica 47.1, pp. 39–49.

Torsten Söderström and Petre Stoica (1989). System identification. Hemel Hempstead,
UK: Prentice-Hall, Inc.

Adrien Todeschini, François Caron, Marc Fuentes, Pierrick Legrand, and Pierre Del
Moral (2014). “Biips: software for Bayesian inference with interacting particle
systems”. In: arXiv:1412.3779.

Torbjörn Wigren and Johan Schoukens (2013). “Three free data sets for development
and benchmarking in nonlinear system identification”. In: Proceedings of the 2013
European Control Conference (ECC). Zurich, Switzerland, pp. 2933–2938.

128

Paper III

Title
Nonlinear state space smoothing using the conditional particle filter

Authors
Andreas Svensson, Thomas B. Schön and Manon Kok

Edited version of
Andreas Svensson, Thomas B. Schön, and Manon Kok (2015a). “Nonlinear state space
smoothing using the conditional particle filter”. In: Proceedings of the 17th IFAC Symposium
on System Identification (SYSID). Beijing, China, pp. 975–980

and

Andreas Svensson, Thomas B Schön, and Manon Kok (2015b). Some details on state space
smoothing using the conditional particle filter. Tech. rep. 2015-019. Department of Information
Technology, Uppsala University.

Digital identity
doi:10.1016/j.ifacol.2015.12.257

Financial support
The Swedish Research Council (VR) via the project Probabilistic modeling of dynamical systems (contract
number: 621-2013-5524) and CADICS, a Linnaeus Center.

Thanks to
Dr. Jeroen Hol and Dr. Henk Luinge at Xsens Technologies for providing the indoor positioning data.

130

Nonlinear state space smoothing
using the conditional particle filter

Abstract

To estimate the smoothing distribution in a nonlinear state space model, we apply the
conditional particle filter with ancestor sampling. This gives an iterative algorithm
in a Markov chain Monte Carlo fashion, with asymptotic convergence results. The
computational complexity is analyzed, and our proposed algorithm is successfully
applied to the challenging problem of sensor fusion between ultrawideband and
accelerometer/gyroscope measurements for indoor positioning. It appears to be a
competitive alternative to existing nonlinear smoothing algorithms, in particular the
forward filtering-backward simulation smoother.

1 Introduction

Consider the (time-varying, nonlinear, non-Gaussian) state space model (SSM)

x t+1 | x t ∼ ft (x t+1 |x t), (1a)
yt | x t ∼ gt (yt |x t), (1b)

with x1 ∼ µ(x1). We use a probabilistic notation, with ∼ meaning distributed ac-
cording to. The index variable t = 1, 2, . . . ,T is referred to as time. The variable
x t ∈ Rnx is referred to as state, and an exogenous input ut is possible to include in
ft and gt . To ease the notation, the possible time dependence of f and g will be
suppressed.

For some applications, e.g., system identification, the distribution of the states
for given model and measurements,

p(x1:T |y1:T), (2)

is of interest. We will refer to (2) as the smoothing distribution. The smoothing distri-
bution is not available on closed form for the general model (1), and approximations
are necessary. In this paper, we will present a method generating Monte Carlo sam-
ples, particles, from the smoothing distribution, akin to a particle filter. The idea is
to iterate a conditional particle filter, which generates samples from the smoothing
distribution after sufficiently many iterations, as illustrated in Figure 1.

131

132

Initialization

Iteration [1]

Iteration [2]

Iteration [3]

Iteration [4]

Iteration [5]

Iteration [6]

Iteration [7]

Particles in conditional particle filter
Conditional trajectory
True smoothing distribution

Figure 1. How to use the conditional particle filter to sample from the smoothing distribution
p(x1:T |y1:T). The distribution p(x1:T |y1:T) is shown in gray, with time t at the horizontal
axis and state x on the vertical axis. The conditional particle filter (with only 2 particles) is
run iteratively, starting with the its arbitrary initialized trajectory (blue line) in the top plot,
eventually converging to provide samples from the smoothing distribution.

An overview of existing particle smoothers addressing the problem of generating
samples from (2) is provided by Lindsten and Schön (2013). In this work we will
in particular compare and relate our developments to the so-called forward filtering-
backward simulation (FFBSi) smoother introduced by Douc et al. (2011). The work
by Kitagawa (1996) and Briers et al. (2010) are both of interest in that they approach
a similar problem using particle filters, the latter also taking inspiration from the
two-filter formula. The work of Pillonetti and Bell (2008) is closely related in that
they also employ a Markov chain Monte Carlo (MCMC) construction, but they
consider the special case of Gaussian noise (f and g can still be nonlinear though).

An alternative to using samples to represent (2) is to solve a linearized version of

Paper III – Nonlinear state space smoothing using the conditional particle filter 133

the problem, by combining the extended Kalman filter (Schmidt 1966; Smith et al.
1962) with the RTS-smoother (Rauch et al. 1965) to solve the linearized problem
analytically. The work of Särkkä (2008) on the unscented RTS-smoother is along the
same line.

It should also be possible to generalise the ideas presented in this paper to proba-
bilistic graphical models along the lines of the work by Naesseth et al. 2014.

Source code for simulated examples are available via the first author’s homepage,
and details on the second simulated example and the indoor positioning problem are
available in Appendix A and B of this paper, respectively.

2 Particle methods

We assume the reader has some basic familiarity with particle filters (see, e.g., Doucet
and Johansen 2011 for an introduction), but to set the notation we will start by a
brief summary of particle filters and particle smoothers.

2.1 Particle filters

In the search for a numerical approximation to p(x1:T |y1:T), the following factoriza-
tion is useful

p(x1:T , y1:T) = µ(x1)
T∏

t=1
g (yt |x t)

T −1∏

t=1
f (x t+1 |x t), (3)

as it allows for the following recursion to be derived (using Bayes’ rule and p(y1:T) =
p(y1)

∏T −1
t=1 p(yt+1 |y1:t))

p(x1:t |y1:t) =
g (yt |x t) f (x t |x t−1)

p(yt |y1:t−1)︸ ︷︷ ︸
(4?)

p(x1:t−1 |y1:t−1). (4)

This factorization can be used to motivate the particle filter. Starting with a particle
(Monte Carlo) approximation of p(x1 |y1) as N particles, (4?) can be applied to
obtain a particle approximation of p(x1:2 |y1:2). Repeating this T − 1 times, a particle
approximation of p(x1:T |y1:T) as N weighted particles {x i1:T ,w i

T }Ni=1 is found. This
is detailed in Algorithm 1, the particle filter, a Sequential Monte Carlo method.

The notation used in Algorithm 1 is

W1(x1) , g (y1 |x1)µ(x1)/q1(x1 |y1) (5a)
W (x1:t) , g (yt |x t) f (x t |x t−1)/q(x t |x t−1, yt). (5b)

Here, q denotes the proposal distribution, which is used to propagate the particles
from time t to time t + 1. If the proposal q is chosen as f , then (5b) simplifies to
W (x1:t) = g (yt |x t) resulting in the so-called bootstrap particle filter.

134

Algorithm 1: Particle Filter

Output: A weighted particle system {x i1:t ,w i
t }Ni=1 approximating p(x1:t |y1:t)

for t = 1, 2, . . . ,T .
1 Draw x i1 ∼ q1(x i) for i = 1, . . .N .
2 Set w i

1 =W1(x i1) for i = 1, . . .N .
3 for t = 2 to T do
4 Draw ait with P

�
ait = j

� ∝ w j
t−1 for i = 1, . . .N .

5 Draw x it ∼ qt (x t |x a
i
t

t−1, yt) for i = 1, . . .N .

6 Set x i1:t = {x a
i
t

1:t−1, x
i
t } for i = 1, . . .N .

7 Set w i
t =W (x i1:t) for i = 1, . . .N .

8 end

5 10 15 20 25 30 35 40

Time

S
t
a
t
e
x

Figure 2. Path degeneracy: The particles in a particle filter are shown as dots, propagated
as the lines indicate. The red dots are particles that have ‘survived’ the resampling steps,
whereas the grey dots have not ‘survived’ the resampling steps. All trajectories x i1:40 have the
part x1:13 in common. This phenomenon occurs in particle filters and is the reason why a
particle filter does not provide a good numerical approximation of p(x1:T |y1:T) for a finite
N .

The main steps in Algorithm 1, namely 4, 5 and 7 are often referred to as re-
sampling, propagation and weighting, respectively. Step 6 is merely bookkeeping. In
Algorithm 1, a notation using ancestor indices ait has been used for the resampling step,
to prepare for the expansion to conditional particle filter with ancestor sampling.

In theory, a particle filter directly gives a numerical approximation of
p(x1:T |y1:T). However, in practice with a finite N , the approximation tends to be
rather poor (unless T is very small), as it typically suffers from path degeneracy as
illustrated in Figure 2.

2.2 Forward – backward particle smoothers

A natural way to find the smoothing distribution for SSMs is to first apply a (for-
ward) filter, and then add a backward pass, adjusting for the ‘new’ information about
the state x t at time t obtained from the later measurements yt+1, . . . , yT . Such an

Paper III – Nonlinear state space smoothing using the conditional particle filter 135

example is the RTS smoother for the linear Gaussian case (Rauch et al. 1965), but
also the more recent particle-based FFBSi algorithm, see, e.g., Lindsten and Schön
(2013) for a recent overview.

The algorithm for FFBSi is not repeated here, but we note that the it relies on
the two step

1. A particle filter with N particles.

2. A backward simulation drawing M (uncorrelated) samples from p(x1:T |y1:T)
using the N particles from Step (1).

The computational complexity of FFBSi is basically O(N M), although some im-
provements can be achieved, see Lindsten and Schön (2013, Section 3.3).

To prepare for the upcoming discussions on convergence, let us briefly comment
on the convergence properties of FFBSi.

How well can a function ℎ(x1:T) be approximated as ℎ̄ using samples from
FFBSi? Let ℎ̄NFFBSi =

1
N

∑N
i=1 ℎ(x i1:T) denote an approximation of ℎ(x1:T) based on

M = N backward trajectories. Under some fairly mild assumptions, it has been
shown Douc et al. (2011, Corollary 9) that there exists a σFFBSi < ∞ such that

√
N

(
ℎ̄NFFBSi − E

�
ℎ(x1:T)|y1:T

�)
(6)

converges weakly to N (0, σ2
FFBSi). To summarize, the convergence rate for FFBSi is√

N , subject to a computational complexity of O(N 2).

3 Smoothing using the Conditional Particle Filter

The smoothing methodology discussed in Section 2.2 builds on a forward-backward
strategy. The MCMC idea offers a fundamentally different way to construct a
smoother, without explicitly running a backward pass, but iteratively running a so-
called conditional particle filter as illustrated in Figure 1. As we will see, this opens
up for a reduced computational complexity. The origin of the method dates back to
the introduction of the PMCMC methods by Andrieu et al. (2010), with important
recent contributions from Lindsten et al. (2014).

First, the conditional particle filter with ancestor sampling (CPF-AS) will be
introduced (Section 3.1), followed by a brief introduction to MCMC (Section 3.2),
and they will in the next step (Section 3.3) be combined to form a particle smoother.
The convergence properties and the computational complexity of the smoother are
then examined in Section 3.4 and Section 3.5, respectively.

3.1 Conditional particle filter with ancestor sampling

The CPF-AS is thoroughly described by Lindsten et al. (2014), and here presented
as Algorithm 2. The CPF-AS is similar to a regular particle filter, Algorithm 1, in

136

Algorithm 2: Conditional particle filter with ancestor sampling (CPF-AS)
Input: Trajectory x1:T [k].
Output: Trajectory x1:T [k + 1].

1 Draw x i1 ∼ q1(x i1) for i = 1, . . . ,N − 1.
2 Set xN1 = x1[k].
3 Set w i

1 =W1(x i1) for i = 1, . . . ,N .
4 for t = 2 to T do
5 Draw ait with P

�
ait = j

� ∝ w j
t−1 for i = 1, . . . ,N − 1.

6 Draw x it ∼ q(x t |x a
i
t

t−1, yt) for i = 1, . . . ,N − 1.
7 Set xNt = x t [k].
8 Draw aNt with P

�
aNt = j

� ∝ w j
t−1 f (xNt |x j

t−1).
9 Set x i1:t = {x a

i
t

1:t−1, x
i
t } for i = 1, . . . ,N .

10 Set w i
t =W (x i1:t) for i = 1, . . . ,N .

11 end
12 Draw J with P (i = J) ∝ w i

T and set x1:T [k + 1] = x J
1:T .

many aspects, but with one particle trajectory x1:T [k] specified a priori (trajectory
number N in Algorithm 2).

The CPF-AS generates N weighted particle trajectories {x i1:T ,w i
T }Ni=1. With

the original formulation of the conditional particle filter in Andrieu et al. (2010),
one of these trajectories is predestined to be x1:T [k]. Extending this with ancestor
sampling, the CPF-AS is obtained and the resulting trajectories {x i1:T ,w i

T }Ni=1 are
still influenced by x1:T [k], but in a somewhat more involved way, as the conditional
trajectory may be ‘partly’ replaced by a new trajectory; see Algorithm 2 for details.

By sampling one of the trajectories x1:T [k+1] = x J
1:T obtained from the CPF-AS

with P (i = J) ∝ w i
T , the CPF-AS can be seen as a procedure to stochastically map

x1:T [k] onto another trajectory x1:T [k + 1].
A Rao-Blackwellized formulation of the CPF-AS for mixed linear/nonlinear

models is also possible, see Paper V for details.

Paper III – Nonlinear state space smoothing using the conditional particle filter 137

3.2 Markov chain Monte Carlo

MCMC offers a strategy for sampling from a complicated probability distribution π
on the space Z , using an iterative scheme.

A Markov chain on Z is a sequence of the random variables
{ζ [1], ζ [2], ζ [3], . . . }, ζ [k] ∈ Z . The chain is defined by a kernel K, stochas-
tically mapping one element ζ [k] onto another element ζ [k + 1]. That is, the
distribution of the random variable ζ [k] depends on the previous element as
ζ [k + 1] ∼ K(·|ζ [k])).

If the kernel K is ergodic with a unique stationary distribution π , the marginal
distribution of the chain will approach π in the limit. Let ζ [0] be an arbitrary initial
state with π(ζ [0]) > 0, then by the ergodic theorem (Robert and Casella 2004)

1
K

K∑

k=1

ℎ(ζ [k])→ Eπ
�
ℎ(ζ)� , (7)

as K → ∞ for any function ℎ : {Rn}T 7→ R, with Eπ [·] denoting expectation w.r.t.
ζ under the distribution π .

That is, for sufficient large k, the realization of {ζ [k], ζ [k + 1], . . . } is (possibly
correlated) samples from π . This summarizes the idea of the MCMC methodology;
if π is of interest, construct a kernel K with stationary distribution π and simulate a
Markov chain to obtain samples of π .

Note that any finite realization of the chain {ζ [1], . . . , ζ [K]} may be an arbitrar-
ily bad approximation of π . This typically depends on the initialization ζ [0] and on
how well the kernel K manages to explore Z , referred to as the mixing.

3.3 Smoothing using MCMC

Take the general spaceZ as the more concrete space {Rnx }T (where x1:T lives). Note
that CPF-AS in Algorithm 2 maps one element in {Rnx }T onto another element in
{Rnx }T , and can therefore be interpreted as an MCMC kernel. The unique station-
ary distribution for CPF-AS is p(x1:T |y1:T) (which is far from obvious, but shown
by Lindsten et al. (2014)). Now, by constructing a Markov chain, Algorithm 3 is
obtained, generating samples from the distribution p(x1:T |y1:T) (i.e., a smoother).

An illustration of Algorithm 3 was provided already by Figure 1; The initial
trajectory is obviously not a sample from π = p(x1:T |y1:T), and artifacts from the
initializations appear to be present also in iteration [1], [2], and possibly [3]. How-
ever, iterations [5], [6], [7] appear to be (correlated) samples from the distribution π ,
which is what was sought.

138

Algorithm 3: MCMC smoother
Input: x1:T [0] (Initial (arbitrary) state trajectory).
Output: x1:T [1], . . . , x1:T [K] (K samples from the Markov chain).

1 for k = 1 to K do
2 Run the CPF-AS (Algorithm 2) conditional on x1:T [k − 1] to obtain

x1:T [k].
3 end

3.4 Convergence

The convergence analysis of Algorithm 3 can, similar to the FFBSi in Section 2.2,
be posed as the question of how well ℎ(x1:T) can be approximated by ℎ̄KCPF-AS =
1
K

∑K
k=1 ℎ(x1:T [k]), where x1:T [k] comes from Algorithm 3. Before stating the theo-

rem, let us make the following two rather technical assumptions

A1. The proposal q is designed such that given any x t−1 with non-zero probability
(given the measurements y1:t−1), any x t with non-zero probability (given y1:t)
should be contained in the support of q .

A2. There exists a constant κ < ∞ such that ‖W ‖∞ < κ.

Theorem 1 (Convergence for Algorithm 3). Under the assumptions A1 and A2, for
any number of particles N > 1, and for any bounded function ℎ : {Rnx }T 7→ R, there
exists a σℎ < ∞ such that

√
K

(
ℎ̄KCPF-AS − E

�
ℎ(x1:T)|y1:T

�)
(8)

converges weakly toN (0, σ2
ℎ).

Proof. The CPF-AS is uniformly ergodic for N > 1, Lindsten et al. (2014, Theorem
3). Therefore Theorem 1.5.4 in Liang et al. (2010) is applicable. �

Note: The convergence of Algorithm 3 to the smoothing distribution is by Theo-
rem 1 not dependent of the number of particles N → ∞, but is only relying on the
number of iterations K → ∞.

3.5 Computational complexity

The computational complexity of Algorithm 3 is of order O(KN), where N is the
number of particles in the CPF-AS and K the number of iterations. However, in
some programming languages, e.g., Matlab, vectorized implementations are prefered.
The sequential nature of Algorithm 3 in k does not allow such a vectorized imple-
mentation, which is a clear drawback. On the other hand, K does not have to be

Paper III – Nonlinear state space smoothing using the conditional particle filter 139

specified a priori, but Algorithm 3 can be run repeatedly until satisfactory results are
obtained, or a given computational time limit is violated.

The short message here is: The convergence rate for Algorithm 3 is
√
K , obtained

at a computational cost of O(K) (for a fixed number of particles N). This can
be compared to the convergence rate

√
N to the less beneficial cost of O(N 2) for

FFBSi. However, one should remember that the samples obtained from FFBSi are
uncorrelated, which is typically not the case for Algorithm 3.

4 Simulated examples

4.1 Scalar linear Gaussian SSM

As a first example, consider the scalar linear Gaussian SSM

x t+1 = 0.2x t + ut + w t , w t ∼ N (0, 0.3), (9a)
yt = x t + et , et ∼ N (0, 1), (9b)

with E [x1] = 0 and E
�
x2

1
�
= 0.1. Implementing Algorithm 3 with N = 2 (with

T = 80 and ut being low-pass filtered white noise), the result shown in Figure 1 is
obtained. As the system is linear and Gaussian, analytical expressions for p(x1:T |y1:T)
can be found using the RTS smoother, shown in gray in Figure 1.

4.2 Nonlinear, multi-modal example

We will now turn to a more challenging problem, pinpointing some interesting
differences between the forward-backward smoother (FFBSi) and our MCMC-based
smoother in Algorithm 3. We will start with a discussion using intuitive arguments,
to motivate the example.

The FFBSi smoother handles the path degeneracy problem in the particle filter
discussed in Section 2. However, the support for the backward simulation is still
limited to the particles sampled by the particle filter. As those particles, for t <

T , are sampled from the filtering distribution p(x t |y1:t) (and not the smoothing
distribution p(x t |y1:T), due to the factorization (4)), only few of the particles may
be useful if the difference between the filtering and smoothing distribution is ‘large’.
This might cause a problem for the FFBSi smoother, since there might exist cases
where the particles do not explore the relevant part of the state space. An interesting
question is now if Algorithm 3 can be expected to explore the relevant part of the
state space better than the FFBSi smoother?

One way to understand the effect of the conditional trajectory in CPF-AS is as
follows: If a proposal distribution q , f is used in a regular particle filter (Step 5 in
Algorithm 1), it is compensated for in the update of the weights, Step 7 and (5b), so
that {x i1:t ,w i

t }Ni=1 are still an approximation of p(x1:t |y1:t), even if q , f .

140

Figure 3. The ‘landscape’ for the Example in 4.2. The surface is proportional to g (yt |x t),
and the axis are time t and state x , respectively. The trajectories are the mean of the results
of a particle filter (Algorithm 1, filtering), FFBSi (smoothing) and Algorithm 3 (smoothing).
Note that for both smoothing methods, a total of 50 000 particles were sampled, so the
comparison is ‘fair’ in that sense.

The CPF-AS can be thought of as a regular particle filter, but with a ‘proposal’
q(x t) that deterministically sets xNt = x t [k] (Step 7 of Algorithm 2) and ‘artifi-
cially’ assigns an ancestor to it (Step 8). However, there is no compensation for this
‘proposal’ in Step 10. Therefore, the samples {x i1:t ,w i

t }Ni=1 from the CPF-AS can be
expected to be biased towards the conditional trajectory x1:T [k].

On the other hand, we know from Lindsten et al. (2014) that the conditional
trajectories in the limit k → ∞ are samples of p(x1:T |y1:T). The bias towards x1:T [k]
in the CPF-AS can therefore be thought of as ‘forcing’ the CPF-AS to explore areas
of the state space relevant for the smoothing distribution p(x1:T |y1:T) (rather than
the filtering distribution p(x1:t |y1:t)) for large k.

A simulated example, appealing to this discussion, is now given. The problem is
to sample from the smoothing distribution for a one-dimensional SSM with multi-
modal properties of g (x t |yt). The state space model is f (x t+1 |x t) = N (x t+1 |x t , σ2)
and g (yt |x t) is implicitly defined through the surface in Figure 3, where the surface
level in point (x, t) defines g (yt |x t), for a given yt (not shown).

Given x0, finding the maximum a posteriori estimate of the smoothing distribu-
tion p(x1:T |y1:T) amounts to finding the path x1:T maximizing p(x1:T |y1:T) ∝∏T

t=1 f (x t |x t−1)
∏T

t=1 g (yt |x t), where g (yt |x t) is defined through the surface in Fig-
ure 3. Intuitively, this can be thought of as going from left (t = 0) to right (t = 100)
in Figure 3, playing the children’s game ‘the floor is hot lava’ with the cost f for
moving sideways.

The mean of the filtering distribution p(x t |y1:t) for t = 1, . . . ,T (obtained
by Algorithm 1) is shown in Figure 3, together with the mean from two different
smoothers; FFBSi (Section 2.2) and Algorithm 3, respectively.

The two smoothing approximations can indeed be expected to approach each
other in the limit N → ∞ / K → ∞. The problem is interesting because the

Paper III – Nonlinear state space smoothing using the conditional particle filter 141

Figure 4. Particle densities (on a blue-yellow-red scale, from low to high) for FFBSi (left) and
Algorithm 3 (right). In both cases, 50 000 particles are sampled for each t . They are, however,
centered along the filtering distribution for the FFBSi, but biased toward the smoothing
distribution for Algorithm 3. That is, Algorithm 3 explores (at least in this example) the
relevant part of the state space (i.e., the left ‘shoulder’) better.

‘likelihood landscape’ in Figure 3 contains a ‘trap’. The filtering distribution (and
hence the particle filter in FFBSi) will follow the right ‘shoulder’ and discover ‘too
late’ (the valley at t ≈ 70) that it ‘should’ have walked along the left. The smoothing
distribution, however, walks along the left shoulder earlier, as it ‘knows’ that the
valley at the right hand side will come.

To quantify this discussion on how well the particles explore the state space for
the two smoothers, the densities of the sampled particles for both smoothers are plot-
ted in Figure 4. This suggest that Algorithm 3 is able to give a better approximation
of the smoothing distribution, as a larger proportion of the particles are sampled in
a relevant part of the state space.

5 Indoor positioning application

In this section, the presented algorithm is applied to a real-world sensor fusion prob-
lem; indoor positioning using ultrawideband (UWB), gyroscope and accelerometer
measurements. We apply the model from Kok et al. (2015), but rather than using
the optimization-based approach in that paper, we employ Algorithm 3. Instead of
obtaining the maximum a posteriori (MAP) estimate as a point (as in Kok et al.
2015), we will obtain samples from the posterior distribution, which can be used to
estimate the MAP, mean, credibility intervals, etc.

5.1 Problem setup

We take the problem as presented by Kok et al. (2015), a 10-dimensional nonlinear
non-Gaussian problem. The goal is to estimate the position, velocity and orientation
of the sensor board with the UWB transmitter, accelerometer and gyroscope, placed
on the foot of a human. The UWB transmitter sends out pulses at (unknown) times

142

τt , and the time of arrival at the 10 receivers (indexed by m) are measured. The setup
is calibrated using the algorithm in Kok et al. (2015), making sure that the receiver
positions r nm are known and that their clocks are synchronized.

In the model, the state vector is xTt = [pTt vTt qTt], pt is the (3D) position, vt the
velocity and qt the orientation (parametrized using unit quaternions). The SSM is
given by

pnt+1 = pnt +Tsvn
t +

T 2
s
2 ant , (10a)

vn
t+1 = vn

t +Ts ant , (10b)

qnbt+1 = qnbt � exp Ts
2 ωt , (10c)

ym,t = τt + 1
c ‖r nm − pnt ‖2 + em,t , (10d)

where (10a) – (10c) are the dynamics and (10d) is the measurement equation. The
superscripts n and b denote coordinate frames (n is the navigation frame aligned with
gravity, and b is the body frame, aligned with the sensor axes of the accelerometers),
c denotes the speed of light, � denotes the quaternion product and exp denotes the
vector exponential (Hol 2011). Ts is the time between two data samples from the
accelerometer and gyroscope, sampled with 120Hz. However, the UWB samples are
sampled at approximately 10Hz. Due to the nature of UWB measurements, em,t is
modeled as

em,t ∼



(2 − α)N (0, σ2), em,t < 0,
αCauchy(0, γ), em,t ≥ 0,

(11)

because measurements can only arrive later (and not earlier) in case of multipath
and non-line-of-sight propagation. The acceleration ant is found via accelerometer
measurements ya,t , modeled as

ya,t = Rbn
t (ant − gn) + δa + ea,t , (12)

with gn denoting gravity, Rnb
t is a rotation matrix representation of qnbt , and Rbn

t =

(Rnb
t)T . The angular velocity ωt is obtained from the gyroscope measurements yω,t

as

yω,t = ωt + δω + eω,t . (13)

The noise ea,t and eω,t are modeled asN (0, σ2
a) andN (0, σ2

ω), respectively. δa and δω
are sensor biases. Note that the accelerometer and gyroscope measurements are not
treated as outputs in (10), but rather as inputs to the dynamics, implicitly introducing
an uncertainty in f (x t+1 |x t) through the measurement noise.

Paper III – Nonlinear state space smoothing using the conditional particle filter 143

2

4

x
[m

]

1

2

3

y
[m

]
0 5 10 15 20

0

1

z
[m

]
Time [s]

(a). Smoothing distribution for position.

0 5 10 15 20
−180

0

180

Time [s]

Y
aw

[◦
]

−10

 20

50

P
it
ch

[◦
]

−100

−50

0

R
o
ll
[◦
]

(b). Smoothing distribution for orientation.

Figure 5. The mean (black line) and 99% credibility intervals (orange fields) of p(x1:T |y1:T)
for the position and orientation states, and ground truth (dashed gray) from an optical
reference system.

5.2 Results

Algorithm 3 was applied to data presented by Kok et al. (2015) with (10) – (13). The
results for K = 1000 iterations and N = 500 particles are summarized in Figure 5 in
terms of the mean and credibility intervals (cf. Figure 13 and 14 in Kok et al. 2015).
For reference, the ground truth (obtained by an optical reference system) is also
shown in the plot. In terms of computational load, the presented results took about
1 day to obtain on a standard desktop computer.

Note the credibility intervals, which are the gain of using this method producing
samples (as opposed to a method based on point estimates). The credibility inter-
vals are varying over time and are different for different states, which indeed adds
information to the results.

144

6 Conclusions

We have shown how the CPF-AS can be used to solve the nonlinear state smoothing
problem in a disparate way compared to the currently available particle smoothers.
The asymptotic convergence of our smoother was established, and we also illustrated
the use of the smoother on two simulated examples and one challenging real-world
application.

Based on the results of Theorem 1 and the numerical examples we conclude
that Algorithm 3 is indeed a competitive alternative to the existing state-of-the-art
smoothers. The present development opens up for interesting future work, such
as hybrid versions of FFBSi and Algorithm 3, where FFBSi is used to initialize
Algorithm 3. Further studies on how to tackle the trade-off between the number of
particles N and the number of iterations K in Algorithm 3 for optimal performance
(given a computational limit) would also be interesting.

A Appendix: Simulated nonlinear, multimodal example

This appendix gives an extended introduction to the problem considered in Sec-
tion 4.2. The essential details are in 4.2, but we will provide an alternative introduc-
tion. The state space model considered in the problem is

x t+1 |x t ∼ N (x t , 0.5), (14a)
yt |x t ∼ g (yt |x t), (14b)

x1 = 3. (14c)

The problem concerns smoothing for a given output sequence y1:t . Thus we write
G(x t) , g (yt |x t), the likelihood of x t , omitting the dependence on yt . G(x t) is
defined by the surface of Figure 6, which is parametrized as a sum of six Gaussian-like
functions. The specific parametrization is found in the provided source code.

The state space filtering/smoothing problem arising from this problem is solved
using three approaches. For filtering, the particle filter in Algorithm 1, with qt = f ,
is used. For smoothing, the FFBSi with rejection sampling, as presented in Lind-
sten and Schön (2013, Algorithm 5), is used, together with the MCMC smoother in
Algorithm 3, and the results reported by in Section 4.2 are obtained.

B Appendix: Indoor positioning

This appendix focuses on the indoor positioning application in Algorithm 5. The
problem is discussed in Kok et al. (2015), and concerns a sensor fusion problem
involving accelerometer, gyroscope, and ultrawideband (UWB) measurements. There
are several details on the problem not covered in the main text; the non-uniform

Paper III – Nonlinear state space smoothing using the conditional particle filter 145

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

time t
state x

G
(x

t
)

Figure 6. Definition of G(x t).

sampling intervals of the UWB measurements, the unknown transmission times, the
sensor biases, some issues on the ancestor sampling, and the initialization of the first
conditional trajectory.

We repeat the state space model here:

pnt+1 = pnt +Tsvn
t +

T 2
s
2 ant ,

vn
t+1 = vn

t +Ts ant ,

qnbt+1 = qnbt � exp Ts
2 ωt ,




f (x t+1 |x t , ant , ωt) (15a)

ym,t = τt + ‖r nm − pnt ‖2 + em,t
	
g (yt |x t). (15b)

Most important, xT
t = [(pnt)T (vn

t)T (qnbt)T] forms the state vector, and ant are the ac-
celeration,ωt the angular velocity, and ym,t are the UWB measurements (for receiver
number m). The sampling frequency for the accelerometers and the gyroscopes is
120 Hz.

The acceleration and angular velocity are modeled to be measured as

ya,t = Rbn
t (ant − gn) + δa + ea,t , (16)

yω,t = ωt + δω + eω,t . (17)

Through the measurement noise in these models, stochastic noise enters the state
space.

B.1 Non-uniform sampling interval

For every sampling step t , the accelerometer and gyroscope data ya,t and yω,t are
available. However, the UWB measurements are recorded at a lower sampling rate,
and are available only for approximately every tenth sample. A high level algorithm
illustrating how this is handled is shown in Algorithm 4.

146

Algorithm 4: MCMC smoother

1 for k = 1 to K do
2 Sample x i1 from q1(x1).
3 Draw x i1 ∼ p(x i1), i ∈ [1,N − 1].
4 Set xN1:T = x1:T [k].
5 for t = 1 to T − 1 do
6 if UWB measurement {ym,t }Mm=1 available then
7 Set w i

t = g (yt |x it), i ∈ [1,N].
8 Draw ait with P

�
ait = j

� ∝ w j
t−1, i ∈ [1,N − 1].

9 Set x i1:t = {x a
i
t

1:t−1, x
i
t }, i ∈ [1,N − 1].

10 end
11 Draw x it+1 from f (x it+1 |x it , at , ωt), i ∈ [1,N − 1].
12 Draw aNt+1 with P

�
aNt+1 = j

� ∝ f (xNt+1 |x
j
t).

13 Set xN1:t+1 = {x a
N
t+1

1:t , x
N
t+1}.

14 end
15 Draw J with P (i = J) ∝ 1

N and set x1:T [k + 1] = x J
1:T .

16 end
(Note that the notation for the ancestor sampling variable is b , instead of a, not to confuse it with
the accelerometer data.)

B.2 Unknown transmission times

When evaluating (10d), the transmission time τt is unknown. It is approximately
handled by Monte Carlo integration:

g (yt |x t) = pe (ym,t − τt − ‖r nm − pnt ‖2 | τt)
∼∝

∑

j
pe (ym,t − τ jt − ‖r nm − pnt ‖2), (18)

where pe is the pdf defined by (11), and τ jt are samples with possible values of τ. All
particles (indexed with i) are evaluated with the same set of samples τ jt .

B.3 Sensor bias

The numerical values of the sensor biases δa and δω are small, compared to the noise
levels. They were therefore approximated ad hoc. However, a more thorough system
identification approach can be applied within the CPF-AS framework, as proposed
by Lindsten (2013).

Paper III – Nonlinear state space smoothing using the conditional particle filter 147

B.4 Evaluation of f (x t+1 |x t , ant , ωt)
For the ancestor sampling in Step 11 in Algorithm 4, f (x t+1 |x t , ant , ωt) needs to
be evaluated. This involves the quaternion product and vector exponential in (10c),
which can be manipulated as follows:

qnbt+1 = qnbt � exp Ts
2 (ωt + eω,t)⇔

eω,t = 2
Ts

log
(
(qnbt)−1 � qnbt+1

)
− ωt (19)

where log denotes the logarithm for unit quaternions (Hol 2011). An approximation
of this expression was used in the computations.

B.5 Low chance of ‘new ancestor’

One challenge is the small uncertainty in the position (10c), because of the (physi-
cally reasonable) factor T 2

s
2 (≈ 10−5) in front of the noise term. To handle this, the

uncertainty was artificially increased in the ancestor sampling step. This causes a
substantial increase in the mixing, but also a non-feasible ‘jump’ in the smoothing
trajectories. These artificial ‘jumps’ appears, however, to be rare and can also be
expected to ‘even out’ as K → ∞, but might indeed cause an overestimate of the
variance.

A more thorough treatment would be to apply the recent development by Lind-
sten et al. (2015).

B.6 Initialization

The model has a state space of 9 dimensions (parametrized using 10 variables). The
structure of the model and the uncertainties cause, according to our experience,
the particle filter to diverge quickly if N is not sufficiently large. To speed up the
initialization phase, a more ‘loose’ model was used in the first run of the CPF-AS
to find one reasonable trajectory. This non-diverging trajectory was then used as the
conditional trajectory for the subsequent run with the correct model.

148

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle
Markov chain Monte Carlo methods”. In: Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology) 72.3, pp. 269–342.

Mark Briers, Arnaud Doucet, and Simon Maskell (2010). “Smoothing algorithms
for state–space models”. In: Annals of the Institute of Statistical Mathematics 62.1,
pp. 61–89.

Randal Douc, Aurélien Garivier, Eric Moulines, and Jimmy Olsson (2011). “Sequen-
tial Monte Carlo smoothing for general state space hidden Markov models”. In:
The Annals of Applied Probability 21.6, pp. 2109–2145.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle filtering
and smoothing: fifteen years later”. In: Nonlinear Filtering Handbook. Ed. by D.
Crisan and B. Rozovsky. Oxford: Oxford University Press, pp. 656–704.

Jeroen D. Hol (2011). “Sensor fusion and calibration of inertial sensors, vision, ultra-
wideband and GPS”. PhD thesis. Sweden: Linköping University.

Genshiro Kitagawa (1996). “Monte Carlo filter and smoother for non-Gaussian non-
linear state space models”. In: Journal of computational and graphical statistics 5.1,
pp. 1–25.

Manon Kok, Jeroen D. Hol, and Thomas B. Schön (2015). “Indoor positioning using
ultrawideband and inertial measurements”. In: IEEE Transactions on Vehicular
Technology 64.4, pp. 1293–1303.

Faming Liang, Chuanhai Liu, and Raymond Carroll (2010). Advanced Markov chain
Monte Carlo methods: learning from past samples. Chichester, West Sussex, UK:
John Wiley & Sons, Ltd.

Fredrik Lindsten (2013). “An efficient stochastic approximation EM algorithm us-
ing conditional particle filters”. In: Proceedings of the 38th International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, BC, Canada,
pp. 6274–6278.

Fredrik Lindsten, Pete Bunch, Sumeetpal S. Singh, and Thomas B. Schön (2015). “Par-
ticle ancestor sampling for near-degenerate or intractable state transition models”.
In: arXiv:1505.06356.

Fredrik Lindsten, Michael I. Jordan, and Thomas B. Schön (2014). “Particle Gibbs
with ancestor sampling”. In: The Journal of Machine Learning Research (JMLR)
15.1, pp. 2145–2184.

Fredrik Lindsten and Thomas B. Schön (2013). “Backward simulation methods for
Monte Carlo statistical inference”. In: Foundations and Trends in Machine Learn-
ing 6.1, pp. 1–143.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön (2014). “Sequential
Monte Carlo for graphical models”. In: Advances in Neural Information Processing
Systems 27 (NIPS). Montréal, QC, Canada, pp. 1862–1870.

Paper III – Nonlinear state space smoothing using the conditional particle filter 149

Gianluigi Pillonetti and Bradley M. Bell (2008). “Optimal smoothing of non-linear
dynamic systems via Monte Carlo Markov chains”. In: Automatica 44.7, pp. 1676–
1685.

Herbert E. Rauch, Frank F. Tung, and Charlotte T. Striebel (1965). “Maximum
likelihood estimates of linear dynamic systems”. In: AIAA journal 3.8, pp. 1445–
1450.

Christian P. Robert and George Casella (2004). Monte Carlo statistical methods. 2. ed.
New York: Springer.

Simo Särkkä (2008). “Unscented Rauch–Tung–Striebel smoother”. In: IEEE Transac-
tions on Automatic Control 53.3, pp. 845–849.

Stanley F. Schmidt (1966). “Application of state-space methods to navigation prob-
lems”. In: Advances in Control Systems: Theory and Applications. Vol. 3. New
York, NY, USA: Academic Press, pp. 293–340.

Gerald L. Smith, Stanley F. Schmidt, and Leonard A. McGee (1962). Application of
statistical filter theory to the optimal estimation of position and velocity on board a
circumlunar vehicle. Tech. rep. TR R-135. NASA.

150

Paper IV

Title
Marginalizing Gaussian process hyperparameters using sequential Monte
Carlo

Authors
Andreas Svensson, Johan Dahlin and Thomas B. Schön

Edited version of
Andreas Svensson, Johan Dahlin, and Thomas B. Schön (2015). “Marginalizing Gaussian
process hyperparameters using sequential Monte Carlo”. In: Proceedings of the 6th IEEE Inter-
nationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
Cancún, Mexico, pp. 489–492.

Digital identity
doi:10.1109/camsap.2015.7383840

Financial support
The Swedish Research Council (VR) via the project Probabilistic modeling of dynamical systems (contract
number: 621-2013-5524).

Thanks to
Oscar Samuelsson and Dr. Jesús Zambrano for providing the sensor data in Section 3.3.

152

Marginalizing Gaussian process
hyperparameters using sequential

Monte Carlo

Abstract

Gaussian process regression is a popular method for non-parametric probabilistic
modeling of functions. The Gaussian process prior is characterized by so-called hy-
perparameters, which often have a large influence on the posterior model and can be
difficult to tune. This work provides a method for numerical marginalization of the
hyperparameters, relying on the rigorous framework of sequential Monte Carlo. Our
method is well suited for online problems, and we demonstrate its ability to handle
real-world problems with several dimensions and compare it to other marginalization
methods. We also conclude that our proposed method is a competitive alternative
to the commonly used point estimates maximizing the likelihood, both in terms of
computational load and its ability to handle multimodal posteriors.

1 Introduction

The Gaussian process (GP) is a non-parametric probabilistic model that can be used
to model an unknown nonlinear function f (·) from observed input data x and
(noisy) output data y = f (x). No explicit form of f (·) is assumed, but some as-
sumptions on f (·) are encoded through the GP prior and a mean function mθ (x), a
covariance function κθ (x, x ′), and their so-called hyperparameters θ ∈ Θ. In mathe-
matical terms, f is a priori modeled to be distributed as

f (x) ∼ GP
(
mθ (x), κθ (x, x ′)

)
, (1)

i.e., an infinite-dimensional Gaussian distribution. See Rasmussen and Williams
(2006) for a more general introduction to GPs.

The posterior distribution over f (·) given data (y, x) is also a GP. This is due to
the conjugacy property of the Gaussian distribution. The posterior is often greatly
influenced by the choice of hyperparameters θ , which typically are unknown. We
therefore propose a method to marginalize the hyperparameters in GPs. Marginaliza-
tion can be seen as averaging over the range of hyperparameters supported by the data
and by the prior; θ can be integrated out by treating it as a random variable with prior

153

154

p(θ) and likelihood p(y |x, θ), giving rise to the posterior p(θ |y, x) ∝ p(y |x, θ)p(θ).
For example, the predictive distribution is computed by

p(y∗ |x∗, y, x) =
∫

p(y∗ |x∗, y, x, θ)p(θ |y, x)dθ, (2)

which unfortunately is analytically intractable. However, using a Monte Carlo
method to obtain N (weighted) samples {w (i), θ (i)}Ni=1 of the distribution p(θ |y, x),
the predictive distribution (2) can be approximated by

p̂(y∗ |x∗, y, x) =
N∑

i=1
w (i)p(y∗ |x∗, y, x, θ (i)), (3)

where the weights are normalized, i.e.,
∑

i w (i) = 1.
A common alternative to marginalization is to choose a point estimate of θ

using an optimization procedure maximizing the likelihood p(y |x, θ) (sometimes
referred to as empirical Bayes). This may be difficult if the likelihood is multimodal.
See the small toy example in Figure 1 illustrating the robustness of marginalization
compared to point estimates. There are also situations where point estimates are
not sufficient, and marginalization is necessary, such as the change point detection
problem in Section 3.3.

Our contribution is a method for sampling from the hyperparameter posterior
distribution p(θ |y, x), based on sequential Monte Carlo (SMC) samplers. SMC sam-
plers and their convergence properties are well studied (Whiteley 2012).

Several methods have previously been proposed in the literature for marginal-
ization of the GP hyperparameters: Bayesian Monte Carlo (BMC) (Osborne et al.
2008), slice sampling (Agarwal and Gelfand 2005), Hamiltonian Monte Carlo (Neal
2010; Saatçi et al. 2010), and adaptive importance sampling (AIS) (Petelin et al. 2014).
Particle learning which is closely related to SMC has been proposed by Gramacy and
Polson (2011) for this purpose. The work by Gramacy and Polson, however, is not
targeting the hyperparameters directly, and makes (possibly restrictive) assumptions
on conjugate priors and model structure.

In this paper, we compare our proposed method to some of these methods, and
apply it to two real-data problems: the first demonstrates that marginalization does
not have to be more computationally demanding than finding point estimates. The
second example, which deals with a fault detection problem from industry, is possible
only with an efficient method for marginalization. Our proposed method (and all
examples) are available as Matlab code via the first authors homepage1.

From the experiments, we conclude that the advantages of the proposed method
are (i) robustness towards multimodal hyperparameter posteriors, (ii) simplified
tuning (compared to some other alternatives), (iii) competitive computational load,
and (iv) online updating of hyperparameters as the data record grows.

1http://www.it.uu.se/katalog/andsv164

Paper IV – Marginalizing GP hyperparameters using SMC 155

−4 0 4 8

−2

−1

0

x
∗

y
∗

−4 0 4 8

−2

−1

0

x
∗

y
∗

(a). Gaussian process regression for the data set defined by the red dots, using two different
point estimates for the hyperparameters, each corresponding to a local minimum in (b, left).

−4 0 4 8

−2

−1

0

x∗

y
∗

Posterior mean
Data point
Posterior pdf

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

(b). Left: the (multimodial) hyperparameter posterior conditional on the 9 data points. Right:
the posterior using the proposed method (which marginalizes the hyperparameters, and thus
handles the multimodality).

Figure 1. A small example illustrating the influence of the hyperparameters in the GP prior
to the posterior estimate.

2 Sampling hyperparameters using SMC

For the numerical marginalization (3), we require N samples, known as particles,
from the posterior. In this section, we discuss how to use a SMC sampler (Del
Moral et al. 2006) to generate such a particle system {θ (i),w (i)}Ni=1, where w (i) is the
weight of particle θ (i). The underlying idea is to construct a sequence of probability
distributions ({π0, . . . , πP }), starting from the prior, and ending up in the posterior.
The particles are then ‘guided’ through the sequence.

To construct a sequence {π0, . . . , πP }, we use the fact that p(θ |y, x) depends on
the data (y, x), by partitioning the data points into P disjoint batches {Bn}Pn=1 and
adding them sequentially as πn(θ) ∝ p(yB1:n |xB1:n, θ)p(θ).

To guide the particles through the smooth sequence {π0, . . . , πP }, we will itera-
tively apply the three steps weighting, resampling and propagation, akin to a particle
filter.

In the weighting step, the ‘usefulness’ of each particle is evaluated. To ensure
convergence properties, the particles can be evaluated as (Del Moral et al. 2006,
Section 3.3.2)

156

π0

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

π1

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

π2

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

π3

log(l)

lo
g(
σ
n
)

−2 0 2

−3

−1

1

(a). A transition from the prior p(θ) to the posterior p(θ |y, x) for the data in Figure 1b,
obtained by adding 3 data points in each step to the likelihood. The particles are obtained
from the SMC sampler.

−5 0 5 10

−3

−2

−1

0

1

x
∗

y
∗

−5 0 5 10

−3

−2

−1

0

1

x
∗

y
∗

−5 0 5 10

−3

−2

−1

0

1

x
∗

y
∗

−5 0 5 10

−3

−2

−1

0

1

x
∗

y
∗

(b). GP regression with marginalized hyperparameters from the corresponding posterior,
obtained as a by-product from the particles depicted in (a). From left to right, 0 data points
(i.e., the prior), 3 data points, 6 data points, and 9 data points. As we formulated the problem,
only the rightmost figure is of interest. This illustrates however how this method can be used
in online problem in a natural way.

Figure 2. A small example illustrating the influence of the hyperparameters in the GP prior
to the posterior estimate.

w (i)
n =

πn(θ (i)n−1)
πn−1(θ (i)n−1)

w (i)
n−1. (4)

To avoid numerical problems, the particles have to be resampled. The idea is to
duplicate particle with large weights, and discard particles with small weights.

To propagate the particles θ (i)n−1 from πn−1 to πn, a Metropolis-Hastings (MH)
kernel K : Θ 7→ Θ with invariant distribution πn can be used. The procedure
of propagating θn−1 (a sample of πn−1) to θn (a sample of πn) by K is as follows:
(i) Sample a new particle θ ′ from a proposal q(·|θn−1), e.g., a random walk with
variance ℎ. (ii) Compensate for the discrepancy between πn and q by setting θn = θ ′

with probability
α(θn, θ ′) = min

{
1, πn(θ

′)
πn(θn)

q(θn |θ′)
q(θ′ |θn)

}
, (5)

and otherwise θn = θn−1. To improve the mixing, this procedure can be repeated K
times. For this, we use the notation θn−1 = θ0

n → θ1
n → · · · → θKn = θn .

We now have an SMC sampler to obtain samples from the hyperparameter

Paper IV – Marginalizing GP hyperparameters using SMC 157

Algorithm 1: Hyperparameter posterior sampler
Input: Data (y, x), GP prior, and prior p(θ).
Output: N samples {θ (i)}Ni=1 from p(θ |y, x) ∝ p(y |x, θ)p(θ).
All statements with superscript (i) are for i = 1, . . . ,N .

1 Define πn(θ) = p(yB1:n |xB1:n, θ)p(θ) by partitioning the data into P batches
{Bn}Pn=1.

2 Sample θ (i)0 from p(θ) (= π0(θ)).
3 for n = 1 to P do
4 Update weights according to (4).
5 Resample {θ (i)n ,w

(i)
n }Ni=1 if needed.

6 for k = 1 to K do
7 Propose θ ′(i) from q(θ ′|θk−1,(i)n).
8 Set θk,(i)n = θ ′(i) with prob. α(θk−1,(i)n , θ ′(i)) (5).
9 end
10 end

posterior, summarized in Algorithm 1 and illustrated by Figure 2. From the figure,
the suitability to online applications is clear: If another data point is added to the
data, the sequence can be extended to π4 including the new data point, and only the
transition from π3 to π4 has to be performed.

We make use of the adaptive SMC sampler by Fearnhead and Taylor (2013) in
the numerical examples to adapt the proposal q automatically.

The computational cost of Algorithm 1 is in practice governed by the 2N PK
evaluations of the likelihood p(y |x, θ). Hence, it is important to choose the number
of samples N , SMC steps P , and MH-moves per SMC-step K sensibly. An idea of
sensible numbers will be given along with the examples in the next section.

3 Examples and results

We consider three examples for demonstrating our proposed approach. First, we
consider a small simulated example, also comparing to alternative sampling methods,
and thereafter two applications with real-world data. The first real-data example is a
benchmark problem to compare the marginalization approach in Algorithm 1 to the
point estimates obtained using optimization. In the third example, we illustrate how
we can make use of our solution within a GP-based online change point detection
algorithm. To this end, we require marginalization of the hyperparameters, so an
efficient hyperparameter posterior sampler is indeed a key enabler for this. The
online nature of the problem also fits well to the possibility to update the samples in
Algorithm 1 online, as discussed in Section 2.

158

x
∗

y
∗

Point estimates (0.62 s)

x
∗

y
∗

SMC, N = 6, P = 3, K = 2, (0.13 s)

x
∗

y
∗

AIS, N = 5, K = 5, (0.071 s)

x
∗

y
∗

SMC, N = 19, P = 5, K = 2, (0.49 s)
x
∗

y
∗

BMC, N = 128, (0.43 s)

x
∗

y
∗

Grid, N = 128, (0.39 s)

x
∗

y
∗

AIS, N = 12, K = 12, (0.31 s)

x
∗

y
∗

SMC, N = 47, P = 7, K = 2, (1.6 s)

x
∗

y
∗

AIS, N = 25, K = 25, (1.4 s)

x
∗

y
∗

SMC, N = 101, P = 11, K = 3, (7.3 s)

x
∗

y
∗

BMC, N = 2187, (30 s)

x
∗

y
∗

Grid, N = 2187, (4.8 s)

x
∗

y
∗

AIS, N = 47, K = 47, (4.6 s)

Figure 3. Comparison between 15 runs of SMC (Algorithm 1), BMC, AIS, and griding, as
well optimized point estimates. The predictions (mean, solid, and 3 standard deviations,
dashed) are shown, together with the red data points. The number of particles/samples/grid
points is denoted by N , while K and P are algorithm specific tuning parameters. The mean
computation time is also shown. All axis are equally scaled.

The quite ‘messy’ look in most of the plots indicates that the same method (with
fixed settings) behaves differently on each run, which of course is an unwanted effect.
However, the SMC sampler is not suffering from this problem for N , P ,K large enough.
This effect should also be expected for AIS and BMC, but apparently they need more
samples/iterations (and thus computing time) than presented here before that effect can be
seen.

3.1 Simulated example

We consider a small problem of 5 data points, and a covariance and mean function
with 7 hyperparameters in total. We begin by considering the problem of marginaliz-
ing out 7 hyperparameters in a GP prior given 5 data points. Here, we are interested
in comparing the performance of our SMC sampler (Algorithm 1) with some pop-
ular alternative methods; BMC (Osborne et al. 2008), AIS (Petelin et al. 2014), and
(deterministic) griding.

The results for 15 runs are presented in Figure 3; it is indeed good if the variance
between consecutive runs of the same algorithm gives similar results. The variations
between the runs decrease faster for Algorithm 1 than for the comparable methods.
When the GP prior has few hyperparameters, we conclude that the AIS and griding
might be competitive methods. We have not managed to obtain competitive results

Paper IV – Marginalizing GP hyperparameters using SMC 159

with BMC for any problem size, but it should be noted that the computational load
of BMC can be substantially decreased if the hyperparameter prior is independent
between the dimensions.

The results for the conceptually different point estimates are also presented in
Figure 3. The initialization point to the optimization algorithm is drawn from the
prior: although it is a deterministic method, it is obviously very sensitive to the
initialization.

3.2 Learning a robot arm model

We consider the problem of learning the inverse dynamics of a seven degrees-of-
freedom SARCOS antromorphic robot arm (Rasmussen and Williams 2006; Vi-
jayakumar and Schaal 2000). We use the same setup as Rasmussen and Williams
(2006, Section 2.5), i.e., a non-trivial setting involving 23 hyperparameters.

To handle the size of the data set (44 484 training and 4 449 test data points), we
make use of a subset of: (i) datapoints and (ii) regressors as discussed by Rasmussen
and Williams (2006, Section 8.3.1). To use our method, we sample the hyperparame-
ters from the posterior with a subset of m data points. For comparability, we have
also reproduced the results using point estimates from Rasmussen and Williams
(2006). The results are reported in Table 10.1. For Algorithm 1, N = 15, P = 20
and K = 5 was used. The priors to the logarithms of the length-scale and the signal
variance are N (3, 3), and N (1, 1) for the noise variance.

Table 10.1 presents the results in the same way as Rasmussen and Williams (2006,
Table 8.1). SMSE is the standardized mean square error (i.e., mean square error
normalized by the variance of the target), and MSLL is the mean standardized log
loss; 0 if predicting using a Gaussian density with mean and variance of the training
data, and negative if ‘better’. The time is referring to the time required to sample
and optimize the hyperparameters, respectively (not including the test evaluation).
Numerical problems were experienced for large m, therefore ? indicates runs where
no interval can be reported.

Table 10.1 indicates no significant difference between the performance of our
method and point estimates. It is however worth also to note the computational
load: As Algorithm 1 apparently makes an equally good job in finding relevant
hyperparameters as the optimization, it is a confirmation that our proposed method
is indeed a competitive alternative to point estimates even for large problems.

3.3 Fault detection of oxygen sensors

We now consider data from the wastewater treatment plant Käppalaverket, Sweden.
An oxygen sensor measures the dissolved oxygen (in mg/l) in a bioreactor, but the
sensor gets clogged because of suspended cleaning. The identification of such events
is relevant to the control of wastewater treatment plants (Olsson et al. 2014). We

160

Method m SMSE (×10−2) MSLL Time (s)

Subset of datapoints

Point est. 256 8.36 ± 0.80 -1.38 ± 0.04 6.8
SMC 256 8.10 ± 1.32 -1.38 ± 0.56 7.1
Point est. 512 6.36 ± 1.13 -1.51 ± 0.05 26.4
SMC 512 6.13 ± 0.91 -1.49 ± 0.04 22.3
Point est. 1024 4.31 ± 0.16 -1.66 ± 0.02 101

SMC 1024 4.54 ± 0.33 -1.61 ± 0.03 92.5
Point est. 2048 2.99 ± 0.08 -1.78 ± 0.03 423

SMC 2048 3.33 ± 0.28 -1.69 ± 0.06 405

Subset of regressors

Point est. 256 3.67 ± 0.17 -1.63 ± 0.02 6.8
SMC 256 3.55 ± 0.28 -1.65 ± 0.05 7.1
Point est. 512 2.77 ± 0.44 -1.79 ± 0.07 26.4
SMC 512 2.89 ± 0.20 -1.77 ± 0.03 22.3
Point est. 1024 2.03 ± 0.11 -1.95 ± 0.03 101

SMC 1024 2.00? -1.95? 92.5

Table 10.1. Results for the SARCOS example in Section 3.2.

apply the GP-based online change point detection algorithm by Saatçi et al. (2010),
where the hyperparameters are marginalized using our proposed method.

The GP-based change point detection presented by Saatçi et al. (2010) can be
summarized as follows: If data y1:T undergo a change at time r , it is of interest to
(online) detect r , i.e., estimate p(r |y1:t). The algorithmic idea is a recursive message
passing scheme, updating the probability p(rt , y1:t), where rt ∈ {1, . . . , t} is the last
change point at time t .

To make predictions using a GP model, the hyperparameters either have to be
fixed across all data segments, or marginalized. As it is not relevant to use fixed
hyperparameters, an efficient sampling algorithm is a key enabler in solving this
problem. The consecutive predictions p(yt |rt−1, yrt :t−1) and p(yt+1 |rt−1, yrt :t) are
both needed for the algorithm, hence our approach fit this problem well, as discussed
in Section 2. We used N = 25 particles. On average, sampling the hyperparameters,
i.e., one run of Algorithm 1, took 0.55 seconds on a standard desktop computer.

The results are presented in Figure 4a. The expected points, suspension and
resuming of the cleaning, are indeed indicated. An interpretation of the result is
obtained by converting the results to point estimates by thresholding, and plotting
at the GP regression for each individual segment, see Figure 4b.

Note the data-driven nature of the algorithm, as no explicit model of the sensor
was used at all. The tuning parameters are the covariance and mean functions, the
prior of the change points and the hyperparameter priors.

Paper IV – Marginalizing GP hyperparameters using SMC 161

(a). Measurements of dissolved oxygen (in mg/l) in a bioreactor with a sampling period of 15 minutes.
The indicated change points are marked in red. Especially as the algorithm is fully Bayesian, the
outcome is one probability distribution per data sample. This is comprehensively illustrated as the
occurrence of change points in ‘backwards simulations’ through these distributions. A more intensive
red color is a more likely change point.

(b). Left: the (multimodial) hyperparameter posterior conditional on the 9 data points. Right: the
posterior using the proposed method (which marginalizes the hyperparameters, and thus handles the
multimodality).

Figure 4. Results for the GP-based change point detection.

4 Conclusion

We have proposed and demonstrated an SMC-based method to marginalize hyperpa-
rameters in GP models. The observed benefits are robustness towards multimodal
posteriors (Figure 1) and a competitive computational load (Section 3.2), also com-
pared to the commonly used point estimates of the hyperparameters. We have been
able to cope with a hyperparameter space of dimension 23 (Section 3.2), and also
concluded a sound convergence behavior (Section 3.1). Finally, the online update of
the hyperparameters has been shown useful within the industry-relevant data-driven
fault detection application (Section 3.3). As a future direction, it would be interest-
ing to apply our method to the challenging GP optimization problem of system
identification (Dahlin and Lindsten 2014).

162

References

Deepak K. Agarwal and Alan E. Gelfand (2005). “Slice sampling for simulation based
fitting of spatial data models”. In: Statistics and Computing 15.1, pp. 61–69.

Johan Dahlin and Fredrik Lindsten (2014). “Particle filter-based Gaussian process
optimisation for parameter inference”. In: Proceedings of the 19th IFAC World
Congress. Cape Town, South Africa, pp. 8675–8680.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra (2006). “Sequential Monte Carlo
samplers”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 68.3, pp. 411–436.

Paul Fearnhead and Benjamin M. Taylor (2013). “An adaptive sequential Monte
Carlo sampler”. In: Bayesian Analysis 8.2, pp. 411–438.

Robert B. Gramacy and Nicholas G. Polson (2011). “Particle learning of Gaussian
process models for sequential design and optimization”. In: Journal of Computa-
tional and Graphical Statistics 20.1, pp. 102–118.

Radford M. Neal (2010). “MCMC using Hamiltonian dynamics”. In: Handbook of
Markov Chain Monte Carlo. Ed. by S. Brooks, A. Gelman, G. Jones, and X-L.
Meng. Boca Raton, FL, USA: Chapman & Hall/ CRC Press.

Gustaf Olsson et al. (2014). “Instrumentation, control and automation in wastewater
– from London 1973 to Narbonne 2013.” In: Water Science and Technology 69.7,
pp. 1373–1385.

Michael A. Osborne, Stephen J. Roberts, Alex Rogers, Sarvapali D. Ramchurn, and
Nicholas R. Jennings (2008). “Towards real-time information processing of sen-
sor network data using computationally efficient multi-output Gaussian pro-
cesses”. In: Proceedings of the 7th international conference on information processing
in sensor networks. St. Louis, MO, USA, pp. 109–120.

Dejan Petelin, Matej Gašperin, and Václav Šmıdl (2014). “Adaptive importance sam-
pling for Bayesian inference in Gaussian process models”. In: Proceedings of the
19th IFAC World Congress. Cape Town, South Africa, pp. 5011–5015.

Carl E. Rasmussen and Christopher K. I. Williams (2006). Gaussian processes for
machine learning. Cambridge, MA, USA: MIT Press.

Yunus Saatçi, Ryan D. Turner, and Carl E. Rasmussen (2010). “Gaussian process
change point models”. In: Proceedings of the 27th International Conference on
Machine Learning (ICML). Haifa, Israel, pp. 927–934.

Sethu Vijayakumar and Stefan Schaal (2000). “Locally weighted projection regression:
Incremental real time learning in high dimensional space”. In: Proceedings of the
7th International Conference on Machine Learning (ICML). Stanford, CA, USA,
pp. 1079–1086.

Nick Whiteley (2012). “Sequential Monte Carlo samplers: error bounds and insensi-
tivity to initial conditions”. In: Stochastic Analysis and Applications 30.5, pp. 774–
798.

Paper V

Title
Identification of jump Markov linear models using particle filters

Authors
Andreas Svensson, Thomas B. Schön and Fredrik Lindsten

Edited version of
Andreas Svensson, Thomas B. Schön, and Fredrik Lindsten (2014). “Identification of jump
Markov linear models using particle filters”. In: Proceedings of the 53rd IEEE Conference on
Decision and Control (CDC). Los Angeles, CA, USA, pp. 6504–6509.

Digital identity
doi:10.1109/cdc.2014.7040409

Financial support
The Swedish Research Council (VR) via the project Probabilistic modeling of dynamical systems (contract
number: 621-2013-5524).

164

Identification of jump Markov linear
models using particle filters

Abstract

Jump Markov linear models consists of a finite number of linear state space models
and a discrete variable encoding the jumps (or switches) between the different linear
models. Identifying jump Markov linear models makes for a challenging problem
lacking an analytical solution. We derive a new expectation maximization (EM)
type algorithm that produce maximum likelihood estimates of the model param-
eters. Our development hinges upon recent progress in combining particle filters
with Markov chain Monte Carlo methods in solving the nonlinear state smoothing
problem inherent in the EM formulation. Key to our development is that we exploit
a conditionally linear Gaussian substructure in the model, allowing for an efficient
algorithm.

1 Introduction

Consider the following jump Markov linear model on state space form

st+1 | st ∼ p(st+1 |st), (1a)
z t+1 = Ast+1z t + Bst+1ut + vt , (1b)
yt = Cst z t + D st ut + et , (1c)

where ∼ means distributed according to and the (discrete) variable st takes values in
{1, . . . ,K } (which can be thought of as different modes which the model is jumping
between) and the (continuous) variable z t lives in Rnz . Hence, the state variable
consists of x t , (z t , st). Furthermore, et ∈ Rny and vt ∈ Rnz are zero mean white
Gaussian noise and EvtvTt = Q st+1 , Eet eTt = R st and Evt eTt ≡ 0. The output (or
measurement) is yt ∈ Rny , the input is ut ∈ Rnu . As K is finite, p(st+1 |st) can be
defined via a matrix Π ∈ RK×K with entries πmn , p(st+1 = n |st = m).

We are interested in off-line identification of jump Markov linear models on the
form (1) for the case of an unknown jump sequence, but the number of modes K
is known. More specifically, we will formulate and solve the maximum likelihood
(ML) problem to compute an estimate of the static parameters θ of a jump Markov
linear model based on a batch of measurements y1:T , {y1, . . . , yT } and (if available)

165

166

inputs u1:T by solving,

θ̂ML = argmax
θ∈Θ

pθ (y1:T). (2)

Here θ , {{An, Bn,Cn,Dn,Qn,Rn}Kn=1,Π}, i.e., all unknown static parameters in
model (1). Here, and throughout the paper, the dependence on the inputs u1:T is
implicit.

Solving (2) is challenging and there are no closed form solutions available. Our
approach is to derive an expectation maximization (EM, Dempster et al. 1977) type
of solution, where the strategy is to separate the original problem into two closely
linked problems. The first problem is a challenging, but manageable nonlinear state
smoothing problem and the second problem is a tractable optimization problem.
The nonlinear smoothing problem we can solve using a combination of sequential
Monte Carlo (SMC) methods (particle filters and particle smoothers, Doucet and Jo-
hansen 2011) and Markov chain Monte Carlo (MCMC) methods (Robert and Casella
2004). More specifically we will make use of particle MCMC (PMCMC), which is a
systematic way of exploring the strengths of both approaches by using SMC to con-
struct the necessary high-dimensional Markov kernels needed in MCMC (Andrieu
et al. 2010; Lindsten et al. 2014).

Our main contribution is a new maximum likelihood estimator that can be
used to identify jump Markov linear models on the form (1). The estimator ex-
ploits the conditionally linear Gaussian substructure that is inherent in (1) via Rao-
Blackwellization. More specifically we derive a Rao-Blackwellized version of the
particle stochastic approximation expectation maximization (PSAEM) algorithm
recently introduced in Lindsten (2013).

Jump Markov linear models, or switching linear models, is a fairly well stud-
ied class of hybrid systems. For recent overviews of existing system identification
methods for jump Markov linear models, see Garulli et al. (2012) and Paoletti et al.
(2007). Existing approaches considering the problem under study here include two
stage methods, where the data is first segmented (using e.g. change detection type
of methods) and the individual models are then identified for each segment, see e.g.
Borges et al. (2005) and Pekpe et al. (2004). There has also been approximate EM
algorithms proposed for identification of hybrid systems (Blackmore et al. 2007; Gil
and Williams 2009) and the very recent Ashley and Andersson (2014) (differing from
our method in that we use stochastic approximation EM and Rao-Blackwellization).
There are also relevant relationships to the PMCMC solutions introduced in White-
ley et al. (2010) and the SMC-based on-line EM solution derived in Yildirim et al.
(2013).

There are also many approaches considering the more general problem with an
unknown number of modes K and an unknown state dimension nz , see e.g. Fox et al.
(2011) and Bemporad et al. (2001), making use of Bayesian nonparametric models
and mixed integer programming, respectively.

Paper V – Identification of jump Markov linear models using particle filters 167

2 Expectation maximization algorithms

The EM algorithm (Dempster et al. 1977) provides an iterative method for computing
maximum likelihood estimates of the unknown parameters θ in a probabilistic model
involving latent variables. In the jump Markov linear model (1) we observe y1:T ,
whereas the state x1:T is latent.

The EM algorithm maximizes the likelihood by iteratively maximizing the inter-
mediate quantity

Q(θ, θ ′) ,
∫

log pθ (x1:T , y1:T)pθ′(x1:T | y1:T)dx1:T . (3)

More specifically, the procedure is initialized in θ0 ∈ Θ and then iterates between
computing an expected (E) value and solving a maximization (M) problem,

(E) Compute Q(θ, θk−1).
(M) Compute θk = argmax

θ∈Θ
Q(θ, θk−1).

Intuitively, this can be thought of as ‘selecting the new parameters as the ones that
make the given measurements and the current state estimate as likely as possible’.

The use of EM type algorithms to identify dynamical systems is by now fairly
well explored for both linear and nonlinear models. For linear models, there are
explicit expressions for all involved quantities, see e.g. Gibson and Ninness (2005)
and Shumway and Stoffer (1982). For nonlinear models the intermediate quantity
Q(θ, θ ′) is intractable and we are forced to approximate solutions; see e.g. Cappé
et al. (2005), Lindsten (2013), Olsson et al. (2008), and Schön et al. (2011). This is the
case also for the model (1) under study in this work. Indeed, the maximization step
can be solved in closed form for the model (1), but (3) is still intractable in our case.

It is by now fairly well established that we can make use of sequential Monte
Carlo (SMC, Doucet and Johansen 2011) or particle Markov chain Monte Carlo
(PMCM, Andrieu et al. 2010) methods to approximate the joint smoothing distribu-
tion for a general nonlinear model arbitrarily well according to

p̂(x1:T | y1:T) =
N∑

i=1
w i

T δx i1:T
(x1:T), (4)

where x i1:T are random samples with corresponding importance weights w i
T , δx is

a point-mass distribution at x and we refer to {x i1:T ,w i
T }Ni=1 as a weighted particle

system. The particle smoothing approximation (4) can be used to approximate the
integral in (3). Using this approach within EM, we obtain the particle smoothing
EM (PSEM) method (Olsson et al. 2008; Schön et al. 2011). PSEM can be viewed
as an SMC-analogue of the well known Monte Carlo EM (MCEM) algorithm (Wei
and Tanner 1990).

168

However, it has been recognized that MCEM, and analogously PSEM, makes
inefficient use of the generated samples (Delyon et al. 1999). This is particularly true
when the simulation step is computationally expensive, which is the case when using
SMC or PMCMC. To address this shortcoming, Delyon et al. (1999) proposed to
use a stochastic approximation (SA, Robbins and Monro 1951) of the intermediate
quantity instead of a vanilla Monte Carlo approximation, resulting in the stochastic
approximation EM (SAEM) algorithm. The SAEM algorithm replaces the interme-
diate quantity Q in EM with

Q̂k(θ) = (1 − γk)Q̂k−1(θ) + γk log pθ (y1:T , x1:T [k]), (5)

with {γk}∞k=1 being a sequence of step sizes which fulfils
∑∞

k=1 γk = ∞ and∑∞
k=1 γ

2
k < ∞. In the above, x1:T [k] is a sample state trajectory, simulated from

the joint smoothing distribution pθk (x1:T | y1:T). It is shown by Delyon et al. (1999)
that the SAEM algorithm—which iteratively updates the intermediate quantity ac-
cording to (5) and computes the next parameter iterate by maximizing this stochastic
approximation—enjoys good convergence properties. Indeed, despite the fact that the
method requires only a single sample x1:T [k] at each iteration, the sequence {θk}k≥1
will converge to a maximizer of pθ (y1:T) under reasonably weak assumptions.

However, in our setting it is not possible to simulate from the joint smoothing dis-
tribution pθk (x1:T | y1:T). We will therefore make use of the particle SAEM (PSAEM)
method (Lindsten 2013), which combines recent PMCMC methodology with SAEM.
Specifically, we will exploit the structure of (1) to develop a Rao-Blackwellized
PSAEM algorithm.

We will start our development in the subsequent section by considering the
smoothing problem for (1). We derive a PMCMC-based Rao-Blackwellized smoother
for this model class. The proposed smoother can, principally, be used to compute (3)
within PSEM. However, a more efficient approach is to use the proposed smoother
to derive a Rao-Blackwellized PSAEM algorithm, see Section 4.

3 Smoothing using Monte Carlo methods

For smoothing, that is, finding pθ (x1:t |y1:t) = pθ (s1:T , z1:T |y1:T), various Monte
Carlo methods can be applied. We will use an MCMC based approach, as it fits very
well in the SAEM framework (see e.g. Andrieu et al. 2005; Kuhn and Lavielle 2004),
which together shapes the PSAEM algorithm. The aim of this section is therefore to
derive an MCMC-based smoother for jump Markov linear models.

To gain efficiency, the jump sequence s1:T and the linear states z1:T are separated
using conditional probabilities as

pθ (s1:T , z1:T |y1:T) = pθ (z1:T |s1:T , y1:T)pθ (s1:T |y1:T). (6)

Paper V – Identification of jump Markov linear models using particle filters 169

This allows us to infer the conditionally linear states z1:T using closed form ex-
pressions. Hence, it is only the jump sequence s1:T that has to be computed using
approximate inference. This technique is referred to as Rao-Blackwellization (Casella
and Robert 1996).

3.1 Inferring the linear states: p(z1:T |s1:T , y1:T)
State inference in linear Gaussian state space models can be performed exactly in
closed form. More specifically, the Kalman filter provides the expressions for the
filtering density pθ (z t |s1:t , y1:t) = N (z t |ẑ f ;t , P f ;t) and the one step predictor den-
sity pθ (z t+1 |s1:t+1, y1:t) = N (z t |ẑp;t+1, Pp;t+1). The marginal smoothing density
pθ (z t |s1:T , y1:T) = N (z t |ẑ s ;t , Ps ;t) is provided by the Rauch-Tung-Striebel (RTS)
smoother (Rauch et al. 1965). See, e.g., Kailath et al. (2000) for the relevant results.
Here, we use N (x | µ,Σ) to denote the density for the (multivariate) normal distri-
bution with mean µ and covariance matrix Σ.

3.2 Inferring the jump sequence: p(s1:T |y1:T)
To find p(s1:T |y1:T), an MCMC approach is used. First, the concept of using Markov
kernels for smoothing is introduced, and then the construction of the kernel itself
follows.

MCMC makes use of ergodic theory for statistical inference. LetKθ be a Markov
kernel (to be defined below) on the T -fold product space {1, ...,K }T . Note that
the jump sequence s1:T lives in this space. Furthermore, assume that Kθ is ergodic
with unique stationary distribution pθ (s1:T |y1:T). This implies that by simulating a
Markov chain with transition kernel Kθ , the marginal distribution of the chain will
approach pθ (s1:T |y1:T) in the limit.

Specifically, let s1:T [0] be an arbitrary initial state with pθ (s1:T [0]|y1:T) > 0 and
let s1:T [k] ∼ Kθ (·|s1:T [k − 1])) for k ≥ 1, then by the ergodic theorem (Robert and
Casella 2004):

1
n

n∑

k=1

ℎ(s1:T [k])→ Eθ
�
ℎ(s1:T)|y1:T

�
, (7)

as n → ∞ for any function ℎ : {1, ...,K }T 7→ R. This allows a smoother to be
constructed as in Algorithm 1.

We will use the conditional particle filter with ancestor sampling (CPF-AS, Lind-
sten et al. 2014) to construct the Markov kernel Kθ . The CPF-AS is similar to a
standard particle filter, but with the important difference that one particle trajectory
(jump sequence), s ′1:T , is specified a priori.

The algorithm statement for the CPF-AS can be found in, e.g., Lindsten et al.
(2014). Similar to an auxiliary particle filter (Doucet and Johansen 2011), the propa-
gation of pθ (s1:t−1 |y1:t−1) (approximated by {s i1:t−1,w i

t−1}Ni=1) to time t is done using

170

Algorithm 1: MCMC smoother

1 Initialize s1:T [0] arbitrarily
2 for k ≥ 1 do
3 Generate s1:T [k] ∼ Kθ (·|s1:T [k − 1])
4 end

the ancestor indices {ait }Ni=1. To generate s it , the ancestor index is sampled according

to P
�
ait = j

� ∝ w j
t−1, and s it as s it ∼ pθ (st |s a

i
t

t−1). The trajectories are then augmented

as s i1:t = {s a
i
t

1:t−1, s
i
t }.

This is repeated for i = 1, . . . ,N − 1, whereas sNt is set as sNt = s ′t . To ‘find’ the
history for sNt , the ancestor index aNt is drawn with probability

P
(
aNt = i

)
∝ pθ (s i1:t−1 |s ′t :T , y1:T). (8)

The probability density in (8) is proportional to

pθ (yt :T , s ′t :T |s i1:t−1, y1:t−1)pθ (s i1:t−1 |y1:t−1), (9)

where the last factor is the importance weight w i
t−1.

By sampling s1:T [k+1] = s J1:T from the rendered set of trajectories {s i1:T ,w i
T }Ni=1

with P
�
J = j

�
= w j

T , a Markov kernel Kθ mapping s1:T [k] = s ′1:T to s1:T [k + 1]
is obtained. For this Markov kernel to be useful for statistical inference we require
that (i) it is ergodic, and (ii) it admits pθ (s1:T |y1:T) as its unique limiting distribution.
While we do not dwell on the (rather technical) details here, we note that these
requirements are indeed fulfilled; see Lindsten et al. (2014).

3.3 Rao-Blackwellization

Rao-Blackwellization of particle filters is a fusion of the Kalman filter and the particle
filter based on (6), and it is described in, e.g., Schön et al. (2005). However, Rao-
Blackwellization of a particle smoother is somewhat more involved since the process
x t |y1:T is Markovian, but not st |y1:T (with z t marginalized, see, e.g., Whiteley et al.
(2010) and Lindsten and Schön (2013) for various ways to handle this).

A similar problem as for the particle smoothers arises in the ancestor sampling
(8) in the CPF-AS. In the case of a non-Rao-Blackwellized CPF-AS, (8) reduces to
w i

t−1p(x ′t |x it−1) (Lindsten et al. 2014). This does not hold in the Rao-Blackwellized
case.

To handle this, (8) can be rewritten as

w i
t−1p(yt :T , s ′t :T |s i1:t−1, y1:t−1). (10)

Paper V – Identification of jump Markov linear models using particle filters 171

Using the results from Section 4.4 in Lindsten and Schön (2013) (adapted to model
(1)), this can be written (omitting w i

t−1, and with the notation ‖z ‖2
Ω
, zTΩz , P ,

ΓΓT , i.e. the Cholesky factorization, Qt , Ft F T
t and At , As′t etc.)

p(yt :T , s ′t :T |s i1:t−1, y1:t−1) ∝ Zt−1 |Λt−1 |−1/2 exp(−1
2
ηt−1),

with

Λt = Γ
i,T
f ;tΩtΓ

i
f ;t + I , (11a)

ηt = ‖ ẑ if ;t ‖
2
Ωt
− 2λTt ẑ

i,T
f ;t − ‖Γnf ;t (λ t −Ωt ẑnf ;t)‖

2
M−1t

, (11b)

where

Ωt = AT
t+1

(
I − Ω̂t+1Ft+1M −1t+1F

T
t+1

)
Ω̂t+1At+1, (11c)

Ω̂t = Ωt +CT
t R−1t Ct , Mt = F T

t Ω̂Ft + I , (11d)

λ t = AT
t+1

(
I − Ω̂t+1Ft+1M −1t+1F

T
t+1

)
mt , (11e)

λ̂ t = λ t +CT
t R−1t (yt − Dt ut), (11f)

mt = (λ̂ t+1 − Ω̂t+1Bt+1ut+1). (11g)

and ΩT = 0 and λT = 0. The Rao-Blackwellization also includes an RTS smoother
for finding pθ (z1:T |s1:T , y1:T).

Summarizing the above development, the Rao-Blackwellized CPF-AS (for the
jump Markov linear model (1)) is presented in Algorithm 2, where

pθ (yt |s i1:t , y1:t−1) = N (yt ;Cs it
ẑnp;t + D s it

ut ,Cs it
Pp;tCT

s it
+ R s it

)

is used. Note that the discrete state st is drawn from a discrete distribution defined
by Π, whereas the linear state z t is handled analytically. The algorithm implicitly
defines a Markov kernel Kθ that can be used in Algorithm 1 for finding p(s1:T |y1:T),
or, as we will see, be placed in an SAEM framework to estimate θ (both yielding
PMCMC constructions).

4 Identification of jump Markov linear models

In the previous section, an ergodic Markov kernel Kθ leaving pθ (s1:T |y1:T) invariant
was found as a Rao-Blackwellized CPF-AS summarized in Algorithm 2. This will be
used together with SAEM, as it allows us to make one parameter update at each step
of the Markov chain smoother in Algorithm 1, as presented as PSAEM in Lindsten
(2013). (However, following Lindsten (2013), we make use of all the particles gener-
ated by CPF-AS, and not only s1:T [k + 1], to compute the intermediate quantity in
the SAEM.)

172

Algorithm 2: Rao-Blackwellized CPF-AS
Input: s ′1:T = s1:T [k].
Output: s1:T [k + 1] (A draw from Kθ (·|s1:T [k]) and {s i1:T ,w i

T }Ni=1.
1 Draw s i1 ∼ p1(s1 |y1) for i = 1, . . . ,N − 1.
2 Compute {Ωt , λ t }Tt=1 for s ′1:T according to (11c) - (11g).
3 Set (sN1 , . . . , sNT) = (s ′1, . . . , s ′T).
4 Compute ẑ if ,1 and P i

f ,1 for i = 1, . . . ,N .

5 Set w i
1 ∝ pθ (y1 |s i1) (12) for i = 1, . . . ,N s.t.

∑
i w i

1 = 1.
6 for t = 2 to T do
7 Draw ait with P

�
ait = j

�
= w j

t−1 for i = 1, . . . ,N − 1.
8 Draw s it with P

�
s it = n

�
= πs it−1,n

for i = 1, . . . ,N − 1.

9 Compute {Λi
t−1, η

i
t } according to (11a)-(11b).

10 Draw aNt with P
�
aNt = i

� ∝ w i
t−1πs it−1,sNt |Λ

i
t−1 |−1/2 exp(− 1

2η
i
t−1).

11 Set s i1:t = {s a
i
t

1:t−1, s
i
t } for i = 1, . . . ,N .

12 Set ẑ if ,1:t−1 = ẑ a
i
t
f ,1:t−1, P

i
f ,1:t−1 = P ait

f ,1:t−1, ẑ
i
p,1:t−1 = ẑ a

i
t

p,1:t−1 and

P i
p,1:t−1 = P ait

p,1:t−1 for i = 1, . . . ,N .
13 Compute ẑ ip;t , P i

p;t , ẑ if ;t and P i
f ;t for i = 1, . . . ,N .

14 Set w i
t ∝ pθ (yt |s it , y1:t−1) for i = 1, . . . ,N s.t.

∑
i w i

t = 1.
15 end
16 for t = T to 1 do
17 Compute ẑ is ;t , P i

s ;t for i = 1, . . . ,N .
18 end
19 Set s1:T [k + 1] = s J1:T with P

�
J = j

�
= w j

T .

This leads to the approximation (cf. (5))

Q̂k(θ) = (1 − γk)Q̂k−1(θ) + γk
N∑

i=1
w i

T Eθk

[
log pθ (y1:T , z1:T , s i1:T)|s i1:T , y1:T

]
, (12)

where the expectation is with respect to z1:T . Putting this together, we obtain a Rao-
Blackwellized PSAEM (RB-PSAEM) algorithm presented in Algorithm 3. Note that
this algorithm is similar to the MCMC-based smoother in Algorithm 1, but with
the difference that the model parameters are updated at each iteration, effectively
enabling simultaneous smoothing and identification.

(For notational convenience, the iteration number k is suppressed in the variables
related to {s i1:T ,w i

T }Ni=1.)
With a strong theoretical foundation in PMCMC and Markovian stochastic

Paper V – Identification of jump Markov linear models using particle filters 173

Algorithm 3: Rao-Blackwellized PSAEM

1 Initialize θ̂0 and s1:T [0], and Q̂0(θ) ≡ 0.
2 for k ≥ 1 do
3 Run Algorithm 2 to obtain {s i1:T ,w i

T }Ni=1
4 and s1:T [k].
5 Compute Q̂k(θ) according to (12).
6 Compute θ̂k = argmaxθ∈Θ Q̂k(θ) .
7 end

approximation, the RB-PSAEM algorithm presented here enjoys very favourable
convergence properties. In particular, under certain smoothness and ergodicity con-
ditions, the sequence of iterates {θk}k≥1 will converge to a maximizer of pθ (y1:T)
as k → ∞, regardless of the number of particles N ≥ 2 used in the internal CPF-
AS procedure (see Proposition 1 of Lindsten 2013 together with Kuhn and Lavielle
2004 for details). Furthermore, empirically it has been found that a small number of
particles can work well in practice as well. For instance, in the numerical examples
considered in Section 5, we run Algorithm 3 with N = 3 with accurate identification
results.

For the model structure (1), there exists infinitely many solutions to the problem
(2); all relevant involved matrices can be transformed by a linear transformation
matrix and the modes can be re-ordered, but the input-output behaviour will remain
invariant. The model is therefore over-parametrized, or lacks identifiability, in the
general problem setting. However, it is shown in Pintelon et al. (1996) that the
Cramér-Rao Lower Bound is not affected by the over-parametrization. That is, the
estimate quality, in terms of variance, is unaffected by the over-parametrization.

4.1 Maximizing the intermediate quantity

When making use of RB-PSAEM from Algorithm 3, one major question arises from
Step 6, namely the maximization of the intermediate quantity Q̂k(θ). For the jump
Markov linear model, the expectation in (12) can be expressed using sufficient statis-
tics, as will be shown later, as an inner product

N∑

i=1
w i

T Eθk

[
log pθ (y1:T , z1:T , s i1:T)|s i1:T , y1:T

]
= 〈Sk, η(θ)〉, (13)

for a sufficient statistics S and corresponding natural parameter η(θ). Hence Q̂k can
be written as

Q̂k(θ) = (1 − γk)Q̂k−1(θ) + γk〈Sk, η(θ)〉 = 〈Sk, η(θ)〉 (14)

174

if the transformation

Sk = (1 − γk)Sk−1 + γkSk (15)

is used. In detail,

N∑

i=1
w i

T Eθk

[
log pθ (y1:T , z1:T , s i1:T)|s i1:T , y1:T

]
=

K∑

n=1

K∑

m=1
S (1)n,m log πn,m −

K∑

n=1

1
2

(
S (2)n log(|Qn ||Rn |) + Tr(H θ

n S
(3)
n)

)
(16a)

neglecting constant terms in the last expression. This can be verified to be an inner
product (as indicated in (13)) in S = {S (1), S (2), S (3)}. Here the sufficient statistics

S (1)n,m =

N∑

i=1
w i

T

T∑

t=1
Is it=m,s it−1=n

, (16b)

S (2)n =

N∑

i=1
w i

T

T∑

t=1
Is it=n

, (16c)

S (3)n =

N∑

i=1
w i

T

T∑

t=1
Is it=n

(ξ̂ it ξ̂ i,Tt + M i
t |T), (16d)

with

ξ̂ it =
(
ẑ i,Ts ;t

[
ẑ i,Ts ;t−1 u

T
t−1

]
yTt

[
ẑ i,Ts ;t uTt

])T
, (16e)

and

H θ
n =

*...
,

[I AT
n BT

n]Q−1n


I
An
Bn


0

0 [I CT
n DT

n]R−1n


I
Cn
Dn



+///
-

(16f)

have been used. Further notation introduced is I· as the indicator function, and

M i
t |T =

*....
,

P i
s ;t P i

s ;t,t−1 0 0 P i
s ;t 0

P i
s ;t,t−1 P i

s ;t−1 0 0 P i
s ;t,t−1 0

0 0 0 0 0 0
0 0 0 0 0 0

P i
s ;t P i

s ;t,t−1 0 0 P i
s ;t−1 0

0 0 0 0 0 0

+////
-

. (16g)

For computing this, the RTS-smoother in step 17 in Algorithm 2 has to be
extended by calculation of Ps ;t+1,t , cov

[
ẑ s,t+1 ẑTs ;t

]
, which can be done as follows

(Shumway and Stoffer 2006, Property P6.2)

Ps ;t,t−1 = P f ;t JTt−1 + Jt (Ps ;t+1,t − At+1P f ;t)JTt−1, (17)

Paper V – Identification of jump Markov linear models using particle filters 175

initialized with PT ,T −1|T = (I − KTCT)AT P f ;t−1.
For notational convenience, we will partition S (3)n as

S (3)n =
*.
,

Φn Ψn
ΨTn Σn

Ωn Λn
ΛTn Ξn

+/
-
. (18)

Lemma 1. Assume for all modes n = 1, . . . ,K , that all states z are controllable and
observable and

∑
t Ist=nuTt ut > 0. The parameters θ maximizing Q̂k(θ) for the jump

Markov linear model (1) are then given by

π
j
n,m =

S
(1),k
n,m

∑
l S

(1),k
n,l

, (19a)

�
An Bn

�
= ΨnΣ

−1
n , (19b)

�
Cn Dn

�
= ΛnΞ

−1
n , (19c)

�
Qn

�
= (S(2),kn)−1

(
Φn − ΨnΣ

−1
n Ψ

T
n
)
, (19d)

�
Rn

�
= (S(2),kn)−1

(
Ωn − ΛnΞ

−1
n Λ

T
n
)
, (19e)

for n,m = 1, . . . ,K .

Φn,Ψn, . . . are the partitions of S(3),kn indicated in (18), and S(i) are the ‘SA-
updates’ (15) of the sufficient statistics (16b)-(16d).

Remark: If B ≡ 0, the first square bracket in (16e) can be replaced by
[
ẑ i,Ts ;t−1

]
,

and (19b) becomes
�
An

�
= ΨnΣ

−1
n . The case with D ≡ 0 is fully analogous.

Proof. With arguments directly from Gibson and Ninness (2005, Lemma 3.3), the
maximization of the last part of (16a) for a given st = n (for any sufficient statistics
Z in the inner product, and in particular Z = Sk), is found to be (19b)-(19e).

Using Lagrange multipliers and that
∑

i πn,m = 1, the maximum w.r.t. Π of the
first part of (16a) is obtained as

πn,m =
S
(1),k
n,m

∑
l S

(1),k
n,l

. (20)

�

4.2 Computational complexity

Regarding the computational complexity of Algorithm 3, the most important result
is that it is linear in the number of measurements T . It is also linear in the number
of particles N .

176

10
1

10
2

10
3

10
4

10
−2

10
−1

Computation time [s]

M
ea
n
/
0
.5

st
d
H

2
er
ro
r

RB-PSAEM, N = 3
PSAEM, N = 20
PSEM, N = 100

Figure 1. Numerical example 1. Mean (lines) and 0.5 standard deviation (fields) H2 error for 7
runs of our RB-PSAEM using N = 3 particles (black) PSAEM (Lindsten 2013) using N = 20
particles (blue) and PSEM (Schön et al. 2011) using N = 100 particles and M = 20 backward
trajectories (red).

5 Numerical examples

Some numerical examples are given to illustrate the properties of the Rao-
Blackwellized PSAEM algorithm. The Matlab code for the examples is available
via the homepage of the first author1.

5.1 Example 1 - Comparison to related methods

The first example concerns identification using simulated data (T = 3 000) for a
one-dimensional (nz = 1) jump Markov linear model with 2 modes (K = 2) (with
parameters randomly generated according to An ∼ U[−1,1], Bn ∼ U[−5,5], Cn ∼
U[−5,5], Dn ≡ 0,Qn ∼ U[0.01,0.1],Rn ∼ U[0.01,0.1]) with low-pass filtered white noise
as ut . The following methods are compared:

1. RB-PSAEM from Algorithm 3, with (only) N = 3 particles,

2. PSAEM as presented in Lindsten (2013) with N = 20,

3. PSEM (Schön et al. 2011) with N = 100 forward particles and M = 20
backward simulated trajectories.

The initial parameters θ̂0 are each randomly picked from [0.5θ?, 1.5θ?], where θ?

is the true parameter value. The results are illustrated in Figure 1, which shows the
mean (over all modes and 7 runs) H2 error for the transfer function from the input
u to the output y .

From Figure 1 (note the log-log scale used in the plot) it is clear that our new
Rao-Blackwellized PSAEM algorithm has a significantly better performance, both

1http://www.it.uu.se/katalog/andsv164

Paper V – Identification of jump Markov linear models using particle filters 177

10
2

10
3

10
4

10
−2

10
−1

Computation time [s]

M
ea
n
H

2
er
ro
r Mode 1

Mode 2
Mode 3

(a). Mean H2 error for each mode.

10
−1

10
0

10
−2

10
−1

10
0

Frequency ω

G
a
in

True
Estimated
Intial guess

(b). Bode plots of the estimates (black), true
(dashed grey) and the initializations (dotted red).

Figure 2. Plots from Numerical example 2.

in terms of mean and in variance between different runs, compared to the previous
algorithms.

5.2 Example 2 - Identification of multidimensional systems

Let us now consider a two-dimensional system (nz = 2) with K = 3 modes. The
eigenvalues for An are randomly picked from [−1, 1]. The other parameters are
randomly picked as Bn ∼ U[−5,5], Cn ∼ U[−5,5], Dn ≡ 0,Qn ∼ I2 ·U[0.01,0.1],Rn ∼
U[0.01,0.1], and the system is simulated for T = 8 000 time steps with input ut being
a low-pass filtered white noise. The initialization of the Rao-Blackwellized PSAEM
algorithm is randomly picked from [0.6θ?, 1.4θ?] for each parameter. The number
of particles used in the particle filter is N = 3. Figure 2a shows the mean (over 10
runs) H2 error for each mode, similar to Figure 1. Figure 2b shows the estimated
Bode plots after 300 iterations. As is seen from Figure 2b, the RB-PSAEM algorithm
has the ability to catch the dynamics of the multidimensional system fairly well.

6 Conclusions and future work

We have derived a maximum likelihood estimator for identification of jump Markov
linear models. More specifically an expectation maximization type of solution was
derived. The nonlinear state smoothing problem inherent in the expectation step
was solved by constructing an ergodic Markov kernel leaving the joint state smooth-
ing distribution invariant. Key to this development was the introduction of a Rao-
Blackwellized conditional particle filter with ancestor sampling. The maximization
step could be solved in closed form. The experimental results indicate that we obtain
significantly better performance both in terms of accuracy and computational time
when compared to previous state of the art particle filtering based methods. The
ideas underlying the smoother derived in this work have great potential also outside
the class of jump Markov linear models and this is something worth more investiga-

178

tion. Indeed, it is quite possible that it can turn out to be a serious competitor also
in finding the joint smoothing distribution for general nonlinear state space models.

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein (2010). “Particle
Markov chain Monte Carlo methods”. In: Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology) 72.3, pp. 269–342.

Christophe Andrieu, Éric Moulines, and Pierre Priouret (2005). “Stability of stochas-
tic approximation under verifiable conditions”. In: SIAM Journal on control and
optimization 44.1, pp. 283–312.

Trevor T. Ashley and Sean B. Andersson (2014). “A sequential Monte Carlo frame-
work for the system identification of jump Markov state space models”. In: Pro-
ceedings of the 2014 American Control Conference (ACC). Portland, OR, USA,
pp. 1144–1149.

Alberto Bemporad, Jacob Roll, and Lennart Ljung (2001). “Identification of hybrid
systems via mixed-integer programming”. In: Proceedings of the 40th IEEE Confer-
ence on Decision and Control (CDC). Orlando, FL, USA, pp. 786–792.

Lars Blackmore, Stephanie Gil, Seung Chung, and Brian Williams (2007). “Model
learning for switching linear systems with autonomous mode transitions”. In:
Proceedings of the 46th IEEE Conference on Decision and Control (CDC). New
Orleans, LA, USA, pp. 4648–4655.

José Borges, Vincent Verdult, Michel Verhaegen, and Miguel Ayala Botto (2005).
“A switching detection method based on projected subspace classification”. In:
Proceedings of the 44th IEEE Conference on Decision and Control (CDC). Sevilla,
Spain, pp. 344–349.

Olivier Cappé, Éric Moulines, and Tobias Rydén (2005). Inference in hidden Markov
models. Springer Series in Statistics. New York, NY, USA: Springer.

George Casella and Christian P. Robert (1996). “Rao-Blackwellisation of sampling
schemes”. In: Biometrika 83.1, pp. 81–94.

Bernard Delyon, Marc Lavielle, and Éric Moulines (1999). “Convergence of a stochas-
tic approximation version of the EM algorithm”. In: Annals of Statistics 27.1,
pp. 94–128.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (1977). “Maximum like-
lihood from incomplete data via the EM algorithm”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 39.1, pp. 1–38.

Arnaud Doucet and Adam M. Johansen (2011). “A tutorial on particle filtering
and smoothing: fifteen years later”. In: Nonlinear Filtering Handbook. Ed. by D.
Crisan and B. Rozovsky. Oxford, UK: Oxford University Press, pp. 656–704.

Paper V – Identification of jump Markov linear models using particle filters 179

Emily Fox, Erik B. Sudderth, Michael I. Jordan, and Alan Willsky (2011). “Bayesian
nonparametric inference of switching dynamic linear models”. In: IEEE Transac-
tions of Signal Processing 59.4, pp. 1569–1585.

Andrea Garulli, Simone Paoletti, and Antonio Vicino (2012). “A survey on switched
and piecewise affine system identification”. In: Proceedings of the 16th IFAC Sym-
posium on System Identification (SYSID). Brussels, Belgium, pp. 344–355.

Stuart Gibson and Brett Ninness (2005). “Robust maximum-likelihood estimation
of multivariable dynamic systems”. In: Automatica 41.10, pp. 1667–1682.

Stephanie Gil and Brian Williams (2009). “Beyond local optimality: an improved
approach to hybrid model learning”. In: Proceedings of the 48th IEEE Conference
on Decision and Control (CDC). Shanghai, China, pp. 3938–3945.

Thomas Kailath, Ali H. Sayed, and Babak Hassibi (2000). Linear estimation. Upper
Saddle River, NJ, USA: Prentice Hall.

Estelle Kuhn and Marc Lavielle (2004). “Coupling a stochastic approximation ver-
sion of EM with an MCMC procedure”. In: ESAIM: Probability and Statistics 8,
pp. 115–131.

Fredrik Lindsten (2013). “An efficient stochastic approximation EM algorithm us-
ing conditional particle filters”. In: Proceedings of the 38th International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, BC, Canada,
pp. 6274–6278.

Fredrik Lindsten, Michael I. Jordan, and Thomas B. Schön (2014). “Particle Gibbs
with ancestor sampling”. In: The Journal of Machine Learning Research (JMLR)
15.1, pp. 2145–2184.

Fredrik Lindsten and Thomas B. Schön (2013). “Backward simulation methods for
Monte Carlo statistical inference”. In: Foundations and Trends in Machine Learn-
ing 6.1, pp. 1–143.

Jimmy Olsson, Olivier Cappé, Randal Douc, and Éric Moulines (2008). “Sequential
Monte Carlo smoothing with application to parameter estimation in nonlinear
state-space models”. In: Bernoulli 14.1, pp. 155–179.

Simone Paoletti, Aleksandar Lj. Juloski, Giancarlo Ferrari-Trecate, and René Vidal
(2007). “Identification of hybrid systems: a tutorial”. In: European Journal of
Control 13.2, pp. 242–260.

Komi Midzodzi Pekpe, Gilles Mourot, Komi Gasso, and José Ragot (2004). “Identi-
fication of switching systems using change detection technique in the subspace
framework”. In: Proceedings of the 43rd IEEE Conference on Decision and Control
(CDC). Vol. 4. Paradise Island, Bahamas, pp. 3838–3843.

Rik Pintelon, Joannes Schoukens, Tomas McKelvey, and Yves Rolain (1996). “Mini-
mum variance bounds for overparameterized models”. In: IEEE Transactions on
Automatic Control 41.5, pp. 719–720.

Herbert E. Rauch, Frank F. Tung, and Charlotte T. Striebel (1965). “Maximum
likelihood estimates of linear dynamic systems”. In: AIAA journal 3.8, pp. 1445–
1450.

180

Herbert Robbins and Sutton Monro (1951). “A stochastic approximation method”.
In: The Annals of Mathematical Statistics 22.3, pp. 400–407.

Christian P. Robert and George Casella (2004). Monte Carlo statistical methods.
2nd ed. New York, NY, USA: Springer.

Thomas B. Schön, Fredrik Gustafsson, and Per-Johan Nordlund (2005). “Marginal-
ized particle filters for mixed linear/nonlinear state-space models”. In: IEEE
Transactions on Signal Processing 53.7, pp. 2279–2289.

Thomas B. Schön, Adrian Wills, and Brett Ninness (2011). “System identification of
nonlinear state-space models”. In: Automatica 47.1, pp. 39–49.

Robert H. Shumway and David S. Stoffer (1982). “An approach to time series smooth-
ing and forecasting using the EM algorithm”. In: Journal of Time Series Analysis
3.4, pp. 253–264.

Robert H. Shumway and David S. Stoffer (2006). Time series analysis and its applica-
tions: with R examples. 2nd ed. New York, NY, USA: Springer.

Greg C.G. Wei and Martin A. Tanner (1990). “A Monte Carlo implementation of the
EM algorithm and the poor man’s data augmentation algorithms”. In: Journal of
the American Statistical Association 85.411, pp. 699–704.

Nick Whiteley, Christophe Andrieu, and Arnaud Doucet (2010). “Efficient Bayesian
inference for switching state-space models using discrete particle Markov chain
Monte Carlo methods”. In: arXiv:1011.2437.

Sinan Yildirim, Sumeetpal S. Singh, and Arnaud Doucet (2013). “An online
expectation–maximization algorithm for changepoint models”. In: Journal of
Computational and Graphical Statistics 22.4, pp. 906–926.

Recent licentiate theses from the Department of Information Technology
2016-010 Aleksandar Zeljić: Approximations and Abstractions for Reasoning

about Machine Arithmetic

2016-009 Timofey Mukha: Inflow Generation for Scale-Resolving Simulations of
Turbulent Boundary Layers

2016-008 Simon Sticko: Towards Higher Order Immersed Finite Elements for the
Wave Equation

2016-007 Volkan Cambazoglou: Protocol, Mobility and Adversary Models for the
Verification of Security

2016-006 Anton Axelsson: Context: The Abstract Term for the Concrete

2016-005 Ida Bodin: Cognitive Work Analysis in Practice: Adaptation to Project
Scope and Industrial Context

2016-004 Kasun Hewage: Towards a Secure Synchronous Communication Archi-
tecture for Low-power Wireless Networks

2016-003 Sven-Erik Ekström: A Vertex-Centered Discontinuous Galerkin Method
for Flow Problems

2016-002 Rubén Cubo: Mathematical Modeling for Optimization of Deep Brain
Stimulation

2016-001 Victor Shcherbakov: Radial Basis Function Methods for Pricing Multi-
Asset Options

2015-006 Hanna Holmgren: Towards Accurate Modeling of Moving Contact Lines

2015-005 Siyang Wang: Analysis of Boundary and Interface Closures for Finite
Difference Methods for the Wave Equation

Department of Information Technology, Uppsala University, Sweden

	List of papers
	Introduction
	The papers: Contributions & a range of applications
	Outline of the introductory chapters
	A word on notation

	Statistical learning: Data, models & inference
	Data y
	Models p(y"0660380)
	Two paradigms for deducing unknown parameters
	Finding a point estimate for : "0362
	Finding the posterior distribution for : p("0660380 y)

	Posterior distributions vs. point estimates
	Priors and regularization
	When the prior does not matter
	When the prior does matter
	Circumventing the prior assumptions?

	State space models
	The general state-space model
	Linear Gaussian state-space models
	Jump-Markov linear state-space models
	Wiener and Hammerstein models
	Statistical inference in state-space models
	Quantities to infer: states and model parameters
	A Bayesian approach or point estimates?

	Gaussian processes
	Introducing the Gaussian process
	Choosing noise density, mean and covariance functions
	Hyperparameter inference
	Empirical Bayes: Finding a point estimate "0362
	Hyperpriors: Marginalizing out

	Computational aspects
	Two remarks
	A posterior variance independent of observed values?
	What is a typical sample of a GP?

	Extensions and generalizations
	Heteroscedasticity and non-stationarity
	Student-t processes
	Dynamical GP models
	Other nonparametric models

	Gaussian-process state-space models

	Monte Carlo methods for statistical inference
	The Monte Carlo idea
	The bootstrap particle filter
	Resampling
	Positive and unbiased estimates of p(y1:T"0660380)

	The Markov chain Monte Carlo sampler
	The Metropolis-Hastings kernel
	The Gibbs kernel
	Convergence

	The Sequential Monte Carlo sampler
	Connection to particle filters
	Constructing a sequence {p}p=0P
	Propagating the particles
	Convergence

	Markov Chain or Sequential Monte Carlo?
	Monte Carlo for state-space model parameters
	MCMC for nonlinear state-space models: PMCMC
	Particle Gibbs for maximum likelihood estimation
	SMC for state-space model parameters: SMC2

	Conclusions and future work
	Conclusions
	Future work

	The unbiased estimator "0362pNx(y1:T)
	The matrix normal inverse Wishart distribution in linear regression
	The matrix normal and inverse Wishart distributions
	The scalar case: NIG
	Generalizing to the matrix case: MNIW

	Scalar linear regression: yt=axt+et
	Multivariable linear regression: yt=Axt+et

	Notation list
	References
	Paper I – A flexible state space model for learning nonlinear dynamical systems
	Abstract
	Introduction
	Related work
	Constructing the model
	Basis function expansion
	Encoding prior assumptions—regularization
	Model summary

	Learning
	Sequential Monte Carlo for system identification
	Parameter posterior
	Inferring the posterior—Bayesian learning
	Regularized maximum likelihood
	Convergence and consistency
	Initialization

	Experiments
	A first toy example
	Narendra-Li benchmark
	Water tank data

	Conclusions and further work
	Appendix: Technical details
	Derivation of (24)
	Invariant distribution of Algorithm 2

	References

	Paper II – Comparing two recent particle filter implementations of Bayesian system identification
	Abstract
	Introduction
	The PMH and SMC2 algorithms
	Particle Metropolis-Hastings
	SMC2

	Numerical comparison
	A simulated example
	A real world example
	Computational load and tuning

	Conclusions
	References

	Paper III – Nonlinear state space smoothing using the conditional particle filter
	Abstract
	Introduction
	Particle methods
	Particle filters
	Forward – backward particle smoothers

	Smoothing using the Conditional Particle Filter
	Conditional particle filter with ancestor sampling
	Markov chain Monte Carlo
	Smoothing using MCMC
	Convergence
	Computational complexity

	Simulated examples
	Scalar linear Gaussian SSM
	Nonlinear, multi-modal example

	Indoor positioning application
	Problem setup
	Results

	Conclusions
	Appendix: Simulated nonlinear, multimodal example
	Appendix: Indoor positioning
	Non-uniform sampling interval
	Unknown transmission times
	Sensor bias
	Evaluation of f(xt+1|xt,atn,t)
	Low chance of `new ancestor'
	Initialization

	References

	Paper IV – Marginalizing Gaussian process hyperparameters using sequential Monte Carlo
	Abstract
	Introduction
	Sampling hyperparameters using SMC
	Examples and results
	Simulated example
	Learning a robot arm model
	Fault detection of oxygen sensors

	Conclusion
	References

	Paper V – Identification of jump Markov linear models using particle filters
	Abstract
	Introduction
	Expectation maximization algorithms
	Smoothing using Monte Carlo methods
	Inferring the linear states: p(z1:T | s1:T, y1:T)
	Inferring the jump sequence: p(s1:T | y1:T)
	Rao-Blackwellization

	Identification of jump Markov linear models
	Maximizing the intermediate quantity
	Computational complexity

	Numerical examples
	Example 1 - Comparison to related methods
	Example 2 - Identification of multidimensional systems

	Conclusions and future work
	References

