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Abstract

In this thesis, we consider the problem of estimating position and orientation
(6D pose) using inertial sensors (accelerometers and gyroscopes). Inertial sen-
sors provide information about the change in position and orientation at high
sampling rates. However, they suffer from integration drift and hence need to be
supplemented with additional sensors. To combine information from the inertial
sensors with information from other sensors we use probabilistic models, both
for sensor fusion and for sensor calibration.

Inertial sensors can be supplemented with magnetometers, which are typically
used to provide heading information. This relies on the assumption that the mea-
sured magnetic field is equal to a constant local magnetic field and that the mag-
netometer is properly calibrated. However, the presence of metallic objects in the
vicinity of the sensor will make the first assumption invalid. If the metallic object
is rigidly attached to the sensor, the magnetometer can be calibrated for the pres-
ence of this magnetic disturbance. Afterwards, the measurements can be used
for heading estimation as if the disturbance was not present. We present a practi-
cal magnetometer calibration algorithm that is experimentally shown to lead to
improved heading estimates. An alternative approach is to exploit the presence
of magnetic disturbances in indoor environments by using them as a source of
position information. We show that in the vicinity of a magnetic coil it is possible
to obtain accurate position estimates using inertial sensors, magnetometers and
knowledge of the magnetic field induced by the coil.

We also consider the problem of estimating a human body’s 6D pose. For this,
multiple inertial sensors are placed on the body. Information from the inertial
sensors is combined using a biomechanical model which represents the human
body as consisting of connected body segments. We solve this problem using an
optimization-based approach and show that accurate 6D pose estimates are ob-
tained. These estimates accurately represent the relative position and orientation
of the human body, i.e. the shape of the body is accurately represented but the
absolute position can not be determined.

To estimate absolute position of the body, we consider the problem of indoor
positioning using time of arrival measurements from an ultra-wideband (uwb)
system in combination with inertial measurements. Our algorithm uses a tightly-
coupled sensor fusion approach and is shown to lead to accurate position and
orientation estimates. To be able to obtain position information from the uwb
measurements, it is imperative that accurate estimates of the receivers’ positions
and clock offsets are known. Hence, we also present an easy-to-use algorithm to
calibrate the uwb system. It is based on a maximum likelihood formulation and
represents the uwbmeasurements assuming a heavy-tailed asymmetric noise dis-
tribution to account for measurement outliers.
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Populärvetenskaplig sammanfattning

I denna licentiatsavhandling betraktar vi problemet att skatta position och ori-
entering med hjälp av tröghetssensorer (accelerometrar och gyroskop). Tröghets-
sensorer tillhandahåller information om förändringar i position och orientering
vid höga samplingshastigheter. Nackdelen med denna typ av sensor är att skatt-
ningarna driver över tid (integrationsdrift) och behöver därför kompletteras med
ytterligare sensorer. För att kombinera information från tröghetssensorer med
information från andra sensorer använder vi probabilistiska modeller, både för
sensorfusion och för sensorkalibrering.

Tröghetssensorer kan kompletteras med magnetometrar, som typiskt används för
att erhålla riktningsinformation. Detta bygger på antaganden att det uppmätta
magnetfältet är lika med ett konstant lokalt magnetfält och att magnetometern
är korrekt kalibrerad. Närvaron av metalliska föremål i närheten av sensorn kom-
mer att göra det första antagandet ogiltigt. Om det metalliska föremålet och mag-
netometern sitter ihop utan att kunna röra sig inbördes så kan magnetometern
kalibreras med avseende på denna magnetiska störning. Efteråt kan mätningar-
na användas för riktningsskattning som om störningen inte var närvarande. I
denna avhandling presenterar vi en praktisk algoritm för kalibrering av en mag-
netometer och visar att den leder till förbättrade skattningar av orientering. Ett
alternativt tillvägagångssätt är att utnyttja närvaron av magnetiska störningar i
inomhusmiljöer genom att använda dem som en källa till positionsinformation.
Vi visar att i närheten av en magnetisk spole är det möjligt att erhålla precisa
positionsskattningar med användning av tröghetssensorer, magnetometrar och
kunskap om det magnetfält som induceras av spolen.

Vi ställer också upp problemet att skatta position och orientering hos en mänsk-
lig kropp. För detta ändamål placeras flera tröghetssensorer på kroppen, och in-
formation från dessa kombineras med en biomekanisk modell som representerar
den mänskliga kroppen. Denna modell består av kroppssegment som är knutna
till varandra. Vi löser det resulterande problemet genom att använda en opti-
meringsbaserad metod vilket resulterar i korrekta relativa positions- och oriente-
ringsskattningar. Detta betyder att formen på kroppen är rätt representerad men
den absoluta positionen kan inte fastställas.

För att skatta den absoluta positionen av kroppen formulerar vi inomhuspositio-
neringsproblemet med hjälp av time of arrival mätningar från ett ultra-wideband
(uwb) system i kombination med tröghetsmätningar. Vår algoritm använder ett
angreppssätt baserat på tightly-coupled sensorfusion och leder till goda positions-
och orienteringsskattningar. För att kunna få positionsinformation från uwbmät-
ningar är det nödvändigt att känna till uwb mottagarnas positioner och tidsför-
skjutningar. För detta ändamål presenterar vi en lättanvänd algoritm för att ka-
librera ett uwb system. Den är baserad på en maximum likelihood formulering
som modellerar bruset hos uwb mätningar med hjälp av en asymmetrisk fördel-
ning med heavy tails för att hantera orimliga mätningar.

vii
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Symbols and operators

Notation Meaning

n Navigation frame
b Body frame
xt State vector at time t
x1:N Set of states from time t = 1 to t = N
ut Known input vector at time t
yt Measurements at time t
y1:N Set of measurements from time t = 1 to t = N
ft( · ) State update equation at time t
ht( · ) Measurement equation at time t
x̂t|t State estimate at time t given measurements up to and

including time t
Pt|t State covariance at time t given measurements up to

and including time t
θ Parameter vector
θ̂ Parameter estimate

p (a | b) Conditional probability of a given b
pθ(b) Probability of b parametrized by θ
N (µ, σ2) Gaussian distribution with mean µ and covariance σ2

Cauchy(µ, γ) Cauchy distribution with location parameter µ and
scale parameter γ

∅ Empty set
∈ Is a member of

A ⊆ B A is a subset of or is included in B
R Set of real numbers

arg max Maximizing argument
arg min Minimizing argument
‖a‖2 Two-norm of the vector a
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detA Determinant of the matrix A
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� Quaternion multiplication
qL Left quaternion multiplication of the quaternion q
qR Right quaternion multiplication of the quaternion q
qv Vector part of the quaternion q

Abbreviations

Abbreviation Meaning

bfgs Broyden-Fletcher-Goldfarb-Shanno
ekf Extended Kalman filter
gps Global positioning system
imu Inertial measurement unit
kf Kalman filter
map Maximum a posteriori
mekf Multiplicative extended Kalman filter
mems Micro-machined electromechanical system
ml Maximum likelihood
nlos Non-line-of-sight
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Background





1
Introduction

In this thesis, we consider the problem of estimating position and orientation
using inertial sensors (accelerometers and gyroscopes). Throughout the thesis,
the inertial measurements are used in combination with other sensors, namely
magnetometers and time of arrival (toa) measurements from an ultra-wideband
(uwb) system. We also consider the problem of using multiple inertial sensors
placed on the human body to estimate the body’s position and orientation (6D
pose). Information from the inertial sensors is in that case combined using a
biomechanical model which represents the human body as consisting of body
segments that are attached to each other. To efficiently combine information from
different sensors and different models, we rely on probabilistic models.

Part I of this thesis serves as background material to Part II in which four papers
are presented. Hence, in Part I we will frequently refer to the different papers
in Part II. In Section 1.1 of this chapter, we will first give a short description
of the different sensors used throughout this thesis. Subsequently, the topic of
probabilistic modeling will be introduced in Section 1.2. In the remainder we
will discuss some example applications and summarize the contributions of this
thesis.

1.1 Sensors

In this section we will introduce the sensors that are used throughout this thesis.
In all four papers in Part II, our algorithms make use of inertial measurements
from an inertial measurement unit (imu). The imus we use are based on micro-
machined electromechanical system (mems) technology and are equipped with
both inertial sensors (see Section 1.1.1) and with a three-axis magnetometer (see

3



4 1 Introduction

Figure 1.1: Example sensors. Left and right: an inertial measurement unit
(imu) with and without casing. Middle: an ultra-wideband (uwb) transmit-
ter. By courtesy of Xsens Technologies.

Section 1.1.2). An example of an imu can be found in Figure 1.1.

1.1.1 Inertial sensors

The term inertial sensor is used to denote the combination of a three-axis ac-
celerometer and a three-axis gyroscope. A gyroscope measures the sensor’s angu-
lar velocity, i.e. the rate of change of the sensor’s orientation. Hence, integration
of the gyroscope signals provides information about the orientation of the sensor.

An accelerometer measures the external specific force acting on the sensor. The
specific force consists of both the sensor’s acceleration and the earth’s gravity.
The earth’s gravity is of the order of 9.81 m/s2, while the sensor’s acceleration
is generally of much smaller magnitude. The accelerometer measurements will
therefore typically consist of a large contribution from the earth’s gravity and a
relatively small contribution due to the motion of the sensor. After subtraction
of the earth’s gravity, double integration of the accelerometer signals provides
information about the sensor position. To subtract earth’s gravity, however, it
is necessary that the orientation of the sensor is known. Hence, estimation of
the sensor’s position and orientation are inextricably linked when using inertial
sensors. The combined estimation of both position and orientation is sometimes
called pose estimation. The process of estimating position and orientation using
inertial sensors is summarized in Figure 1.2.

The integration steps from angular velocity to rotation and acceleration to posi-
tion introduce integration drift. Hence, errors in the measurements have a large
impact on the quality of the estimated position and orientation using inertial sen-
sors only. This is specifically the case for position, which relies both on double
integration of the acceleration and on accurate orientation estimates to subtract
the earth’s gravity. Because of this, inertial sensors need to be supplemented with
other sensors to lead to accurate position and orientation estimates. The inertial
measurements can for instance be combined with toameasurements from auwb
system. uwb will be introduced in Section 1.1.3.
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∫

rotate
remove
gravity

"

angular
velocity orientation

external spe-
cific force acceleration position

Figure 1.2: Schematic illustration of the process of determining position and
orientation from the accelerometer measurements (external specific force)
and the gyroscope measurements (angular velocity), assuming a known ini-
tial position and orientation.

In case we are interested in orientation estimation only, it is possible to use in-
ertial sensors in combination with a magnetometer. For this, however, we need
an additional model assumption concerning the acceleration. One can recognize
that when the sensor is (almost) not accelerating, the accelerometer (almost) only
measures the gravity. Using this model assumption, the accelerometer measure-
ments can provide an estimate of the vertical direction (aligned with the gravity
vector). The angle of deviation from the vertical is called the inclination. The ac-
celerometer measurements can hence be said to stabilize the inclination estimates
from the gyroscope. They do, however, not provide any information about the
heading, i.e. the rotation around the vertical axis. Information about this can be
obtained from magnetometers, which will be introduced in Section 1.1.2. Since
imus often consist of both inertial sensors and magnetometers, it is for many
applications possible to obtain accurate orientation estimates using an imu.

1.1.2 Magnetometers

A magnetometer measures the strength and the direction of the magnetic field. In
combination with inertial sensors, magnetometers typically serve the purpose of
a compass and are used to determine the sensor’s heading. This approach relies
on the assumption that the magnetic field is at least locally constant and that
it points in the direction of a local magnetic north. This is specifically the case
when there are no magnetic objects in the vicinity of the sensor. In that case the
magnetometer only measures the earth’s magnetic field. Both the magnitude and
the direction of the earth’s magnetic field depend on the location on the earth, as
depicted in Figure 1.3. However, the horizontal component of the magnetic field
always points towards the earth’s magnetic north.

Magnetometers typically provide accurate measurements of the magnetic field at
high sampling rates. The measured magnetic field is, however, often not equal to
the earth’s magnetic field due to the presence of metallic objects in the vicinity
of the sensor. The presence of objects causing magnetic disturbances is typically
considered to be undesirable since they negatively affect the heading estimates.
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Figure 1.3: Schematic of the earth magnetic field lines (green) around the
earth (blue).

However, if the metallic object is rigidly attached to the sensor the magnetometer
can be calibrated for the presence of this disturbance. Afterwards, the measure-
ments can be used for heading estimation as if the disturbance was not present.
Example scenarios for which this calibration can be used are when a magnetome-
ter is attached to e.g. a smartphone, a car or an aircraft. Magnetometer calibration
is the topic of Paper A, where a practical magnetometer calibration algorithm is
derived.

An alternative approach is to exploit the presence of magnetic disturbances in
indoor environments by using them as a source of position information, see e.g.
Angermann et al. (2012); Frassl et al. (2013). This approach assumes that knowl-
edge of the magnetic field is represented as a map in which we want to localize
the sensor. For instance, the strength and/or direction of the magnetic field at a
specific location can be compared with a magnetic field map of the environment
to estimate possible sensor locations. This is the topic of Paper D.

1.1.3 Ultra-wideband

A third type of measurements used in Part II of this thesis is based on toa mea-
surements from a uwb system. The uwb system consists of a number of station-
ary uwb receivers and a number of mobile transmitters, as depicted in Figure 1.4.
The uwb transmitter (see also Figure 1.1) sends out a uwb pulse. The receivers
measure the time of arrival of the pulse. Ideally, the time it takes for the pulse
to reach the receivers is proportional to the distance between the transmitter and
the receiver. However, due to multipath or non-line-of-sight (nlos) conditions,
the pulse can be delayed leading to a measurement outlier. In Paper B we con-
sider the problem of indoor positioning using uwb measurements in combina-
tion with inertial measurements. The paper focuses on sensor fusion between
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UWB transmitter

UWB receiver

pulse

Figure 1.4: The UWB setup consists of a number of stationary receivers mak-
ing TOA measurements of signal pulses originating from a mobile transmit-
ter.

the uwbmeasurements and the inertial measurements. It also presents a calibra-
tion algorithm that determines the positions and clock offsets of the receivers and
a novel approach to obtain position estimates using only the uwbmeasurements.

1.2 Probabilistic modeling

In this thesis we use measurements from the sensors discussed in Section 1.1 in
combination with models to estimate the sensor’s position and orientation. Both
the measurements and the models provide uncertain information, for instance
due to measurement noise or measurement outliers, but also due to model im-
perfections. Hence, we reason about our problem in terms of random variables
with a probability density function (pdf). Combining information from different
sensors based on a probabilistic framework is called sensor fusion, see e.g. Gustafs-
son (2012).

We typically describe our problems in the form of a state-space model,

xt+1 = ft(xt , ut , θ, vt), (1.1a)

yt = ht(xt , θ, et), (1.1b)

where (1.1a) is the dynamics or state update equation and (1.1b) is the measurement
equation. The dynamics model how the state changes over time, i.e. they describe
the state x at time t + 1, denoted xt+1, in terms of a possibly nonlinear and time-
varying model ft( · ). The model ft( · ) depends on the state x, the input u and the
process noise v at time t, and on a constant parameter vector θ. The measure-
ment equation models the measurements yt as a function ht( · ) of the state xt , i.e.
it describes which information about the state can be inferred from the measure-
ments. The function ht( · ) also depends on a constant parameter vector θ and
the measurement noise et . The noise terms vt and et can reflect our confidence
in the models and in the measurements, respectively. They can also be used to
model different noise distributions to for instance take into account the presence
of measurement outliers.

State-space models (1.1) are often used for state estimation, where we estimate
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the state x1:N = {x1, . . . , xN }. State estimation is often done using a maximum a
posteriori (map) approach,

x̂MAP
1:N = arg max

x1:N

p(x1:N | y1:N ), (1.2)

where p(a | b) denotes the conditional probability of a given b. Hence, the es-
timated state x1:N is chosen to be the one most likely from the measurements
y1:N = {y1, . . . , yN }. Various techniques exist to obtain themap estimate. In Chap-
ter 2 we will discuss background to the state estimation techniques that are used
in the papers presented in Part II of this thesis.

In specific situations, the model parameters θ are unknown and need to be esti-
mated from data. An example of this is sensor calibration where for instance the
presence of an unknown measurement bias could be modeled as an unknown
parameter in the measurement equation (1.1b). Estimation of parameters in a
state-space model is also called grey-box system identification (Ljung, 1999; Bohlin,
2006). It can be done using maximum likelihood (ml) estimation,

θ̂ML = arg max
θ∈Θ

pθ(y1:N ), (1.3)

where pθ(b) denotes the probability of b parametrized by θ. The parameter vector
θ is an nθ-dimensional vector which can be limited to a subset Θ of Rnθ , i.e. the
optimization is performed over θ ∈ Θ with Θ ⊆ R

nθ . The problem of sensor
calibration will be discussed in more detail in Chapter 3 and will be the subject
of Paper A and of part of Paper B.

1.3 Example applications

Position and orientation estimation is of interest for a wide range of applications.
One can think of for instance aircraft or car localization, but also of pedestrian
localization (Hol, 2011; Woodman, 2010; Grzonka, 2011; Callmer, 2013). For
outdoor applications, it is typically possible to make use of measurements from
a global positioning system (gps). For indoor positioning, however, gps signals
are not available.

As discussed in Section 1.1.1, inertial sensors provide information about the
change in orientation and position at high sampling rates. With the develop-
ment of mems technology, small inertial sensors which can be worn on the hu-
man body have become available. This has applications in for instance pedestrian
tracking (Woodman, 2010) which often focuses on estimating the position of first-
responders such as fire-fighters (Grzonka, 2011; Callmer, 2013). It also has appli-
cations for human body motion capture which is the subject of Paper C. There, a
subject wears a suit with 17 imus on different body segments. The inertial mea-
surements are used in combination with a biomechanical model to estimate the
pose of the body. This biomechanical model is used to represent the assumption
that the different body segments are (and remain) attached to each other. An ex-
ample of pose estimates using inertial sensors is shown in Figure 1.5. The motion
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Figure 1.5: Example of inertial human body motion capture. Left: olympic
and world champion speed skating Ireen Wüst wearing an inertial motion
capture suit with 17 inertial sensors. Right: graphical representation of the
estimated position and orientation of the body segments. By courtesy of
Xsens Technologies.

Figure 1.6: Example of inertial motion capture using 17 inertial sensors as
well as 3 uwb transmitters on the head and on the feet. The estimated pose
is shown in orange. By courtesy of Xsens Technologies.

capture suit can also be used in combination with uwb measurements. Paper B
focuses on the use of uwbmeasurements and the sensor fusion of uwbmeasure-
ments with inertial measurements. In Figures 1.6 and 1.7 a subject is shown who
wears 17 inertial sensors as well as 3 uwb transmitters, on both his feet and his
head.

1.4 Thesis outline

The thesis is divided into two parts, with edited versions of published and unpub-
lished papers in Part II. In Part I, we will give background information relevant
to the different papers.

Part I – Background

In Chapter 2, we describe the subject of pose estimation using inertial sensors
and magnetometers. We focus on different algorithms/algorithm implementa-
tions to estimate the sensor’s orientation. This serves as background material to
Papers A, B and C. We also discuss some issues related to particle filtering for
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Figure 1.7: Example of inertial motion capture using 17 inertial sensors as
well as 3 uwb transmitters on the head and on the feet. The estimated pose
is overlaid on the body. As discussed in Section 1.1.3, uwb does not require
line-of-sight. Hence, it is also possible to get good pose estimates when the
subject is covered by for instance a box (right plot).

pose estimation using the magnetic field as a source of position information as
in Paper D. In Chapter 3, we discuss the topic of sensor calibration. It provides
background to the magnetometer calibration problem in Paper A and the uwb
calibration algorithm presented in Paper B. Part I concludes with a summary of
the contributions of the papers and a discussion of possible directions for future
work.

Part II – Publications

Part II of the thesis consists of edited versions of four papers. These papers con-
tain the following main contributions of this thesis:

• A novel magnetometer calibration algorithm which uses inertial sensors to
calibrate the magnetometer for the presence of magnetic disturbances, for
magnetometer sensor errors and for misalignment between the magnetome-
ter and the inertial sensor axes [Paper A].

• A novel approach to combine inertial measurements with toa measure-
ments from a uwb system for indoor positioning. We present a tightly-
coupled sensor fusion approach to combine the inertial measurements and
theuwbmeasurements, an easy-to-use algorithm to calibrate theuwb setup
and a novel multilateration approach to estimate the transmitter’s position
from the uwbmeasurements [Paper B].

• A novel inertial human body motion capture approach which solves the
motion capture problem using an optimization-based approach [Paper C].

• A novel algorithm for 6D pose estimation where inertial measurements are
complemented with magnetometer measurements assuming that a mag-
netic field map is known. In this approach, the magnetometer measure-
ments are hence used as a source of position information [Paper D].



1.4 Thesis outline 11

Below we provide a summary of each paper together with a discussion of the
background and of the author’s contributions.

Paper A: Magnetometer calibration using inertial sensors

Paper A is an edited version of

M. Kok and T. B. Schön. Magnetometer calibration using inertial sen-
sors. Preprint, 2014b.

Earlier versions of this work were presented in

M. Kok and T. B. Schön. Maximum likelihood calibration of a mag-
netometer using inertial sensors. In Proceedings of the 19th World
Congress of the International Federation of Automatic Control (ac-
cepted for publication), Cape Town, South Africa, August 2014a,

M. Kok, J. D. Hol, T. B. Schön, F. Gustafsson, and H. Luinge. Cali-
bration of a magnetometer in combination with inertial sensors. In
Proceedings of the 15th International Conference on Information Fu-
sion, Singapore, July 2012.

Summary: In this work we present a practical calibration algorithm that cali-
brates a magnetometer using inertial sensors. The calibration corrects for mag-
netometer sensor errors, for the presence of magnetic disturbances and for mis-
alignment between the magnetometer and the inertial sensor axes. It is based on
a maximum likelihood formulation and is formulated as an offline method. It is
shown to give good results using data from two different commercially available
sensor units. Using the calibrated magnetometer measurements in combination
with the inertial sensors to determine orientation, is shown to lead to significantly
improved heading estimates.

Background and contributions: Before the author of this thesis started her work
as a PhD student at Linköping University, she worked at Xsens Technologies. Dur-
ing this time she studied the topic of magnetometer calibration. Hence, the mag-
netometer calibration problem provided a good starting point for research dur-
ing her PhD. A first paper on this subject has therefore been co-authored with
Dr. Jeroen Hol and Dr. Henk Luinge from Xsens Technologies. Later work has
mainly been done in cooperation with Prof. Thomas Schön. Dr. Henk Luinge and
Laurens Slot from Xsens Technologies and Dr. Gustaf Hendeby from Linköping
University have been so kind as to help in collecting the data sets presented in
the paper. The author of this thesis has implemented the calibration algorithm
and has written a major part of the paper.

Paper B: Indoor positioning using ultra-wideband and inertial
measurements

Paper B is an edited version of

M. Kok, J. D. Hol, and T. B. Schön. Indoor positioning using ultra-
wideband and inertial measurements. Preprint, 2014b.
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Summary: In this work we present an approach to combine measurements from
accelerometers and gyroscopes (inertial sensors) with time of arrival measure-
ments from an ultra-wideband system for indoor positioning. Our algorithm
uses a tightly-coupled sensor fusion approach and is shown to lead to accurate 6D
pose (position and orientation) estimates as compared to data from an optical ref-
erence system. To be able to obtain position information from the ultra-wideband
measurements, it is imperative that accurate estimates of the receivers’ positions
and clock offsets are known. Hence, we also present an easy-to-use algorithm
to calibrate the ultra-wideband system. It is based on a maximum likelihood
formulation and represents the ultra-wideband measurements assuming a heavy-
tailed asymmetric noise distribution to account for measurement outliers. Using
the heavy-tailed asymmetric noise distribution and the calibration results, it is
shown that accurate position estimates can be obtained from the ultra-wideband
measurements using a novel multilateration approach.

Background and contributions: The co-authors of this paper, Dr. Jeroen Hol
and Prof. Thomas Schön, have been working on the subject of indoor positioning
using ultra-wideband measurements and inertial measurements, resulting in the
two papers Hol et al. (2009, 2010) and in the results presented in Hol (2011). The
author of this thesis has extended the calibration and multilateration algorithms
from Hol (2011); Hol et al. (2010) by assuming a heavy-tailed asymmetric distri-
bution to represent the outliers in the ultra-wideband measurements. The pre-
sented sensor fusion results are based on previous results from Hol et al. (2009).
The paper has been written together with Dr. Jeroen Hol.

Paper C: An optimization-based approach to human body motion
capture using inertial sensors

Paper C is an edited version of

M. Kok, J. D. Hol, and T. B. Schön. An optimization-based approach to
human body motion capture using inertial sensors. In Proceedings of
the 19th World Congress of the International Federation of Automatic
Control (accepted for publication), Cape Town, South Africa, August
2014a.

Summary: In inertial human motion capture, a multitude of body segments are
equipped with inertial measurement units, consisting of 3D accelerometers, 3D
gyroscopes and 3D magnetometers. Relative position and orientation estimates
can be obtained using the inertial data together with a biomechanical model. In
this work we present an optimization-based solution to magnetometer-free iner-
tial motion capture. It allows for natural inclusion of biomechanical constraints,
for handling of nonlinearities and for using all data in obtaining an estimate. As a
proof-of-concept we apply our algorithm to a lower body configuration, illustrat-
ing that the estimates are drift-free and match the joint angles from an optical
reference system.
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Background and contributions: The co-authors Dr. Jeroen Hol and Prof. Thomas
Schön came up with the idea of solving the human body motion capture problem
as an optimization problem. The implementation of the optimization algorithm
has been done using a framework developed by Xsens Technologies. With this
framework, it is possible to define the optimization problem at a high level. The
author of this thesis has been involved in developing and implementing the algo-
rithm, in the data collection and has written a major part of the paper.

Paper D: MEMS-based inertial navigation based on a magnetic
field map

Paper D is an edited version of

M. Kok, N. Wahlström, T. B. Schön, and F. Gustafsson. MEMS-based
inertial navigation based on a magnetic field map. In Proceedings
of the 38th International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), pages 6466–6470, Vancouver, Canada, May
2013.

Summary: This paper presents an approach for 6D pose estimation wheremems
inertial measurements are complemented with magnetometer measurements as-
suming that a model (map) of the magnetic field is known. The resulting esti-
mation problem is solved using a Rao-Blackwellized particle filter. In our exper-
imental study the magnetic field is generated by a magnetic coil giving rise to a
magnetic field that we can model using analytical expressions. The experimental
results show that accurate position estimates can be obtained in the vicinity of
the coil, where the magnetic field is strong.

Background and contributions: The idea of looking into pose estimation using
magnetometers as a source of position information was started through discus-
sions with Dr. Slawomir Grzonka during the CADICS “Learning World Models”
workshop in 2010 in Linköping. The experiments used in the paper were per-
formed while the author of this thesis was working at Xsens Technologies. During
this time, a first implementation of the pose estimation algorithm was made, us-
ing an extended Kalman filter. During the author’s time at Linköping University,
the work has been extended with an implementation using a Rao-Blackwellized
particle filter. The author of this thesis wrote a major part of this paper.

Publications of related interest, but not included in this thesis

J. Kronander, J. Dahlin, D. Jönsson, M. Kok, T. B. Schön, and J. Unger.
Real-time video based lighting using GPU raytracing. In Proceedings
of the 2014 European Signal Processing Conference (EUSIPCO), Lis-
bon, Portugal, September 2014. (submitted, pending review).

N. Wahlström, M. Kok, T. B. Schön, and F. Gustafsson. Modeling mag-
netic fields using Gaussian processes. In Proceedings of the 38th In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 3522–3526, Vancouver, Canada, May 2013.





2
Pose estimation using inertial

sensors and magnetometers

As discussed in Chapter 1, position and orientation estimation are closely related
in the case of inertial sensors. Pose estimation denotes the simultaneous estima-
tion of position and orientation. One can use standard estimation techniques for
this. However, due to the nonlinear nature of the orientation and the different
orientation representations, it is not obvious what is the best technique to use
to estimate the orientation. In the different papers we use a variety of different
techniques for orientation estimation, depending on the particular situation. In
this chapter we will discuss a few different approaches and their pros and cons.

We start by introducing different representations of orientations in Section 2.1.
Subsequently, two different extended Kalman filter (ekf) implementations are dis-
cussed in Section 2.2. Ekfs can be used to solve themap problem (1.2) introduced
in Chapter 1. Section 2.3 will introduce an alternative way of solving the map
problem (1.2) using optimization techniques. In Section 2.4, some details with
respect to particle filtering will be discussed.

2.1 Orientation representations

The orientation of an object is defined as the rotation between its coordinate
frame with respect to a second coordinate frame. In this thesis we will mostly
make use of the body coordinate frame b and the navigation coordinate frame n.
The body frame b has its origin in the center of the accelerometer triad and its
axes are aligned with the inertial sensor axes. The navigation frame n is aligned
with the earth’s gravity and the local magnetic field.

Orientation can be represented in many different ways (Shuster, 1993). Perhaps
the most intuitive representation is to make use of Euler angles. Rotation in
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Figure 2.1: Definition of the Euler angles with left: rotation ψ around the
z-axis, middle: rotation θ around the y-axis and right: rotation φ around the
x-axis.

terms of Euler angles is defined as a consecutive rotation around the three axes.
We use the convention (z, y, x) which first rotates around the z-axis, subsequently
around the y-axis and finally around the x-axis. The rotations around the three
axes, often denoted as the roll φ, the pitch θ and the yaw ψ angles, are depicted in
Figure 2.1. Although Euler angles are an intuitive representation of orientation,
they suffer from ambiguities. For instance, any addition of 2π to the different
angles results in the same orientation. Another ambiguity is sometimes called
gimbal lock where certain rotation sequences lead to the same orientation, for
instance the rotation (0, π/2, π) is equal to the rotation (−π, π/2, 0).

An alternative way to represent orientation is to use rotation matrices where the
rotation matrix representation of the Euler angle rotation (ψ, θ, φ) is given by

R =



1 0 0
0 cosφ sinφ
0 − sinφ cosφ






cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ







cosψ sinψ 0
− sinψ cosψ 0

0 0 1




=




cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ


 .

(2.1)

Rotation matrices are a useful orientation representation and they will frequently
be used throughout this thesis. For orientation estimation purposes, however,
rotation matrices are less suitable. The reason is that they would lead to a 9-
dimensional state vector subject to the following constraints

RRT = RTR = I3, detR = 1, (2.2)

where I3 denotes a 3 × 3 identity matrix.

A commonly used alternative orientation representation is that of unit quater-
nions. Quaternions were first introduced by Hamilton (1844) and are widely
used in orientation estimation algorithms, see e.g. Kuipers (1999); Hol (2011).
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Quaternions use a 4-dimensional description of the orientation

q =
(
q0 q1 q2 q3

)T
=

(
q0
qv

)
, (2.3)

with the constraint that ‖q‖2 = 1. The rotation matrix R and the quaternion q are
related by

R = qvq
T
v + q2

0I3 + 2q0[qv×] + [qv×]2

=




2q2
0 + 2q2

1 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q2

0 + 2q2
2 − 1 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
0 + 2q2

3 − 1


 , (2.4)

where [qv×] denotes the cross product matrix

[qv×] =




0 −q3 q2
q3 0 −q1
−q2 q1 0


 . (2.5)

Special quaternion algebra is available, see e.g. Kuipers (1999); Hol (2011). In
this chapter, we will only introduce the quaternion algebra needed to derive the
algorithms.

Note that a rotation is always represented from one coordinate frame to another.
Hence, we use a double superscript on the rotation matrix R and the quaternion
q as

mn = Rnbmb, (2.6)

where mb is a vector in the body frame b and the rotation matrix Rnb rotates the
vector to the navigation frame n. Equivalently,

mb =
(
Rnb

)T
mn = Rbnmn. (2.7)

where a vector mn in the navigation frame n is rotated to the body frame b using
the rotation matrix (Rnb)T = Rbn.

2.2 Extended Kalman filters for orientation estimation

Orientation estimation is a state estimation problem, where the state x1:N in a
state-space model (see (1.1)) is estimated from a time update and a measurement
model. As discussed in Section 1.2, state estimation aims at obtaining a map es-
timate of the state. In the case of linear models this can be done using a Kalman
filter (kf). Kfs were first introduced by Kalman (1960) and are the best linear un-
biased filters in the sense that they minimize the variance of the state estimation
error. The ekf is an extension of the Kalman filter which makes the filter also ap-
plicable to nonlinear models. Unlike kfs, ekfs are not guaranteed to minimize
the variance of the state estimation error. Actually, no guarantees for the quality
of the ekf estimates can be given (Rawlings and Mayne, 2009). However, in cases
where the model is not “too” nonlinear, they typically work well. Ekfs are widely
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used due to their simplicity and computational efficiency, see e.g. Xsens Technolo-
gies B.V. (2014); Gustafsson (2012). For our case of estimating orientation using
inertial measurements, ekfs are known to work quite well. The reason is that
due to the high sampling rates of the imu, each update in the ekf is typically not
very nonlinear.

In the case of orientation estimation, the state in the ekf represents the orienta-
tion. Hence, a choice needs to be made which of the orientation representations
(see Section 2.1) to use to represent the state. In this section, we will introduce
two different ekf implementations for orientation estimation. To introduce the
problem, in Section 2.2.1 we will first introduce the well-known ekf equations.
Sections 2.2.3 and 2.2.4 will subsequently introduce ekf implementations to es-
timate orientation. The first uses a 4-dimensional quaternion state vector, the
second uses a 3-dimensional state vector representing the orientation deviation
from a linearization point. These discussions will focus on the simplest model to
estimate orientations, i.e. we focus on an ekf implementation with only orienta-
tion states.

2.2.1 The extended Kalman filter

An ekf uses a nonlinear state-space model (1.1) as introduced in Section 1.2. We
typically assume that the measurement noise is additive, and that both the pro-
cess and the measurement noise are zero-mean Gaussian with constant covari-
ance, i.e.

xt+1 = ft(xt , ut , vt), (2.8a)

yt = ht(xt) + et , (2.8b)

with vt ∼ N (0, Q) and et ∼ N (0, R).

The ekf estimates the state by performing a time update and a measurement update.
The time update uses the model (2.8a) to “predict” the state to the next time step
according to

x̂t+1|t = ft(x̂t|t , ut), (2.9a)

Pt+1|t = AtPt|tAT
t + GtQG

T
t , (2.9b)

with

At = ∂ft(xt ,ut ,vt)
∂xt

∣∣∣∣
xt=x̂t|t ,vt=0

, Gt = ∂ft(xt ,ut ,vt)
∂vt

∣∣∣∣
xt=x̂t|t ,vt=0

. (2.10)

Here, x̂ is used to distinguish the estimated state from the “true” state x. The
matrix P denotes the state covariance. The double subscripts on x̂t+1|t and Pt+1|t
denote the state estimate and the state covariance at time t + 1 given measure-
ments up to time t. Similarly, x̂t|t and Pt|t denote the state estimate and the state
covariance at time t given measurements up to time t.

The measurement update uses the measurement model (2.8b) in combination
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with the measurements yt to update the “predicted” state estimate as

x̂t|t = x̂t|t−1 + Pt|t−1C
T
t

(
CtPt|t−1C

T
t + R

)−1 (
yt − ŷt|t−1

)
, (2.11a)

Pt|t = Pt|t−1 − Pt|t−1C
T
t

(
CtPt|t−1C

T
t + R

)−1
CtPt|t−1, (2.11b)

with

ŷt|t−1 = h(x̂t|t−1), Ct = ∂ht(xt)
∂xt

∣∣∣∣
xt=x̂t|t−1

. (2.12)

Note that in (2.11) we have shifted our notation by one time step as compared to
the notation in (2.9) to avoid cluttering the notation. The measurement update is
often expressed in terms of the Kalman gain Kt , the residual εt and the residual
covariance St

εt = yt − ŷt|t−1, St = CtPt|t−1C
T
t + R, Kt = Pt|t−1C

T
t S
−1
t . (2.13)

The ekf iteratively performs a time update and a measurement update to esti-
mate the state and the state covariance.

Design choices in the ekf are the choice of the state and of the dynamic and
the measurement models. In Sections 2.2.2 – 2.2.4 we will focus on these design
choices for the case of orientation estimation using inertial sensors and magne-
tometers. Hence, we will focus on the derivation of the models, the choice of the
state x and the derivation of the corresponding ft( · ), ht( · ), At , Ct , and Gt .

2.2.2 Modeling the orientation estimation problem

In this section we consider the problem of estimating orientation using inertial
sensors and magnetometers. We use a measurement model where the gyroscope
measurements yω,t are modeled as (Titterton and Weston, 1997)

yω,t = ωt + eω,t , (2.14)

where ωt denotes the angular velocity and eω,t ∼ N (0,Σω). For simplicity we
assume that the gyroscope measurements are bias-free.

The accelerometer measurements ya,t are modeled as (Titterton and Weston, 1997)

ya,t = Rbn
t (an

t − gn) + ea,t

≈ −Rbn
t g

n + ea,t , (2.15)

where ea,t ∼ N (0,Σa) and Rbn
t denotes the rotation from the navigation frame

n to the body frame b at time t as described in Section 2.1. As discussed in
Chapter 1, the accelerometer measures both the sensor’s acceleration, denoted by
an
t and the earth’s gravity, denoted by gn. In the case of using only inertial sensors

and magnetometers to estimate the orientation, it is necessary to stabilize the
inclination by assuming something about the sensor’s acceleration. A possible
model for this is to assume that the mean of the acceleration is zero, as in Paper C
and Luinge (2002). In this section and in Paper A we use a simpler model, where
it is assumed that the acceleration an

t is approximately zero for all t.
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The magnetometer measurements ym,t are modeled as

ym,t = Rbn
t m

n + em,t , (2.16)

where em,t ∼ N (0,Σm). The local magnetic field is denoted by mn. It is assumed
to be constant and its horizontal component is assumed to be in the direction of
the local magnetic north.

As discussed in Gustafsson (2012), it is possible to use the gyroscope measure-
ments either as an input to the dynamic equation (2.8a) or as a measurement
in (2.8b). In this thesis, we use an estimate of the angular velocity as a motion
model for the orientation, i.e. we use the gyroscope measurements as an input
to (2.8a). The noise vt in (2.8a) hence represents the measurement noise of the
gyroscope.

2.2.3 Quaternion states

Using the model from Section 2.2.2, we will now derive an ekf to estimate the ori-
entation using quaternions as a state vector. The state-space model (recall (2.8))
is for this case given by

qnb
t+1 = ft(q

nb
t , yω,t , eω,t), (2.17a)

yt = ht(q
nb
t ) + et , (2.17b)

where eω,t ∼ N (0,Σω) and et ∼ N (0, R). The measurement model uses the ac-
celerometer and magnetometer measurement models (2.15) and (2.16).

The dynamic equation is given by (Gustafsson, 2012; Törnqvist, 2008)

qnb
t+1 = exp

(
− T2 S(ωt)

)
qnb
t (2.18a)

≈
(
I4 + T

2 S(ωt)
)
qnb
t (2.18b)

=
(
I4 + T

2 S(ω̂t)
)
qnb
t + T

2 S̄(qnb
t )vt , (2.18c)

where exp denotes the matrix exponential, T denotes the sampling time and

ω̂t = yω,t = ωt + eω,t . (2.19)

The matrices S̄(q) and S(ω) are given by

S̄(q) =




−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0



, S(ω) =




0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0



. (2.20)

To obtain (2.18b), a first order approximation is used. Subsequently, (2.18c) is
obtained using the gyroscope measurement model (2.14). Note that without loss
of generality we have changed the sign in front of the zero-mean Gaussian noise-
term in (2.14).

The state-space model (2.8) used to obtain the basic ekf equations, is therefore
more explicitly given in terms of its dynamic equation (2.18) and its measure-
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Algorithm 1 ekf estimating orientation using quaternion states
1. Time update

q̂nb
t+1|t = exp

(
− T2 S(ω̂t)

)
q̂nb
t|t , (2.21a)

Pt+1|t = AtPt|tAT
t + GtQG

T
t , (2.21b)

with
At = I4 + T

2 S(ω̂t), Gt = T
2 S̄(q̂nb

t ), Q = Σω.
2. Measurement update

q̂nb
t|t = q̂nb

t|t−1 + Pt|t−1C
T
t

(
CtPt|t−1C

T
t + R

)−1 (
yt − ŷt|t−1

)
, (2.22a)

Pt|t = Pt|t−1 − Pt|t−1C
T
t

(
CtPt|t−1C

T
t + R

)−1
CtPt|t−1, (2.22b)

with

ŷt|t−1 =



−R̂bn

t|t−1g
n

R̂bn
t|t−1m

n


 , Ct =




− ∂Rbn
t|t−1

∂qnb
t|t−1

∣∣∣∣∣
qnb
t|t−1=q̂nb

t|t−1

gn

∂Rbn
t|t−1

∂qnb
t|t−1

∣∣∣∣∣
qnb
t|t−1=q̂nb

t|t−1

mn



, R =

(
Σa 0
0 Σm

)
.

3. Renormalize the quaternion q̂nb
t|t .

ment models (2.15) and (2.16). Using the results from Section 2.2.1, the ekf im-
plementation for estimating orientation using quaternion states can be derived.
It is given in Algorithm 1. Note that to avoid cluttering notation, the time indices
are again shifted between the time and the measurement update.

Due to the norm 1 constraint of the quaternions, we expect the state covariance
matrix P in Algorithm 1 to be rank deficient. Due to linearization, however, the
matrix P in the ekf is typically not rank deficient. Hence, the actual interpre-
tation of the covariance matrix is problematic. To avoid problems with a rank
deficient state covariance matrix, in Section 2.2.4 we will derive a different ekf
implementation.

2.2.4 Orientation error states

A second possible ekf implementation makes use of a 3-dimensional state vector
ηt representing the orientation deviation from a linearization point q̃nb

t . This ekf
implementation is sometimes referred to as a multiplicative ekf (mekf) (Cras-
sidis et al., 2007; Markley, 2003). Its derivation is slightly more involved than
the one using quaternions. However, its implementation is computationally at-
tractive since it only uses a 3-dimensional state (compared to the 4-dimensional
state in Section 2.2.3). Furthermore, the interpretation of the state covariance is
more intuitive since it is not expected to be rank-deficient as was the case for the
quaternion implementation.

The linearization point q̃nb
t is encoded using a unit quaternion. Defining without

loss of generality1 that the orientation deviation is in the body frame b, the ori-

1A similar derivation can be done assuming an orientation deviation in the navigation frame n.
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entation qnb
t can be defined in terms of a linearization point q̃nb

t and the state ηb
t

as

qnb
t = q̃nb

t � δq(ηb
t ). (2.23)

Here, � denotes the quaternion multiplication defined as

p � q ,
(

p0q0 − pv · qv
p0qv + q0pv + pv × qv

)
, (2.24)

which can equivalently be written as the following matrix-vector multiplications

p � q =
(
p0 −pTv
pv p0I3 + [pv×]

)

︸                   ︷︷                   ︸
pL

(
q0
qv

)
=

(
q0 −qTv
qv q0I3 − [qv×]

)

︸                  ︷︷                  ︸
qR

(
p0
pv

)
. (2.25)

The notation δq(a) denotes the quaternion representation of a vector a according
to

δq(a) =




cos ‖a‖2
a
‖a‖ sin ‖a‖2


 ≈

(
1
a
2

)
, (2.26)

where the second equality uses a first order approximation, assuming that the
vector a is small.

Based on (2.23), the dynamic and measurement models and the resulting ekf
time and measurement update equations of the state ηb

t can be derived. In the
remainder, the superscript b will be omitted for brevity.

Time update

To determine the ekf time update equations, we need to derive the dynamic equa-
tion

ηt+1 = ft
(
ηt , yω,t , eω,t

)
. (2.27)

To derive the dynamic model (2.27), we start from (2.23) for two different time
steps

qnb
t+1 = q̃nb

t+1 � δq(ηt+1), (2.28a)

qnb
t = q̃nb

t � δq(ηt). (2.28b)

The dynamics of the orientation is defined in terms of the angular velocity ωt as
(see e.g. Shuster (1993); Hol (2011))

qnb
t+1 = qnb

t � δq(T ωt), (2.29)

where δq(T ωt) is defined as in (2.26).

Comparing (2.28) and (2.29), we can use the gyroscope measurements to either
update the linearization point q̃nb

t or to update the state ηt . Assuming that the
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gyroscope measurements are used to update the linearization point,

q̃nb
t+1 = q̃nb

t � δq(T ω̂t), (2.30)

where ω̂t is defined in (2.19). Combining (2.28) – (2.30),

δq(ηt+1) =
(
q̃nb
t+1

)−1 � q̃nb
t � δq(ηt) � δq(T ωt)

= (δq(T ω̂t))
−1 � δq(ηt) � δq(T ωt)

≈
(

1
− T2 ω̂t

)L (
1

T
2ωt

)R

δq(ηt)

=
(

1
− T2

(
ωt + eω,t

)
)L (

1
T
2ωt

)R

δq(ηt), (2.31)

where we used the definition (2.25), the gyroscope measurement model (2.14)
and the definition of the inverse quaternion as

q−1 =
(
q0
−qv

)
. (2.32)

Note that in (2.32) we implicitly assume that the norm of the quaternion q is
equal to one. For a more general definition, see e.g. Hol (2011); Törnqvist (2008).
Defining

M ,

(
1

− T2
(
ωt + eω,t

)
)L ( 1

T
2ωt

)R
, (2.33)

and using the first-order approximation from (2.26), (2.31) can be written as
(

1
ηt+1

2

)
≈ M

(
1
ηt
2

)
. (2.34)

Hence, the dynamic model can be written as

ηt+1 = ft(ηt , yω,t , eω,t) ≈ 2M21 + M22ηt , (2.35)

where M21 and M22 denote the (2, 1) and (2, 2) components of the matrix M, re-
spectively, with

M21 = − T2
(
ωt + eω,t

)
+

(
I3 − T

2 [
(
ωt + eω,t

)×]
)
T
2ωt , (2.36a)

M22 = T 2

4
(
ωt + eω,t

)
ωT
t +

(
I3 − T

2 [
(
ωt + eω,t

)×]
) (
I3 − T

2 [ωt×]
)
. (2.36b)

We assume that η̂t = 0 and hence that the ekf time update affects the lineariza-
tion point directly, i.e. η̂t+1 = 0 and

q̂nb
t+1|t = q̂nb

t|t � δq(T ω̂t), (2.37a)

Pt+1|t = AtPt|tAT
t + GtQG

T
t , (2.37b)
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where q̂nb
t|t denotes the ekf estimate of the linearization point and

At = ∂ft(ηt ,yω,t ,eω,t)
∂ηt

∣∣∣∣
ηt=η̂t ,eω,t=0

= T 2

4 ω̂tω̂
T
t +

(
I3 − T

2 [ω̂t×]
) (
I3 − T

2 [ω̂t×]
)

≈ I3 − T [ω̂t×], (2.38)

Gt = ∂ft(ηt ,yω,t ,eω,t)
∂eω,t

∣∣∣∣
ηt=η̂t|t ,eω,t=0

= −T I3 + T 2

4 [ω̂t×]

≈ −T I3. (2.39)

Note that the approximations in (2.38) and (2.39) are not required, but are used
for notational convenience.

Measurement update

In the measurement update of the ekf, the state ηt is updated using the ac-
celerometer and magnetometer measurements. Hence, the measurement equa-
tions (2.15) and (2.16) need to be formulated in terms of the state ηt . For this, it
is possible to write

R(qnb
t ) = R(q̃nb

t � δq(ηb
t )) = R(q̃nb

t )R(δq(ηb
t )), (2.40)

whereR(q) denotes the rotation matrix representation of the quaternion q. Using
the relation between a rotation matrix and a quaternion (2.4) and the first order
approximation (2.26) of the quaternion describing the orientation error,

R(δq(ηb
t )) = (δq)v (δq)Tv + δq2

0I3 + 2δq0[(δq)v ×] + [(δq)v ×]2

= ηtη
T
t

4 + I3 + [ηt×] + 1
4 [ηt×]2

≈ I3 + [ηt×], (2.41)

where for notational simplicity we have omitted the explicit dependence of δq on
ηb
t and the superscript b on the ηt .

Using (2.40) and (2.41), the accelerometer measurement equation (2.15) can be
written in terms of the state ηb

t as

ya,t =
(
R(qnb

t )
)T

(an
t − gn) + ea,t

≈ −
(
R(qnb

t )
)T
gn + ea,t

= −
(
R(δq(ηb

t ))
)T (
R(q̃nb

t )
)T
gn + ea,t

≈ −
(
I3 − [ηb

t ×]
)
R̃bn
t g

n + ea,t

= −R̃bn
t g

n − [R̃bn
t g

n×]ηb
t + ea,t , (2.42)

where R̃bn
t is the rotation matrix representation of q̃bn

t .
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The magnetometer measurement equation (2.16) can be written in terms of the
state ηb

t as

ym,t = R(qnb
t )Tmn + em,t

= R(δq(ηb
t ))T

(
R(q̃nb

t )
)T
mn + em,t

≈
(
I3 − [ηb

t ×]
)
R̃bn
t m

n + em,t

= R̃bn
t m

n − [ηb
t ×]R̃bn

t m
n + em,t

= R̃bn
t m

n + [R̃bn
t m

n×]ηb
t + em,t . (2.43)

The ekfmeasurement update equations can hence be written as

η̂t = Pt|t−1C
T
t

(
CtPt|t−1C

T
t + R

)−1 (
yt − ŷt|t−1

)
, (2.44a)

P̃t|t = Pt|t−1 − Pt|t−1C
T
t

(
CtPt|t−1C

T
t + R

)−1
CtPt|t−1, (2.44b)

with

yt =
(
ya,t
ym,t

)
, ŷt|t−1 =



−R̂bn

t|t−1g
n

R̂bn
t|t−1m

n


 ,

Ct =
(
−[R̂bn

t|t−1g
n×] [R̂bn

t|t−1m
n×]

)
. (2.45)

Note that we do not use a double subscript for the state η̂t since the state is not
updated in the time update of the filter. The covariance after the measurement
update is denoted as P̃t|t since Pt|t will be determined in the subsequent relin-
earization step.

Relinearization

After the measurement update, the orientation deviation η̂t is non-zero. In ob-
taining the ekf time update equations, however, we assumed that the state ηt
was equal to zero. Hence, to not violate this assumption, we need to update the
linearization point and reset the state after the measurement update. In our al-
gorithm, we consider the relinearization as the “measurement update” for the
linearization point, i.e. we assume that we update the estimate of the lineariza-
tion point q̂nb

t|t−1 to q̂nb
t|t .

Defining the reset state as χt , we model the relinearization as

χt = gt(ηt). (2.46)

Note the similarity with the ekf time update. Similar to the dynamic model ft( · )
we now have a function gt( · ) relating the current linearization point ηt to a new
linearization point χt . The two linearization points are related by

q̂nb
t|t � δq(χt) = q̂nb

t|t−1 � δq(ηt). (2.47)
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and hence

δq(χt) =
(
q̂nb
t|t

)−1 � q̂nb
t|t−1

︸             ︷︷             ︸
,(δq(a))−1

�δq(ηt). (2.48)

Assuming that χ, η and a are small, we can use the first-order approximation (2.26)
and rewrite (2.48) as

(
1
χt
2

)
=

(
1
− a2

)L (
1
ηt
2

)
, (2.49)

and the relinearization model can be written as

χt = gt(ηt) ≈ −a +
(
I3 − 1

2 [a×]
)
ηt . (2.50)

Hence, the Jacobian of the relinearization can be determined as

Jt = ∂gt(ηt)
∂ηt

∣∣∣∣
ηt=η̂t

≈ I3 − 1
2 [a×]. (2.51)

Since the relinearization step is used to reset the state, we choose χ̂t =
(
0 0 0

)T
,

i.e. a = η̂t . This leads to the following relinearization equations

q̂nb
t|t = q̂nb

t|t−1 � δq(η̂t), (2.52a)

Pt|t = Jt P̃t|tJTt , Jt = I3 − 1
2 [η̂t×]. (2.52b)

The resulting ekf is summarized in Algorithm 2.

2.3 Smoothing

An alternative approach to obtain a map estimate of the state is to solve the
problem (1.2) as a smoothing problem. Using such an approach, an estimate
of the state vector x1:N using the measurements y1:N is obtained for instance us-
ing nonlinear optimization techniques (Boyd and Vandenberghe, 2004; Nocedal
and Wright, 2006).

Optimization problems iteratively compute a smoothing estimate x̂1:N . An ad-
vantage of solving the state estimation problem using an optimization approach
is that a relinearization is done after each iteration in the optimization problem.
Hence, optimization problems can better handle nonlinearities than an ekf. It is
also possible to include for instance constraints or non-Gaussian noise assump-
tions in the optimization problem.

The representation of the orientation in terms of an orientation deviation from
a linearization point is particularly suitable for a smoothing implementation be-
cause of its low state dimension. Also, it does not require imposing a norm 1
constraint as is the case for quaternions.

As will be discussed in more detail in Chapter 3, solving optimization problems
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Algorithm 2 ekf with orientation error states
1. Time update

q̂nb
t+1|t = q̃nb

t|t � δq(T ω̂t), (2.53a)

Pt+1|t = AtPt|tAT
t + GQGT, (2.53b)

with
At = I3 − T [ω̂t×], G = T I3, Q = Σω.

2. Measurement update

η̂t = Pt|t−1C
T
t

(
CtPt|t−1C

T
t + R

)−1 (
yt − ŷt|t−1

)
(2.54a)

P̃t|t = Pt|t−1 − Pt|t−1C
T
t

(
CtPt|t−1C

T
t + R

)−1
CtPt|t−1, (2.54b)

with

yt =
(
ya,t
ym,t

)
, ŷt|t−1 =



−R̂bn

t|t−1g
n

R̂bn
t|t−1m

n


 ,

Ct =
(
−[R̂bn

t+1|tg
n×] [R̂bn

t+1|tm
n×]

)
, R =

(
Σa 0
0 Σm

)
.

3. Relinearize

q̂nb
t|t = q̂nb

t|t−1 �



cos ‖η̂t‖2
η̂t
‖η̂t‖ sin ‖η̂t‖2


 , (2.55a)

Pt|t = Jt P̃t|tJTt , (2.55b)
with

Jt = I3 − 1
2 [η̂t×].
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Figure 2.2: Sparseness pattern of the matrix that needs to be inverted to
solve the motion capture problem in Paper C. The parts of the matrix that
are non-zero are depicted in blue. The diagonal line represents the non-zero
elements due to the dynamic and measurement models. The horizontal and
vertical lines represent the sensor biases which we modeled as constants. The
outermost diagonal lines represent the constraints based on the assumption
that the body segments remain attached to each other at all times. Only
0.56% of the elements in the matrix are non-zero.

typically involves inversion of a matrix. For smoothing applications, this ma-
trix grows with the number of measurements y1:N and the number of states x1:N
and can hence be of fairly large dimension. Due to the specific structure of the
state-space models, however, the number of non-zero elements in the matrix is
typically relatively small, i.e. the matrix is sparse. This is because the state is mod-
eled only in terms of the state at the previous time. Matrices that are sparse, and
specifically matrices whose non-zero elements are ordered according to certain
patterns, can be inverted efficiently (Boyd and Vandenberghe, 2004).

In Paper C we use an optimization approach to solve an inertial motion capture
problem. It estimates the body’s 6D pose using information from a number of
sensors attached to the body. The inertial measurements from these sensors are
combined with the assumption that the body segments remain attached to each
other at all times. This leads to a large optimization problem. However, as illus-
trated in Figure 2.2, the matrix that needs to be inverted to solve the optimization
problem is very sparse and structured and can hence be inverted efficiently.

2.4 Particle filters

An alternative state estimation technique is the particle filter (pf) (Gordon et al.,
1993; Doucet and Johansen, 2011). Contrary to ekfs, pfs do not rely on a lin-
ear approximation of the dynamic and measurement functions in the state-space
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model. Hence, they can successfully be used for state estimation using nonlinear
models. Pfs use N particles to represent different hypotheses as

p̂N (xt | y1:t) =
N∑

t=1

witδxit (xt), (2.56)

where wit denotes the weight of particle i at time t. In case the state-space model
contains a conditionally linear Gaussian substructure, a Rao-Blackwellized parti-
cle filter (rbpf) (Schön et al., 2005) can be used instead. The rbpf treats the con-
ditionally linear states using a kf, thereby reducing the dimension of the state
vector used in the pf.

In this section we will not give a general description of a particle filter. Good
descriptions can be found in for instance Doucet and Johansen (2011). Instead,
we focus on two subproblems of relevance to Paper D. In Section 2.4.1 we will
discuss the problem of using a pf to represent the state in a partially unobservable
state-space model. In Section 2.4.2 we will discuss how a point estimate can be
obtained from a pf describing a multimodal distribution.

2.4.1 Representing a circle of possible sensor positions

In Paper D, we use an rbpf to estimate the sensor’s position and orientation us-
ing the magnetic field induced by a magnetic coil as a source of position infor-
mation. Since the magnetic field strength is proportional to the distance to the
coil, information about the magnetic field strength leads to information about
the distance of the sensor to the coil. Hence, a sphere of possible position esti-
mates is obtained. Based on the assumption that the inclination is known from
the accelerometer measurements and assuming that the sensor is above the coil,
the possible positions are reduced to a circle. Hence, the state-space model can
be said to be unobservable, with the unobservable space in the shape of a circle.
Although you would theoretically expect the particles in a pf to represent the
unobservable space, i.e. you would expect a circle of particles, in practice this is
not the case for a finite number of particles, as illustrated in Example 2.1.

Example 2.1: Particle filter estimating a partially unobservable state
Consider the following state-space model

xt+1 = xt + vt , (2.57a)

yt =
√
x2
t,1 + x2

t,2 + et , (2.57b)

where xt is a 2-dimensional state and xt,i denotes the ith component of xt . We
model vt ∼ N (0, Q) and et ∼ N (0, R). For our simulations we choose Q = 1 ×
10−4I2 and R = 1 × 10−4 and we use N = 500 particles.

According to the dynamic model (2.57a), the state xt remains approximately con-
stant. The measurement model (2.57b) provides information about the state xt ,
but any position on a circle with radius yt is equally likely. Hence, if we initialize
the particles on a circle as in the left plot in Figure 2.3, we would expect the parti-
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Figure 2.3: Particles of the pf used to estimate the state xt in Example 2.1.
Left: the particles at t = 1. The colors indicate the particles’ weights. Middle:
the particles at t = 50. Right: particles at t = 500.

cles to remain spread out over the circle. However, as depicted in the middle and
right plots in Figure 2.3, as time progresses, the particles start clustering more
and more on parts of the circle. How soon this clustering happens depends for
instance on the particular choices of Q, R and the number of particles N .

Note that although in Example 2.1 the particles at later time steps do not rep-
resent the whole circle, they do still give good estimates of a solution. The hy-
potheses only don’t include all solutions. The problem illustrated in Example 2.1
is a special case of particle degeneracy. As discussed in Lindsten (2013), after a
certain time all particles will share a common ancestor at t = 1. This results in
all particles being clustered at one part of the circle.

2.4.2 Obtaining a point estimate

A particle filter uses N particles and weights to represent the filtering density.
Each particle is assigned a weight w indicating how likely this hypothesis is. In
practice, however, one often wants to represent the estimated state as a point
estimate. For this, the weighted mean of the particles is commonly used. As
argued in Driessen and Boers (2008); Saha et al. (2009), for some applications
the weighted mean is not the most informative point estimate. An important
example of this are multi-modal distributions where the point estimate based on
the weighted mean is uninformative. For the Example 2.1, the weighted mean
at the initial time point is clearly uninformative, since it is the circle’s origin.
Driessen and Boers (2008); Saha et al. (2009) therefore derive a map estimate for
the particle filter, a so-called pf-map. Saha et al. (2013) derives a map estimate
for a particle smoother. In Paper D we determine the position and orientation of
an imu in a magnetically disturbed environment using an rbpf. To determine
a map estimate for the rbpf, the definition of the pf-map estimate needs to be
extended. We will therefore in this section first introduce the pf-map as derived
by Driessen and Boers (2008); Saha et al. (2009). Subsequently, we will introduce
the rbpf-map. We use this rbpf-map in Paper D to determine a point estimate
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of the estimated sensor position to compare this to estimates from an optical
reference system.

PF-MAP

In this section we will summarize the derivation of the pf-map introduced in
Driessen and Boers (2008); Saha et al. (2009). The pf-map obtains amap estimate
of the state at each time instance from the particles in the pf. The map estimate
is defined as

x̂MAP
t|t = arg max

xt
p(xt | y1:t), (2.58)

i.e. it maximizes the posterior (filtering) density. Using Bayes’ rule and the Markov
property, this posterior density can be written as

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
∝ p(yt | xt)p(xt | y1:t−1), (2.59)

where the denominator can be neglected since it is independent of xt . The map
estimate can hence be written as

x̂MAP
t|t = arg max

xt
p(yt | xt)p(xt | y1:t−1). (2.60)

The predictive density p(xt | y1:t−1) can be rewritten through marginalization as

p(xt | y1:t−1) =
∫
p(xt | xt−1)p(xt−1 | y1:t−1) dxt−1. (2.61)

This density is in the particle filter approximated as

p(xt | y1:t−1) ≈
N∑

j=1

p(xt | xj1:t−1)wjt−1, (2.62)

where wjt−1 denotes the weight of particle j at time t − 1. The map estimate can
be obtained by substituting (2.62) into (2.60)

x̂MAP
t|t = arg max

xt
p(yt | xt)

N∑

j=1

p(xt | xj1:t−1)wjt−1. (2.63)

To obtain the map estimate, (2.63) can be solved using optimization techniques
as discussed in e.g. Boyd and Vandenberghe (2004); Nocedal and Wright (2006).
An alternative is to use the pf-map. It approximates the map estimate as

x̂PF-MAP
t|t = arg max

xit

p(yt | xit)
N∑

j=1

p(xit | xj1:t−1)wjt−1, (2.64)

i.e. it selects the particle with the highest density. Note that computation of the
pf-map estimate is of the order of N2 and it is hence quite expensive.
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RBPF-MAP

An rbpf splits the state vector in (2.8) into a nonlinear state xn
t and a condition-

ally linear state xl
t as

xn
t+1 = f n

t (xn
t ) + An

t (xn
t )xl

t + vn
t , (2.65a)

xl
t+1 = f l

t (xn
t ) + Al

t(x
n
t )xl

t + vl
t , (2.65b)

yt = ht(x
n
t ) + Ct(x

n
t )xl

t + et , (2.65c)

with Q =



Qnn Qnl

(
Qnl

)T
Qll


. Note that for notational simplicity we here consider a

slightly less general model than in (2.8). Note also that in this section we will
switch notation from the rest of the chapter and use the superscript n for “non-
linear” instead of “navigation frame”. In this section we will derive the map for
the rbpf in a similar way as the pf-map was derived in the previous section.

Following (2.58)–(2.60), and explicitly introducing the nonlinear and linear states,

xt =
(
xn
t
xl
t

)
, (2.66)

the map estimate can be written as

x̂MAP
t|t = arg max

xn
t ,x

l
t

p(xn
t , x

l
t | y1:t)

= arg max
xn
t ,x

l
t

p(yt | xn
t , x

l
t)p(xn

t , x
l
t | y1:t−1). (2.67)

The predictive density can for the case of a rbpf be rewritten as

p(xn
t , x

l
t | y1:t−1) =

∫
p(xn

t , x
l
t | xl

t−1, x
n
t−1)p(xn

1:t−1, x
l
t−1 | y1:t−1) dxl

t−1dx
n
1:t−1, (2.68)

where, using Bayes’ rule,

p(xn
1:t−1, x

l
t−1 | y1:t−1) = p(xl

t−1 | xn
1:t−1, y1:t−1)p(xn

1:t−1 | y1:t−1). (2.69)

Here,

p(xl
t−1 | xn

1:t−1, y1:t−1) = N
(
xl
t−1; x̂l

t−1|t−1(xn
1:t−1), P l

t−1|t−1(xn
1:t−1)

)
, (2.70)

and p(xn
1:t−1 | y1:t−1) can be recognized as the particles’ weights. This leads to

p(xn
t , x

l
t | y1:t−1) ≈

N∑

j=1

∫
p(xn,j

t , x
l,j
t | xl,j

t−1, x
n,j
t−1)

N
(
xl
t−1; x̂l,j

t−1|t−1, P
l,j
t−1|t−1

)
w
j
t−1 dx

l
t−1, (2.71)
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where we have introduced short-hand notation

x̂
l,j
t−1|t−1 , x̂

l
t−1|t−1(xn,j

1:t−1), (2.72a)

P
l,j
t−1|t−1 , P

l
t−1|t−1(xn,j

1:t−1). (2.72b)

The integral is computed similarly to the time update in a Kalman filter, see e.g.
Lindsten and Schön (2013); Törnqvist (2008); Gustafsson (2012),

p(xn
t , x

l
t | y1:t−1) ≈

N∑

j=1

w
j
t−1N

(
xt ; x̄

j
t|t−1, P̄

j
t|t−1

)
, (2.73)

with

x̄
j
t|t−1 =



f n
t−1(xn,j

t|t−1)

f l
t−1(xn,j

t|t−1)


 +



An
t−1(xn,j

t|t−1)

Al
t−1(xn,j

t|t−1)


 x

l,j
t−1|t−1, (2.74a)

P̄
j
t|t−1 =



An
t−1(xn,j

t|t−1)

Al
t−1(xn,j

t|t−1)


 P

j
t−1|t−1



An
t−1(xn,j

t|t−1)

Al
t−1(xn,j

t|t−1)




T

+ Q. (2.74b)

Substituting (2.73) into (2.67), we obtain

x̂MAP
t|t = arg max

xn
t ,x

l
t

p(yt | xn
t , x

l
t)

N∑

j=1

w
j
t−1N

(
xt ; x̄

j
t|t−1, P̄

j
t|t−1

)
. (2.75)

This can again be solved by any optimization technique, but it can also be solved
approximately by optimizing over the finite set of particles, i.e.

x̂RBPF-MAP
t|t = arg max

xn,i
t ,xl,i

t

p(yt | xn,i
t , x

l,i
t )

N∑

j=1

w
j
t−1N

(
xit ; x̄

j
t|t−1, P̄

j
t|t−1

)
. (2.76)

As can be seen, this is very similar to the pf-map results. This expression is used
in Paper D.





3
Sensor calibration

In the pose estimation algorithms discussed in Chapter 2, we implicitly assumed
that the sensors were properly calibrated. In this chapter, we will instead focus on
the problem of sensor calibration. Hence, we will assume that our models contain
unknown model parameters that need to be determined from data. The process
of determining a model from data is commonly referred to as system identifica-
tion. In our problems, we typically know the model structure but to calibrate the
sensor, certain model/calibration parameters need to be estimated. This is called
grey-box system identification (Bohlin, 2006).

We formulate the sensor calibration problem as an ml problem, where based on
N measurements y1:N = {y1, . . . , yN } we find the sensor calibration parameters θ
that maximize the likelihood function (1.3). The ml problem (1.3) is repeated
here for the reader’s convenience,

θ̂ML = arg max
θ∈Θ

pθ(y1:N ), (3.1)

where Θ ⊆ R
nθ . Using the fact that the logarithm is a monotonic function, (3.1)

has the following equivalent formulation,

θ̂ML = arg min
θ∈Θ

− log pθ(y1:N ). (3.2)

An example of a sensor calibration problem is the magnetometer calibration prob-
lem which is the topic of Paper A. In this paper, we calibrate the magnetometer
for the presence of magnetic disturbances rigidly attached to the sensor, for mag-
netometer sensor errors and for misalignment between the magnetometer and
the inertial sensor axes. In Chapter 2 we modeled the magnetometer measure-
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ments ym,t as (2.16). For the reader’s convenience, we repeat the model

ym,t = Rbn
t m

n + em,t , (3.3a)

where Rbn
t denotes the matrix rotating the local magnetic field mn from the nav-

igation frame n to the body frame b and em,t is assumed to be Gaussian noise.
The measurement model (3.3a) was discussed in more detail in Section 2.2.2. In
Paper A, we instead model the magnetometer measurements as

ym,t = DRbn
t m

n + o + em,t , (3.3b)

where D denotes the calibration matrix and o denotes the offset vector. The cali-
bration matrix D and the offset vector o are both part of the parameter vector θ
determined in the calibration algorithm presented in Paper A. When the model
parameters D and o have been determined, they can be used to correct the magne-
tometer measurements, i.e. they can be used to calibrate the magnetometer. With-
out magnetometer calibration, the orientation estimation algorithms discussed in
Chapter 2 give inaccurate heading estimates for instance when the magnetometer
is attached to a metallic object.

In this chapter, we will provide background to the sensor calibration problems
in Papers A and B. In Section 3.1, we will first discuss the nonlinear optimiza-
tion techniques we use to solve our sensor calibration problems, i.e. to obtain ml
estimates of the sensor calibration parameters. In Sections 3.2 and 3.3, we subse-
quently discuss two different cases of sensor calibration. In Section 3.2 we discuss
parameter estimation in a static sensor model. In Section 3.3, we instead focus
on obtaining anml estimate of the sensor calibration parameters in a state-space
model. In that case, it is necessary to know the state to estimate the sensor cali-
bration parameters. Hence, both the state and the calibration parameters need to
be estimated to calibrate the sensor.

3.1 Nonlinear optimization techniques

To obtain an ml estimate, an optimization problem is solved which finds a lo-
cally minimizing argument (3.2). The specific form of the minimization problem
depends on the model assumptions. However, in general it can be said that the
parameters are chosen such that they best describe the data. Hence, defining the
predicted measurements to be ŷ(θ), we try to minimize the difference

εt(θ) = yt − ŷt(θ) (3.4)

according to a criterion which is based on the pdf pθ(y1:N ). The function that
needs to be minimized is denoted the cost function. Examples of cost functions
can be found in Examples 3.1 and 3.2 for the cases of Gaussian and Cauchy
distributed noise, respectively. The Cauchy distribution is a special case of the
Student’s-t distribution (Bishop, 2006). The Gaussian and Cauchy distributions
will both be used in Part II of this thesis. More background about these distribu-
tions will be given in Section 3.2.
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Figure 3.1: Blue: example of a cost function with multiple local minima.
Black: example gradient. If we use the gradient information to find a direc-
tion in which the function decreases, any starting point between the two red
dashed lines will lead us to the global minimum.

In our models, ŷt typically depends nonlinearly on θ. Hence, our problems typ-
ically have multiple (local) minima and proper initialization of the optimization
problem is of essence. An example of a cost function is depicted in Figure 3.1.
Since we aim at minimizing the cost function, it can intuitively be understood
that we want our algorithm to step in a direction in which the objective function
decreases. Hence, gradient information can be used to find a search direction.
The cost function in Figure 3.1 has one global minimum, but also has two other
local minima. If we use the gradient information to find a direction in which
the function decreases, any starting point between the two red dashed lines will
lead us to the global minimum. Starting points outside these two lines, however,
would lead us to one of the other local minima instead. Initialization is therefore
important for our problems to converge to the desired minimum and consider-
able effort is put into obtaining good initial estimates in Papers A and B.

Optimization algorithms based on only gradient information typically converge
very slowly (Nocedal and Wright, 2006). Hence, most algorithms make use of
both the gradient and an (approximate) Hessian to find the step direction. The
general structure of the optimization algorithms used in this thesis is summa-
rized in Algorithm 3. They start from an initial estimate θ̂0 and update their
estimate θ̂ until convergence.

Different types of algorithms use different (approximate) Hessians in Algorithm 3.
A first type are the Newton methods which use the exact Hessian. A second com-
monly used approach uses a positive definite approximation of the Hessian as
in (3.7b) and (3.10b). A third approach are the quasi-Newton methods. Quasi-
Newton methods estimate the Hessian based on the change of the gradient (No-
cedal and Wright, 2006). Hence, they do not require the user to supply any an-
alytical (approximate) Hessian. An example of a quasi-Newton method is the
Broyden-Fletcher-Goldfarb-Shanno (bfgs) method which is used in Paper A to
determine the magnetometer calibration parameters.
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Example 3.1: Gaussian pdf with known and constant variance
For the scalar case of a Gaussian pdf with a known and constant variance σ2

pθ(y1:N ) =
(

1√
2πσ2

)N
exp


−

N∑

t=1

ε2
t

2σ2


 , (3.5)

with εt as defined in (3.4). Taking the logarithm of (3.5) and omitting constant
terms, leads to the optimization problem

θ̂ML = arg min
θ∈Θ

V (θ) = arg min
θ∈Θ

1
2

N∑

t=1

ε2
t . (3.6)

Note that in our problems, (3.6) can not be solved explicitly since we assume
that ε depends nonlinearly on θ. To solve the optimization problem (3.6) we
typically need the gradient ∇V and an approximate Hessian H which in the case
of a Gaussian are given by

∇V =
N∑

t=1

εt
∂εt
∂θ , (3.7a)

H ≈
N∑

t=1

(
∂εt
∂θ

)T ∂εt
∂θ . (3.7b)

Example 3.2: Cauchy pdf with known and constant scale parameter
For the scalar case of a Cauchy pdfwith a known and constant scale parameter γ ,

pθ(y1:N ) =
N∏

t=1

1
πγ2

(
1 +

(
εt
γ

)2
)−1

. (3.8)

Taking the logarithm of (3.8) and omitting constant terms, leads to the optimiza-
tion problem

θ̂ML = arg min
θ∈Θ

V (θ) = arg min
θ∈Θ

N∑

t=1

log
(
1 +

(
εt
γ

)2
)
. (3.9)

The gradient ∇V and a positive definite approximation of the Hessian are given
by

∇V =
N∑

t=1

2
∂εt
∂θ εt

γ2 + ε2
t

, (3.10a)

H ≈
N∑

t=1

2

(
∂εt
∂θ

)T ∂εt
∂θ

γ2 + ε2
t

. (3.10b)
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Algorithm 3 Obtaining an ml estimate

1. Find/choose an initial estimate θ̂0
2. Set i = 0 and repeat,

(a) Determine the gradient ∇Vi and the (approximate) Hessian Hi of the
cost function.

(b) Determine a search direction p according to,
pi = −H−1

i ∇Vi . (3.11)
(c) Determine a step length αi and update θ̂i

θ̂i+1 = θ̂i + αipi . (3.12)
(d) Set i := i + 1 and repeat from Step 2a until convergence.

3.2 Model parameters in the sensor models

In this section, we focus on determining model parameters in static sensor mod-
els. We model the measurements as

yt = ht(θ) + et , (3.13)

where ht( · ) is a possibly nonlinear function of the parameters θ and the noise et
is assumed to be additive.

An example of such a model is used in Paper B where we model the uwb mea-
surements as

yu,mk = τk + ‖rn
m − tnk ‖2 + ∆τm + eu,mk , (3.14)

where τk is the time of transmission of pulse k, tnk is the position of the transmitter
at the time of transmitting the kth pulse expressed in the navigation frame n, rn

m
is the position of the mth receiver and ∆τm is the clock-offset of the mth receiver.
The uwb calibration algorithm estimates the parameter vector θ, defined as

θ =
(
{tnk , τk}Kk=1, {rn

m,∆τm}Mm=1

)
. (3.15)

The choice of the noise distribution et in (3.13) influences the likelihood func-
tion in (3.1) and hence the optimization problem (3.2). The most commonly used
noise model assumes that et is zero-mean Gaussian noise. The noise of the iner-
tial sensors and the magnetometers can typically be assumed to be Gaussian (Tit-
terton and Weston, 1997; Hol, 2011). Hence, the Gaussian cost function and its
gradient and approximate Hessian as given in Example 3.1 are frequently used
in Part II of this thesis.

For the uwb measurements considered in Paper B, however, we expect a small
number of measurements to be delayed due to multipath and/or nlos condi-
tions. A Gaussian pdf is depicted in blue in the left plot in Figure 3.2. As can
be seen, the likelihood far away from the mean is small and the log likelihood
cost function (right plot) far away from the mean is large. Hence, the presence of
outliers is not well described by a Gaussian distribution. In Paper B, we instead
use a Cauchy distribution to allow for the presence of outliers. The Cauchy pdf
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Figure 3.2: Left: pdf of a N (0, 1) distribution (blue) and a Cauchy(0, 1) dis-
tribution (red). Right: log likelihood cost function of the pdf N (0, 1) (blue)
and of the pdf Cauchy(0, 1) (red).

and its log likelihood cost function are depicted in red in Figure 3.2. The pdf has
heavy tails (left plot) and its log likelihood cost function (right plot) hence does
not severely punish the presence of outliers. To only allow for time delays of the
uwb pulses, in Paper B we assume that the noise is asymmetrically distributed,
with a Cauchy distribution on one side and a Gaussian distribution on the other.
In Example 3.3 we will illustrate the difference in handling outliers between a
Gaussian and a Cauchy distribution.

Example 3.3: Parameter estimation with/without measurement outliers
Consider the problem of estimating the parameter θ in the following regression

problem

yt = θt + et . (3.16)

Assuming et ∼ N (0, 1) and θ = 0.2 we simulate the measurements depicted in
Figure 3.3. In the left plot, 50 measurements yt are simulated at t = −25, . . . , 25.
In the right plot, we assume the presence of two outliers, yt = 20 at t = −15 and
yt = −20 at t = 15. An estimate of the parameter θ is obtained both assuming a
Gaussian (θ̂G) and a Cauchy distribution (θ̂C) for the noise et (see Examples 3.1
and 3.2, respectively). The lines drawn with the estimated parameters θ̂G and
θ̂C show that the presence of the outliers has a greater impact on the estimate θ̂G

than on the estimate θ̂C. This is due to the heavy tails of the Cauchy distribution,
as shown in Figure 3.2.

3.3 Model parameters in a state-space model

In (3.3) we described the magnetometer measurement function used in Paper A
to account for the case that the magnetometer is uncalibrated. Comparing (3.3b)
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Figure 3.3: Measurements yt (green) with (dashed black) the line θt
(see (3.16)), (dashed blue) the line θ̂Gt and (dashed red) θ̂Ct. Left: 50 mea-
surements at t = −25, . . . , 25. Right: 50 measurements at t = −25, . . . , 25, but
at t = −15 and t = 15, we assume two measurement outliers yt = 20 and
yt = −20, respectively.

to (3.13), we note that there is a fundamental difference. The model (3.13) con-
sists of only known quantities and model parameters. However, the model (3.3b)
consists of both known quantities, model parameters and states Rnb

t from a state-
space model (1.1).

To fully define the magnetometer calibration problem, we therefore need to in-
clude the state-space model and determine D and o from

Rnb
t+1 = ft(R

nb
t , yω,t , eω,t), (3.17a)

ya,t = −Rbn
t g

n + ea,t , (3.17b)

ym,t = DRbn
t m

n + o + em,t , (3.17c)

where we denote the state vector representing the orientation as Rnb
t . Note that

we implicitly assume that the state is parametrized by either a quaternion as
in Algorithm 1 or by an orientation deviation from a linearization point as in
Algorithm 2.

Equivalently to (3.4), we want to estimate the predicted measurements ŷt(θ) from
the model. The predicted measurements in (3.17), however, depend on the states.
Hence, using conditional probabilities and the fact that the logarithm is a mono-
tonic function, we have the following equivalent formulation of (3.2),

θ̂ML = arg min
θ∈Θ

−
N∑

t=1

log pθ(yt | y1:t−1), (3.18)

where we use the convention that y1:0 , ∅. In case the state-space model is non-
linear, there is typically no closed form solution available for the one step ahead
predictor pθ(yt | y1:t−1) in (3.18). In Paper A, we assume that the noise is Gaussian
and approximate the one step ahead predictor using an ekf, see also Section 2.2.
The result is

pθ(yt | y1:t−1) ≈ N
(
yt | ŷt|t−1(θ), St(θ)

)
, (3.19)
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where, ŷt|t−1 and St are estimated using an ekf. Inserting (3.19) into (3.18) and
neglecting all constants results in the following optimization problem,

min
θ∈Θ

1
2

N∑

t=1

(
‖yt − ŷt|t−1(θ)‖2

S−1
t (θ)

+ log det St(θ)
)
. (3.20)

As discussed in Section 3.1, we solve our optimization problems using the gradi-
ent and the (approximate) Hessian of the cost function. For the cases discussed in
Section 3.2, these expressions can be obtained relatively easy as shown in Exam-
ples 3.1 and 3.2. For the cost function (3.20), however, it is less straightforward
to obtain an expression for the gradient and the Hessian. Using the time and mea-
surement update equations (2.9) and (2.11) for a scalar parameter θ, the Jacobian
can be derived to be

∂ŷt+1|t
∂θ

= Ct
∂x̂t+1|t
∂θ

+
∂Ct
∂θ

x̂t+1|t (3.21a)
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)
(3.21d)

... (3.21e)

As can be seen from (3.21), the expression for the gradient of the objective func-
tion in (3.20) is defined recursively using the ekf time and measurement equa-
tions. Its computation is hence more involved than in the case discussed in Sec-
tion 3.2. In Åström (1980); Segal and Weinstein (1989), different approaches are
discussed to determine analytical gradients of the objective function in (3.20).
They, however, consider the case of a linear state-space model. In our problems,
we use an ekf implementation where the matrices At , Ct and Gt are based on
linear approximations of the dynamic and measurement model. Hence, these
methods only lead to approximate gradients of the objective function. Because
of this, in Paper A we solve (3.20) using numerical gradients and a Hessian esti-
mated using a bfgs algorithm. This approach is computationally quite expensive,
but the computations of the gradients can easily be parallelized.



4
Concluding remarks

In Part I of this thesis, we have given an introduction to the four papers that will
be presented in Part II. In Chapter 1, the different sensors that are used through-
out the thesis were introduced together with the subject of probabilistic model-
ing. Chapter 2 subsequently focused on pose estimation using inertial sensors
and magnetometers, introducing relevant background material for Papers A – D
in Part II. The subject of sensor calibration was discussed in Chapter 3. It pro-
vides background to the magnetometer calibration problem discussed in Paper A
and the calibration of the uwb setup in Paper B. In this chapter, we will summa-
rize the contributions of this thesis in Section 4.1 and discuss possible directions
for future work in Section 4.2.

4.1 Summary of the contributions

The main contributions of the thesis are within the domain of position and ori-
entation (pose) estimation using inertial sensors in combination with additional
(sensor) information. Since using uncalibrated sensors for pose estimation would
lead to inaccurate estimates, we focus both on pose estimation algorithms and
on sensor calibration. The problems are formulated based on probabilistic mod-
els of the sensor information and the model assumptions. The pose estimation
algorithms are solved using map estimation while the calibration problems are
solved using ml algorithms.

4.1.1 Sensor calibration

Sensor calibration problems are addressed in Papers A and B. In Paper A, we
consider the problem of combining the inertial sensors with a magnetometer for
orientation estimation. The magnetometer is not assumed to be calibrated. We
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present a practical calibration algorithm that calibrates the magnetometer for the
presence of magnetic disturbances rigidly attached to the sensor, for magnetome-
ter sensor errors and for misalignment between the inertial and the magnetome-
ter sensor axes. Using the calibrated magnetometer measurements to estimate
the sensor’s orientation is experimentally shown to lead to significantly improved
heading estimates.

Paper B focuses both on calibration and on state estimation. It addresses the prob-
lem of combining toa measurements from a uwb system with inertial measure-
ments for 6D pose estimation. We use a setup where a number of uwb receivers
are placed in an indoor environment and move a uwb transmitter through the
measurement volume. To be able to obtain position information from the uwb
measurements, it is imperative that accurate estimates of the receivers’ positions
and clock offsets are known. To avoid the typically labor-intensive and time-
consuming process of surveying the receivers’ positions, we present an easy-to-
use calibration method. We model the uwb measurements assuming an asym-
metric heavy-tailed noise distribution, which naturally handles measurement
outliers due to multipath and/or nlos conditions.

4.1.2 Pose estimation

After the uwb calibration discussed in Section 4.1.1, the uwb system considered
in Paper B can be used for pose estimation of a subject wearing inertial sensors
and uwb transmitters walking through the environment. We present a tightly-
coupled sensor fusion approach to combine the inertial measurements with the
toa measurements. It is shown to lead to accurate pose estimates as compared
to data from an optical reference system.

Paper C discusses the problem of inertial human body motion capture, where
a multitude of body segments are equipped with imus as shown in Figure 1.5.
Relative position and orientation estimates are obtained using the inertial mea-
surements together with a biomechanical model, which models the body in terms
of connected body segments. The problem is formulated as a map problem and
is solved using optimization-based techniques. As a proof-of-concept we apply
our algorithm to a lower body configuration, illustrating that the estimates are
drift-free and match the joint angles from an optical reference system.

Paper D presents an approach for 6D pose estimation where inertial measure-
ments are complemented with magnetometer measurements assuming that a
model (map) of the magnetic field is available. In our experimental study, the
magnetic field is generated by a magnetic coil, giving rise to a magnetic field that
we can model analytically. The experimental results show that accurate position
estimates can be obtained in the vicinity of the coil, where the magnetic field is
strong.
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4.2 Future work

In this section we will discuss ideas for future work for each of the papers. In
Section 4.2.1 we will first discuss ideas for future work in the field of sensor
calibration, related to Paper A. Subsequently, in Section 4.2.2 we will first discuss
ideas for future work in the field of pose estimation, related to Papers B – D.

4.2.1 Sensor calibration

In Paper A we show that our calibration algorithm leads to significantly improved
heading estimates based on measurements from two different commercially avail-
able imus. An interesting line of future work is to apply the magnetometer
calibration algorithm to inertial and magnetometer measurements from a smart-
phone. Smartphones typically use their own magnetometer calibration algorithm,
thereby complicating the testing of other calibration algorithms. However, as of
Android API level 18 (Jelly Bean MR2), it is possible to log uncalibrated mag-
netometer data. Hence, it is be possible to apply our calibration algorithm to
measurements from a smartphone.

Another possible direction for future work extends the calibration algorithm to
also be able to include gps measurements in outdoor applications. In that case,
the extended Kalman filter (ekf) providing the measurement predictions to the
ml problem as discussed in Section 3.3 would have to be extended to include at
least a position and a velocity state. The additional gps information should sig-
nificantly help in calibrating the magnetometer. However, the algorithm would
be computationally more expensive due to the additional states in the ekf.

The calibration algorithm is now formulated as a batch, offline, method. It would
be interesting to extend it to an online approach. Using this approach, it might be
possible to automatically recalibrate the sensor once it enters a different magnetic
environment.

4.2.2 Pose estimation

Paper B uses a heavy-tailed asymmetric noise distribution to represent the pres-
ence of outliers in the uwb measurements. This distribution is used both in the
uwb calibration algorithm and in our approach to determine the transmitter’s
position using uwb multilateration. In future work we are planning to extend
the sensor fusion algorithm which combines the uwb measurements with iner-
tial measurements to also make use of the heavy-tailed asymmetric noise distri-
bution. We plan to implement the sensor fusion algorithm as an optimization
problem similar to our approach in Paper C. Using an optimization formulation,
different noise assumptions can straightforwardly be used.

In Paper C, we apply our motion capture algorithm to a lower body configura-
tion consisting of 7 imus places on the feet, lower legs, upper legs and pelvis.
An obvious direction of future work would of course be to include more body
segments.
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The algorithm relies on knowledge about the position and orientation of the sen-
sors on the body. This information can be regarded as calibration parameters. We
plan to extend the approach to also estimate these calibration parameters.

In Paper C, we focus only on estimating body’s relative pose. To estimate its
absolute position, it is possible to include foot step detection, see e.g. Callmer
(2013). It would also be possible to combine the approaches in Papers B and C
and use uwbmeasurements to estimate the position of the body.

Paper D discusses the problem of pose estimation assuming a known magnetic
field map. In experiments, we have used a magnetic coil to generate a known
magnetic field. We have also been working on an approach to estimate the mag-
netic field map (Wahlström et al., 2013). An interesting line of research would be
to combine both approaches. The ultimate goal would then be to do simultaneous
localization and mapping (slam) where we simultaneously build a magnetic map
of the environment and localize the sensor in the environment.
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Abstract

In this work we present a practical calibration algorithm that cali-
brates a magnetometer using inertial sensors. The calibration corrects
for magnetometer sensor errors, for the presence of magnetic distur-
bances and for misalignment between the magnetometer and the iner-
tial sensor axes. It is based on a maximum likelihood formulation and
is formulated as an offline method. It is shown to give good results us-
ing data from two different commercially available sensor units. Us-
ing the calibrated magnetometer measurements in combination with
the inertial sensors to determine orientation, is shown to lead to sig-
nificantly improved heading estimates.

1 Introduction

Nowadays, magnetometers and inertial sensors (accelerometers and gyroscopes)
are widely available in for instance dedicated sensor units and smartphones. In
the case of low or zero acceleration, the accelerometer measurements are domi-
nated by the gravity component. Hence, they can be used to estimate the inclina-
tion of the sensor. When no magnetic disturbances are present, the magnetometer
measures a constant local magnetic field vector. This vector points to the mag-
netic north and can hence be used for heading estimation. Inertial sensors and
magnetometers have successfully been used to obtain accurate 3D orientation es-
timates, see e.g. Gustafsson (2012); Hol (2011). For this, however, it is imperative
that the sensors are properly calibrated and that the sensor axes are aligned. This
calibration is specifically of concern for the magnetometer, which needs recali-
bration whenever it is placed in a (magnetically) different environment. When
the magnetic disturbance is a result of the mounting of the magnetometer onto a
magnetic object, the magnetometer can be calibrated to compensate for the pres-
ence of this disturbance.

In this work, we present a magnetometer calibration algorithm that calibrates
a magnetometer using inertial sensors. It is formulated as a maximum likeli-
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Figure 1: Example calibration results with an ellipsoid of magnetometer
data before calibration (red) and a unit sphere of data after calibration (blue).

hood problem. The algorithm calibrates the magnetometer for the presence of
magnetic disturbances, for magnetometer sensor errors and for misalignment be-
tween the magnetometer and the inertial sensor axes. Using the calibrated mag-
netometer measurements to estimate the sensor’s orientation is experimentally
shown to lead to significantly improved heading estimates.

To perform the calibration, the sensor needs to be rotated in all possible orien-
tations. A perfectly calibrated magnetometer would measure rotated versions of
the local magnetic field vector. Hence, the magnetometer data would lie on a
sphere. In practice, however, the magnetometer will often measure an ellipsoid
of data instead. The calibration maps the ellipsoid of the data to a sphere of data
as illustrated in Figure 1. The alignment of the inertial and magnetometer sen-
sor axes is included by determining the orientation of the sphere. Since we are
interested in improving the heading estimates, the actual magnitude of the local
magnetic field is of no concern. Hence we assume without loss of generality that
the norm is equal to 1, i.e. the sphere in Figure 1 is a unit sphere.

Mounting of the sensor often severely limits its rotational freedom, for instance
in cases of mounting it onto a boat or a car (Wu et al., 2013a,b). Magnetome-
ter calibration algorithms, however, generally rely on the assumption that the
magnetometer’s rotation is “sufficiently” excited, i.e. that measurements on a suf-
ficiently large part of the ellipsoid in Figure 1 are available. A secondary contri-
bution of this paper is a quantification of how much rotation is needed to solve
the calibration problem. This is quantified based on an identifiability analysis,
deriving how much rotation is needed in case of perfect measurements.
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Magnetometer calibration approaches typically regard the problem as an ellipse
fitting problem, see e.g. Alonso and Shuster (2002); Gebre-Egziabher et al. (2006);
Renaudin et al. (2010). Ellipse fitting problems can map the data to a sphere, but
can not determine the rotation of the sphere. This rotation is, however, of interest
when calibrating the magnetometer for improved heading estimation in combina-
tion with inertial sensors. To solve this problem, recent approaches include a sec-
ond step in the calibration algorithm to determine this misalignment (Vasconce-
los et al., 2011; Li and Li, 2012; Salehi et al., 2012; Bonnet et al., 2009). Typically,
accelerometer measurements from periods of fairly low accelerations have been
used for this, disregarding the gyroscope measurements. Troni and Whitcomb
(2013) use the gyroscope measurements to determine the misalignment. Our al-
gorithm uses a conceptually similar approach to determine an initial estimate for
the non-convex maximum likelihood problem. We will analyze the quality of the
initial estimate and the maximum likelihood estimate in terms of their heading
accuracy, both for experimental and simulated data. Based on this analysis, we
will show that significant heading accuracy improvements can be obtained using
our maximum likelihood algorithm.

2 Problem formulation

Our magnetometer calibration algorithm is formulated as a problem of determin-
ing the sensor’s orientation in the presence of unknown model parameters θ. It
can hence be considered to be a grey-box system identification problem. It makes
use of a nonlinear state space model

xt+1 = ft(xt , ut , θ) + Gt(xt)vt(θ), (1a)

yt = ht(xt , θ) + et(θ), (1b)

where the state xt ∈ R
nx represents the sensor’s orientation. The dynamic model

is denoted by ft( · ) and depends on measured inputs ut . The measurements
yt ∈ R

ny are modeled by a function ht( · ). Finally, vt and et represent mutually
independent process and measurement noise, respectively, and Gt( · ) describes
how the noise vt affects the state xt . The dependence on the parameter vector
θ is explicitly indicated in (1). The exact details of the model are introduced in
Section 3.

The calibration problem is formulated as a maximum likelihood (ML) problem.
Hence, the parameters θ are found by maximizing the likelihood function,

θ̂ML = arg max
θ∈Θ

pθ(y1:N ), (2)

where y1:N = {y1, . . . , yN } and Θ ⊆ R
nθ . Using conditional probabilities and the

fact that the logarithm is a monotonic function we have the following equivalent
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formulation of (2),

θ̂ML = arg min
θ∈Θ

−
N∑

t=1

log pθ(yt | y1:t−1), (3)

where we use the convention that y1:0 , ∅. The ML estimator (3) enjoys well-
understood theoretical properties including strong consistency, asymptotic nor-
mality, and asymptotic efficiency (Ljung, 1999).

The state space model (1) is nonlinear, implying that there is no closed form
solution available for the one step ahead predictor pθ(yt | y1:t−1) in (3). This can
systematically be handled using sequential Monte Carlo methods (e.g. particle
filters and particle smoothers), see e.g. Schön et al. (2011); Lindsten and Schön
(2013). However, for the magnetometer calibration problem it is sufficient to
make use of a more pragmatic approach; we simply approximate the one step
ahead predictor using an extended Kalman filter (EKF). The result is

pθ(yt | y1:t−1) ≈ N
(
yt | ŷt|t−1(θ), St(θ)

)
, (4)

where N
(
yt | ŷt|t−1(θ), St(θ)

)
denotes the probability density function for the

Gaussian random variable yt with mean value ŷt|t−1(θ) and covariance St(θ). Here,
St(θ) is the residual covariance from the EKF (Gustafsson, 2012). Inserting (4)
into (3) and neglecting all constants results in the following optimization prob-
lem,

min
θ∈Θ

1
2

N∑

t=1

‖yt − ŷt|t−1(θ)‖2
S−1
t (θ)

+ log det St(θ), (5)

which we can solve for the unknown parameters θ. The problem (5) is non-
convex, implying that a good initial value for θ is required.

3 Models

The state space model (1) describes the sensor’s orientation in terms of the gyro-
scope measurements yω,t , the accelerometer measurements ya,t and the magne-
tometer measurements ym,t . The orientation is represented from the body frame
b to the navigation frame n, expressed using a unit quaternion qnb

t . The body
frame b is the coordinate frame of the inertial sensor, having its origin in the cen-
ter of the accelerometer triad and its axes aligned with the inertial sensor axes.
The navigation frame n is aligned with the earth’s gravity and the local magnetic
field.

As discussed in Section 2, we estimate the orientation using an extended Kalman
filter (EKF). Orientations are commonly represented using unit quaternions, see
e.g. Hamilton (1844); Kuipers (1999). A possible implementation of the EKF
hence uses a quaternion as a 4-dimensional state vector (Gustafsson, 2012; Kok
and Schön, 2014a). The downside of this implementation is that care must be
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taken that the norm of the quaternion is conserved. Also, the state covariance
matrix is represented by a 4 × 4 matrix. Due to the norm 1 constraint on the
quaternions, this matrix is rank deficient. However, the state covariance matrix
estimated by the EKF is full rank due to linearization errors. To avoid problems
due to the norm constraint of the quaternion, we use an implementation of the
EKF, which is sometimes called a multiplicative EKF (Markley, 2003; Crassidis
et al., 2007; Hol, 2011). Here, a 3-dimensional state vector represents the orienta-
tion deviation from a linearization point. The linearization point is represented
using a unit quaternion.

3.1 Dynamic model

The dynamic model (1a) describes the orientation qnb in terms of the angular
velocity ω as

qnb
t+1 = qnb

t � exp T
2ωt . (6)

Here, � denotes a quaternion multiplication and the exponential of a vector a is
defined as the following 4-dimensional vector (Hol, 2011)

exp a =
(
cos ‖a‖2 aT

‖a‖2 sin ‖a‖2
)T
. (7)

An estimate of the angular velocity ωt can obtained from the measurement yω,t ,
which is modeled as

yω,t = ωt + δω + vω,t . (8)

Here, δω denotes the gyroscope bias and vω,t ∼ N (0,Σω). The gyroscope mea-
surements are hence used as an input to the dynamic model.

3.2 Accelerometer measurement model

The measurement model (1b) entails the accelerometer measurements and the
magnetometer measurements. The accelerometer measurements ya,t are modeled
as

ya,t = Rbn
t (an

t − gn) + ea,t ≈ −Rbn
t g

n + ea,t , (9)

where an
t denotes the sensor’s acceleration in the navigation frame, gn denotes the

earth’s gravity and the accelerometer noise is assume to be ea,t ∼ N (0,Σa). The
matrix Rbn

t is the rotation matrix representation of the quaternion qbn
t = (qnb

t )c,
where c denotes the quaternion conjugate (Hol, 2011). As indicated in (9), we
assume the sensor’s acceleration to be approximately zero.

3.3 Magnetometer measurement model

In the case of a perfectly calibrated magnetometer, the magnetometer measures
the local magnetic field and its measurements ym,t will therefore lie on a sphere
with a radius equal to the local magnetic field mn, i.e.

ym,t = mb
t = Rbn

t m
n. (10)
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Figure 2: Schematic of a part of the earth where the earth magnetic field mn

makes an angle δ with the horizontal plane. The vertical component of mn

is denoted by mn
z . The location of the magnetic north is indicated with an N .

In outdoor environments, the local magnetic field is equal to the local earth mag-
netic field. Its horizontal component points towards the earth’s magnetic north
pole. The ratio between the horizontal and vertical component depends on the
location on the earth and can be expressed in terms of the dip angle δ. Figure 2
schematically depicts part of the earth and illustrates the definition of the dip an-
gle and the vertical component mn

z . In indoor environments, the magnetic field
can locally be assumed to be constant and points towards a local magnetic north.
Note that this is not necessarily the earth’s magnetic north pole. Choosing the
navigation frame n such that the x-axis is pointing towards the local magnetic
north, the local magnetic field mn is given by

mn =
(√

1 − (mn
z )2 0 mn

z

)T
, (11a)

=
(
cos δ 0 − sin δ

)T
. (11b)

Note that, as described in Section 1, we assume without loss of generality that the
norm of the local magnetic field is equal to one.

In the remainder of this section we will introduce our magnetometer measure-
ment model. This will result in a model where the magnetometer measurements
can be described in terms of a 3 × 3 calibration matrix D and a 3 × 1 offset vector
o according to

ym,t = DRbn
t m

n + o + em,t , (12)

with em,t ∼ N (0,Σm). We will first introduce the different parts of the model.
Subsequently, the model assumptions will be addressed.

Magnetometer sensor errors

One reason for why magnetometer calibration is necessary is the presence of sen-
sor errors in the magnetometer. These errors are sensor-specific and can differ
for each magnetometer. They can be subdivided into four components, see e.g.
Gebre-Egziabher et al. (2006); Renaudin et al. (2010); Vasconcelos et al. (2011).

1. Non-orthogonality of the magnetometer axes, represented by a matrix Cno.

2. Presence of a zero bias or null shift, implying that the magnetometer will
measure a non-zero magnetic field even if the magnetic field is zero, defined
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by ozb.

3. Difference in sensitivity of the three magnetometer axes, represented by a
diagonal matrix Csc.

4. Presence of noise in the magnetometer measurements. We will assume this
noise to be independently and identically distributed (i.i.d.) Gaussian noise
and it will be denoted by em,t .

We can therefore rewrite (10) to include the magnetometer sensor errors as

ym,t = CscCnom
b
t + ozb + em,t . (13)

Presence of magnetic disturbances

Inertial sensors and magnetometers are often used to estimate an object’s orienta-
tion. The IMU is then rigidly attached to the object so that its orientation reflects
the object’s orientation. These objects, however, frequently contain ferromagnetic
material. Examples of this are applications where we are interested in the orien-
tation of a car or a smartphone.

In the vicinity of magnetic materials, a magnetometer will not only measure the
local magnetic field, but also additional magnetic field components. These addi-
tional magnetic field components consist of hard and soft iron effects. Hard iron
effects are due to permanent magnetization of the magnetic material and lead to
a constant offset ohi of the ellipsoid of data. Soft iron effects are due to magneti-
zation of the material as a result of an external magnetic field and will therefore
depend on the orientation of the material with respect to the local magnetic field.
We model this in terms of a 3 × 3 matrix Csi.

Extending (13) to also include the model of the magnetic disturbances introduced
above, results in

ym,t = CscCno

(
Csim

b
t + ohi

)
+ ozb + em,t . (14)

Magnetometer and inertial sensor axes alignment

When calibrating the magnetometer to obtain better orientation estimates, it is
important that the magnetometer and inertial sensor axes are aligned. Intro-
ducing a rotation matrix Rim describing the misalignment between the inertial
sensors and the magnetometer in (14) results in

ym,t = CscCno

(
CsiRimm

b
t + ohi

)
+ ozb + em,t . (15)

Resulting magnetometer measurement model

To obtain a correct calibration, it is not necessary to identify all individual contri-
butions of the different components in (15). Instead, they can be combined into
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a 3 × 3 distortion matrix D and a 3 × 1 offset vector o where

D = CscCnoCsiRim, (16a)

o = CscCnoohi + ozb, (16b)

leading to the resulting magnetometer measurement model (12). In deriving the
model we have made two important assumptions.

First, the calibration matrix D and offset vector o in (16) are assumed to be time-
independent. This implies that we assume that the magnetic distortions are con-
stant and rigidly attached to the sensor. Also, the inertial and the magnetometer
sensor axes are assumed to be rigidly attached to each other, i.e. their misalign-
ment is represented by a constant rotation matrix. Additionally, in our algorithm
we will assume that their misalignment can be described by a rotation matrix, i.e.
that their axes are not mirrored with respect to each other.

Second, the local magnetic field mn is assumed to be constant. In outdoor en-
vironments, this typically is a physically reasonable assumption. In indoor envi-
ronments, however, the local magnetic field can differ in different locations in the
building and care should be taken to fulfill the assumption.

3.4 Parameter vector

The parameter vector θ to be estimated in (5) consists of the calibration matrix
D, the offset vector o and the local earth magnetic field mn as discussed in Sec-
tion 3.3. Furthermore, the gyroscope bias δω introduced in Section 3.1 and the
noise covariance matrices Σω, Σa and Σm of the three sensors are treated as un-
known parameters to be estimated from data. The different components of the
unknown parameters θ therefore consist of

D ∈ R3×3, (17a)

o ∈ R3, (17b)

mn ∈ {R3 : ||mn||22 = 1, mn
x > 0, mn

y = 0}, (17c)

δω ∈ R3, (17d)

Σω ∈ {R3×3 : Σω � 0,Σω = ΣT
ω}, (17e)

Σa ∈ {R3×3 : Σa � 0,Σa = ΣT
a }, (17f)

Σm ∈ {R3×3 : Σm � 0,Σm = ΣT
m}, (17g)

where mn
x and mn

y denote the x- and y- component of mn, respectively. The nota-
tion Σ � 0 denotes the assumption that the matrix Σ is positive semi-definite.

Although (17c) and (17e) – (17g) suggest that constrained optimization is needed,
it is possible to circumvent this via suitable reparametrizations. The covariance
matrices can be parametrized in terms of their Cholesky factorization, leading
to only 6 parameters for each 3 × 3 covariance matrix. The local magnetic field
can be parametrized using only one parameter as in (11). Note that in our algo-
rithm we prefer using the representation (11a) for the initialization, but the rep-
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resentation (11b) for the maximum likelihood problem (5). Although the latter
parametrization does not account for the constraint mn

x > 0, this is of no concern
due to proper initialization.

4 Finding good initial estimates

Since the optimization problem is non-convex, the parameter vector θ introduced
in Section 3.4 needs proper initialization. An initial estimate θ̂0 is obtained using
a three-step method. As a first step, the gyroscope bias δω and the noise covari-
ances of the inertial sensors Σω, Σa and of the magnetometer Σm are initialized.
This can be done using a short batch of stationary data. Another option is to ini-
tialize them based on prior sensor information. As a second step, described in
Section 4.1, an ellipse fitting problem is solved using the magnetometer data. As
described in Section 1, this can map the ellipsoid of data to a sphere but it can not
determine the rotation of the sphere. The rotation of the sphere is therefore de-
termined in a third step of the initialization. This step also determines an initial
estimate of the local magnetic field.

4.1 Ellipse fitting

As discussed in Section 1, we assume without loss of generality that the norm of
the local magnetic field ‖mn‖ is equal to 1. Based on this assumption we would
expect all measurements to lie on the unit sphere,

‖mn‖22 − 1 = ‖Rbn
t m

n‖22 − 1

= ‖D−1 (
ym,t − o − em,t

) ‖22 − 1 = 0. (18)

In practice, the measurements are corrupted by noise and the equality (18) does
not hold exactly. The ellipse fitting problem can therefore be written as

yTm,tAym,t + bTym,t + c ≈ 0, (19)

with

A , D−TD−1, (20a)

b , −2oTD−TD−1, (20b)

c , oTD−TD−1o. (20c)

Assuming that the matrix A is positive definite, this can be recognized as the def-
inition of an ellipsoid with parameters A, b and c (see e.g. Gander et al. (1994)).
We can rewrite (19) as a linear relation of the parameters as

Mξ ≈ 0, (21)
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with

M =




ym,1 ⊗ ym,1 ym,1 1
ym,1 ⊗ ym,2 ym,2 1

...
...

...
ym,N ⊗ ym,N ym,N 1



, ξ =



vecA
b
c


 , (22)

where ⊗ denotes the Kronecker product and vec denotes the vectorization oper-
ator. This problem has infinitely many solutions and without constraining the
length of the vector ξ, the trivial solution ξ = 0 would be obtained. A possible
approach to solve the ellipse fitting problem is to make use of a singular value
decomposition (Gander et al., 1994; Kok et al., 2012). This approach inherently
poses a length constraint on the vector ξ, assuming that its norm is equal to 1.
It does, however, not guarantee positive definiteness of the matrix A. Although
positive definiteness of A is not guaranteed, there are only very few practical
scenarios in which the estimated matrix A will not be positive definite. A non-
positive definite matrix A can for instance be obtained in cases of very limited
rotation of the sensor. The problem of allowing a non-positive definite matrix
A can be circumvented by solving the ellipse fitting problem as a semidefinite
program (Calafiore, 2002; Boyd and Vandenberghe, 2004)

min
A,b,c

1
2‖M



vecA
b
c


 ‖

2
2,

s.t. TrA = 1,

A ∈ S3×3
++ , (23)

where S3×3
++ denotes the set of 3 × 3 positive definite symmetric matrices. By con-

straining the trace of the matrix A, (23) avoids the trivial solution of ξ = 0. The
problem (23) is a convex optimization problem and therefore has a globally opti-
mal solution and does not require an accurate initial guess of the parameter vec-
tor ξ. The optimization problem can easily be formulated and efficiently solved
using software packages like YALMIP (Löfberg, 2004) or CVX (Grant and Boyd,
2013).

Initial estimates of the calibration matrix D and offset vector o can be obtained
from the estimated Â, b̂, ĉ as

α =
(

1
4 b̂

TÂ−1b̂ − ĉ
)−1

, (24a)

D̃T
0 D̃0 = αÂ−1, (24b)

ô0 = 1
2 Â
−1b̂, (24c)

where ô0 denotes the initial estimate of the offset vector o. From (24b) it is not pos-
sible to uniquely determine the initial estimate of the calibration matrix D. We
determine an initial estimate of the calibration matrix D using a Cholesky decom-
position, leading to a lower triangular D̃0. However, any D̃0U where UUT = I3
will also fulfill (24b). As described in Section 3.3, we assume that the sensor axes
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of the inertial sensors and the magnetometers are related by a rotation, implying
that we restrict the matrix U to be a rotation matrix. The initial estimate D̂0 can
therefore be defined in terms of D̃0 as

D̂0 = D̃0RD. (25)

The unknown rotation matrix RD will be determined in Section 4.2.

4.2 Determine misalignment of the inertial and magnetometer
sensor axes

The third step of the initial estimation aims at determining the misalignment be-
tween the inertial and magnetometer sensor axes. It also determines an initial
estimate of the local magnetic field m̂n

0 . These estimates are obtained by com-
bining the magnetometer with the inertial sensor measurements. The approach
is based on the fact that the inner product of two vectors is invariant under ro-

tation. The two vectors considered here are the vertical vn =
(
0 0 1

)T
and

the local magnetic field mn. Hence, it is assumed that the inner product of the
vertical vb

t in the body frame b,

vb
t = Rbn

t v
n, (26a)

and the local magnetic field mb
t in the body frame,

mb
t = RT

DD̃
−1
0

(
ym,t − ô0

)
, (26b)

is constant. The matrix RD in (26b) denotes the rotation needed to align the
inertial and magnetometer sensor axes. The rotation matrices Rnb

t in (26a) can be
estimated using an EKF. This EKF can not use the magnetometer measurements,
since they have not properly been calibrated yet. It can therefore not be expected
to result in accurate heading estimates. However, to determine the vertical vb

t ,
only the sensor’s inclination is of concern, which can be determined using the
inertial measurements only.

The inner product between the vertical and the local magnetic field is equal to
mn
z (recall Figure 2. Using the assumption that this is invariant under rotation

leads to the following minimization problem

min
RD,m

n
z,0

1
2

N∑

t=1

‖mn
z,0 − (vn)T Rnb

t R
T
DD̃
−1
0

(
ym,t − ô0

) ‖22

s.t. RD ∈ SO(3), (27)

where SO(3) refers to the special orthogonal group in three dimensions. The
rotation matrix can be parametrized using an orientation deviation from a lin-
earization point as described in Section 3. Hence, (27) can be solved as an uncon-
strained optimization problem.
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Based on these results and (25) we obtain the initial estimates

D̂0 = D̃−1
0 R̂D, (28a)

m̂n
0 =

(√
1 −

(
m̂n
z,0

)2
0 m̂n

z,0

)T
. (28b)

Hence, we have obtained an initial estimate θ̂0 of the parameter vector θ as intro-
duced in Section 3.4.

5 Calibration algorithm

The initial estimate from Section 4 can be used as a starting point to obtain a
maximum likelihood estimate of the parameters θ in (5). The resulting calibra-
tion algorithm is described in Algorithm 1.

The actual optimization problem (5) is solved in Step 2b of Algorithm 1. It uses
a Broyden-Fletcher-Goldfarb-Shanno (BFGS) method using damped BFGS updat-
ing (Nocedal and Wright, 2006). Since the predicted measurement ŷt|t−1 and the
residual covariance St are determined using an EKF, determining the gradient
of the objective function (5) is not straightforward. Possible approaches are dis-
cussed in Åström (1980); Segal and Weinstein (1989) for the case of linear models.
In the case of nonlinear models, however, they only lead to approximate gradi-
ents. Because of this, our approach uses numerical gradients, requiring running
nθ + 1 EKFs each iteration. Although this is computationally rather expensive,
the computation of the numerical gradients can be parallelized.

Algorithm 1 Magnetometer and inertial calibration

1. Determine an initial parameter estimate D̂0, ô0, m̂n
0 , δ̂ω,0, Σ̂ω,0, Σ̂a,0, Σ̂m,0

using three steps
(a) Initialize δ̂ω,0, Σ̂ω,0, Σ̂a,0, Σ̂m,0.
(b) Obtain an initial D̃0 and ô0 based on ellipse fitting (see Section 4.1).
(c) Obtain initial D̂0, ô0 and m̂n

0 by initial determination of the sensor axis
misalignment (see Section 4.2).

2. Set i = 0 and repeat,
(a) Run the EKF using the current estimates D̂i , ôi , m̂

n
i , δ̂ω,i , Q̂i = Σ̂ω,i ,

R̂i =
(
Σ̂a,i 03×3
03×3 Σ̂m,i

)
and obtain {ŷt|t−1}Nt=1, S1:N .

(b) Determine θ̂i+1 using the numerical gradient of the objective function
in (5), its approximate Hessian and a line search algorithm.

(c) Obtain D̂i+1, ôi+1, m̂n
i+1, δ̂ω,i+1, Σ̂ω,i+1, Σ̂a,i+1, Σ̂m,i+1 from θ̂i+1.

(d) Set i := i + 1 and repeat from Step 2a until convergence.



6 Minimum rotation needed 67

6 Minimum rotation needed

For magnetometer calibration, the sensor needs to be rotated in all possible ori-
entations so the magnetometer measurements describe (a part of) an ellipsoid.
Work on magnetometer calibration generally assumes that the sensor can be “suf-
ficiently” rotated for the calibration parameters to be identified. Often, however,
magnetometers are mounted in such a way that their movement is more or less
constrained to the 2D plane (Wu et al., 2013a,b). We will study how much ro-
tation is actually needed to solve the magnetometer calibration problem using
an identifiability analysis. Here, we will assume noise-free and bias-free inertial
measurements and noise-free magnetometer measurements. Note that because
of these assumptions, our analysis provides a lower bound on the number of mea-
surements needed to identify the calibration parameters. In most applications
with limited rotational freedom, rotations around the z-axis are possible, while
rotations around the other axes are constrained. We therefore ask the question
of how much rotation around the x- and y-axes is needed in addition to rotation
around the z-axis. We are hence interested in when a subset of the parameters θ,

namely the calibration parameters θc =
(
vecD oT mn

z

)T
, become identifiable.

6.1 Identifiability analysis

Identifiability analysis can be performed by studying local observability of an ex-
tended system (Walter, 1982). The extended system consists of the state variables
x1:K during a certain time period (see (1a)) and the parameters θ. For our prob-
lem, the size of this problem can be reduced by recognizing that assuming noise-
free and bias-free gyroscope measurements, the orientation difference between
two time steps can be determined from (6). Furthermore, assuming perfect ac-
celerometer measurements combined with the assumption in (9), the inclination
at each time step is known. Since the magnetometer measurements are assumed
to be uncalibrated, the initial heading denoted by ψ can not be assumed to be
known. Based on this knowledge we can reduce our observability analysis to the
study of the calibration parameters θc and the initial heading ψ.

Discrete-time observability analysis considers the system of equations

ym,1 = DRbn
1 (ψ)mn + o = hm(Rbn

1 , ψ, θc), (29a)

ym,2 = DRbn
2 (ψ)mn + o = hm(Rbn

2 , ψ, θc), (29b)

...

ym,K = DRbn
K (ψ)mn + o = hm(Rbn

K , ψ, θc). (29c)

The parameters θc and ψ are said to be locally identifiable if there exists an Rbn
1:K

such that we can solve for θc and ψ in (29).

Due to the nonlinear nature of (29) it is typically hard to analyze it directly. In-
stead, observability is often studied by considering a linearized version of (29),
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making use of the Jacobian

J (θc, ψ) =




∇hm(Rbn
1 , ψ, θc)

∇hm(Rbn
2 , ψ, θc)
...

∇hm(Rbn
K , ψ, θc)



, (30)

where ∇ denotes the derivative with respect to θc and ψ. If (30) is full rank, i.e.
equal to 14, for all θc, ψ, the parameters are said to be locally weakly identifiable
(Nijmeijer and van der Schaft, 1990).

The Jacobian J (θc, ψ) can be built by stacking different measurements on top
of each other. For notational simplicity, we consider 90◦ rotations around the
axes. Note that the analysis is equally valid for any other amount of rotation. For
rotations of 0◦, 90◦ and −90◦ around the z-axis, 90◦ and −90◦ around the x-axis
and 90◦ and −90◦ around the y-axis, the Jacobian is given by

J (θc, ψ) =




mx cψ I3 mx sψ I3 mzI3 I3 D3 + (D1 cψ +D2 sψ)∂mx∂mz
(D2 cψ −D1 sψ)mx

−mx sψ I3 mx cψ I3 mzI3 I3 D3 + (D2 cψ −D1 sψ)∂mx∂mz
−(D1 cψ +D2 sψ)mx

mx sψ I3 −mx cψ I3 mzI3 I3 D3 + (D1 sψ −D2 cψ)∂mx∂mz
(D1 cψ +D2 sψ)mx

mx cψ I3 −mzI3 mx sψ I3 I3 −D2 + (D1 cψ +D3 sψ)∂mx∂mz
(D3 cψ −D1 sψ)mx

mx cψ I3 mzI3 −mx sψ I3 I3 D2 + (D1 cψ −D3 sψ)∂mx∂mz
−(D3 cψ +D1 sψ)mx

mzI3 mx sψ I3 −mx cψ I3 I3 D1 + (D2 sψ −D3 cψ)∂mx∂mz
(D2 cψ +D3 sψ)mx

−mzI3 mx sψ I3 mx cψ I3 I3 −D1 + (D2 sψ +D3 cψ)∂mx∂mz
(D2 cψ −D3 sψ)mx

︸                                      ︷︷                                      ︸
vecD

︸︷︷︸
o

︸                        ︷︷                        ︸
mz

︸                ︷︷                ︸
ψ




, (31)

where Di denotes the ith column of the matrix D and the superscript n for the
local magnetic field mn is omitted. The notation cφ and sφ denotes cosφ and
sinφ, respectively. For clarity, the contributions of the different rotation axes are
separated by dashed lines. For each column it is explicitly indicated which part
of the derivative with respect to the parameters θc, ψ it represents.

The rank of (31) can be studied for subsets of its rows. Considering only rota-
tions around the z-axis, i.e. the first three rows in (31), rankJ (θc, ψ) = 9 as long
as mn

x , 0 (the calibration is not performed on the magnetic north or south pole).
The matrix will not gain any rank from adding more measurements around the
z-axis. The minimum amount of measurements around the different axes that
lead to rankJ (θc, ψ) = 14 is summarized in Table 1. For instance, in case the
calibration is not performed on the equator or on one of the magnetic poles, it is
enough to supplement the 3 measurements around the z-axis with two measure-
ments around another axis. Hence, this leads to three possible combinations as
represented by the three columns in Table 1 under “elsewhere”. On the equator,
however, for the calibration parameters to be identifiable it is necessary to have
at least one measurement from rotation around the y-axis. Hence, there are only
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Table 1: Summary of how many measurements (i.e. lower bound) around
which axes are needed for identifiability of the calibration parameters θc
and the initial heading ψ.

J (θc, ψ) full rank Pole Equator Elsewhere
#meas z-axis – 3 3 3 3 3
#meas x-axis – 0 1 1 0 2
#meas y-axis – 2 1 1 2 0

two possible combinations for the lower bound for identifiability. Note that on
the magnetic poles, the calibration parameters are identifiable from a finite set
of measurements, as discussed in Kok and Schön (2014a). However, the initial
heading ψ is not identifiable at these locations since the local magnetic field here
consists of a vertical component only. The results in Table 1 are valid under very
mild conditions on the calibration matrix D. A sufficient condition for this is that
detD , 0.

6.2 Quality of the estimates

The identifiability analysis above was performed assuming 90◦ rotations between
each measurement. The same result holds, however, for any other difference in
rotations. Although the amount of rotation does not influence the identifiability
of the calibration parameters, it will indeed influence the quality of the estimates.
This can be understood in terms of the condition number (Kailath et al., 2000),
i.e. the ratio between the maximum and minimum singular value of the Jacobian
(31). Any singular values being zero implies that θc is not identifiable, but a
smaller condition number also implies that certain parameters are more difficult
to estimate. Figure 3 shows the singular values of the Jacobian in (31) for different
amounts of rotation. Five measurements are considered, corresponding to three
measurements around the z-axis, one around the x-axis and one around the y-

axis for D = I3, o =
(
0 0 0

)T
and the local magnetic field mn equal to that

in Linköping, Sweden. The amount of rotation between the measurements is
assumed to be equal for all four differences and is varied between 0◦ (red) and
90◦ (blue). As can be seen, the larger the amount of rotation, the smaller the
condition number of (31).

It can hence be concluded that rotation around the z-axis only is never enough
to identify the calibration parameters θc. The parameters will, however, become
identifiably already with very little excitation in the other directions as summa-
rized in Table 1. More excitation around the different axes will always lead to
better estimates as can be concluded from Figure 3.
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Figure 3: Singular values of the Jacobian in (31) for small rotation ranges
(red) to large rotation ranges (blue).

7 Experiments and results

7.1 Experimental setup

Experiments have been performed using two commercially available inertial mea-
surements units (IMUs), an Xsens MTi-100 (Xsens Technologies B.V., 2013) and
a Trivisio Colibri Wireless IMU (Trivisio Prototyping GmbH, 2014). The experi-
mental setup of both experiments can be found in Figure 4. The experiment with
the Xsens IMU was performed outdoors to ensure a homogeneous local magnetic
field. The experiment with the Trivisio IMU was performed indoors. However,
the experiment was performed relatively far away from any magnetic materials
such that the local magnetic field is as homogenous as possible. The Xsens IMU
was placed in an aluminum block with right angles which can be used to rotate
the sensor 90◦ to verify the heading results. For both sensors, inertial and magne-
tometer measurements were collected at 100 Hz.

7.2 Calibration results

For calibration, the IMU needs to be slowly rotated such that the assumption of
zero acceleration is reasonably valid. This leads to an ellipsoid of magnetometer
data as depicted in red in Figures 1 and 5. Note that for plotting purposes the
data has been downsampled to 1 Hz. To emphasize the deviation of the norm
from 1, the norm of the magnetometer data is depicted in red in Figure 6.

For the experiment with the Xsens IMU, the following calibration matrix D̂ and
offset vector ô are found

D̂ =




0.74 −0.13 0.01
−0.12 0.68 0.01
−0.03 0.43 1.00


 , ô =




1.36
1.22
−0.94


 , (32)

using Algorithm 1. Applying the calibration result to the magnetometer data
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Figure 4: Left: experimental setup where a calibration experiment is per-
formed outdoors. An Xsens MTi-100 IMU (orange box) together with a mag-
netic disturbance is placed in a aluminum block. Right: experimental setup
using a Trivisio IMU (black box). A phone is used as a source of magnetic
disturbance. To avoid saturation of the magnetometer, the phone is not at-
tached directly to the IMU.
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Figure 5: Calibration results from the experiment with the Trivisio IMU. The
ellipsoid of magnetometer data (red) lies on a unit sphere after calibration
(blue).
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Figure 6: Norm of the magnetic field measurements before (red) and after
(blue) calibration for (top) the experiment with the Xsens IMU and for (bot-
tom) the experiment with the Trivisio IMU.
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Figure 7: Histogram of the normalized residuals S−1/2
t (yt − ŷt|t−1) from the

EKF after calibration for the original data set (left) and for a second data
set (right) for the experiments performed with the Xsens IMU. A Gaussian
distribution (red) is fitted to the data.

leads to the unit sphere of data in blue in Figure 1. The norm of the magnetometer
data after calibration can indeed be seen to lie around 1, as depicted in blue in
Figure 6.

As a measure of the calibration quality, we analyze the normalized residuals
S−1/2
t (yt − ŷt|t−1) after calibration from the EKF. In the case of correct calibrated

parameters that sufficiently model the magnetic disturbances, we expect the nor-
malized residuals to be normally distributed with zero mean and standard devia-
tion 1. According to Figure 7 this is more or less the case.

To analyze if the calibration is also valid for a different data set with the same
experimental setup, the calibrated parameters have been used on a second data
set. Figures of the ellipsoid of magnetometer data and the sphere of calibrated
magnetometer data are not included since they look very similar to Figures 1
and 6. The normalized residuals S−1/2

t (yt − ŷt|t−1) of this second data set, however,
can be found in Figure 7 (right plot). They can be seen to still look fairly N (0, 1).
From these results it can be concluded that the calibration can well be applied to
other data sets if the same magnetic disturbance is present.

The Trivisio IMU outputs the magnetometer data in microtesla. Since our algo-
rithm scales the calibrated measurements to a unit norm, the obtained D̂ and
offset vector ô from Algorithm 1 are in this case of much larger magnitude,

D̂ =



61.74 0.59 0.09
−1.01 60.74 0.23
−0.39 0.06 60.80


 , ô =



−19.77
−1.68
−6.98


 . (33)

The sphere of calibrated data and its norm can be found in blue in Figures 5
and 6. Note that for plotting purposes, the magnetometer data before calibra-
tion is scaled down such that its mean lies around 1. The obtained D̂ and ô are
scaled accordingly to plot the red ellipsoid in Figure 5. The normalized residu-
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Figure 8: Histogram of the normalized residuals S−1/2
t (yt − ŷt|t−1) from the

EKF after calibration for the original data set (left) and for a second data
set (right) for the experiments performed with the Trivisio IMU. A Gaussian
distribution (red) is fitted to the data.

als S−1/2
t (yt − ŷt|t−1) of the EKF using both the original and a second data set are

depicted in Figure 8 and can be seen to be more or less N (0, 1).

From these results we can conclude that Algorithm 1 gives good magnetometer
calibration results for experimental data from two different commercially avail-
able IMUs. A good fit of the ellipsoid of data to a sphere is obtained and the
algorithm seems to give good estimates analyzed in terms of its normalized resid-
uals. Since magnetometer calibration is generally done to obtain improved head-
ing estimates, it is important to also interpret the quality of the calibration in
terms of the resulting heading estimates. In Section 7.3 this will be done based
on experimental results. The heading performance will also be analyzed based
on simulations in Section 8.

7.3 Heading estimation

An important goal of magnetometer calibration is to facilitate good heading esti-
mates. To check the quality of the heading estimates after calibration, the block
in which the Xsens sensor was placed (shown in Figure 4) is rotated around all
axes. This block has right angles and it can therefore be placed in 24 orientations
that differ from each other by a 90◦ rotation. The calibrated magnetometer data
of this experiment is shown in Figure 9. Orientation estimates are determined by
computing the mean value of 500 magnetometer and accelerometer samples in
each orientation and using the accelerometer to estimate the sensor’s inclination
and the magnetometer data to estimate its heading. After calibration, we expect
the difference of the estimated heading between each subsequent rotation to be
90◦. Note that when rotating around an axis, the sensor is always rotated back
to its initial position, enabling the computation of 4 orientation differences per
rotation axis. Table 2 reports the deviation from 90◦ between two subsequent
rotations. Note that the metal object causing the magnetic disturbance as shown
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Figure 9: Calibrated magnetometer data of an experiment rotating the sen-
sor into 24 different sensor orientations where the blue, green and red lines
represent the data from the x-, y- and z-axis of the magnetometer, respec-
tively.

in Figure 4 physically prevents the setup from being properly placed in all ori-
entations around the y-axis. Rotation around the y-axis with the y-axis pointing
upwards has therefore not been included in Table 2.

Our experiment investigates both the absolute heading errors and the improve-
ment of the heading estimates over the ones obtained after the initial calibration,
i.e. Step 1 in Algorithm 1. In Table 2 we therefore include both the orientation
errors using the initial parameter estimates D̂0 (28a) and ô0 (24c) and the orienta-
tion errors using maximum likelihood parameter estimates D̂ and ô (32) obtained
using Algorithm 1. As can be seen, the deviation from 90◦ is small, indicating
that good heading estimates are obtained after calibration. Also, the heading es-
timates using the initial parameter estimates are already fairly good. The mean
orientation error is reduced from 1.28◦ for the initial estimate to 0.76◦ for the
maximum likelihood estimate. The maximum error is reduced from 4.36◦ for
the initial estimate to 2.48◦ for the maximum likelihood estimate. Note that the
results of maximum likelihood estimate are slightly better than the results previ-
ously reported by Kok and Schön (2014a). This can be attributed to the fact that
we now use orientation error states instead of the quaternion states in the EKF
(see Section 3). This results in slightly better estimates, but also in a smoother
convergence of the optimization problem. The quality of the heading estimates
is studied further in Section 8 based on a simulation study.

8 Simulated heading accuracy

Magnetometer calibration is typically performed to improve the heading esti-
mates. It is, however, difficult to check the heading accuracy experimentally. One
way is to do it is as in Section 7.3. There we are, however, limited to doing the
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Table 2: Difference in estimated heading between two subsequent rotations
around the sensor axes using calibrated magnetometer data. The values rep-
resent the deviation in degrees from 90◦. Included are both the results using
the maximum likelihood (ML) estimates from Algorithm 1 and the results
using initial estimates from Step 1 in the algorithm.

z-axis x-axis y-axis
z up z down x up x down y down

ML init ML init ML init ML init ML init
0.11 0.36 0.69 1.34 0.22 0.16 0.86 1.01 0.18 1.57
0.22 0.90 2.48 4.36 0.07 0.20 1.57 1.45 0.29 0.76
0.46 1.52 1.53 3.57 0.97 0.94 0.61 0.71 0.20 0.78
0.30 0.94 1.92 2.40 0.29 0.59 1.78 1.70 0.50 0.45

heading validation on a different data set and we have a limited number of avail-
able data points. To get more insight into the orientation accuracy that is gained
by executing all of Algorithm 1, compared to just its initialization phase (Step 1
in the algorithm), we engage in a simulation study. In this study we focus on the
root mean square (RMS) heading error for different simulated sensor qualities
(in terms of the noise covariances and the gyroscope bias) and different magnetic
field disturbances (in terms of different values for the calibration matrix D and
offset vector o).

In our simulation study, we assume that the local magnetic field is equal to that in
Linköping, Sweden. The calibration matrix D, the offset vector o and the sensor
properties in terms of the gyroscope bias and noise covariances are all sampled
from a uniform distribution. The parameters of the distributions from which
the sensor properties are sampled are chosen as physically reasonable values as
considered from the authors’ experience. The noise covariance matrices Σω, Σa
and Σm are assumed to be diagonal with three different values on the diagonal.
The calibration matrix D is assumed to consist of three parts,

D = DdiagDskewDrot, (34)

where Ddiag is a diagonal matrix with elements D11, D22, D33 and Drot is a rotation
matrix around the angles ψ, θ, φ. The matrix Dskew models the non-orthogonality
of the magnetometer axes as

Dskew =




1 0 0
sin ζ cos ζ
− sin η cos η sin ρ cos η cos ρ


 , (35)

where the angles ζ, η, ρ represent the different non-orthogonality angles. The
exact simulation conditions are summarized in Table 3.

The simulated data consists of 100 samples of stationary data and subsequently
300 samples for rotation around all three axes. It is assumed that the rotation is
exactly around the origin of the accelerometer triad, resulting in zero acceleration
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Table 3: Settings used in the Monte Carlo simulation.
D

o
Ddiag Dskew Drot

D11, D22, D33 ζ, η, ρ ψ, θ, φ o1, o2, o3
∈ U (0.5, 1.5) ∈ U (−30◦, 30◦) ∈ U (−10◦, 10◦) ∈ U (−1, 1)

δω Σω Σa Σm
δω,1, δω,2, δω,3 Σω,1,Σω,2,Σω,3 Σa,1,Σa,2,Σa,3 Σm,1,Σm,2,Σm,3
∈ U (−1, 1) ∈ U (10−3, 10−2) ∈ U (10−3, 10−1) ∈ U (10−3, 10−1)

during the rotation. The first 100 samples are used to obtain an initial estimate
of the gyroscope bias δ̂ω,0 by computing the mean of the stationary gyroscope
samples. The covariance matrices Σ̂ω,0, Σ̂a,0 and Σ̂m,0 are initialized based on the
covariance of these first 100 samples. The initial estimate then consists of these
initial estimates δ̂ω,0, Σ̂ω,0, Σ̂a,0, Σ̂m,0 and the initial calibration matrix D̂0 (28a),
the initial offset vector ô0 (24c) and the initial estimate of the local magnetic field
mn

0 (28b).

To study the heading accuracy, the EKF as described in Section 3 is run with both
the initial parameter values θ̂0 and their maximum likelihood values θ̂ML. The
orientation errors are computed using

∆qt = q̂nb
t �

(
qnb

ref,t

)c
, (36)

where � denotes a quaternion multiplication, the superscript denotes the quater-
nion conjugate c (see e.g. (Hol, 2011)), and ∆qt denotes the orientation error en-
coded as a unit quaternion. It is computed from the orientation q̂nb

t estimated by
the EKF and the ground truth orientation qnb

ref,t . Computing the orientation errors
in this way is equivalent to subtracting Euler angles in the case of small angles.
However, it avoids subtraction problems due to ambiguities in the Euler angles
representation. To interpret the orientation errors ∆qt , they are converted to Eu-
ler angles. We focus our analysis on the heading error, i.e. the third component
of the Euler angles.

The RMS of the heading error is plotted for 150 Monte Carlo simulations in Fig-
ure 10. As can be seen, the heading RMSE using the estimate of the calibration pa-
rameters from Algorithm 1 is consistently small. The heading RMSE based on the
initialization phase in Step 1 of the algorithm, however, has a significantly larger
spread. This clearly shows that orientation accuracy can be gained by executing
all of Algorithm 1. Note that in all simulations, analysis of the norm of the cal-
ibrated magnetometer measurements as done in Figure 6 does not indicate that
the ML estimate is to be prefered over the estimate from the initialization phase.
Hence, analysis of the norm of the calibrated magnetometer measurements does
not seem to be a sufficient analysis to determine the quality of the calibration in
the case when the calibration is performed to improve the heading estimates.
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Figure 10: Histogram of the heading RMSE using (left, blue) the maximum
likelihood parameter estimate from Algorithm 1 and (right, red) the initial
parameter estimate from Step 1 in the algorithm. Note the different scales in
the two plots.

9 Conclusions

We have developed a practical algorithm to calibrate a magnetometer using in-
ertial sensors. It calibrates the magnetometer for the presence of magnetic dis-
turbances, for magnetometer sensor errors and for misalignment between the
inertial and magnetometer sensor axes. The problem is formulated as a maxi-
mum likelihood problem. The algorithm is shown to perform well on real data
collected with two different commercially available inertial measurement units.

In future work the approach can be extended to include GPS measurements. In
that case it is not necessary to assume that the acceleration is zero. The algo-
rithm can hence be applied to a wider range of problems, like for instance the
flight test example discussed in Kok et al. (2012). The computational cost of the
algorithm would, however, increase, since to facilitate the inclusion of the GPS
measurements the state vector in the EKF needs to be extended.
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Abstract

In this work we present an approach to combine measurements from
accelerometers and gyroscopes (inertial sensors) with time of arrival
measurements from an ultra-wideband system for indoor positioning.
Our algorithm uses a tightly-coupled sensor fusion approach and is
shown to lead to accurate 6D pose (position and orientation) estimates
as compared to data from an optical reference system. To be able to
obtain position information from the ultra-wideband measurements,
it is imperative that accurate estimates of the receivers’ positions and
clock offsets are known. Hence, we also present an easy-to-use algo-
rithm to calibrate the ultra-wideband system. It is based on a maxi-
mum likelihood formulation and represents the ultra-wideband mea-
surements assuming a heavy-tailed asymmetric noise distribution to
account for measurement outliers. Using the heavy-tailed asymmetric
noise distribution and the calibration results, it is shown that accurate
position estimates can be obtained from the ultra-wideband measure-
ments using a novel multilateration approach.

1 Introduction

In this work we present an indoor positioning approach using inertial sensors
and time of arrival (TOA) measurements from an ultra-wideband (UWB) system.
It uses a setup where a number of UWB receivers are placed in an indoor environ-
ment. A subject wearing inertial sensors and UWB transmitters walks through
the environment, as shown in Figure 1. We aim at estimating the subject’s 6D
pose (position and orientation). To be able to obtain position information from

85
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Figure 1: Example application showing a subject with 17 inertial sensors
placed on the body and 3 UWB transmitters placed on the head and on the
feet. As shown (right), the solution remains valid even in non-line-of-sight
conditions.

the UWB measurements, it is imperative that accurate estimates of the receivers’
positions and clock offsets are known. To avoid the typically labor-intensive and
time-consuming process of surveying the receivers’ positions, we present an easy-
to-use calibration method. Our previous solution presented in Hol et al. (2010)
assumed “clean” measurements, i.e. it assumed that no outliers were present due
to multipath and/or non-line-of-sight (NLOS) conditions. In this work, we in-
stead model the UWB measurements assuming a heavy-tailed asymmetric noise
distribution, thereby naturally handling outliers in the data. After calibration,
the system can be used to estimate the subject’s position. We present multilatera-
tion results using only the UWB measurements and sensor fusion results combin-
ing the UWB measurement with the inertial measurements. We will show that
accurate results are obtained using both approaches, by comparing our results to
an optical reference system.

Inertial sensors consist of accelerometers and gyroscopes measuring the sensor’s
acceleration and angular velocity. Their signals need to be integrated to obtain
position and orientation estimates. These position and orientation estimates are
accurate on a small time scale, but suffer from integration drift. Inertial sensors
are well-suited for sensor fusion with positioning information, like for instance
from a UWB setup. To the best of the author’s knowledge there are only a few
reports in the literature on how to combine UWB and inertial sensors. These in-
clude a hybrid 2D positioning tracking algorithm (Sczyslo et al., 2008) and an
extended Kalman filter (EKF) for pedestrian tracking (Pittet et al., 2008). Both
approaches are loosely coupled and only estimate a limited number of degrees
of freedom. By a loosely coupled approach we refer to a solution where the mea-
surements from one or several of the individual sensors are pre-processed before
they are used to compute the final result. A tightly coupled approach on the
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other hand refers to an approach where all the measurements are used directly
to compute the final result. This approach is for instance used in De Angelis et al.
(2010); Hol et al. (2009).

UWB is a relatively new and promising radio technology with applications in
radar, communication and localization. UWB technology typically makes use
of impulse radio using very short pulses. These are typically in the order of
1 ns, resulting in a high spatial resolution. This characteristic makes UWB very
suitable for localization purposes. It has successfully been applied in a wide
variety of localization applications, such as industrial (Ubisense, 2014), health-
care (Time Domain, 2014; Gezici et al., 2005) and motion capture (Xsens Tech-
nologies B.V., 2013). UWB positioning accuracy is reported to be in the order
of decimeters (Time Domain, 2014; Ubisense, 2014). Although UWB systems
do not necessarily require line-of-sight visibility (Bellusci et al., 2011), the UWB
measurements do suffer from multipath and NLOS conditions. Existing work
typically assumes “clean” measurements without outliers.

In Section 2 we clearly formulate the problem and the sensors and their corre-
sponding measurement models are then introduced in Section 3. In Section 4
we solve the multilateration problem using only UWB measurements. The UWB
calibration problem is subsequently solved in Section 5. The solution to the sen-
sor fusion problem, where we also make use of the inertial measurements can be
found in Section 6. The experimental results and conclusion are then provided
in Section 7 and Section 8, respectively.

2 Problem formulation

To be able to use the UWB measurements to estimate the transmitters’ positions,
the receivers’ positions and clock offsets must be known. These are estimated
in our calibration algorithm. Let us denote the model parameters estimated
in the calibration algorithm as θ. The calibration algorithm computes a maxi-
mum likelihood (ML) estimate θ̂ML. For a setup with m = 1, . . . , M receivers
and l = 1, . . . , L transmitters, the UWB measurements are denoted yu,mlk for
k = 1, . . . , K UWB pulses. We are interested in estimating the receivers’ relative
positions and clock offsets. Hence, an arbitrary choice of a gravity-aligned UWB
coordinate frame and the reference clock offset are used as constraints in the ML
problem. The calibration algorithm therefore solves the problem as a constrained
optimization problem

θ̂ML = arg max
θ∈Θ

K∏

k=1

L∏

l=1

M∏

m=1

pθ(yu,mlk),

s.t. Aθ = b. (1)

Since the UWB measurement function is nonlinear, the ML problem (1) is non-
convex and needs proper initialization. A two-step method for this will be used.

Using the obtained calibration, it is possible to use the UWB measurements to
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determine a transmitter’s position via a multilateration approach. This approach
regards each UWB pulse individually and solves the following optimization prob-
lem

ẑML = arg max
z

M∏

m=1

pz(yu,m), (2)

where z denotes the parameters estimated in the multilateration problem. Since
the multilateration approach considers each pulse and each transmitter individu-
ally, the subscripts l and k of the UWB measurements have been omitted. The op-
timization problem (2) can be solved efficiently using a standard Gauss-Newton
solver (Nocedal and Wright, 2006; Boyd and Vandenberghe, 2004).

It is also possible to use the UWB measurements together with inertial measure-
ments in a sensor fusion approach. This approach aims at estimating the sen-
sor’s position and orientation (6D pose). Defining the state vector x1:N at times
t = 1, . . . , N , the estimated state can be determined by solving a maximum a pos-
teriori (MAP) problem,

x̂MAP
1:N = arg max

x1:N

N∏

t=1

L∏

l=1

M∏

m=1

p(x1:N | yu,mlt , ya,t , yω,t). (3)

Here, ya,t and yω,t denote the measurements from the inertial sensor. The time-
evolution of the state is modeled using a dynamic model. To emphasize the time-
dependency of the state, we have slightly changed our notation. The different
pulses are denoted with a subscript t in (3) instead of with a subscript k as in (1).

3 Sensor models

The UWB and the inertial sensors are briefly introduced in this section, together
with the models used in working with the measurements from these sensors. The
UWB system is introduced in Section 3.1 and in Section 3.2 we describe how the
measurements from the UWB system are modeled. Finally, the models used for
the inertial sensors are described in Section 3.3.

3.1 The ultra-wideband system

A UWB system typically consists of a network of receivers which can track a
large number of small, battery-powered inexpensive transmitters (Time Domain,
2014). UWB localization technologies can roughly be subdivided into three cat-
egories; 1. systems using time of arrival (TOA) measurements, 2. systems using
angle of arrival measurements and 3. systems using signal strength measure-
ments (Gezici et al., 2005; Sahinoglu et al., 2008). In this work we make use of
TOA measurements. Hence, our UWB setup consists of a network of synchro-
nized and stationary (rigidly fixed, mounted) receivers, all acquiring very precise
TOA measurements of signals originating from a mobile transmitter. The setup
is schematically depicted in Figure 2. The transmitter is also shown in Figure 3.
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UWB transmitter

UWB receiver

pulse

Figure 2: The UWB setup consists of a number of stationary receivers mak-
ing TOA measurements of signal pulses originating from a mobile transmit-
ter.

Figure 3: Lower left: a UWB transmitter. The transmitter sends UWB pulses
to the receivers as schematically depicted in Figure 2. Upper right: an IMU
containing a 3-axis accelerometer and a 3-axis gyroscope.

The transmitter’s position is inferred from the time it takes for the UWB pulse
to travel from the transmitter to a number of receivers. For this, it is impor-
tant that the receivers’ positions are known and that their clocks are synchro-
nized. Although the receivers are synchronized to a central clock, they each have
a small, constant clock offset due to for instance cable lengths. The receivers’ po-
sitions and clock offsets are estimated in the calibration algorithm presented in
Section 5.

The process of determining the transmitter position from TOA measurements is
referred to as trilateration or, more accurately, multilateration. It is a well-studied
topic and many algorithms have been reported in the literature, see e.g. Chan and
Ho (1994); Gezici et al. (2005); Sayed et al. (2005); Sahinoglu et al. (2008). The
low-cost transmitters in our setup have an inaccurate clock and can hence not
provide accurate information concerning the time of transmission. A common
multilateration technique is to eliminate the time of transmission by construct-
ing time difference of arrival (TDOA) measurements from pairs of TOA measure-
ments. The resulting set of hyperbolic equations can then be solved for position.
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The drawback of this approach is that the constructed TDOA measurements are
no longer independently distributed which complicates the calculations. In this
work we use a well-known equivalent approach, treating the time of transmission
as an unknown in the optimization problem (2).

Ideally, the signal travels directly from the transmitter to the different receivers.
In that case, the TOA measurements are directly related to the distance traveled.
In case the signal encounters a medium which delays or reflects the signal, the
time of flight is prolonged and the pulse will be delayed. The majority of multilat-
eration algorithms assume “clean” measurements without delays. The presence
of non-zero delays severely affects the accuracy of the estimated position, giving
rise to several ad hoc methods to detect which measurements are corrupted. Typ-
ically, multilateration is performed for a number of subsets of the measurements
and the “best” solution is returned. In this work, however, we will explicitly
model the possibility of delays using a heavy-tailed asymmetric distribution in
the UWB measurement model.

3.2 Modeling the ultra-wideband measurements

The UWB setup consists of M receivers and N transmitters. The TOA measure-
ments yu,mlk are modeled as

yu,mlk = τlk + ‖rn
m − tnlk‖2 + ∆τm + eu,mlk , (4)

where τlk is the time of transmission of pulse k from transmitter l, tnlk is the posi-
tion of transmitter l at the time of transmitting the kth pulse, rn

m is the position of
the mth receiver and ∆τm is the clock-offset of the mth receiver. The superscript n
denotes the navigation frame. It is a local coordinate frame that is aligned with
the earth’s gravity and with the axes of the frame defined during the UWB cali-
bration, as discussed in Section 2. Note that without loss of generality we assume
all quantities to be expressed in meters.

Due to NLOS conditions and/or multipath we expect a model with eu,mlk i.i.d.
Gaussian noise to be violated. More specifically, we expect a small number of
measurements to be delayed. In Hol (2011) this was modeled by including a
possibly non-zero delay in the measurement function (4). In a novel multilater-
ation approach, the delays were assumed to be exponentially distributed. This
was shown to lead to accurate position estimates, but it introduced M additional
model parameters for each pulse k. In this work we will instead model the noise
using the following asymmetric distribution

eu,mlk ∼


Cauchy(0, γ) eu,mlk ≤ 0,
N (0, σ2) eu,mlk > 0.

(5)

As depicted in Figure 4, the Cauchy distribution (shown in blue) has heavy tails
and therefore naturally allows for the presence of outliers. Since NLOS and mul-
tipath conditions only introduce time delays, we expect only outliers in one di-
rection. Hence, we use the asymmetric probability density function (pdf) (5)
depicted in red in Figure 4. This noise model will be used both for the calibration
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Figure 4: Left: probability density function of an unnormalized N (0, 1) dis-
tribution (blue), an unnormalized Cauchy(0, 1) distribution (green) and the
asymmetric distribution (5) assuming σ = γ = 1 (red). Right: log likelihood
cost function of the pdf N (0, 1) (blue), of the pdf Cauchy(0, 1) (green) and
the asymmetric cost function (9) assuming σ = γ = 1 (red).

algorithm in Section 5 and the multilateration approach presented in Section 4.
From the experimental results in Section 7.2 it will be shown that making use of
the fact that the noise distribution is in fact asymmetric is specifically helpful in
the presence of a large number of outliers.

3.3 Modeling the inertial measurements

An inertial measurement unit (IMU) containing a 3-axis accelerometer and a 3-
axis gyroscope is shown in Figure 3. The inertial measurements are resolved in
the body frame b. Its origin lies in the center of the accelerometer triad and its
axes are aligned with the casing. The gyroscope measures the sensor’s angular
velocity ωt . Its measurements yω,t are modeled as

yω,t = ωt + δω,t + eω,t , (6)

where δω,t denotes the gyroscope bias and eω,t ∼ N (0, σ2
ω). The accelerometer

measures the external specific force f b
t exerted on the sensor. It consists of the

sensor’s linear acceleration an
t and the gravity vector gn, both resolved in the

navigation frame n. The accelerometer measurements ya,t are modeled as

ya,t = f b
t + δa,t + ea,t = Rbn

t (an
t − gn) + δa,t + ea,t , (7)

where δa,t denotes the accelerometer bias and ea,t ∼ N (0, σ2
a ). The rotation matrix

Rbn
t represents the rotation from the navigation frame n to the body frame b.
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4 Multilateration

As described in Section 3.1, the transmitter’s position can be determined from
TOA measurements. We formulate the multilateration problem as an ML prob-
lem (see (2)). Using the noise model (5), the fact that the logarithm is a monotonic
function and neglecting constant terms, the resulting optimization problem is
given by

min
tn,τ

M∑

m=1

Vm, (8)

where

Vm =


log

(
1 +

( eu,m
γ

)2
)

eu,m ≤ 0,

1
2

( eu,m
σ

)2
eu,m > 0.

(9)

Here, the noise eu,m is given by (4) and (5). Since multilateration only computes
an estimate of the position of one transmitter based on data from one pulse, the
subscripts k and l are omitted. The cost function (9) is depicted in Figure 4
and allows for negative outliers due to multipath and NLOS conditions. The
multilateration problem can be solved when TOA measurements from at least 4
receivers are available. In case enough measurements are available, the initial
condition of the optimization problem (8) is irrelevant.

5 Calibration

In the previous section, we assumed that the receivers’ positions and their clock
offsets were known. In this section, we will derive a calibration algorithm to
determine the receivers’ positions {rn

m}Mm=1 and their clock offsets {∆τm}Mm=1 using
the ML formulation stated in (1). This is done by moving a single transmitter
through the measurement volume. The data collected in this way is denoted D1.
The position of the transmitter {tnk }Kk=1 and the times of transmission of the pulses
{τk}Kk=1 are assumed to be unknown. Hence, the parameter vector is

θ =
(
{tnk , τk}Kk=1, {rn

m,∆τm}Mm=1

)
. (10)

Note that compared to the UWB measurement model (4), we have omitted the
subscript l since we assume the case of only a single transmitter. The calibration
problem is non-convex and hence needs proper initialization. In Section 5.1, we
introduce a two-step procedure to compute an initial estimate. In Section 5.2 we
will then introduce the resulting calibration algorithm.

5.1 Computing an initial estimate

As a first step of the initial estimation, a second data set, denotedD2, is used to de-
termine the receivers’ positions and their clock offsets. This data set is collected
using a number of transmitters attached to the receivers. Hence, the relative po-
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sition of each transmitter with respect to the corresponding receiver is known
and constant. It can be approximated to be δn

rt. Since it is not necessary to walk
through the measurement volume during the collection of this data set, the mea-
surements in the data set D2 can typically be assumed to be outlier-free. Hence,
eu,mlk in (4) can accurately be modeled using a Gaussian pdf. Assuming that the
standard deviation of Gaussian is the same for all m, l and k, this leads to the
following constrained least-squares problem

θ̂1 = arg min
θ1

1
2

M∑

m=1

L∑

l=1

K∑

k=1

e2
u,mlk , (11a)

s.t. Amr
n
m = 0, m = 1, 2,

Ahr
n
m,3 = hm, m = 1, . . . , M,

∆τ1 = 0,

rn
m − tnm = δn

rt, m = 1, . . . , M,

(11b)

(11c)

(11d)

(11e)

where

θ1 =
(
{rn
m,∆τm}Mm=1, {tnl,D2

, {τn
lk,D2
}Kk=1}Ll=1

)
. (12)

Note that the subscript D2 on the (stationary) transmitter positions tnl and the
times of transmission τn

lk is added to stress that these parameters are only relevant
to the data D2. The constraint (11e) is used to incorporate the knowledge of the
location of the transmitters with respect to the receivers. Note that we assume
that each receiver has a transmitter attached to it, i.e. we haveM constraints (11e).
The constraint (11d) is used to define the reference clock offset as discussed in
Section 2. The constraints (11b) and (11c) are used to define the UWB coordinate
frame where the two receivers in (11b) define its origin and x-axis. Hence, the
matrices Am are given by

A1 =
(
e1 e2 e3

)T
, A2 =

(
e2 e3

)T
, (13)

where {ei}3i=1 is the standard basis for R
3. The horizontal plane and thereby the

z-axis are defined by the constraint (11c) with

Ah = eT3 , (14)

which sets the estimated receiver heights (denoted rm,3) equal to the measured
heights hm. Note that it is not necessary for the calibration algorithm that all
receiver heights are known. In Hol (2011); Hol et al. (2010) the optimization
problem was therefore formulated with only a constraint on one of the receivers’
heights. However, using the surveyed heights of all receiver’s makes sure that the
UWB coordinate system is gravity-aligned. This will be beneficial for our sensor
fusion approach in Section 6.

The problem (11) is again a non-convex optimization problem and therefore re-
quires a starting point. However, when started in an arbitrary disjoint receiver
configuration, i.e. ri , rj , it converges to the correct configuration or a (partially)
mirrored version. To prevent the latter from happening, we start the optimiza-
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tion (11) in a user-specified initial receiver configuration: a noisy, rotated and
scaled estimate of the set of receiver positions. Note that the receiver positions
and clock offsets estimated in (11) are biased since the constraints (11e) only hold
approximately. However, they provide a viable starting point for the final calibra-
tion problem.

As a second step of the initialization, an initial estimate of the transmitter posi-
tions and the times of transmission are determined for the data set D1 in which a
transmitter is moved around the volume. The parameters

θ2 =
(
{tnk , τk}Kk=1

)
(15)

are obtained by solving K multilateration problems, as discussed in Section 4.

We have hence obtained initial estimates of the receiver positions and clock off-
sets from (11), (12) and initial estimates of the transmitter positions and times
of transmission from (15). These can be used as a starting point for the resulting
calibration algorithm.

5.2 Resulting calibration algorithm

The resulting calibration algorithm uses the data set D1 in which a transmitter
is moved around the measurement volume. To obtain an ML estimate of the
parameter vector (10), the following constrained optimization problem is solved

θ̂ML = arg min
θ

K∑

k=1

M∑

m=1

Vmk , (16a)

s.t. Amr
n
m = 0, m = 1, 2,

Ahr
n
m,3 = hm, m = 1, . . . , M,

∆τ1 = 0,

(16b)

(16c)

(16d)

where

Vmk =


log

(
1 +

( eu,mk
γ

)2
)

eu,mk ≤ 0,

1
2

( eu,mk
σ

)2
eu,mk > 0.

(17)

The optimization problem (16) looks very similar to the one used to obtain an
initial estimate (11). However, in (16) we use data from D1, i.e. we do not assume
any knowledge about the position of the transmitter. Also, since it is necessary
to walk around with the transmitter, we assume that outliers can occur in the
data and model this using the asymmetric noise distribution in (5). The resulting
calibration algorithm is summarized in Algorithm 1.

6 Sensor fusion

In this section we describe our approach to combine UWB measurements with in-
ertial measurements to estimate a subject’s 6D pose. It is based on tightly coupled
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Algorithm 1 Ultra-wideband calibration
1. Construct a setup consisting of M stationary receivers.
2. Place M transmitters in close proximity to the receiver antennas and collect

a data set D2.
3. Solve (11) using the data D2 to obtain {rm,0,∆τm,0}Mm=1. The optimization is

initialized using a noisy, scaled and rotated estimate of the set of receiver
positions {rm}Mm=1 provided by the user.

4. Collect a dataset D2 while moving a single transmitter through the mea-
surement volume.

5. Apply multilateration (8) on D2 using the calibration values of Step 3 to
obtain {tnk,0, τk,0}Kk=1.

6. Solve (16) for D2. The optimization is started in
θ0 =

(
{tk,0, τk,0}Kk=1, {rm,0,∆τm,0}Mm=1

)
,

using the results from Steps 3 and 5.

sensor fusion of the UWB and the inertial sensors.

UWB
receiver 1

receiver M

IMU
gyroscopes

accelerometers

sensor
fusion

position
orientation

Figure 5: Tightly coupled sensor fusion. The “raw” measurements from the
UWB receivers and the IMU are directly used for sensor fusion.

The tightly coupled sensor fusion approach uses the measurements directly to
estimate the subject’s pose, as schematically depicted in Figure 5. As can be seen,
the UWB measurements are not preprocessed using for instance a multilateration
approach. An advantage of a tightly coupled approach is that pre-processing of
measurements typically results in a loss of information. This is mainly due to ap-
proximations of statistical distributions, but in extreme cases measurements are
ignored, for instance when there are not enough TOA measurements for multilat-
eration. By directly using the sensor measurements, maximal advantage is taken
of the available information.

The state estimation problem is formulated as a MAP problem (3). We solve the
MAP problem using an extended Kalman filter (EKF). The EKF handles the dif-
ferent sample rates and a varying number of measurements straightforwardly. It
runs at the high data rate of the IMU and the UWB updates are only performed
when measurements are available. Our EKF implementation does not model the
UWB noise using the heavy-tailed asymmetric distribution (5). Instead, it uses
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a Gaussian noise assumption. Outliers from NLOS conditions and/or multipath
violate the assumption that eu,mk ∼ N (0, σ2). They can be detected using hypothe-
sis testing on the residuals/innovations of the EKF. Tightly coupled sensor fusion
can disregard the affected measurements while still utilizing the remaining ones
and hence is well-suited for outlier rejection.

In the remainder of this section we will introduce the process and measurement
models used in the EKF implementation. Starting with the process model, we
can model the position, the velocity and the orientation of the IMU in terms of
the sensor’s acceleration and angular velocity. Hence, the inertial measurements
are used as an input to the process model

pn
t+1 = pn

t + T vn
t + T 2

2 a
n
t , (18a)

vn
t+1 = vn

t + T an
t , (18b)

qnb
t+1 = qnb

t � exp( T2ωt). (18c)

The sensor’s position pn
t and its velocity vn

t are expressed in the navigation frame
n. The acceleration an

t is estimated from (7) and T denotes the sampling interval.
The orientation qnb

t is expressed using a unit quaternion and is modeled in terms
of the angular velocity ωt estimated from (6). In (18c),� denotes the quaternion
product and exp denotes the vector exponential (Hol, 2011). The process of es-
timating position and orientation from the inertial measurements as in (18) is
schematically depicted in Figure 6 (see also (6) and (7)). Note that in the remain-
der we will interchangeably make use of the unit quaternion qnb and the rotation
matrix Rnb as representations of the orientation. Also, we will use the notation
Rbn = (Rbn)T for the inverse rotation.

∫

rotate
remove
gravity

"

ω qnb

f b f n an pn

Figure 6: Schematic depicting the process of determining position and ori-
entation from inertial measurements, assuming a known initial position and
orientation.

The inertial bias terms δω and δa from (6) and (7) are slowly time-varying. Hence,
they are modeled as random walks,

δω,t+1 = δω,t + eδω ,t , (19a)

δa,t+1 = δa,t + eδa,t , (19b)

where eδa,t and eδω ,t are i.i.d. Gaussian noises.

In the calibration algorithm we regard all UWB pulses as independent. In the
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pose estimation, however, we take into account the time-dependency. Modeling
this, it can be assumed that the transmitter sends in regular intervals δτ . In
practice, these time intervals δτ will vary slightly over time due to clock drift
and clock jitter. Hence, the time of transmission τ is modeled as an integrated
random walk

τt+1 = τt + δτt + eτ,t , (20a)

δτt+1 = δτt + eδτ,t , (20b)

where eτ,t and eδτ,t are i.i.d. Gaussian noise.

In the EKF measurement update, the UWB measurements, modeled as in (4), are
used to update the state. For this, the IMU and the UWB transmitter are assumed
to be rigidly attached to each other. The distance between both is assumed to be
known and it is denoted tb. The transmitter position tnt in (4) and the IMU pose
qnb
t , p

n
t in (18) are therefore related by

tnt = pn
t + Rnb

t t
b. (21)

Combining (18)-(20), the resulting state vector estimated in the EKF is given by

xt =
(
(pn
t )T, (vn

t )T, (qnb
t )T, (δa,t)

T, (δω,t)
T, τt , δτt

)T
. (22)

Note that we encode the orientation state using a three-dimensional state vector
around a linearization point represented by a unit quaternion (Crassidis et al.,
2007; Grisetti et al., 2010; Hol, 2011). We assume the measurement covariances
relevant to the EKF to be known. They can be chosen from data sheets, from Allan
variance analysis (El-Sheimy et al., 2008) or based on prior sensor information.
Our pose estimation approach is summarized in Algorithm 2.

Algorithm 2 Pose estimation
1. Initialize the state vector.
2. Perform a time update using the process model (18)-(20) with the inertial

measurements as input signals.
3. If new UWB measurements are available, do a measurement update with

outlier detection. Use the measurements in combination with the measure-
ment model (4) and (21).

4. Set t := t + 1 and iterate from Step 2.

7 Experimental results

In our experiments, we use a UWB setup consisting of 10 receivers deployed in
a room with a size of approximately 8 × 6 × 2.5 m. In Section 7.1 we will first
present our calibration results. Subsequently, we will discuss experimental re-
sults from an approximately 35 s experiment, where a subject is walking along
a circular path. IMUs and UWB transmitters have been attached to his feet and
to his head. The UWB measurements from the transmitter on the foot are signif-
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icantly more affected by NLOS conditions and multipath since the transmitter is
quite close to the ground. Furthermore, the body often blocks the direct path to
the receivers. In Section 7.2 we will discuss our multilateration results using a
transmitter on the foot. We will show the benefits of using an asymmetric heavy-
tailed distribution (5) over a symmetric Cauchy distribution. In Section 7.3 we
will discuss our pose estimation results from combining the inertial and UWB
measurements of the sensors on the subject’s head.

7.1 Calibration

Algorithm 1 has been used to estimate the receivers’ positions and clock offsets
in the UWB setup. The estimated trajectory of the transmitter and the ML esti-
mates of the receivers’ positions are depicted in Figure 8. The smoothness of the
transmitter’s trajectory suggests that good multilateration results are obtained
and hence gives confidence in the resulting calibration results. This confidence is
strengthened by Figure 7 in which the residuals of the calibration algorithm are
depicted for all 10 receivers. As can be seen, the residuals look fairly Gaussian
around 0 apart from a number of outliers in the negative direction, consistent
with our modeled noise assumption (9).

The parameters γ and σ in (17) are considered to be tuning parameters. The pa-
rameter γ in (16) is the scale parameter of the Cauchy distribution. Its choice
influences the width of the distribution. The parameter σ2 in the Gaussian dis-
tribution represents its covariance. A too large choice of σ2 and/or a too small
choice of γ would reduce the effect of the asymmetric distribution. A too small
σ2 on the other hand makes it difficult for the algorithm to find a good estimate.
A too large choice of γ would give the algorithm too much freedom. We do not es-
timate the parameters γ and σ . Instead, we use a more pragmatic approach and
choose values for γ and σ which work well on our data. For the results presented
in Figures 7 and 8, we have used γ = 1 and σ2 = 0.1.

7.2 Multilateration

To provide challenging data for the multilateration algorithm discussed in Sec-
tion 4, in this section we present multilateration results using measurements
from the transmitter on the foot. Note that the results have been obtained using
a UWB system that has been calibrated with a previous version of our calibration
algorithm, presented in Hol et al. (2010).

For each UWB pulse we solve a multilateration problem (8). Two different noise
distributions have been tested. The first is the asymmetric heavy-tailed distri-
bution (9) of which the parameters σ and γ are chosen as in Section 7.1. The
second is a symmetric Cauchy distribution with γ = 1. The position estimates
using both noise distributions are presented in Figure 9. Reference data from
an optical positioning system is also depicted. On this fairly difficult data set,
the asymmetric distribution (9) clearly leads to more accurate position estimates.
Wrong position estimates from the multilateration algorithm using Cauchy noise
distribution can be attributed to the fact that it allows for fairly large positive
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Figure 7: Residuals from the calibration algorithm for the 10 receivers. Note
that the residuals outside of the scope of the figures have been collected in
the outermost bins.
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Figure 8: Calibration results of the UWB setup. The estimated transmitter
positions are depicted in blue. The receivers in our UWB setup are either
placed close to the ground or close to the ceiling. The positions of the re-
ceivers close to the ceiling are depicted in bright red. The positions of the
receivers close to the ground are depicted in light red.

residuals as shown in Figure 10. Note that on “cleaner” UWB data, both distribu-
tions perform equally well.

7.3 Pose estimation

To evaluate the proposed pose estimation algorithm it has been used to track the
motion of a test-subject walking in an indoor environment. The same experiment
has been used as for the multilateration discussed in Section 7.2. However, in
Algorithm 2 we have instead used the IMU and the transmitter on the head of
the subject. The UWB measurements hence suffer less from multipath and NLOS
conditions. The IMU provides 120 Hz inertial measurements. The UWB pulses
are transmitted at 10 Hz.

Figure 11 shows an overview of the estimated trajectory and the UWB receivers’
positions. The circular path is clearly recognizable. It only occupies a small part
of the measurement volume of the UWB tracking system so that a performance
comparison with an optical reference system is possible.

Figures 12 and 13 show the estimated position and orientation of the IMU as
compared to those from an optical reference system. It can be concluded that
the system provides drift-free and accurate estimates for all quantities at a high
output frequency. In fact, the comparison shows 5 cm RMSE for position and 1◦
RMSE for orientation, see Table 1.

The above discussion shows that the proposed sensor fusion algorithm performs
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Figure 9: Position estimates from the multilateration approach using the
transmitter on the foot. The estimated positions using the asymmetric
heavy-tailed noise distribution (9) are depicted in blue. The estimated posi-
tions using a Cauchy noise distribution are depicted in green. Data from an
optical reference system is shown in red.
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Figure 10: Residuals from the multilateration approach using (left) the
asymmetric distribution (9) and (right) a symmetric Cauchy distribution.

Table 1: RMSE for the position and orientation estimates from Algorithm 2
as compared to data from an optical reference system.

x y z
position m 0.05 0.04 0.03

orientation ◦ 0.65 0.46 0.85
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Figure 11: Top view of the experiment where the subject walked a circular
trajectory. Shown is the estimated trajectory pn

1:N of the IMU on the subject’s
head (blue). The positions of the receivers close to the ceiling are depicted
in bright red. The positions of the receivers close to the floor are depicted in
light red.
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Figure 12: Position of the IMU pn
1:N . The estimates from Algorithm 2 are de-

picted in blue. The estimates from an optical reference system are depicted
in red.
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Figure 13: Orientation of the IMU qnb
1:N expressed in Euler angles (roll, pitch,

yaw). The estimates from Algorithm 2 are depicted in blue. The estimates
from an optical reference system are depicted in red.

very well on a realistic indoor tracking scenario. This performance can not ex-
clusively be attributed to effective sensor fusion; accurate calibration of the UWB
system is equally important.

8 Conclusions and future work

We have presented a sensor fusion approach to combine inertial measurements
with TOA measurements from a UWB system for 6D pose estimation. The ap-
proach is shown to lead to accurate position and orientation estimates when com-
pared to data from an optical reference system. The accuracy of this approach
heavily depends on the quality of the calibration of the UWB system, i.e. on the
accuracy of the estimates of the receivers’ positions and clock offsets. We have
solved the UWB calibration problem using a novel approach, assuming an asym-
metric heavy-tailed distribution to model the outliers in the UWB measurements.
Using the same distribution, we have also shown that accurate position estimates
can be obtained using a multilateration approach, even from challenging data
containing a fairly large amount of outliers.

Interesting future work involves extending the sensor fusion approach discussed
in Section 6 by making use of an optimization-based approach in a similar way as
presented in Kok et al. (2014a) instead of the EKF. Using that approach, the asym-
metric heavy-tailed distribution can straightforwardly be taken into account.
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Abstract

In inertial human motion capture, a multitude of body segments are
equipped with inertial measurement units, consisting of 3D accelerom-
eters, 3D gyroscopes and 3D magnetometers. Relative position and
orientation estimates can be obtained using the inertial data together
with a biomechanical model. In this work we present an optimization-
based solution to magnetometer-free inertial motion capture. It al-
lows for natural inclusion of biomechanical constraints, for handling
of nonlinearities and for using all data in obtaining an estimate. As
a proof-of-concept we apply our algorithm to a lower body configura-
tion, illustrating that the estimates are drift-free and match the joint
angles from an optical reference system.

1 Introduction

Human body motion capture is used for many applications such as character an-
imation, sports and biomechanical analysis (Xsens Technologies B.V., 2013). It
focuses on simultaneously estimating the relative position and orientation of the
different body segments (expressed in terms of the joint angles) and estimating
the absolute position of the body. Motion capture is often performed using either
vision-based technologies (Moeslund et al., 2006) or using inertial sensors. The
main advantage of using inertial sensors over vision-based technologies is that
they are not restricted in space and do not require line of sight visibility (Welch
and Foxlin, 2002). In inertial human body motion capture, the human body is
equipped with inertial measurement units (IMUs), consisting of 3D accelerom-
eters, 3D gyroscopes and 3D magnetometers as shown in Figure 1. Each body

109
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Figure 1: Examples of inertial motion capture. Upper left: olympic and
world champion speed skating Ireen Wüst wearing an inertial motion cap-
ture suit with 17 inertial sensors. Upper right: graphical representation of
the estimated orientation and position of the body segments. Lower left and
right: experiment showing that line of sight visibility is not necessary for
inertial motion capture.

segment’s position and orientation (pose) can be estimated by integrating the gy-
roscope data and double integrating the accelerometer data in time and combin-
ing these integrated estimates with a biomechanical model. Inertial sensors are
successfully used for full body motion capture in many applications (Xsens Tech-
nologies B.V., 2013; Roetenberg et al., 2013; Kang et al., 2011; Yun and Bachmann,
2006).

Inertial sensors inherently suffer from integration drift. When using inertial sen-
sors for orientation estimation they are therefore generally combined with magne-
tometers. Magnetometer measurements, however, are known to cause problems
in motion capture applications since the magnetic field measured at the differ-
ent sensor locations is typically different (Luinge et al., 2007; Cooper et al., 2009;
Favre et al., 2008). Including information from biomechanical constraints, i.e.
information about the body segments being rigidly connected, can eliminate the
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need of using magnetometer measurements. Incorporating these constraints, the
sensor’s relative position and orientation become observable as long as the sub-
ject is not standing completely still (Hol, 2011). Estimating joint angles using
a pair of inertial sensors, where each sensor estimates its own orientation using
an extended Kalman filter (EKF) (Yuan and Chen, 2013) is therefore computa-
tionally cheap, but valuable information from biomechanical constraints is lost.
Existing approaches therefore include the biomechanical constraints like for in-
stance in Luinge et al. (2007) where an EKF is run using only the accelerometer
and gyroscope measurements and a least-squares filter is added to incorporate
the biomechanical constraints.

To allow for natural inclusion of biomechanical constraints, we introduce a new
optimization-based approach for inertial motion capture. Compared to filter-
ing approaches, optimization-based approaches are computationally expensive.
Recent developments in both computational power and in available algorithms
have, however, opened up possibilities for solving large-scale problems efficiently
and even in real-time (Mattingley and Boyd, 2010). Using an optimization formu-
lation of the problem, a smoothing estimate can be obtained and nonlinearities
can be handled. It also opens up possibilities for simultaneously estimating cali-
bration parameters and for incorporating non-Gaussian noise.

The paper is organized as follows. After introducing the problem formulation in
Section 2, in Section 3 we will introduce the biomechanical model, discussing the
relevant coordinate frames, variables and biomechanical constraints. In Section 4
we will subsequently introduce the dynamic and sensor models. In Section 6
we will discuss experimental results, focusing on a subproblem, namely a lower
body configuration consisting of 7 sensors, assuming a known calibration and
not including any position aiding. These experiments are intended to serve as a
proof-of-concept. A more in-depth analysis including a comparison with other
methods is planned for future work.

Note that using inertial sensors and biomechanical constraints only, the absolute
position is not observable, i.e. any translation of the body’s position estimates will
lead to an equally valid solution of the estimation problem. For example in the
case of the speed skater in Figure 1, the estimated pose of the speed skater will re-
semble the “true” motion, but the exact location on the ice rink is not observable.
This unobservability typically results in a drift of the body’s absolute position
over time. Because of this, it is not possible to compare our position estimates
with those of the optical reference system and for now we focus on analysis of
the joint angles. To estimate absolute position it is necessary to include e.g. GPS,
ultra-wideband (Hol, 2011) or zero velocity updates when the foot is at stand still
(Callmer, 2013; Woodman, 2010) and this is planned for future work.

2 Problem formulation

The use of inertial sensors for human body motion capture requires inertial sen-
sors to be placed on different body segments. The knowledge about the place-
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ment of the sensors on the body segments and the body segments’ connections to
each other by joints can be incorporated using a biomechanical model.

The problem of estimating the relative position and orientation of each body seg-
ment is formulated as a constrained estimation problem. Given N measurements
y1:N = {y1, . . . , yN }, a point estimate of the variables z can be obtained as a con-
strained maximum a posteriori (MAP) estimate, maximizing the posterior density
function

max
z

p(z | y1:N )

s.t. ce(z) = 0,
(1)

where ce(z) represents the equality constraints. In our problem, z consists of both
static parameters θ and time-varying variables x1:N . Using this together with the
Markov property of the time-varying variables and the fact that the logarithm is
a monotonic function, we can rewrite (1) as

min
z={x1:N ,θ}

− log p(x1 | y1) − log p(θ)
︸                          ︷︷                          ︸

initialization

−
N∑

t=2

log p(xt | xt−1, θ)

︸                       ︷︷                       ︸
dynamic model

−
N∑

t=1

log p(yt | xt , θ)

︸                    ︷︷                    ︸
biomechanical/sensor model

s.t. cbio(z) = 0. (2)

Obtaining the MAP estimate thus amounts to solving a constrained optimiza-
tion problem where the constraints cbio(z) originate from a biomechanical model.
The cost function consists of different parts related to the initialization of the
variables, a dynamic model for the time-varying states and a biomechanical and
sensor model. More details about the variables, the different parts of the cost
function and the constraints are provided in Sections 3 and 4.

The optimization problem (2) is solved using an infeasible start Gauss-Newton
method (Boyd and Vandenberghe, 2004). The number of variables in the prob-
lem will become large already for short experiments and a small number of seg-
ments. The problem (2) can, however, still be solved efficiently due to its inherent
sparseness.

3 Biomechanical model

A biomechanical model represents the human body as consisting of body seg-
ments connected by joints. In the example application in Figure 1 the body is
modeled as consisting of 23 segments, whereas Figure 2 illustrates two of these
body segments. These can be thought of as the upper and lower leg, each with a
sensor attached to it. The main purpose of Figure 2 is to introduce the different
coordinate frames, variables and calibration parameters. These definitions can
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Figure 2: Connection of two segments and definition of the variables and
coordinate frames.

straightforwardly be extended to any sensor and any body segment. The relevant
coordinate frames are:

The local coordinate frame L aligned with the local gravity vector, with the z-
axis pointing up. The horizontal directions are defined according to any
convenient choice of local coordinates.

The body segment coordinate frame Bj fixed to the bone in body segment Bj .
Its origin can be anywhere along the bone, but it is usually in the center of
rotation of a joint.

The sensor coordinate frame Si of the moving IMU Si . Its origin is located in
the center of the accelerometer triad and its axes are aligned to the casing.
All measurements of the IMU are resolved in this frame.

In setting up the optimization problem (2), the first step is to define the set of
sensors S , the set of body segments B and the set of joints J in the problem. Each
inertial sensor needs to be mounted on the body, and sensor Si is assumed to be

placed on body segment BSi . The distance r
BSi
Si

and orientation qBSi Si of sensor
Si with respect to body segment BSi are without loss of generality assumed to be
known from calibration.

Our knowledge of the human body can be used to identify which body segments
are connected by which joints, i.e. the set BJk needs to be determined for each joint
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Jk . To express the location of the joint in the body frames of the connected body

segments, the distances r
Bj
k from the body frame Bj to joint k, need to be defined

for all joints Jk ∈ J and all Bj ∈ BJ,k . We assume without loss of generality that
they are known from calibration. Generally, all joints are assumed to be ball-
and-socket joints, but we incorporate additional knowledge about a subset of the
joints, denoted by H, which we assume to be hinge joints.

For reasons that will be discussed in Section 4, we define the set of time steps
in the optimization as T rather than explicitly summing over all time steps t =
1 . . . N as in (2). The variables in the optimization problem are then given by

• the position pL
Si ,t

and velocity vL
Si ,t

of sensor Si in the local frame L, ∀ Si ∈ S
and ∀ t ∈ T ,

• the orientation qLSi
t of sensor Si with respect to the local frame L, ∀ Si ∈ S

and ∀ t ∈ T ,

• the position pL
Bj ,t

of body segment Bj in the local frame L, ∀ Bj ∈ B and
∀ t ∈ T ,

• the orientation q
LBj
t of body segment Bj with respect to the local frame L,

∀ Bj ∈ B and ∀ t ∈ T ,

• the gyroscope bias bω,Si of sensor Si , ∀ Si ∈ S ,

• the mean acceleration state of one of the sensors Si ∈ S , ∀ t ∈ T .

Defining the number of sensors as NS and the number of body segments as NB,
the number of variables in the optimization problem is z ∈ R

(9NS+6NB+3)N+3NS .
When we solve the optimization problem, we encode the rotation states using a
three-dimensional state vector (Crassidis et al., 2007; Grisetti et al., 2010; Hol,
2011). Throughout the paper, we typically interchangeably make use of the unit
quaternion qLS and the rotation matrix RLS as representations of the orientation.
The quaternion conjugate, representing the inverse rotation will be represented
by (qLS)c = qSL. Similarly for the rotation matrix, (RLS)T = RSL.

More details about the gyroscope bias variables and the reason for the inclusion
of the mean acceleration state will be given in Section 4.2.

Based on the biomechanical model it is possible to derive relations between the
different variables. We will categorize them in three classes.

Joints between the body segments. The constraints cbio(z) in the optimization
problem (2) enforce the body segments to be connected at the joint locations
at all times,

cbio(z) = pL
Bm,t

+ RLBm
t rBm

k − pL
Bn,t
− RLBn

t rBn
k , Bn, Bm ∈ BJk , (3)

which is included for all Jk ∈ J and t ∈ T . This leads to NJ constraints at
each time step t in the optimization problem (2), where NJ is the number
of joints.
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Placement of the sensors on the body segments. The position and orientation of
sensor Si can be expressed in terms of its position and orientation on body
segment BSi . Ideally, this can be incorporated using equality constraints
in (2). However, it is physically impossible to place the sensor directly on
the bone. Hence, it has to be placed on the soft tissue and the sensor will
inevitably move slightly with respect to the bone. We therefore model the
position and orientation of sensor Si on body segment BSi as

pL
Si ,t

= pL
BSi ,t

+ R
LBSi
t

(
r

BSi
Si

+ e
BSi
p,t

)
, (4a)

qLSi
t = q

LBSi
t qBSi Si exp

(
1
2 e

Si
q,t

)
, (4b)

where we assume e
BSi
p,t ∼ N (0,Σp) and eSi

q,t ∼ N (0,Σq).

Rotational freedom of the joints. For some joints, it is known that their rotation
is (mainly) limited to one or two axes. An example of this is the knee which
is a hinge joint, although it can in practice flex a little around the other axes
too. Minimizing

eJk ,t =
[
nT1
nT3

] (
RLBm
t

)T
RLBn
t n2, Bn, Bm ∈ BJk , (5)

where n1, n2 and n3 denote the different axis directions and eJk ,t ∼ N (0,Σk),
will minimize the rotation around any but the n2-axis. This cost func-
tion can be included at any time t for any joint k that is a hinge joint, i.e.
∀ Jk ∈ H,∀ t ∈ T . Note that inclusion of this knowledge is optional in the
algorithm.

4 Dynamic and sensor models

The sensor’s position, velocity and orientation at each time instance can be re-
lated by a dynamic model in which the accelerometer and gyroscope measure-
ments are used as inputs (Gustafsson, 2012; Hol, 2011). In this work we choose
a slightly different approach to reduce the number of variables in the optimiza-
tion problem (2). To achieve high update rates using a relatively small number of
variables, we use an approach similar to the one discussed by Savage (1998a,b).
Hence, strapdown inertial integration, in which the accelerometer and gyroscope
signals are integrated, is run at high update rates. This leads to accelerometer
measurements ∆p and ∆v representing a difference in position and velocity and
gyroscope measurements ∆q representing a difference in orientation. These are
integrated for Ts

T times, where Ts is the sampling time of the inertial sensors and
T is the sampling time used in the optimization problem (2).

4.1 Dynamic model

The position, velocity and orientation of each sensor Si are related from time t to
time t + T using the accelerometer measurements ∆pSi

t ,∆v
Si
t and the gyroscope
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measurements ∆qSi
t . The position and velocity states at each time step are mod-

eled according to

pL
Si ,t+T

=pL
Si ,t

+ T vL
Si ,t

+

RLSi
t

(
∆pSi

t + wSi
p,t

)
+ T 2

2 g
L, (6a)

vL
Si ,t+T

=vL
Si ,t

+ RLSi
t

(
∆vSi

t + wSi
v,t

)
+ T gL, (6b)

where ∆pSi
t and ∆vSi

t denote the inputs based on the accelerometer measurements.
The noise terms are modeled as wp,t ∼ N (0, Qp) and wv,t ∼ N (0, Qv). The earth
gravity is denoted by gL. The orientation states are modeled as

qLSi
t+T =qLSi

t ∆qSi
t exp

(
1
2w

Si
q,t

)
, (6c)

where ∆qSi
t denotes the gyroscope measurements, corrected for the estimated gy-

roscope bias, and wSi
q,t ∼ N (0, Qq).

Since (6) models the states in terms of their value at the previous time step, the
state at the first time instance needs to be treated separately. The orientation qLSi

1
of each sensor Si is estimated using the first accelerometer and magnetometer
sample of that sensor. Note that this is the only place in the algorithm where
magnetometer measurements are used. The variables qLSi

1 are then initialized
around this estimated orientation with additive noise eSi

q1
∼ N (0,Σq1

). The posi-
tion pL

Si ,1
of one of the sensors is without loss of generality initialized around zero

with additive noise ep1
∼ N (0,Σp1

). This defines the origin of the local coordinate
frame L.

4.2 Sensor model

The gyroscope measurements are affected by a slowly time-varying sensor bias.
For relatively short experiments, the sensor biases of all sensors Si ∈ S can be
assumed to be constant. Hence, we include only one three-dimensional variable
for each sensor to represent the gyroscope bias. This variable bω,Si is modeled as
bω,Si ∼ N (0,Σbω ).

As described in Section 1, we do not include position aiding in our problem, re-
sulting in only relative position and orientation observability. A problem that
can be encountered for this case is that of so-called gravity leakage. Because the
subject’s absolute inclination is unobservable, the gravity vector risks being mis-
interpreted as an acceleration. In the case of stationary measurements, when the
accelerometer only measures the gravity vector, the accelerometer measurements
can be used as a source of absolute inclination information. In case of motion,
the accelerometer measurements will measure an additional acceleration. It can,
however, still be assumed that the mean acceleration over a certain time period
is zero (Luinge, 2002). We therefore assume that one sensor follows this accelera-
tion model for all t ∈ T , up to some noise ea ∼ N (0,Σa).
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5 Resulting algorithm

The biomechical model from Section 3 and the dynamic and sensor models from
Section 4 can be combined and used to describe the probability density functions
in (2). Eliminating all constant terms from the optimization, this results in a
constrained weighted least-squares problem. This problem is given by

min
z

∑

t∈T

∑

Si∈S

(
‖eSi

p,t‖2Σ−1
p

+ ‖eBSi
q,t ‖2Σ−1

q
︸                     ︷︷                     ︸

placement of sensors on body (4)

+ ‖wSi
p,t‖2Q−1

p
+ ‖wSi

v,t‖2Q−1
v

+ ‖wSi
q,t‖2Q−1

q

)

︸                                       ︷︷                                       ︸
dynamic model (6)

+
∑

Si∈S
‖bω,Si ‖2Σ−1

bω︸      ︷︷      ︸
gyroscope bias

+
∑

t∈T

∑

Jk∈H
‖eJk ,t‖2Σ−1

k︸    ︷︷    ︸
hinge (5)

+ ‖ep1
‖2
Σ−1

p1
+

∑

Si∈S
‖eSi

q1
‖2
Σ−1

q1

︸                        ︷︷                        ︸
initialization

+
∑

t∈T
‖ea,t‖2Σ−1

a
,

︸    ︷︷    ︸
acceleration model

s.t. cbio(z) = pL
Bm,t

+ RLBm
t rBm

k − pL
Bn,t
− RLBn

t rBn
k ,

Bn, Bm ∈ BJk ∀ Jk ∈ J ,∀ t ∈ T , (7)

where the constraints are based on (3).

The complete algorithm is summarized in Algorithm 1. Note that in our current
implementation the optimization is performed over the entire data set and the
computations are therefore done offline. We plan to extend the approach to a
moving horizon approach (Rao et al., 2001) to enable processing of longer data
sets and to allow for online estimation.

The covariance matrices in (7) representing the sensor covariances are determined
using Allan variance analysis (El-Sheimy et al., 2008). The covariance matrices
related to the placement of the sensors on the body, the hinge constraint and
the acceleration model, do not represent any physical quantities and are chosen
more or less ad hoc. Experiments have shown that the solution of the optimiza-
tion problem is not very sensitive to the tuning of these values.

The optimization (7) is started using an initial estimate of the variables z0. All
variables z are initialized at zero except for the orientations at the first time
step, which are initialized around their estimated orientation as described in Sec-
tion 4.2. This is an infeasible solution, justifying the need for an infeasible start
optimization algorithm.

6 Experiments

We validated our approach with experiments using an MVN Awinda system which
is a wireless inertial motion capture system with 17 sensors attached to different
body segments (Xsens Technologies B.V., 2013) as shown in Figure 3. An optical
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Algorithm 1 Inertial human motion capture
1. Define the set of sensors S , the set of body segments B and the set of joints
J . Mount the inertial sensors on the body and

(a) define for each sensor Si ∈ S on which body segment BSi ∈ B it is

placed. Calibrate the system to obtain the position r
BSi
Si

and orientation

qBSi Si of each sensor Si ∈ S on body segment BSi ∈ B,
(b) define the set of body segments BJk connected to each joint k for all

Jk ∈ J . Calibrate the system to obtain the distances r
Bj
k of each body

segment coordinate frames Bj ∈ BJk to the different joints k,
(c) define the subset H of joints that are restricted in their rotations and

can be regarded as a hinge joint.
2. Perform an experiment collecting inertial measurements ∆pSi

t ,∆v
Si
t and

∆qSi
t and a magnetometer measurement at t = 1, ySi

m,1.
3. Postprocess the data

(a) Initialize z0 and set l = 0.
(b) Determine the values of the cost functions and the constraints in (2),

their Jacobians and the approximate Hessian of the cost function. De-
termine a step direction using an infeasible start Gauss-Newton algo-
rithm and update zl → zl+1.

(c) Set l := l + 1 and iterate from 3(b) until the algorithm is converged and
the solution zl+1 is feasible.

motion capture system has been used as a source of reference data. Since our
focus is on the legs, one leg has been equipped with optical markers, providing
reference position and orientation of the foot sensor, lower leg sensor, upper leg
sensor and – not visible in the figure – the pelvis sensor.

Inertial data has been collected at 30 Hz. The sensors, however, run the strap-
down integration algorithm discussed in Section 4 internally at 600 Hz to capture
the high bandwidth of the measurement signals during impact, for instance dur-
ing foot impact on the ground. To speed up the computations, the optimization
algorithm itself has been run at a frequency of 10 Hz.

The optimization problem typically converges in a few iterations. To solve the
problem for an experiment of 10 seconds takes about 5 minutes on an AMD X4
2.8 GHz processor for a first inefficient Matlab implementation of the algorithm.
Initial tests with a C-implementation, however, show that speed improvements
of up to 500 times are easily obtained. Taking into account that at the moment we
postprocess the whole data set while for a real-time application a moving horizon
can be used, we think that a real-time implementation of the algorithm is indeed
quite possible.

The collected inertial data has been postprocessed used in the optimization prob-
lem (2) for a lower body configuration consisting of a set S of 7 sensors placed
on 7 body segments B: both feet, both lower legs, both upper legs and the pelvis.
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Figure 3: Experimental setup where the human body is equipped with in-
ertial sensors on different body segments. Optical markers for the reference
system have been placed on the right foot sensor, right lower and upper leg
sensors and – not visible in the figure – the pelvis.

The position of each sensor Si ∈ S on the body segment r
BSi
Si

has been manually

measured. The orientations of the sensors on the body segments qBSi Si for all
Si ∈ S have been determined by standing still in a pre-determined pose as de-
scribed by Roetenberg et al. (2013). The 7 body segments are connected by 6
joints J of which the two knee joints are assumed to be hinge joints. Calibrating

for the distances r
Bj
k amounts to defining the distances between the different joint

centers which is again done by manual measuring. We acknowledge that this is
an inaccurate calibration method and as future work we therefore plan to extend
the algorithm to automatically estimate these calibration parameters.

Figure 4 visualizes the pose of the lower body of a walking subject estimated us-
ing Algorithm 1 for parts of an experiment. Note that our experimental setup
does allow for accurate absolute position estimates. The location of the differ-
ent steps has therefore been corrected for one joint location using the position
estimates from the optical reference system. The steps are taken from a short
experiment and the optimization is run at 30 Hz for plotting purposes.

To compare our relative orientation results to those of the optical reference sys-
tem, we focus on the estimated joint angle of the right knee during an experi-
ment of around 37 seconds. Joint angles are defined as the angle between two
connected body segments at the joint center. For the knee joint, the bending of
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Figure 4: Estimated pose of the lower body at different times during a step
of the left leg (left) and the right leg (right). The view is chosen such that we
view the subject from the right, and the right leg is depicted in blue, the left
leg in green and the connection between the hips in red.

the knee during walking is referred to as flexion/extension. The rotation around
the other two axes (abduction/adduction and internal/external rotation) are gen-
erally quite small for this joint. Because it is not possible to observe the joint
center and sensors/markers are generally placed on the soft tissue instead of on
the bone, computation of joint angles depends on a model of the joint locations
in the body. Theoretically, it is possible to estimate the joint angle from the ori-
entation results of the sensor if the exact location of the sensors with respect to
the joints is known, i.e. in case of a perfect calibration, and if the sensors would
be rigidly attached to the bone. In practice this is clearly not possible. However,
since both the inertial sensors and the optical reference markers are placed on
the same location on the body segments as shown in Figure 3, it is still possible
to compare the angles to assess the quality of our estimates.

To be able to compare our joint angle estimates to those of the reference system, a
coordinate frame alignment between the sensor coordinate frame and the coordi-
nate frame of the optical markers needs to be performed. This has been done as
described by Hol (2011). Note that due to limited excitation of the upper leg sen-
sor, it was not possibly to do this alignment based on the sensor signals. Instead,
the alignment has been performed based on the joint angle estimates. The joint
angle estimates from our algorithm can be seen to match the joint angles from the
optical reference system. A more quantitative analysis can be performed when
the calibration parameters are properly estimated and position aiding is included.
Note that due to the limited size of the measurement volume of the optical ref-
erence system, the movements are quite restricted and at some time instances in
the experiment the optical reference data is not present.
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From our optimization algorithm it is also possible to estimate the joint angles
from the angles of the body segments. These are included in red in Figure 5.
There is no validation for the angles obtained in this way, but the estimated ab-
duction/adduction and internal/external rotation are considerably closer to zero,
as we would expect from our knowledge that these rotations are quite small.

7 Conclusions and future work

An optimization approach to inertial human body motion capture has been devel-
oped, capable of estimating the relative position and orientation of the body seg-
ments. Experimental results show that the algorithm works well, quickly converg-
ing to a feasible solution and resulting in drift-free joint angle estimates which
match the joint angles from an optical reference system.

We plan to extend the approach to also estimate the calibration parameters and
to include position aiding in the form of zero velocity updates at stand still and
ultra-wideband position aiding (Hol et al., 2009). This will also allow a more
quantitative analysis of the results. Future work also includes adding more body
segments, modeling of non-Gaussian noise where appropriate and implementing
a moving horizon estimation version of the algorithm.
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Figure 5: Knee joint angles for the right knee for an experiment consisting
of 23 steps. The optical reference data is plotted in blue, the joint angle
estimated from the sensor’s orientations, using our algorithm is plotted in
green, the joint angle from the body segment orientations is plotted in red.
Best viewed in color.
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Abstract

This paper presents an approach for 6D pose estimation where MEMS
inertial measurements are complemented with magnetometer mea-
surements assuming that a model (map) of the magnetic field is known.
The resulting estimation problem is solved using a Rao-Blackwellized
particle filter. In our experimental study the magnetic field is gener-
ated by a magnetic coil giving rise to a magnetic field that we can
model using analytical expressions. The experimental results show
that accurate position estimates can be obtained in the vicinity of the
coil, where the magnetic field is strong.

1 Introduction

With the reducing cost of accelerometers and gyroscopes (inertial sensors) and
magnetometers, these sensor are becoming increasingly available in day-to-day
life. It is for instance common that these sensors are present in modern smart-
phones. Positioning based on inertial sensors alone suffers greatly from drift
and does not give reliable estimates for any but the highest quality sensors. Be-
cause of this, sensors such as GPS and ultra-wideband are often used as an aiding
source (Hol, 2011). While GPS solutions only work for outdoor applications, in-
door solutions are often highly dependent on additional infrastructure.

Magnetometers are a reliable source of information due to their high sampling
rates and reliable sensor readings. They measure the superposition of the local
earth magnetic field and the magnetic field induced by magnetic structures in
the vicinity. Magnetometers are widely used as a source of heading information,
relying on the assumption that no magnetic disturbances are present. Especially
in indoor applications this assumption is often violated due to the presence of
steel in the construction of buildings and objects like radiators, tables and chairs.

This paper presents a method to obtain accurate position and orientation esti-
mates based on inertial and magnetometer data assuming a map of the magnetic
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field is known. This enables positioning with widely available sensors, without
requirements on additional infrastructure.

In recent years, the idea of using the presence of magnetic disturbances as a
source of position information has started appearing in the literature. Most in-
terest is from the robot localization perspective where odometry information is
available (Suksakulchai et al., 2000; Navarro and Benet, 2009; Vallivaara et al.,
2011; Georgiou and Dai, 2010). Generally, in these applications localization is
only considered in 2D, and the sensor is assumed to be rotating around only one
axis. To the best of the authors’ knowledge, little work has been done on combin-
ing inertial and magnetometer measurements, for example Vissière et al. (2007);
Dorveaux et al. (2011). This is a more challenging problem compared to using
odometry information, since low grade inertial measurement units (IMUs) gener-
ally have poor dead-reckoning performance. The approach presented in Vissière
et al. (2007) is not based on magnetic field maps, but uses knowledge about the
physical properties of the magnetic field and its gradient to aid localization using
an extended Kalman filter approach. Other approaches focus on using sensors
in smartphones for localization (Chung et al., 2011; IndoorAtlas, 2012; Gozick
et al., 2011) and consider magnetometer data only or very limited information
from the inertial sensors. The direction of the magnetic field can, however, only
be derived from the magnetic field measurements when the sensor orientation
is known. Not estimating the full orientation therefore poses constraints on the
allowed sensor rotations. In our approach no constraints on the sensor rotations
are required since the full 6D pose is estimated.

To isolate the problem of localization inside a known magnetic field map from
the problem of obtaining the map, this work assumes that the magnetic field
map is known and is generated by a magnetic coil. The reason for using a mag-
netic coil is that it is one of the few cases for which the magnetic field can be
computed analytically. In other words, we have a perfect model describing the
magnetic field produced by the magnetic coil. The magnetic field measurements
can be described as a nonlinear function of the sensor position in this map and
its orientation with respect to the map.

2 Models

Before introducing the dynamic and measurement equations, the relevant coor-
dinate frames and the state vector will be introduced. All measurements are
assumed to be obtained in the body coordinate frame denoted by b, which is the
coordinate frame of the measurement unit with the origin in the center of the ac-
celerometer triad. The position is tracked in the earth coordinate frame denoted
by e, which is fixed in the world. The magnetic field map is represented in the
map coordinate frame denoted by m whose orientation is assumed to be aligned
with that of the coil. The origin of the earth coordinate frame e is assumed to co-
incide with that of the map coordinate frame and with the center of the magnetic
coil.
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Figure 1: Magnetometer measurements represented in the earth coordinate
frame. The measurements have been preprocessed by subtracting the earth
magnetic field. The magnitude is indicated by the colors and the direction
by the arrows.

The relevant state vector consists of the sensor’s position pe and velocity ve, its
orientation with respect to the earth frame expressed as a unit quaternion qeb =(
q0 q1 q2 q3

)T
and the gyroscope bias bb

ω. In our model we have used the
inertial measurements as inputs to the dynamic equations in order to not increase
the state dimension. For reasons that will become clear after the model has been
provided, we split the state vector into two parts xt =

(
(xn
t )T (xl

t)
T
)T

, where

xn
t =

(
(pe
t )
T (qeb

t )T
)T
, xl

t =
(
(ve
t )

T (bb
ω)T

)T
. (1)

2.1 Dynamical model

The dynamical equations can be derived by using the inertial measurements as
inputs. A commonly used, slowly time-varying random walk model is used for
the gyroscope bias (Hol, 2011). This leads to the following state update equations
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for the linear and nonlinear states (Hol, 2011; Törnqvist, 2008)
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Here, Ik denotes the identity matrix of size k × k, R(qeb
t ) ∈ SO(3) is the rotation

matrix obtained from the unit quaternion qeb
t and1

S̃(qeb
t ) =




−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0



. (3)

The input vector ut is given by

ut =
(
(yb

a,t)
T (ge)T (yb

ω,t)
T
)T
, (4)

where ge denotes the gravity vector and the accelerometer and the gyroscope
measurements are denoted by yb

a and yb
ω, respectively. The latter are modeled as

yb
a,t = Rbe

t (ae
t − ge) + wb

a,t , (5a)

yb
ω,t = ωb

t + bb
ω + wb

ω,t , (5b)

based on the fact that the accelerometer measures both the gravity vector and the
body’s free acceleration. The noise is modeled as

wb
a ∼ N (0, Qa), Qa = σ2

a I3, (6a)

wb
ω ∼ N (0, Qω), Qω = σ2

ωI3, (6b)

wb
bω
∼ N (0, Qbω ), Qbω = σ2

bω
I3. (6c)

1Note that the propagation of the quaternion state in this way is an approximation, valid only
for high sampling rates. The algorithm does not prevent use of the exact update equation and the
approximation is only used to reduce computational complexity.
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The state noise is assumed to be distributed according to

wt =
(
wn
t
wl
t

)
∼ N (0, Q), (7a)

Q =
(
Qnn Qnl

(Qnl)T Qll

)
=




Qa 0 Qa 0
0 Qω 0 0
QT

a 0 Qa 0
0 0 0 Qbω



. (7b)

Note that the linear and nonlinear state noise is highly correlated since the ac-
celerometer noise acts on both the position and velocity states. This needs to be
taken into account in the implementation.

2.2 Magnetometer measurement model

The magnetometer measurements are modeled as

yb
m,t = h(xn

t ) + eb
m,t , (8)

where eb
m,t ∼ N (0, R) and h(xn

t ) is a function of the position pe
t and orientation

qeb
t states. In practice this will be a superposition of the local earth magnetic

field and all magnetic disturbances present.

As discussed in the introduction, to isolate the problem of positioning inside
a map from the problem of making the map, we chose an experimental setup
where the magnetic field is generated by a magnetic coil. In this case a magnetic
field map is analytically known assuming the coil’s position and orientation are
known. The function h(xn

t ) is given by

h(xn
t ) = R(qbe)RemB(Rmepe

t ). (9)

The function B(Rmepe
t ) gives the magnetic field in the map coordinate frame at

a position pm. The expression for the magnetic field from the coil is given by
(Schepers, 2009)

B(pm) =
µ0NwI
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(10)

where pm =
(
px py pz

)
, µ0 is the magnetic permeability in vacuum, a is the

coil radius, Nw is the number of windings, I is the current through the coil and
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E(k) and K(k) are given by the following elliptic integrals

E(k) =

π/2∫

0

√
1 − k2 sin2 θdθ, (11a)

K(k) =

π/2∫

0

1√
1 − k2 sin2 θ

dθ, (11b)

where

k =

√√√√√√√√ 4a
√
p2
x + p2

y

(
√
p2
x + p2

y + a)2 + p2
z

. (12)

These equations implicitly assume that the origin of the earth coordinate frame
coincides with that of the map coordinate frame. Note that our measurement
model assumes that no background field is present.

2.3 Some additional words about the magnetic field model

The magnetic field of a coil is generally described as a function of the perpendicu-

lar distance pz towards the coil and the radial distance r =
√
p2
x + p2

y towards the
center of the coil (Schepers, 2009; Griffiths, 1999). However, in tracking we are in-
terested in absolute position rather than just the distance to a source. Parametriz-
ing the magnetic field in terms of a position px, py , pz introduces unobservability.
Assuming the coil is placed horizontally, this results in two horizontal circles,
one above and one below the coil, where the horizontal position is coupled to the
heading as an unobservable manifold. We assume that the sensor can only be
positioned above the coil and therefore have an entire circle of solutions at each
time step. Note that in the more general case where multiple magnetic sources
are present and possibly rotated with respect to each other, the unobservable
manifold will be differently shaped or in some cases non-existent. To make our
dynamic model applicable to any magnetic field map, we have not adapted the
parametrization of our state vector to this specific structure.

3 Computing the estimate

As can be seen from the dynamical and measurement model presented in Sec-
tion 2, the state dynamics is assumed to be linear while the measurement model
is a nonlinear function of the sensor’s position and orientation. A nonlinear
filtering technique is therefore needed to compute a state estimate. A linear
substructure can, however, be recognized, which can be exploited using a Rao-
Blackwellized particle filter (RBPF) in which the state is split into a state xl that
enters linearly in both the dynamic and measurement model and a state xn that
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enters non-linearly, where xl and xn are defined by (1). An RBPF solves the non-
linear filtering problem by using a Kalman filter (KF) for the linear states and a
particle filter (PF) for the nonlinear states.

The RBPF in this paper has been derived from Törnqvist (2008) and Lindsten
(2011) and is summarized in Algorithm 1. It applies the model structure (2), (8),
the noise assumptions (6) and their correlations given in (7). In (13), x̄it and
P̄ it are computed, which are a stacked version of the nonlinear and linear states
and covariances. Based on these, the nonlinear and linear time update are given
by (14), (15) respectively. Note that in (15) the pseudo-inverse, denoted by †, of
P̄ nn,i
t needs to be taken because this matrix is rank deficient due to the presence

of quaternion states.

Since the measurement model (9) only depends on the nonlinear states, measure-
ment information about the linear states is in our problem only available through
the nonlinear states. Algorithm 1 does therefore not contain an explicit KF mea-
surement update. However, measurement information implicitly present in the
nonlinear states is taken into account in the linear states in (15).

3.1 RBPF-MAP

To compare particle filter estimates to reference data, a point estimate needs to
be computed at each time step. The most commonly used approach for this is to
take the conditional mean estimate. Due to the unobservability in our model (see
Section 2.3), however, all particles on a horizontal circle are equally likely, which
can lead to an uninformative point estimate in center of the circle.

In Driessen and Boers (2008); Saha et al. (2009) a maximum a posteriori estimate
for the particle filter (PF-MAP) has been derived, which is argued to give a better
point estimate in multi-modal applications. The PF-MAP estimate is an approxi-
mation of the MAP estimate given by

x̂MAP
t|t = arg max

xit

p(yt |xit)
∑

j

p(xit |xj1:t−1)wjt−1. (16)

Following a similar reasoning, the RBPF-MAP estimate, can be shown to be

x̂MAP
t|t = arg max

xn,i
t ,xl,i

t

p(yt |xn,i
t , x

l,i
t )

∑

j

w
j
t−1N (xit ; x̄

j
t|t−1, P̄

j
t|t−1), (17)

where x̄jt|t−1 and P̄
j
t|t−1 can be obtained from (13). Note that since our problem

does not have a KF measurement update, instead of the commonly used double
subscript denoting the time for the linear states, Algorithm 1 only uses a single
subscript.

When implementing this in Step 2 of the Algorithm 1, it needs to be taking into
account that the covariance matrix P̄ jt is rank deficient due to the presence of
quaternion states. Because computation of (17) is computationally heavy, it could
also be considered to use the most probable particle of the posterior. This would
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Algorithm 1 Rao-Blackwellized particle filter

1. Initialization: For i = 1, . . . , N generate xn,i
0 ∼ pxn

0
, set {xl,i

0 , P
i
0 } = {xl

0, P0},
γ i−1 = 1

N , and set t = 0.
2. Measurement update: For i = 1, . . . , N evaluate the particle impor-

tance weights γ it = 1
ct
γ it−1p(yt |xn,i

0:t , y0:t−1) based on (8) where ct =
∑N
i=1 γ

i
t−1p(yt |xn,i

0:t , y0:t−1).
3. If t > 0, compute the estimate x̂t based on (17).
4. Resampling: If N̂eff = 1∑N

i=1(γ it )2 < 2
3N , resample N particles with replace-

ment from the set {xn,i
t , x

l,i
t }Ni=1 where the probability to take sample i is γ it ,

and reset the weights to γ it = 1
N .

5. Time update: Determine the Gaussian mixture
x̄it+1 = Aitx

i
t + Bitut , (13a)

P̄ it+1 = Al,i
t P

i
t (Al,i

t )T + GitQ(Git)
T, (13b)

where

x̄it =
(
x̄n,i
t

x̄l,i
t

)
, P̄ it =

(
P̄ nn,i
t P̄ nl,i

t

(P̄ nl,i
t )T P̄ ll,i

t

)
,

Al,i
t =

(
Anl,i
t (xn,i

t )
All

)
, Ait =

(
Ann Anl,i

t (xn,i
t )

0 All

)
,

Bit =
(
Bn,i
t (xn,i

t )
Bl,i
t (xn,i

t )

)
, Git =

(
Gn,i
t (xn,i

t ) 0
0 Gl,i

t (xn,i
t )

)
.

The nonlinear states can now sampled according to
xn,i
t+1 ∼ N (x̄n,i

t+1, P̄
nn,i
t+1 ), (14)

and the linear states can be updated according to
xl,i
t+1 = x̄l,i

t+1 + (P̄ nl,i
t+1 )T(P̄ nn,i

t+1 )†(xn,i
t+1 − x̄n,i

t+1), (15a)

P it+1 = P̄ ll,i
t+1 − (P̄ nl,i

t+1 )T(P̄ nn,i
t+1 )†P̄ nl,i

t+1 . (15b)
6. Set t := t + 1 and iterate from Step 2.

lead to similar results in Section 4.

4 Experimental results

4.1 Experimental setup

An experiment has been performed in which the magnetic field is generated by
a magnetic coil where the number of windings Nw is equal to 50, the current
I through the coil is 1 A and the radius a of the coil is 6 cm. A MEMS IMU
(Xsens MTi) providing synchronized inertial and magnetometer measurements
at a sampling frequency of 100 Hz is used. A picture of the experimental setup
can be found in Figure 2. Ground truth data is collected from an optical reference
system (Vicon system) and is used for validation of the estimates as well as for
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determining the position and orientation Rem of the coil.

Figure 2: The experimental setup consisting of an IMU (orange box), a coil
and a power supply. Optical markers are present, used for obtaining ground
truth data, via an optical reference system.

Before the magnetometer measurements can be used in Algorithm 1, they need
to be preprocessed for two reasons. First, the model (9) assumes that the magne-
tometer only measures the magnetic field due to a coil. A constant term repre-
senting the local earth magnetic field therefore needs to be determined and sub-
tracted from all measurements. Second, the IMU used outputs magnetometer
measurements in arbitrary units, while the model (9) determines the magnetic
field in Tesla. A constant multiplication on all axes is therefore needed. Both
constants are obtained by determining a best estimate from a part of the data
where the magnetic disturbance is (approximately) zero. The preprocessed data
is illustrated in Figure 1. The circles represent the preprocessed magnetometer
measurements, downsampled to 4 Hz. The color of the circles represents the mag-
nitude of the magnetic field. The magnetic field falls off cubically with distance
which explains why the magnitude of the magnetic field is reduced quickly with
distance from the coil. Each preprocessed measurement also gives rise to a red
arrow indicating the direction of the magnetic field. The length of the arrows
illustrates the magnitude.

4.2 Results

Using the collected inertial and magnetometer data, Algorithm 1 can be applied
to obtain state estimates. Due to the fact that the magnitude of the magnetic field
falls off cubically with distance, all results in this section are based on data no
further away from the coil’s origin than 40 cm. These have been compared to the
ground truth data from the reference system. This section focuses on analysis of
the position estimates. Due to the unobservability discussed in Section 2.3 we
do not expect exact matches between the RBPF estimates and the ground truth
data. A good comparison of the quality of the estimates, however, are the radial
position and height estimates. The error plots can be found in Figure 3. The
RBPF is initialized around the true estimate using the reference data, but any
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other (reasonable) initialization will give comparable results.

As can be seen in Figure 3, very good position estimates are obtained. However, at
approximately 42 s, there is a big peak in both the radial position and the height
errors. This can be explained by the fact that at this time instant, the sensor is
the furthest away from the coil, almost 40 cm. The approach presented in this
work is thus able to obtain high accurate position estimates for longer times, only
when the sensor remains close to the coil. This is a major limitation in using the
magnetic field as a source of position information in the way presented in this
paper. The further away from the magnetic disturbance the less informative the
measurements become. Even though at 40 cm from the coil the signal to noise
ratio is still good, tracking problems occur due to model errors. It is therefore
important to have a good model of the magnetic field (Wahlström et al., 2013).
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Figure 3: Error plots comparing the RBPF position estimates with the
ground truth data from the optical reference system.

5 Conclusions and future work

This paper has shown that close to a magnetic distortion generated by a mag-
netic coil, good position and orientation estimates can be obtained from inertial
and magnetometer data only. Ideas for future work include extending the mag-
netometer model to a more realistic measurement model. First trials show that
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we can probably deal with including the local earth magnetic field. We also aim
at combining this work with Wahlström et al. (2013) into an approach where si-
multaneous localization and mapping (SLAM) is possible. Another future line of
research aims at studying the unobservability manifolds from the magnetic field
in different cases.
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