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Abstract

A probabilistic model reasons about physical quantities as random
variables that can be estimated from measured data. The Gaus-
sian process is a respected member of this family, being a flexible
non-parametric method that has proven strong capabilities in
modelling a wide range of nonlinear functions. This thesis fo-
cuses on advanced Gaussian process techniques; the contribution
consist of practical methodologies primarily intended for inverse
tomographic applications.
In our most theoretical formulation, we propose a constructive
procedure for building a customised covariance function given any
set of linear constraints. These are explicitly incorporated in the
prior distribution and thereby guaranteed to be fulfilled by the
prediction.
One such construction is employed for strain field reconstruc-
tion, to which end we successfully introduce the Gaussian process
framework. A particularly well-suited spectral based approxim-
ation method is used to obtain a significant reduction of the
computational load. The formulation has seen several subsequent
extensions, represented in this thesis by a generalisation that
includes boundary information and uses variational inference to
overcome the challenge provided by a nonlinear measurement
model.
We also consider X-ray computed tomography, a field of high
importance primarily due to its central role in medical treat-
ments. We use the Gaussian process to provide an alternative
interpretation of traditional algorithms and demonstrate prom-
ising experimental results. Moreover, we turn our focus to deep
kernel learning, a special construction in which the expressiveness
of a standard covariance function is increased through a neural
network input transformation. We develop a method that makes
this approach computationally feasible for integral measurements,
and the results indicate a high potential for computed tomography
problems.
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Chapter 1

Introduction

1.1 Background and general motivation

Throughout history, humans have carried a profound need and desire to under-
stand the world we live in and the universe in which it resides. Science is the
guiding star in this process, characterised by systematic reproducible research,
encouraging questioning that favours new insights and understandings.

Due to the studies and observations of natural phenomena, a bit of effort
has been put into the development of theoretical models that generalise their
behaviour. We have learnt to make practical use of these models; the result
so far is stunning and overwhelmingly demonstrated by the high-technological
society surrounding us.

The focus of the thesis is the specific mathematical model known as the
Gaussian process. It belongs to the class of Bayesian non-parametric methods,
which employ a probabilistic viewpoint and treat physical quantities as
random variables – intuitively abstract, but again practically useful. Although
the Gaussian process was originally developed decades ago, its position has
been strengthened by the increasingly massive interest in machine learning.

The traditional way of describing a physical system is by relating the
involved quantities through a customised mathematical formulation – not
more complicated than necessary – that makes use of knowledge gained from
experience and empirical observations. Force equals mass times acceleration,
voltage equals current times resistance. And so on. This is the so called
model-driven approach.

Within the machine learning community, a rather opposite idea is ex-
ploited. Here the cornerstone is advanced mathematical models with general
descriptive capabilities. These flexible models are being fed with measured
data, from which they learn the underlying relations. Consequently, we refer
to these methods as data-driven.

3



4 Chapter 1. Introduction

The Gaussian process is a member of this latter class; it is practically use-
less in the absence of data, which partially defines the model itself. However,
it still turns out that it is possible to embed essential physical information
inside this construction, and so improve its modelling performance. The
intersection between model and data-driven approaches is exciting, and has
a potential of which we may yet only have scratched the surface. This thesis
does some of that scratching. I hope you enjoy it.

1.2 Contributions

The main contributions of this thesis are as follows.

• Paper I: a constructive procedure for explicit inclusion of linear con-
straints in the Gaussian process.

• Paper II: a tailored Gaussian process model customised for strain field
modelling.

• Paper III: a thorough analysis of the Gaussian process as a tool within
X-ray computed tomography.

• Paper IV: a practical approach that enables deep kernel learning for
integral measurements.

• Paper V: a novel methodology that generalises strain field modelling
by accounting for nonlinear effects.

1.3 Outline of the thesis

The first part of the thesis contains background theory and introduces the
relevant problem formulations. Chapter 2 focuses on the very basics of
Gaussian process modelling, while more advanced extensions are considered
in Chapter 3. These are necessary when attacking the tomographic problems
described in Chapter 4. We conclude the first part in Chapter 5 and briefly
discuss topics of future work.

The remaining second part is constituted by five papers, which are sum-
marised below.



1.3. Outline of the thesis 5

Paper I: Linearly constrained Gaussian processes

C. Jidling, J. Hendriks, N. Wahlström, A. Gregg, T. B. Schön, C.
Wensrich and A. Wills. “Probabilistic modelling and reconstruc-
tion of strain”. In: Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms
436 (2018), pp. 141–155.

Summary: This paper describes a practical method for embedding
linear constraints in a Gaussian process, which explicitly ensures that they
are fulfilled by the resulting prediction. The construction relies on the
existence of an underlying potential function that is mapped to the true
function through a linear operator transformation, which can be found in
a straightforward manner. We compare the performance to the naive and
numerically problematic approach of including the constraints as pointwise,
fictitious measurements. The practical potential is demonstrated for the
problem of magnetic field modelling.

Statement of contribution: The development of the approach presen-
ted in this paper involved all authors. Carl Jidling and Niklas Wahlström was
equally responsible for the implementations and most of the writing, with
important contributions and feedback provided by Adrian Wills and Thomas
B. Schön.

Paper II: Probabilistic modelling and reconstruction of strain

C. Jidling, J. Hendriks, N. Wahlström, A. Gregg, T. B. Schön, C.
Wensrich and A. Wills. “Probabilistic modelling and reconstruc-
tion of strain”. In: Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms
436 (2018), pp. 141–155.

Summary: In this paper we use a linearly constrained Gaussian process
for reconstructing strain fields in deformed materials. This is an inverse
tomographic problem with data generated from neutron-based Bragg-edge
experiments, mathematically described as line integrals of the projected strain
tensor. By designing our model with respect to the underlying Airy stress
function, we explicitly incorporate the essential equilibrium constraints. We
exploit an approximative framework that not only allows us to work with
large data sets, but also provides closed form expressions of what would
otherwise have been expensive numerical double integral evaluations. This
work breaks new ground and serves as a starting point of probabilistic strain
field modelling, and has inspired several subsequent developments.

Statement of contribution: The theoretical construction described in
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this paper emerged from discussions involving all authors with contributions
well reflected in the author ordering. The implementation and writing was
done by Carl Jidling mainly, although with important contributions from the
remaining authors, especially regarding the physics descriptions and related
work in that field.

Paper III: Probabilistic approach to limited-data computed
tomography reconstruction

Z. Purisha, C. Jidling, N. Wahlström, T. Schön and S. Särkkä.
“Probabilistic approach to limited-data computed tomography
reconstruction”. In: Inverse Problems 35.10 (2019), p. 105004.

Summary: This paper gives a thorough analysis of the Gaussian process
in solving the inverse X-ray computed tomography problem. A spectral-based
basis function expansion provides an alternative interpretation of classical
methods such as Tikhonov regularisation, and we compare several systematic
data-driven procedures for the hyperparameter tuning. Focusing on the
limited data setting, we demonstrate an improved image quality as compared
to the very commonly used filtered back projection algorithm.

Statement of contribution: The method proposed in this paper was
developed by the authors jointly. The main part of the work was done by
Zenith Purisha, including the production and compilation of experimental
results, as well as the majority of the writing. Carl Jidling contributed to the
implementation of the GP routines, assisted with parts of the writing and
provided feedback during the revision process.

Paper IV: Deep kernel learning for integral measurements

C. Jidling, T. B. Schön, J. Hendriks and A. Wills. Deep kernel
learning for integral measurements. Tech. rep. arXiv:1909.01844,
Sept. 2019.

Summary: Standard stationary covariance functions in Gaussian process
modelling have a limited expressiveness; deep kernel learning increases it by
first transforming the inputs through a neural network. Although simple in
theory, the approach is practically challenging in problems when the data
consist of integral measurements of the unknown function. We propose a
method that allows for feasible implementations in these cases, including a
customised hyperparameter initialisation obtained by pre-training the neural
network. The performance is illustrated on X-ray computed tomography
problems.

Statement of contribution: The idea to this paper is credited Johannes
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Hendriks. Carl Jidling undertook most of the implementation and the
majority of the writing, with essential contributions from Hendriks. Fruitful
comments and feedback were provided by the remaining authors.

Paper V: Neutron Transmission Strain Tomography for Non-
Constant Stress-Free Lattice Spacing

J. N. Hendriks, C. Jidling, T. B. Schön, A. Wills, C. M. Wensrich
and E. H. Kisi. “Neutron transmission strain tomography for
non-constant stress-free lattice spacing”. In: Nuclear Instruments
and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms 456 (2019), pp. 64–73.

Summary: Previous work on Gaussian processes for strain field recon-
struction assume a constant lattice spacing between the crystal planes in the
undeformed material. Although this is valid in many cases, it also limits
the practical applications. However, the generalisation is challenging since it
contains a nonlinear measurement model. In this paper we propose a method
that models the lattice spacing and the strain field as a joint Gaussian process,
and employ a variational approach in the inference step. The prediction is
guaranteed to fulfil the equilibrium constraints, and convergence is ensured
through the inclusion of boundary conditions. Our experimental results show
a superior performance in comparison to the naive approach of incorrectly
assuming a constant lattice spacing.

Statement of contribution: The conceptual method to solve this
problem was developed by Johannes Hendriks, Carl Jidling, Thomas Schön,
and Adrian Wills, with the implementation undertaken by Johannes Hendriks.
The technical background dealing with crystal structure and Bragg-edge
neutron transmission techniques was provided by Chris Wensrich, Erich
Kisi, and Johannes Hendriks. Overall, contributions to the work are well
reflected in the author ordering. Carl Jidling provided essential background in
nonlinear methods for Gaussian processes and techniques for hyper parameter
optimisation.





Chapter 2

Gaussian processes

The Gaussian process (GP) [27] has a prominent position within the ma-
chine learning community. Although it relies upon the somewhat abstract
idea of modelling a function as a probabilistic object, it provides tractable
mathematical expressions. While our interest lies in a continuous function, in
practise we are only interested in predicting its values at a finite set of input
locations. By modelling these function values as Gaussian random variables,
we can construct their joint Gaussian distribution, no matter if they have
been observed or not – and the desired quantities are obtained in closed form.

The GP is mainly used for regression and classification, although the
latter field is today dominated by deep learning techniques. Indeed, the
interest in this thesis is exclusively the regression problem. The GP has
gained in popularity due to several attractive properties, including:

i) Encoding a broad class of functions. The GP is capable of model-
ling a broad class of linear and nonlinear functions, even with the most
standard design choices.

ii) Closed form expressions. The computational benefits of the Gaus-
sian distribution are manifested in the GP as well, and no approximative
computations are required in the inference.

iii) Flexible. The model complexity increases with the size of the data
set, without the inclusion of more free parameters. Hence, the model is
in a sense defined by the training data.

iv) Non-parametric. All measured data is required at the inference step.
This differ from parametric models, which rely upon an explicit function
ansatz in which the free parameters are chosen before the inference
is performed. In the GP, one can view these parameters as absorbed
by the model. What remains are the so called hyperparparameters –

9



10 Chapter 2. Gaussian processes

that are a part of the prior distribution over the function – which are
typically few in number.

v) No manual tuning required. While some regression algorithms
require a rather arbitrary and manual parameter tuning, there are
systematic, data-driven approaches for selecting the free hyperparpara-
meters of the GP.

vi) Uncertainty estimation. Since the inference provides an entire dis-
tribution over the function, it includes the uncertainty of the model.
Whereas this is not a property of the data, it provides a guideline on
what parts of the input space where the model is struggling to perform
well.

This being said, all that glitters is not gold; the main drawback of the GP is
the poor scaling properties, which are cubic in time and quadratic in memory.
Many approximation methods have been developed to overcome this obstacle,
of which several rely upon so called inducing variables [26]; in this thesis we
make use of a particularly well-suited basis function expansion [30].

Furthermore, the performance of the GP is dependent on the model spe-
cification, or the design of the prior distribution. Embedded user assumptions
that are incorrect in important aspects hence limit the capacity of the method.
To that end, there are a wide range of more or less complex constructions
that extends the capabilities of the standard design choices; these include
deep kernel learning [32] or manifold GPs [5], which we consider in this thesis
in the light of integral measurements.

The aim of this chapter is to introduce the GP basics and give an overview
of the design procedure. More advanced topics are discussed in Chapter 3.

2.1 A function as a random variable

Suppose that we are investigating a quantity mathematically described by
the function

f(x) : RDx ! R, (2.1)

where the input is of dimension Dx while the output is scalar. We refer to
f(x) as the target function.

Our goal is to build an approximation of the target function. To that
end, assume that we have access to a set of measurements

yi = f(xi) + ✏i, i = 1, . . . , N, (2.2)
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where ✏i denotes the measurement noise. We use the indexing for sorting; yi
denotes measurement number i, collected at the input location xi.

Of course, we can not work with the target function f(x) directly, since it
is unknown. Instead, we model f(x) with the GP f(x) 1; expressed in terms
of this model, the measurements are generated as

yi = f(xi) + "i, i = 1, . . . , N. (2.3)

Here, the modelled measurement noise "i is a realisation from the Gaussian
distribution N

�
0, �2

�
, where � denotes the standard deviation. In many

situations, this is a reasonable approximation of the real settings.
The GP models the function value f(x̄) at any point x̄ as a Gaussian

random variable. Hence, f(x̄) is assigned a Gaussian prior distribution with
the associated probability density p(f(x̄)), where f(x̄) lies in the sample space
of f(x̄). This model may appear rather abstract at the first encounter. Why
does it make sense to treat the target function values as random variables?
The answer is uncertainty. We use the prior distribution to encode our belief
about the target function before the measurements have been observed; with
no uncertainty, the prior distribution collapses to a point mass located at the
target function value, such that p(f(x̄)) = �(f(x̄) � f(x̄)).

An illustration of the idea is given in Figure 2.1. The target function
is taken to be f(x) = sin x, which is plotted in the horizontal (blue) plane.
Consider the function value f(3⇡/2) = �1, which we model with the Gaussian
random variable f(3⇡/2). The vertical slice shows the probability density
p(f(3⇡/2)) of the prior distribution N (0, 1). Under this prior, the probability
density of the true function value is

p(f(3⇡/2) = �1) = N (�1; 0, 1) = 0.24.

Note that the prior distribution is a design choice, and we discuss it in more
detail in Section 2.2.

Since any finite set of function values in the GP is just a collection
of Gaussian random variables, it follows that they have a joint Gaussian
distribution. A particularly important collection of variables is that of all
function values at the input locations, which we model with the joint vector

f=

2

64
f(x1)

...
f(xN )

3

75 . (2.4)

1
One may note that in the literature – including the papers attached in this thesis –

the target function f(x) and the model f(x) are often not distinguished in notation.
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Figure 2.1: Illustration of the GP idea. Our uncertainty about the target
function f(x) is encoded by treating its value in any point as a Gaussian
random variable, which is defined by a prior distribution. Here, the target
function is f(x) = sin x, and we have visualised the prior distribution of the
random variable f(3⇡/2).

The prior distribution of f is given by

f⇠ N (µ, K) , (2.5a)
µi = E[f(xi)], (2.5b)

Kij = Cov [f(xi), f(xj)] . (2.5c)

This particular covariance matrix K is called the Gram matrix. The entry
Kij specifies the covariance between f(xi) and f(xj), and is determined by
the covariance function

k(xi,xj) , Cov [f(xi), f(xj)] . (2.6)

Similarly, the mean value µ is determined by the mean function

m(xi) , E[f(xi)]. (2.7)

Together, the mean function and the covariance function uniquely specify the
GP; we denote this with the notation

f(x) ⇠ GP
�
m(x), k(x,x0)

�
. (2.8)

The covariance function is the most important design choice, as it specifies the
amount of similarity the model assigns to different function values; specific
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choices for m(x) and k(x,x0) are discussed in Section 2.2. Observe that the
definitions easily allow us to extract the marginal distribution

f(x̄) ⇠ N (m(x̄), k(x̄, x̄)) . (2.9)

Relate this to the example illustrated by Figure 2.1, where we consider the
function value at x̄ = 3⇡/2, using m(x̄) = 0 and k(x̄, x̄) = 1.

Let us now define the measurement vector

y =

2

64
y1
...

yN

3

75 , (2.10)

which in our model is a realisation of the random variable

y ⇠ N
�
µ, K + �2I

�
. (2.11)

Our goal is to predict the target function values at a set of test points {x⇤i}N⇤
i=1.

These function values are modelled by

f⇤ =

2

64
f(x⇤1)

...
f(x⇤N⇤)

3

75 , (2.12)

and we wish to determine the distribution of the variable f⇤|y = y, where
we have conditioned f⇤ on the observed realisation y = y. To that end, we
first note that the joint distribution of y and f⇤ is given by

"
y

f⇤

#
⇠ N

 "
µ

µ⇤

#
,

"
K + �2I K⇤

KT
⇤ K⇤⇤

#!
, (2.13)

where

µ⇤ =

2

64
m(x⇤1)

...
m(x⇤N⇤)

3

75 , (2.14a)

K⇤ =

2

64
k(x1, x⇤1) · · · k(x1, x⇤N⇤)

... . . . ...
k(xN , x⇤1) · · · k(xN , x⇤N⇤)

3

75 , (2.14b)

and

K⇤⇤ =

2

64
k(x⇤1, x⇤1) · · · k(x⇤1, x⇤N⇤)

... . . . ...
k(x⇤N⇤ , x⇤1) · · · k(x⇤N⇤ , x⇤N⇤)

3

75 . (2.14c)
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Hence, K⇤ is the cross-covariance between y and f⇤ while K⇤⇤ is the co-
variance of f⇤. By employing the conditional properties in a multivariate
Gaussian distribution (see e.g [21]), we obtain

f⇤|y = y ⇠ N (E[f⇤|y = y], Cov [f⇤|y = y]) ,

E[f⇤|y = y] = µ⇤ + KT
⇤ (K + �2I)�1(y � µ),

Cov [f⇤|y = y] = K⇤⇤ � KT
⇤ (K + �2I)�1K⇤.

(2.15a)

(2.15b)

(2.15c)

This defines the predictive distribution, which in contrast to the prior encodes
our belief about the target function after the measurements have been
observed; the mean value E[f⇤|y = y] serves as our prediction of the target
function at the test points. The analytically tractable closed form expressions
explain, to a large extent, the popularity of the GP.

Due to the construction and inversion of an N ⇥ N matrix, GP regres-
sion scales as O

�
N2
�

in memory and O
�
N3
�

in time, making it naturally
unfeasible for large data sets. As always, the computations shall not be done
with explicit matrix inversion. A numerically stable technique is given by the
Cholesky decomposition LLT = K + �2I, where L is triangular; expressions
of the form (K + �2I)�1

B are then computed as the solution to LLT
A = B,

which is achieved through forward and backward substitutions.
Note that the entire covariance matrix Cov [f⇤|y = y] is useful mainly

when drawing samples from this distribution; usually one is just interested
in the variance Var[f(x⇤i)] of each component, and hence it is enough to
compute the diagonal part. It is important to understand that the computed
variance is a property of the model and not a property of the data. In
visualisations, it is not uncommon that the prediction is accompanied by
what is claimed to be a confidence region, whereas the correct term is credible
region. The distinction is important, since the credible region leaves no
statistical guarantees of including the true function with any probability.
This uncertainty estimate should therefore be interpreted with care.

A simple example of GP regression is seen in Figure 2.2, where 10 noisy
measurements are generated from the sine function f(x) = sin x. We use a
zero mean function m(x) = 0 and the squared exponential covariance function
(see Section 2.2.1), both of which are common design choices. Note that the
prediction reverts to 0 further away from the data, where no information is
provided.

2.2 Mean and covariance functions

We mentioned earlier that the mean function m(x) and the covariance function
k(x,x0) uniquely specify the GP, and they are therefore our only design choices.
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Figure 2.2: Illustration of GP regression, using 10 noisy measurements (stars)
from a sine function (solid line). We show the prediction (dashed line) and
the 95 % credible region. Further away from the data, the prediction is poor
and reverts to the prior mean.

Their different roles are, if not otherwise, indicated by their names: the mean
function specifies the prior belief of the function values, while the covariance
function specifies the prior belief of the correlation between the function
values. Put differently: the mean function is a guess of what the function is,
while the covariance function is a guess of how the function behaves.

Designing the mean and covariance function is equivalent to designing
the prior distribution of f(x), and this is what GP modelling is all about; the
closed forms in (2.15) make it easy to compute the predictive distribution –
the challenge lies in the design of the prior distribution.

The mean function is the least important component of the two. In fact,
a common design choice is to use a zero mean function m(x) ⌘ 0. One might
incorrectly interpret this choice as if the target function is assumed to be
0 everywhere – it is rather a natural guess in the absence of any specific
prior knowledge. However, the mean function could in theory by of any
parameterised form.

The covariance function, on the other hand, is crucial. It stipulates the
properties that we assign to the model f(x), and should hence as well as
possible reflect the properties of the target function. A mismatch between
the behaviour we assign to the model and the true behaviour of the target
function is likely to result in a poor predictive performance.

More loosely speaking, the covariance function determines the amount of
similarity between different function values. The standard class of covariance
functions are stationary, which means that they depend only on the difference
x � x

0. A covariance function dependent on the distance kx � x
0k2 is called

isotropic. Stationarity is intuitive, since it implies that function values
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corresponding to nearby input locations are modelled as similar. However,
and for the same reason, discontinuities in the target function are poorly
modelled by a GP with a stationary covariance function; the classic example
is a step function, where two points just on different sides of the step differ
significantly in their function values. In such case, a non-stationary covariance
functions is preferable.

In contrast to the mean function, the covariance function can not be
constructed arbitrary but is subject to one crucial requirement: the resulting
covariance matrix K must be positive semi-definite. If not, it is not a
valid covariance matrix. It follows that K is symmetric, and hence that
k(x,x0) = k(x0,x).

Below we describe the two most common stationary covariance functions.

2.2.1 Squared exponential covariance function

The most well-known covariance function, not just of the stationary class, is
the squared exponential

kSE(x,x0) = �2f exp


�1

2
l�2kx � x

0k22
�

, (2.16)

where the magnitude parameter �f controls the variance of the process, and
the parameter l is called lengthscale. The lengthscale impact how quickly the
process tend to change, or how similar the function values are modelled to
be – the extremes l = 0 and l = 1 corresponds to a white noise process and
a constant process, respectively.

The popularity of this covariance function is to a large extent explained
by its simplicity – it is easy to implement and transform, while at the same
time is often reasonably realistic. The squared exponential heavily favours
smooth functions; in fact, a function governed by this process is infinitely
differentiable [27].

Considering the one-dimensional case, it is particularly easy to relate this
covariance function to a parametric model. Using the Maclaurin expansion
of the exponential

ex = 1 + x +
1

2
x2 +

1

6
x3 + . . . , (2.17)

we note that

kSE(x, x0) = �2fe
� 1

2 l
�2(x�x

0)2 = �2fe
� 1

2 l
�2

x
2
el

�2
xx

0
e�

1
2 l

�2
x
02

= �2fe
� 1

2 l
�2

x
2


1 + l�2xx0 +

1

2
l�4x2x02 +

1

6
l�6x3x03 + . . .

�
e�

1
2 l

�2
x
02

= �2fg(x)Tg(x0),

(2.18)
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where

g(x) = e�
1
2 l

�2
x
2
h
1 l�1x 1p

2
l�2x2 1p

6
l�3x3 . . .

iT
. (2.19)

Let us define the parameter vector

w =
⇥
w1 w2 w3 . . .

⇤T
, (2.20)

and make the parametric ansatz

f(x) = g(x)Tw, (2.21)

which we recognise as an infinite basis function expansion. By placing a
Gaussian prior on the parameters

w ⇠ N
�
0, �2fI

�
, (2.22)

we find that

Cov
⇥
f(x), f(x0)

⇤
= E

h
f(x)f(x0)T

i
= E

h
g(x)TwwTg(x0)

i

= g(x)TE
h
wwT

i
g(x0) = g(x)T�2fIg(x0)

= �2fg(x)Tg(x0),

(2.23)

which equals kSE(x, x0) according to (2.18). Hence, we deduce that a one-
dimensional GP governed by the squared exponential covariance function
corresponds to a parametric model with infinitely many parameters. The
fact that the covariance function can encode the same information with just
two parameters is quite impressive.

A more general form of (2.16) is given by

kSE(x,x0) = �2f exp

"
�1

2

DxX

k=1

l�2
k

(xk � x0
k)

2

#
, (2.24)

where individual lengthscales are used in each input dimension. This facilitates
modelling of functions that change with different rates along the different
coordinate axis.

2.2.2 The Matérn family

Another important member of the stationary class is the Matérn family of
covariance functions

kMatérn(r) = �2f
21�⌫

�(⌫)

 p
2⌫r

l

!⌫

K⌫

 p
2⌫r

l

!
, (2.25)
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where r = kx � x
0k2, l > 0 and K⌫ is a modified Bessel function. The

fixed parameter ⌫ > 0 controls the smoothness of the process; as ⌫ ! 1,
the squared exponential (2.16) is regained. Hence, the Matérn family is a
generalisation that relaxes the extreme smoothness assumptions encoded by
the squared exponential, and is thereby often more realistic when modelling
real-world functions. The particular choice ⌫ = 5/2 is commonly used, for
which (2.25) takes the form

kMatérn5/2
(r) = �2f

 
1 +

p
5r

l
+

5r2

3l2

!
exp

 
�
p

5r

l

!
. (2.26)

The Matérn5/2 covariance function is employed for strain field modelling in
Paper II, while a rougher process with ⌫ = 1 is used for X-ray computed
tomography reconstruction in Paper III.

A qualitative comparison between the squared exponential and the
Matérn5/2 covariance functions is seen in Figure 2.3, where five sample func-
tions are drawn from the prior distribution of each process. The difference in
smoothness is clear.

Figure 2.3: Sample functions drawn from processes governed by the squared
exponential covariance function (left) and the Matérn5/2 covariance function
(right). While the former process is extremely smooth, the latter allows for
more rough behaviours.

2.3 Hyperparameter selection

Having decided upon which mean and covariance function to use in our GP,
the next thing we have to do is choose their free parameters. These are
referred to as hyperparameters, to indicate that they are part of the prior
distribution rather than of the target function itself. We use ✓ to denote
the set of hyperparameters {✓i}; in this set we include the noise standard
deviation �, since it is selected in the same procedure.
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There are mainly two options available to this end: the first relies upon
the marginal likelihood while the other employs cross validation. Both of
these methods result in optimisation problems, but differ in their respective
cost functions and the reasoning that lies behind them. Moreover, they both
make use of the measured data y, which might appear slightly strange: we
have previously described the prior distribution as encoding our belief about
the target function before the measurements are observed, yet we are still
using them to design this distribution! A fully probabilistic approach models
the hyperparameters as random variables and assign prior distributions to
them as well; however, no approach of this kind has managed to compete
with the mentioned methods in popularity.

The selection of the hyperparameters is by far the most time consuming
part of GP regression; the cost function is typically more expensive to
compute than the prediction itself, and several iterations are usually required
to optimise it.

2.3.1 Marginal likelihood

Recall the Gaussian distribution of the measurements

y ⇠ N
�
µ, K + �2I

�
, (2.27)

which was given in (2.11). The marginal likelihood is the value of the associ-
ated probability density function under the observation y = y, namely

p✓(y) = (2⇡)�
N

2 det(K + �2I)�
1
2 e�

1
2 (y�µ)T(K+�

2
I)�1(y�µ), (2.28)

where we explicitly indicate the dependence on the hyperparameters. The
idea is to select ✓ so as to maximise p✓(y), based on the simple intuition of
designing the prior such that our observed data becomes as likely as possible
(given the choice of mean and covariance function). In practice, it is common
to work with the logarithm of (2.28)

log p✓(y) = �N

2
log(2⇡) � 1

2
log
⇥
det(K + �2I)

⇤

� 1

2
(y � µ)T(K + �2I)�1(y � µ), (2.29)

where the goal is to find

✓̂ = argmax
✓

log p✓(y). (2.30)
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Some further insights are provided if we consider an alternative way of
arriving at the expression (2.28), starting from Bayes’ theorem

p✓(f |y = y) =
p✓(y|f= f)p✓(f)

p✓(y)
. (2.31)

We refer to p✓(f |y = y) as the posterior. The right hand side includes the
likelihood

p✓(y|f= f) = N
�
y; f , �2I

�
, (2.32)

while we recognise p✓(f) = N (f ; µ, K) as the prior. Integrating over f we
note that

Z

RN

p✓(f |y = y) df = 1, (2.33)

by the definition of a probability density. Since p✓(y) is independent of f ,
(2.31) can be re-arranged to obtain

p✓(y) =

Z

RN

p✓(y|f= f)p✓(f) df =

Z

RN

N
�
y; f , �2I

�
N (f ; µ, K) df .

(2.34)

Carrying out this integration, we get

p✓(y) = c

Z

RN

e�
1
2�

�2(y�f)T(y�f)e�
1
2 (f�µ)TK�1(f�µ) df

= c

Z

RN

e�
1
2�

�2[yTy�2yTf+fTf ]� 1
2 [f

T
K

�1f�2µT
K

�1f+µT
K

�1µ] df

= c

Z

RN

e�
1
2 (f�P

�1z)TP (f�P
�1z) df e�

1
2 (y�µ)T(K+�

2
I)�1(y�µ),

(2.35)

where

c = (2⇡)�N det(��2K)
�1/2, (2.36)

P = ��2I + K�1, (2.37)
z = ��2

y + K�1µ, (2.38)

and we have used the identity (��2I + K�1)�1��2 + ��2I = (K + �2I)�1.
Note that the last integrand in (2.35) is the un-normalised Gaussian density
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N
�
f ; P�1

z, P�1
�
, and the integral hence equals the inverse of the corres-

ponding normalisation constant (2⇡)�N/2 det(P�1)�1/2. Since

c · [(2⇡)
�N/2 det(P�1)

�1/2]�1 = (2⇡)�N det(��2K)
�1/2(2⇡)

N/2 det(P )
�1/2

= (2⇡)
�N/2 det(�2KP )

�1/2

= (2⇡)
�N/2 det(�2K(��2I + K�1))

�1/2

= (2⇡)
�N/2 det(K + �2I)

�1/2,

(2.39)

we get

p✓(y) = (2⇡)�
N

2 det(K + �2I)�
1
2 e�

1
2 (y�µ)T(K+�

2
I)�1(y�µ), (2.40)

which confirms the expression (2.28). This derivation explains the name
marginal likelihood, since the integration is also referred to as marginalisation
over f .

2.3.2 Cross validation

Another common method in selecting the hyperparameters is to employ cross
validation. The idea is to divide the data into two subsets, one training set
and one test set. The training data is used to form a predictive distribution,
under which the likeliness of the test data is computed. We obtain the cost
function by repeating this procedure and collecting all contributions. The
division into training and test sets reduces the risk of overfitting, since a
perfect fit on the training data is likely to yield a bad fit on the test data.
A special case of this approach is when the test data consist of one single
measurement and the procedure is repeated for all N data points; this is
referred to as leave-one-out cross validation.

Let ỹi denote the measurement vector y with entry yi removed. By
setting f⇤ = f(xi) we can use (2.15) to compute

p✓(yi|y = ỹi) = N

0

B@yi; m(xi) + k
T
i K̂�1

i
(ỹk � µ̂k)| {z }

mi

, k(xi,xi) � k
T
i K̂�1

i
ki| {z }

v2
i

1

CA ,

(2.41)

where K̂i denotes K excluding row i and column i, µ̂k denotes µ except µi

and

ki =
⇥
k(x1,xi) · · · k(xi�1,xi) k(xi+1,xi) · · · k(xN ,xN )

⇤T
. (2.42)
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The computational overhead is significantly reduced by noting that mi and
v2
i

can be efficiently obtained as

v2
i = 1/Zii, (2.43a)

mi = m(xi) + yi � [Z(y � µ)]iv
2
i , (2.43b)

where Z = (K + �2)�1. We construct the total contribution p✓(y) by
multiplying the individual components

p✓(y) =
NY

i=1

p✓(yi|y = ỹi). (2.44)

As with the marginal likelihood, we prefer to work with the logarithmic form

logp✓(y) =
NX

i=1

log p✓(yi|y = ỹi). (2.45)

Note that since p✓(yi|y = ỹi) is a one-dimensional Gaussian density, the
explicit logarithmic form is given as

log p✓(yi|y = ỹi) = �1

2
log(2⇡) � 1

2
log v2 � (yi � mi)2

2v2
i

. (2.46)

Conclusively, the desired hyperparameters are given by

✓̂ = argmax
✓

logp✓(y). (2.47)

2.3.3 Comparison and comments

As we have now seen, both ways of selecting the hyperparameters presented
above result in optimisation problems. From a practical perspective, we
should note that the partial derivatives of the cost functions (2.29) and (2.45)
with respect to the hyperparameters are available in closed form, and hence
a gradient based optimisation method is recommended. However, the cost
functions are in general not concave and local maxima are likely to be present;
this challenge is accentuated when the number of hyperparameters is large.
Regarding computational complexity, the cross validation procedure is slightly
more time consuming.

The two approaches stems from two quite different ways of thinking, with
none of them necessarily being better than the other. It is fair to say that
the marginal likelihood puts more trust in the model – we should stress that
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the intuition of designing the prior to maximise the likeliness of the data fails
if the model assumptions are poor. In other words, if the model is unlikely
to have generated the data in the first place, there is not much to win in
making the data as likely as possible.

Cross validation does not evade the model assumptions, but relaxes them
and weights the data higher; this reduces the sensitivity to model errors,
but instead increases the risk of overfitting. An informal insight into the
difference is obtained when considering the factorised expressions

p✓(y) = p✓(y1)p✓(y2|y1 = y1)p✓(y3|y1 = y1, y2 = y2) · · · , (2.48)

for the marginal likelihod, and

p✓(y) = p✓(y1|y = ỹ1)p✓(y2|y = ỹ2)p✓(y3|y = ỹ3) · · · , (2.49)

for cross validation. These are both products with N factors, but while
every factor in the latter case conditions on all other data points, the former
contains conditioning only on the previous data points. From this viewpoint,
cross validation clearly values the data more than the marginal likelihood
does.





Chapter 3

Extending the Gaussian
process

In the previous chapter, we discussed the basic parts of GP modelling. This
chapter considers some deepening topics.

Firstly, we extend the framework to multivariate target functions. Al-
though this is straightforward notation-wise, it introduces a new design
challenge; the covariance function becomes matrix-valued, which forces us to
model the correlation between the output components.

Secondly, we study the behaviour of the GP as it undergoes linear func-
tional transformations. It turns out that the resulting object is also a GP,
in analogy with how a linear transformation of a Gaussian random variable
preserves Gaussianity.

Thirdly, we consider a spectral based approximation method that makes
the GP applicable for large data sets and allows for efficient computations of
the covariance components.

Lastly, we review the concept of deep kernel learning, which is based on
the idea of transforming the inputs to the covariance function through a
neural network. This enables a more powerful approach when it comes to
modelling functions with discontinuous features.

3.1 Multivariate Gaussian processes

So far in this thesis, we have limited our interest to a scalar target function.
However, the GP framework is straightforward to generalise to target functions

25
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of arbitrary dimension DF

F(x) =

2

64
f1(x)

...
fDF(x)

3

75 . (3.1)

We model F(x) with the GP

F(x) =

2

64
f1(x)

...
fDF(x)

3

75 ⇠ GP
�
m(x), K(x,x0)

�
, (3.2)

where

m(x) =

2

64
m1(x)

...
mDF(x)

3

75 , (3.3)

and

K(x,x0) =

2

64
k11(x,x0) · · · k1DF(x,x0)

... . . . ...
kDF1(x,x0) · · · kDFDF(x,x0)

3

75 . (3.4)

The vector-valued mean function is a direct extension and does not introduce
any new challenges, especially not when considering the common choice
m(x) ⌘ 0. Instead, the important difference lies in the matrix-valued
covariance function. Apart from modelling the covariance of each output
component, we now also have to model the correlation between them. This
is a nontrivial design challenge that has gained a fair amount of interest; a
useful review is given in [2].

The simplest option is to set K(x,x0) = k(x,x0)I, where k(x,x0) is a
scalar covariance function. With this choice, the components are modelled as
independent while sharing the same covariance properties. A slight extension
is to allow different scalar covariance functions for each component, which
gives a pure independence structure. From a practical viewpoint, it is here
beneficial to employ the vectorisation format

⇥
f1(x1) · · ·f1(xN ) · · · · · ·fDF(x1) · · ·fDF(xN )

⇤T
. (3.5)

The Gram matrix then becomes block-diagonal, which can be exploited for
more efficient computations.

Although the simplicity is appealing and provides a straightforward
implementation, the approach is unsatisfying since it neglects potentially
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valuable correlation information. Consequently, there exist several more
sophisticated constructions. One example is given by the so called separable
kernels, with the idea of expressing K(x,x0) as a linear combination of scalar
covariance functions

K(x,x0) =
X

i

ki(x,x0)Bi. (3.6)

The symmetric, positive semi-definite matrices Bi are found via some kind of
regularisation. For instance, the mixed effect regulariser gives the form

K(x,x0) = k(x,x0)
�
!1 + (1 � !)I

�
, (3.7)

where 1ij = 1 and ! is a tuning parameter determining the level of correlation:
with ! = 0 we regain the diagonal form, while ! = 1 models the components
as identical.

The class of invariant kernels is of particular interest for this thesis. Here,
K(x,x0) encodes physical background knowledge of the target function. This
class include the curl and divergence free covariance functions [3, 20], which
has been used for GP modelling of magnetic fields [29, 31]. The construction
relies upon the existence of a potential function – a curl-free vector field
is the gradient of a scalar potential while a divergence-free vector field is
the curl of a vector potential. Modelling the underlying potential with a
GP, the desired covariance function is derived in a fairly straightforward
manner. The salient point is that the functions described by and generated
from the resulting process are enforced to obey the encoded property; hence
a curl-free covariance function does only allow curl-free functions. In this
way, the regression is restricted with respect to the underlying physics.

In Paper I, we describe a practical procedure for the construction of
invariant kernels provided linear constraints on the target function. A brief
background to this method is given in Section 3.2.3.

Finally, we underline that the predictive expressions (2.15) remain un-
changed; the multivariate extension simply correspond to replacing all scalar
entries in the previously built matrices with their multivariate equivalents.

3.2 Linear functionals in Gaussian processes

In the model introduced in the previous chapter, we assumed that the
measurements are noisy point-evaluations of the target function. However,
this is not always the case. Several interesting problems involves measurements
of derivatives or integrals of the target function. These operators belong to
the class of linear functionals, and are surprisingly easy to include in the GP
framework. This section explains how.
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3.2.1 A linearly transformed Gaussian random variable

To begin with, let us briefly recall the impact of linear transformations in
the Gaussian distribution. Let X be a Gaussian random variable with mean
µX and standard deviation �X

X ⇠ N
�
µX , �2X

�
. (3.8)

In one dimension, a linear transformation is a pure scaling that constructs a
new variable Z = aX. Using the definitions of mean value and variance, it is
easy to verify that Z is a Gaussian random variable with distribution

Z ⇠ N
�
aµX , (a�X)2

�
. (3.9)

In other words, the mean value and standard deviation are scaled with the
same factor as the random variable itself.

In the multivariate case, we consider

X ⇠ N (µX, ⌃X) , X, µX 2 RDX , ⌃X 2 RDX⇥DX , (3.10)

and the linear transformation Z = AX, where A is a matrix. The distribution
of Z reads

Z ⇠ N
⇣
AµX, A⌃XAT

⌘
. (3.11)

These basic but important properties turn out to have equivalent formulations
when considering linear functionals in GPs.

3.2.2 Scalar linear functionals

We use L to denote a linear functional. Being linear means that it fulfils the
superposition principle

L[af(x) + bg(x)] = aLf(x) + bLg(x), (3.12)

for two functions f(x) and g(x), and scalars a and b. A functional is informally
described as a function of a function. The most basic example, which seldom
is referred to as a functional, is point evaluation

Lx̄f(x) = f(x̄), (3.13)

which simply returns the function value at the point x = x̄. Another common
example is differentiation

Lx̄,jf(x) =
@f(x)

@xj

���
x=x̄

, (3.14)
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while the third and final functional we consider is integration

L⌦f(x) =

Z

⌦
f(x) dx. (3.15)

A special case of big importance for this thesis is the line integral

L⌘f(x) =

Z
L

0
f(x̄ + sn̂) ds, (3.16)

where ⌘ = {x̄, L, n̂}. The integration is here made along the straight line
segment of length L between the points x̄ and x̄ + Ln̂, where the direction is
specified by the unit vector n̂.

Given the GP

f(x) ⇠ GP
�
m(x), k(x,x0)

�
, (3.17)

what can we say about Lf(x)? In the same way as a linear transformation
preserves Gaussianity of a Gaussian random variable, so does a linear func-
tional preserves Gaussianity in the GP; this implies that Lf(x) is a GP as
well [6, 13]. The linearity of L allows for a straightforward derivation of this
process

E[Lf(x)] = LE[f(x)] = Lm(x), (3.18a)
Cov

⇥
Lf(x), L0f(x0)

⇤
= LL0Cov

⇥
f(x), f(x0)

⇤
= LL0k(x,x0), (3.18b)

where L0 denotes the functional acting on the argument x
0. Hence, we

conclude that

Lf(x) ⇠ GP
�
Lm(x), LL0k(x,x0)

�
, (3.19)

which is the GP equivalent to (3.9).
Next, it is important to realise that the processes f(x) and Lf(x) are

not separate from each other, an insight that follows from the fact that they
are both collections of Gaussian random variables. Consider the generalised
measurement model

yi = Lif(x) + "i. (3.20)

Here, we let the subscript i in Li encode both the measurement index as well
as the kind of functional and its input. Note that by setting Lif(x) = f(xi)
for all i, we regain the point measurement model (2.3). The predictive
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expressions (2.15) remain of exactly the same form

l⇤|y = y ⇠ N (E[l⇤|y = y], Cov [l⇤|y = y]) ,

E[l⇤|y = y] = µ̃⇤ + QT
⇤ (Q + �2I)�1(y � µ̃),

Cov [l⇤|y = y] = Q⇤⇤ � QT
⇤ (Q + �2I)�1Q⇤,

(3.21a)

(3.21b)

(3.21c)

although we have replaced the previous quantities with the generalisations

l⇤i = L⇤if(x), (3.22a)
µ̃i = Lim(x), (3.22b)

µ̃⇤i = L⇤im(x), (3.22c)
Qij = LiL0

jk(x,x0), (3.22d)
[Q⇤]ij = LiL0

⇤jk(x,x), (3.22e)
[Q⇤⇤]ij = L⇤iL0

⇤jk(x,x0). (3.22f)

What this means, more precisely, is that we can use a combination of different
linear functional measurements and predict for any combination of linear
functional evaluations.

Let us concretise this with an example, once again using the sine function
f(x) = sin x. We collect measurements of a function value, a derivative,
and an integral, all at different input locations; see the top left plot of
Figure 3.1. The remaining plots are showing the mean values and 95%
credible regions when predicting with respect to the function value (top
right), the derivative (bottom left) and the integral

R
x⇤
0 f(x) dx (bottom

right). We are using the squared exponential covariance function (2.16). Note
where the model uncertainty attains its minimum value in each case, and
relate it to the corresponding measurement. Of course, all measurements are
equally well obeyed in every prediction, although it is not directly revealed
in the visualisations.

3.2.3 Multivariate functionals and exploitation of linear con-
straints

In Section 3.1, we briefly discussed invariant kernels, covariance functions for
multivariate GPs that encode physical constraints. Here, we outline a method
that generalises their construction. To that end, we first need to extend
the concepts of the previous section to functionals with multiple outputs;
one such example is gradient evaluations. In the general case, we consider a
multivariate linear functional G acting on a multivariate GP T (x), defined
by the mean function mT (x) and covariance function KT (x,x0) (we use T
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Figure 3.1: Illustration of the GPs ability of incorporating linear functionals.
Top left : True function and measurements of a function value (red star), a
derivative (black dot with tangent) and an integral (green shaded region).
Remaining plots: predictive distributions with 95% credible regions for the
function (top right), the derivative (bottom left) and the integral

R
x⇤
0 f(x) dx

(bottom right). True quantities are shown in solid blue, mean predictions are
dashed.

instead of F to denote this GP, for reasons that will be clear below). We write
this as GT (x); due to the linearity, we can treat this as a matrix product
where each entry in G encodes a scalar linear functional. In analogy to the
scalar case, GT (x) remains a GP and is defined by

E[GT (x)] = GE[T (x)] = GmT (x), (3.23a)

Cov
⇥
GT (x), G0T (x0)

⇤
= E[(GT (x) � GmT (x))(G0T (x0) � G0

mT (x0))T]

= E[G(T (x) � mT (x))(T (x0) � mT (x0))TG0T]

= GE[(T (x) � mT (x))(T (x0) � mT (x0))T]G0T

= GCov [T (x)] G0T = GKT (x,x0)G0T. (3.23b)



32 Chapter 3. Extending the Gaussian process

Note the similarity with (3.11); we summarise this extension as

GT (x) ⇠ GP
⇣
GmT (x), GKT (x,x0)G0T

⌘
. (3.24)

With this knowledge, we face the problem of designing the covariance
function K(x,x0) of F(x), assuming that we have access to constraints on
the target function of the form

FF(x) = 0. (3.25)

For instance, a curl-free function fulfils the relation
2
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We further assume that the target function is related to another function
T(x) through the mapping G, such that F(x) = GT(x). This implies that
our GP model F(x) of F(x) can be expressed as GT (x), where T (x) is a GP
modelling G(x). Imposing the constraints (3.25) on our model yields

FF(x) = 0 , FGT (x) = 0. (3.27)

We want this hold for an arbitrary T (x), which it does if

FG= 0. (3.28)

Hence, we need to design G such that FG = 0 is fulfilled; then F(x) is
completely specified by (3.24). A constructive procedure for this design is
given in Paper I. A subsequent, rigorous theoretical analysis of the existence
and properties of this construction is given in [18].

3.3 Hilbert space approximation

The most obvious drawback of GP regression is the poor scaling, which as
mentioned earlier is O

�
N3
�

and O
�
N2
�

in time and memory, respectively.
For this reason, there is a big interest in approximation methods that make
the GP tractable when N is large. In this section we consider one in particular
that has been of great use in this thesis, originally proposed and thoroughly
described in [30]. The method relies upon a Hilbert space approximation of
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the covariance function, and the result is a low rank approximation of the
Gram matrix that enables reformulations of the predictive expressions for
significantly more efficient computations.

Assume that we want to build a GP f(x) governed by the stationary
covariance function

k(x,x0) = k(r), (3.29)

where r = x � x
0 = [r1, . . . , rDx ]. A key component in this method is the

fact that stationary covariance functions have a dual relationship with their
spectral density S(!) as

k(r) =
1

(2⇡)Dx

Z
S(!)ei!

Tr d!, (3.30a)

S(!) =

Z
k(r)e�i!Tr dr, (3.30b)

where ! = x � x
0 = [!1, . . . ,!Dx ]. For instance, the spectral density of the

squared exponential covariance function (2.16) is given by

SSE(!) = �2f (2⇡l2)
Dx/2 exp


�1

2
l2k!k22

�
. (3.31)

We approximate f(x) with another GP f�(x), formed through the finite basis
function expansion

f�(x) =
mX

i=1

�i(x)wi = �(x)Tw, (3.32)

where

�(x) =

2

64
�1(x)

...
�m(x)

3

75 , and w =

2

64
w1(x)

...
wm(x)

3

75 . (3.33)

Furthermore, we limit our interest in f�(x) to the finite domain ⌦ 2 RDx ,
which is taken to be rectangular such that

⌦ = [�L1, L1] ⇥ · · ·⇥ [�LDx , LDx ]. (3.34)

The basis functions are obtained from the Laplace eigenvalue problem
(
���j(x) = �j�j(x),

�j(x) = 0,

x 2 ⌦,

x 2 @⌦,
(3.35)
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where �j is the eigenvalue associated with basis function j. Note that the
boundary condition in (3.35) is explicitly imposed on f�(x) as well, and hence
the domain must be chosen large enough to prevent undesired impact on the
prediction. The solution to (3.35) is found using separation of variables (see
Appendix A), and is given by

�j(x) =
DxY

k=1

L
�1/2

k
sin [ckj(xk + Lk)] , ckj =

jk⇡

2Lk

, �j =
DxX

k=1

c2kj .

(3.36)

We use the notation jk to denote that basis function j has index k in
direction k; see Figure 3.2 for an illustration. Moreover, the basis functions

Figure 3.2: Illustration of the frequency components of the basis functions,
considering two dimensions and a total number m = 25. Basis function j
corresponding to the highlighted green circle encodes the 4th and 3rd frequency
component in the first and second direction, respectively; therefore j1 = 4
and j2 = 3.

are orthonormal on ⌦
Z

⌦
�i(x)�j(x) dx = �ij . (3.37)

The covariance function k�(x,x0) of the approximate process f�(x) is

k�(x,x0) = �(x)TE[wmwT
m]�(x) = �(x)TCov [wm] �(x). (3.38)
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Letting cj = [c1j , . . . , cDx ] and

Cov [wm] = ⇤ =

2

64
S(c1)

. . .
S(cm)

3

75 , (3.39)

it follows that

k�(x,x0) =
mX

j=1

S(cj)�j(x)�j(x
0). (3.40)

In the limit m, Lk ! 1 it holds that k(x,x0) = k�(x,x0) [30]. This limit
corresponds to a complete coverage of the entire spectral domain: imagine
placing circles on every single point in Figure 3.2. In practise, we use finite
values of m and Lk which yields the approximation k(x,x0) ⇡ k�(x,x0). By
constructing the matrices

� =

2

64
�1(x1) · · · �m(x1)

...
...

...
�1(xN ) · · · �m(xN )

3

75 , (3.41)

�⇤ =

2

64
�1(x⇤1) · · · �m(x⇤1)

...
...

...
�1(x⇤N⇤) · · · �m(x⇤N⇤)

3

75 , (3.42)

we form the approximations

K ⇡ �⇤�T, (3.43a)

K⇤ ⇡ �⇤�T
⇤ , (3.43b)

K⇤⇤ ⇡ �⇤⇤�T
⇤ . (3.43c)

Making these substitutions in the exact expressions (2.15), we obtain

E[f⇤|y = y] ⇡ µ⇤ + �⇤⇤�T(�⇤�T + �2I)�1(y � µ), (3.44a)

Cov [f⇤|y = y] ⇡ �⇤⇤�T
⇤ � �⇤⇤�T(�⇤�T + �2I)�1�⇤�T

⇤ . (3.44b)

Since the same matrix dimensions are maintained, the computational com-
plexity is not reduced. However, by applying the matrix inversion lemmas,
we end up with the following alternative formulations

E[f⇤|y = y] ⇡ µ⇤ + �⇤(�
T� + �2⇤�1)�1�T(y � µ),

Cov [f⇤|y = y] ⇡ �2n�⇤(�
T� + �2⇤�1)�1�T

⇤ .

(3.45a)

(3.45b)
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Instead of inverting a matrix of size N ⇥ N , we now invert a matrix of
size m ⇥ m. Equivalent reformulations are available when computing the
marginal likelihood; since the hyperparameter selection is the bottleneck of GP
regression in terms of computation time, the overall time scaling is changed
from O

�
N3
�

to O
�
m3
�

(similar efficient expressions are unfortunately not
available for the cross validation approach). Moreover, the memory scaling is
reduced from O

�
N2
�

to O (mN).
Another advantage with this method is that the basis functions decouple

the arguments x and x
0. This is particularly useful when considering linear

functional evaluations: instead of computing LL0k(x,x0) we only need to
compute L�j(x), which is further simplified by the separate form of �j(x).
For instance, this replaces tedious numerical integration with closed form
expressions, a fact exploited in Paper II, III and V.

The number of basis functions m is limited by the computational resources,
while Lk specifies the frequency resolution in direction k, as seen in Figure 3.2.
An approach that has shown useful in practice is to select Lk so as to cover the
vast amount of the spectral mass. Since the spectral density depends on the
hyperparameters, this implies that the basis functions must be recomputed
as the optimisation proceeds; however, this computational overhead can be
limited to every qth iteration. Also, note that updating the basis functions
changes the approximation and therefore the definition of the cost function;
this effect has small impact and is negligible in practise.

3.4 Deep kernel learning

Stationary covariance functions have a limited expressiveness, and performs
poorly when modelling functions with discontinuous features. To overcome
this, a wide range of non-stationary covariance functions have been developed;
the most notable one being the neural network covariance function [22].
However, these covariance functions tend to be more challenging to work with
and extend. For instance, they can not be approximated with the method
described in Section 3.3.

Another way of increasing the expressiveness of a stationary covariance
function is to transform the inputs through a nonlinear mapping u(x) :
RDx ! RDu . The resulting covariance function k(u(x),u(x0)) is stationary
with respect to u(x) and u(x0), but non-stationary with respect to the original
inputs x and x

0. For instance, the mapping

u(x) =


sin x
cos x

�
, (3.46)

is customised to model functions with periodic behaviour [7, 14, 27]. A highly
expressive mapping able to describe general complex structures is obtained
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by letting u(x) be a neural network. This particular construction is referred
to manifold Gaussian processes [5] or deep kernel learning [32].

The underlying intuition is that we use u(x) to separate the non-stationary
regions of the input space, such that the corresponding function values are
assigned low correlation in the stationary space. As an example, consider
the modified sine function in the left plot of Figure 3.3, to which a sharp
discontinuity is introduced at x = 0. The red dashed line illustrates the
standard GP mapping u(x) = x. A sine function is well-modelled by a
stationary covariance function, but a problem occurs close to the step; a
small number ✏ > 0 yields a small difference

u(✏) � u(�✏) = ✏� (�✏) = 2✏,

so f(�✏) and f(✏) are modelled as similar. The green dashed dotted line
is a modified version of this mapping, in which the discontinuity has been
accounted for; now u(�✏) and u(✏) are clearly different, which gives a lower
covariance between f(�✏) and f(✏), as is desired. The right plot shows the
predictions obtained with these mappings, given a set of measurements (red
stars). It is seen that the slight modification of u(x) yields a much better
result, and it is for the detection of this kind of features that the neural
network is used; the remaining parts are handled by the GP.

Furthermore, the example clearly illustrates the potential danger of mis-
interpreting the credible region. Although the standard GP prediction is very
poor around the step, it still has a low variance; this overconfidence stems
from the inaccurate stationarity assumptions.

Figure 3.3: Left : target function and two different mappings u(x): the first one
u(x) = x as in a standard GP (red dashed), while the other accounts for the
discontinuity (green dashed dotted). Right : corresponding GP predictions.

Recall that Du is the output dimension of u, which in turn is the input
provided to the GP. Furthermore, Du can be chosen arbitrary, and is in no way
constrained by the dimension Dx of x. While a large Du might provide more
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expressiveness, a small Du is computationally more efficient. For instance,
deep kernel learning can be used together with the approximation method
described in Section 3.3, which is then applied in the u-space. Since the
number of basis functions scales exponentially with the input dimension, it is
in that case computationally preferable to keep Du low.

The hyperparameter selection is made the same way as previously de-
scribed, with a slight modification in that the chain rule is required to compute
the partial derivatives with respect to the parameters of u(x). However, the
significant number of hyperparameters introduced by the neural network
makes the optimisation problem much harder. The number of local optima
is large, and the risk of ending up with a useless prediction is overwhelming.
Hence, the initialisation is a crucial factor. Furthermore, we are faced with
an intricate design problem; how should the network be chosen with respect
to the number of neurons, the number of layers and choice of activation
functions? The network must be large enough to provide the desired express-
iveness, and small enough to limit the risk of over-fitting. Although these
issues are well-known within deep learning research, they are nevertheless
challenging.

Intuitively, the meeting between GPs and deep learning is appealing.
However, having learnt to appreciate the power and potential of GP regression,
it is natural and perfectly valid to feel some scepticism. The GP is, after
all, a popular and successful model in no small part due to its ability to
describe complex functions with a small number of free parameters. A heavily
parameterised covariance function perturbs this fundamental property and
reduces the robustness. However, the construction is still young and further
developments are to be expected.

In Paper IV, we describe how deep kernel learning is applied to problems
with integral measurements, using dimensionality reduction, the approxima-
tion method of Section 3.3 and a customised hyperparameter initialisation.
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Tomographic reconstruction

Tomography refers the procedure in which some form of penetrating waves
are being sent through an object to produce lower dimensional projections of
it; tomographic reconstruction refers to the process of describing the interior
of the object given measurements generated in that procedure.

The most well-known tomographic application is X-ray imaging. Widely
employed within medicine, this is a technique of which many people have
practical experience. Due to that fact, it is perhaps easy to forget the
non-trivial challenge of transforming the measured raw data to the images
analysed by the doctor.

In this chapter we consider two types of tomographic problems: X-
ray computed tomography (CT) and strain field reconstruction. The latter
problem has gained a rising interest during recent years; it aims at quantifying
deformation, for which the physical description is given by the strain field.
While CT concerns inference of a scalar target function, the strain field is a
tensor field and hence a multivariate quantity.

The tomographic problem can be intuitively understood by considering a
generalisation of the so called magic square. A magic square of size n ⇥ n is
built up by n2 sub-squares, in which the integers 1, . . . , n are distributed such
that the sums along rows, columns and diagonals are equal; see the left of
Figure 4.1 for the case n = 3, in which the solution is unique up to rotation
and reflection.

Now consider a square containing any set of numbers, where we also
take into account the sums along the sub-diagonals, as seen in the middle of
Figure 4.1. Here, the numbers are given and the sums are easy to verify. In
the right part of the figure, the sums have different values, and the numbers
in the sub-squares are replaced by question marks. This constitutes a basic
demonstration of the tomographic problem: replace the question marks with
numbers that obey the given sums.

39
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Figure 4.1: Illustration of the tomographic problem. Left : a magic square,
where the sum is constant along rows, columns and diagonals. Middle: a
square with arbitrary numbers and summations along different paths. Right :
Given the summations, the problem is to fill in the missing numbers.

In the generalised case, the square is replaced by an irregularly shaped
object, the numbers are allowed to be decimals and the sums are contaminated
by measurement noise. Furthermore, the sub-squares are made infinitely
small which implies that the sums contain infinitely many terms – in the
limit, the sub-squares are replaced by points and the sums by integrals.

Of course, one can build a similar analogy in three dimensions, simply by
replacing the sub-squares with cubes. Although the extension is conceptually
straightforward, in this thesis we restrict our interest to two dimensions; if
not for other reasons, it keeps the mathematical notation cleaner.

4.1 X-ray computed tomography

The goal in X-ray CT is to reconstruct the attenuation function f(x) :
R2 ! R, that describes the interior of the investigated object. Basically, the
experimental procedure consists of generating X-rays at a source, sending
them through the object and recording them at a detector. The location
of the source and the detector constitutes the projection geometry, where a
projection refers to a set of rays generated with a similar setup. The most
basic version is the parallel beam geometry, where the rays are propagating
side-by-side in the same direction. This geometry is employed in the first
generation CT scanners. As the source and detector has to be re-positioned
for every single measurements, the technique is inefficient and no longer used
in practise. However, the geometry is important for algorithm development
and theoretical analysis. Later generations employ the fan beam geometry,
where the source generates multiple rays simultaneously. This allows for
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the use of several detectors and thereby a faster data collecting process.
Principal sketches of these two geometries are seen in Figure 4.2. In the

Figure 4.2: Illustration of parallel beam geometry (left) and fan beam geo-
metry (right). Since the latter allows for generation of multiple X-rays
simultaneously, it is more efficient in practise.

latest, seventh generation CT scanners, rays are generated in the shape of
a three-dimensional cone, which provides further benefits when aiming at
reconstructing an entire three-dimensional volume.

The attenuation function f(x) determines how the intensity of the X-rays
are affected when travelling through the object. We use I0 to denote the
initial intensity of an X-ray at the source, while I denotes the measured
intensity at the detector. The relation between I and I0 is modelled through
an exponential decay

I = I0 exp


�
Z

R

�R

f(x0 + sn̂) ds

�
, (4.1)

where x
0 denotes the centre point of the ray and n̂ is a unit vector defining

the direction of propagation. The integral is required since f(x) is assumed to
be non-constant. Ideally, the integration limits ±R correspond to the object
boundary; however, the position of the boundary is unknown, and instead
we use the positions of the source and the detector. Rewriting (4.1) as

log
I0
I

=

Z
R

�R

f(x0 + sn̂) ds, (4.2)

we obtain the core formulation of the CT problem. Assuming additive
Gaussian noise, we can express the measurements as

yi =

Z
R

�R

f(x0
i + sn̂i) ds + "i, "i ⇠ N

�
0, �2

�
, (4.3)
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a notation recognised from the previous chapter. Indeed, this measurement
model allows for an application of the GP; this is the focus of Paper III,
which also provides neat theoretical insights by interpreting traditional CT
algorithms in the GP context.

4.1.1 Filtered backprojection

Filtered backprojection (FBP) [17] is a very important algorithm for CT
reconstruction, and has served as state-of-the-art for decades; it is fast,
memory-efficient and fairly straightforward to derive in theory and implement
in practice. Since it is used for comparison in Papers III and IV without
much description, it is fair to devote some space for the basic derivation; more
elaborate descriptions are found for instance in [4, 8]. Although the choice
of projection geometry does not require an extended formulation of the GP
framework, it does for FBP; here we restrict our interest to the parallel beam
geometry and note that the more advanced alternatives follow along similar
lines, but require more rigorous mathematical treatment. Furthermore, to
facilitate readability we focus on continuous quantities, and then conclude
the section with a discussion on some practical aspects.

To begin with, we introduce the Radon transform

g(⇢, ✓) =

ZZ

R2
f(x)�(⇢̂T

x � ⇢) dx, (4.4)

where

⇢̂ =


cos ✓
sin ✓

�
, (4.5)

and the delta function restricts the integration to the line l(⇢, ✓), which
consists of all points fulfilling

⇢̂T
x = ⇢ , x1 cos ✓ + x2 sin ✓ = ⇢. (4.6)

See Figure 4.3 for details. Hence, (4.4) is an alternative way of expressing the
integral in (4.1); instead of using a unit vector and a centre point, the line
is defined by the projection angle ✓ and the perpendicular distance to the
origin ⇢. Also note that integrating over the entire line does not change the
value of the integral since there are no contributions from the region outside
the object.

The image obtained when illustrating g(⇢, ✓) in the {⇢, ✓}-plane is called
a sinogram, and the process of reconstructing f(x) from its sinogram is
referred to as backprojection. Up to a scale factor, the naive approach of
backprojection is to directly map a point in the sinogram to the corresponding
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Figure 4.3: A line can be represented by a point and a unit vector, but also
by an angle and the perpendicular distance to the origin.

line in x-space; all points in l(⇢, ✓) are assigned the value g(⇢, ✓), and the
estimate f̂(x) of f(x) is obtained by integrating over all angles

f̂(x) =

Z
⇡

0
g(⇢̂T

x, ✓) d✓. (4.7)

The image resulting from this procedure is called a laminogram. The lamino-
gram is inevitably blurry and misses out on sharp details, which follows from
an incorrect treatment of the relation between f(x) and g(⇢, ✓), as is clarified
below.

We proceed our derivation by considering the one-dimensional Fourier
transform of g(⇢, ✓) computed with respect to ⇢, which is given by

G(⇠, ✓) = F[g(⇢, ✓)] =

Z

R
g(⇢, ✓)e�i2⇡⇠⇢ d⇢, (4.8)

where ⇠ is the frequency variable. Substituting g(⇢, ✓) with the expression
in (4.4) yields

G(⇠, ✓) =

Z

R

ZZ

R2
f(x)�(⇢̂Tx � ⇢) dx

�
e�i2⇡⇠⇢ d⇢

=

ZZ

R2
f(x)

Z

R
�(⇢̂T

x � ⇢)e�i2⇡⇠⇢ d⇢

�
dx

=

ZZ

R2
f(x)e�i2⇡⇠⇢̂Tx dx,

(4.9)

where we have used the sifting property of the delta function
Z

R
�(x0 � x)q(x) dx = q(x0). (4.10)



44 Chapter 4. Tomographic reconstruction

Introducing

u =


u1

u2

�
, (4.11)

we can rewrite (4.9) as

G(⇠, ✓) =

ZZ

R2
f(x)e�i2⇡uTx dx

���
u=⇠⇢̂

= F[f(x)](u)
���
u=⇠⇢̂

= F[f(x)](⇠⇢̂).

(4.12)

Hence, G(⇠, ✓) is the two-dimensional Fourier transform of f(x) evaluated at
the line defined by

u1 = ⇠ cos ✓, u2 = ⇠ sin ✓. (4.13)

This relation is known as the Fourier-slice theorem, and implies that a
projection taken from a fixed angle in x-space corresponds to a slice of the
frequency space, see the top row of Figure 4.4. From this insight, we realise
why the naive backprojection approach described above performs poorly;
even when adding a large set of projections, low frequencies are clearly over-
represented, as illustrated in the bottom row of Figure 4.4. Unless accounting
for this unbalance, the reconstructed image becomes blurry since detailed
shapes are described in the under-represented high frequencies.

The correct approach is instead as follows. First we note that f(x) is
obtained as the inverse Fourier transform of F[f(x)](u), namely

f(x) = F�1 [F[f(x)](u)] (x) =

ZZ

R2
F[f(x)](u)ei2⇡u

Tx du. (4.14)

By making a change of variables according to the previous substitution (4.13),
the integral becomes

f(x) =

Z 2⇡

0

Z 1

0
F[f(x)](⇠⇢̂)ei2⇡⇠⇢̂

Tx⇠ d⇠ d✓

=

Z 2⇡

0

Z 1

0
G(⇠, ✓)ei2⇡⇠⇢̂

Tx⇠ d⇠ d✓,

(4.15)

where the last equality follows from the Fourier slice theorem (4.12). Further-
more, since 

cos(✓ + ⇡)
sin(✓ + ⇡)

�
= �


cos(✓)
sin(✓)

�
= �⇢̂, (4.16)

it follows that

G(⇠, ✓ + ⇡) = F[f(x)](�⇠⇢̂) = G(�⇠, ✓). (4.17)
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Figure 4.4: Illustration of the Fourier-slice theorem. Top row : A projection
in x-space corresponds to a slice of the frequency space. Bottom row : As
several projections are considered, we see that the frequency representation
is unbalanced, with low frequencies being over-represented.

The close connection is intuitively understood as projections taken from the
angles ✓ and ✓+⇡ contain the same information, since they simple correspond
to exchanging the positions of the source and the detector. Now note that
the integral in (4.15) can be split into two parts

f(x) =

Z
⇡

0

Z 1

0
G(⇠, ✓)ei2⇡⇠⇢̂

Tx⇠ d⇠ d✓

| {z }
I1

+

Z 2⇡

⇡

Z 1

0
G(⇠, ✓)ei2⇡⇠⇢̂

Tx⇠ d⇠ d✓

| {z }
I2

,

(4.18)
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and we use (4.16)-(4.17) to reformulate the second integral as

I2 =

Z
⇡

0

Z 1

0
G(⇠, ✓ + ⇡)e�i2⇡⇠⇢̂Tx⇠ d⇠ d✓

=

Z
⇡

0

Z 1

0
G(�⇠, ✓)e�i2⇡⇠⇢̂Tx⇠ d⇠ d✓

=

Z
⇡

0

Z 0

�1
G(⇠, ✓)ei2⇡⇠⇢̂

Tx|⇠| d⇠ d✓.

(4.19)

Finally, we regain a single integral as

f(x) = I1 + I2 =

Z
⇡

0

Z 1

�1
|⇠|G(⇠, ✓)ei2⇡⇠⇢̂

Tx d⇠ d✓. (4.20)

The inner integral over ⇠ constitutes a filtered one-dimensional inverse Fourier
transform of G(⇠, ✓); we refer to |⇠| as a Ram-Lak filter or ramp filter. This
high-pass filter compensates for the unbalanced frequency representation we
discussed earlier, and explains the name filtered backprojection.

There is a theoretical problem in that the filter causes the integral to
diverge. Hence, it is common practise to use a window W (⇠) that cancels all
frequencies outside a certain range; we thus replace |⇠| with S(⇠) = |⇠|W (⇠).
As we have a multiplication S(⇠)G(⇠, ✓) in the Fourier domain, the inner
integral can be equivalently expressed directly in the spatial domain as a
convolution between the space functions s(⇢) and g(⇢, ✓), according to

f(x) =

Z
⇡

0

Z 1

�1
s(⇢̂T

x � ⇢)g(⇢, ✓) d⇢ d✓. (4.21)

For optimised computational efficiency, this formulation tend to be preferred
in practise [8].

A few more notes should be made about the practical implementation.
First of all, our measurements corresponds to a finite set of sinogram samples
{g(⇢i, ✓i)}Ni=1, and so the continuous integrals above are replaced by discrete
sums to form the estimate of f(x). Note that due to this discrete nature,
interpolation is required to form the reconstructed image, and hence the
estimate in an arbitrary test point x⇤ is not directly provided. Unsurpris-
ingly, the sampling is crucial; the FBP reconstruction is known to introduce
streaking artefacts due to aliasing effects, and a large set of projection angles
is necessary to obtain a satisfying result. Moreover, the algorithm makes no
attempt of accounting for measurement noise and is indeed quite sensitive
to noise. Also, as previously mentioned, FBP is geometry-dependent; the
mathematics of the fan beam geometry is not as straightforward to derive,
and the extension to three dimensions is even more complex.
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From a computationally point of view, however, FBP demonstrates an
outstanding performance in time and memory. The final reconstruction can be
updated sequentially, since it is the sum of the individual reconstructions from
each projection; these are in turn efficiently computed as discrete convolutions,
or alternatively in the frequency domain using the fast Fourier transform.
Furthermore, the algorithm has few free parameters – basically, the only user
choice required is the window function.

4.1.2 Beyond filtered back projection

The FBP algorithm is a so called direct method : all computations are made
once, in a single step. In contrast, iterative methods are constituted by
updates in several steps, typically through an optimisation routine. The
interest in these methods is high, and recent developments show an impressive
potential; in particular, several deep learning based constructions outperform
FBP in image quality when the data sets are small [1, 9, 24]. However, the
superior reconstruction performance has a price in complex methodologies
and time-consuming, expensive computations. Partially for this reason, FBP
is still the dominating reconstruction algorithm in practise, and it may be
hard to see any reason not to keep it that way; since data has to be collected,
may we not as well collect a large amount of it?

The answer is: not necessarily. In fact, there is a particular interest
not just in the limited data problem, but also in the limited angle problem.
The are several reasons for this. X-ray scans are expensive to operate, and
efficient algorithms can speed up the throughput as less data is required.
Also, exposing the human body for high radiation doses can potentially harm
the tissue, and keeping the doses small reduces this risk. Furthermore, the
experimental setup does not necessarily allow for projections taken from
certain angles, as is the case for instance in mammography. Moreover, the
time aspect is important to consider for another reason; moving objects, such
as a beating heart, requires a fast scan which limits the amount of data
collected.

It is important to recall that established frameworks takes time to change
– this requires a close connection between the theorists and CT engineers,
and new algorithms are not put into place as easy and fast as one would
hope. Even with source code made freely available by researchers, the
implementation may often require customised modifications hard to achieve
unless you actually understand the underlying theory and is familiar with
the software requirements. At the same time, other practical issues are
competing with the reconstruction algorithm about the engineers’ attention,
including hardware developments aimed at reducing the noise present during
the scanning procedure [23].
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Nevertheless, eventually a new generation of reconstruction methods will
replace FBP as the state-of-the-art not just in theory, but also in practise. The
computational burdens are more and more reduced, in no small part through
efficient parallel computations enabled by powerful graphical processing units.

4.1.3 Deep kernel learning for CT reconstruction

As mentioned in the introduction of this chapter, Paper III concerns GP
reconstruction for CT imaging. Although promising results are shown in
comparison with FBP in the limited data setting, the model is still struggling
and can not compete with more sophisticated developments in the literature.
The explanation for this is that CT images tend to contain discontinuities;
for instance, the human body has sharp transitions between flesh and bones.
We have previously discussed how such non-stationary features make the GP
regression challenging. In Section 3.4, we reviewed the concept of deep kernel
learning, where the inputs to a standard covariance function are warped
through a neural network in order to increase the expressiveness. In Paper IV,
we describe a practical procedure of how to apply deep kernel learning
for integral measurement, illustrated by CT examples. The reconstruction
performance is significantly improved and indicate a potential for further
research in that field.

4.2 Strain field reconstruction

The second tomographic problem we consider is reconstruction of elastic
strain fields within deformed polycrystalline materials, where our goal is to
reconstruct the strain tensor

✏(x) =


✏xx(x) ✏xy(x)
✏yx(x) ✏yy(x)

�
2 R2⇥2. (4.22)

This tensor is symmetric, leaving us with three unique components required
to quantify the deformation in a two-dimensional object, see Figure 4.5.

The data is generated from Bragg-edge analysis, which rely on neutron
beams as opposed to the previously discussed X-rays. Advanced high resolu-
tion time-of-flight neutron detectors are used to measure the arrival time of
the neutrons, and the corresponding wavelength is determined through its
direct relation with the velocity. Furthermore, the relative transmission rate
is recorded, which is the ratio of the intensities measured without and with
the sample present.

Within the material, there are a large number of randomly oriented crystal
lattice planes, and the distance between them is called the lattice spacing.
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Figure 4.5: When an object is exposed to external forces, it is being deformed.
The deformation is described by the elements of the strain tensor, which is
symmetric so ✏yx = ✏xy. Hence, three components are required to quantify
the strain at any point in a two-dimensional object.

d

✓

Figure 4.6: Left : Illustration of a crystal structure, consisting of crystals
planes oriented in different angles. Right : Neutrons passing through the
material interact with the crystal planes and are diffracted according to
Bragg’s law (4.23).

The neutrons interact with the crystal lattice planes, resulting in constructive
diffraction modelled by Bragg’s law

� = 2d sin ✓. (4.23)

Here � is the neutron wavelength, d is the lattice spacing and ✓ is the
scattering angle, see Figure 4.6. From Bragg’s law, we see that a larger
wavelength results in a larger scattering angle. When ✓ = 90�, the neutrons
are scattered back to the source; this is referred to as backscattering. For
larger wavelengths, constructive diffraction can not occur and the neutrons
continue straight through the material. The result is a sharp, sudden increase
of the intensity as a function of wavelength – this is called a Bragg-edge. The
material contains several lattice spacings, which hence give rise to multiple
Bragg-edges.
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Source

Detector

Figure 4.7: Illustration of the experimental setup. Neutrons beams generated
at the source enter the object at the point x

0, leave at x
0 + n̂L and are

recorded by the detector.

The position of a Bragg-edge is used to determine the corresponding
lattice spacing. The experiment is performed before and after the object is
deformed, resulting in the different lattice spacings d0 and d, respectively.
From these, the average strain along the direction of propagation is obtained
as

h✏i =
d � d0

d0
. (4.24)

In terms of the strain tensor, this result is expressed with the longitudinal
ray transform (LRT) [19]

h✏i =
1

L

Z
L

0
n̂
T✏(x0 + sn̂)n̂ ds. (4.25)

Here, x
0 denotes the point where the neutrons enter the object, the unit

vector n̂ specifies their direction, and L is the total length of the sample
along this line, see Figure 4.7. Note that the normalisation with L requires
knowledge of the entry and exit points, although the determination of their
positions is beyond the scope of this thesis; for a more elaborate discussion
on the analysis of Bragg-edges, see for instance [28].

In order to fit the formulation into the GP framework, we use the symmetry
of the strain tensor and rewrite the integrand as ~nTf(x0 + sn̂), where

F(x) =

2

4
fxx(x)
fxy(x)
fyy(x)

3

5 =

2

4
✏xx(x)
✏xy(x)
✏yy(x)

3

5 , and ~n =

2

4
n2
x

2nxny

n2
y

3

5 . (4.26)

We now model the measurements {yi}Ni=1 according to

yi =
1

Li

Z
Li

0
~nT
i F(x0

i + sn̂i) ds + "i, (4.27)
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where F(x) is the GP model of F(x). Paper II elaborates this problem and
demonstrates the GPs performance on both synthetic and real data set. This
includes the construction of an invariant covariance function customised
through exploitation of physical knowledge (see Section 3.2.3). In particular,
restricting the design to the scalar potential called the Airy stress function
explicitly guarantees fulfilment of the essential equilibrium constraints.

Although the framework introduced above allows for a wide range of
applications, it excludes situations in which the undeformed lattice spacing
is spatially dependent d0(x). Since this may occur as the result of several
manufacturing techniques, a theoretical treatment is of practical interest.
Under such circumstances, a naive approach assuming constant lattice spacing
is doomed to fail. An extension of the LRT to the more general case is given
by

1

L

Z
L

0

h
n̂
TF(x0 + sn̂) + 1

i
d0(x

0 + sn̂) ds. (4.28)

A natural idea is to model both F(x) and d0(x) in a joint GP. However, a
challenge is faced in that this generalisation constitutes a nonlinear functional,
which breaks the Gaussianity. Hence, the GP regression can no longer be
performed in closed form, and approximative inference is required. In Paper V,
a variational inference technique is used to this end. Furthermore, the paper
demonstrates how boundary conditions are exploited to ensure convergence.





Chapter 5

Concluding remarks

This chapter briefly summarises the thesis and discuss potential topics of
future work.

5.1 Conclusions

The contribution of this thesis consists in practical approaches for advanced
GP modelling, with a particular focus on tomographic applications.

We show how linear constraints can be embedded within the GP model,
which accounts for physical knowledge and improves the regression perform-
ance. Along these lines we make a tailored design for strain field reconstruc-
tion, where the essential equilibrium constraints are explicitly incorporated.
We also present an extension to strain fields characterised by nonlinear
behaviour.

Furthermore, we use the GP for X-ray CT reconstruction, through which
an alternative interpretation of established algorithms is obtained. Moreover,
we use the CT problem to demonstrate the potential of deep kernel learning for
integral measurements, where a neural network is incorporated in a standard
covariance function.

5.2 Future work

The work included in this thesis opens up for a number of potential extensions
and improvements, some of which that are already being addressed.

The linearly constrained GP relates the target function to an underlying
potential function through a nonlinear transformation. While our approach of
constructing this transformation has a practical focus, it is intriguing to ask
how its mathematical properties can be described in general? A solid answer
to this question is given in [18]. Another natural extension is to consider the
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more general case of nonlinear constraints. This problem might be attacked
in a similar way using approximative inference, or alternatively through local
linear approximations. A seemingly less challenging task – but perhaps more
important – is to identify meaningful real-world problems that can benefit
from such developments.

The tomographic reconstruction problems considered focus on the two-
dimensional setting, whereas the three-dimensional case is more interesting
in practice. For X-ray CT, the GP extension is trivial in theory, considering
that the target function remains scalar. The strain problem is more complex,
since the three-dimensional tensor field has six unique components; this in
turn requires a more sophisticated covariance model. Promising work in
this direction is presented in [10, 12], and is likely to be followed by further
developments.

Having shown that deep kernel learning is a promising tool for CT prob-
lems, an interesting idea is to use it for strain reconstruction as well. The
theoretical formulation is indeed straightforward; however, since the strain
components are mapped from an underlying stress function, the implement-
ation is more complicated. Also, more research is required for increased
robustness and improved practical efficiency.



Appendix A

Solving the eigenvalue problem

The problem is to solve
(
���j(x) = �j�j(x),

�j(x) = 0,

x 2 ⌦,

x 2 @⌦,
(A.1)

where ⌦ = [�L1, L1] ⇥ · · ·⇥ [�LDx , LDx ]. Using separation of variables, we
seek solutions on the form

�j(x) =
DxY

k=1

'jk
(xk). (A.2)

Plugging this into (A.1) and using the definition of the Laplace operator, we
get

�
DxX

q=1

@2

@x2
q

DxY

k=1

'jk
(xk) = �j

DxY

k=1

'jk
(xk). (A.3)

Dividing both sides with the product yields

�
DxX

k=1

1

'jk
(xk)

@2

@x2
k

'jk
(xk) = �j . (A.4)

Since the right hand side is constant, the independent terms on the left hand
side must also be constant. Furthermore, we require that 'jk

(xk) is bounded
for all xk, and hence we have

� 1

'jk
(xk)

@2

@x2
k

'jk
(xk) = c2jk , (A.5)
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with the trigonometric solution

'jk
(xk) = Ajk

cos(cjkxk) + Bjk
sin(cjkxk). (A.6)

The boundary condition

'jk
(Lk) = 'jk

(�Lk) = 0, (A.7)

requires that 'jk
(Lk) is one of the functions

A1 cos

✓
⇡

2Lk

xk

◆
, B2 sin

✓
2
⇡

2Lk

xk

◆
, A3 cos

✓
3
⇡

2Lk

xk

◆
, . . . (A.8)

See Figure A.1 for an illustration. This implies that

Figure A.1: The first three trigonometric functions fulfilling the boundary
condition.

cjk =
jk⇡

2Li

, jk 2 {1, 2, 3, . . . }, (A.9)

Ajk
= 0 for even jk, Bjk

= 0 for odd jk. (A.10)

Moreover, we want the basis functions to be orthonormal

1 =

Z
Lk

�Lk

'jk
(xk)'jk

(xk) dxk =

(
A2

jk
Lk, for even jk,

B2
jk

Lk, for odd jk,
(A.11)

which in combination with (A.10) gives

Ajk
= L�1/2

k
sin(cjkLk), (A.12a)

Bjk
= L�1/2

k
cos(cjkLk). (A.12b)
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Hence, we have that

'jk
(xk) = L�1/2

k
[sin(cjkLk) cos(cjkxk) + cos(cjkLk) sin(cjkxk)]

= L�1/2

k
sin (cjk(xk + Lk)) .

(A.13)

Collecting all k contributions, we end up with

�j(x) =
DxY

k=1

L�1/2

k
sin (cjk(xk + Lk)) , (A.14)

where from (A.4)-(A.5) we have

�j =
DxX

k=1

c2jk . (A.15)
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Linearly constrained Gaussian
processes

Abstract

We consider a modification of the covariance function in Gaussian processes
to correctly account for known linear operator constraints. By modelling the
target function as a transformation of an underlying function, the constraints
are explicitly incorporated in the model such that they are guaranteed to
be fulfilled by any sample drawn or prediction made. We also propose a
constructive procedure for designing the transformation operator and illustrate
the result on both simulated and real-data examples.

1 Introduction
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Figure 1: Predicted strength of a
magnetic field at three heights, given
measured data sampled from the tra-
jectory shown (blue curve). The
three components (x1, x2, x3) denote
the Cartesian coordinates, where the
x3-coordinate is the height above the
floor. The magnetic field is curl-free,
which can be formulated in terms of
three linear constraints. The method
proposed in this paper can exploit
these constraints to improve the pre-
dictions. See Section 5.2 for details.

Bayesian non-parametric modelling
has had a profound impact in machine
learning due, in no small part, to the
flexibility of these model structures in
combination with the ability to encode
prior knowledge in a principled man-
ner [7]. These properties have been
exploited within the class of Bayesian
non-parametric models known as Gaus-
sian Processes (GPs), which have re-
ceived significant research attention
and have demonstrated utility across
a very large range of real-world applic-
ations [18].

Abstracting from the myriad num-
ber of these applications, it has been
observed that the efficacy of GPs mod-
elling is often intimately dependent on
the appropriate choice of mean and
covariance functions, and the appropri-
ate tuning of their associated hyper-
parameters. Often, the most appro-
priate mean and covariance functions
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are connected to prior knowledge of the underlying problem. For example,
[11] uses functional expectation constraints to consider the problem of gene-
disease association, and [14] employs a multivariate generalised von Mises
distribution to produce a GP-like regression that handles circular variable
problems.

At the same time, it is not always obvious how one might construct a GP
model that obeys underlying principles, such as equilibrium conditions and
conservation "laws". One straightforward approach to this problem is to add
fictitious measurements that observe the constraints at a finite number of
points of interest. This has the benefit of being relatively straightforward
to implement, but has the sometimes significant drawback of increasing
the problem dimension and at the same time not enforcing the constraints
between the points of interest.

A different approach to constraining the GP model is to construct mean
and covariance functions that obey the constraints. For example, curl and
divergence free covariance functions are used in [24] to improve the accuracy
for regression problems. The main benefit of this approach is that the problem
dimension does not grow, and the constraints are enforced everywhere, not
pointwise. However, it is not obvious how these approaches can be scaled
for an arbitrary set of linear operator constraints. The contribution of
this paper is a new way to include constraints into multivariate GPs. In
particular, we develop a method that transforms a given GP into a new,
derived, one that satisfies the constraints. The procedure relies upon the fact
that GPs are closed under linear operators, and we propose an algorithm
capable of constructing the required transformation. We will demonstrate the
utility of this new method on both simulated examples and on a real-world
application, the latter in form of predicting the components of a magnetic
field, as illustrated in Figure 1.

To make these ideas more concrete, we present a simple example that
will serve as a focal point several times throughout the paper. To that end,
assume that we have a two-dimensional function f(x) : R2 7! R2 on which
we put a GP prior f(x) ⇠ GP (µ(x), K(x,x0)) . We further know that f(x)
should obey the differential equation

@f1
@x1

+
@f2
@x2

= 0. (1)

In this paper we show how to modify K(x,x0) and µ(x) such that any sample
from the new GP is guaranteed to obey the constraints like (1), considering
any kind of linear operator constraint.
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2 Problem formulation

Assume that we are given a data set of N observations {xk,yk}Nk=1 where
xk denotes the input and yk the output. Both the input and output are
potentially vector-valued, where xk 2 RD and yk 2 RK . We consider the
regression problem where the data can be described by a non-parametric
model yk = f(xk) + ek, where ek is zero-mean white noise representing the
measurement uncertainty. In this work, we place a vector-valued GP prior
on f

f(x) ⇠ GP
�
µ(x), K(x,x0)

�
, (2)

with the mean function and the covariance function

µ(·) : RD 7! RK , K(·, ·) : RD ⇥ RD 7! RK ⇥ RK . (3)

Based on the data {xk,yk}Nk=1, we would now like to find a posterior over the
function f(x). In addition to the data, we know that the function f should
fulfil certain constraints

Fx[f ] = 0, (4)

where Fx is an operator mapping the function f(x) to another function g(x)
as Fx[f ] = g(x). We further require Fx to be a linear operator meaning
that

Fx

h
�1f1 + �2f2

i
= �1Fx[f1] + �2Fx[f2], (5)

where �1, �2 2 R. The operator Fx can for example be a linear transform
Fx[f ] = Cf(x) which together with the constraint (4) forces a certain linear
combination of the outputs to be linearly dependent.

The operator Fx could also include other linear operations on the function
f(x). For example, we might know that the function f(x) : R2 ! R2 should
obey a certain partial differential equation Fx[f ] = @f1

@x1
+ @f2

@x2
. A few more

linear operators are listed in the Supplementary material, including integration
as one of the most well-known.

The constraints (4) can either come from known physical laws or other
prior knowledge of the process generating the data. Our objective is to encode
these constraints in the mean and covariance functions (3) such that any
sample from the corresponding GP prior (2) always obeys the constraint (4).

3 Building a constrained Gaussian process

3.1 Approach based on artificial observations

Just as Gaussian distributions are closed under linear transformations, so are
GPs closed under linear operations (see Section 9.2). This can be used for a
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straightforward way of embedding linear operator constraints of the form (4)
into GP regression. The idea is to treat the constraints as noise-free artificial
observations {x̃k, ỹk}Ñk=1 with ỹk = 0 for all k = 1 . . . Ñ . The regression
is then performed on the model ỹk = Fx̃k

[f ], where x̃k are input points in
the domain of interest. For example, one could let these artificial inputs x̃k

coincide with the points of prediction.
An advantage of this approach is that it allows constraints of the type (4)

with a non-zero right hand side. Furthermore, there is no theoretical limit on
how many constraints we can include (i.e. number of rows in Fx) – although
in practice, of course, there is.

However, this is problematic mainly for two reasons. First of all, it makes
the problem size grow. This increases memory requirements and execution
time, and the numerical stability is worsen due to an increased condition
number. This is especially clear from the fact that we want these observations
to be noise-free, since the noise usually has a regularising effect. Secondly,
the constraints are only enforced point-wise, so a sample drawn from the
posterior fulfils the constraint only in our chosen points. The obvious way
of compensating for this is by increasing the number of points in which the
constraints are observed – but that exacerbates the first problem. Clearly,
the challenge grows quickly with the dimension of the inferred function.

Embedding the constraints in the covariance function removes these issues
– it makes the enforcement continuous while the problem size is left unchanged.
We will now address the question of how to design such a covariance function.

3.2 A new construction

We want to find a GP prior (2) such that any sample f(x) from that prior
obeys the constraints (4). In turn, this leads to constraints on the mean
and covariance functions (3) of that prior. However, instead of posing these
constraints on the mean and covariance functions directly, we consider f(x)
to be related to another function g(x) via some operator Gx

f(x) = Gx[g]. (6)

The constraints (4) then amounts to

Fx[Gx[g]] = 0. (7)

We would like this relation to be true for any function g(x). To do that, we
will interpret Fx and Gx as matrices and use a similar procedure to that of
solving systems of linear equations. Since Fx and Gx are linear operators,
we can think of Fx[f ] and Gx[g] as matrix-vector multiplications where
Fx[f ] = Fxf , with (Fxf)i =

P
K

j=1(Fx)ijfj where each element (Fx)ij



3. Building a constrained Gaussian process 69

in the operator matrix Fx is a scalar operator. With this notation, (7) can
be written as

FxGx = 0. (8)

This reformulation imposes constraints on the operator Gx rather than
on the GP prior for f(x) directly. We can now proceed by designing a GP
prior for g(x) and transform it using the mapping (6). We further know that
GPs are closed under linear operations. More specifically, if g(x) is modelled
as a GP with mean µg(x) and covariance Kg(x,x0), then f(x) is also a GP
with

f(x) = Gxg ⇠ GP
⇣
Gx µg, GxKgG

T
x0

⌘
. (9)

We use (GxKgG
T
x0)ij to denote that (GxKgG

T
x0)ij = (Gx)ik(Gx0)jl(Kg)kl,

where Gx and Gx0 act on the first and second argument of Kg(x,x0), re-
spectively. See Section 9.2 for further details on linear operations on GPs.

The procedure to find the desired GP prior for f can now be divided into
the following three steps

1. Find an operator Gx that fulfils the condition (7).
2. Choose a mean and covariance function for g(x).
3. Find the mean and covariance functions for f(x) according to (9).

In addition to being resistant to the disadvantages of the approach de-
scribed in Section 3.1, there are some additional strengths worth pointing
out with this method. First of all, we have separated the task of encoding
the constraints and encoding other desired properties of the kernel. The
constraints are encoded in Fx and the remaining properties are determined
by the prior for g(x), such as smoothness assumptions. Hence, satisfying the
constraints does not sacrifice any desired behaviour of the target function.

Secondly, K(x,x0) is guaranteed to be a valid covariance function provided
that Kg(x,x0) is, since GPs are closed under linear functional transformations.
From (9), it is clear that each column of K must fulfil all constraints encoded
in Fx. Possibly K could be constructed only with this knowledge, assuming
a general form and solving the resulting equation system. However, a solution
may not just be hard to find, but one must also make sure that it is indeed a
valid covariance function.

Furthermore, this approach provides a simple and straightforward way of
constructing the covariance function even if the constraints have a complicated
form. It makes no difference if the linear operators relate the components of
the target function explicitly or implicitly – the procedure remains the same.
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3.3 Illustrating example

We will now illustrate the method using the example (1) introduced already in
the introduction. Consider a function f(x) : R2 7! R2 satisfying @f1

@x1
+ @f2

@x2
= 0,

where x = [x1, x2]T and f(x) = [f1(x), f2(x)]T. This equation describes all
two-dimensional divergence-free vector fields. The constraint can be written
as a linear constraint on the form (4) where Fx = [ @

@x1

@

@x2
] and f(x) =

[f1(x) f2(x)]T. Modelling this function with a GP and building the covariance
structure as described above, we first need to find the transformation Gx

such that (8) is fulfilled. For example, we could pick

Gx =
h
� @

@x2

@

@x1

iT
. (10)

If the underlying function g(x) : R2 7! R is given by g(x) ⇠ GP
�
0, kg(x,x0)

�
,

then we can make use of (9) to obtain f(x) ⇠ GP
�
0,K(x,x0)

�
where

K(x,x0) = Gxkg(x,x0)GT
x =

2

4
@
2

@x2x
0
2

� @
2

@x2x
0
1

� @
2

@x1x
0
2

@
2

@x1x
0
1

3

5 kg(x,x0).

Using a covariance function with the following structure, we know that the
constraint will be fulfilled by any function generated from the corresponding
GP.

4 Finding the operator Gx

In a general setting it might be hard to find an operator Gx that fulfils the
constraint (8). Ultimately, we want an algorithm that can construct Gx from
a given Fx. In more formal terms, the function Gxg forms the nullspace of
Fx. The concept of nullspaces for linear operators is well-established [12],
and does in many ways relate to real-number linear algebra.

However, an important difference is illustrated by considering a one-
dimensional function f(x) subject to the constraint Fxf = 0 where Fx = @

@x
.

The solution to this differential equation can not be expressed in terms of
an arbitrary underlying function, but it requires f(x) to be constant. Hence,
the nullspace of @

@x
consists of the set of horizontal lines. Compare this with

the real number equation ab = 0, a 6= 0, which is true only if b = 0. Since
the nullspace differs between operators, we must be careful when discussing
the properties of Fx and Gx based on knowledge from real-number algebra.

Let us denote the rows in Fx as fT
1 , . . . ,fT

L
. We now want to find all

solutions g such that

Fxg = 0 ) fT
i
g = 0, 8 i = 1, . . . , L. (11)
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Algorithm 1 Constructing Gx

Input: Operator matrix Fx

Output: Operator matrix Gx where FxGx = 0

Step 1: Make an ansatz g = �⇠g for the columns in Gx.
Step 2: Expand Fx�⇠g and collect terms.
Step 3: Construct A · vec(�) = 0 and find the vectors �1 . . . �P spanning
its nullspace.
Step 4: If P = 0, go back to Step 1 and make a new ansatz, i.e. extend
the set of operators.
Step 5: Construct Gx = [�1⇠

g, . . . , �P ⇠g].

The solutions g1, . . . , gP
to (11) will then be the columns of Gx. Each

row vector f
j

can be written as f
i
= �i⇠

f where �i 2 RK⇥Mf and ⇠f =

[⇠1, . . . , ⇠Mf
]T is a vector of Mf scalar operators included in Fx. We now

assume that g also can be written in a similar form g = �⇠g where
� 2 RK⇥Mg and ⇠g = [⇠1, . . . , ⇠Mg]T is a vector of Mg scalar operators.
One may make the assumption that the same set of operators that are used
to describe f

i
also can be used to describe g, i.e., ⇠g = ⇠f. However, this

assumption might need to be relaxed. The constraints (11) can then be
written as

(⇠f)T�i�⇠g = 0, 8 i = 1, . . . , L. (12)

We perform the multiplication and collect the terms in ⇠f and ⇠g. The
condition (12) then results in conditions on the parameters in � resulting a
in a homogeneous system of linear equations

A · vec(�) = 0. (13)

The vectors vec(�1), . . . , vec(�P ) spanning the nullspace of A in (13) are
then used to compute the columns in Gx = [g1, . . . gP

] where g
p

= �p⇠
g .

If it turns out that the nullspace of A is empty, one should start over with a
new ansatz and extend the set of operators in ⇠g.

The outline of the procedure as described above is summarised in Al-
gorithm 1. The algorithm is based upon a parametric ansatz rather than
directly upon the theory for linear operators. Not only is it more intuitive,
but it does also remove any conceptual challenges that theory may provide.
A problem with this is that one may have to iterate before having found the
appropriate set of operators in Gx. It might be of interest to examine possible
alternatives to this algorithm that does not use a parametric approach. Let
us now illustrate the method with an example.
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4.1 Divergence-free example revisited

Let us return to the example discussed in Section 3.3, and show how the
solution found by visual inspection also can be found with the algorithm
described above. Since Fx only contains first-order derivative operators,
we assume that a column in Gx does so as well. Hence, let us propose the
following ansatz (step 1)

g =


�11 �12
�21 �22

� " @

@x1
@

@x2

#
= �⇠g. (14)

Applying the constraint, expanding and collecting terms (step 2) we find

Fx�⇠g =
h

@

@x1

@

@x2

i �11 �12
�21 �22

� " @

@x1
@

@x2

#

= �11
@2

@x2
1

+ (�12 + �21)
@2

@x1@x2
+ �22

@2

@x2
2

,

(15)

where we have used the fact that @
2

@xi@xj
= @

2

@xj@xi
assuming continuous second

derivatives. The expression (15) equals zero if

2

4
1 0 0 0
0 1 1 0
0 0 0 1

3

5

2

664

�11
�12
�21
�22

3

775 = A · vec(�) = 0. (16)

The nullspace is spanned by a single vector (step 3)

⇥
�11 �12 �21 �22

⇤T
= �

⇥
0 �1 1 0

⇤T
, � 2 R. (17)

Choosing � = 1, we get Gx =
h
� @

@x2

@

@x1

iT
(step 5), which is the same as

in (10).

4.2 Generalisation

Although there are no conceptual problems with the algorithm introduced
above, the procedure of expanding and collecting terms appears a bit informal.
In a general form, the algorithm is reformulated such that the operators are
completely left out from the solution process. The drawback of this is a
more cumbersome notation, and we have therefore limited the presentation
to this simplified version. However, the general algorithm is found in the
Supplementary material of this paper.
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5 Experimental results

5.1 Simulated divergence-free function

Consider the example in Section 3.3. An example of a function fulfilling
@f1
@x1

+ @f2
@x2

= 0 is

f1(x1, x2) = e�ax1x2
�
ax1 sin(x1x2) � x1 cos(x1x2)

�
,

f2(x1, x2) = e�ax1x2
�
x2 cos(x1x2) � ax2 sin(x1x2)

�
,

(18)

where a denotes a constant. We will now study how the regression of
this function differs when using the covariance function found in Section
3.3 as compared to a diagonal covariance function K(x,x0) = k(x,x0)I.
The measurements generated are corrupted with Gaussian noise such that
yk = f(xk) + ek, where ek ⇠ N (0,�2I). The squared exponential covariance
function k(x,x0) = �2

f
exp

⇥
�1

2 l
�2kx � x

0k2
⇤

has been used for kg and k with
hyperparameters chosen by maximising the marginal likelihood. We have
used the value a = 0.01 in (18).

We have used 50 measurements randomly picked over the domain [0 4]⇥
[0 4], generated with the noise level � = 10�4. The points for prediction
corresponds to a discretisation using 20 uniformly distributed points in each
direction, and hence a total of NP = 202 = 400. We have included the
approach described is Section 3.1 for comparison. The number of artificial
observations have been chosen as random subsets of the prediction points,
up to and including the full set.

The comparison is made with regard to the root mean squared error
erms =

q
1

NP
f̄
T
�f̄�, where f̄� = ˆ̄

f�f̄ and f̄ is a concatenated vector storing the

true function values in all prediction points and ˆ̄
f denotes the reconstructed

equivalent. To decrease the impact of randomness, each error value has
been formed as an average over 50 reconstructions given different sets of
measurements.

An example of the true field, measured values and reconstruction errors
using the different methods is seen in Figure 2. The result from the experiment
is seen in Figure 3a. Note that the error from the approach with artificial
observations is decreasing as the number of observations is increased, but
only to a certain point. Have in mind, however, that the Gram matrix is
growing, making the problem larger and worse conditioned. The result from
our approach is clearly better, while the problem size is kept small and
numerical problems are therefore avoided.
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Figure 2: Left: Example of field plots illustrating the measurements (red
arrows) and the true field (grey arrows). Remaining three plots: reconstruc-
ted fields subtracted from the true field. The artificial observations of the
constraint have been made in the same points as the predictions are made.

5.2 Real data experiment

Magnetic fields can mathematically be considered as a vector field mapping
a 3D position to a 3D magnetic field strength. Based on the magnetostatic
equations, this can be modelled as a curl-free vector field. Following Sec-
tion 9.3, our method can be used to encode the constraints in the following
covariance function (which also has been presented elsewhere [24])

Kcurl(x,x0) = �2fe
� kx�x0k2

2l2

 
I3�

✓
x � x

0

l

◆✓
x � x

0

l

◆T!
. (19)

With a magnetic sensor and an optical positioning system, both position
and magnetic field data have been collected in a magnetically distorted
indoor environment, see the Supplementary material for details about the
experimental details. In Figure 1 the predicted magnitude of the magnetic
field over a two-dimensional domain for three different heights above the floor
is displayed. The predictions have been made based on 500 measurements
sampled from the trajectory given by the blue curve.

Similar to the simulated experiment in Section 5.1, we compare the pre-
dictions of the curl-free covariance function (19) with the diagonal covariance
function and the diagonal covariance function using artificial observations.
The results have been formed by averaging the error over 50 reconstructions.
In each iteration, training data and test data were randomly selected from
the data set collected in the experiment. 500 train data points and 1 000 test
data points were used.

The result is seen in Figure 3b. We recognise the same behaviour as we
saw for the simulated experiment in Figure 3a. Note that the accuracy of
the artificial observation approach gets very close to our approach for a large
number of artificial observations. However, in the last step of increasing the
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Figure 3: Accuracy of the different approaches as the number of artificial
observations Nc is increased.

artificial observations, the accuracy decreases. This is probably caused by
the numerical errors that follows from an ill-conditioned Gram matrix.

6 Related work

Many problems in which GPs are used contain some kind of constraint that
could be well exploited to improve the quality of the solution. Since there
are a variety of ways in which constraints may appear and take form, there
is also a variety of methods to deal with them. The treatment of inequality
constraints in GP regression have been considered for instance in [1] and
[5], based on local representations in a limited set of points. The paper
[13] proposes a finite-dimensional GP-approximation to allow for inequality
constraints in the entire domain.

It has been shown that linear constraints satisfied by the training data
will be satisfied by the GP prediction as well [21]. The same paper shows
how this result can be extended to quadratic forms through a parametric
reformulation and minimisation of the Frobenious norm, with application
demonstrated for pose estimation. Another approach on capturing human
body features is described in [20], where a face-shape model is included in the
GP framework to imply anatomic correctness. A rigorous theoretical analysis
of degeneracy and invariance properties of Gaussian random fields is found
in [8], including application examples for one-dimensional GP problems.

Although constraints in most situations are formulated on the outputs of
the GP, there are also situations in which they are acting on the inputs. An
example of this is given in [23], describing a method of benefit from ordering
constraints on the input to reduce the negative impact of input noise.

Applications within medicine include gene-disease association through
functional expectation constraints [11] and lung disease sub-type identification
using a mixture of GPs and constraints encoded with Markov random fields
[19]. Another way of viewing constraints is as modified prior distributions. By
making use of the so-called multivariate generalised von Mises distribution,
[14] ends up in a version of GP regression customised for circular variable



76 Paper I – Linearly constrained Gaussian processes.

problems. Other fields of interest include using GPs in approximately solving
one-dimensional partial differential equations [9, 15, 16].

Generally speaking, the papers mentioned above consider problems in
which the constraints are dealt with using some kind of external enforcement
– that is, they are not explicitly incorporated into the model, but rely on
approximations or finite representations. Therefore, the constraints may just
be approximately satisfied and not necessarily in a continuous manner, which
differs from the method proposed in this paper. Of course, comparisons can
not be done directly between methods that have been developed for different
kinds of constraints. The interest in this paper is multivariate problems
where the constraints are linear combinations of the outputs that are known
to equal zero.

For multivariate problems, constructing the covariance function is par-
ticularly challenging due to the correlation between the output components.
We refer to [2] for a very useful review. The basic idea behind the so-called
separable kernels is to separate the process of modelling the covariance func-
tion for each component and the process of modelling the correlation between
them. The final covariance function is chosen for example according to some
method of regularisation. Another class of covariance functions is the invari-
ant kernels. Here, the correlation is inherited from a known mathematical
relation. The curl- and divergence free covariance functions are such examples
where the structure follows directly from the underlying physics, and has
been shown to improve the accuracy notably for regression problems [24].
Another example is the method proposed in [4], where the Taylor expansion
is used to construct a covariance model given a known relationship between
the outputs. A very useful property on linear transformations is given in [22],
based on the GPs natural inheritance of features imposed by linear operators.
This fact has for example been used in developing a method for monitoring
infectious diseases [3].

The method proposed in this work is exploiting the transformation prop-
erty to build a covariance function of the invariant kind for a multivariate
GP. We show how this property can be exploited to incorporate knowledge
of linear constraints into the covariance function. Moreover, we present
an algorithm of constructing the required transformation. This way, the
constraints are built into the prior and are guaranteed to be fulfilled in the
entire domain.

7 Conclusion and future work

We have presented a method for designing the covariance function of a
multivariate Gaussian process subject to known linear operator constraints
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on the target function. The method will by construction guarantee that
any sample drawn from the resulting process will obey the constraints in all
points. Numerical simulations show the benefits of this method as compared
to alternative approaches. Furthermore, it has been demonstrated to improve
the performance on real data as well.

As mentioned in Section 4, it would be desirable to describe the re-
quirements on Gx more rigorously. That might allow us to reformulate the
construction algorithm for Gx in a way that allows for a more straightforward
approach as compared to the parametric ansatz that we have proposed. In
particular, our method relies upon the requirement that the target function
can be expressed in terms of an underlying potential function g. This leads
to the intriguing and nontrivial question: Is it possible to mathematically
guarantee the existence of such a potential? If the answer to this question is
yes, the next question will of course be what it look like and how it relates to
the target function.

Another possible topic of further research is the extension to constraints
including nonlinear operators, which for example might rely upon a linearisa-
tion in the domain of interest. Furthermore, it may be of potential interest
to study the extension to a non-zero right-hand side of (4).
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9 Supplementary material

9.1 Linear operators

In this work we consider linear operators on functions. Such an operator
transforms a function f(x) to another function g(z). We denote this according
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to

g(z) = Fz[f(x)]. (20)

This linear operator could be differentiation of a function. If D = 1 and
K = 1 this will be defined as

g(z) = Fz[f ] =
@f(x)

@x

���
x=z

, (21a)

which slightly more informal also can be written as

g(x) = Fx[f ] =
@f(x)

@x
. (21b)

Also integration of a scalar function f(x) over an interval [z1, z2] is a linear
operator

g(z) = Fz[f ] =

Z
z2

z1

f(x)dx, (22)

where g(z) is a scalar-valued function with a two-dimensional input z =
[z1, z2]T. Note that in the two examples given above, the inputs of f and g
will not be the same, not even of the same dimension!

Input wrapping is another way to construct new covariance functions
from old ones [18, page 92]. It utilises a nonlinear wrapping x = u(z) of the
input variables. This wrapping can also be considered as a linear operator,
where

g(z) = Fz[f ] = f(x)|x=u(z). (23)

This operator also changes the function input and possibly also its dimen-
sion. Even though the wrapping itself might be nonlinear, the operator
corresponding to this wrapping is in fact linear.

It is straightforward to show that all three operators presented above do
fulfil the linearity condition.

9.2 Gaussian processes under linear operations

It is well-known that Gaussian distributions are closed under linear trans-
formation. In similar manner, Gaussian processes are closed under linear
operations [6, 10, 17, 18].

By applying the functional Fx on both the mean function and the
covariance function, the GP prior for Fx is given by

Fxf ⇠ GP
�
Fx µ, Cov

⇥
Fxf(x), Fx0f(x0)

⇤�
. (24)
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The covariance becomes

Cov
⇥
Fxf(x), Fx0f(x0)

⇤

= E
h�
Fxf(x) �Fxµ(x)

��
Fx0f(x0) �Fx0µ(x0)

�Ti

= FxE
h�

f(x) � µ(x)
��

f(x0) � µ(x0)
�Ti

FT
x0

= FxKFT
x0 , (25)

where by the notation (FxKFT
x0)ij we mean that

(FxKFT
x0)ij = (Fx)ik(Fx0)jlKkl, (26)

and where (Fx)ik and (Fx0)jl act on the first and second argument of
Kkl(x,x0), respectively.

We should point out that some care must be taken when applying this
procedure. For example, if we would like to consider the derivative of a
function governed by a GP, we must make sure that this function is modelled
in a way such that the derivative actually exists. This may sound obvious,
yet important to remember since the set of standard covariance functions
includes members that are not differentiable – among those we find Matérn1/2

[18].

9.3 Generalisation of Section 4

In this supplementary material we will generalise the method described on
how to solve operator matrix equations on the form

FG= 0,

where we want to find G given F 1. If F2 Rm⇥n is a real valued matrix,
G can easily be found by letting the columns in G span the nullspace of F
(provided such a nullspace exist). However, if the elements of F are operators,
the situation is more tricky. This supplementary material generalises the
parametric approach presented in Section 4 for arbitrary operators of any
order. The strategy is to study the vector space of homogeneous polynomials
where the operators are interpreted as the variables of these polynomials.

In Section 9.3, we assume that both F and G consist of first order
operators and in Section 9.3 we generalise this to allow for any order of the
operators.

1
In this supplementary material, the argument x is omitted for simplified notation
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First order operator equation

Consider the matrix F 2 Pm⇥n
p , where Pp is a vector space of first order

operators

Pp = {a1y1 + . . . apyp|a1, . . . , ap 2 R}, (27)

where y1, . . . , yp is the basis in that vector space. The basis components yk
can for example represent derivative operators yk = @

@xk
. We want to find

the vectors g 2 Pn
p such that Fg = 0 is fulfilled. We can write F2 Pm⇥n

p

and g 2 Pn
p as

Fij =
pX

k=1

�ijkyk, �ijk = {�}ijk 2 R, (28a)

gj =
pX

k=1

�jkyk, �jk = {�}jk 2 R, (28b)

where � 2 Rm⇥n⇥p and � 2 Rn⇥p. This gives

Fg = 0 ,
nX

j=1

pX

k=1

pX

l=1

�ijkyk�jlyl = 0 8 i = 1 : m. (29)

For each i, we have a quadratic form

y
T�i�y = 0, (30)

where �i 2 Rp⇥n with {�i}kj = �ijk and � 2 Rn⇥p with {�}jk = �jk.
The quadratic form is equal to zero for all y if and only if

�i� + �T�T
i = 0 8 i = 1 : m. (31)

Example 1 (divergence free vector field)

We consider the following vector of operators F2 P1⇥3
3

F= rx =


@

@x1
,

@

@x2
,

@

@x3

�
, (32)

where

Fij =
3X

k=1

�ijkyk, 8 i = 1, j = 1, 2, 3, (33)
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where yk = @

@xk
. Following the notation introduced above, for this particular

operator matrix we have

�1 =

2

4
1 0 0
0 1 0
0 0 1

3

5 . (34)

We now want of find a vector g 2 P3 that fulfils Fg = 0 for all y. We
assume that this operator vector is in g 2 P3

3 and can be written

gj =
3X

k=1

�jkyk j = 1, 2, 3, (35)

where � 2 R3⇥3 is unknown. Now we have that

�1� + �T�T
1 = 0 (36a)

)

2

4
�11 �12 � �21 �13 � �31

�21 � �12 �22 �23 � �32
�31 � �13 �32 � �23 �33

3

5 = 0, (36b)

which in turn gives

�11 = 0, �12 + �21 = 0, (37a)
�22 = 0, �13 + �31 = 0, (37b)
�33 = 0, �23 + �32 = 0. (37c)

The nullspace of (36a) is then spanned by

� = �1

2

4
0 0 0
0 0 1
0 -1 0

3

5+ �2

2

4
0 0 -1
0 0 0
1 0 0

3

5+ �3

2

4
0 1 0
-1 0 0
0 0 0

3

5 ,

which gives

g = �1

2

4
0
@

@x3

- @

@x2

3

5+ �2

2

4
- @

@x3

0
@

@x1

3

5+ �3

2

4
@

@x2

- @

@x1

0

3

5,�1,�2,�3 2 R.

Example 2 (curl free vector field)

We consider the following vector of operators F2 P3⇥3
3

F=

2

64
0 @

@x3
� @

@x2

� @

@x3
0 @

@x1
@

@x2
� @

@x1
0

3

75 , (38)
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where

Fij =
3X

k=1

�ijkyk, 8 i = 1 : 3, j = 1 : 3, (39)

where yk = @

@xk
. For this particular operator matrix we have

�1 =

2

4
0 0 0
0 0 -1
0 1 0

3

5, �2 =

2

4
0 0 1
0 0 0
-1 0 0

3

5, �3 =

2

4
0 -1 0
1 0 0
0 0 0

3

5.

We now want to find a vector g 2 P3 which fulfils Fg = 0 for all y. We
assume that this operator vector is in g 2 P3

3 and can be written

gj =
3X

k=1

�jkyk j = 1, 2, 3, (40)

where � 2 R3⇥3 is unknown. Now we have that

�1� + �T�T
1 = 0 )

2

4
0 -�31 �21

-�31 -2�32 �22-�33
�21 �22-�33 2�23

3

5 = 0,

�2� + �T�T
2 = 0 )

2

4
2�31 �32 �33-�11
�32 0 -�12

�33-�11 -�12 -2�13

3

5 = 0,

�3� + �T�T
3 = 0 )

2

4
2�21 �22-�11 �23
�22-�11 -2�12 -�13
�23 -�13 0

3

5 = 0,

which in turn gives

�22 � �33 = 0, �23 = 0, �32 = 0, (41a)
�33 � �11 = 0, �13 = 0, �31 = 0, (41b)
�22 � �11 = 0, �12 = 0, �21 = 0. (41c)

The nullspace of (41a) is then spanned by the single base vector

� = �1

2

4
1 0 0
0 1 0
0 0 1

3

5 , �1 2 R, (42)

which gives

g = �1

2

64

@

@x1
@

@x2
@

@x3

3

75 , �1 2 R. (43)
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Figure 4: Three snapshots from the measurement collection. The senor
platform was moved around by hand during approximately three minutes.

The final covariance function becomes

K(x,x0) =

2

6664

@
2

@x1@x
0
1

@
2

@x1@x
0
2

@
2

@x1@x
0
3

@
2

@x2@x
0
1

@
2

@x2@x
0
2

@
2

@x2@x
0
3

@
2

@x3@x
0
1

@
2

@x3@x
0
2

@
2

@x3@x
0
3

3

7775
kg(x,x0). (44)

If we use the squared exponential covariance function

kg(x,x0) = �2fe
� kx�x0k2

2l2 , (45)

we get

K(x,x0) =
�2
f

l2
e�

kx�x0k2

2l2

 
I3�

✓
x � x

0

l

◆✓
x � x

0

l

◆T!
. (46)

This covariance function is used in the real data experiment in Section 5.2.
Note, that the version in the paper does not use l2 in the denominator (which
we also would get here if we would multiply (43) with l2, still providing the
same constraints).

Higher order operator equation

Now, consider the matrix F 2 Pm⇥n
p,q , where Pp,q is a vector space of all

homogeneous polynomials of degree q in p variables

Pp,q =

8
<

:

pX

k1

· · ·
pX

kq

ak1,...,kqyk1 · · · ykq |ak1,...,kq 2 R

9
=

; ,

where the nominals yk1 · · · ykq constitute the basis of that vector space. The
components yk can for example represent derivative operators yk = @

@xk
and

Pp,q then contain all qth order derivatives of x1 . . . xq. We want to find the
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vectors g 2 Pn
p,qg

such that Fg = 0 is fulfilled. We can write F2 Pm⇥n
p,q

and g 2 Pn
p,qg

as

Fij =
pX

k1

· · ·
pX

kq

�i,j,k1,...,kqyk1 · · · ykq , (47a)

gj =
pX

k1

· · ·
pX

kq

�j,k1,...,kqg yk1 · · · ykqg , (47b)

where � 2 Rm⇥n⇥p
⇥q and b 2 Rn⇥p

⇥q (here p⇥q denotes p ⇥ · · ·⇥ p| {z }
q times

). This

gives

Fg = 0 ,
nX

j

pX

k1

· · ·
pX

kq

pX

l1

· · ·
pX

lq

⇢

�ijk1...kqyk1 · · · ykq�jl1...lqg yl1 · · · ylqg

�
= 0 8 i = 1 : m.

For each i, this is an algebraic form of order q + qg
nX

j

X

k1...kq ,l1...lq2{d1...dq+qg}

�ijd1...dq�jdq+1...dq+qg
= 0 8 i = 1 : m,

k1 = 1 : p, . . . , kq = 1 : p,

l1 = 1 : p, . . . , lq = 1 : p,

where the second sum sums over all permutations of k1 . . . kq, l1 . . . lq.

9.4 Real data experiment description

This section contains more details about the real data experiment described
in Section 5.2.

Experiment setup

To collect the measurements we made use of a wooden platform, see Figure 5.
The platform was equipped with a Trivisio Colibri wireless IMU (TRIVISIO
Prototyping GmbH, http://www.trivisio.com/), sampled at 100 Hz. The
sensor includes both an accelerometer, a gyroscope, and a magnetometer.
For additional validation a Google Nexus 5 smartphone was also mounted on
the platform even tough its data was never used in this experiment.

On the platform, five markers were mounted. An optical reference system
(Vicon) with several cameras mounted in the ceiling measured the 3D position
of each marker, and hence also the position and the orientation of the platform
relative to its predefined origin.
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Figure 5: Platform with magnetic sensors. The sensor to the left is the
Trivisio sensor, whose magnetometer data we used during the experiment.
The platform was also equipped with multiple markers visible to an optical
reference system (Vicon).

Experiment execution

The sensor platform was moved around by hand up and down in a volume of
4 ⇥ 4 ⇥ 2 meters, see Figure 4. During the experiment, measurements were
collected from the sensors on the platform as well from the optical reference
system. The data from the different sensors were collected asynchronously.
The experiment lasted for 187 seconds.

Pre-processing of data

The position and orientation data from the optical reference system was
synchronised with the data from the Trivisio sensor. The synchronisation was
performed based on correlation analysis of the angular velocities measured
by both systems.

The position in global coordinates of the Trivisio sensor was computed
based on the position data, the orientation data, and the displacement of the
Trivisio sensor relative to the predefined origin of the platform.

The magnetometer data from the Trivisio sensor was rotated from sensor-
fixed coordinates to global coordinates using the orientation data from the
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optical reference system. These rotated measurements describe the magnetic
field in global coordinates at the sensor positions computed above. In Sec-
tion 5.2 of the main paper, these position data and magnetic field data are
considered as input and output data, respectively.
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Probabilistic modelling and
reconstruction of strain

Abstract

This paper deals with modelling and reconstruction of strain fields, relying
upon data generated from neutron Bragg-edge measurements. We propose
a probabilistic approach in which the strain field is modelled as a Gaussian
process, assigned a covariance structure customised by incorporation of the so-
called equilibrium constraints. The computational complexity is significantly
reduced by utilising an approximation scheme well suited for the problem.
We illustrate the method on simulations and real data. The results indicate a
high potential and can hopefully inspire the concept of probabilistic modelling
to be used within other tomographic applications as well.

1 Introduction

The goal of tomographic reconstruction is to build a map of an unknown
quantity within an object using information gained from irradiation experi-
ments. A well known example of this is X-ray imaging, where the unknown
quantity might be, for instance, the bone density inside a human body.

Each measurement provides information about the amount of intensity
that the ray has lost when passing through the material. Of course, a single
measurement does not uniquely define the interior. However, processing a
large number of measurements taken from many different angles allows for
an accurate reconstruction of the internal structure.

While techniques such as X-ray imaging and MRI are concerned with scalar
fields, we are in this work considering the reconstruction of the strain field – a
second order tensor – within a deformed material. This is a significantly harder
problem as it is a multidimensional quantity at each point. For simplicity, we
are restricting the analysis to a planar problem, but the extension to three
dimensions follows the same procedure.

The development of accurate strain measuring techniques is motivated by
applications within several fields. One field with perhaps especially exciting
application potential is additive manufacturing, which involves printing of
three-dimensional metal structures. For instance, this is of interest for
developers of fuel nozzles [28] and turbine blades [34] within the aerospace
industry.
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Several techniques enabling high-precision measurement of residual strain
have been proposed in previous work. These are characterised as destructive,
semi-destructive or non-destructive, where examples from each category
includes slitting [15], ring-coring [26] and diffraction [3, 13], respectively.

Bragg-edge analysis [19, 20] is an alternative transmission-based approach
aiming at reconstructing the entire three-dimensional strain-field. This
is an important difference to the established techniques outlined above,
including the diffraction-based strain tomography such as synchrotron X-ray
measurements [9, 10]. The term Bragg-edge refers to rapid changes in the
relative transmission rate, which are determined from Bragg’s law and hence
directly related to the wavelength [20].

Methods relying on the Bragg-edge idea have seen a significant progress
during recent years, and provides an essential foundation for generation of
high-resolution strain-images within polycrystalline materials [19, 29, 30, 37].

A practical method based on the Brag-edge technique has been proposed
by [36]. This relies upon the assumption that the strain field is compatible
(see Section D), which allows the measurement equation to be expressed
in terms of the boundary displacements. The reconstruction is obtained
by solving a least squares problem and providing the result as a boundary
condition to a finite element solver. An extension of this method is given by
[35] with application to a real-world problem presented in [6].

The solution technique presented in this work relies upon the concept of
probabilistic modelling [5]. Probabilistic modelling refers to methods that are
employing probability theory to encode uncertainties present in the problem
and where the solution is obtained through statistical inference. The idea
is based on the assumption that uncertainties are always present, mainly
due to a limited amount of data and the presence of measurement noise. A
natural way of encoding these uncertainties in the model is therefore to assign
a probabilistic measure to the unknown quantities themselves.

The contribution of this paper is a new way of modelling and reconstruct-
ing strain fields from data generated by neutron Bragg-edge measurements.
We are using a tailored Gaussian process (GP) [17] to model the strain field,
and by utilising the fact that GPs are closed under linear transformations,
the reconstruction of the strain field is obtained through GP regression. The
model is customised by designing the associated covariance function with
respect to the so-called equilibrium constraints, which guarantees a physical
solution.
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2 Problem formulation

Given a set of measurements generated from a neutron Bragg-edge experiment,
the problem faced in this work is to reconstruct the strain at various positions
within a sample. The sample is an object, in which we want to reconstruct
strain. The sample is considered to be two-dimensional. The strain in such
a sample can be represented using a symmetric 2 ⇥ 2-matrix ✏ called the
strain tensor. Any point in the sample has an assigned strain tensor. This
assignment is described by the strain field ✏(x), which is a function mapping
any point in space x = [x, y]T 2 R2 to a strain tensor ✏. The strain field can
be construed as

✏(x) =


✏xx(x) ✏xy(x)
✏yx(x) ✏yy(x)

�
2 R2⇥2, (1)

where ✏xy(x) = ✏yx(x) since strain tensors are symmetric.
The experiments rely upon high resolution time-of-flight neutron detectors.

Neutron beams are generated at a source, transmitted through the sample, and
recorded at a detector located at the opposite side of the sample. Considering
a single measurement, assume that the neutrons enters the sample at a point
x
0, propagates along the direction defined by the unit vector n̂ and exits at

x
0+Ln̂, where L is the illuminated distance in the sample. This is illustrated

in Fig. 1. An ideal measurement obtained from the neutron Bragg-edge
method can be expressed in terms of the Longitudinal Ray Transform (LRT)

I(⌘) =
1

L

Z
L

0
n̂
T✏(x0 + sn̂)n̂ds, (2)

where ⌘ = {x0, L, n̂} specifies the argument of the LRT and where s is a
coordinate used to specify the position on the line between the entry and exit
points. We can interpret (2) as the average strain along the propagated path,
so the LRT plays an important role in defining an adequate measurement
model within this framework [11]. See A for some more details on the
Bragg-edge experiment.

In a real-world application, we will have access to a data set D =
{(⌘i, yi)}Ni=1 with

yi = I(⌘i) + "i, (3)

where "i denotes the measurement noise. Hence, the problem to be solved is
this: Given the measurements {yi}Ni=1 in (3) and the relation (2), reconstruct
the strain tensor (1) in any arbitrary test point x⇤ along with an uncertainty
measure of the accuracy for this reconstruction.
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Source

Detector

Figure 1: Experimental setup. The neutrons are transmitted from a source
through the sample along the line starting at x

0 and ending at x
0 + n̂L and

finally measured by a detector.

3 Strain field reconstruction using Gaussian pro-
cesses

In this work, the problem is solved by making use of the framework known
as probabilistic modelling, with the somehow abstract idea of assigning a
probability distribution to the strain field. This does not mean that we should
think of the strain field as a random object, but the distribution provides
a way for us to encode the uncertainty of the reconstruction. The presence
of the uncertainty is mainly due to the fact that we have a finite number
of measurements and that each of these measurements by construction are
contaminated with noise.

More specifically, to reconstruct the strain field based on LRT measure-
ments (2), we need a probabilistic model describing (i) the strain field, and
(ii) the relation between the strain field and the measurements. The model
should be able to reason about the uncertainties present in the measurements
and take known physical constraints into consideration. In this work we
choose to model the strain field with a Gaussian process.

3.1 Gaussian processes

A GP is a stochastic process suitable for modelling spatially correlated
measurements. GPs can be seen as a distribution over functions

f(x) ⇠ GP
�
m(x),K(x,x0)

�
, (4)

where the process is uniquely defined with its mean function m(x) = E[f(x)]
and covariance function K(x,x0) = E

⇥
(f(x) � m(x))(f(x0) � m(x0))T

⇤
. The

GP is a generalisation of the multivariate Gaussian probability distribution
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in the sense that the function values evaluated for a finite number of inputs
x1, . . . ,xN are Gaussian distributed

2

64
f(x1)

...
f(xN )

3

75 ⇠ N (µ,K), where µ =

2

64
m(x1)

...
m(xN )

3

75 , (5a)

and

K =

2

64
K(x1,x1) · · · K(x1,xN )

...
...

K(xN ,x1) · · · K(xN ,xN )

3

75 . (5b)

In this work we will only consider zero-mean GPs, i.e., where m(x) = 0. This
is the natural choice in absence of more specific prior knowledge. It shall not
be interpreted as if we believe that f(x) = 0, it simply represents the fact
that we do not have any better initial guess.

Since ✏(x) is a symmetric 2 ⇥ 2 tensor, it consists of three unknown
components, ✏xx(x), ✏xy(x) and ✏yy(x). We therefore choose to model the
strain tensor with a function f(x) : R2 7! R3, here called the strain function,
where

f(x) =

2

4
fxx(x)
fxy(x)
fyy(x)

3

5 =

2

4
✏xx(x)
✏xy(x)
✏yy(x)

3

5 and x =


x
y

�
. (6)

We then put a GP prior on f(x) according to (4). The model now consist of
two parts:

1. The GP prior (4) of the strain field, i.e., our choice of K(x,x0). This
GP prior is described in Section 3.2.

2. The joint distribution between the measurements y = [y1, y2, . . . , yN ]T

and the strain function f⇤ = f(x⇤) at a point x⇤ where we want to make
a reconstruction. This distribution allows us to infer the measurements
and it is described in Section 3.3 and Section 3.4.

3.2 The covariance function

The strain function cannot be any arbitrary function mapping R2 to R3. It
needs to obey some physical laws. Therefore, we want to model the covariance
function K(x,x0) such that any sample we draw from the GP prior (4) is
a valid strain function. More specifically we need to fulfil the equilibrium
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constraints, which for isotropic linearly elastic (i.e. in the absence of strong
grain texture) solid materials under the assumption of plane stress, read as

@fxx(x)

@x
+ (1 � ⌫)

@fxy(x)

@y
+ ⌫

@fyy(x)

@x
= 0, (7a)

⌫
@fxx(x)

@y
+ (1 � ⌫)

@fxy(x)

@x
+
@fyy(x)

@y
= 0, (7b)

where ⌫ denotes Poisson’s ratio. For f(x) to fulfill these constraints we can
describe it as a transformation of another scalar function '(x) : R3 7! R via
the transfomation according to

f(x) =

2

664

@
2

@y2
� ⌫ @

2

@x2

�(1 + ⌫) @
2

@x@y

@
2

@x2 � ⌫ @
2

@y2

3

775'(x) = Lx'. (8)

Here, Lx is an operator mapping scalar potential functions '(x) to vector-
valued strain functions f(x), i.e., in this case we have Lx : (R2 7! R) 7!
(R2 7! R3). One can easily verify that the strain function in (8) fulfils the
constraints in (7). This transformation is derived from the underlying physics
where '(x) is a known physical potential called the Airy stress function, for
details, see C. We can also derive the transformation f(x) = Lx' from any
set of linear constraints, for example those presented in (7), following the
procedure described by [8].

Instead of designing a covariance function for the strain function f(x), we
design a GP prior for the scalar potential function '(x)

'(x) ⇠ GP
�
0, k'(x,x0)

�
. (9)

It can be easily verified in (8) that the operator Lx is linear

Lx[�1'1(x) + �2'2(x)] = �1Lx['1(x)] + �2Lx['2(x)].

Since the GP '(x) is mapped through this linear operator, it follows from B
that f(x) is also a GP

f(x) ⇠ GP(0,K(x,x0)), (10)

where

K(x,x0) = Lxk'(x,x0)LT
x0 . (11)

Any sample drawn from the GP prior (10) will by this design obey the
equilibrium constraints (7) and hence represent a valid strain field. There are
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a variety of options for the scalar covariance function k'. The most common
one is the so-called squared exponential covariance function

k'(x, x0) = �2f exp


�1

2
(l�2
x r2x + l�2

y r2y)

�
, (12)

where rx = x � x0 and ry = y � y0. Here, �f is a magnitude parameter while
lx and ly determine the rate at which the covariance decays in direction x
and y, respectively. These so-called hyperparameters are learnt from data,
more on this in Section 4.2.

Note that we can write

K(x,x0) = Lxk'(x,x0)LT
x0 = LxLT

x0k'(x,x0) =  k'(x,x0),

where  is a matrix of operators. Specifically,

 11 = ⌫2
@4

@x2@x02 � 2⌫
@4

@x2@y02
+

@4

@y2@y02
, (13a)

 22 = (⌫ + 1)2
@4

@x@y@x0@y0
, (13b)

 33 =
@4

@x2@x02 � 2⌫
@4

@x2@y02
+ ⌫2

@4

@y2@y02
, (13c)

 12 =  21 = �⌫(⌫ + 1)
@4

@x@y@x02 + (⌫ + 1)
@4

@x@y@y02
, (13d)

 13 =  31 = �⌫ @4

@x2@x02 + (⌫2 + 1)
@4

@x2@y02
� ⌫

a

b

@4

@y2@y02
, (13e)

 23 =  32 = �⌫(⌫ + 1)
@4

@x@y@y02
+ (⌫ + 1)

@4

@x@y@x02 . (13f)

For example, if we let k'(x,x0) be the squared exponential covariance function
(12) we get

@4

@x2@x02k' = l�4
x (l�4

x r4x � 6l�2
x r2x + 3)k', (14a)

@4

@x2@y02
k' =

@4

@x@y@x0@y0
k'l�2

x l�2
y (1 � l�2

x r2x)(1 � l�2
y r2y)k', (14b)

@4

@x@y@y02
k' = l�2

x l�4
y rxry(l

�2
x r2y � 3)k', (14c)

with the remaining expressions obtained by exchanging x $ y.

3.3 The measurement model

In the previous subsection we presented a GP model for the strain function
stipulating that the strain tensors at any two points will be jointly Gaussian
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distributed. Further, the measurement model (2) defines a relationship
between the strain function and the measurements. We will use this relation
to define a joint distribution between the two, which later will be used to do
the inference.

First we reformulate the integrator of (2) as

n̂
T✏(x)n̂ =

⇥
nx ny

⇤ ✏xx(x) ✏xy(x)
✏yx(x) ✏yy(x)

� 
nx

ny

�

=
⇥
n2
x 2nxny n2

y

⇤
| {z }

,~nT

2

4
✏xx(x)
✏xy(x)
✏yy(x)

3

5 = ~nT
f(x), (15)

such that

I(⌘) = #⌘[f ] =
1

L

Z
L

0
~nT

f(x0 + sn̂)ds. (16)

Here, #⌘ is also considered to be an operator that maps strain functions f(x)
into LRT functions I(⌘). This operator is also linear and as a consequence,
the Gaussianity will be preserved also for the joint distribution of f⇤ = f(x⇤)
and y = [y1, y2 . . . , yN ]T. We denote this joint Gaussian distribution as


y

f⇤

�
⇠ N

 
0

0

�
,


KI + �2I K⇤

K
T
⇤ K⇤⇤

�!
, (17)

where K⇤⇤ denotes the covariance of f⇤, KI + �2I denotes the covariance of
y and K⇤ denotes the cross-covariance between y and f⇤. The covariance of
f⇤ is provided by the covariance function from the GP prior

K⇤⇤ = E
h
f(x⇤)f(x⇤)

T
i

= K(x⇤,x⇤), (18)

where we use the fact that E[f(x)] = 0. The cross-covariance between an
LRT measurement yi and the strain function f⇤ can be computed based on
(16) as

(K⇤)i = E
h
I(⌘i)f(x⇤)

T
i

=
1

Li

Z
Li

0
~nT
i E
h
f(x0

i + sn̂i)f(x⇤)
T
i
ds

=
1

Li

Z
Li

0
~nT
i K(x0

i + sn̂i,x⇤)ds, (19a)

where (K⇤)i denotes the ith row in the matrix K⇤ and where we also use
the fact that E[yi] = E[I(⌘i)] + E["i] = 0. In a similar manner, we can also
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compute the covariance of the measurements E[yiyj ] = (KI)ij + �2�ij , where

(KI)ij = E[I(⌘i)I(⌘j)]

=
1

LiLj

Z
Lj

0

Z
Li

0
~nT
i K(x0

i + sin̂i,x
0
j + sjn̂j)~njdsidsj . (19b)

To specify the full joint covariance in (17), the integrals in (19) can not be
expected to have an analytical solution. However, numerical integration
can be avoided for instance by making use of the approximation technique
described in Section 2.6.

Based on the joint distribution (17) we can condition the strain function
f⇤ = f(x⇤) on the measurements y to get a posterior. Due to the Gaussianity
and the linear operation of conditioning, also this posterior will be Gaussian
distributed according to

f⇤|y ⇠ N
⇣
µf⇤|y,Kf⇤|y

⌘
, (20a)

where

µf⇤|y = K
T
⇤ (KI + �2I)�1

y, (20b)

Kf⇤|y = K⇤⇤ � K
T
⇤ (KI + �2I)�1

K⇤. (20c)

The mean µf⇤|y is the reconstructed strain function at position x⇤ and its
associated covariance matrix Kf⇤|y encodes the uncertainty of this recon-
struction.

The extension to multiple test points is straightforward. We then need to
modify the matrices K⇤ and K⇤⇤. Consider the set of M test points {xj

⇤}Mj=1.
The dimension of K⇤ will change from N ⇥ 3 to N ⇥ 3M , where the columns
3j � 2 to 3j is built up according to (19a) with x⇤ = x

j
⇤. As for K⇤⇤, this

matrix dimension will change from 3⇥3 to 3M⇥3M , encoding the covariance
between all test points. Hence, it will be built up by M ⇥ M blocks each of
size 3 ⇥ 3, with block (i, j) being K(xi

⇤,x
j
⇤). The conditioning (9) is then

performed in the same way. This set of test points can for example be a
fairly dense grid covering the whole region of interest where we want to do
the reconstruction.

3.4 Extension of measurement model

So far we have restricted the model to the case where each neutron beam
passes through the sample only once on its way from the source to the
detector. In the general case, however, we must allow the beam to pass
through several segments of the sample. We denote the starting points of
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Detector

Source

Figure 2: Illustration of the case where the neutron beam passes through
P = 3 segments of the sample.

the P different segments with x
k and the corresponding end points with

x
k + Lk

n̂ as illustrated in Fig. 2. The measurement is still to be interpreted
as the average strain tensor along these line segments. Therefore, we have to
integrate along all of these line segments and normalise with the total lengthP

P�1
k=0 Lk travelled though the sample. The measurement equation (16) then

turns into

I(⌘) = #⌘[f ] =
1

P
P�1
k=0 Lk

P�1X

k=0

Z
L
k

0
~nT

f(xk + sn̂)ds. (21)

Here, ⌘ consists of all arguments for all segments

⌘ = {x0, L0, . . . ,xP�1, LP�1, n̂}.

Note that the direction n̂ is the same for all segments. Although this
modification requires some care in the implementation, there is no conceptual
challenge added. The covariance matrices in (19) will change accordingly

(K⇤)i =
1

P
Pi�1
k=0 Lk

i

Pi�1X

k=0

Z
L
k

i

0
~nT
i K(xk

i + sn̂i,x⇤)ds, (22a)

(KI)ij =
1⇣P

Pi�1
k=0 Lk

i

⌘⇣PPj�1
l=0 Ll

j

⌘ ·

·
Pi�1X

k=0

Pj�1X

l=0

 Z
L
l

j

0

Z
L
k

i

0
~nT
i K(xk

i + sin̂i,x
l

j + sjn̂j)~njdsidsj

�
. (22b)

The reconstruction procedure described in (9) remains the same with these
new covariance matrices in place.



4. The model in practice 101

4 The model in practice

Before presenting the numerical results, we discuss a couple of important
practical aspects concerning the computational complexity and the hyper-
parameter selection. The approach as described below is summarised in
Algorithm 1.

4.1 Reducing the computational complexity

A bottleneck in GP regression is the storage and inversion of the matrix
KI + �2I in (9), which scales as O(N2) and O(N3) in memory and time,
respectively. For large data sets, approximate methods are motivated by the
need to decrease the problem size, making memory requirements manageable
and reducing the runtime. There are a variety of methods described in the
literature, and we refer to [16] for a useful review. Here we make use of the
approximation method proposed by [25], which turns out to fit our model
very well. A drawback with this method is that it requires the covariance
function to be stationary, which means that it is dependent only on the
difference between the input locations. However, that is true for some of the
most common ones, including the squared exponential (12).

The key idea is to estimate the covariance function as a truncated sum of
m basis functions

k'(x, x0) ⇡
mX

i=1

S(�i)�i(x)�i(x
0), (23)

where S is the spectral density of the covariance function. For a stationary
covariance function k' = k'(r) where r = x � x

0, the spectral density is
given by

S(!) =

Z
k(r)e�i!Trdr. (24)

The basis functions �i(x) and eigenvalues �i are obtained from the solution
to the Laplace eigenvalue problem on the domain ⌦

⇢
���i(x) = k�ik2�i(x),

�i(x) = 0,

x 2 ⌦,

x 2 @⌦.
(25)

The Dirichlet boundary condition is the most natural choice, although any
boundary condition could be chosen. For a two-dimensional domain ⌦ =
[�⇢x, ⇢x] ⇥ [�⇢y, ⇢y], the solution of (10) reads

�i(x) =
1

p
⇢x⇢y

sin
�
�ix(x + ⇢x)

�
sin
�
�iy(y + ⇢y)

�
, (26a)

�ix =
⇡ix
2⇢x

, �iy =
⇡iy
2⇢y

, (26b)
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where ix and iy are chosen such that the eigenvalues lie in a desired frequency
domain, and the size of ⌦ should be adjusted thereafter. Loosely speaking,
the choice of ⇢x determines the frequency resolution in the x-direction, and
similarly for y.

The approximate posterior expressions are

E[f⇤] ⇡ �T
⇤ (��T + �2⇤�1)�1

�y, (27a)

V[f⇤] ⇡ �2�T
⇤ (��T + �2⇤�1)�1�⇤, (27b)

where �ij = �i(xj), �⇤ = [�1(x⇤) . . .�m(x⇤)]T and ⇤jj = S(�j). The correct
expressions for our problem are found by projecting the transformation given
by (16) onto the basis functions. We end up with

E[f⇤] ⇡ Q
T
⇤ (QQ

T + �2⇤�1)�1
Qy, (28a)

V[f⇤] ⇡ �2QT
⇤ (QQ

T + �2⇤�1)�1
Q⇤. (28b)

where

Q⇤ =
⇥
Lx�1|x=x⇤ . . . Lx�m|x=x⇤

⇤T
, (29a)

Qij = #⌘j
[Lx�i]. (29b)

Comparing this with (22), we have used that K⇤ ⇡ Q
T
⇤Q⇤ and KI ⇡ Q

T
⇤Q,

and the computationally more preferable form (29) is obtained by utilising
the identities

PB
T(BPB

T + R)�1 = (BT
R

�1
B + P

�1)�1
B

T
R

�1,

and

A � AC
T(CAC

T + W)�1
CA = (CT

W
�1

C + A
�1)�1.

This approximation scheme reduces the complexity of the regression from
O(N3) to O(Nm2). The actual savings in our case are even larger, since
the hazard of numerically computing the integrals in (22) is removed: now
all we need is to compute single integrals, and this is done analytically due
to the simple form of the basis functions (for details see D). Hence, for this
particular problem, the approximation is computationally preferable even if
N < m.

Extending to multiple test points {xj
⇤}Mj=1, all we need to change is Q⇤,

so that (29a) becomes

Q⇤ =

2

64
Lx�1|x=x1

⇤
. . . Lx�m|x=x1

⇤...
...

...
Lx�1|x=xM

⇤
. . . Lx�m|x=xM

⇤

3

75

T

. (30)
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Algorithm 1 Reconstructing the GP with the reduced-rank approach

Input: D = {(⌘i, yi)}Ni=1, x⇤, ⌦, m.
Output: E[f(x⇤)], V[f(x⇤)].
1: Construct the matrix Q as defined in (29b), with details given in D.
2: Optimise the hyperparameters ✓ as described in Section 4.2.
3: Construct Q⇤ as defined in (29a).
4: Solve the GP regression problem by (28).

The expressions (28) are then applied as before. Note that, usually what is
desired is the variance of the different component values in each test point,
and not the covariance between them. Hence, we should not compute the
entire matrix in (28b), but only its diagonal elements.

4.2 Hyperparameters

The covariance function k' is characterised by its hyperparameters ✓ = {✓k}.
An example was given in equation (12). This set does also include the noise
level �. Usually they are selected by maximising the marginal likelihood
p(y|{⌘i}, ✓), which is the probability of the data conditioned on the input
locations and the hyperparameters. The idea is to choose the hyperparameters
✓⇤ that given the choice of covariance function are most likely to have
generated the observed data. The marginal likelihood and its derivatives
can be computed in closed form [17]. For convenience, the logarithm of the
marginal likelihood is usually considered, and it is for our problem given by

log p(y|{⌘i}, ✓) = �1

2
log det(KI + �2I) � 1

2
y
T(KI + �2I)�1

y � N

2
log 2⇡,

(31)

where KI is a function of ✓. Since the constant term is irrelevant for optim-
isation purposes, we get

✓⇤ = argmax
✓

h
� 1

2
log det(KI + �2I) � 1

2
y
T(KI + �2I)�1

y

i
. (32)

An approximative version of (32) is obtained by replacing KI with Q
T
⇤Q.

The derivative expressions for this case are given in D.2. The optimisation
can thereafter be carried out using any standard gradient-based method, such
as for example the BFGS algorithm [12].
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5 Experimental results

5.1 Simulated experiment – cantilevered rectangular plate

As a simple example illustrating the potential of the method, consider the
problem presented in [35]. A cantilevered plate is subject to a vertical load
at the right end, see Fig. 3. The approximate equations for the strain field
components are

✏xx =
P

EI
(l � x)y, (33a)

✏xy = �(1 + ⌫)P

2EI

✓
h2

4
� y2

◆
, (33b)

✏yy = �⌫P
EI

(l � x)y, (33c)

where I = th3/12. Here, I denotes the moment of inertia, l, h, and t denotes
the width, height and thickness of the plate, P denotes the magnitude of the
load and E and ⌫ denote Youngs modulus and Poisson’s ratio, respectively.
We are using the same numerical values as in [35], namely E = 200 GPa,
⌫ = 0.3, h = 10 mm, t = 6 mm, l = 20 mm and P = 2 kN. The standard
deviation of the synthetic measurement noise is here � = 10�6, which was
found suitable for illustration purpose. The covariance function used was
constructed as described in Section 3.2 with k'(x,x0) = exp(�kx � x

0k2).
The ✏xx-component according to (33a) is illustrated in Fig. 4a together

with the paths along which the line integral (16) have been generated. The
remaining three figures in Fig. 4 show the reconstructed component and its
standard deviation using 1, 5 and 10 measurements, respectively.

The reconstruction was made by building the matrices defined in (19),
and then applying (20b). It is interesting to note that only 10 measurements
are enough for the method to produce a reconstruction that is very hard
to visually distinguish from the true function. Note that the uncertainty is
higher in regions further away from the measurements.

For comparison, we are performing a convergence study similar to the one
performed by [35]. Here, the measured data is not generated using (33) but
instead from a finite element solution of the problem, which should better
reflect reality. To line up with the real experimental setting, the data is not
randomly chosen but comes in chunks corresponding to different projections.
Each projection typically contains a couple of hundred measurements taken
from the same angle but uniformly distributed along the perpendicular
direction.

We consider the synthetic noise level � = 10�4, to align with [35] where
that value was used as an expected experimental measurement noise level. To
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Figure 3: Rectangular plate of width l, height h and thickness t, cantilevered
on the left side and subject to a vertical load P on the right. The approximate
strain components within this plate are given by (33).

model the Airy stress function, we are here using the Matérn5/2 covariance
function

k'(x,x0) = �2f

 
1 +

p
5r

l
+

5r2

3l2

!
e�

p
5r
l , (34a)

r = kx � x
0k2, (34b)

with the hyperparameters chosen by maximising the marginal likelihood (32).
This covariance function belongs to a generalisation that relaxes the extreme
smoothness assumptions of the squared exponential covariance function (12),
and is often considered to be somewhat more realistic. The prediction is
made in uniformly distributed points on a 40 ⇥ 20 mesh.

We are reporting the relative error in the reconstruction, where this
involves a concatenation of all components in all points. For a total set of
N projections, the angle from which projection k is taken has been chosen
as ⇡

96 + d95 k�1
N�1 � 0.5e ⇡

96 , so the projection angles are approximately evenly
spaced over [0, ⇡]. Gaussian noise has been added to the measurements with
Matlab:s default random seed.

We have here used the approximative method described in Section 2.6
with ⇢x = 3l, ⇢y = 3h/2 and a total number of 160 basis functions. The
spectral density of the Matérn5/2 covariance function (34a) is given by

S(!) = �2f100
p

5⇡l�5

✓
5

l2
+ k!k2

◆�7/2 �(7/2)

�(5/2)
, (35)

where �(·) is the gamma function.
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Figure 4: True and reconstructed strain field including its standard devi-
ation for the ✏xx-component in the rectangular plate shown in Fig. 3. The
measurements are the line integral paths shown in the top left figure. Note
that the uncertainty is larger at the regions that are poorly covered by the
measurements.
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Figure 5: Relative error in the GP-reconstruction as a function of the number
of projections.

The result is shown in Fig. 5, which also contains the corresponding
curve from [35] for comparison. It is seen that the GP-reconstruction is more
accurate and requires less measurements to achieve an equivalent performance.

5.2 Real data

In this section we are solving the problem using data collected from a
real-world experiment at the Japan Proton Research Accelerator Complex
(JPARC). A brief description of the experimental settings is given below, and
we refer to [6] for details.

The sample considered is a thin C-shaped steel plate subject to a com-
pressive load of roughly 7 kN. In polar coordinates it is defined by rin =
3.5 mm < r < rout = 10mm and 45� < ✓ < 315�.

The data set consists of 86 projections taken from evenly distributed
angles around the sample. The experimental resolution of the detector is
512x512. Since this particular experiment was dealing with a planar strain
field the detector pixels could be grouped by column (in the out of plane
direction) to improve the statistics, giving a possible 512 measurements per
projection. However, due to the sample size and shape not all rays would
have passed through the sample. On average roughly 350 measurements were
made per projection, giving a total amount of nearly 30 000 measurements. It
should be noted that the sample took up slightly less than half the detectors
height (as another sample was also being analysed) and so about 200 pixels
were binned for each measurement.

The Matérn5/2 covariance function (34a) was used, and for the approxim-
ate settings we have taken ⇢x = ⇢y = 2.5rout and a total number of 673 basis
functions.

The result is shown in Fig. 6. The top row shows a finite element solution
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to the simulated problem, while the middle and bottom rows contains the
mean and standard deviation of the GP reconstruction. Fig. 7 is showing
the ✏yy- and ✏xx-components along the line y = 0. The data points labelled
KOWARI emerges from a constant wavelength scanning experiment, which is
a well established method for accurate measurement of average strain within
a gauge volume [6]. Also, LS denote the reconstruction obtained from the
least squares approach used by [6].

Although the GP reconstruction follows the overall structure of the FEA
solution and the KOWARI data, there are regions of notable deviations. This
is particularly clear at the right sides in Figure 7, near the boundary of
the sample. It has been observed that this deviating behaviour is present
when the reconstruction is made from simulated data as well. The boundary
challenges are intuitively understood from the nature of the model. From the
GP’s perspective, the inferred function is a continuous object, and the natural
problem boundary of the sample is not built into the model. Outside the
sample the reconstruction will fall back to the prior mean, which obviously
has a higher impact on the boundary than on the interior. This effect gives
rise to a perceived non-smooth feature, which is hard to capture with the
relatively smooth covariance function provided by Matérn5/2.

Moreover, it is not obvious what settings to choose for the approximation
method. In theory, the approximation improves as the number of basis
functions is increased. In practice, too many basis functions entails numerical
problems, while too few gives a poor approximation. This trade-off requires
a somehow ad hoc user selection and the precise impact on the solution is
hard to anticipate.

Data-specific error sources related to the collection and processing of the
raw data are discussed more thoroughly by [6]. For example, certain ray
paths are short relative to others, and the Bragg-edge estimate hence becomes
less accurate in these cases. See [32] for more discussions on systematic error
sources in this context.

6 Concluding remarks

6.1 Compatibility constraint

If the strain field can be expressed as emerging from a continuous, single-
valued displacement field, then it is called compatible. Compatibility can be
expressed as the linear constraint

h
@
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� @
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@x@y

@
2

@x2

i

| {z }
FC

x

f = 0.



6. Concluding remarks 109

Figure 6: Top row: simulated solution obtained through finite element
analysis. Middle and bottom row: mean and standard deviation of the GP
reconstruction.
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Figure 7: Plots of the GP reconstruction along the line y = 0, compared to
constant wavelength scanning (KOWARI), a finite element simulation (FEA)
and a reconstruction obtained through the least squares approach (LS).
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If we would like to construct a model with this constraint imposed as well,
the scalar function '(x) can no longer be chosen arbitrary. Instead it will be
governed by the relation

FC

xLx' = 0, (36)

where Lx is given by (8). This is the strain formulation of the biharmonic
equation, with solutions called biharmonic functions. As shown by [18],
separation of variables can be used to express a general solution '⇤, where
the specific form is determined by the boundary conditions of the problem,
and so is the number of parameters.

This gives rise to at least two questions. Firstly, if there is a parametric
form of the solution, why would we use a non-parametric regression method?
The answer is that a parametric model require the exact form of the solution
so that the number of parameters to be estimated is known. This can only
be done provided accurate information of the boundary conditions, which in
general can not be assumed to be available. Furthermore, for some boundary
conditions the analytical solution may have to be expressed as an infinite sum,
thus involving an infinite number of parameters, which makes a parametric
model unsuitable.

The second question is, can we include the knowledge of the general
solution in the GP model? In theory, the answer is yes. Let '⇤ = '⇤

w

denote that the function is parametrised with the parameters in the vector
w. Treating these parameters as random variables and assigning them the
distribution p(w) allows us to calculate the covariance function of '⇤

w

k'⇤
w
(x, x0) =

Z
'⇤
w(x)'⇤

w(x0)p(w)dw. (37)

To be general, we must assume w to be infinite-dimensional. This fact itself
does not imply that an analytical expression could not be found, but the
specific form that '⇤ requires may not allow it. In any case, we are leaving
this as a potential topic of further research.

6.2 Samples with grain texture

The GP prior was designed such that any strain fields generated would
automatically satisfy the equilibrium constraints as written in (7). These
equilibrium equations are valid for planar, isotropic, linearly elastic samples
under the assumption of plane stress. Although the framework presented
for strain tomography using GPs does not explicitly prevent the adaptation
of this model to allow for samples with strong grain texture, there are
significant challenges. These challenges are present both in the acquisition
of transmission strain measurements and in the reconstruction from these
measurements. During measurement acquisition strong texture may result in
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the Bragg-edge of interest being unobservable from particular measurement
directions, however current research into full pattern fitting may provide a
solution to this problem in the future [22–24]. During reconstruction, texture
is problematic as different strain measurements may relate to the material
bulk strain in different ways. If this relationship can be quantified it may be
possible to build it into the GP model.

6.3 Relation to diffraction measurements

Since comparison with a diffraction-based method (KOWARI) was made in
Section 5.2, we would like to add a brief comment on the relation between
these methods. We would argue that tomographic methods such as the one
presented in our paper and diffraction measurements are complementary
rather than opposing.

It is important to recognise the differences between these methods.
Diffraction-based methods provide measurements of average strain within a
gauge volume at defined locations, whereas tomographic methods provide the
full strain field over the sample. In addition, future increases in beam power
at JPARC and other facilities should reduce the time required to collect
Bragg-edge transmission measurements. Under these conditions, one could
expect to see a significant reduction in time required to determine the full
strain field

Therefore we would suggest that if a particular area of interest is known,
diffraction measurements may be a good choice, whereas if it is not known
and the user would like to analyse the full field the method presented in this
paper may be preferable.

6.4 Future work

First of all, recall that this paper only considers the two-dimensional problem.
Since the real world is three-dimensional, it is natural to extend the method
accordingly. The main difference is that the target function (6) becomes six-
dimensional since a three-dimensional strain field has six unique components.
Following this, the equilibrium constraints take an extended form, which
obviously is reflected in the covariance model. However, the challenges are
most likely not conceptual, but rather limited to the implementation.

Another interesting topic relates to the discussion in Section 6.1, where
we introduced the idea of constructing a covariance function for compatible
strain fields based on the theoretical solution. Although this appears to be
intractable and perhaps not desirable, we did not investigate the subject any
further. However, there may be situations in which a theoretical formulation
can be derived in an exact or approximate form when this idea may be
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applicable – especially if the strain field is governed by relatively simple
equations.

Furthermore, one may want to explore other covariance models. As always,
simple alternatives such as the squared exponential and the Matérn covariance
functions should always be tried first, since they have shown to perform well
in many applications. As for the particular problems we have considered,
there has not been enough indications motivating the implementation of a
more advanced option. Also, non-stationary alternatives as discussed below
can not be used with the approximation method employed in this paper.

However, it may be situations where extensions are necessary. An example
is if the inferred function contains significant non-smooth features, such as
rapid changes or discontinuities. In those cases it may be hard to obtain a
satisfying reconstruction with a simple model – this is referred to as mis-
specification. As shown by [17], such situations can be dealt with by building
the covariance function as a sum of several terms encoding different properties,
or changing to another covariance function that is better suited to the data.
Even more powerful models having gained interest in recent years are the
so-called deep GPs [2] and the related manifold GPs [1].

Particularly, in some situations the strain behaviour varies significantly
between different well-specified parts of the domain, although nearby located.
An example of this is the ball bearing problem illustrated by [36]. A way to
deal with this might be to use different GPs in each subdomain, conceptually
similar to the piecewise GP approach employed by [27] or a so-called mixtures
of experts model [31]. The most challenging part here is to find a neat way of
making use of data spanning multiple subdomains, as is the case with line
integral measurements. An extended covariance model as outlined above is a
potential alternative for this problem as well. For detailed discussions on the
model selection problem, see e.g. [17].

6.5 Conclusion

In this paper we have introduced the concept of probabilistic modelling within
the field of tomographic reconstruction. In particular, we have shown that
Gaussian processes can be used for strain field estimation from Bragg-edge
measurements. The probabilistic nature of the model allows for a systematic
treatment of the noise and it provides a direct uncertainty measure of the
reconstruction. We have shown that known physical laws can be explicitly
incorporated in the design of the associated covariance function, relying on
the property that Gaussian processes are closed under linear transformations.
Experiments performed on simulated and real data indicates that the method
has a high potential which opens up for other tomographic applications as
well.
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Figure 8: Left : Simple illustration of a crystal structure. The material is
built up by crystals with planes of certain lattice spacing directed in different
angles. Right : A ray incident on the material will interact with the crystals
whose planes are directed in an angle such that Bragg’s law (38) is fulfilled.
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A Bragg-edge method

A well-established method for strain estimation within deformed polycrystal-
line materials relies upon so-called Bragg-edge analysis [20]. A summary of
the procedure goes as follows.

The sample investigated is penetrated by neutron beams in a two-step
procedure – before and after the deformation occurs. The neutron beams
contains a spectra of wavelengths, and they are transmitted in pulses each
with a well-known relation between wavelength and intensity. After having
passed through the material, the intensity of the beams is recorded at a
detector. The wavelength profiles can be measured because of the direct
relationship between velocity and wavelength and hence the recorded arrival
time of the neutron at the detector is a proxy for the wavelength.

The material contains a very large number of randomly oriented crystal
planes that the neutrons interact with, and constructive diffraction occurs
according to Bragg’s law

� = 2d sin ✓, (38)

where � is the neutron wavelength, d is the lattice spacing between the crystal
planes and ✓ is the scattering angle, see Fig. 8. The neutrons are scattered up
until ✓ = 90�, a point at which they are reflected back towards the incoming
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direction – so-called backscattering. For larger wavelengths, no scattering can
occur which results in a sudden increase in the relative transmission rate (the
ratio of the open beam intensity when no sample is present and the measured
intensity when the sample is present). This is known as a Bragg-edge. The
change in position of the Bragg-edges due to the deformation of the sample
is used to calculate a measure of the average strain h✏i along the propagating
direction of the neutron beam

h✏i =
d � d0

d0
, (39)

where d0 and d denote the lattice spacings before and after deformation,
respectively. Since the material consists of a large number of lattice spacings,
each measurement contains several Bragg-edges. In practice a Bragg-edge is
chosen that is characteristic of the materials bulk properties (elastic modulus)
and also has a good Bragg-edge height (dependent on the source spectra etc).
A measurement of the form (39) is modelled with the LRT (2).

B Gaussian processes under linear transformations

A useful property of the GP is that it is closed under linear functional
transformations [4, 7, 14, 17, 33]. This means that if

f(x) ⇠ GP
�
m(x), k(x, x0)

�
,

then
Lw[f(x)] ⇠ GP

⇣
Lw[m(x)], L2

w,w0 [k(x, x0)]
⌘
,

where Lw is a linear functional with argument w, and L2
w,w0 indicates that

it is acting on both arguments of k. With Lw being linear we mean that

Lw[↵f(x) + �g(x)] = ↵Lw[f(x)] + �Lw[g(x)], (40)

for the two scalars ↵ and �. Two common and important examples of linear
functionals are differentiation

Di,⇣ [f ] =
@f

@xi

���
x=⇣

, (41)

and integration

I⌦[f ] =

Z

⌦
f(x)dx. (42)

The key here, which makes the closure property so useful, is that the function
and the functional have a joint Gaussian distribution. This implies that pre-
dictions of the function can be conditioned on observations of the functional,
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and vice versa. This property is useful in regression problems where we can
not observe the function directly.

For example, consider integration of a one-dimensional function f(x) over
the interval ⌦ = [a b]. If we model the function with a GP

f(x) ⇠ GP(m(x), k(x, x0)), (43)

then it follows from the above that

Lw=⌦[f ] = I⌦[f ] = z(⌦)

=

Z
b

a

f(x)dx ⇠ GP
 Z

b

a

µ(x)dx,

Z
b
0

a0

Z
b

a

k(x, x0)dxdx0

!
. (44)

Note that the input to this GP is not the variable x, but the parameterisation
of the integration interval ⌦. More concretely, assume that we want to predict
the value of f(x⇤) from integral measurements of f(x). An element in the
Gram matrix then becomes

Kij =

Z
bj

aj

Z
bi

ai

k(x, x0)dxdx0, (45)

which describes the correlation between
R
bi

ai
f(x)dx and

R
bj

aj
f(x0)dx0 , respect-

ively. We then build the vector k⇤ according to

(k⇤)i =

Z
bi

ai

k(x⇤, x
0)dx0, (46)

which is the correlation between
R
bi

ai
f(x)dx and the function value f(x⇤).

The GP regression is performed as usual

E[f⇤|y] = k
T
⇤ (K + �2I)�1

y, (47a)

V[f⇤|y] = k(x⇤, x⇤) � k
T
⇤ (K + �2I)�1

k⇤. (47b)

An example of GP regression using functional observations is shown in
Fig. 9, where noise-free observations have been generated from the function
f(x) = x cos 2⇡x, shown as the solid thick green line. The observations
consists of one function measurement (red circle), one derivative (tangential
solid thick black line) and two integrals (horizontal thick pink lines). The
squared exponential covariance function k(x, x0) = �2

f
e�l

�2(x�x
0)2/2 is used

with �f = 1 and l = 0.2. Notice that the mean prediction as well as the
samples obey the observed properties (although for the integrals this is not
directly seen in the plot).
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(a) Posterior after one function obser-

vation and one derivative observation.

(b) Posterior after one function obser-

vation, one derivative observation and

two integral observations.

Figure 9: Example of GP regression with functional observations. The
regression is done using one function observation (red circle), one derivative
observation (tangential solid thick black line) and two integral observations
(horizontal thick pink lines).

The procedure is easily extended to vector valued functions [21]. Letting
Lx denote the transformation (such that an element in Lx is a linear operator),
then we have that

Lxf ⇠ GP(Lxm(x),LxKf (x,x0)LT
x0). (48)

Since the notation might suggest otherwise, we should emphasise that all
operators in LxK(x,x0)LT

x0 are applied to the elements in K from the right.
As a simple example, assume that the function f(x) : R2 7! R2 is modelled
with a GP

f(x) ⇠ GP(0,Kf (x,x0)), (49)

where

Kf (x,x0) =


k11(x,x0) k12(x,x0)
k21(x,x0) k22(x,x0)

�
. (50)

Assume further that

g =


@

@x
0

0 @

@y

�
f . (51)

Now it follows from (48) that g is also a GP

g(x) ⇠ GP(mg,Kg(x,x0)),
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where

mg =


@

@x
0

0 @

@y

�
0 = 0, (52)

and

Kg(x,x0) =


@

@x
0

0 @

@y

� 
k11(x,x0) k12(x,x0)
k21(x,x0) k22(x,x0)

� 
@

@x0 0
0 @

@y0

�T

=

"
@
2

@x2 k11(x,x0) @
2

@x@y0 k12(x,x0)
@
2

@y@x0 k21(x,x0) @
2

@y2
k22(x,x0)

#
. (53)

Using a covariance function with this particular structure ensures that the
relation (51) is fulfilled.

C Building the covariance function using the Airy
stress function

To ensure a physical solution, our model should obey the essential equilibrium
constraints, which must be fulfilled by the strain field at all points. As
described by [18, p. 132], the equilibrium constraints for a two dimensional
stress field are given by

@�̃xx
@x

+
@�xy
@y

= 0, (54a)

@�xy
@x

+
@�̃yy
@y

= 0, (54b)

where �̃xx = �xx � V , �̃yy = �yy � V and V is a potential function. These
equations are satisfied by letting the components be represented as

�̃xx =
@2'

@y2
, (55a)

�xy = � @2'

@x@y
, (55b)

�̃yy =
@2'

@x2
, (55c)

where the arbitrary scalar function ' = '(x, y) is the so-called Airy stress
function. Letting V = 0 to keep the notation uncluttered, we have that
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Applying Hooke’s law for isotropic linearly elastic solid materials
2
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where E and ⌫ denote Young’s modulus and Poisson’s ratio, respectively, we
end up with
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Let us now model ' as a GP

' ⇠ GP(0, k'(x,x0)). (59)

Since the strain field f is mapped from ' through the linear functional Lx, it
follows from Section B that it is also a GP

f ⇠ GP(0,Lxk'(x,x0)LT
x0). (60)

Building the covariance function this way will by construction guarantee
that any sample drawn from the resulting posterior fulfils the equilibrium
constraints given by (54).

D Details on approximative computations

D.1 Elements of the Q-matrix

As stated in (8), the target function f(x) is related to the scalar function
'(x, y) according to

f(x) =

2

664
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775'(x, y) = Lx'(x, y). (61)

In the approximative method described in Section 2.6, we are projecting the
functional (16) onto the basis functions

�(x) =
1

p
⇢x⇢y

sin
�
�x(x + ⇢x)

�
sin
�
�y(y + ⇢y)

�
. (62)
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To keep the notation uncluttered, we are in this section omitting the indexing
of the basis functions as well as the measurements, but keep in mind that
each calculation described by the equations below must be repeated m times
for each measurement.

Each measurement with inputs x
0, L and n̂ requires us to calculate the

integral
1

L

Z
L

0
arg(x0 + snx, y

0 + sny)ds, (63)

where

arg(x, y) = ~nTLx�(x, y) =
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The partial derivatives involved have the following explicit forms

@2

@x2
�(x, y) = ��2x�(x, y), (65a)
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Substituting the expressions (65) into (64) yields
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We can now see that (63) involves calculation of the two integrals
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where we have defined

⇤± = nx�x ± ny�y, (68a)
B± = �x(x

0 + ⇢x) ± �y(y
0 + ⇢y). (68b)

Finally, we end up with
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CSI1 � COI2

L
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Hence, the element Qij in (29) is obtained by in the above calculations use the
i:th basis function with corresponding eigenvalues, and the input arguments
of the j:th measurement.

D.2 Marginal Likelihood Expressions

By replacing KI in (31) with the approximation KI ⇡ Q
T
⇤Q, and letting

Q̂ = Q
T
⇤Q + �2I, we get the following expression for the logarithm of the

approximate marginal likelihood

log p(y|{⌘i}, ✓) ⇡ log p̃(y|{⌘i}, ✓)
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2
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For simplicity, we separate the partial derivative with respect to the noise �
and the partial derivatives with respect to the other hyperparameters:
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Introducing Z = �2⇤�1 + QQ
T, the explicit expressions are:

log det(Q̂) = �(N � m) log �2 � log det(Z) �
X

j

log⇤jj , (72a)
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Probabilistic approach to
limited-data computed

tomography reconstruction
Abstract

In this work, we consider the inverse problem of reconstructing the internal
structure of an object from limited x-ray projections. We use a Gaussian
process prior to model the target function and estimate its (hyper)parameters
from measured data. In contrast to other established methods, this comes
with the advantage of not requiring any manual parameter tuning, which
usually arises in classical regularisation strategies. Our method uses a basis
function expansion technique for the Gaussian process which significantly
reduces the computational complexity and avoids the need for numerical
integration. The approach also allows for reformulation of come classical
regularisation methods as Laplacian and Tikhonov regularisation as Gaussian
process regression, and hence provides an efficient algorithm and principled
means for their parameter tuning. Results from simulated and real data
indicate that this approach is less sensitive to streak artifacts as compared to
the commonly used method of filtered backprojection.

1 Introduction

X-ray computed tomography (CT) imaging is a non-invasive method to
recover the internal structure of an object by collecting projection data from
multiple angles. The projection data is recorded by a detector array and it
represents the attenuation of the x-rays which are transmitted through the
object. Since the 1960s, CT has been used to a deluge of applications in
medicine [9, 10, 19, 26, 30, 41] and industry [2, 8, 11].

Currently, the so-called filtered back projection (FBP) is the reconstruc-
tion algorithm of choice because it is very fast [7, 22]. This method requires
dense sampling of the projection data to obtain a satisfying image reconstruc-
tion. However, for some decades, the limited-data x-ray tomography problem
has been a major concern in, for instance, the medical imaging community.
The limited data case—also referred to as sparse projections—calls for a good
solution for several important reasons, including:
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reconstruction.
• the needs to examine a patient by using low radiation doses to reduce

the risk of malignancy or to in vivo samples to avoid the modification
of the properties of living tissues,

• geometric restrictions in the measurement setting make it difficult to
acquire the complete data [36], such as in mammography [32, 34, 48,
49] and electron imaging [12],

• the high demand to obtain the data using short acquisition times and
to avoid massive memory storage, and

• the needs to avoid—or at least minimise the impact of—the moving
artefacts during the acquisition.

Classical algorithms—such as FBP—fail to generate good image recon-
struction when dense sampling is not possible and we only have access to
limited data. The under-sampling of the projection data makes the image
reconstruction (in classical terms) an ill-posed problem [31]. In other words,
the inverse problem is sensitive to measurement noise and modelling errors.
Hence, alternative and more powerful methods are required. Statistical es-
timation methods play an important role in handling the ill-posedness of the
problem by restating the inverse problem as a well-posed extension in a larger
space of probability distributions [21]. Over the years there have been a lot
of work on tomographic reconstruction from limited data using statistical
methods (see, e.g., [4, 16, 25, 34, 39, 43]).

In the statistical approach, incorporation of a priori knowledge is a
crucial part in improving the quality of the image reconstructed from limited
projection data. That can be viewed as an equivalent of the regularisation
parameter in classical regularisation methods. However, statistical methods,
unlike classical regularisation methods, also provide a principled means
to estimate the parameters of the prior (i.e., the hyperparameters) which
corresponds to automatic tuning of regularisation parameters.

In our work we build the statistical model by using a Gaussian process
model [35] with a hierarchical prior in which the (hyper)parameters in the
prior become part of the inference problem. As this kind of hierarchical
prior can be seen as an instance of a Gaussian process (GP) regression
model, the computational methods developed for GP regression in machine
learning context [35] become applicable. It is worth noting that some works
on employing GP methods for tomographic problems have also appeared
before. An iterative algorithm to compute a maximum likelihood point in
which the prior information is represented by GP is introduced in [46]. In
[18, 20], tomographic reconstruction using GPs to model the strain field from
neutron Bragg-edge measurements has been studied. Tomographic inversion
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using GP for plasma fusion and soft x-ray tomography have been done in [27,
45]. Nevertheless, the proposed approach is different from the existing work.

Our aim is to employ a hierarchical Gaussian process regression model to
reconstruct the x-ray tomographic image from limited projection data. Due
to the measurement model involving line integral computations, the direct GP
approach does not allow for closed form expressions. The first contribution of
this article is to overcome this issue by employing the basis function expansion
method proposed in [44], which makes the line integral computations tractable
as it detaches the integrals from the model parameters. This approach can be
directly used for common GP regression covariance functions such as Matérn
or squared exponential. The second contribution of this article is to point
out that the we can also reformulate classical regularisation, in particular
Laplacian and Tikhonov regularization, as Gaussian process regression where
only the spectral density of the process (although not the covariance function
itself) is well defined. As the basis function expansion only requires the
availability of the spectral density, we can build a hierarchical model off a
classical regularisation model as well and have a principles means to tune
the regularisation parameters. Finally, the third contribution is to present
methods for hyperparameter estimation that arise from the machine learning
literature and apply the methodology to the tomographic reconstruction
problem. In particular, the proposed methods are applied to simulated
2D chest phantom data available in Matlab and real carved cheese data
measured with µCT system. The results show that the reconstruction images
created using the proposed GP method outperforms the FBP reconstructions
in terms of image quality measured as relative error and as peak signal to
noise ratio.

2 Constructing the model

2.1 The tomographic measurement data

Consider a physical domain ⌦ ⇢ R2 and an attenuation function f : ⌦ ! R.
The x-rays travel through ⌦ along straight lines and we assume that the
initial intensity (photons) of the x-ray is I0 and the exiting x-ray intensity
is Id. If we denote a ray through the object as function s 7! (x1(s), x2(s))
Then the formula for the intensity loss of the x-ray within a small distance
ds is given as:

dI(s)

I(s)
= �f(x1(s), x2(s))ds, (1)



130
Paper III – Probabilistic approach to limited-data computed tomography

reconstruction.

Figure 1: An illustration of the Radon transform. It maps the object f on
the (x1, x2)-domain into f on the (r, ✓) domain. The measurement data is
collected from the intensities Id of x-rays for all lines L through the object
f(x1, x2) and from different angles of view.

and by integrating both sides of (1), the following relationship is obtained

Z
R

�R

f(x1(s), x2(s))ds = log
I0
Id

, (2)

where R is the radius of the object or area being examined.
In x-ray tomographic imaging, the aim is to reconstruct f using measure-

ment data collected from the intensities Id of x-rays for all lines through the
object taken from different angles of view. The problem can be expressed
using the Radon transform, which can be expressed as

Rf(r, ✓) =

Z
f(x1, x2)dxL, (3)

where dxL denotes the 1-dimensional Lebesgue measure along the line defined
by L = {(x1, x2) 2 R2 : x1 cos ✓ + x2 sin ✓ = r}, where ✓ 2 [0,⇡) is the angle
and r 2 R is the distance of L from the origin as shown in Figure 1.

The parametrisation of the straight line L with respect to the arc length
s can be written as:

x1(s, ✓, r) = r cos(✓) � s sin(✓),

x2(s, ✓, r) = r sin(✓) + s cos(✓).
(4)

In this work, the object is placed inside a circular disk with radius R. Then,



2. Constructing the model 131

as a function of r and ✓ the line integral in (3) can be written as

Rf(r, ✓) =

Z
R

�R

f(x1(s, ✓, r), x2(s, ✓, r)) ds

=

Z
R

�R

f(x0 + sû)ds,

(5)

where

x
0 =

⇥
r cos(✓) r sin(✓)

⇤T
, û =

⇥
� sin(✓) cos(✓)

⇤T
.

In a real x-ray tomography application, the measurement is corrupted
by at least two noise types: photons statistics and electronic noise. In x-ray
imaging, a massive number of photons are usually recorded at each detector
pixel. In such case, a Gaussian approximation for the attenuation data in (2)
can be used [3, 37]. Recall that a logarithm of the intensity is involved in
(5), and so additive noise is a reasonable model for the electronic noise.

We collect a set of measurements as

yi =

Z
R

�R

f(x0
i + sûi)ds + "i, (6)

where i corresponds to the data point index. The corresponding inverse
problem is given the noisy measurement data {yi}ni=1 in (6) to reconstruct
the object f .

2.2 Gaussian processes as functional priors

A Gaussian process (GP) [35] can be viewed as a distribution over functions,
where the function value in each point is treated as a Gaussian random
variable. To denote that the function f is modelled as a GP, we formally
write

f(x) ⇠ GP
�
m(x), k(x,x0)

�
. (7)

The GP is uniquely specified by the mean function m(x) = E[f(x)] and the
covariance function k(x,x0) = E[(f(x) � m(x))(f(x0) � m(x0))]. The mean
function encodes our prior belief of the value of f in any point. In lack of
better knowledge it is common to pick m(x) = 0, a choice that we will stick
to also in this paper.

The covariance function on the other hand describes the covariance
between two different function values f(x) and f(x0). The choice of covariance
function is the most important part in the GP model, as it stipulates the
properties assigned to f . A few different options are discussed in Section 2.4.
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As data is collected our belief about f is updated. The aim of regression is

to predict the function value f(x⇤) at an unseen test point x⇤ by conditioning
on the seen data. Consider direct function measurements on the form

yi = f(xi) + "i, (8)

where "i is independent and identically distributed (iid) Gaussian noise with
variance �2, that is, "i ⇠ N (0,�2). Let the measurements be stored in the
vector y. Then the mean value and the variance of the predictive distribution
p(f(x⇤) | y) are given by [35]

E[f(x⇤) | y] = k
T
⇤ (K + �2I)�1

y, (9a)

V[f(x⇤) | y] = k(x⇤,x⇤) � k
T
⇤ (K + �2I)�1

k⇤. (9b)

Here the vector k⇤ contains the covariance between f(x⇤) and each measure-
ment while the matrix K contains the covariance between all measurements,
such that

(k⇤)i = k(xi,x⇤), (10a)
Kij = k(xi,xj). (10b)

An example of GP regression for a two-dimensional input is given in Figure 2.
The red stars indicate the measurements, while the shaded surface is the GP
prediction. The blue line highlights a slice of the plot that is shown explicitly
to the right, including the 95% credibility region.

Figure 2: Left: GP prediction (shaded surface) obtained from the measure-
ments (red stars, also indicated by their deviation from the prediction). Right:
slice plot of the blue line in the left figure, including the 95% credibility
region.

2.3 The Gaussian process for x-ray tomography

In this section, we show how to apply the functional priors presented in
Section 2.2 to x-ray tomography application. Since the x-ray measurements
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(5) are line integrals of the unknown function f(x), they are linear functionals
of the Gaussian process. Hence, we can define a linear functional Hx,i as
follows:

Hx,if(x) =

Z
R

�R

f(x0
i + sûi)ds. (11)

and thus the GP regression problem becomes

f(x) ⇠ GP
�
m(x), k(x,x0)

�
, (12a)

yi = Hx,if(x) + "i. (12b)

As discussed, for example, in [38, 44] the GP regression equations can be
extended to this kind of models, which in this case leads to the following:

E[f(x⇤)|y] = q
T
⇤ (K + �2I)�1

y, (13a)

V[f(x⇤)|y] = k(x⇤,x⇤) � q
T
⇤ (Q + �2I)�1

q⇤, (13b)

where y =
⇥
y1 · · · yn

⇤T and

(q⇤)i =

Z
R

�R

k(x0
i + sûi,x⇤)ds, (14a)

Qij =

Z
R

�R

Z
R

�R

k(x0
i + sûi,x

0
j + s0ûj)dsds0. (14b)

In general we can not expect closed form solutions to (14a)–(14b) and numer-
ical computations are then required. However, even with efficient numerical
methods, the process of selecting the hyperparameters is tedious since the
hyperparameters are in general not decoupled from the integrand and the
integrals need to be computed repeatedly in several iterations. In this paper,
we avoid this by using the basis function expansion that will be described in
Section 2.6.

2.4 Squared exponential and Matérn covariance functions

An important modelling parameter in Gaussian process regression is the
covariance function k(x,x0) which can be selected in various ways. Because
the basis function expansion described in Section 2.6 requires the covariance
function to be stationary, we here limit our discussion to covariance functions
of this form. Stationarity means that k(x,x0) = k(r) where r = x � x

0, so
the covariance only depends on the distance between the input points. In
that case we can also work with the spectral density, which is the Fourier
transform of the stationary covariance function

S(!) = F [k] =

Z
k(r)e�i!Trdr, (15)
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where again r = x � x

0.
The perhaps most commonly used covariance function within the machine

learning context [35] is the squared exponential (SE) covariance function

kSE(r) = �2f exp


� 1

2l2
krk22

�
, (16)

which has the following spectral density

SSE(!) = �2f (2⇡)d/2ld exp


� l2k!k22

2

�
, (17)

where d is the dimensionality of x (in our case d = 2). The SE covariance
function is characterised by the magnitude parameter �f and the length scale
l. The squared exponential covariance function is popular due to its simplicity
and ease of implementation. It corresponds to a process whose sample paths
are infinitely many times differentiable and thus the functions modelled by it
are very smooth.

Another common family of covariance functions is given by the Matérn
class

kMatern(r) = �2f
21�⌫

�(⌫)

 p
2⌫krk2

l

!⌫

K⌫

 p
2⌫krk2

l

!
, (18a)

SMatern(!) = �2f
2d⇡d/2�(⌫ + d/2)(2⌫)⌫

�(⌫)l2⌫

✓
2⌫

l2
+ k!k22

◆�(⌫+d/2)

, (18b)

where K⌫ is a modified Bessel function [35]. The smoothness of the process is
increased with the parameter ⌫: in the limit ⌫ ! 1 we recover the squared
exponential covariance function.

Gaussian processes are also closely connected to classical spline smoothing
[23] as well as other classical regularisation methods [21, 29] for inverse
problems. Although the construction of the corresponding covariance function
is hard (or impossible), it is still possible to construct the corresponding
spectral density in many cases. With these spectral densities and the basis
function method of Section 2.6, we can construct probabilistic versions of the
classical regularisation methods as discussed in the next section.

2.5 Covariance functions arising from classical regularisation

Let us recall that a classical way to seek for solutions to inverse problems is
via optimization of a functional of the form

J [f ] =
1

2�2

X

i

(yi �Hx,if(x))2 +
1

2�2
f

Z
|Lf(x)|2 dx, (19)
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where L is a linear operator. This is equivalent to a Gaussian process
regression problem, where the covariance operator is formally chosen to be
K = [L⇤L]�1. In (classical) Tikhonov regularisation we have L = I (identity
operator) which corresponds to penalising the norm of the solution. Another
option is to penalise the Laplacian which gives L = r2.

Although the kernel of this covariance operator is ill-defined with the
classical choices of L and thus it is not possible to form the corresponding
covariance function, we can still compute the corresponding spectral density
function by computing the Fourier transform (15) of L⇤L and then inverting
it to form the spectral density:

S(!) =
�2
f

F [L⇤L]
. (20)

In particular, the minimum norm or (classical) Tikhonov regularisation can
be recovered by using a white noise prior which is given by the constant
spectral density

STikhonov(!) = �2f , (21)

where �f is a scaling parameter. Another interesting case is the Laplacian
operator based regularisation which corresponds to

SLaplacian(!) =
�2
f

k!k42
. (22)

It is useful to note that the latter spectral density corresponds to a l ! 1
limit of the Matérn covariance function with ⌫ + d/2 = 2 and the white
noise to l ! 0 in either the SE or the Matérn covariance functions. The
covariance functions corresponding to the above spectral densities would be
degenerate, but this does not prevent us from using the spectral densities in
the basis function expansion method described in Section 2.6 as the method
only requires the availability of the spectral density.

2.6 Basis function expansion

To overcome the computational hazard described in Section 2.3, we consider
the approximation method proposed in [44], which relies on the following
truncated basis function expansion

k(x,x0) ⇡
mX

i=1

S(
p
�i)�i(x)�i(x

0), (23)

where S denotes the spectral density of the covariance function, and m is
the truncation number. The basis functions �i(x) and eigenvalues �i are
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obtained from the solution to the Laplace eigenvalue problem on the domain
⌦

⇢
���i(x) = �i�i(x),

�i(x) = 0,

x 2 ⌦,

x 2 @⌦.
(24)

In two dimensions with ⌦ = [�L1, L1] ⇥ [�L2, L2] we introduce the positive
integers i1  m1 and i2  m2. The number of basis functions is then
m = m1m2 and the solution to (24) is given by

�i(x) =
1p

L1L2
sin
�
'i1(x1 + L1)

�
sin
�
'i2(x2 + L2)

�
, (25a)

�i = '2
i1

+ '2
i2

, 'i1 =
⇡i1
2L1

, 'i2 =
⇡i2
2L2

, (25b)

where i = i1 + m1(i2 � 1). Let us now build the vector �⇤ 2 Rm⇥1, the
matrix � 2 Rm⇥M and the diagonal matrix ⇤ 2 Rm⇥m as

(�⇤)i = �i(x⇤), (26a)

�ij =

Z
R

�R

�i(x
0
j + sûj)ds, (26b)

⇤ii = S(
p
�i). (26c)

The entries �ij can be computed in closed form with details given in A. Now
we substitute Q ⇡ �T⇤� and q⇤ ⇡ �T⇤�⇤ to obtain

E[f(x⇤) | y] ⇡ �T
⇤ ⇤�(�T⇤� + �2I)�1

y, (27a)

V[f(x⇤) | y] ⇡ �T
⇤ ⇤�⇤ � �T

⇤ ⇤�(�T⇤� + �2I)�1�T⇤�⇤. (27b)

When using the spectral densities corresponding to the classical regularisation
methods in (21) and (22), the mean equation reduces to the classical solution
(on the given basis). However, also for the classical regularisation methods
we can compute the variance function which gives uncertainty estimate for
the solution which in the classical formulation is not available. Furthermore,
the hyperparameter estimation methods outlined in the next section provide
principled means to estimate the parameters also in the classical regularisation
methods.

3 Hyperparameter estimation

In this section, we will consider some methods for estimating the hyper-
parameters. The free parameters of the covariance function, for example,
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the parameters �f and l in the squared exponential covariance function,
are together with the noise parameter � referred to as the hyperparameters
of the model. In this work, we employ a Bayesian approach to estimate
the hyperparameters, and comparisons with standard parameter estimation
methods such as L-curve and cross-validation methods are given as well.

3.1 Posterior distribution of hyperparameters

The marginal likelihood function corresponding to the model (12) is given as

p(y | �f , l,�) = N (y | 0, Q(�f , l) + �2 I), (28)

where Q(�f , l) is defined by (14a). The posterior distribution of parameters
can now be written as follows:

p(�f , l,� | y) / p(y | �f , l,�)p(�f )p(l)p(�), (29)

where non-informative priors are used: p(�f ) / 1
�f

, p(l) / 1
l

and p(�) / 1
�
.

The logarithm of (29) can be written as

log p(�f , l,� | y) = const. � 1

2
log det(Q + �2I) � 1

2
y
T(Q + �2I)�1

y

� log
1

�f
� log

1

l
� log

1

�
. (30)

Given the posterior distribution we have a wide selection of methods from
statistics to estimate the parameters. One approach is to compute the
maximum a posteriori (MAP) estimate of the parameters by using, for
example, gradient-based optimisation methods [35]. However, using this kind
of point estimate loses the uncertainty information of the hyperparameters
and therefore in this article we use Markov chain Monte Carlo (MCMC)
methods [5] which retain the information about the uncertainty in the final
result.

3.2 Metropolis–Hastings sampling of hyperparameters

As discussed in the previous section, the statistical formulation of the inverse
problem gives a posterior distribution of the hyperparameters ' = (�f , l,�) as
the solution rather than single estimates. The MCMC methods are capable of
generating samples from the distribution. The Monte Carlo samples can then
be used for computing the mean, the variance, or some other statistics of the
posterior distribution [14]. In this work, we employ the Metropolis–Hastings
algorithm to sample from the posterior distribution.
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3.3 The L-curve method

One of the classical methods to obtain information about the optimum
value for � is the L-curve method [17], which operates by plotting the norm
of the solution kf�(x)k2 versus the residual norm kHx,if�(x) � yik2. The
associated L-curve is defined as the continous curve consisting of all the
points (kHx,if�(x) � yik2, kf�(x)k2) for � 2 [0,1).

3.4 Cross-validation

As a comparison, we also consider to use methods of cross-validation (CV)
for model selection. In k-fold CV, the data are partitioned into k disjoint
sets yj , and at each round j of CV, the predictive likelihood of the set yj

is computed given the rest of the data y�j . These likelihoods are used to
monitor the predictive performance of the model. This performance is used
to estimate the generalisation error, and it can be used to carry out model
selection [24, 35, 47].

The Bayesian CV estimate of the predictive fit with given parameters '
is

CV =
nX

j=1

log p(yj | y�j , '), (31)

where p(yj | y�j , ') is the predictive likelihood of the data yj given the rest
of the data. The best parameter values with respect to CV can be computed
by enumerating the possible parameter values and selecting the one which
gives the best fit in terms of CV.

4 Experimental results

In this section, we present numerical results using the GP model for limited
x-ray tomography problems. All the computations were implemented in
Matlab 9.4 (R2018a) and performed on an Intel Core i5 at 2.3 GHz and
CPU 8GB 2133MHz LPDDR3 memory.

For both simulated data (see Section 4.1) and real data (see Section 4.2)
we use m = 104 basis functions in (23). The measurements are obtained from
the line integral of each x-ray over the attenuation coefficient of the measured
objects. The measurements are taken for each direction (angle of view), and
later they will be referred to as projections. The same number of rays in
each direction is used. The computation of the hyperparameters is carried
out using the Metropolis–Hastings algorithms with 5 000 samples, and the
first 1 000 samples are thrown away (burn-in period). The reconstruction is
computed by taking the conditional mean of the object estimate.
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4.1 Simulated data: 2D Chest phantom

As for the simulated data, we use one slice of Matlab’s 3D Chest dataset
[40] as a ground truth, ftrue, which is shown in Figure 4(a). The size of
the phantom is N ⇥ N , with N = 128. The black region indicates zero
values and lighter regions indicate higher attenuation function values. The
measurements (i.e. sinogram) of the chest phantom are computed using the
radon command in Matlab and corrupted by additive white Gaussian noise
with zero mean and 0.1 variance (�true = 0.32).

Several reconstructions of the chest phantom using different covariance
functions, namely squared exponential (SE), Matérn, Laplacian, and Tik-
honov, are presented. For the SE, Matérn, and Laplacian covariance functions,
the parameters �f , l, and � are estimated using the proposed method. We
use ⌫ = 1 for the Matérn covariance. As for the Tikhonov covariance, it is not
characterised by the length scale l, and hence only �f and � are estimated.
All the estimated parameters are reported in Table 4. Figure 3 presents
the histograms of the 1-d marginal posterior distribution of each parameters
using different covariance functions. The histograms show the distribution
of the parameters samples in the Metropolis–Hastings samples. The results
show that the �f estimate for SE and Matérn covariances is 0.12, while for
Laplacian and Tikhonov, the estimates are 0.05 and 0.64. For Matérn, Lapla-
cian, and Tikhonov covariance functions, the � estimates are concentrated
around the same values 0.34 � 0.39 with standard deviation (SD) between
0.02 � 0.03. These noise estimates are well-estimated the ground-truth noise,
�true = 0.32, with the absolute error is between 0.02 � 0.07. The estimate
of the SE kernel appears to overestimate the noise, � = 0.60. It is reported
that the length-scale parameter, l, for Laplacian and SE covariance functions
are concentrated in the same values, while for Matérn yields higher estimate,
l = 10.14.

Figure 4(c)-(f) shows GP reconstructions of the 2D chest phantom using
different covariance functions from 9 projections (uniformly spaced) out
of 180� angle of view and 185 number of rays for each projection. The
computation times for all numerical tests are reported in Table 1. The
Metropolis–Hastings reconstruction shows longer computational time due
to the need for generation of a large number of samples from the posterior
distribution. However, the benefit of this algorithm is that it is easy to
implement and it is reliable for sampling from high dimensional distributions.

The numerical test of the simulated data reconstructions is compared
against figures of merit, namely:



140
Paper III – Probabilistic approach to limited-data computed tomography

reconstruction.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

0 10 20 30 40 50
0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

0 10 20 30 40 50
0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

SE
M

at
ér

n
La

pl
ac

ia
n

T
ik

ho
no

v
�f l �

Figure 3: Histogram of the 1-d marginal distribution of the GP parameters.
Left, middle and right columns are the marginal distribution for parameter
�f , l and � with corresponding covariance functions indicated in the vertical
text in the left of the figure. The estimate of the parameter l is not available
for Tikhonov covariance.
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Table 1: Computation times of chest phantom (in seconds).

Target FBP SE Matérn Laplacian Tikhonov
Chest phantom 0.5 11 210 9 676 9 615 9 615

• the relative error (RE)

kftrue � freck2
kftruek2

,

where frec is the image reconstruction, and

• the peak-signal-to-noise ratio (PSNR)

10 log10

✓
peakval2

MSE

◆
,

where peakval is the maximum possible value of the image and MSE is
the mean square error between ftrue and frec,

as shown in Table 2.
In practice, image quality in CT depends on other parameters as well, such

as image contrast, spatial resolution, and image noise [15]. These parameters
can be evaluated when the CT device is equipped with CT numbers for various
materials, high-resolution image is available, and statistical fluctuations of
image noise which require several times of measurement to record random
variations in detected x-ray intensity are acquired. However, in this work, the
collected datasets are not supported by the aforementioned factors and they
fall outside the scope of this paper. The results presented here are focusing
on the implementation of a new algorithm to limited-data CT reconstruction
and are reported as a preliminary study.

Reconstruction using a conventional method is computed as well with the
built-in Matlab function iradon, which uses the FBP to invert the Radon
transform. It reconstructs a two-dimensional slice of the sample from the
corresponding projections. The angles for which the projections are available
are given as an argument to the function. Linear interpolation is applied
during the backprojection and a Ram–Lak or ramp filter is used. The FBP
reconstruction of the chest phantom is shown in Figure 4(b). For comparison,
FBP reconstructions computed using some other filters are seen in Figure 5.

We also compared the results to the L-curve method and the CV:

• The L-curve method is applied to the Laplacian and the Tikhonov
covariances and the L-curve plots from different values of parameter
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) A ground truth of 2D chest phantom. (b) Filtered backprojection
reconstruction (Ram–Lak filter) from 9 projections. (c) GP reconstruction
using SE covariance, (d) GP reconstruction using Matérn covariance, (e)
GP reconstruction using Laplacian covariance, (f) GP reconstruction using
Tikhonov covariance. The GP reconstructions are using 9 projections.

10�1  �  10 for both covariances are shown in Figure 6. Both plots
show that the corner of the L-curve is located in between 0.2  �  1.

• The CV is tested for the Laplacian and Tikhonov covariances using
point-wise evaluation of 10�2  �  1 and 10�2  �f  1. For
the Laplacian covariance, several points of length scale 1  `  100
are tested as well. The minimum prediction error was obtained for
�f = 0.8, � = 0.8 and ` = 10. For the Tikhonov covariance, the
minimum prediction error was obtained for � = 0.5 and �f = 0.5. The
estimates of �f and � for Laplacian are 0.8 and 0.5, respectively, and
they give the same estimates for the Tikhonov covariance function. The
estimates of � for both kernels appear to overestimate the �true. The
absolute error is in between 0.18� 0.48. The length-scale estimate from
Laplacian covariance, l = 10, appears to close to the estimate in Matérn
covariance.
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(a) (b)

(c) (d)

Figure 5: Filtered backprojection reconstructions using (a) Shepp–Logan
filter, (b) Cosine filter (c) Hamming filter, (d) Hann filter. Values of relative
error (RE) are between 23.6�25.2 and PSNR values are between 18.1�19.9%.

(a) (b)

Figure 6: The L-curve for (a) Tikhonov and (b) Laplacian covariance from
the chest phantom reconstruction.



144
Paper III – Probabilistic approach to limited-data computed tomography

reconstruction.

(a) (b) (c)

(d) (e)

Figure 7: (a) A ground truth of 2D chest phantom. (b) & (c) reconstructions
using L-curve parameter choice method with Laplacian (using � = 1) and
Tikhonov (using � = 0.2) covariance functions, respectively. (d) & (e)
reconstructions using CV with Laplacian and Tikhonov covariance functions,
respectively

Image reconstructions for both L-curve and CV methods are shown in
Figure 7.

4.2 Real data: Carved cheese

We now consider a real-world example using the tomographic x-ray data of
a carved cheese slice measured with a custom-built CT device available at
the University of Helsinki, Finland. The dataset is available online [1]. For a
detailed documentation of the acquisition setup—including the specifications
of the x-ray systems—see [6]. We use the downsampled sinogram with 140
rays and 15 projections from 360� angle of view. In the computations, the
size of the target is set to 120 ⇥ 120.

Figure 8(c) shows the GP reconstruction (Matérn covariance function) of
the cross section of the carved cheese slice using 15 projections (uniformly
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(a) (b) (c)

Figure 8: (a) FBP reconstruction (Ram–Lak filter) of the carved cheese
using dense 360 projections. (b) Filtered backprojection reconstruction from
15 projections. (c) GP reconstruction using Matérn covariance from 15
projections.

spaced) out of 360� angle of view. For comparison, the FBP reconstruction
is shown in Figure 8(b).

The computation times for the carved cheese are reported in Table 3.

4.3 Discussion

We have presented x-ray tomography reconstructions from both simulated
and real data for limited projections (i.e. sparse sampling) using an approach
based on the Gaussian process. However, other limited-data problems such
as limited angle tomography could be explored as well. The quality of
GP reconstructions using different covariance functions looks rather the
same qualitatively. However, quantitatively, the reconstruction using Matérn
covariance is the best one: it has the lowest RE 23.26% and the highest
PSNR 22.76. PSNR describes the similarity of the original target with
the reconstructed image (the higher value, the better of the reconstruction).
Figures of merit estimates are not available for the real cheese data since there
is no comparable ground truth. Nevertheless, the quality of the reconstruction
can be observed qualitatively by comparing with the FBP reconstruction
obtained with dense 360 projections from 360 degrees shown in Figure 8(a).
The corresponding parameter estimates for the chest phantom and the cheese
are reported in Table 4 and 5. For the chest phantom case, the estimate of
parameter � using Matérn, Laplacian and Tikhonov kernels tend to be close
to the true value �true. As for the SE covariance, the standard deviation of
noise is overestimated.

The reconstructions produced by the FBP benchmark algorithm using
sparse projections are overwhelmed by streak artefacts due to the nature of
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Table 2: Figures of merit for chest phantom reconstructions.

Method RE (%) PSNR
FBP (Ram–Lak filter) 25.86 18.44
GP-SE 29.41 21.76
GP-Matérn 23.26 22.76
GP-Laplacian 29.18 21.79
GP-Tikhonov 23.39 22.73
Lcurve-Laplacian 23.38 22.62
Lcurve-Tikhonov 23.26 22.63
CV-Laplacian 25.18 22.31
CV-Tikhonov 23.47 22.75

Table 3: Computation times of the carved cheese (in seconds).

Target FBP Matérn
Carved cheese 0.1 12 604

backprojection reconstruction, as shown in Figure 4(b) for the chest phantom
and Figure 8(b) the for cheese target. The edges of the target are badly
reconstructed. Due to the artefacts, especially for the chest phantom, it is
difficult to distinguish the lighter region (which is assumed to be tissue) and
the black region (air). The FBP reconstruction has the worst quality and
it is confirmed in Table 2 that it has a high RE value (25.86%) and the
lowest PSNR (18.44). FBP reconstructions computed with different filters
are shown in Figure 5. However, there is no significant improvement in the
images as it is clarified by the RE and PSNR values in the caption as well
as by qualitative investigation. On the other hand, the GP reconstructions
outperform the FBP algorithm in terms of image quality as reported in the
figures of merit. The PSNR values of the GP-based reconstructions are higher
than that of the FBP reconstruction. Nevertheless, in GP reconstructions,
sharp boundaries are difficult to achieve due to the smoothness assumptions
embedded in the model.

The GP prior clearly suppresses the artefacts in the reconstructions as
shown in Figure 4(c) and 8(c). In Figure 4(c), the air and tissue region
are recovered much better, since the prominent artefacts are much less. In
Figure 8(c), the air region (outside the cheese and the C and T letters) are
much sharper than in the FBP reconstruction. Overall, the results indicate
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Table 4: The GP parameter estimates for the chest phantom. The estimates
are calculated using the conditional mean, and the standard deviation (SD)
values are also reported in parentheses.

Covariance �f (SD) l (SD) � (SD)
function

SE 0.12 (0.04) 5.03 (0.03) 0.60 (0.02)
Matérn 0.12 (0.07) 10.14 (0.08) 0.34 (0.03)

Laplacian 0.05 (0.10) 4.49 (0.02) 0.39 (0.03)
Tikhonov 0.64 (0.02) - 0.35 (0.03)

Table 5: Estimated GP parameters for the carved cheese using Matérn
covariance function. The estimates are calculated using the conditional mean,
and the standard deviation (SD) values are also reported in parentheses.

Covariance �f (SD) l (SD) � (SD)
function
Matérn 0.012 (0.07) 11.00 (0.08) 0.02 (0.04)

that the image quality can be improved significantly by employing the GP
method.

In Figure 7 the image reconstructions using L-curve and CV methods
are presented. The quality of the reconstructions is reported in Table 2 as
well. In these methods, finer point-wise evaluations might help to improve
the quality of the reconstructions.

We emphasise that in the proposed GP-approach, some parameters in
the prior is a part of the inference problem (see Equation (16)). Hence-
forth, we can avoid the difficulty in choosing the prior parameters. This
problem corresponds to the classical regularisation methods, in which select-
ing the regularisation parameters is a very crucial step to produce a good
reconstruction.

5 Conclusions

We have employed the Gaussian process with a hierarchical prior to computed
tomography using limited projection data. The method was implemented to
estimate the x-ray attenuation function from the measured data produced
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by the Radon transform. The performance has been tested on simulated
and real data, with promising results shown. Unlike algorithms commonly
used for the limited x-ray tomography problem that require manual tuning of
prior parameters, the proposed GP method offers an easier set up as it takes
into account the prior parameters as a part of the estimation. Henceforth, it
constitutes a promising and user-friendly strategy.

The most important part of the GP model is the selection of the covariance
function, since it stipulates the properties of the unknown function. As such,
it also leaves most room for improvement. Considering the examples in
Section 4, a common feature of the target functions is that they consist of
a number of well-defined, separate regions. The function values are similar
and thus highly correlated within the regions, while the correlation is low
at the edges where rapid changes occur. This kind of behaviour is hard to
capture with a stationary covariance function that models the correlation
as completely dependent on the distance between the input locations. A
non-stationary alternative is provided by, for example, the neural network
covariance function, which is known for its ability to model functions with
non-smooth features [35]. The basis function approximation method employed
in this work is only applicable to stationary covariance functions, but other
approximations can of course be considered.

Despite its success, the computational burden of the proposed algorithm
is relatively high. To solve this problem, speed-up strategies are available,
such as implementing parallelised GPU code, optimising the covariances
of the sampling strategy, or by changing the MCMC algorithm to another
one. Investigating finer resolution images and statistical records would also
be interesting future research to evaluate other image quality parameters.
Moreover, the proposed method can be applied to multidetector CT imaging
[13, 28] as well as 3D CT problems using sparse data [33, 42].
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A Details on the computation of �

Here we derive the closed-form expression of the entries �ij stated in (26b).
We get that

�ij =

Z
R

�R

�i(x
0
j + sûj)ds

=
1p

L1L2

Z
R

�R

sin('i1rj cos ✓j � 'i1s sin ✓j + 'i1L1)·

· sin('i2rj sin ✓j + 'i2s cos ✓j + 'i2L2)ds

=
1p

L1L2

Z
R

�R

sin(↵ijs + �ij) sin(�ijs + �ij)ds
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1

2
p

L1L1
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R
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cos((↵ij � �ij)s + �ij � �ij)

� cos((↵ij + �ij)s + �ij + �ij)
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1

2
p

L1L1

h 1

↵ij � �ij
sin((↵ij � �ij)s + �ij � �ij)

� 1
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� 1
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� 1

↵ij � �ij
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1
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,

(32)

where

↵ij = 'i1 sin ✓j , (33a)
�ij = 'i1rj cos ✓j + 'i1L1, (33b)
�ij = 'i2 cos ✓j , (33c)
�ij = 'i2rj sin ✓j + 'i2L2. (33d)
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Deep kernel learning for
integral measurements

Abstract

Deep kernel learning refers to a Gaussian process that incorporates neural
networks to improve the modelling of complex functions. We present a method
that makes this approach feasible for problems where the data consists of line
integral measurements of the target function. The performance is illustrated
on computed tomography reconstruction examples.

1 Introduction

The Gaussian process (GP) [33] is a powerful regression tool that has been
successfully applied to problems within many different fields. Encoding a
broad class of non-linear functions, a key feature of the GP is the ability to
adapt its complexity with the size of the data set while keeping a constant
number of free hyperparameters; this is referred to as flexibility. The per-
formance and accuracy of the GP is, however, in no small part determined
by the model assumptions embedded in the associated covariance function.

The most common covariance functions are stationary, which means that
the modelled correlation between two function values is dependent purely on
the distance between their corresponding input locations. A notable member
of this class is the squared exponential covariance function, which is widely
employed mainly due to its ease of implementation.

Figure 1: The proposed method applied to computed tomography recon-
struction from X-ray data. The following example is from the scanning of
a carved cheese. Left: reference reconstruction of high accuracy. Middle:
reconstruction using filtered back projection, a commonly used method in
practise. Right: reconstruction using the proposed method.
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Although stationary covariance functions are intuitive and rather realistic
for many functions, this choice causes severe problems if the target function
contains non-smooth features, such as rapid, step-like changes. A way of
meeting this challenge is to use a non-stationary covariance function. In
particular, the neural network covariance function [28] is known for its ability
to capture non-stationary features. However, it is harder to implement and
extend beyond point measurement models (direct observations of the target
function), e.g. extension to integral measurements.

An alternative non-stationary construction is obtained by warping the
inputs to a stationary covariance function through a non-linear mapping [33].
Letting this mapping be a neural network, we obtain the framework known
as manifold Gaussian processes [5] or deep kernel learning [54], which has
been demonstrated on point measurements with promising potential.

The practical procedure of this approach becomes more challenging when
we consider more advanced measurement models. In this work, we propose a
method that allows for the application of deep kernel learning to problems
where the measured data is expressed as line integrals of the target function,
which arise for instance within X-ray computed tomography (CT) [7, 21,
41] and strain field estimation [19, 27, 50]. This is a non-trivial extension
considering that a straightforward naive implementation requires numerical
double integral computations in a number that scales quadratically with the
size of the data set. Also, the training procedure is challenging since the cost
function contains many local minima and the convergence is dependent upon
a suitable initialisation.

To overcome these obstacles we approximate the GP with a Hilbert space
basis function expansion [46], and so reduce the numerical computation to
single integrals in a number that scales linearly with the size of the data set.
Furthermore, by exploiting the model setup we pre-train the neural network
used in the covariance function to provide a customised initialisation for the
remaining joint training when incorporated within the deep kernel model.
This significantly improves the end result and overall robustness.

The potential is demonstrated on simulated and real-data CT reconstruc-
tion problems, with promising results shown. An illustration is seen in Figure
1.

2 Background on the model

In this section, we briefly introduce the model background that forms the
foundation of our developments; integral measurements in GPs and the deep
kernel learning formulation.



2. Background on the model 159

2.1 Gaussian processes with integral measurement

The GP can be seen as a distribution over functions where any finite set of
function values has a joint Gaussian distribution. Formally we write

f(x) ⇠ GP
�
0, k(x,x0)

�
, (1)

to denote that the function f(x) : RDx ! R is modelled as a zero-mean GP
with covariance function k(x,x0) : RDx⇥RDx ! R, and x = [x1, . . . , xDx ]T 2
RDx .

An important and very useful property of the GP is that it is closed under
linear functional evaluations [13, 24, 29, 33]. This means that when a linear
functional L is acting on a GP, the result is also a GP. Hence, it holds that

Lf(x) ⇠ GP
�
0, LL0k(x,x0)

�
, (2)

where L0 denotes the functional acting on the second argument of k(x,x0).
Considering line integrals along straight line segments, we define the functional
as

Lif(x) ,
Z

ri

�ri

f(x0
i + sn̂i)ds, (3)

where x
0
i

denotes the centre of the line, n̂i is a unit vector specifying the
direction, ri is the integration radius (half the line length) and the index
i refer to the ith data point. The corresponding covariance transformation
yields the double integral

LiL0
jk(x,x0) =

Z
ri

�ri

Z
rj

�rj

k(x0
i + sn̂i,x

0
j + s0n̂j)dsds0, (4)

which gives the covariance between measurement i and j. Let the measure-
ments be stored in the vector y = [y1, . . . , yN ]T with

yi = Lif(x) + "i, (5)

where the noise "i ⇠ N
�
0, �2

�
. Furthermore, we are interested in the

prediction f⇤ = [f(x⇤1) · · · f(x⇤N⇤)], the function values at a set of unseen
input locations {x⇤i}N⇤

i=1. Since linear transformations preserve Gaussianity,
y and f⇤ have a joint Gaussian distribution:


y

f⇤

�
⇠ N

 
0

0

�
,


L+ �2I L⇤

LT
⇤ K⇤⇤

�!
, (6)
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where Lij = LiL0
j
k(x,x0), (L⇤)ij = Lik(x,x⇤j), and (K⇤⇤)ij = k(x⇤i,x⇤j).

The predictive expressions given this joint prior are given by

E[f⇤|y] = LT
⇤ L

�1
y, (7a)

Cov [f⇤|y] = K⇤⇤ �LT
⇤ L

�1L⇤. (7b)

Thus, we can make predictions of the function values f⇤ purely based on line
integral data; note that integration is a conservative functional, meaning
that all information about the function is preserved under its evaluation
(as opposed to e.g. differentiation). The challenging part here lies in the
computation of the integral expressions, especially the double integrals (4) in
L.

2.2 Deep kernel learning

The most crucial part of Gaussian process modelling is the selection of the
covariance function k(x,x0), since it stipulates the basic behaviour of the
target function f(x). The most common covariance functions are stationary
such that k(x,x0) = k(x � x

0). Prominent members of this class include
the Matérn family [47], the so-called spectral mixture kernels [52], and the
popular squared exponential covariance function:

k(x,x0) = �2f exp

"
�1

2

DxX

k=1

l�2
k

(xk � x0
k)

2

#
, (8)

parameterised by the magnitude parameter �f and the lengthscales lk, which
impact how quickly the function may change.

In order to extend the expressiveness of stationary covariance functions,
non-stationarity can be introduced by transforming the inputs through a
non-linear mapping u(·) : RDx ! RDu to form k(u(x),u(x0)) [33]. The
dimension Du of u(·) can be chosen arbitrarily, and may therefore differ from
the dimension Dx of x.

Using this construction in the modelling of complex functions with limited
prior knowledge, we need u(·) to encode a general class of functions that can
be learnt from data. A natural choice is to let u(·) be described by a neural
network. This is the idea behind manifold GPs [5] and deep kernel learning
[54]. The Du latent outputs uj(·) are either completely independent, or they
are different outputs of the same network, see Figure 2 for an illustration.
The intuition is that the neural network does not have to learn the complete
function f(x), but only identify its discontinuities while for the remaining
part the model can rely upon the regression capabilities of the GP.
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x NN

u1(x)

u2(x)

GP f⇤ x

NN1

NN2

u1(x)

u2(x)

GP f⇤

Figure 2: Illustration of deep kernel learning and two different constructions
for the latent mapping u(x) = [u1(x) u2(x)]T. Left: the components u1(x)
and u2(x) are different outputs of the same neural network. Right: the
components are independent outputs of two different networks.

3 Deep kernel learning with integral measurements

Our aim in this work is to combine the GPs ability of incorporating line
integral measurement with the neural network warping to form a method
that is practically feasible beyond one-dimensional problems.

3.1 Basis function expansion

To reduce the computational load, we make use of a Hilbert space approxima-
tion method for GP regression [46]. In this approach a stationary covariance
function is approximated by the following finite sum:

k(u,u0) ⇡
mX

j=1

S(cj)�j(u)�j(u
0), (9)

where S(·) denotes the spectral density of the covariance function. The basis
functions {�j(·)}mj=1 with corresponding eigenvalues {�j}mj=1 are obtained
from the Laplace eigenvalue problem

(
���j(u) = �j�j(u),

�j(u) = 0,

u 2 ⌦,

u 2 @⌦,
(10)

where ⌦ = [L1, L1] ⇥ · · · ⇥ [LDu , LDu ] is a generalised rectangular domain,
and � denotes the Laplace operator. Here a Dirichlet boundary condition is
used, but it does not affect the GP solution if Lk is chosen carefully, which is
discussed in the supplementary material; for problems where the boundary
conditions are explicitly specified, more advanced formulations are possible
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[45]. The solution to (10) is given by

�j(u) =
DuY

k=1

L�1/2
k

sin [ckj(uk + Lk)] , ckj =
jk⇡

2Lk

, �j =
DuX

k=1

c2kj .

(11)

The notation denotes that basis function j has index jk 2 [1, . . . , m̃] in
direction k. Using m̃ basis functions in each direction, we get a total number
of m = m̃Du . Furthermore, we have introduced cj = [c1j , . . . , cDuj ] for the
input to S(·) in (9).

With the network warping included, the matrix L in (6) is approximated
as L⇡ �⇤�T where

�ij = Li�j(u(x)), ⇤jj = S(cj). (12)

Using the matrix inversion lemma, the approximate versions of the predictive
expressions (7) are reformulated for more efficient computations provided
that m < N . However, the main advantage of this method is the separation
of the inputs x and x

0 in the basis function product. A consequence of
this separation is that the double integral computations required to build L
reduce to single integral computations of the form

�ij =

Z
ri

�ri

DuY

k=1

L�1/2
k

sin
⇥
ckj(uk(x

0
i + sn̂i) + Lk)

⇤
ds. (13)

This integral can not be computed in closed form due to the non-linearity
u(·), but numerical integration is nevertheless significantly less demanding in
one dimension than it is in two (compare with expression (4)). For instance,
we can use a direct scheme such as the composite Simpson’s 1/3 rule of
integration [6].

3.2 Training the model

The model as formulated above contains the free hyperparameters ✓ =
[✓Tk ✓Tu ]T, which we separate with respect to the covariance function (✓k)
and the neural network (✓u), respectively. As for the squared exponential
covariance function (8), we have ✓k = {�f , {lk},�}, including the standard
deviation � of the noise. There are different cost function options available
for training ✓, among which two common ones are the marginal likelihood
(ML) and leave-one-out cross-validation (LOO-CV) [33]. In our experience,
these two methods have shown a similar performance. Regardless of choice,
the numerical robustness of the computations is improved using the QR-
factorisation with details given in the supplementary material.
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An important aspect of the training procedure is the parameter initialisa-
tion in the optimisation routine. This is a non-trivial challenge as the total
number of parameters is large due to the neural network. Moreover, the ini-
tialisation typically has big impact on the resulting optimisation performance
and hence also on the quality of the final prediction. For challenging problems
with complex two-dimensional functions, pre-training of the neural network
as described below has shown to have a crucial impact on the convergence.

To obtain a satisfying initial guess, let us take a moment to reflect on
what we want u(·) to achieve. The reason for introducing this mapping is that
a stationary covariance function always assigns high correlation to function
values at closely located inputs. In other words, if the distance |x � x

0| is
small, then f(x) and f(x0) are assumed to be similar. In regions of rapid
changes and discontinuities, this assumption fails drastically. We concretise
this by considering inference of a one-dimensional step function while using
a scalar latent mapping u(·). Two points x0 and x1 located just before and
just after the step differ significantly in their function values f(x0) and f(x1).
Therefore, we want to train u(·) such that u(x0) and u(x1) become clearly
separated, and hence make f(x0) and f(x1) weakly correlated. Considering
the remaining parts of the step function, it consists of two constant regions
where we also want u(·) to be constant for maximum correlation.

Extending this reasoning, it is easy to imagine several different mappings
that would yield ideal correlation assignments by the stationary covariance
function, with the essential feature being identification of discontinuities
and distinguishing between points that are separated by them. An intuitive
ideal mapping is u(x) being equal to the target function, since this choice
assigns maximum correlation to identical function values. Although other
ideal mappings might be less complex and more robust, this one is natural
in lack of other prior information. Thus, our proposed pre-training aims
at finding a latent mapping that is a reasonable approximation of the true
function.

To begin with, we restrict ourselves to the case Du = 1 for now where
we denote u(x) with u(x). Although the model might be more expressive
with several latent outputs, the computational load increases since it requires
more basis functions; the number scales exponentially with Du for a retained
frequency resolution.

For pre-training the neural network parameters ✓u, we suggest the choice

✓u = argmin
✓u

1

Nt

NtX

i=1

(ft(xi) � u(xi))
2, (14)

where {xt}Nt

i=1 is a set of Nt points in the domain of interest, and ft(·) denotes
the mean prediction obtained from standard GP reconstruction. As stated,
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Algorithm 1 Deep kernel learning with line integral measurements

Input: Data set {y,x0, r, n̂}N
i=1

Output: E[f⇤|y], Cov [f⇤|y]
1. Pre-train the neural network u(x) using (14).
2. Train the extended model.
3. Compute the mean prediction E[f⇤|y] and the covariance Cov [f⇤|y]
using (7).

this approach does not directly generalise to the case Du > 1. However, it
can still be employed in such constructions. For instance, one could combine
a pre-trained neural network mapping u(x) with the mappings uk(x) = xk

(whereby the original inputs are also used).
A natural question following this pre-training is why we need the neural

network; we could as well remove this intermediate step and fix u(·) to
be the output of the standard GP. However, a standard GP prediction is
likely to contain undesired artefacts for problems with discontinuous features,
and these artefacts may have negative impact when propagated through to
another GP. With a neural network warping, the joint training is capable of
eliminating or at least drastically reduce any impact of that form.

As for the implementation we make use of PyTorch [30], which provides
a powerful platform for neural network models. Employing a gradient-based
optimisation routine, we need to compute the partial derivatives of the cost
function. This requires an application of the chain rule, which may not be
trivial due to the matrix operations and numerical integration involved; to
this end we rely upon PyTorch’s support for automatic differentiation.

Additionally, a complementary routine for back propagation of derivatives
through the QR-factorisation has been implemented based on [49], with
details described in the supplementary material. Furthermore, we are using
the L-BFGS-optimiser [42], modified to allow for a dynamically changing
learning rate.

The procedure is summarised in Algorithm 1.

4 Experimental results

Here we illustrate the practical performance of the method, starting with a
one-dimensional toy example and proceeding with more realistic CT examples.

4.1 One-dimensional toy example

To illustrate the method, we consider inference of the one-dimensional step
function seen in Figure 3. The data set consist of 50 integrals computed over
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randomly chosen intervals in the domain [0, 1], contaminated by Gaussian
noise with standard deviation 0.001. For the latent mapping we are using a
neural network with four layers and (1, 5, 4, 1) neurons, employing the hyper-
bolic tangent activation function after the two hidden layers. Furthermore,
we are using Nt = 100 uniformly spaced points in the pre-training (14). The
squared exponential covariance function (8) is used in both the standard GP
and the proposed method.

Figure 3 shows the result of the proposed method (red dashed-dotted)
and the standard GP (blue dashed), together with their 95% credibility
regions. Obviously, the standard GP suffers from its embedded smoothness
assumptions and it is struggling with the step, which is reflected in the
oscillations and the wide credibility region. It should be stressed that this
problem differs notably as opposed to considering point measurements from a
smooth function – with complexity added in both the measurement model and
the function itself, it becomes significantly more challenging. Nevertheless,
the proposed method performs clearly better than the standard GP, obtaining
a good estimate of the true function.

Figure 3: One-dimensional toy
example of inferring a step func-
tion from 50 integral measure-
ments over randomly chosen in-
tervals in [0, 1]. True function
in solid grey, standard GP in
blue (dashed) and the proposed
method in red (dash-dotted).
The shades indicate the 95% cred-
ibility regions, which is much
tighter for the proposed method.

Figure 4: Measurement setup in
X-ray computed tomography; il-
lustration of a projection taken
from the angle ↵, with the target
object shaded. All lines in the
projection share the same unit
vector n̂, while the centre points
are different (blue dots). The in-
tegration radius ri is the distance
on the line from the centre point
x
0
i

to the circle.
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4.2 Computed tomography experiments

Here, we test the performance on two-dimensional CT problems. CT provides
a good demonstration for our method as it involves line integral measurements
of a quantity that can have discrete or sharp changes. We compare our
proposed method against the filtered back projection (FBP) algorithm. For
decades FBP has served as a state-of-the-art method, in no small part due to
the fact that it outperforms iterative optimisation-based alternatives in terms
of computation time. However, FBP is sensitive to noise and demonstrates a
relatively poor performance for small data sets – also referred to as limited
data. The limited data problem is interesting for several reasons, including:
keeping the radiation doses small; efficient use of scanning devices; geometric
setup restrictions (as in mammography).

In the practical scanning procedure, the data is collected as a set of
projections, each of which defines a number of parallel lines sharing the same
projection angle ↵. The projection width is determined by the maximum
object width wmax, so it is deduced that the entire object is located within
a circle of radius wmax/2. Exploiting this knowledge, the integration radii
are found by identifying the intersections between the circle and the straight
lines defined by the centre points and the unit vector; see Figure 4 for an
illustration of the geometry.

In both the examples presented in this section, the neural networks
have five layers with (2, 30, 20, 6, 1) neurons and the hyperbolic tangent as
activation function after the three hidden layers. Note that this structure
is far from optimal and could most likely be improved with a more careful
design. The input domain is normalised to [�1, 1] ⇥ [�1, 1], and the pre-
training is using Nt = 104 uniformly spaced points. Also, all GPs are
using the squared exponential covariance function (8). We compare the
results to FBP reconstructions computed with the iradon command from the
skimage module in Python [48]. The simulated data is generated with the
corresponding radon command using a high-resolved version of the ground
truth image.

Simulated data

As a simulated example we consider the Shepp-Logan phantom [SheppLogan].
The data consist of 9 projections evenly spaced in [0, 160]� with 185 lines
each, yielding a total of 1 665 measurements. Furthermore, Gaussian noise
with standard deviation 0.001 is added on top.

Figure 5 shows the ground truth image along with the reconstructions
obtained with FBP and our proposed method, respectively. The drawback
of the FPB in this case is obvious, as is seen from the distortions present
both inside and outside the main ellipse. The GP model, on the other hand,
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is much more homogeneous within the respective regions. However, some
blurriness is observed.

Figure 5: Left: Shepp-Logan phantom. Middle: FBP reconstruction. Right:
proposed method.

Real CT data

As a real-world example, we consider the carved cheese data set provided by
the Finish Inverse Problems Society, freely available and documented online
[4, 11]. The data is down-sampled to contain 15 projections evenly spaced in
[0, 336]� with 140 measurements each, hence 2 100 in total.

The result is seen in Figure 1; the leftmost plot shows a dense FBP
reconstruction obtained from the complete set of 360 projections each with
2 240 measurements, that is more than 800 000 measurements in total. Hence,
it is considered close to ground truth. Regarding the other reconstructions,
the performance is similar to what we observed in the previous experiment.
Clearly, the GP model produces a solution in which the different regions are
better distinguished. There are some parts with blurry elements, primarily
near the boundaries of the characters; it is likely that these effects could be
overcome by a more well-designed network structure.

5 Related work

The use of input transformations in the covariance function is by no means a
new construction; it is used in modelling solar radiation patterns [35] and
to impose periodicity [22], which in turn is exploited in modelling of the
atmospheric carbon dioxide concentration [33] and for long-term forecasting
[15]. In [43], a linear input transformation is used for dimensionality reduction
in sparse GPs. Another closely related approach is to transform the GP
outputs, which relaxes the embedded Gaussianity assumptions [44].

Incorporation of deep learning into GPs has a long history as well. The
neural network covariance function [28] is particularly notable, encoding a
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one-layer neural network with infinitely many neurons. Another area that
has gained a lot of interest in recent years is constituted by the deep GPs [9,
10], where a series of GPs are combined in a network structure. However, the
computational demand is rather intricate; scalable extensions of this model
are developed in [8, 34], with variational inference being a key component.

As we have already mentioned, the foundation that this work relies upon
is a technique referred to as manifold GPs [5] or deep kernel learning [54], both
of which describe more or less the same procedure in slightly different contexts.
An interesting extension is found in [53], where the framework is generalised
to a broader class of problems using stochastic variational inference. Another
similar approach considers a model customised for recurrent structures [40],
where the performance using standard covariance functions is poor. In [14], a
low-parameterised relative to deep kernel learning is developed with focus on
convolutional neural networks. The construction has also gained interest as a
potential tool in Bayesian optimisation [39, 55]. Closely related viewpoints
are presented in [12, 26], which both consider the relation between GPs and
wide deep neural networks.

The vast majority of GP models developed are concerned with point
measurements; although integral measurements are not as common, they
are present in relevant real-world applications, including CT reconstruction
used for demonstration in this work. The CT problem has been successfully
attacked from several different angles, using deep learning techniques [1, 2,
18, 31, 56] and statistical methods [3, 17, 25, 38] including the GP [32], but
not previously with deep kernel learning. Another area of rising importance
is strain field estimation based on the longitudinal ray transform [27, 36,
37], which constitute a line integral of the projected strain tensor. Since it
involves the reconstruction of a multidimensional function, it is a technically
more challenging problem than the CT equivalent. GPs tailored to satisfy the
physical constraints of the strain field have been used to this end [19, 23], but
so far no deep learning based techniques; the proposed method serves as an
interesting extension. Yet another example of integral measurements in GPs
are found within stochastic optimisation [20], where the secant condition used
in quasi-Newton methods is replaced by its exact counterpart; this approach
has shown promising results in nonlinear system identification [51].

6 Conclusion and future work

In this work we have presented a method that applies deep kernel learning to
problems with integral measurements. We proposed utilising a basis function
expansion to make the computations practically feasible, and pre-training
of the neural network to improve the result of the joint parameter training.
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The method was illustrated on both simulated and real data from X-ray
computed tomography, indicating a promising potential.

Future work may focus on customisation of the neural network structures.
Having paid a fairly limited attention to this important part of the model,
we believe that the room for improvement is significant. Moreover, although
the neural network is one possible choice of latent mapping, it is by no means
the only one. Other alternatives are also worth exploring, as well as their
potential combinations. As mentioned in Section 3.2 we did restrict ourselves
to a single latent output to reduce the computational burden; however, a
well-designed combination of several outputs with differing mappings is likely
to improve the performance. Also, extensions of deep kernel learning aimed
at reducing the risk of over-fitting should be explored to further improve the
robustness.
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8 Supplementary material

8.1 Selecting the domain size

Here we discuss the selection of the domain size of ⌦, which is determined
by the parameters Lk used in building the basis functions (11). A basic
requirement is that Lk should be clearly larger than the maximum absolute
size of uk(x) to avoid undesired impact of the Dirichlet conditions used in
the eigenvalue problem (10). Apart from this, the size of Lk determines
the quality of the approximation specified in the frequency domain; given a
fixed number of basis function in direction k, increasing Lk yields a higher
frequency resolution ⇡

2Lk
in that direction, while at the same time it is

reducing the frequency range [ ⇡

2Lk
, m̃⇡

2Lk
]. A reasonable approach is to select

Lk with respect to the spectral frequency S(·), so that the domain covers the
vast majority of the spectral "mass" (equivalently to how confidence regions
covers different amounts of the probability mass). This is dependent on the
lengthscale parameters, and we suggest selecting Lk such that

↵l�1
k

= max
k

ckj , (15)

where the parameter ↵ is chosen with respect to the spectral density of the
covariance function used. For instance, the value ↵ = 5 is reasonable for the
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squared exponential covariance function (8) and yields a coverage of more
than 99.9%. Note that since Lk is not part of the optimised parameters, the
recalculation modifies the definition of the cost function. However, that effect
is negligible and the strategy has proven very useful in practise.

8.2 Numerical Implementation

The numerical robustness can be improved using the QR-factorisation,
considering both the computations of the loss function and the predic-
tions. For instance, the LOO-CV procedure requires (�⇤�T + �2I)�1 and
(�⇤�T + �2I)�1

y. To that end, we first compute the matrix R in the
QR-factorisation

QR =


⇤1/2�T

�I

�
. (16)

Since Q is a unitary matrix, it follows that RTR = �T⇤� + �2I and so
the desired quantities can be found using efficient forward and backward
substitutions [16].

Since PyTorch’s automatic differentiation is being used to provide the
partial derivatives of the cost function with respect to the parameters ✓, a
‘backwards’ method is required for the QR-factorisation. Although a QR
algorithm is implemented in PyTorch, it does not have a backwards method
in its current stable release. Given the partial derivative of the cost function
C with respect to R, the backwards algorithm needs to compute the partial
derivates of the cost function with respect to the elements of A, where
QR = A. Algorithm 2 provides a backwards method that can be added to
the QR function in PyTorch and is based upon the equations presented in
[49].

Algorithm 2 Backwards Method for QR

Input: @C

@R
, Q, and R

Output: @C

@A

1: Compute the psuedoinverse of R: R+ = (R>R)�1R>

2: Compute � =
�
R@C

@R
� @C

@R
R>�

2: Extract the lower triangular matrix below the main diagonal: � =
tril(�,�1)
3: Compute the output: @C

@A
= Q

�
@C

@R
+ �R+>�
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Neutron transmission strain
tomography for non-constant

strain-free lattice spacing
Abstract

Recently, several algorithms for strain tomography from energy-resolved
neutron transmission measurements have been proposed. These methods
assume that the strain-free lattice spacing d0 is a known constant limiting
their application to the study of stresses generated by manufacturing and
loading methods that do not alter this parameter. In this paper, we consider
the more general problem of jointly reconstructing the strain and d0 fields. A
method for solving this inherently non-linear problem is presented that ensures
the estimated strain field satisfies equilibrium and can include knowledge of
boundary conditions. This method is tested on a simulated data set with
realistic noise levels, demonstrating that it is possible to jointly reconstruct
d0 and the strain field.

1 Introduction

Energy-resolved neutron transmission methods can generate lower dimensional
(one- or two-dimensional) images of strain from a higher dimensional (two-
or three-dimensional) strain field within a polycrystalline material. The
‘tomographic’ reconstruction of an unknown strain field from these images can
be used to study the residual strain and stress within engineering components.
Residual stresses are those which remain after applied loads are removed (e.g.
due to heat treatment, plastic deformation, etc.), and may have significant
and unintended impact on a component’s effective strength and service life
— in particular its fatigue life. Measuring and quantifying these strains is
important for the validation of predictive design tools, such as Finite Element
Analysis, and to aid the development of novel manufacturing techniques —
i.e. additive manufacturing.

These strain images are generated by analysing features known as Bragg-
edges in the relative transmission of a neutron pulse through a sample.
Bragg-edges are sudden increases in the intensity as a function of wavelength
and occur when the scattering angle 2# reaches 180�, beyond which no further
coherent scattering can occur. The wavelength � at which these Bragg-edges
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occur can be related to the lattice spacing d within the sample through
Bragg’s law: � = 2d sin#. Assuming minimal texture, this can be used to
provide a relative measure of strain;

h✏i =
d � d0

d0
, (1)

where d0 is the strain-free lattice spacing and h✏i is a through thickness
average of the normal, elastic strain in the direction of the beam.

The determination of d0 is a problem inherent to diffraction and trans-
mission strain analysis. For specific cases where the loading mechanism does
not result in changes to the strain-free lattice parameter, its value can be
measured prior to loading and in the simplest case (e.g. for an annealed
sample) a constant value throughout the sample can be assumed. Several
algorithms for strain tomography assuming a known, constant strain-free
lattice spacing have been developed. Reconstruction of axisymmetric strain
fields is considered in [1, 2, 7, 17] and more general two-dimensional strain
fields in [8, 10, 14].

Many manufacturing techniques (e.g. welding and additive manufacturing)
can alter the lattice spacing; for example, as a result of inhomogeneously
distributed phase changes (such as the Martensite transformation), or due
to gradients in composition as a result of differing chemical states in the
starting materials. Since the lattice spacing (in this case d0) is sensitive to
crystal structure and composition changes, the strain-free lattice parameter
may vary throughout the sample. Ignoring variations in d0 would cause
severe degradation in the quality of a reconstructed strain field. In such cases,
measuring d0 is more challenging and has been achieved in neutron diffraction
measurements by measuring additional directions of strain [6, 19] and by
destructive methods where the strain is relieved by wire cutting the sample
into a grid allowing the strain-free lattice spacing to be measured throughout
the sample [24]. Although the latter of these two options could be applied to
strain tomography it requires the destruction of the sample and creates an
additional tomography problem, requiring another set of measurements to be
acquired.

Here, we present a method capable of jointly reconstructing the strain
field and the d0 field from a single set of neutron transmission images. To
achieve this both the strain and d0 are modelled by a Gaussian process (see
for example [25]) and equilibrium and boundary conditions are built into the
strain model [15]. This extends the Gaussian process approach presented
by [10, 14] to handle the inherently non-linear nature of this problem. A
numerically tractable algorithm based on variational inference (see for example
[5, 16]) is provided and the method is validated on a simulated data set.
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2 Problem Statement

This paper focuses on the joint reconstruction of the strain field ✏(x) and
a non-constant strain-free lattice parameter d0(x) from a set of neutron
transmission images. Restricting the problem to two dimensions, gives the
strain field as the symmetric tensor

✏(x) =


✏xx(x) ✏xy(x)
✏xy(x) ✏yy(x)

�
, (2)

where x =
⇥
x y

⇤T. For brevity, the unique components of strain will
be written as ✏̄ =

⇥
✏xx ✏xy ✏yy

⇤T with the coordinate x omitted where
appropriate.

Here, we consider the lattice spacings d as the measurements rather than
the standard approach which considers the relative strain of the form form
(1). This allows the measurements to be explicitly related to both the strain
and the strain-free lattice parameter through the Longitudinal Ray Transform
(LRT) [18]:

y(⌘) = d(⌘) + e =
1

L

LZ

0

n̄✏̄(p + n̂s)d0(p + n̂s) + d0(p + n̂s) ds + e. (3)

where e ⇠ N (0,�2n) and the geometry of each measurement is given by
the parameter set ⌘ = {n̂, L,p}; with n̂ as the beam direction, L as the
irradiation length, p =

⇥
x0 y0

⇤T as the point of initial intersection between
the ray and the sample, and n̄ =

⇥
n̂
2
1 2n̂1n̂2 n̂

2
2

⇤
. See Figure 1 for the

measurement geometry. These measurements are a non-linear function of the
two phenomena we wish to estimate; ✏ and d0.

For details on the analysis of neutron transmission data to determine
these lattice spacings the reader is referred to [27, 28, 31, 32]. It is also worth
noting that the standard deviation �n of these measurements is available.

Furthermore, the strain field inside a sample is a physical property and as
such it is subject to equilibrium and boundary conditions [26]. Therefore, it
is natural to constrain estimates of the strain field to satisfy these conditions.
Using Hooke’s law the equilibrium conditions can be written directly in terms
of strain. In two dimensions, this relies on an assumption of plane strain or
plane stress. Plane stress is assumed for the remainder of this work, giving
the equilibrium conditions as

@

@x
(✏xx + ⌫✏yy) +

@

@y
(1 � ⌫)✏xy = 0,

@

@x
(✏yy + ⌫✏xx) +

@

@y
(1 � ⌫)✏xy = 0,

(4)
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L

✏(x)

n̂, s
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Figure 1: LRT measurement geometry. Each measurement made by a detector
pixel is associated with a ray of direction n̂ that enters the sample at p and
has a total irradiated length of L.

where ⌫ is Poisson’s ratio.
Boundary conditions, in particular the load free surfaces, may also be

known. For an unloaded surface, the distribution of forces known as tractions
will be zero. Through equilibrium this places additional linear constraints on
the strain field, which, assuming plane stress, can be written as

0 =


n?1 n?2 0
0 n?1 n?2

�2

4
1 0 �⌫
0 1 + ⌫ 0
�⌫ 0 1

3

5 ✏̄(xb), (5)

where xb is a point on an unloaded surface and n? is the normal to the
surface at this point.

An approach to enforcing equilibrium in the estimated strain field is to
define a Gaussian process for the Airys stress function from which strain can be
derived [14]. This non-parametric approach was demonstrated experimentally
by [14] and compared to other parametric approaches by [10] with promising
results. Boundary conditions in the form of (5) can be included in the
estimation process as artificial measurements of zero traction [10].

We wish to extend this approach so that both the strain field and the
strain-free lattice spacing can be estimated. As the measurements are a
non-linear function of the unknowns we cannot directly apply the standard
Gaussian process regression methods [25]. There exists several approaches
to approximate Gaussian processes for non-linear functions; the Laplace
approximation [4, 25], GP variational inference [30], and Markov Chain
Monte Carlo methods (such as Elliptical Slice Sampling [21]). For these
methods, the measurements are modelled as non-linear functions of the GP
sampled at the measurement locations (known as latent function values).
The latent function values that best1 match the data are determined by one

1
For a given criterion of best fit, whether it be marginal log likelihood, cross-validation,

etc.
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of the above methods. Then, Gaussian process regression is applied with the
latent function values taking the place of measurements to determine the
function values at the new locations of interest.

The non-static nature of the integral measurement model (3) makes it
unclear how to express the measurements as a function of a finite set of latent
function values, and hence the above approaches to approximating the GP for
non-linear measurements cannot be applied directly. In the following section,
we utilise an finite basis function approximation to the GP, and by viewing
the problem from an alternate perspective we show how variational inference
can be used to solve this non-linear problem.

3 Method

The method presented here is to define a Gaussian process model for the
strain field and the strain-free lattice spacing. This Gaussian process model
is then approximated using a Hilbert space approximation [14, 29]. This
has two benefits; firstly it removes the need for numerical integration of the
covariance function (as discussed by [14, 15]), and secondly it allows us to
reformulate the problem as a set of basis functions with unknown coefficients.
Variational inference can then be used to learn the coefficients from the LRT
measurements and artificial measurements of zero traction.

3.1 Gaussian Process model

The Gaussian process (GP) is a Gaussian distribution of spatially correlated
functions;

f(x) ⇠ GP
�
m(x), k(x,x0)

�
. (6)

The characteristics of the functions belonging to this distribution are governed
by a mean function m(x) and a covariance function k(x,x0). The covariance
function describes the correlation between the function values f(x) and f(x0)
at any two points x and x

0. Careful design of the covariance function can
ensure that only functions satisfying desired characteristics belong to the
distribution.

Here, we wish to design the covariance function to ensure that only strain
fields satisfying equilibrium are contained in the GP prior. Following the
formulation in [14] a GP model for the Airys stress functions is defined;
'(x) ⇠ GP (0, k'(x,x0)). Under the assumption that the sample is plane
stress, isotropic, and contiguous, the Airy’s stress functions can be related to
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strain through the mapping

✏̄(x) = Vx'(x), Vx =

2

64
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@y2
� ⌫ @

2

@x2

�(1 + ⌫) @
2

@x@y

@
2

@x2 � ⌫ @
2

@y2

3

75 , (7)

where V is a linear operator, and the superscript denotes which variable the
operator acts on. As GPs are closed under linear operators [13, 14, 23, 33] a
GP model for strain that satisfies equilibrium can now be defined;

✏̄(x) ⇠ GP
⇣
0,Vxk'(x,x0)Vx0T

⌘
, (8)

where a prior mean function of zero has been chosen.
Additionally, d0 function is also modelled by a GP;

d0(x) ⇠ GP(d̄0, kd0(x,x0)). (9)

where the prior mean d̄0 is chosen to be close to the expected theoretical
strain-free lattice spacing for the material used or a measured average in a
strain-free sample. The choice of prior mean function does not mean that
we believe the d0 and ✏̄ functions to be a particular value, but rather that
we do not have any information to suggest otherwise. After the inclusion of
measurement information, the mean of the posterior estimate will be updated.

There exists a number of options for the base covariance functions k'(x,x0)
and kd0(x,x0), with both the squared-exponential and the Matérn covariance
functions having been successfully used for strain estimation [10, 14]. For
a more thorough discourse on available covariance functions the reader is
referred to [25].

Having defined suitable GP models for the strain and d0 fields we now wish
to estimate these fields from the LRT and traction measurements. However,
the LRT is a non-linear function of these fields and consequently a closed form
solution does not exist. The following presents a method for obtaining these
estimates that approximates the GP by a finite number of basis functions
allowing variational inference to be applied.

3.2 Hilbert Space Approximation to the GP Prior

Here, we make use of the approximation method proposed by [29] and
demonstrated to be suitable for the problem of strain tomography [14]. This
method approximates our covariance function by a finite sum of m basis
functions;

k(x,x0) =
mX

j=1

�i(x)S(�j)�j(x
0), (10)
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where S is the spectral density of the covariance function. For a stationary
covariance function k = k(r), where r = x � x

0, the spectral density and the
basis functions are given by;

S(!) =

Z
k(r)e�i!Tr dr, �j =

1p
LxLy

sin(�x,j(x + Lx)) sin(�y,j(y + Ly)),

(11)
where Lx and Ly control the domain size, and � = [�x,�y]T encodes spatial
frequencies of the basis functions. The basis functions are chosen as a solution
to the Dirichlet boundary conditions on a rectangular domain, which is a
natural choice for the Laplace eigenvalue problem that needs to be solved
to approximate the GP [14]. The parameters ✓ = {lx, ly,�f} are commonly
called ‘hyperparameters’ and can be chosen by optimisation (as discussed in
Section 5.2). For our application the domain size and spatial frequencies are
chosen such that the basis functions spanned a region where their spectral
densities, were greater than a minimum threshold. This helps to ensure that
the dominant frequencies of the response are captured while maintaining
numerical stability.

At this stage, the alternative view point of Bayesian linear regression
can be taken. This approach models the unknown function by a set of basis
functions with Gaussian coefficients;

f(x) =
mX

j=1

�j(x)wj = �(x)w, wj ⇠ N (µj , S(�j)), (12)

where �(x) and w have dimensions [1, m] and [m, 1], respectively. This gives
the following model for the strain field ✏̄(x) and the strain-free lattice spacing
d0(x);

✏̄⇤(x) = �✏w',

�✏,j(x) = Vx�',j(x),

�',j =
1p

L'xL'y

sin(�'x,j(x + L'x)) sin(�'y,j(y + L'y)),

d0⇤(x) = �d0
wd0 ,

�d0,k(x) =
1p

Ld0xLd0y

sin(�d0x,k(x + Ld0x)) sin(�d0y,k(y + Ld0y)),

(13)

where the unknown coefficients are independently normally distributed to
approximate our GP model:

w',j ⇠ N (0, S'(�',j)) and wd0,j ⇠ N (µd0,j , Sd0(�d0,j)).

Where the means µd0,j are chosen so that the prior has the constant value d̄0.
In this work, basis functions and parameters corresponding to the d0 field
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will be denoted by the subscript d0 and the subscript k will be used as an
index. Likewise, basis functions and parameters corresponding to the Airys
stress function will be denoted by the subscript d0 and the subscript j will be
used as an index. The expanded expressions for �✏ are given in Appendix A.

Using the LRT (3) we can write a model for a predicted measurement as
a non-linear function of the unknown coefficients;

y⇤ =
1

L

LZ

0

n̄

0

@
X

j

X

k

�✏,j(p + n̂s)w',j�d0,k(p + n̂s)wd0,k

1

A

+

 
X

k

�d0,k(p + n̂s)wd0,k

!
ds

= gy(w',wd0 , ⌘),

(14)

where we have restricted ourselves to a single measurement to simplify the
notation. These integrals can be analytically evaluated and the equations are
given in Appendix A. Predictions of the boundary tractions yt at a boundary
location xb with surface normal n? can be written as a linear function of the
unknown coefficients;

yt⇤ =


n?1 n?2 0
0 n?1 n?2

�

| {z }
T

�'(x)w' = T(n?)�'(xb)w'

= gt(w,xb,n?).

(15)

The coefficients w' and wd0 are random variables; as such the predictions ✏̄⇤,
y⇤, and yt⇤ are also random variables. The problem now is to determine the
distribution of the coefficients given a set of LRT and traction measurements.
This problem is now in a form allowing variational inference to be used to
approximate a solution to the non-linear problem.

3.3 Variational Inference

Variational inference [5, 16] provides an approximation to the posterior dis-
tribution by assuming that it has a certain functional form that contain
unknown parameters. These unknown parameters are found using optimiz-
ation, where some distance measure is minimized. We will in this section
provide the details enabling the use of variational inference in solving our
problem.

Given n transmission measurements and nt traction measurements, such
that a vector of all measurements is given by Y = [y1, . . . , yn, yt,1, . . . , yt,nt

]T,
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the problem can be written as having prior and likelihood

p(w) ⇠ N (µ,⌃p) and p(Y|w) ⇠ N (Y|g(w),⌃n), (16)

where w =
⇥
w

T
d0

w
T
'

⇤T, µ is a vector of all the prior means, and ⌃p is a
matrix with the coefficients prior variance on the diagonals. Here, g(·) is the
combined measurement model that expresses the measurement vector Y as
a function of the coefficients. This function is constructed using both (14)
and (15). Finally, ⌃n = diag(�2nIn⇥n,�2t Int⇥nt

), where �2t is a small variance
placed on the artificial traction measurements added for numerical reasons.

The non-linear measurement function g(·) makes the likelihood intractable
as the prior and likelihood are no longer conjugate. Consequently, the
posterior p(w|Y) is also intractable and so we find an approximate solution
using variational inference [16]. The idea is to approximate the true posterior
by the Gaussian distribution q(w) ⇠ N (ŵ,C), and find the mean ŵ and
covariance C for this distribution that maximise the Free Energy F . The
Free Energy places a lower bound on the log marginal likelihood and hence
provides a measure of how well our posterior fits the data;

log p(Y) � E [log p(Y|W)] � KL [q(w)||p(w|Y)] = F , (17)

where, in this case, E[·] is the expected value with respect to the approximate
posterior q(w) and KL[·] is the Kullback Leibler divergence which provides
a measure of difference between the approximate posterior and the true
posterior. These terms can be evaluated as [30];

E
⇥
log p(Y|W)

⇤
=

1

2

⇥
N log 2⇡ + log |⌃n|

+ (Y � E [g(w)])T⌃�1
n (Y � E [g(w)])

⇤
,

KL
⇥
q(w)||p(w|Y)

⇤
=

1

2

⇥
tr(⌃�1

p C) +
�
µ � ŵ

�T
⌃

�1
p

�
µ � ŵ

�

� log |C| + log |⌃p|� N
⇤
,

(18)

where N = n + nt. Here, the expectation of the non-linear function E [g(w)]
is intractable [30] and so the expected maximum is used Ŷ = g(ŵ);

F ⇡ �1

2

⇥
N log 2⇡ + log |⌃n|� log |C| + log |⌃p| + (Y � g(ŵ))T⌃�1

n (Y � g(ŵ))

+ (µ � ŵ)T⌃�1
p (µ � ŵ)

⇤
. (19)

The optimal posterior mean is chosen to maximise the Free Energy. To
perform this optimisation a modified Newton’s method is used where the step
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direction is q = �H

�1
g and we can calculate the gradient, g, and Hessian,

H, of the cost as

g = J
T
⌃

�1
n (Y � g(ŵ)) �⌃�1

p ŵ,

H = �J
T
⌃

�1
n J +

@JT

@w
⌃�1
n (Y � g(ŵ)) �⌃�1

p ,
(20)

where J =
h
@Ŷ
@ŵ

T
@Ŷt
@ŵ

T
iT

, and the derivatives and second derivatives are
given in Appendix B. At each iteration we update the coefficients according
to

ŵk+1 = (1 � ↵)ŵk + ↵q + ↵µ, (21)
A backwards line search is used to ensure that F is increased in each iteration.
Once the optimal posterior mean is found, the covariance can be found by
setting @F

@C = 0 and linearising about ŵ [30], giving;

C =
h
⌃

�1
p + J

T⌃�1
n J

i�1
. (22)

Pseudo-code for an algorithm to find approximate distribution of the coef-
ficients q(w) ⇠ N (ŵ,C) is given in Algorithm 1. Once the coefficients are
found, estimates of the strain and d0 fields can be estimated. The approx-
imate poster mean and variance for the strain field and strain-free lattice
spacing can be computed as


d̂0(x)

ˆ̄✏

�
=


�✏(x) 0

0 �✏(x)

�
ŵ,

⌃̂ =


�✏(x) 0

0 �✏(x)

�
C


�✏(x) 0

0 �✏(x)

�T
,

(23)

where ⌃̂ is the joint covariance of the strain and d0 estimates. Next, this
method is demonstrated on a set of measurements simulated from a theoretical
cantilever beam strain field and an artificial d0 field.

4 Simulation Results

The method’s ability to jointly reconstruct the strain field and a d0 field is
demonstrated using simulated measurements. Reconstructions from meas-
urements simulated through two strain fields is shown; the Saint-Venant
approximate strain field for a cantilver beam, and a Finite Element Ana-
lysis (FEA) strain field from an in-situ loaded C-shape. Additionally, the
consequences of ignoring the d0 variation on the reconstruction are shown by
using the linear measurement model and Gaussian process regression method
presented by [14] with the addition of traction constraints as shown in [10].
Matlab code to run both examples can be found on Github [9].
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Algorithm 1 Variational inference algorithm for finding the coefficients
q(w) ⇠ N (ŵ,C). Requires the hyperparameters ✓, the specified number of
basis functions m' and md0 , the LRT measurement information {yi, ⌘i|8i =
1, . . . , n} and the boundary traction information {yt,i = 0,xb,i,n?,i|8i =
1, . . . , nt}.

1: procedure Find Coefficients
2: Compute the basis functions for the LRT measurements using Equa-

tion (14)
3: Compute the basis functions for the traction measurements using

Equation (15)
4: Build prior variance ⌃p

5: Initialise the coefficients ŵ1

6: set k = 1
7: while Stopping criteria not met do
8: Compute the gradient g and Hessian H linearised about ŵk according

to Equation (20)
9: Calculate ŵk+1 using Equation (21) and a backward line search

10: k = k + 1
11: end while
12: Calculate the covariance C according to Equation (22)
13: return ŵk and C

14: end procedure

4.1 Cantilever Beam Example

The method is first demonstrated for the theoretical Saint-Venant cantilever
beam as studied. Assuming plane stress, the Saint-Venant approximation to
the strain field is [3]:

E(x) =

2

64

P

EI
(L � x)y

� (1+⌫)P
2EI

⇣�
h

2

�2 � y2
⌘

�⌫P

EI
(L � x)y

3

75 , (24)

where the geometry is defined in Figure 2. A synthetic strain-free lattice
spacing field is defined by

d0(x) = c0 exp

✓
�1

2
(x � c1)

2/c22 �
1

2
(y � c3)

2/c24

◆
+ c5, (25)

with the parameters given by {c0, c1, c2, c3, c4, c5} = {0.0168, 0, 7.5⇥10�3, 7⇥
10�3, 6⇥10�3, 4.056}. The maximum variation c0 from a constant base value,
c5, was chosen to reflect the possible maximum relative variation due to
martensitic phase change in 0.8% carbon steel.
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<latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="u83j/XzZ2ZMt9PzkJ56wspYVcvA=">AAAB3XicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHHZgn1AW0omvdPGZjJDckcsQ3+BGxeK+Lfc+W9MHwttPRD4OCch954wVdKS7397ha3tnd294n7poHx4dFw5KbdskhmBTZGoxHRCblFJjU2SpLCTGuRxqLAdTu7mefsJjZWJfqBpiv2Yj7SMpODkrMbzoFL1a/5CbBOCFVRhpfqg8tUbJiKLUZNQ3Npu4KfUz7khKRTOSr3MYsrFhI+w61DzGG0/Xww6YxfOGbIoMe5oYgv394ucx9ZO49DdjDmN7Xo2N//LuhlFN/1c6jQj1GL5UZQpRgmbb82G0qAgNXXAhZFuVibG3HBBrpuSKyFYX3kTWle1wK8FDR+KcAbncAkBXMMt3EMdmiAA4QXe4N179F69j2VdBW/V2yn8kff5A9GTi6k=</latexit><latexit sha1_base64="u83j/XzZ2ZMt9PzkJ56wspYVcvA=">AAAB3XicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHHZgn1AW0omvdPGZjJDckcsQ3+BGxeK+Lfc+W9MHwttPRD4OCch954wVdKS7397ha3tnd294n7poHx4dFw5KbdskhmBTZGoxHRCblFJjU2SpLCTGuRxqLAdTu7mefsJjZWJfqBpiv2Yj7SMpODkrMbzoFL1a/5CbBOCFVRhpfqg8tUbJiKLUZNQ3Npu4KfUz7khKRTOSr3MYsrFhI+w61DzGG0/Xww6YxfOGbIoMe5oYgv394ucx9ZO49DdjDmN7Xo2N//LuhlFN/1c6jQj1GL5UZQpRgmbb82G0qAgNXXAhZFuVibG3HBBrpuSKyFYX3kTWle1wK8FDR+KcAbncAkBXMMt3EMdmiAA4QXe4N179F69j2VdBW/V2yn8kff5A9GTi6k=</latexit><latexit sha1_base64="RTDtzoR9XGydJ+5WR4uE3AJC7Cw=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc2UpLYWEIiHwlcyN4yByt7e5fdPSK58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkbuF3pqg0j+WDmSXoR3QkecgZNVZqPg3KFbfqLkE2iZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgfNSP9WYUDahI+xZKmmE2s+Wh87JlVWGJIyVLWnIUv09kdFI61kU2M6ImrFe9xbif14vNWHNz7hMUoOSrRaFqSAmJouvyZArZEbMLKFMcXsrYWOqKDM2m5INwVt/eZO0b6qeW/WabqVey+MowgVcwjV4cAt1uIcGtIABwjO8wpvz6Lw4787HqrXg5DPn8AfO5w/h94zu</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="u83j/XzZ2ZMt9PzkJ56wspYVcvA=">AAAB3XicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHHZgn1AW0omvdPGZjJDckcsQ3+BGxeK+Lfc+W9MHwttPRD4OCch954wVdKS7397ha3tnd294n7poHx4dFw5KbdskhmBTZGoxHRCblFJjU2SpLCTGuRxqLAdTu7mefsJjZWJfqBpiv2Yj7SMpODkrMbzoFL1a/5CbBOCFVRhpfqg8tUbJiKLUZNQ3Npu4KfUz7khKRTOSr3MYsrFhI+w61DzGG0/Xww6YxfOGbIoMe5oYgv394ucx9ZO49DdjDmN7Xo2N//LuhlFN/1c6jQj1GL5UZQpRgmbb82G0qAgNXXAhZFuVibG3HBBrpuSKyFYX3kTWle1wK8FDR+KcAbncAkBXMMt3EMdmiAA4QXe4N179F69j2VdBW/V2yn8kff5A9GTi6k=</latexit><latexit sha1_base64="u83j/XzZ2ZMt9PzkJ56wspYVcvA=">AAAB3XicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHHZgn1AW0omvdPGZjJDckcsQ3+BGxeK+Lfc+W9MHwttPRD4OCch954wVdKS7397ha3tnd294n7poHx4dFw5KbdskhmBTZGoxHRCblFJjU2SpLCTGuRxqLAdTu7mefsJjZWJfqBpiv2Yj7SMpODkrMbzoFL1a/5CbBOCFVRhpfqg8tUbJiKLUZNQ3Npu4KfUz7khKRTOSr3MYsrFhI+w61DzGG0/Xww6YxfOGbIoMe5oYgv394ucx9ZO49DdjDmN7Xo2N//LuhlFN/1c6jQj1GL5UZQpRgmbb82G0qAgNXXAhZFuVibG3HBBrpuSKyFYX3kTWle1wK8FDR+KcAbncAkBXMMt3EMdmiAA4QXe4N179F69j2VdBW/V2yn8kff5A9GTi6k=</latexit><latexit sha1_base64="RTDtzoR9XGydJ+5WR4uE3AJC7Cw=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc2UpLYWEIiHwlcyN4yByt7e5fdPSK58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkbuF3pqg0j+WDmSXoR3QkecgZNVZqPg3KFbfqLkE2iZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgfNSP9WYUDahI+xZKmmE2s+Wh87JlVWGJIyVLWnIUv09kdFI61kU2M6ImrFe9xbif14vNWHNz7hMUoOSrRaFqSAmJouvyZArZEbMLKFMcXsrYWOqKDM2m5INwVt/eZO0b6qeW/WabqVey+MowgVcwjV4cAt1uIcGtIABwjO8wpvz6Lw4787HqrXg5DPn8AfO5w/h94zu</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit>

y
<latexit sha1_base64="fHd3Ofo39OCZ6T6IuApaHtVI2Os=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF+wFtKJvtpF272YTdjRBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6N/e7T6g0j+WDyRL0IzqWPOSMGiu1smGl6tbcBcg68QpShQLNYeVrMIpZGqE0TFCt+56bGD+nynAmcFYepBoTyqZ0jH1LJY1Q+/ni0Bm5tMqIhLGyJQ1ZqL8nchppnUWB7YyomehVby7+5/VTE9b9nMskNSjZclGYCmJiMv+ajLhCZkRmCWWK21sJm1BFmbHZlG0I3urL66RzXfPcmte6qTbqRRwlOIcLuAIPbqEB99CENjBAeIZXeHMenRfn3flYtm44xcwZ/IHz+QPku4zz</latexit><latexit sha1_base64="fHd3Ofo39OCZ6T6IuApaHtVI2Os=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF+wFtKJvtpF272YTdjRBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6N/e7T6g0j+WDyRL0IzqWPOSMGiu1smGl6tbcBcg68QpShQLNYeVrMIpZGqE0TFCt+56bGD+nynAmcFYepBoTyqZ0jH1LJY1Q+/ni0Bm5tMqIhLGyJQ1ZqL8nchppnUWB7YyomehVby7+5/VTE9b9nMskNSjZclGYCmJiMv+ajLhCZkRmCWWK21sJm1BFmbHZlG0I3urL66RzXfPcmte6qTbqRRwlOIcLuAIPbqEB99CENjBAeIZXeHMenRfn3flYtm44xcwZ/IHz+QPku4zz</latexit><latexit sha1_base64="fHd3Ofo39OCZ6T6IuApaHtVI2Os=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF+wFtKJvtpF272YTdjRBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6N/e7T6g0j+WDyRL0IzqWPOSMGiu1smGl6tbcBcg68QpShQLNYeVrMIpZGqE0TFCt+56bGD+nynAmcFYepBoTyqZ0jH1LJY1Q+/ni0Bm5tMqIhLGyJQ1ZqL8nchppnUWB7YyomehVby7+5/VTE9b9nMskNSjZclGYCmJiMv+ajLhCZkRmCWWK21sJm1BFmbHZlG0I3urL66RzXfPcmte6qTbqRRwlOIcLuAIPbqEB99CENjBAeIZXeHMenRfn3flYtm44xcwZ/IHz+QPku4zz</latexit><latexit sha1_base64="fHd3Ofo39OCZ6T6IuApaHtVI2Os=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF+wFtKJvtpF272YTdjRBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6N/e7T6g0j+WDyRL0IzqWPOSMGiu1smGl6tbcBcg68QpShQLNYeVrMIpZGqE0TFCt+56bGD+nynAmcFYepBoTyqZ0jH1LJY1Q+/ni0Bm5tMqIhLGyJQ1ZqL8nchppnUWB7YyomehVby7+5/VTE9b9nMskNSjZclGYCmJiMv+ajLhCZkRmCWWK21sJm1BFmbHZlG0I3urL66RzXfPcmte6qTbqRRwlOIcLuAIPbqEB99CENjBAeIZXeHMenRfn3flYtm44xcwZ/IHz+QPku4zz</latexit>

t
<latexit sha1_base64="zes3vBFXxjNR5abVqS2GqVmU2R0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0RzDHgxWMC5gHJEmYnvcmY2QczvUII+QIvHhTx6id582+cJHvQxIKGoqqb7q4gVdKQ6347G5tb2zu7hb3i/sHh0XHp5LRlkkwLbIpEJboTcINKxtgkSQo7qUYeBQrbwfhu7refUBuZxA80SdGP+DCWoRScrNSgfqnsVtwF2DrxclKGHPV+6as3SEQWYUxCcWO6npuSP+WapFA4K/YygykXYz7ErqUxj9D408WhM3ZplQELE20rJrZQf09MeWTMJApsZ8RpZFa9ufif180orPpTGacZYSyWi8JMMUrY/Gs2kBoFqYklXGhpb2VixDUXZLMp2hC81ZfXSeu64rkVr3FTrlXzOApwDhdwBR7cQg3uoQ5NEIDwDK/w5jw6L86787Fs3XDymTP4A+fzB90njO4=</latexit><latexit sha1_base64="zes3vBFXxjNR5abVqS2GqVmU2R0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0RzDHgxWMC5gHJEmYnvcmY2QczvUII+QIvHhTx6id582+cJHvQxIKGoqqb7q4gVdKQ6347G5tb2zu7hb3i/sHh0XHp5LRlkkwLbIpEJboTcINKxtgkSQo7qUYeBQrbwfhu7refUBuZxA80SdGP+DCWoRScrNSgfqnsVtwF2DrxclKGHPV+6as3SEQWYUxCcWO6npuSP+WapFA4K/YygykXYz7ErqUxj9D408WhM3ZplQELE20rJrZQf09MeWTMJApsZ8RpZFa9ufif180orPpTGacZYSyWi8JMMUrY/Gs2kBoFqYklXGhpb2VixDUXZLMp2hC81ZfXSeu64rkVr3FTrlXzOApwDhdwBR7cQg3uoQ5NEIDwDK/w5jw6L86787Fs3XDymTP4A+fzB90njO4=</latexit><latexit sha1_base64="zes3vBFXxjNR5abVqS2GqVmU2R0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0RzDHgxWMC5gHJEmYnvcmY2QczvUII+QIvHhTx6id582+cJHvQxIKGoqqb7q4gVdKQ6347G5tb2zu7hb3i/sHh0XHp5LRlkkwLbIpEJboTcINKxtgkSQo7qUYeBQrbwfhu7refUBuZxA80SdGP+DCWoRScrNSgfqnsVtwF2DrxclKGHPV+6as3SEQWYUxCcWO6npuSP+WapFA4K/YygykXYz7ErqUxj9D408WhM3ZplQELE20rJrZQf09MeWTMJApsZ8RpZFa9ufif180orPpTGacZYSyWi8JMMUrY/Gs2kBoFqYklXGhpb2VixDUXZLMp2hC81ZfXSeu64rkVr3FTrlXzOApwDhdwBR7cQg3uoQ5NEIDwDK/w5jw6L86787Fs3XDymTP4A+fzB90njO4=</latexit><latexit sha1_base64="zes3vBFXxjNR5abVqS2GqVmU2R0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0RzDHgxWMC5gHJEmYnvcmY2QczvUII+QIvHhTx6id582+cJHvQxIKGoqqb7q4gVdKQ6347G5tb2zu7hb3i/sHh0XHp5LRlkkwLbIpEJboTcINKxtgkSQo7qUYeBQrbwfhu7refUBuZxA80SdGP+DCWoRScrNSgfqnsVtwF2DrxclKGHPV+6as3SEQWYUxCcWO6npuSP+WapFA4K/YygykXYz7ErqUxj9D408WhM3ZplQELE20rJrZQf09MeWTMJApsZ8RpZFa9ufif180orPpTGacZYSyWi8JMMUrY/Gs2kBoFqYklXGhpb2VixDUXZLMp2hC81ZfXSeu64rkVr3FTrlXzOApwDhdwBR7cQg3uoQ5NEIDwDK/w5jw6L86787Fs3XDymTP4A+fzB90njO4=</latexit>

y
<latexit sha1_base64="fHd3Ofo39OCZ6T6IuApaHtVI2Os=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF+wFtKJvtpF272YTdjRBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6N/e7T6g0j+WDyRL0IzqWPOSMGiu1smGl6tbcBcg68QpShQLNYeVrMIpZGqE0TFCt+56bGD+nynAmcFYepBoTyqZ0jH1LJY1Q+/ni0Bm5tMqIhLGyJQ1ZqL8nchppnUWB7YyomehVby7+5/VTE9b9nMskNSjZclGYCmJiMv+ajLhCZkRmCWWK21sJm1BFmbHZlG0I3urL66RzXfPcmte6qTbqRRwlOIcLuAIPbqEB99CENjBAeIZXeHMenRfn3flYtm44xcwZ/IHz+QPku4zz</latexit><latexit sha1_base64="fHd3Ofo39OCZ6T6IuApaHtVI2Os=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF+wFtKJvtpF272YTdjRBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6N/e7T6g0j+WDyRL0IzqWPOSMGiu1smGl6tbcBcg68QpShQLNYeVrMIpZGqE0TFCt+56bGD+nynAmcFYepBoTyqZ0jH1LJY1Q+/ni0Bm5tMqIhLGyJQ1ZqL8nchppnUWB7YyomehVby7+5/VTE9b9nMskNSjZclGYCmJiMv+ajLhCZkRmCWWK21sJm1BFmbHZlG0I3urL66RzXfPcmte6qTbqRRwlOIcLuAIPbqEB99CENjBAeIZXeHMenRfn3flYtm44xcwZ/IHz+QPku4zz</latexit><latexit sha1_base64="fHd3Ofo39OCZ6T6IuApaHtVI2Os=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF+wFtKJvtpF272YTdjRBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6N/e7T6g0j+WDyRL0IzqWPOSMGiu1smGl6tbcBcg68QpShQLNYeVrMIpZGqE0TFCt+56bGD+nynAmcFYepBoTyqZ0jH1LJY1Q+/ni0Bm5tMqIhLGyJQ1ZqL8nchppnUWB7YyomehVby7+5/VTE9b9nMskNSjZclGYCmJiMv+ajLhCZkRmCWWK21sJm1BFmbHZlG0I3urL66RzXfPcmte6qTbqRRwlOIcLuAIPbqEB99CENjBAeIZXeHMenRfn3flYtm44xcwZ/IHz+QPku4zz</latexit><latexit sha1_base64="fHd3Ofo39OCZ6T6IuApaHtVI2Os=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF+wFtKJvtpF272YTdjRBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6N/e7T6g0j+WDyRL0IzqWPOSMGiu1smGl6tbcBcg68QpShQLNYeVrMIpZGqE0TFCt+56bGD+nynAmcFYepBoTyqZ0jH1LJY1Q+/ni0Bm5tMqIhLGyJQ1ZqL8nchppnUWB7YyomehVby7+5/VTE9b9nMskNSjZclGYCmJiMv+ajLhCZkRmCWWK21sJm1BFmbHZlG0I3urL66RzXfPcmte6qTbqRRwlOIcLuAIPbqEB99CENjBAeIZXeHMenRfn3flYtm44xcwZ/IHz+QPku4zz</latexit>
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Figure 2: Cantilever beam geometry and coordinate system with l = 20mm,
h = 10mm, t = 5mm, E = 200GPa, P = 2kN, ⌫ = 0.28, and I = th
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Measurements of the form (3) were simulated for 30 angles evenly spaced
between 0� and 180�, with 100 measurements per angle, which is on the con-
servative side based on past experiments [8, 12]. The simulated measurements
were corrupted with zero-mean noise of standard deviation �n = c5 ⇥ 10�4

which is equilvalent to 1 ⇥ 10�4 standard deviation in strain representing the
typical experimental noise [8, 12]

Fifty zero-traction measurements were added along the top and bottom
of the cantilever beam for both the presented method and the linear GP
regression method. Results are shown in Figure 3. These results show that
the presented method successfully reconstructs both the strain field and the
d0 field with a relative error2 of 0.0057. By contrast ignoring the presence of
a d0 variation and using a linear GP regression method yields a drastically
degraded strain reconstruction with a relative error of 0.3067.

4.2 In-situ Loaded C-shape Sample

The method is now demonstrated on a more complex strain field given by
FEA of a mild steel C-shape sample with geometry defined in Figure 4. The
sample was subjected to a 7 kN compressive load distributed over 5� arcs and
plane stress was assumed for the analysis. The resulting FEA strain field is
shown in Figure 5. This sample and loading conditions correspond to the
experimental setup used by [12].

Measurements of the form (3) were simulated through the this strain and
a synthetic, smoothly changing d0 field is again defined by Equation (25) with
parameters given by {c0, c1, c2, c3, c4, c5} = {0.01, 5 ⇥ 10�3, 7.5 ⇥ 10�3, 7 ⇥
10�3, 6⇥ 10�3, 4.056}. A total of 60 strain images were simulated with angles
evenly spaced between 0� and 180�, and 180 measurements per image. The
simulated measurements were corrupted with zero-mean noise of standard
deviation �n = c5⇥10�4 which is equivalent to 1 ⇥ 10�4 standard deviation in
strain representing the typical experimental noise. A total of 131 zero-traction

2
relative error = mean(|true�estimated|)

max(|true|)
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Figure 3: Simulation results for the cantilever beam strain field. The estimated
strain field using the presented method is shown as well as the results of
assuming a constant d0 and applying standard GP regression. In the case of
the presented method, the estimated d0 field is also shown. Strain values are
given in µStrain.

measurements were added around the boundary of the C-shape excluding the
regions within 10� of the loading points. Reconstruction from the LRT and
traction measurements was performed using both the presented method and
the linear GP regression method, and the results are shown in Figure 5.

The presented method achieves a mean relative error of 0.023 and it can
be seen that the reconstruction has achieved the correct shape. Whereas
assuming a constant d0 value gives a mean relative error of 0.137 and the
resulting strain fields show incorrect concentrated peaks in the strain field and
areas of tension and compression that are reversed. Despite this improvement
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Figure 4: Geometry of the C-shape sample and in-situ loading P. The sample
has an outer diameter of 20 mm and an inner diameter of 10mm with a
45� segment removed. The sample was defined to have E = 200 GPa and
⌫ = 0.28.
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there is still some observable difference. In particular, the presented method
has a concentrated tensile region on the top left boundary of the C, and does
not capture the very concentrated peaks in magnitude on the inside of the
C. These peak strains on the boundary are the hardest for the algorithm to
reconstruct as they are poorly sampled by the LRT; i.e. they make up only a
very small part of each line integral. Additionally, some of this remaining
error is due to systematic error in the simulation of the measurements. Which
are generated by numerically performing a line integral with each function
evaluation being given by an interpolation of the FEA results.

Figure 5: Simulation results for the FEA C-shape sample strain field. Strain
values are given as µStrain. The estimated strain field using the presented
method is shown as well as the results of assuming a constant d0 and applying
standard GP regression. In the case of the presented method, the estimated
d0 field is also shown.

5 Additional Remarks

5.1 Sensitivity to the Traction Measurement Variance

Boundary conditions given by unloaded surfaces are a natural inclusion as
they are an artefact of the physical world. This information is included in the
form of artificial measurements of zero traction, however it was found that
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a small variance needed to be placed on these measurements and the rate
of convergence was impacted by the size of this variance. Conceptually, this
variance is analogous to a constraint tolerance for optimisation procedures.
Too large a variance (or not enough traction measurements) and the algorithm
may fail to converge to the correct strain field. This indicates that the traction
measurements are ensuring that the problem is observable, which is supported
by the findings of [11] where the inclusion of traction measurements allowed
a constant d0 value to be found as a hyperparameter. Conversely, too small a
variance and the algorithm is unable to take optimisation steps of significant
size, resulting in a large number of iterations to converge. Methods for
optimally choosing this variance is an avenue for future research.

Despite this, it was found that the algorithm worked well over a reas-
onable range of traction variances. Typically the standard deviation of the
traction measurements could be set two orders of magnitude smaller than
the measurement standard deviation or in the range of 1 ⇥ 10�5 to 1 ⇥ 10�7.

5.2 Hyperparameter Optimisation

The hyperparameters ✓ = {lx, ly,�f} can be found by performing an optim-
isation using F as the objective function. However, the gradients of F with
respect to the GP hyperparameters are not trivial and so [30] suggests that
gradient free optimisation approaches could be used. In this work, both
Bayesian optimisation [20] and the Nelda-Mead method [22] were found to
work; with the Nelda-Mead method requiring less computation time.

5.3 Computational cost

The majority of the computational burden comes from building the building
the forward model of the LRT measurements. In particular, all the combin-
ations of the basis function of the strain-free lattice spacing and the strain
field need to be computed for each measurement. The resulting matrix has
nmd0m' elements. However, as this matrix only needs to be computed once,
it is still feasible to solve even with a large number of basis functions.

6 Conclusion

This paper considers an extension of the strain tomography problem where
the strain-free lattice parameter is a known constant, to the more general case
where it is unknown and varies throughout the sample. A method for the joint
reconstruction of a strain field and a varying strain-free lattice parameter
from a set of neutron transmission strain images has been presented. This
method extends the Gaussian process based approach previously used for
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strain tomography to the subsequently non-linear problem, and ensures that
the estimated strain fields satisfy equilibrium and can include knowledge of
boundary conditions. This was achieved by reformulating the problem in
terms of basis functions and unknown coefficients. Variational inference was
then employed to find estimates of the coefficients.

The method was tested on a set of simulated data, and importantly, these
results demonstrate that it is possible to perform this joint reconstruction.
Further, the results obtained by ignoring variations in d0 and applying the
linear GP regression method are provided and show that this assumption, if
incorrect, severely degrades the accuracy of reconstruction.

Future work will involve planning an experiment to acquire a data set on
which to further evaluate the methods performance.

A Basis Functions

The basis functions for the strain field were defined in (13) as
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As such, the components of �✏,j can be built from
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A predicted LRT measurement was defined by (14) as
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where for clarity we restrict ourselves to a single measurement. Therefore,
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To make the expressions briefer, we introduce the notation

↵'x = �'x,j(x0 + n̂1s + L'x), ↵'y = �'y,j(y0 + n̂2s + L'y),

↵d0x = �d0x,k(x0 + n̂1s + Ld0x), ↵d0y = �d0y,k(y0 + n̂2s + Ld0y).
(30)
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Returning to the measurement model in (14), we can now write
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1

L

0

B@
X

k

X

j

n̄wd0,kw'j

2

4
 2,kj � ⌫ 1,kj

�(1 + ⌫) 3,kj

 1,kj � ⌫ 2,kj

3

5
s=L

s=0

+
X

k

wd0,k⇣k
��s=L

s=0

1

CA .

(31c)

B Measurement Model Derivatives

Here we give the derivates of the measurement model g(·) about the current
ŵ. The measurement model is a concatenation of equations (14) and (15),
and so we require the derivatives of the predicted LRT measurement, ŷ, and
the predicted traction ŷt. For clarity we restrict the following to a single ŷ
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and ŷt. The first derivatives are given by
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= T�'(x).

(32)

The second derivates are

@2ŷt

@w2
= 0,

@2ŷ

@w2
=

2

4
0 @

2ŷ
@wd0

@w'⇣
@
2ŷ

@wd0
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⌘T
0

3

5 ,
(33)

where


@2ŷ

@wd0@w'

�

kj

= n̄

2

4
 2,kj � ⌫ 1,kj

�(1 + ⌫) 3,kj

 1,kj � ⌫ 2,kj

3

5
s=L

s=0

. (34)

Explicit formulation of the second derivatives allows the cost functions
curvature to be taken into account in the optimisation procedure, greatly
improving the rate of convergence.
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