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Mindset – Numerical methods are inference algorithms

A numerical method estimates a certain latent property given the

result of computations.

Basic numerical methods and basic statistical models are deeply

connected in formal ways!

Poincaré, H. Calcul des probabilités. Paris: Gauthier-Villars, 1896.

Diaconis, P. Bayesian numerical analysis. Statistical decision theory and related topics, IV(1), 163–175, 1988.

O’Hagan, A. Some Bayesian numerical analysis. Bayesian Statistics, 4, 345–363, 1992.

Hennig, P., Osborne, M. A., and Girolami, M. Probabilistic numerics and uncertainty in computations. Proceedings of the Royal Society

of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015.
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Mindset – Numerical methods are inference algorithms

The task of a numerical algorithm is

to estimate unknown quantities from known ones.

Ex) basic algorithms that are equivalent to Gaussian MAP inference:

• Conjugate Gradients for linear algebra

• BFGS for nonlinear optimization

• Gaussian quadrature rules for integration

• Runge-Kutta solvers for ODEs

The structure of num. algs. is similar to statistical inference where

• The tractable quantities play the role of ”data”/”observations”.

• The intractable quantities relate to ”latent”/”hidden” quantities.
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Problem formulation

If computation is inference then maybe it is possible to use this in

deriving new (and possibly more capable) algorithms...

What? Solve the non-convex stochastic optimization problem

min
θ

f (θ)

when we only have access to noisy evaluations of f (θ) and its derivatives.

Why? These stochastic optimization problems are common:

• When the cost function cannot be evaluated on the entire dataset.

• When numerical methods approximate f (θ) and ∇i f (θ).

• . . .
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How? – our contribution

How? Learn a probabilistic nonlinear model of the Hessian.

Provides a local approximation of the cost function f (θ).

Use this local model to compute a search direction.

Stochastic line search via a stochastic interpretation of the Wolfe

conditions.

Captures second-order information (curvature) which opens up for better

performance compared to a pure gradient-based method.
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Intuitive preview example – Rosenbrock’s banana function

Let f (θ) = (1− θ1)2 + 100(θ2 − θ2
1)2.

Deterministic problem

min
θ

f (θ)

Stochastic problem

min
θ

f (θ)

when we only have access to noisy

versions of the cost function

(f̃ (θ) = f (θ) + e, e = N (0, 302))

and its noisy gradients. 5/32



Outline

Aim: Derive a stochastic quasi-Newton algorithm.

Spin-off: Combine it with particle filters for maximum likelihood iden-

tification in nonlinear state space models.

1. Mindset (probabilistic numerics) and problem formulation

2. A non-standard take on quasi-Newton

3. µ on the Gaussian Process (GP)

4. Assembling a new stochastic optimization algorithm

a. Representing the Hessian with a Gaussian process

b. Learning the Hessian

5. Testing ground – maximum likelihood for nonlinear SSMs
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Quasi-Newton – A non-standard take

Our problem is of the form

min
θ

f (θ)

Idea underlying (quasi-)Newton methods: Learn a local quadratic

model q(θk , δ) of the cost function f (θ) around the current iterate θk

q(θk , δ) = f (θk) + g(θk)Tδ +
1

2
δTH(θk)δ

g(θk) = ∇f (θ)
∣∣
θ=θk

, H(θk) = ∇2f (θ)
∣∣
θ=θk

, δ = θ − θk .

We have measurements of

• the cost function fk = f (θk),

• and its gradient gk = g(θk).

Question: How do we update the Hessian model?
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Useful basic facts

Line segment connecting two adjacent iterates θk and θk+1:

rk(τ) = θk + τ(θk+1 − θk), τ ∈ [0, 1].

1. The fundamental theorem of calculus states that∫ 1

0

∂

∂τ
∇f (rk(τ))dτ = ∇f (rk(1))−∇f (rk(0)) = ∇f (θk+1)︸ ︷︷ ︸

gk+1

−∇f (θk)︸ ︷︷ ︸
gk

.

2. The chain rule tells us that

∂

∂τ
∇f (rk(τ)) = ∇2f (rk(τ))

∂rk(τ)

∂τ
= ∇2f (rk(τ))(θk+1 − θk).

gk+1 − gk︸ ︷︷ ︸
=yk

=

∫ 1

0

∂

∂τ
∇f (rk(τ))dτ =

∫ 1

0

∇2f (rk(τ))dτ(θk+1 − θk︸ ︷︷ ︸
sk

).
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Result – the quasi-Newton integral

With the definitions yk , gk+1 − gk and sk , θk+1 − θk we have

yk =

∫ 1

0

∇2f (rk(τ))dτsk .

Interpretation: The difference between two consecutive gradients (yk)

constitute a line integral observation of the Hessian.

Problem: Since the Hessian is unknown there is no functional form

available for it.

9/32



Solution 1 – recovering existing quasi-Newton algorithms

Existing quasi-Newton algorithms (e.g. BFGS, DFP, Broyden’s method)

assume the Hessian to be constant

∇2f (rk(τ)) ≈ Hk+1, τ ∈ [0, 1],

implying the following approximation of the integral (secant condition)

yk = Hk+1sk .

Find Hk+1 by regularizing H:

Hk+1 = min
H

‖H − Hk‖2
W ,

s.t. H = HT, Hsk = yk ,

Equivalently, the existing quasi-Newton methods can be interpreted as

particular instances of Bayesian linear regression.

Philipp Hennig. Probabilistic interpretation of linear solvers, SIAM Journal on Optimization, 25(1):234–260, 2015. 10/32



Solution 2 – use a flexible nonlinear model

The approach used here is fundamentally different.

Recall that the problem is stochastic and nonlinear.

Hence, we need a model that can deal with such a problem.

Idea: Represent the Hessian using a Gaussian process learnt from data.

Two of the remaining challenges:

1. Can we use line integral observations when learning a GP?

2. How do we ensure that the resulting GP represents a Hessian?
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µ on the Gaussian process (GP)



The Gaussian process is a model for nonlinear functions

Q: Why is the Gaussian process used everywhere?

It is a non-parametric and probabilistic model for nonlinear functions.

• Non-parametric means that it does not rely on any particular

parametric functional form to be postulated.

• Probabilistic means that it takes uncertainty into account in every

aspect of the model.
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An abstract idea

In probabilistic (Bayesian) linear regression

yt = θTxt︸︷︷︸
f (xt)

+et , et ∼ N (0, σ2),

we place a prior on θ, e.g. θ ∼ N (0, α2I ).

(Abstract) idea: What if we instead place a prior directly on the func-

tion f (·)
f ∼ p(f )

and look for p(f | y1:T ) rather than p(θ | y1:T )?!
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One concrete construction

Well, one (arguably simple) idea on how we can reason probabilistically

about an unknown function f is by assuming that f (x) and f (x ′) are

jointly Gaussian distributed(
f (x)

f (x ′)

)
∼ N (m,K ) .

If we accept the above idea we can without conceptual problems

generalize to any arbitrary finite set of input values {x1, x2, . . . , xT}.

 f (x1)
...

f (xT )

 ∼ N

m(x1)

...

m(xN)

 ,

k(x1, x1) . . . k(x1, xT )
...

. . .
...

k(xT , x1) . . . k(xT , xT )



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Definition

Definition: (Gaussian Process, GP) A GP is a (potentially infinite)

collection of random variables such that any finite subset of it is jointly

distributed according to a Gaussian.
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We now have a prior!

f ∼ GP(m, k)

The GP is a generative model so let us first sample from the prior.

16/32



GP regression – illustration
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Stochastic optimization



GP prior for the Hessian

Stochastic quasi-Newton integral

yk =

∫ 1

0

B(rk(τ))︸ ︷︷ ︸
=∇2f (rk (τ))

skdτ + ek ,

corresponds to noisy (ek) gradient observations.

Since B(x)sk is a column vector, the integrand is given by

vec (B(x)sk) = (sT
k ⊗ I ) vec (B(x)) = (sT

k ⊗ I ) vec (B(x)) ,

where vec (B(x)) = D vech (B(x))︸ ︷︷ ︸
B̃(x)

.

Let us use a GP model for the unique elements of the Hessian

B̃(x) ∼ GP(µ(x), κ(x , x ′)).
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Resulting stochastic qN integral and Hessian model

Summary: resulting stochastic quasi-Newton integral:

yk = Dk

∫ 1

0

B̃(rk(τ))dτ + ek ,

with the following model for the Hessian

B̃(θ) ∼ GP(µ(θ), κ(θ, θ′)).

The Hessian can now be estimated using tailored GP regression.

Linear transformations (such as an integral or a derivative) of a GP

results in a new GP.
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Resulting stochastic optimization algorithm

Standard numerical optimization loop with non-standard components.

Algorithm 1 Stochastic optimization

1. Initialization (k = 1)

2. while not terminated do

(a) Compute a search direction pk using the current approximation of

the gradient gk and Hessian Bk .

(b) Stochastic line search to find a step length αk and set

θk+1 = θk + αkpk .

(c) Update the Hessian model (tailored GP regression).

(d) Set k := k + 1.

3. end while

Curvature information is useful also for stochastic optimization.
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Testing ground – nonlinear sys.id.



Probabilistic modelling of dynamical systems

xt = f (xt−1, θ) + wt ,

yt = g(xt , θ) + et ,

x0 ∼ p(x0 | θ),

(θ ∼ p(θ)).

xt | (xt−1, θ) ∼ p(xt | xt−1, θ),

yt | (xt , θ) ∼ p(yt | xt , θ),

x0 ∼ p(x0 | θ),

(θ ∼ p(θ)).

Corresponding full probabilistic model:

p(x0:T , θ, y1:T ) =
T∏
t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation

T∏
t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Model = probability distribution!
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Maximum likelihood nonlinear system identification

Maximum likelihood – model the unknown parameters as a determin-

istic variable θ and solve

max
θ

p(y1:T | θ),

Challenge: The optimization problem is stochastic!
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Cost function – the likelihood

Each element p(yt | y1:t−1, θ) in the likelihood

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ),

can be computed by averaging over all possible values for the state xt ,

p(yt | y1:t−1, θ) =

∫
p(yt | xt , θ) p(xt | y1:t−1, θ)︸ ︷︷ ︸

approx. by PF

dxt .

Non-trivial fact: The likelihood estimates obtained from the particle

filter (PF) are unbiased.

Tutorial paper on the use of the PF (an instance of sequential Monte
Carlo, SMC) for nonlinear system identification

TS, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential Monte Carlo

methods for system identification, Proceedings of the 17th IFAC Symp. on System Identification (SYSID), Beijing, China, October 2015. 23/32



ex) Simple linear toy problem

Identify the parameters θ = (a, c , q, r)T in

xt+1 = axt + wt , wt ∼ N (0, q2),

yt = cxt + et , et ∼ N (0, r2).

Observations:

• The likelihood L(θ) = p(y1:T | θ) and its gradient ∇θL(θ) are

available in closed form via standard Kalman filter equations.

• Standard gradient-based search algorithms applies.

• Deterministic optimization problem (L(θ),∇θL(θ) noise-free).
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ex) Simple linear toy problem

Both alg. in the noise-free case.

100 independent datasets.

Clear blue – True system

Red – Mean value of estimate

Shaded blue – individual results

Classical BFGS alg. for noisy observations of L(θ) and ∇L(θ). GP-based BFGS alg. with noisy observations of L(θ) and ∇L(θ).25/32



ex) Nonlinear system

Identify the parameters θ = (a, c , d , q, r)T in

xt+1 = axt + b
xt

1 + x2
t

+ c cos(1.2t) + wt , wt ∼ N (0, q2),

yt = dx2
t + et , et ∼ N (0, r2).
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ex) Laser interferometry

The classic Michelson-Morley

experiment from 1887.

Idea: Merge two light sources to

create an interference pattern by

superposition.

Two cases:

1. Mirror B and C at the same distance from mirror A.

2. Mirror B and C at different distances from mirror A.
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ex) Laser interferometry

Dynamics: constant velocity model (with unknown force w)(
ṗ

v̇

)
=

(
0 1

0 0

)(
p

v

)
+

(
0

w

)
.

Measurements: generated using two detectors

y1 = α0 + α1 cos(κp) + e1, e1 ∼ N (0, σ2),

y2 = β0 + β1 sin(κp + γ) + e2, e2 ∼ N (0, σ2).

Unknown parameters: θ =
(
α0 α0 β0 β1 γ σ

)T

.

Resulting maximum likelihood system identification problem

max
θ

p(y1:T | θ)
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ex) Laser interferometry
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Scaling up to large(r) problems

What is the key limitation of our GP-based optimization algorithm?

It does not scale to large-scale problems!

Still highly useful and competitive for small to medium sized problems.

We have developed a new technique that scales to large(r) problems.
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Scaling up to large(r) problems

Key innovations:

• Replace the GP with a matrix updated using fast Cholesky routines.

• Exploit a receding history of iterates and gradients akin to L-BFGS.

• Same stochastic line search applicable.

Training a deep CNN for MNIST data. Logistic loss function with an L2 regularizer,

gisette, 6 000 observations and 5 000

unknown variables.

Logistic loss function with an L2 regularizer,

URL, 2 396 130 observations and 3 231 961

unknown variables.

Adrian G. Wills, Carl Jidling and TS. A fast quasi-Newton-type method for large-scale stochastic optimisation. arXiv:1810.01269,

September, 2018.
31/32



Conclusions

Message: The Gaussian process can be used to construct new

algorithms for stochastic optimization.

Derived the stochastic quasi-Newton integral.

Built a second-order model to approximate the cost function.

Standard numerical optimization loop with non-standard components.

Testing ground — Probabilistic modelling of nonlinear state space models

We also have another technique that scales to large(r) problems.
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