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What we do in the team

Both basic research applied research (with companies).

Create of dynamical systems and their
surroundings.

Develop methods to models from data.

The models can then be used by machines (or humans) to
or about what will happen next.
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Nonlinear state space model (SSM)

The state space model (SSM) is a Markov chain that makes use of a
latent variable representation to describe dynamical phenomena.

It consists of two stochastic processes:

1. unobserved (state) process {x;}¢>o modelling the dynamics,

2. observed process {y; }+>1 modelling the measurements and their
relationship to the unobserved state process.

x¢ = f(xe—1,0) + ve,
v = g(xe,0) + e,

where 6 € R denotes static model parameters.

The SSM offers a practical representation not only for modelling, but
also for reasoning and inference.
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Ex) “what are x;, ¢ and y,”?

Aim (motion capture): Compute x, (position and orientation of the
different body segments) of a person (6 describes the body shape)
moving around indoors using measurements y; (accelerometers,
gyroscopes and ultrawideband).

Show movie!

Manon Kok, Jeroen D. Hol and Thomas B. Schon. Using inertial sensors for position and orientation estimation, Foundations and
Trends of Signal Processing, 11(1-2):1-153, 2017.
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Three different representations of the SSM

Three alternative representations, using
1. graphical models,
2. probability distributions or
3. probabilistic programs.

1. Representing the SSM using a graphical model:

()

4/41



Representations using distributions or probabilistic programs

2. Representation using probability distributions
xt | (Xe—1,0) ~ p(x¢ | xt-1,0),
Vel (xe.0) ~ p(ye [ ¢, 0),
xo ~ p(xo | 0).

3. Representing the SSM using a probabilistic program

x[1] ~ Gaussian(0.0, 1.0); p(x1)
y[1] ~ Gaussian(x[1], 1.0); p(y1 | x1)
for (tin 2..T) {
x[t] ~ Gaussian(a*x[t - 1], 1.0); p(xe | x¢—1)
y[t] ~ Gaussian(x[t], 1.0); p(y: | xt)
}

A probabilistic program encodes a probabilistic model (here an
LG-SSM) according to the semantics of a particular probabilistic
programming language (here Birch). 5/41



SSM - full probabilistic model

The full probabilistic model is given by

p(x0.7,0, y1.:17) = p(yr.T | x0.7,0) p(x0:7,0)
—_———— —

data distribution prior

Distribution describing a parametric nonlinear SSM

T
p(xo:7,0,y1.7) = HP(}’t | X, 0) HP(Xt | xe—1,0) p(x0 [ 0) p(0)
t=1 t=1 el
observation dynamics state  param.
data distribution prior
[ Model = probability distribution!
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Learning the states and the parameters

Based on our generative model, compute the posterior distribution

p(x0.7,0 | y1.7) = p(x0:7 [ 0, y1.7) P(O | y1.7) -
—_——— i

state inf. param. inf.

Bayesian formulation — model the unknown parameters as a random
variable 6 ~ p(6) and compute

_ plyrT|0)p(0)
PO p(y1:T)

Maximum likelihood formulation — model the unknown parameters as
a deterministic variable and solve

f = arg max p(y1:1 | 6).
€O
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Central object — the likelihood

The likelihood is computed by marginalizing
T T

P(XO:T7)/1:T | 9) = P(XO | 9) HP(Yt |Xt; 9) HP(Xt ‘ Xt—1, 9)»

t=1 t=1

w.r.t the state sequence xq.T,
pyuT|0) = /p(XO:T:)/l:T | 0)dxo. 7
(We are averaging p(xo.7, y1.7 | 0) over all possible state sequences.)

Equivalently we have
T T

ply7[0) =[] pOve [ y2:e-1,0) = H/ P(ye | xe, 0) p(xe [ y1:6-1,0) dxe.
—_— ———

t=1 t=1
key challenge

Thomas B. Schén, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential
Monte Carlo methods for system identification. In Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing,

China, October 2015.
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State inference — nonlinear filtering problem

The nonlinear filtering problem involves the measurement update

measurement prediction pdf

(e | xe) p(xe | )

p x¢) p(x .

p(Xt|y1:t) _ 343 t t|Y1t—1
p(y: [ yi:e—1)

)

and the time update

P(Xt |}’1:t—1) = /P(Xt ‘ Xt—l) P(Xt—l |}’1:t—1) dxe—1.

dynamics filtering pdf
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Aim: 1. Give a (hopefully) intuitive explanation of sequential Monte

Carlo (SMC) for probabilistic modelling of dynamical systems.
2. Derive a new stochastic optimization method that can for example
be used to learn unknown parameters in nonlinear SSMs.

1. Probabilistic modelling of dynamical systems
2. Sequential Monte Carlo (SMC)

3. Stochastic optimization
4

. Some ongoing research snapshots (if there is time)
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Sequential Monte Carlo

The need for computational methods, such as SMC, is tightly coupled to
the intractability of the integrals on the previous slides.

SMC provide approximate solutions to integration problems where
there is a sequential structure present.

The particle filter approximates p(x; | y1.) for
Xt = f(Xt—l) + Vi,
ye = g(xt) + e,

by maintaining an empirical distribution made up of N samples
(particles) {x{}"_, and the corresponding weights {w;}"

N i
w
p(xe | y1e) = E —N : ~5x;'(Xt)-
AV(X) i=1 Zj:l wy
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le filter — introductory example (1/11)

Consider a toy 1D localization problem.

Data Model
Dynamic model:
Xt+1 = X¢ + U + Vi,
/\/\ where x; denotes position, u; denotes velocity

(known), v¢ ~ N(0,5) denotes an unknown
disturbance.

=)

2 N ® © 9
3 o 5 S &

Altitude

Measurements:

Ye = h(Xt) + €t.

2 a
S oS

where h(-) denotes the world model (here the

o , , . . terrain height) and e; ~ N(0, 1) denotes an
[ 20 40 60 80 100

Position = unknown disturbance.

Task: Find the state x; (position) based on the measurements

yi.e = {y1,...,y:} by computing the filter density p(x; | y1.¢). 121



Particle filter — introductory example (11/11)

1001 ]
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S
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I

l i Highlights two key

: capabilities of the PF:

1. Automatically handles
an unknown and

dynamically changing
number of hypotheses.

2. Work with
= nonlinear/non-
‘;’ Gaussian
=z models.
2
0 80 100
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..-88 E]..
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Sequential Monte Carlo — particle filter

—>| Propagation —> Weighting |—>| Resampling [—

SMC = sequential importance sampling + resampling

1. Propagation: xi ~ p(x: | x,_,) and xi., = {x%,_;. x}.
2. Weighting: w, = W;(x}) = p(y: | xf).

3. Resampling: P(a} = j) = w_,/ >, w]_,.

The ancestor indices {a}}" | are very useful auxiliary variables!
They make the stochasticity of the resampling step explicit.
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Application — indoor localization (1/111)

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer, radio) located in an ID badge and a map.

ATHFL
<

pdf for an office environment, the
The sensors (IMU and radio) and the

DSP are mounted inside an ID badge.

bright areas are rooms and corridors

(i.e., walkable space).
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Application — indoor localization (11/111)

Show movie

Johan Kihlberg, Simon Tegelid, Manon Kok and Thomas B. Schén. Map aided indoor positioning using particle filters. Reglerméte
(Swedish Control Conference), Linképing, Sweden, June 2014.
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Application — indoor localization (111/111)

Aim: Compute the position using variations in the ambient magnetic
field and the motion of the person (acceleration and angular velocities).
All of this observed using sensors in a standard smartphone.

Movie — map making:

www . youtube.com/watch?v=enlMiUgPVJo

Movie — indoor positioning result

Arno Solin, Simo Sarkka, Juho Kannala and Esa Rahtu. Terrain navigation in the magnetic landscape: Particle filtering for indoor
positioning. In Proceedings of the European Navigation Conference Helsinki, Finland, June, 2016,

Arno Solin, Manon Kok, Niklas Wahlstrom, Thomas B. Schén and Simo Sarkka. Modeling and interpolation of the ambient magnetic
field by Gaussian processes. /EEE Transactions on Robotics, 2018 (to appear).
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www.youtube.com/watch?v=enlMiUqPVJo

Particle MCMC = SMC 4+ MCMC

A systematic way of combining SMC and MCMC.
Builds on an extended target construction.

Intuitively: SMC is used as a high-dimensional proposal mechanism on
the space of state trajectories X' 7.

A bit more precise: Construct a Markov chain with p(6, x1.7 | y1.7) (or
one of its marginals) as its stationary distribution. Also used for
parameter learning.

[ Exact approximations

Pioneered by the work:

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical
Society: Series B, 72:269-342, 2010.
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Aim: 1. Give a (hopefully) intuitive explanation of sequential Monte

Carlo (SMC) for probabilistic modelling of dynamical systems. 2. De-
rive a new stochastic optimization method that can for example be
used to learn unknown parameters in nonlinear SSMs.

1. Probabilistic modelling of dynamical systems
2. Sequential Monte Carlo (SMC)

3. Stochastic optimization
4

. Some ongoing research snapshots (if there is time)
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Quasi-Newton — A non-standard take

Our problem is of the form (note change of notation...)

max f(x)

Idea underlying (quasi-)Newton methods: Learn a local quadratic
model g(xk, d) of the cost function f(x) around the current iterate X

A, 8) = F() + g(x)TO + %JTH(xk)é

A second-order Taylor expansion around xx, where

g(x0) = V().
H(xx) = V2f(x)‘xzxk,

6 =X — Xg.
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Available data

We have measurements of the

e cost function fi = f(xx),

e and its gradient gx = g(x«).

Question: How do we update the Hessian model?

Line segment connecting two adjacent iterates xx and Xx41:

() = X+ T(Xk+1 — X)), T € [0,1].
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Useful basic facts

The fundamental theorem of calculus states that

/ 2 V(r(r))dr = V(1) ~ VA((0)) = VFlxk1) ~ VF(xi)

8k+1 8k

and the chain rule tells us that

2w(rk(T)) - V2f(rk(7))ar55_7)

or = V2f(rk(7))(xk+1 — Xk).

1 9 1
8ktl — 8k = / a—Vf(rk(T))dT = / V2 (re(7))dT (k11 — Xk)-

=Yk Sk
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Result — the quasi-Newton integral

With the definitions yx £ gx11 — gk and sx = xx1 — Xk we have

Yk = /01 V2f(r(T))d7s.

Interpretation: The difference between two consecutive gradients (yx)
constitute a line integral observation of the Hessian.

Problem: Since the Hessian is unknown there is no functional form
available for it.
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Solution 1 — recovering existing quasi-Newton algorithms

Existing quasi-Newton algorithms (e.g. BFGS, DFP, Broyden's method)
assume the Hessian to be constant

V2f(rk(7')) ~ Hk+1, T E [07 1],
implying the following approximation of the integral (secant condition)

Yk = Hig1sk.

Find Hiy1 by regularizing H:
. 2
Hier = min - [[H = Hellw,
st. H=H", Hsc =y,
Equivalently, the existing quasi-Newton methods can be interpreted as
particular instances of Bayesian linear regression.

Philipp Hennig. Probabilistic interpretation of linear solvers, SIAM Journal on Optimization, 25(1):234-260, 2015. 24/41



Solution 2 — use a flexible nonlinear model

The approach used here is fundamentally different.
Recall that the problem is stochastic and nonlinear.

Hence, we need a model that can deal with such a problem.

[ Idea: Represent the Hessian using a Gaussian process learnt from data.

Two of the remaining challenges:

1. Can we use line integral observations when learning a GP?

2. How do we ensure that the resulting GP represents a Hessian?
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GP prior for the Hessian

Stochastic quasi-Newton integral

1
Yk 2/ B(rk(T)) SedT + e,
0 =
=V2f(n (7))

corresponds to noisy (ex) gradient observations.

Since B(x)sk is a column vector, the integrand is given by
vec (B(x)sk) = (s§ ® I)vec(B(x)) = (s§ ® I)vec(B(x)),
where vec (B(x)) = D vech (B(x)).
~—_———

B(x)

Let us use a GP model for the unique elements of the Hessian

B(x) ~ GP(u(x), 5(x, x")).
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Resulting stochastic gN integral and Hessian model

Summary: resulting stochastic quasi-Newton integral:

1
e — (skT®/)D/ B(re(r))dr + e,
N——J 0

—Dy

with the following model for the Hessian

B(x) ~ GP(u(x), 5(x, x")).

The Hessian can now be estimated using tailored GP regression.

Linear transformations (such as an integral or a derivative) of a GP

results in a new GP.
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Resulting stochastic optimization algorithm

Standard non-convex numerical optimization loop with non-standard

components.

Algorithm 1 Stochastic optimization

1. Initialization (k = 1)
2. while not terminated do
(a) Compute a search direction px using the current approximation of

the gradient gx and Hessian B.
(b) Stochastic line search to find a step length ax and set

Xk+1 = Xk + QP
(c) Set k :=k+1
(d) Update the Hessian estimate (tailored GP regression)

3. end while
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ex) Simple linear toy problem

Identify the parameters § = (a,c,q,r)" in
Xt+1 = aXy + W, we ~ N(0, q),
Yt = CX¢ + €, e ~ N(0,r).

Observations:

e The likelihood L(0) = p(y1.7|0) and its gradient VyL(0) are
available in closed form via standard Kalman filter equations.

e Standard gradient-based search algorithms applies.

e Deterministic optimization problem (L(0), VoL(0) noise-free).
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ex) Simple linear toy problem

. 100 independent datasets.

Clear blue — True system

Red — Mean value of estimate
Shaded blue — individual results

107 107 10 100

Both alg. in the noise-free case.

107 10! 100

Classical BFGS alg. for noisy observations of L(6) and VL(8). GP-based BFGS alg. with noisy observations of L(6) and vL(0).30/41



ex) laser interferomet

Mirror

Hypothetical

cther The classic Michelson-Morley

/ experiment from 1887.

Idea: Merge two light sources to

Light y d .
g create an interference pattern by

Half-silvered mirror su perposition .

Mirror

o<l

Two cases:
1. Mirror B and C at the same distance from mirror A.

2. Mirror B and C at different distances from mirror A.
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ex) laser interferometry

Dynamics: constant velocity model (with unknown force w)

()= o))+ ()

Measurements: generated using two detectors
y1 = ap + o cos(kp) + e1, er ~ N(0,0?),
Y2 :80—1—“815in(/<;p+’y)+e2, (=) NN(070'2).

-
Unknown parameters:G:(ao ag Bo P17 a).

Resulting maximum likelihood system identification problem

max p(y1:710)
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ex) laser interferometry

(=]
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Research snapshots




Snapshot 1 — scaling up to large problems

What is the key limitation of our GP-based optimization algorithm?

It does not scale to large-scale problems!

Still highly useful and competitive for small to medium sized problems.

We have developed a new technique that scales to very large problems.
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Snapshot 1 — scaling up to large problems

Key innovations:
e Replace the GP with a matrix updated using fast Cholesky routines.
e Exploit a receding history of iterates and gradients akin to L-BFGS.
e An auxiliary variable Markov chain construction.

Time (sec) Time (sec)

Logistic loss function with an L2 regularizer,
URL, 2396 130 observations and 3 231 961
unknown variables.

Training a deep CNN for MNIST data. Logistic loss function with .an L2 regularizer,
gisette, 6 000 observations and 5 000

unknown variables.

Adrian Wills and Thomas B. Schon. Stochastic quasi-Newton with adaptive step lengths for large-scale problems. arXiv:1802.04310,

February, 2018. 35/41



Snapshot 2 — GP-based nonlinear state space model

“Inspired by the Gaussian process, enabled by the particle filter”

Xt+1 - f(Xt) + Wt, s.t. f(X) ~ gP(O7 KJ’!],f(XaX/))y
ye = g(x¢) + e, st. g(x) ~ GP(0, Ky g(x,x")).
Results in a flexible non-parametric model where the GP prior takes on
the role of a regularizer.
We can now find the posterior distribution

p(f,g, Q. R,n|yi.1),

via some approximation (we use particle MCMC).

Frigola, Roger, Fredrik Lindsten, Thomas B. Schon, and Carl Rasmussen. Bayesian inference and learning in Gaussian process
state-space models with particle MCMC. In Advances in Neural Information Processing Systems (NIPS), 2013.

Andreas Svensson and Thomas B. Schon. A flexible state space model for learning nonlinear dynamical systems, Automatica, 36/41
80:189-199, June, 2017.



Snapshot 3 — The ASSEMBLE project and Birch

Aim: Automate probabilistic modeling of dynamical
systems (and their surroundings) via a formally defined
probabilistic modeling language. Swepish FOUNDATION i

STRATEGIC RESEARCH

Keep the model and the learning algorithms separated.
Create a market place for SMC-based learning algorithms (think CVX).

Birch — Our prototype probabilistic programming language.

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman and Thomas B. Schon. Delayed sampling and automatic
Rao-Blackwellization of probabilistic programs. In Proceedings of the 21st International Conference on Artificial Intelligence and
Statistics (AISTATS), Lanzarote, Spain, April, 2018.
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Birch - our prototype probabilistic programming language

1. The basic idea of probabilistic programming is to equate
probabilistic models with the programs that implement them.

2. Just as we can think of doing inference over models, we can think of
doing inference over programs.

The particular PPL used here is Birch, which is currently being
developed at Uppsala University.

Probabilistic and object-oriented language.
An early pre-release of Birch is available

birch-lang.org
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birch-lang.org

Snapshot 4 — The nonlinear SSM is just a special case...

Constructing an artificial sequence of intermediate target distributions
for an SMC sampler is a powerful (quite possibly underutilized) idea.

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schén, Sequential Monte Carlo methods for graphical models. Advances in

Neural Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick, Thomas B. Schén, John Aston and Alexandre
Bouchard-Cété. Divide-and-Conquer with Sequential Monte Carlo. Journal of Computational and Graphical Statistics (JCGS), 2017. 39/41



Snapshot 5 — Spatio-temporal modelling

Problem: predicting spatio-temporal
processes with temporal patterns
varying across spatial regions when data
is obtained as a stream.

Latitude

A localized spatio-temporal covariance

model.

140°E 160°E 180°E 160°W 140°W 120°W 100°W 80°W
Longitude

The predictor can be updated sequentially with each new data point.

Muhammad Osama, Dave Zachariah and Thomas B. Schén. Learning localized spatio-temporal models from streaming data. In
Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, July, 2018.
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Conclusion

Probabilistic modelling of nonlinear dynamical systems

T T
p(xo:7, 0, y1.7) = HP(}’t | x¢,0) HP(Xt | xe—1,0) p(xo | 0)
t=1 t=1

p(0)

- ——

observation dynamics state  param.
data distribution prior

SMC provide approximate solutions to integration problems where
there is a sequential structure present.

Stochastic optimization:

e Non-standard interpretation of quasi-Newton.
e Represent the Hessian using a Gaussian process.
e We can scale up to larg(er) problems.
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