
Learning dynamical systems using SMC

Thomas Schön, Uppsala University

Max Planck Institute for Intelligent Systems

Tübingen, Germany

May 29, 2018.

What we do in the team

We automate the extraction of knowledge and
understanding from data.

Both basic research and applied research (with companies).

Background – what we do in the team

We automate the extraction of knowledge and understanding
from data.

Both basic research and applied research (with companies).

Thomas Schön - user.it.uu.se/~thosc112
Big data and deep leaning, possible applications within image diagnostics

Vitalis
April 5, 2016

What we do in our team

These models can be used by machines and/or humans to automatically
understand and/or make decisions about what will happen next.

Create new probabilistic models for dynamical systems and develop
methods to automatically learn these models from measured data.

Create probabilistic models for dynamical systems and their
surroundings.

Develop methods to learn models from data.

The models can then be used by machines (or humans) to
understand and/or take decisions about what will happen next.

1 / 29 Thomas Schön Framtidens v̊ard, Uppsala, February 23, 2017.

Create probabilistic models of dynamical systems and their

surroundings.

Develop methods to learn models from data.

The models can then be used by machines (or humans) to understand

or take decisions about what will happen next.
1/41

Nonlinear state space model (SSM)

The state space model (SSM) is a Markov chain that makes use of a

latent variable representation to describe dynamical phenomena.

It consists of two stochastic processes:

1. unobserved (state) process {xt}t≥0 modelling the dynamics,

2. observed process {yt}t≥1 modelling the measurements and their

relationship to the unobserved state process.

xt = f (xt−1, θ) + vt ,

yt = g(xt , θ) + et ,

where θ ∈ Rnθ denotes static model parameters.

The SSM offers a practical representation not only for modelling, but

also for reasoning and inference.

2/41

Ex) “what are xt, θ and yt”?

Aim (motion capture): Compute xt (position and orientation of the

different body segments) of a person (θ describes the body shape)

moving around indoors using measurements yt (accelerometers,

gyroscopes and ultrawideband).

Data intensive modeling in dynamical systems
Thomas Schön, Uppsala University

The Royal Swedish Academy of Sciences
Stockholm, September 19, 2013

An experiment to illustrate the importance of a model

ω"

a$g"

m"

Inertial sensors Bio-mechanical Ultra-wideband The world

Task: Find the position and orientation of a human (human motion).

Key models:

Show movie!

Manon Kok, Jeroen D. Hol and Thomas B. Schön. Using inertial sensors for position and orientation estimation, Foundations and

Trends of Signal Processing, 11(1–2):1–153, 2017.

3/41

Three different representations of the SSM

Three alternative representations, using

1. graphical models,

2. probability distributions or

3. probabilistic programs.

1. Representing the SSM using a graphical model:

x0 x1 . . . xT

y1 yT

θ

4/41

Representations using distributions or probabilistic programs

2. Representation using probability distributions

xt | (xt−1, θ) ∼ p(xt | xt−1, θ),

yt | (xt , θ) ∼ p(yt | xt , θ),

x0 ∼ p(x0 | θ).

3. Representing the SSM using a probabilistic program

x[1] ∼ Gaussian(0.0, 1.0); p(x1)

y[1] ∼ Gaussian(x[1], 1.0); p(y1 | x1)

for (t in 2..T) {
x[t] ∼ Gaussian(a*x[t - 1], 1.0); p(xt | xt−1)

y[t] ∼ Gaussian(x[t], 1.0); p(yt | xt)
}

A probabilistic program encodes a probabilistic model (here an

LG-SSM) according to the semantics of a particular probabilistic

programming language (here Birch). 5/41

SSM – full probabilistic model

The full probabilistic model is given by

p(x0:T , θ, y1:T) = p(y1:T | x0:T , θ)︸ ︷︷ ︸
data distribution

p(x0:T , θ)︸ ︷︷ ︸
prior

Distribution describing a parametric nonlinear SSM

p(x0:T , θ, y1:T) =
T∏

t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation︸ ︷︷ ︸

data distribution

T∏

t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Model = probability distribution!

6/41

Learning the states and the parameters

Based on our generative model, compute the posterior distribution

p(x0:T , θ | y1:T) = p(x0:T | θ, y1:T)︸ ︷︷ ︸
state inf.

p(θ | y1:T)︸ ︷︷ ︸
param. inf.

.

Bayesian formulation – model the unknown parameters as a random

variable θ ∼ p(θ) and compute

p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)

Maximum likelihood formulation – model the unknown parameters as

a deterministic variable and solve

θ̂ = argmax
θ∈Θ

p(y1:T | θ).

7/41

Central object – the likelihood

The likelihood is computed by marginalizing

p(x0:T , y1:T | θ) = p(x0 | θ)
T∏

t=1

p(yt | xt , θ)
T∏

t=1

p(xt | xt−1, θ),

w.r.t the state sequence x0:T ,

p(y1:T | θ) =

∫
p(x0:T , y1:T | θ)dx0:T .

(We are averaging p(x0:T , y1:T | θ) over all possible state sequences.)

Equivalently we have

p(y1:T | θ) =
T∏

t=1

p(yt | y1:t−1, θ) =
T∏

t=1

∫
p(yt | xt , θ) p(xt | y1:t−1, θ)︸ ︷︷ ︸

key challenge

dxt .

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential

Monte Carlo methods for system identification. In Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing,

China, October 2015.
8/41

State inference – nonlinear filtering problem

The nonlinear filtering problem involves the measurement update

p(xt | y1:t) =

measurement︷ ︸︸ ︷
p(yt | xt)

prediction pdf︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
,

and the time update

p(xt | y1:t−1) =

∫
p(xt | xt−1)︸ ︷︷ ︸

dynamics

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering pdf

dxt−1.

9/41

Outline

Aim: 1. Give a (hopefully) intuitive explanation of sequential Monte

Carlo (SMC) for probabilistic modelling of dynamical systems.

2. Derive a new stochastic optimization method that can for example

be used to learn unknown parameters in nonlinear SSMs.

1. Probabilistic modelling of dynamical systems

2. Sequential Monte Carlo (SMC)

3. Stochastic optimization

4. Some ongoing research snapshots (if there is time)

10/41

Sequential Monte Carlo

The need for computational methods, such as SMC, is tightly coupled to

the intractability of the integrals on the previous slides.

SMC provide approximate solutions to integration problems where

there is a sequential structure present.

The particle filter approximates p(xt | y1:t) for

xt = f (xt−1) + vt ,

yt = g(xt) + et ,

by maintaining an empirical distribution made up of N samples

(particles) {x it}Ni=1 and the corresponding weights {w i
t}Ni=1

p̂(xt | y1:t)︸ ︷︷ ︸
π̂(xt)

=
N∑

i=1

w i
t∑N

j=1 w
j
t

δx i
t
(xt).

11/41

Particle filter – introductory example (I/II)

Consider a toy 1D localization problem.

Data Model

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Posit ion x

A
lt
it
u
d
e

Dynamic model:

xt+1 = xt + ut + vt ,

where xt denotes position, ut denotes velocity

(known), vt ∼ N (0, 5) denotes an unknown

disturbance.

Measurements:

yt = h(xt) + et .

where h(·) denotes the world model (here the

terrain height) and et ∼ N (0, 1) denotes an

unknown disturbance.

Task: Find the state xt (position) based on the measurements

y1:t , {y1, . . . , yt} by computing the filter density p(xt | y1:t).
12/41

Particle filter – introductory example (II/II)

Highlights two key

capabilities of the PF:

1. Automatically handles

an unknown and

dynamically changing

number of hypotheses.

2. Work with

nonlinear/non-

Gaussian

models.

13/41

Sequential Monte Carlo – particle filter

SMC = sequential importance sampling + resampling

1. Propagation: x it ∼ p(xt | xa
i
t

1:t−1) and x i1:t = {xa
i
t

1:t−1, x
i
t}.

2. Weighting: w̄ i
t = Wt(x

i
t) = p(yt | x it).

3. Resampling: P
(
ait = j

)
= w̄ j

t−1/
∑

l w̄
l
t−1.

The ancestor indices {ait}Ni=1 are very useful auxiliary variables!

They make the stochasticity of the resampling step explicit.

14/41

Resampling Propagation Weighting Resampling Propagation

Application – indoor localization (I/III)

Aim: Compute the position of a person moving around indoors using

sensors (inertial, magnetometer, radio) located in an ID badge and a map.

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.
The sensors (IMU and radio) and the

DSP are mounted inside an ID badge.

pdf for an office environment, the

bright areas are rooms and corridors

(i.e., walkable space).

15/41

Application – indoor localization (II/III)

Show movie

Johan Kihlberg, Simon Tegelid, Manon Kok and Thomas B. Schön. Map aided indoor positioning using particle filters. Reglermöte

(Swedish Control Conference), Linköping, Sweden, June 2014.

16/41

Application – indoor localization (III/III)

Aim: Compute the position using variations in the ambient magnetic

field and the motion of the person (acceleration and angular velocities).

All of this observed using sensors in a standard smartphone.

Fig. 1: Principle of magnetic terrain navigation. Here a pre-generated magnetic map is overlaid on top of a picture of the space.
The map depicts a vector field with both a direction (the arrows indicate the direction based on the x and y components)
and magnitude (warm colours indicate stronger values, cool colours weaker). During positioning, the vector valued (three-
component) measurement track obtained by the smartphone magnetometer is matched to the magnetic landscape.

II. METHODS

An illustration of the general concept of magnetic terrain
navigation is shown in Figure 1. The magnetic terrain naviga-
tion setup in this paper boils down to three distinctive parts:

• The positioning is overseen by a particle filter, which is a
sequential Monte Carlo approach for proposing different
state histories and finding which one matches the data the
best.

• The magnetic terrain which the observations are matched
against. The map is constructed by a Gaussian process
model which is able to return a magnetic field estimate
and its variance for any spatial location in the building.

• A model for the movement of the person being tracked,
often referred to as a pedestrian dead reckoning model.

The following sections will explain these components of the
map matching algorithm in detail.

A. Particle filtering

Particle filtering [12, 22, 23] is a general methodology for
probabilistic statistical inference (i.e., Bayesian filtering and
smoothing) on state space models of the form

xk+1 ∼ p(xk+1 | xk),

yk ∼ p(yk | xk),
(1)

where p(xk+1 | xk) defines a vector-Markov model for the
dynamics of the state xk ∈ Rdx , and p(yk | xk) defines
the model for the measurements yk ∈ Rdy in the form of
conditional distribution of the measurements given the state.
For example, in (magnetic) terrain navigation, the dynamic
model tells how the target moves according to a (pedestrian)
dead reckoning and the (Markovian) randomness is used
for modeling the errors and uncertainty in the dynamics.
In conventional terrain navigation, the measurement model
tells what distribution of height we would measure at each
position, and in magnetic terrain navigation it tells what is the
distribution of magnetic field measurements we could observe
at a given position and orientation.

A particle filter aims at computing the (Bayesian) filtering
distribution, which refers to the conditional distribution of the
current state vector given the observations up to the current
time step p(xk | y1:k). Particle filtering uses a weighted
Monte Carlo approximation of n particles to approximate this
distribution. The approximation has the form

p(xk | y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k), (2)

where δ(·) stands for the Dirac delta distribution and w
(i)
k

are non-negative weights such that
∑

i w
(i)
k = 1. Under this

Movie – map making:

www.youtube.com/watch?v=enlMiUqPVJo

Movie – indoor positioning result

Arno Solin, Simo Särkkä, Juho Kannala and Esa Rahtu. Terrain navigation in the magnetic landscape: Particle filtering for indoor

positioning. In Proceedings of the European Navigation Conference Helsinki, Finland, June, 2016.

Arno Solin, Manon Kok, Niklas Wahlström, Thomas B. Schön and Simo Särkkä. Modeling and interpolation of the ambient magnetic

field by Gaussian processes. IEEE Transactions on Robotics, 2018 (to appear).

17/41

www.youtube.com/watch?v=enlMiUqPVJo

Particle MCMC = SMC + MCMC

A systematic way of combining SMC and MCMC.

Builds on an extended target construction.

Intuitively: SMC is used as a high-dimensional proposal mechanism on

the space of state trajectories XT .

A bit more precise: Construct a Markov chain with p(θ, x1:T | y1:T) (or

one of its marginals) as its stationary distribution. Also used for

parameter learning.

Exact approximations

Pioneered by the work:
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical

Society: Series B, 72:269-342, 2010.

18/41

Outline

Aim: 1. Give a (hopefully) intuitive explanation of sequential Monte

Carlo (SMC) for probabilistic modelling of dynamical systems. 2. De-

rive a new stochastic optimization method that can for example be

used to learn unknown parameters in nonlinear SSMs.

1. Probabilistic modelling of dynamical systems

2. Sequential Monte Carlo (SMC)

3. Stochastic optimization

4. Some ongoing research snapshots (if there is time)

19/41

Quasi-Newton — A non-standard take

Our problem is of the form (note change of notation...)

max
x

f (x)

Idea underlying (quasi-)Newton methods: Learn a local quadratic

model q(xk , δ) of the cost function f (x) around the current iterate xk

q(xk , δ) = f (xk) + g(xk)Tδ +
1

2
δTH(xk)δ

A second-order Taylor expansion around xk , where

g(xk) = ∇f (x)
∣∣
x=xk

,

H(xk) = ∇2f (x)
∣∣
x=xk

,

δ = x − xk .

20/41

Available data

We have measurements of the

• cost function fk = f (xk),

• and its gradient gk = g(xk).

Question: How do we update the Hessian model?

Line segment connecting two adjacent iterates xk and xk+1:

rk(τ) = xk + τ(xk+1 − xk), τ ∈ [0, 1].

21/41

Useful basic facts

The fundamental theorem of calculus states that

∫ 1

0

∂

∂τ
∇f (rk(τ))dτ = ∇f (rk(1))−∇f (rk(0)) = ∇f (xk+1)︸ ︷︷ ︸

gk+1

−∇f (xk)︸ ︷︷ ︸
gk

and the chain rule tells us that

∂

∂τ
∇f (rk(τ)) = ∇2f (rk(τ))

∂rk(τ)

∂τ
= ∇2f (rk(τ))(xk+1 − xk).

gk+1 − gk︸ ︷︷ ︸
=yk

=

∫ 1

0

∂

∂τ
∇f (rk(τ))dτ =

∫ 1

0

∇2f (rk(τ))dτ(xk+1 − xk︸ ︷︷ ︸
sk

).

22/41

Result — the quasi-Newton integral

With the definitions yk , gk+1 − gk and sk , xk+1 − xk we have

yk =

∫ 1

0

∇2f (rk(τ))dτsk .

Interpretation: The difference between two consecutive gradients (yk)

constitute a line integral observation of the Hessian.

Problem: Since the Hessian is unknown there is no functional form

available for it.

23/41

Solution 1 — recovering existing quasi-Newton algorithms

Existing quasi-Newton algorithms (e.g. BFGS, DFP, Broyden’s method)

assume the Hessian to be constant

∇2f (rk(τ)) ≈ Hk+1, τ ∈ [0, 1],

implying the following approximation of the integral (secant condition)

yk = Hk+1sk .

Find Hk+1 by regularizing H:

Hk+1 = min
H

‖H − Hk‖2
W ,

s.t. H = HT, Hsk = yk ,

Equivalently, the existing quasi-Newton methods can be interpreted as

particular instances of Bayesian linear regression.

Philipp Hennig. Probabilistic interpretation of linear solvers, SIAM Journal on Optimization, 25(1):234–260, 2015. 24/41

Solution 2 — use a flexible nonlinear model

The approach used here is fundamentally different.

Recall that the problem is stochastic and nonlinear.

Hence, we need a model that can deal with such a problem.

Idea: Represent the Hessian using a Gaussian process learnt from data.

Two of the remaining challenges:

1. Can we use line integral observations when learning a GP?

2. How do we ensure that the resulting GP represents a Hessian?

25/41

GP prior for the Hessian

Stochastic quasi-Newton integral

yk =

∫ 1

0

B(rk(τ))︸ ︷︷ ︸
=∇2f (rk (τ))

skdτ + ek ,

corresponds to noisy (ek) gradient observations.

Since B(x)sk is a column vector, the integrand is given by

vec (B(x)sk) = (sT
k ⊗ I) vec (B(x)) = (sT

k ⊗ I) vec (B(x)) ,

where vec (B(x)) = D vech (B(x))︸ ︷︷ ︸
B̃(x)

.

Let us use a GP model for the unique elements of the Hessian

B̃(x) ∼ GP(µ(x), κ(x , x ′)).
26/41

Resulting stochastic qN integral and Hessian model

Summary: resulting stochastic quasi-Newton integral:

yk = (sT
k ⊗ I)D︸ ︷︷ ︸

=D̄k

∫ 1

0

B̃(rk(τ))dτ + ek ,

with the following model for the Hessian

B̃(x) ∼ GP(µ(x), κ(x , x ′)).

The Hessian can now be estimated using tailored GP regression.

Linear transformations (such as an integral or a derivative) of a GP

results in a new GP.

27/41

Resulting stochastic optimization algorithm

Standard non-convex numerical optimization loop with non-standard

components.

Algorithm 1 Stochastic optimization

1. Initialization (k = 1)

2. while not terminated do

(a) Compute a search direction pk using the current approximation of

the gradient gk and Hessian Bk .

(b) Stochastic line search to find a step length αk and set

xk+1 = xk + αkpk .

(c) Set k := k + 1

(d) Update the Hessian estimate (tailored GP regression)

3. end while

28/41

ex) Simple linear toy problem

Identify the parameters θ = (a, c , q, r)T in

xt+1 = axt + wt , wt ∼ N (0, q),

yt = cxt + et , et ∼ N (0, r).

Observations:

• The likelihood L(θ) = p(y1:T | θ) and its gradient ∇θL(θ) are

available in closed form via standard Kalman filter equations.

• Standard gradient-based search algorithms applies.

• Deterministic optimization problem (L(θ),∇θL(θ) noise-free).

29/41

ex) Simple linear toy problem

Both alg. in the noise-free case.

100 independent datasets.

Clear blue – True system

Red – Mean value of estimate

Shaded blue – individual results

Classical BFGS alg. for noisy observations of L(θ) and ∇L(θ). GP-based BFGS alg. with noisy observations of L(θ) and ∇L(θ).30/41

ex) laser interferometry

The classic Michelson-Morley

experiment from 1887.

Idea: Merge two light sources to

create an interference pattern by

superposition.

Two cases:

1. Mirror B and C at the same distance from mirror A.

2. Mirror B and C at different distances from mirror A.

31/41

ex) laser interferometry

Dynamics: constant velocity model (with unknown force w)
(
ṗ

v̇

)
=

(
0 1

0 0

)(
p

v

)
+

(
0

w

)
.

Measurements: generated using two detectors

y1 = α0 + α1 cos(κp) + e1, e1 ∼ N (0, σ2),

y2 = β0 + β1 sin(κp + γ) + e2, e2 ∼ N (0, σ2).

Unknown parameters: θ =
(
α0 α0 β0 β1 γ σ

)T

.

Resulting maximum likelihood system identification problem

max
θ

p(y1:T | θ)

32/41

ex) laser interferometry

33/41

Research snapshots

Snapshot 1 – scaling up to large problems

What is the key limitation of our GP-based optimization algorithm?

It does not scale to large-scale problems!

Still highly useful and competitive for small to medium sized problems.

We have developed a new technique that scales to very large problems.

34/41

Snapshot 1 – scaling up to large problems

Key innovations:

• Replace the GP with a matrix updated using fast Cholesky routines.

• Exploit a receding history of iterates and gradients akin to L-BFGS.

• An auxiliary variable Markov chain construction.

Training a deep CNN for MNIST data.

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o
s
t

Alg1

MNJ

GGR

SVRG

Logistic loss function with an L2 regularizer,

gisette, 6 000 observations and 5 000

unknown variables.

0 100 200 300 400 500 600 700 800 900 1000

Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o

s
t

Alg1

MNJ

GGR

SVRG

Logistic loss function with an L2 regularizer,

URL, 2 396 130 observations and 3 231 961

unknown variables.

Adrian Wills and Thomas B. Schön. Stochastic quasi-Newton with adaptive step lengths for large-scale problems. arXiv:1802.04310,

February, 2018.
35/41

Snapshot 2 – GP-based nonlinear state space model

“Inspired by the Gaussian process, enabled by the particle filter”

xt+1 = f (xt) + wt , s.t. f (x) ∼ GP(0, κη,f (x , x ′)),

yt = g(xt) + et , s.t. g(x) ∼ GP(0, κη,g (x , x ′)).

Results in a flexible non-parametric model where the GP prior takes on

the role of a regularizer.

We can now find the posterior distribution

p(f , g ,Q,R, η | y1:T),

via some approximation (we use particle MCMC).

Frigola, Roger, Fredrik Lindsten, Thomas B. Schön, and Carl Rasmussen. Bayesian inference and learning in Gaussian process

state-space models with particle MCMC. In Advances in Neural Information Processing Systems (NIPS), 2013.

Andreas Svensson and Thomas B. Schön. A flexible state space model for learning nonlinear dynamical systems, Automatica,

80:189-199, June, 2017.
36/41

Snapshot 3 – The ASSEMBLE project and Birch

Aim: Automate probabilistic modeling of dynamical

systems (and their surroundings) via a formally defined

probabilistic modeling language.

Keep the model and the learning algorithms separated.

Create a market place for SMC-based learning algorithms (think CVX).

Birch — Our prototype probabilistic programming language.

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman and Thomas B. Schön. Delayed sampling and automatic

Rao-Blackwellization of probabilistic programs. In Proceedings of the 21st International Conference on Artificial Intelligence and

Statistics (AISTATS), Lanzarote, Spain, April, 2018.

37/41

Birch - our prototype probabilistic programming language

1. The basic idea of probabilistic programming is to equate

probabilistic models with the programs that implement them.

2. Just as we can think of doing inference over models, we can think of

doing inference over programs.

The particular PPL used here is Birch, which is currently being

developed at Uppsala University.

Probabilistic and object-oriented language.

An early pre-release of Birch is available

birch-lang.org

38/41

birch-lang.org

Snapshot 4 – The nonlinear SSM is just a special case...

Constructing an artificial sequence of intermediate target distributions

for an SMC sampler is a powerful (quite possibly underutilized) idea.

y1 y2 y3

x1 x2 x3

x4

x5

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical models. Advances in

Neural Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick, Thomas B. Schön, John Aston and Alexandre

Bouchard-Côté. Divide-and-Conquer with Sequential Monte Carlo. Journal of Computational and Graphical Statistics (JCGS), 2017. 39/41

Snapshot 5 – Spatio-temporal modelling

Problem: predicting spatio-temporal

processes with temporal patterns

varying across spatial regions when data

is obtained as a stream.

A localized spatio-temporal covariance

model.

The predictor can be updated sequentially with each new data point.

Muhammad Osama, Dave Zachariah and Thomas B. Schön. Learning localized spatio-temporal models from streaming data. In

Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, July, 2018.

40/41

Conclusion

Probabilistic modelling of nonlinear dynamical systems

p(x0:T , θ, y1:T) =
T∏

t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation︸ ︷︷ ︸

data distribution

T∏

t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

SMC provide approximate solutions to integration problems where

there is a sequential structure present.

Stochastic optimization:

• Non-standard interpretation of quasi-Newton.

• Represent the Hessian using a Gaussian process.

• We can scale up to larg(er) problems.

41/41

	Research snapshots

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:

