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Problem formulation

What? Solve the non-convex stochastic optimization problem

max
x

f (x)

when we only have access to noisy evaluations of f (x) and its derivatives.

Why? These stochastic optimization problems are common:

• When the cost function cannot be evaluated on the entire dataset.

• When numerical methods approximate f (x) and ∇i f (x).

• . . .
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How? — our contribution

How? Learn a probabilistic nonlinear model of the Hessian.

Provides a local approximation of the cost function f (x).

Use this local model to compute a search direction.

Captures second-order information (curvature) which opens up for better

performance compared to a pure gradient-based method.
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Intuitive preview example — Rosenbrock function

Let f (x) = (a− x1)2 + b(x2 − x2
1)2, where a = 1 and b = 100.

Deterministic problem

min
x

f (x)

Stochastic problem

min
x

f (x)

when we only have access to noisy

versions of the cost function

(f̃ (x) = f (x) + e, e ∼ N (0, 302))

and its gradients. 3/20



Adam at work

By not using the curvature information we expose ourself to the

”banana-problem”. 4/20



New algorithm at work — overall result

Initial value Iteration 1

Iteration 2 Iteration 50
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Quasi-Newton — A non-standard take

Our problem is of the form

max
x

f (x)

Idea underlying (quasi-)Newton methods: Learn a local quadratic

model q(xk , δ) of the cost function f (x) around the current iterate xk

q(xk , δ) = f (xk) + g(xk)Tδ +
1

2
δTH(xk)δ

A second-order Taylor expansion around xk , where

g(xk) = ∇f (x)
∣∣
x=xk

,

H(xk) = ∇2f (x)
∣∣
x=xk

,

δ = x − xk .
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Available data

We have measurements of the

• cost function fk = f (xk),

• and its gradient gk = g(xk).

Question: How do we update the Hessian model?

Line segment connecting two adjacent iterates xk and xk+1:

rk(τ) = xk + τ(xk+1 − xk), τ ∈ [0, 1].
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Useful basic facts

The fundamental theorem of calculus states that∫ 1

0

∂

∂τ
∇f (rk(τ))dτ = ∇f (rk(1))−∇f (rk(0)) = ∇f (xk+1)︸ ︷︷ ︸

gk+1

−∇f (xk)︸ ︷︷ ︸
gk

and the chain rule tells us that

∂

∂τ
∇f (rk(τ)) = ∇2f (rk(τ))

∂rk(τ)

∂τ
= ∇2f (rk(τ))(xk+1 − xk).

gk+1 − gk︸ ︷︷ ︸
=yk

=

∫ 1

0

∂

∂τ
∇f (rk(τ))dτ =

∫ 1

0

∇2f (rk(τ))dτ(xk+1 − xk︸ ︷︷ ︸
sk

).
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Result — the quasi-Newton integral

With the definitions yk , gk+1 − gk and sk , xk+1 − xk we have

yk =

∫ 1

0

∇2f (rk(τ))dτsk .

Interpretation: The difference between two consecutive gradients (yk)

constitute a line integral observation of the Hessian.

Problem: Since the Hessian is unknown there is no functional form

available for it.
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Solution 1 — recovering existing quasi-Newton algorithms

Existing quasi-Newton algorithms (e.g. BFGS, DFP, Broyden’s method)

assume the Hessian to be constant

∇2f (rk(τ)) ≈ Hk+1, τ ∈ [0, 1],

implying the following approximation of the integral (secant condition)

yk = Hk+1sk .

Find Hk+1 by regularizing H:

Hk+1 = min
H

‖H − Hk‖2
W ,

s.t. H = HT, Hsk = yk ,

Equivalently, the existing quasi-Newton methods can be interpreted as

particular instances of Bayesian linear regression.

Philipp Hennig. Probabilistic interpretation of linear solvers, SIAM Journal on Optimization, 25(1):234–260, 2015. 10/20



Solution 2 — use a flexible nonlinear model

Our approach is fundamentally different.

Recall that the problem is stochastic and nonlinear.

Hence, we need a model that can deal with such a problem.

Idea: Represent the Hessian using a Gaussian process learnt from data.

Two of the remaining challenges:

1. Can we use line integral observations when learning a GP?

2. How do we ensure that the resulting GP represents a Hessian?
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GP prior for the Hessian

Stochastic quasi-Newton integral

yk =

∫ 1

0

B(rk(τ))︸ ︷︷ ︸
=∇2f (rk (τ))

skdτ + ek ,

corresponds to noisy (ek) gradient observations.

Let us use a GP model for the unique elements of the Hessian

B̃(x) ∼ GP(µ(x), κ(x , x ′)).
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Resulting stochastic optimization algorithm

Standard non-convex numerical optimization loop with non-standard

components.

Algorithm 1 Stochastic optimization

1. Initialization (k = 1)

2. while not terminated do

(a) Compute a search direction pk using the current approximation of

the gradient gk and Hessian Bk .

(b) Stochastic line search to find a step length αk and set

xk+1 = xk + αkpk .

(c) Set k := k + 1

(d) Update the Hessian estimate (tailored GP regression)

3. end while
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Maximum likelihood nonlinear system identification

xt = f (xt−1, θ) + wt ,

yt = g(xt , θ) + et ,

x0 ∼ p(x0 | θ),

(θ ∼ p(θ)).

xt | (xt−1, θ) ∼ p(xt | xt−1, θ),

yt | (xt , θ) ∼ p(yt | xt , θ),

x0 ∼ p(x0 | θ),

(θ ∼ p(θ)).

Maximum likelihood – model the unknown parameters as a determin-

istic variable θ and solve

max
θ

p(y1:T | θ),

Challenge: The optimization problem is stochastic!
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Cost function – the likelihood

Each element p(yt | y1:t−1, θ) in the likelihood

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ),

can be computed by averaging over all possible values for the state xt ,

p(yt | y1:t−1, θ) =

∫
p(yt | xt , θ) p(xt | y1:t−1, θ)︸ ︷︷ ︸

approx. by PF

dxt .

Non-trivial fact: The likelihood estimates obtained from the particle

filter (PF) are unbiased.

Tutorial paper on the use of the PF (an instance of sequential Monte
Carlo, SMC) for nonlinear system identification

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential

Monte Carlo methods for system identification, Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing,

China, October 2015.
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ex) Simple linear toy problem

Identify the parameters θ = (a, c , q, r)T in

xt+1 = axt + wt , wt ∼ N (0, q),

yt = cxt + et , et ∼ N (0, r).

Observations:

• The likelihood L(θ) = p(y1:T | θ) and its gradient ∇θL(θ) are

available in closed form via standard Kalman filter equations.

• Standard gradient-based search algorithms applies.

• Deterministic optimization problem (L(θ),∇θL(θ) noise-free).
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ex) Simple linear toy problem

Both alg. in the noise-free case.

100 independent datasets.

Clear blue – True system

Red – Mean value of estimate

Shaded blue – individual results

Classical BFGS alg. for noisy observations of L(θ) and ∇L(θ). GP-based BFGS alg. with noisy observations of L(θ) and ∇L(θ).17/20



Ongoing work – scaling up to large problems

What is the key limitation of our GP-based optimization algorithm?

It does not scale to large-scale problems!

It is still highly useful and competitive for small to medium sized

problems involving up to a coupled of hundred parameters or so.

We have developed a new technique that scales to very large problems.
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Ongoing work – scaling up to large problems

Key innovations:

• Replace the GP with a matrix updated using fast Cholesky routines.

• Exploit a receding history of iterates and gradients akin to L-BFGS.

• An auxiliary variable Markov chain construction.

Training a deep CNN for MNIST data.
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Adrian Wills and Thomas B. Schön. Stochastic quasi-Newton with adaptive step lengths for large-scale problems. arXiv:1802.04310,

February, 2018.
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Conclusions

Derived a probabilistic quasi-Newton algorithm that can be used with

noisy observations of the cost function and its derivatives.

• Non-standard interpretation of quasi-Newton.

• Represent the Hessian using a Gaussian process.

• Application: Maximum likelihood estimation in nonlinear SSMs.

• We can scale up to large problems.

Adrian G. Wills and Thomas B. Schön. On the construction of probabilistic Newton-type algorithms, Proceedings of the 56th IEEE

Conference on Decision and Control (CDC), Melbourne, Australia, December 2017.

Significantly updated material will soon be available.
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