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Mindset – Numerical methods are inference algorithms

A numerical method estimates a certain latent property given the

result of computations.

Basic numerical methods and basic statistical models are deeply

connected in formal ways!

Poincaré, H. Calcul des probabilités. Paris: Gauthier-Villars, 1896.

Diaconis, P. Bayesian numerical analysis. Statistical decision theory and related topics, IV(1), 163–175, 1988.

O’Hagan, A. Some Bayesian numerical analysis. Bayesian Statistics, 4, 345–363, 1992.

Hennig, P., Osborne, M. A., and Girolami, M. Probabilistic numerics and uncertainty in computations. Proceedings of the Royal Society

of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015.
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Mindset – Numerical methods are inference algorithms

The task of a numerical algorithm is

to estimate unknown quantities from known ones.

Ex) basic algorithms that are equivalent to Gaussian MAP inference:

• Conjugate Gradients for linear algebra

• BFGS for nonlinear optimization

• Gaussian quadrature rules for integration

• Runge-Kutta solvers for ODEs

The structure of num. algs. is similar to statistical inference where

• The tractable quantities play the role of ”data”/”observations”.

• The intractable quantities relate to ”latent”/”hidden” quantities.
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Problem formulation

Maybe it is possible to use this relationship in deriving new (and possibly

more capable) algorithms...

What? Solve the non-convex stochastic optimization problem

min
θ

f (θ)

when we only have access to noisy evaluations of f (θ) and its derivatives.

Why? These stochastic optimization problems are common:

• When the cost function cannot be evaluated on the entire dataset.

• When numerical methods approximate f (θ) and ∇i f (θ).

• . . .
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How? – our contribution

How? Learn a probabilistic nonlinear model of the Hessian.

Provides a local approximation of the cost function f (θ).

Use this local model to compute a search direction.

Stochastic line search via a stochastic interpretation of the Wolfe

conditions.

Captures second-order information (curvature) which opens up for better

performance compared to a pure gradient-based method.
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Intuitive preview example – Rosenbrock’s banana function

Let f (θ) = (1− θ1)2 + 100(θ2 − θ2
1)2.

Deterministic problem

min
θ

f (θ)

Stochastic problem

min
θ

f (θ)

when we only have access to noisy

versions of the cost function

(f̃ (θ) = f (θ) + e, e = N (0, 302))

and its noisy gradients. 5/35



Outline

Aim: Derive a stochastic quasi-Newton algorithm.

Spin-off: Combine it with particle filters for maximum likelihood iden-

tification in nonlinear state space models.

1. Mindset (probabilistic numerics) and problem formulation

2. A non-standard take on quasi-Newton

3. µ on the Gaussian Process (GP)

4. Assembling a new stochastic optimization algorithm

a. Representing the Hessian with a Gaussian process

b. Learning the Hessian

5. Testing ground – maximum likelihood for nonlinear SSMs
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Quasi-Newton – A non-standard take

Our problem is of the form

min
θ

f (θ)

Idea underlying (quasi-)Newton methods: Learn a local quadratic

model q(θk , δ) of the cost function f (θ) around the current iterate θk

q(θk , δ) = f (θk) + g(θk)Tδ +
1

2
δTH(θk)δ

g(θk) = ∇f (θ)
∣∣
θ=θk

, H(θk) = ∇2f (θ)
∣∣
θ=θk

, δ = θ − θk .

We have measurements of

• the cost function fk = f (θk),

• and its gradient gk = g(θk).

Question: How do we update the Hessian model?
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Useful basic facts

Line segment connecting two adjacent iterates θk and θk+1:

rk(τ) = θk + τ(θk+1 − θk), τ ∈ [0, 1].

1. The fundamental theorem of calculus states that∫ 1

0

∂

∂τ
∇f (rk(τ))dτ = ∇f (rk(1))−∇f (rk(0)) = ∇f (θk+1)︸ ︷︷ ︸

gk+1

−∇f (θk)︸ ︷︷ ︸
gk

.

2. The chain rule tells us that

∂

∂τ
∇f (rk(τ)) = ∇2f (rk(τ))

∂rk(τ)

∂τ
= ∇2f (rk(τ))(θk+1 − θk).

gk+1 − gk︸ ︷︷ ︸
=yk

=

∫ 1

0

∂

∂τ
∇f (rk(τ))dτ =

∫ 1

0

∇2f (rk(τ))dτ(θk+1 − θk︸ ︷︷ ︸
sk

).
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Result – the quasi-Newton integral

With the definitions yk , gk+1 − gk and sk , θk+1 − θk we have

yk =

∫ 1

0

∇2f (rk(τ))dτsk .

Interpretation: The difference between two consecutive gradients (yk)

constitute a line integral observation of the Hessian.

Problem: Since the Hessian is unknown there is no functional form

available for it.
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Solution 1 – recovering existing quasi-Newton algorithms

Existing quasi-Newton algorithms (e.g. BFGS, DFP, Broyden’s method)

assume the Hessian to be constant

∇2f (rk(τ)) ≈ Hk+1, τ ∈ [0, 1],

implying the following approximation of the integral (secant condition)

yk = Hk+1sk .

Find Hk+1 by regularizing H:

Hk+1 = min
H

‖H − Hk‖2
W ,

s.t. H = HT, Hsk = yk ,

Equivalently, the existing quasi-Newton methods can be interpreted as

particular instances of Bayesian linear regression.

Philipp Hennig. Probabilistic interpretation of linear solvers, SIAM Journal on Optimization, 25(1):234–260, 2015. 10/35



Solution 2 – use a flexible nonlinear model

The approach used here is fundamentally different.

Recall that the problem is stochastic and nonlinear.

Hence, we need a model that can deal with such a problem.

Idea: Represent the Hessian using a Gaussian process learnt from data.
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µ on the Gaussian process (GP)



The Gaussian process is a model for nonlinear functions

Q: Why is the Gaussian process used everywhere?

It is a non-parametric and probabilistic model for nonlinear functions.

• Non-parametric means that it does not rely on any particular

parametric functional form to be postulated.

• Probabilistic means that it takes uncertainty into account in every

aspect of the model.
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An abstract idea

In probabilistic (Bayesian) linear regression

yt = θTxt︸︷︷︸
f (xt)

+et , et ∼ N (0, σ2),

we place a prior on θ, e.g. θ ∼ N (0, α2I ).

(Abstract) idea: What if we instead place a prior directly on the func-

tion f (·)
f ∼ p(f )

and look for p(f | y1:T ) rather than p(θ | y1:T )?!
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One concrete construction

Well, one (arguably simple) idea on how we can reason probabilistically

about an unknown function f is by assuming that f (x) and f (x ′) are

jointly Gaussian distributed(
f (x)

f (x ′)

)
∼ N (m,K ) .

If we accept the above idea we can without conceptual problems

generalize to any arbitrary finite set of input values {x1, x2, . . . , xT}.

 f (x1)
...

f (xT )

 ∼ N

m(x1)

...

m(xN)

 ,

k(x1, x1) . . . k(x1, xT )
...

. . .
...

k(xT , x1) . . . k(xT , xT )



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Definition

Definition: (Gaussian Process, GP) A GP is a (potentially infinite)

collection of random variables such that any finite subset of it is jointly

distributed according to a Gaussian.
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We now have a prior!

f ∼ GP(m, k)

The GP is a generative model so let us first sample from the prior.
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GP regression – illustration
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Snapshot — Constrained GP for tomographic reconstruction

Tomographic reconstruction goal: Build a map of an unknown

quantity within an object using information from irradiation experiments.

Ex1) Modelling and reconstruction of

strain fields.

Ex2) Reconstructing the internal structure

from limited x-ray projections.

(a) (b) (c)

Figure 5: (a) FBP reconstruction of cheese using dense 360 projections. (b) Filteredback projection
reconstruction from 9 projections. (c) GP reconstruction from 9 projections.

3.3 Discussion
We have presented x-ray tomography reconstruction from both simulated and real data for only 9
projections using an approach based on the Gaussian process. As a benchmark algorithm, FBP
reconstructions are overwhelmed by streak artifacts as it can be seen in Figure 4(b) for the chest
phantom and Figure 5(b) the for cheese target. The edges of the target are badly reconstructed.
Because of the artefacts, it is difficult to distinguish the lighter region (which is assumed as tissue)
and the black region (the air). It is confirmed by a high value (more than 80%) of the relative
error in figures of merit in Table 1. On the other hand, the GP reconstructions from both data
outperform the FBP algorithm in terms of image quality as reported in figures of merit. The PSNR
value of the GP-approach reconstruction is higher than that of the FBP reconstruction, and the
relative error is only 19.3%. The GP prior clearly suppresses the artifacts in the reconstructions as
shown in Figure 4(c) and 5(c). In Figure 4(c), the air and tissue region are recovered much better,
since it has less prominent artefacts. In Figure 5(c), the air region (outside the cheese and the C
and T letters) are recovered much sharper than in the FBP reconstructions. Overall, the results
indicate that the image quality can be improved significantly by employing the GP method.

We emphasize that in the proposed GP-approach, some parameters in the prior is a part of the
inference problem (see Equation 4). Henceforth, we can avoid the difficulty in choosing the prior
parameters. This problem corresponds to the classical regularization methods, in which selecting
the regularization parameters is a very crucial step to produce a good reconstruction.

4 Conclusions and Future work
We have employed the Gaussian process with hierarchical prior to reconstruct the x-ray attenuation
coefficient for limited projection data. The method can be implemented to estimate the attenuation
coefficient from the measured data produced by the Radon transform. Simulated and real data
are tested, and the results in both cases are quite promising. Unlike algorithms commonly used in
limited x-ray tomography problem in which tuning or choosing the prior parameters is required,
the proposed GP method offers an easier set up as it takes into account the prior parameters as a
part of the estimation. Henceforth, it constitutes a promising and user-friendly strategy.

The most important part of the GP model is the selection of the covariance function, since it
stipulates the properties of the unknown function. As such, it also leaves most room for improve-
ment. Considering the examples in Section 3, a common feature of the target functions is that they
consists of a number of well-defined, separate regions. The function values are similar and thus
highly correlated within the regions, while the correlation is low at the edges where rapid changes
occur. This kind of behavior is hard to capture with a stationary covariance function that models
the correlation as completely dependent on the distance between the input locations.

A non-stationary alternative is the neural network covariance function, which is known for its
ability to model functions with non-smooth features [29]. Other more advanced options include
deep GPs [45] and manifold GPs [46]. The price is, however, that the implementation becomes
significantly harder. Numerical methods would most likely be required in the evaluation of (9a)-

7

Carl Jidling, Johannes Hendriks, Niklas Wahlström, Alexander Gregg, TS, Chris Wensrich and Adrian Wills. Probabilistic modelling and

reconstruction of strain. Nuclear inst. and methods in physics research: section B, 436:141-155, 2018.

Zenith Purisha, Carl Jidling, Niklas Wahlström, Simo Särkkä and TS. Probabilistic approach to limited-data computed tomography

reconstruction. Draft, 2018

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, December, 2017.
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Snapshot — Model of the ambient magnetic field with GPs

The Earth’s magnetic field sets a background for the ambient magnetic

field. Deviations make the field vary from point to point.

Aim: Build a map (i.e., a

model) of the magnetic

environment based on

magnetometer measurements.

Solution: Customized Gaussian

process that obeys Maxwell’s

equations.

www.youtube.com/watch?v=enlMiUqPVJo

Arno Solin, Manon Kok, Niklas Wahlström, TS and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. IEEE Transactions on Robotics, 34(4):1112–1127, 2018.
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Stochastic optimization



GP prior for the Hessian

Stochastic quasi-Newton integral

yk =

∫ 1

0

B(rk(τ))︸ ︷︷ ︸
=∇2f (rk (τ))

skdτ + ek ,

corresponds to noisy (ek) gradient observations.

Since B(x)sk is a column vector, the integrand is given by

vec (B(x)sk) = (sT
k ⊗ I ) vec (B(x)) = (sT

k ⊗ I ) vec (B(x)) ,

where vec (B(x)) = D vech (B(x))︸ ︷︷ ︸
B̃(x)

.

Let us use a GP model for the unique elements of the Hessian

B̃(x) ∼ GP(µ(x), κ(x , x ′)).
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Resulting stochastic qN integral and Hessian model

Summary: resulting stochastic quasi-Newton integral:

yk = Dk

∫ 1

0

B̃(rk(τ))dτ + ek ,

with the following model for the Hessian

B̃(θ) ∼ GP(µ(θ), κ(θ, θ′)).

The Hessian can now be estimated using tailored GP regression.

Linear operators (such as a line integral or a derivative) acting on a GP

results in a another GP.
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Resulting stochastic optimization algorithm

Standard numerical optimization loop with non-standard components.

Algorithm 1 Stochastic optimization

1. Initialization (k = 1)

2. while not terminated do

(a) Compute a search direction pk using the current approximation of

the gradient gk and Hessian Bk .

(b) Stochastic line search to find a step length αk and set

θk+1 = θk + αkpk .

(c) Update the Hessian model (tailored GP regression).

(d) Set k := k + 1.

3. end while

Curvature information is useful also for stochastic optimization.
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Testing ground – nonlinear sys.id.



Probabilistic modelling of dynamical systems

xt = f (xt−1, θ) + wt ,

yt = g(xt , θ) + et ,

x0 ∼ p(x0 | θ),

(θ ∼ p(θ)).

xt | (xt−1, θ) ∼ p(xt | xt−1, θ),

yt | (xt , θ) ∼ p(yt | xt , θ),

x0 ∼ p(x0 | θ),

(θ ∼ p(θ)).

Corresponding full probabilistic model:

p(x0:T , θ, y1:T ) =
T∏
t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation

T∏
t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Model = probability distribution!
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Maximum likelihood nonlinear system identification

Maximum likelihood – model the unknown parameters as a determin-

istic variable θ and solve

max
θ

p(y1:T | θ),

Challenge: The optimization problem is stochastic!
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Cost function – the likelihood

Each element p(yt | y1:t−1, θ) in the likelihood

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ),

can be computed by averaging over all possible values for the state xt ,

p(yt | y1:t−1, θ) =

∫
p(yt | xt , θ) p(xt | y1:t−1, θ)︸ ︷︷ ︸

approx. by PF

dxt .

Non-trivial fact: The likelihood estimates obtained from the particle

filter (PF) are unbiased.

Tutorial paper on the use of the PF (an instance of sequential Monte
Carlo, SMC) for nonlinear system identification

TS, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential Monte Carlo

methods for system identification, Proceedings of the 17th IFAC Symp. on System Identification (SYSID), Beijing, China, October 2015. 25/35



ex) Simple linear toy problem

Identify the parameters θ = (a, c , q, r)T in

xt+1 = axt + wt , wt ∼ N (0, q2),

yt = cxt + et , et ∼ N (0, r2).

Observations:

• The likelihood L(θ) = p(y1:T | θ) and its gradient ∇θL(θ) are

available in closed form via standard Kalman filter equations.

• Standard gradient-based search algorithms applies.

• Deterministic optimization problem (L(θ),∇θL(θ) noise-free).
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ex) Simple linear toy problem

Both alg. in the noise-free case.

100 independent datasets.

Clear blue – True system

Red – Mean value of estimate

Shaded blue – individual results

Classical BFGS alg. for noisy observations of L(θ) and ∇L(θ). GP-based BFGS alg. with noisy observations of L(θ) and ∇L(θ).27/35



ex) Nonlinear system

Identify the parameters θ = (a, c , d , q, r)T in

xt+1 = axt + b
xt

1 + x2
t

+ c cos(1.2t) + wt , wt ∼ N (0, q2),

yt = dx2
t + et , et ∼ N (0, r2).
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ex) Laser interferometry

The classic Michelson-Morley

experiment from 1887.

Idea: Merge two light sources to

create an interference pattern by

superposition.

Two cases:

1. Mirror B and C at the same distance from mirror A.

2. Mirror B and C at different distances from mirror A.
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ex) Laser interferometry

Dynamics: constant velocity model (with unknown force w)(
ṗ

v̇

)
=

(
0 1

0 0

)(
p

v

)
+

(
0

w

)
.

Measurements: generated using two detectors

y1 = α0 + α1 cos(κp) + e1, e1 ∼ N (0, σ2),

y2 = β0 + β1 sin(κp + γ) + e2, e2 ∼ N (0, σ2).

Unknown parameters: θ =
(
α0 α0 β0 β1 γ σ

)T

.

Resulting maximum likelihood system identification problem

max
θ

p(y1:T | θ)
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ex) Laser interferometry
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Scaling up to large(r) problems

What is the key limitation of our GP-based optimization algorithm?

It does not scale to large-scale problems!

Still highly useful and competitive for small to medium sized problems.

We have developed a new technique that scales to large(r) problems.
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Scaling up to large(r) problems

Key innovations:

• Replace the GP with a matrix updated using fast Cholesky routines.

• Exploit a receding history of iterates and gradients akin to L-BFGS.

• Same stochastic line search applicable.

Training a deep CNN for MNIST data. Logistic loss function with an L2 regularizer,

gisette, 6 000 observations and 5 000

unknown variables.

Logistic loss function with an L2 regularizer,

URL, 2 396 130 observations and 3 231 961

unknown variables.

Adrian G. Wills, Carl Jidling and TS. A fast quasi-Newton-type method for large-scale stochastic optimisation. arXiv:1810.01269,

September, 2018.
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Snapshot – Using probabilistic models for control

Problem: Decision making for dynamical systems (control) in the

presence of uncertainty.

Intersection of reinforcement learning (RL) and robust control (RC).

Problem: Given observations from an

unknown dynamical system, we seek a

policy to optimize the expected cost

(as in RL), subject to certain robust

stability guarantees (as in RC).
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Figure 2: (left) Median % of unstable closed-loop models, with open-loop models sampled from
the 95% confidence region of the posterior, for nx = 3 and N = 15, as a function of the number of
samples M used in the MC approximation (4). (right) LQR suboptimality as a function of M . 50
experiments were conducted, c.f. Section5.1 for details. Shaded regions cover the interquartile range.
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(a) (b)

Figure 3: (a) LQR cost on real-world pendulum experiment, as a function of the number of rollouts.
∞ cost denotes controllers that resulted in instability during testing. n/a denotes cases in which the
synthesis problem was infeasible. (b) pendulum angle and control signal recorded after 10 rollouts.

training data, the superposition of a non-stabilizing control signal and a sinusoid of random frequency
is applied to the rotary arm motor while the pendulum is inverted. The arm and pendulum angles
(along with velocities) are sampled at 100Hz until the pendulum angle exceeds 20◦, which takes
no more than 5 seconds. This constitutes one rollout. We applied the worst-case, H2/H∞, and
proposed methods to optimize the LQ cost with Q = I and R = 1. To generate bounds εA ≥
‖Als −Atr‖2 and εB ≥ ‖Bls −Btr‖2 for worst-case and H2/H∞, we sample {Ai, Bi}5000

i=1 from the
95% confidence region of the posterior, using Gibbs sampling, and take εA = maxi ‖Als − Ai‖2
and εB = maxi ‖Bls −Bi‖2. The proposed method used 100 such samples for synthesis. We also
applied the least squares policy iteration method [26], but none of the policies could stabilize the
pendulum given the amount of training data. Results are presented in Figure 3, from which we make
the following remarks. First, as in Section5.1, the proposed method achieves high performance
(low cost), especially in the low data regime where the magnitude of system uncertainty renders the
other synthesis methods infeasible. Insight into this performance is offered by Figure 3(b), which
indicates that policies from the proposed method stabilize the pendulum with control signals of
smaller magnitude. Finally, performance of the proposed method converges after very few rollouts.
Data-inefficiency is a well-known limitation of RL; understanding and mitigating this inefficiency is
the subject of considerable research [15, 44, 16, 39, 21, 22]. Investigating the role that a Bayesian
approach to uncertainty quantification plays in the apparent sample-efficiency of the proposed method
is an interesting topic for further inquiry.

8

See Jack’s seminar towards the end of the focus period!

Jack Umenberger and TS. Learning convex bounds for linear quadratic control policy synthesis. In Neural Information Processing

Systems (NIPS), Montréal, Canada, December 2018. 34/35



Conclusions

Message: The Gaussian process can be used to construct new

algorithms for stochastic optimization.

Derived the stochastic quasi-Newton integral.

Built a second-order model to approximate the cost function.

Standard numerical optimization loop with non-standard components.

Testing ground — Probabilistic modelling of nonlinear state space models

We also have another technique that scales to large(r) problems.
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