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Nonlinear state space model (SSM)

The state space model (SSM) is a Markov chain that makes use of a

latent variable representation to describe dynamical phenomena.

It consists of two stochastic processes:

1. unobserved (state) process {xt}t≥0 modelling the dynamics,

2. observed process {yt}t≥1 modelling the measurements and their

relationship to the unobserved state process.

xt = f (xt−1, θ) + vt ,

yt = g(xt , θ) + et ,

where θ ∈ Rnθ denotes static model parameters.

The SSM offers a practical representation not only for modelling, but

also for reasoning and inference.
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Three different representations of the SSM

Three alternative representations, using

1. graphical models,

2. probability distributions or

3. probabilistic programs.

1. Representing the SSM using a graphical model:

x0 x1 . . . xT

y1 yT

θ
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Representations using distributions or probabilistic programs

2. Representation using probability distributions

xt | (xt−1, θ) ∼ p(xt | xt−1, θ),

yt | (xt , θ) ∼ p(yt | xt , θ),

x0 ∼ p(x0 | θ).

3. Representing the SSM using a probabilistic program

x[1] ∼ Gaussian(0.0, 1.0); p(x1)

y[1] ∼ Gaussian(x[1], 1.0); p(y1 | x1)

for (t in 2..T) {
x[t] ∼ Gaussian(a*x[t - 1], 1.0); p(xt | xt−1)

y[t] ∼ Gaussian(x[t], 1.0); p(yt | xt)
}

A probabilistic program encodes a probabilistic model (here an

LG-SSM) according to the semantics of a particular probabilistic

programming language (here Birch). 3/36



SSM – full probabilistic model

The full probabilistic model is given by

p(x0:T , θ, y1:T ) = p(y1:T | x0:T , θ)︸ ︷︷ ︸
data distribution

p(x0:T , θ)︸ ︷︷ ︸
prior

Distribution describing a parametric nonlinear SSM

p(x0:T , θ, y1:T ) =
T∏

t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation︸ ︷︷ ︸

data distribution

T∏

t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Model = probability distribution!
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Learning the states and the parameters

Based on our generative model, compute the posterior distribution

p(x0:T , θ | y1:T ) = p(x0:T | θ, y1:T )︸ ︷︷ ︸
state inf.

p(θ | y1:T )︸ ︷︷ ︸
param. inf.

.

Bayesian formulation – model the unknown parameters as a random

variable θ ∼ p(θ) and compute

p(θ | y1:T ) =
p(y1:T | θ)p(θ)

p(y1:T )

Maximum likelihood formulation – model the unknown parameters as

a deterministic variable and solve

θ̂ = argmax
θ∈Θ

p(y1:T | θ).
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Central object – the likelihood

The likelihood is computed by marginalizing

p(x0:T , y1:T | θ) = p(x0 | θ)
T∏

t=1

p(yt | xt , θ)
T∏

t=1

p(xt | xt−1, θ),

w.r.t the state sequence x0:T ,

p(y1:T | θ) =

∫
p(x0:T , y1:T | θ)dx0:T .

(We are averaging p(x0:T , y1:T | θ) over all possible state sequences.)

Equivalently we have

p(y1:T | θ) =
T∏

t=1

p(yt | y1:t−1, θ) =
T∏

t=1

∫
p(yt | xt , θ) p(xt | y1:t−1, θ)︸ ︷︷ ︸

key challenge

dxt .

TS, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential Monte Carlo

methods for system identification. In Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing, China,

October 2015.
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State inference – nonlinear filtering problem

The nonlinear filtering problem involves the measurement update

p(xt | y1:t) =

measurement︷ ︸︸ ︷
p(yt | xt)

prediction pdf︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
,

and the time update

p(xt | y1:t−1) =

∫
p(xt | xt−1)︸ ︷︷ ︸

dynamics

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering pdf

dxt−1.
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Outline

Aim: 1. Give a (hopefully) intuitive explanation of sequential Monte

Carlo (SMC) for probabilistic modelling of dynamical systems.

2. Derive a new stochastic optimization method that can for example

be used to learn unknown parameters in nonlinear SSMs.

1. Probabilistic modelling of dynamical systems

2. Sequential Monte Carlo (SMC)

3. Stochastic optimization

4. Some ongoing research snapshots (if there is time)
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Sequential Monte Carlo

The need for computational methods, such as SMC, is tightly coupled to

the intractability of the integrals above.

SMC provide approximate solutions to integration problems where

there is a sequential structure present.

The particle filter approximates p(xt | y1:t) for

xt = f (xt−1) + vt ,

yt = g(xt) + et ,

by maintaining an empirical distribution made up of N samples

(particles) {x it}Ni=1 and the corresponding weights {w i
t}Ni=1

p̂(xt | y1:t)︸ ︷︷ ︸
π̂(xt)

=
N∑

i=1

w i
t∑N

j=1 w
j
t

δx i
t
(xt).
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Particle filter – introductory example (I/II)

Consider a toy 1D localization problem.

Data Model
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Dynamic model:

xt+1 = xt + ut + vt ,

where xt denotes position, ut denotes velocity

(known), vt ∼ N (0, 5) denotes an unknown

disturbance.

Measurements:

yt = h(xt) + et .

where h(·) denotes the world model (here the

terrain height) and et ∼ N (0, 1) denotes an

unknown disturbance.

Task: Find the state xt (position) based on the measurements

y1:t , {y1, . . . , yt} by computing the filter density p(xt | y1:t).
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Particle filter – introductory example (II/II)

Highlights two key

capabilities of the PF:

1. Automatically handles

an unknown and

dynamically changing

number of hypotheses.

2. Work with

nonlinear/non-

Gaussian

models.
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Sequential Monte Carlo – particle filter

SMC = sequential importance sampling + resampling

1. Propagation: x it ∼ p(xt | xa
i
t

1:t−1) and x i1:t = {xa
i
t

1:t−1, x
i
t}.

2. Weighting: w̄ i
t = Wt(x

i
t ) = p(yt | x it ).

3. Resampling: P
(
ait = j

)
= w̄ j

t−1/
∑

l w̄
l
t−1.

The ancestor indices {ait}Ni=1 are very useful auxiliary variables!

They make the stochasticity of the resampling step explicit.

12/36
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Application – indoor localization

Aim: Compute the position using variations in the ambient magnetic

field and the motion of the person (acceleration and angular velocities).

All of this observed using sensors in a standard smartphone.

Fig. 1: Principle of magnetic terrain navigation. Here a pre-generated magnetic map is overlaid on top of a picture of the space.
The map depicts a vector field with both a direction (the arrows indicate the direction based on the x and y components)
and magnitude (warm colours indicate stronger values, cool colours weaker). During positioning, the vector valued (three-
component) measurement track obtained by the smartphone magnetometer is matched to the magnetic landscape.

II. METHODS

An illustration of the general concept of magnetic terrain
navigation is shown in Figure 1. The magnetic terrain naviga-
tion setup in this paper boils down to three distinctive parts:

• The positioning is overseen by a particle filter, which is a
sequential Monte Carlo approach for proposing different
state histories and finding which one matches the data the
best.

• The magnetic terrain which the observations are matched
against. The map is constructed by a Gaussian process
model which is able to return a magnetic field estimate
and its variance for any spatial location in the building.

• A model for the movement of the person being tracked,
often referred to as a pedestrian dead reckoning model.

The following sections will explain these components of the
map matching algorithm in detail.

A. Particle filtering

Particle filtering [12, 22, 23] is a general methodology for
probabilistic statistical inference (i.e., Bayesian filtering and
smoothing) on state space models of the form

xk+1 ∼ p(xk+1 | xk),

yk ∼ p(yk | xk),
(1)

where p(xk+1 | xk) defines a vector-Markov model for the
dynamics of the state xk ∈ Rdx , and p(yk | xk) defines
the model for the measurements yk ∈ Rdy in the form of
conditional distribution of the measurements given the state.
For example, in (magnetic) terrain navigation, the dynamic
model tells how the target moves according to a (pedestrian)
dead reckoning and the (Markovian) randomness is used
for modeling the errors and uncertainty in the dynamics.
In conventional terrain navigation, the measurement model
tells what distribution of height we would measure at each
position, and in magnetic terrain navigation it tells what is the
distribution of magnetic field measurements we could observe
at a given position and orientation.

A particle filter aims at computing the (Bayesian) filtering
distribution, which refers to the conditional distribution of the
current state vector given the observations up to the current
time step p(xk | y1:k). Particle filtering uses a weighted
Monte Carlo approximation of n particles to approximate this
distribution. The approximation has the form

p(xk | y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ), (2)

where δ(·) stands for the Dirac delta distribution and w
(i)
k

are non-negative weights such that
∑

i w
(i)
k = 1. Under this

Movie – map making:

www.youtube.com/watch?v=enlMiUqPVJo

Arno Solin, Simo Särkkä, Juho Kannala and Esa Rahtu. Terrain navigation in the magnetic landscape: Particle filtering for indoor

positioning. In Proceedings of the European Navigation Conference Helsinki, Finland, June, 2016.

Arno Solin, Manon Kok, Niklas Wahlström, TS and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. IEEE Transactions on Robotics, 34(4):1112–1127 2018.
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Particle MCMC = SMC + MCMC

A systematic way of combining SMC and MCMC.

Builds on an extended target construction.

Intuitively: SMC is used as a high-dimensional proposal mechanism on

the space of state trajectories XT .

A bit more precise: Construct a Markov chain with p(θ, x1:T | y1:T ) (or

one of its marginals) as its stationary distribution. Also used for

parameter learning.

Exact approximations

Pioneered by the work:
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical

Society: Series B, 72:269-342, 2010.
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Sequential Monte Carlo (SMC) – abstract

The distribution of interest π(x) is called target distribution.

(Abstract) problem formulation: Sample from a sequence of prob-

ability distributions {πt(x0:t)}t≥1 defined on a sequence of spaces of

increasing dimension, where

πt(x0:t) =
π̃t(x0:t)

Zt
,

such that π̃t(xt) : X t → R+ is known point-wise and Zt =
∫
π(x0:t)dx0:t

is often computationally challenging.

1. Approximate the normalizing constant Zt .

2. Approximate πt(xt) and compute integrals
∫
ϕ(xt)πt(xt)dxt .

Important question: How general is this formulation?
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Automation via a probabilistic programming language

1. Basic idea of probabilistic programming: equate probabilistic

models with the computer programs that implement them.

2. Just as we can think of doing inference over models, we can now

think of doing inference over programs.

Provides a means for separating the model and the learning algorithms.

We are developing a probabilistic programming language called Birch

birch-lang.org

Lawrence Murray and TS. Automated learning with a probabilistic programming language: Birch. Annual Reviews in Control, 2018.

(Accepted for publication)
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Outline

Aim: 1. Give a (hopefully) intuitive explanation of sequential Monte

Carlo (SMC) for probabilistic modelling of dynamical systems. 2. De-

rive a new stochastic optimization method that can for example be

used to learn unknown parameters in nonlinear SSMs.

1. Probabilistic modelling of dynamical systems

2. Sequential Monte Carlo (SMC)

3. Stochastic optimization

4. Some ongoing research snapshots (if there is time)
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Intuitive preview example – Rosenbrock’s banana function

Let f (θ) = (1− θ1)2 + 100(θ2 − θ2
1)2.

Deterministic problem

min
θ

f (θ)

Stochastic problem

min
θ

f (θ)

when we only have access to noisy

versions of the cost function

(f̃ (θ) = f (θ) + e, e = N (0, 302))

and its noisy gradients. 18/36



Quasi-Newton – A non-standard take

Our problem is of the form

min
θ

f (θ)

Idea underlying (quasi-)Newton methods: Learn a local quadratic

model q(θk , δ) of the cost function f (θ) around the current iterate θk

q(θk , δ) = f (θk) + g(θk)Tδ +
1

2
δTH(θk)δ

g(θk) = ∇f (θ)
∣∣
θ=θk

, H(θk) = ∇2f (θ)
∣∣
θ=θk

, δ = θ − θk .

We have measurements of

• the cost function fk = f (θk),

• and its gradient gk = g(θk).

Question: How do we update the Hessian model?
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Useful basic facts

Line segment connecting two adjacent iterates θk and θk+1:

rk(τ) = θk + τ(θk+1 − θk), τ ∈ [0, 1].

1. The fundamental theorem of calculus states that
∫ 1

0

∂

∂τ
∇f (rk(τ))dτ = ∇f (rk(1))−∇f (rk(0)) = ∇f (θk+1)︸ ︷︷ ︸

gk+1

−∇f (θk)︸ ︷︷ ︸
gk

.

2. The chain rule tells us that

∂

∂τ
∇f (rk(τ)) = ∇2f (rk(τ))

∂rk(τ)

∂τ
= ∇2f (rk(τ))(θk+1 − θk).

gk+1 − gk︸ ︷︷ ︸
=yk

=

∫ 1

0

∂

∂τ
∇f (rk(τ))dτ =

∫ 1

0

∇2f (rk(τ))dτ(θk+1 − θk︸ ︷︷ ︸
sk

).
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Result – the quasi-Newton integral

With the definitions yk , gk+1 − gk and sk , θk+1 − θk we have

yk =

∫ 1

0

∇2f (rk(τ))dτsk .

Interpretation: The difference between two consecutive gradients (yk)

constitute a line integral observation of the Hessian.

Problem: Since the Hessian is unknown there is no functional form

available for it.
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Solution 1 – recovering existing quasi-Newton algorithms

Existing quasi-Newton algorithms (e.g. BFGS, DFP, Broyden’s method)

assume the Hessian to be constant

∇2f (rk(τ)) ≈ Hk+1, τ ∈ [0, 1],

implying the following approximation of the integral (secant condition)

yk = Hk+1sk .

Find Hk+1 by regularizing H:

Hk+1 = min
H

‖H − Hk‖2
W ,

s.t. H = HT, Hsk = yk ,

Equivalently, the existing quasi-Newton methods can be interpreted as

particular instances of Bayesian linear regression.

Philipp Hennig. Probabilistic interpretation of linear solvers, SIAM Journal on Optimization, 25(1):234–260, 2015. 22/36



Solution 2 – use a flexible nonlinear model

The approach used here is fundamentally different.

Recall that the problem is stochastic and nonlinear.

Hence, we need a model that can deal with such a problem.

Idea: Represent the Hessian using a Gaussian process learnt from data.

Two of the remaining challenges:

1. Can we use line integral observations when learning a GP?

2. How do we ensure that the resulting GP represents a Hessian?
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Resulting stochastic qN integral and Hessian model

Summary: resulting stochastic quasi-Newton integral:

yk = Dk

∫ 1

0

B̃(rk(τ))dτ + ek ,

with the following model for the Hessian

B̃(θ) ∼ GP(µ(θ), κ(θ, θ′)).

The Hessian can now be estimated using tailored GP regression.

Linear transformations (such as an integral or a derivative) of a GP

results in a new GP.
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Resulting stochastic optimization algorithm

Standard numerical optimization loop with non-standard components.

Algorithm 1 Stochastic optimization

1. Initialization (k = 1)

2. while not terminated do

(a) Compute a search direction pk using the current approximation of

the gradient gk and Hessian Bk .

(b) Stochastic line search to find a step length αk and set

θk+1 = θk + αkpk .

(c) Update the Hessian model (tailored GP regression).

(d) Set k := k + 1.

3. end while

Curvature information is useful also for stochastic optimization.
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ex) Simple linear toy problem

Identify the parameters θ = (a, c , q, r)T in

xt+1 = axt + wt , wt ∼ N (0, q2),

yt = cxt + et , et ∼ N (0, r2).

Observations:

• The likelihood L(θ) = p(y1:T | θ) and its gradient ∇θL(θ) are

available in closed form via standard Kalman filter equations.

• Standard gradient-based search algorithms applies.

• Deterministic optimization problem (L(θ),∇θL(θ) noise-free).
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ex) Simple linear toy problem

Both alg. in the noise-free case.

100 independent datasets.

Clear blue – True system

Red – Mean value of estimate

Shaded blue – individual results

Classical BFGS alg. for noisy observations of L(θ) and ∇L(θ). GP-based BFGS alg. with noisy observations of L(θ) and ∇L(θ).27/36



ex) Laser interferometry

The classic Michelson-Morley

experiment from 1887.

Idea: Merge two light sources to

create an interference pattern by

superposition.

Two cases:

1. Mirror B and C at the same distance from mirror A.

2. Mirror B and C at different distances from mirror A.
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ex) Laser interferometry

Dynamics: constant velocity model (with unknown force w)
(
ṗ

v̇

)
=

(
0 1

0 0

)(
p

v

)
+

(
0

w

)
.

Measurements: generated using two detectors

y1 = α0 + α1 cos(κp) + e1, e1 ∼ N (0, σ2),

y2 = β0 + β1 sin(κp + γ) + e2, e2 ∼ N (0, σ2).

Unknown parameters: θ =
(
α0 α0 β0 β1 γ σ

)T

.

Resulting maximum likelihood system identification problem

max
θ

p(y1:T | θ)
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ex) Laser interferometry
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Research snapshots



Snapshot – Scaling up to large(r) problems

What is the key limitation of our GP-based optimization algorithm?

It does not scale to large-scale problems!

Still highly useful and competitive for small to medium sized problems.

We have developed a new technique that scales to large(r) problems.
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Snapshot – Scaling up to large(r) problems

Key innovations:

• Replace the GP with a matrix updated using fast Cholesky routines.

• Exploit a receding history of iterates and gradients akin to L-BFGS.

• Same stochastic line search applicable.

Training a deep CNN for MNIST data. Logistic loss function with an L2 regularizer,

gisette, 6 000 observations and 5 000

unknown variables.

Logistic loss function with an L2 regularizer,

URL, 2 396 130 observations and 3 231 961

unknown variables.

Adrian G. Wills, Carl Jidling and TS. A fast quasi-Newton-type method for large-scale stochastic optimisation. arXiv:1810.01269,

September, 2018.
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Snapshot – The nonlinear SSM is just a special case...

Constructing an artificial sequence of intermediate target distributions

for an SMC sampler is a powerful (quite possibly underutilized) idea.

y1 y2 y3

x1 x2 x3

x4

x5

Christian A. Naesseth, Fredrik Lindsten and TS, Sequential Monte Carlo methods for graphical models. Advances in Neural Information

Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick, TS, John Aston and Alexandre Bouchard-Côté.

Divide-and-Conquer with Sequential Monte Carlo. Journal of Computational and Graphical Statistics (JCGS), 2017. 33/36



Snapshot – Spatio-temporal modelling

Problem: predicting spatio-temporal

processes with temporal patterns

varying across spatial regions when data

is obtained as a stream.

A localized spatio-temporal covariance

model.

The predictor can be updated sequentially with each new data point.

Muhammad Osama, Dave Zachariah and TS. Learning localized spatio-temporal models from streaming data. In Proceedings of the

35th International Conference on Machine Learning (ICML), Stockholm, Sweden, July, 2018.

34/36



Snapshot – Using probabilistic models for control

Problem: Decision making for dynamical systems (control) in the

presence of uncertainty.

Intersection of reinforcement learning (RL) and robust control (RC).

Problem: Given observations from an

unknown dynamical system, we seek a

policy to optimize the expected cost

(as in RL), subject to certain robust

stability guarantees (as in RC).
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Figure 2: (left) Median % of unstable closed-loop models, with open-loop models sampled from
the 95% confidence region of the posterior, for nx = 3 and N = 15, as a function of the number of
samples M used in the MC approximation (4). (right) LQR suboptimality as a function of M . 50
experiments were conducted, c.f. Section5.1 for details. Shaded regions cover the interquartile range.
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Figure 3: (a) LQR cost on real-world pendulum experiment, as a function of the number of rollouts.
∞ cost denotes controllers that resulted in instability during testing. n/a denotes cases in which the
synthesis problem was infeasible. (b) pendulum angle and control signal recorded after 10 rollouts.

training data, the superposition of a non-stabilizing control signal and a sinusoid of random frequency
is applied to the rotary arm motor while the pendulum is inverted. The arm and pendulum angles
(along with velocities) are sampled at 100Hz until the pendulum angle exceeds 20◦, which takes
no more than 5 seconds. This constitutes one rollout. We applied the worst-case, H2/H∞, and
proposed methods to optimize the LQ cost with Q = I and R = 1. To generate bounds εA ≥
‖Als −Atr‖2 and εB ≥ ‖Bls −Btr‖2 for worst-case and H2/H∞, we sample {Ai, Bi}5000

i=1 from the
95% confidence region of the posterior, using Gibbs sampling, and take εA = maxi ‖Als − Ai‖2
and εB = maxi ‖Bls −Bi‖2. The proposed method used 100 such samples for synthesis. We also
applied the least squares policy iteration method [26], but none of the policies could stabilize the
pendulum given the amount of training data. Results are presented in Figure 3, from which we make
the following remarks. First, as in Section5.1, the proposed method achieves high performance
(low cost), especially in the low data regime where the magnitude of system uncertainty renders the
other synthesis methods infeasible. Insight into this performance is offered by Figure 3(b), which
indicates that policies from the proposed method stabilize the pendulum with control signals of
smaller magnitude. Finally, performance of the proposed method converges after very few rollouts.
Data-inefficiency is a well-known limitation of RL; understanding and mitigating this inefficiency is
the subject of considerable research [15, 44, 16, 39, 21, 22]. Investigating the role that a Bayesian
approach to uncertainty quantification plays in the apparent sample-efficiency of the proposed method
is an interesting topic for further inquiry.

8

Jack Umenberger and TS. Learning convex bounds for linear quadratic control policy synthesis. In Neural Information Processing

Systems (NIPS), Montréal, Canada, December 2018.
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Conclusion

Probabilistic modelling of nonlinear dynamical systems

p(x0:T , θ, y1:T ) =
T∏

t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation︸ ︷︷ ︸

data distribution

T∏

t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

SMC provide approximate solutions to integration problems where

there is a sequential structure present.

Stochastic optimization:

• Non-standard interpretation of quasi-Newton.

• Represent the Hessian using a Gaussian process.

• We can scale up to larg(er) problems.
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Looking for new PhD students

We are looking for 2 PhD students:

1. Probabilistic programming deployment of deep learning

2. Causality

Link to the opening is available on my website.
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