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Application — indoor localization using the magnetic field (1/11)

Aim: Compute the position using variations in the ambient magnetic
field and the motion of the person (acceleration and angular velocities).
All of this observed using sensors in a standard smartphone.

First we need a map, which we build using a tailored Gaussian process.
WwWW . youtube.com/watch?v=en1MiUgPVJo

Arno Solin, Manon Kok, Niklas Wahlstrom, TS and Simo Sarkka. Modeling and interpolation of the ambient magnetic field by
Gaussian processes. |EEE Transactions on Robotics, 34(4):1112-1127, 2018.

Carl Jidling, Niklas Wahlstrém, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information 1/2
Processing Systems (NIPS), Long Beach, CA, USA, December, 2017. / 7


www.youtube.com/watch?v=enlMiUqPVJo

Application — indoor localization using the magnetic field (11/11)

Show movie!

Arno Solin, Simo Sarkka, Juho Kannala and Esa Rahtu. Terrain igation in the i Particle filtering for indoor
positioning. In Proceedings of the European Navigation Conference, Helsinki, Finland, June, 2016.
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Aim and outline

Aim: To provide intuition for the key mechanisms underlying sequential
Monte Carlo (SMC), hint at a few ways in which SMC fits into the
machine learning toolbox and show a new approach to deep regression.

Outline:

1. Introductory example

2. SMC for dynamical systems
3. SMC is a general method
4

. Deep probabilistic regression
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Representing a nonlinear dynamical systems

The state space model is a Markov chain that makes use of a latent
variable representation to describe dynamical phenomena.

Consists of the unobserved (state) process {x; }+>o modelling the
dynamics and the observed process {y;}:>1 modelling the relationship
between the measurements and the unobserved state process:

x¢ = F(Xe—1,0) + ve,
ye = g(xt,0) + e
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Representations using distributions and programmatic models

Representation using probability distributions
Xt | (xe=1,0) ~ p(x¢ | x¢—1,0),
ye | (%, 0) ~ p(ye | xe, 0),
xo ~ p(xo | 0).

Representation using a programmatic model

x[1] ~ Gaussian(0.0, 1.0); p(x1)
y[1] ~ Gaussian(x[1], 1.0); p(y1 | x1)
for (tin 2..T) {
x[t] ~ Gaussian(a*x[t - 1], 1.0); p(xe | x¢—1)
y[t] ~ Gaussian(x[t], 1.0); p(y: | xt)
}

A probabilistic program encodes a probabilistic model using a

particular probabilistic programming Ianguage (here Birch).
Birch. Annual Reviews in Control, 46:29-43, 5/27

Lawrence Murray and TS. Automated learning with a p ilistic p
2018.



State space model — full probabilistic model

The full probabilistic model is given by

T
p(xo:7, 0, y1:7) HP Ye | xe, 0) HP Xt | xe—-1,0) p(x0 | 0) p(0)
t=1 v M
observation dynamics state  param.
likelihood p(y1.7 | x0.7,0) prior p(xo.7,0)

The nonlinear filtering problem involves the measurement update
measurement prediction pdf

————
p(ye | xe) p(xe|yre-1)
P(ye | yi:e-1)

p(Xt | yl:t) -

)

and the time update

P(Xt |}’1:t—1) = /P(Xt ‘ Xt—l) P(Xt—l |}’1:t—1) dxi_1.

dynamics filtering pdf
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Sequential Monte Carlo (SMC)

The need for approximate methods (such as SMC) is tightly coupled to
the intractability of the integrals above.

SMC provide approximate solutions to integration problems where
there is a sequential structure present.

The particle filter approximates p(x; | y1.) for
Xt = f(Xt—l) + Vi,
ye = g(xt) + e,

by maintaining an empirical distribution made up of N samples
(particles) {x{}"_, and the corresponding weights {w;}"
N

Blxe [ yi) = >

—t 5 i(X )
N X\t
,\( ) i=1 Zl:l Wl{
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SMC - in words

—>| Propagation —>{ Weighting |—>| Resampling [—

1. Propagation: Sample a new successor state and append it to the

earlier.

2. Weighting: The weights corrects for the discrepancy between the
proposal distribution and the target distribution.

3. Resampling: Focus the computation on the promising parts of the
state space by randomly pruning particles, while still preserving the
asymptotic guarantees of importance sampling.
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Sequential Monte Carlo (SMC) — abstract

The distribution of interest 7(x) is called the target distribution.

(Abstract) problem formulation: Sample from a sequence of prob-
ability distributions {m:(xo:¢)}¢+>1 defined on a sequence of spaces of

increasing dimension, where

%t(XO:t)

7Tt(X0:t) = 7 5
t

such that 7¢(x;) : X* — R" is known point-wise and Z; = [ 7(xo:¢)dxo:¢
is often computationally challenging.

SMC methods are a class of sampling-based algorithms capable of:
1. Approximating m(x) and compute integrals [ ¢(x)r(x)dx.

2. Approximating the normalizing constant Z (unbiased).

Important question: How general is this formulation? 027



SMC is actually more general than we first thought

The sequence of target distributions {m(x1.+)}7_; can be constructed in
many different ways.

The most basic construction arises from chain-structured graphs, such
as the state space model.

X0 X1 X2 XT
Y1 % Y2 % YT
%t(xl:t)
e (X1:t) e —
o P(Xl:r,}/1:t)
p(xe | y1e) = — -
P(}/1:t)
N——
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SMC can be used for general graphical models

SMC methods are used to approximate a sequence of probability
distributions on a sequence of spaces of increasing dimension.

Key idea:
1. Introduce a sequential decomposition of any probabilistic
graphical model.

2. Each subgraph induces an intermediate target dist.

3. Apply SMC to the sequence of intermediate target dist.

SMC also provides an unbiased estimate of the normalization constant!

Christian A. Naesseth, Fredrik Lindsten and TS. Sequential Monte Carlo methods for graphical models. In Advances in Neural
Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

11/27



Going from classical SMC fo D&C-SMC

The computational graph of classic SMC is a sequence (chain)

U 2 Tn

.—). ;' o ciramaneiaan —>.

Iteration: 0 1 2 n
Tr’l"

D& C-SMC generalize the classical SMC e
framework from sequences to trees.

7761 7rCC

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick, TS, John Aston and Alexandre Bouchard-Cété.
Divide-and-Conquer with Sequential Monte Carlo. Journal of Computational and Graphical Statistics (JCGS), 26(2):445-458, 2017.
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Approximate Bayesian inference — blending

Message passing Markov chain Monte Carlo

Variational inf.

o«

= q. !
Laplace’'s method C Sequential Monte Carlo
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Blending deterministic and Monte Carlo methods

Deterministic methods:
Good: Accurate and rapid inference
Bad: Results in biases that are hard to quantify

Monte Carlo methods:
Good: Asymptotic consistency, lots of theory available
Bad: Can suffer from a high computational cost

Examples of freedom in the SMC algorithm that opens up for blending:
The proposal distributions can be defined in many ways.

The intermediate target distributions can be defined in many ways.

Leads to very interesting and useful algorithms, many of them still
. . 14/27
remain to be discovered and explored.



Deep probabilistic regression




Background: regression using deep neural networks

Supervised regression: learn to predict a continuous output (target)
value y* € ¥ = RX from a corresponding input x* € X, given a
training set D of i.i.d. input-output data

D= {(Xn ¥n) oo, (X, Yn) ~ P(x, ).

Deep neural network (DNN): a function f : X — ), parameterized
by # € RP, that maps an input x € X' to an output f;(x) € ).
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Our ongoing work on deep regression

Deep learning for classification is handled using standard losses and
output representations.

This is not the case when it comes to regression.

Train a model p(y | x; 0) of the conditional target density using a DNN to
predict the un-normalized density directly from input-output pair (x, y).
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Four existing approaches: 1. Direct regression

Train a DNN fy : X — ) to directly predict the target y* = fp(x*).

Learn the parameters 6 by minimizing a loss function ¢(fy(xs), ¥n).
penalizing discrepancy between prediction fy(x,) and ground truth y,

N
1 ) ,
J0) = ;f(fe(Xn),yn), 0 = arg min J(0).

Common choices for £ are the L2 loss, £(7,y) = || — y||3, and the L loss.

Minimizing J(0) then corresponds to minimizing the negative log-
likelihood 27:1 —log p(yn | xn; 0), for a specific model p(y|x;0) of the
conditional target density.

Ex: The L? loss corresponds to a fixed-variance Gaussian model:

ply | x;0) = N(y; fo(x), 0°).
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Four existing approaches: 2. Probabilistic regression

Why not explicitly employ this probabilistic perspective and try to create
more flexible models p(y | x; 0) of the conditional target density p(y | x)?

Probabilistic regression: train a DNN f) : X — Y to predict the
parameters ¢ of a certain family of probability distributions p(y; ¢), then
model p(y | x) with

py[x:0) = ply;6(x)),  &(x) = fo(x).

The parameters # are learned by minimizing Z,I:/:l —log p(yn | Xn; 0).

Ex: A general 1D Gaussian model can be realized as:
-
ply |%:0) = N(vimo(x), o3()),  f(x) = (no(x) logod(x)) € R
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Four existing approaches: 3. Confidence-based regression

The quest for improved regression accuracy has also led to the
development of more specialized methods.

Confidence-based regression: train a DNN £y : X x Y — R to predict

a scalar confidence value fy(x, y), and maximize this quantity over y to
predict the target

y* = argmax fy(x*,y)
y

The parameters ¢ are learned by generating pseudo ground truth
confidence values c(x,, ¥n, y), and minimizing a loss function
f(fg(xn, ¥), €(Xn, Yns }’))
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Four existing approaches: 4. Regression-by-classification

Discretize the output space ) into a finite set of C classes and use
standard classification techniques...
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High-level description of our idea

Confidence-based regression give impressive results, but:

1. they require important (and tricky) task-dependent design choices
(e.g. how to generate the pseudo ground truth labels)

2. and usually lack a clear probabilistic interpretation.

Probabilistic regression is straightforward and generally applicable, but:

1. it can usually not compete in terms of regression accuracy.

Our construction combines the benefits of these two approaches while
removing the problems above.
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Our (simple and very general) construction

A general regression method with a clear probabilistic interpretation in
the sense that we learn a model p(y | x, 8) without requiring p(y | x, 0)
to belong to a particular family of distributions.

Let the DNN be a function f : X x ) — R that maps an input-output
pair {xn, y»} to a scalar value fy(x,, yn) € R.

Define the resulting (flexible) probabilistic model as

e"e(’ﬂ)’) f)(x,y)
Py Ix0) = 5 )= [y
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Learning flexible deep conditional target densities

1D toy illustration showing that we can learn multi-modal and
asymmetric distributions, i.e. our model is flexible.

Ground truth Gaussian Ours

We train by maximizing the log-likelihood:
N

N
— _ f@(xn7)’)
max Y _ log p(¥a | Xn, 0) mgxn; log </ e dy) +(Xns Yn)

n=1 ——
Z(xn,0)

Challenge: Requires the normalization constant to be evaluated...

Solution: Monte Carlo! (via a simple importance sampling construction)
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Training the model

er(X’Y) f(X )
p(y|x,0) = m, Z(x,t‘)):/e” Ydy

The parameters 6 are learned by minimizing ZLV=1 — log p(yn | xn; 0)-

Use importance sampling to evaluate Z(x, 0):
— log p(yn | xn: 0) = log (/efe(x"’y)dy> — fy(Xn, ¥i)

~es | ef“x"’)”q(y)dy) Yo

q(y

M (k)
1 efo Cm:y'™)
2JJlog( )"?)Xn,yn, Yy~ q(y).
W oy ) )

Use a Gaussian mixture as proposal.
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Prediction at test time

r

N

Train a DNN 5 : & x Y — R to predict fy(x, y) and model p(y | x) with

efé‘(xfy) f(X )
P Ix0) = Fpgs  Zx0) = [ ey,

The parameters 6 are learned by minimizing ZQI=1 — log p(yn | xn; 0).

Given a test input x*, we predict the target y* by maximizing p(y | x*; 0)
y* =argmax p(y | x*;0) = argmax f(x*, y).
y y

By designing the DNN f; to be differentiable w.r.t. targets y, the gradient
V, fo(x*, y) can be efficiently evaluated using auto-differentiation.

Use gradient ascent to find a local maximum of fy(x*,y), starting from
an initial estimate y.
25/27



Good results on four different computer vision (regression) problems:
1. Object detection, 2. Age estimation, 3. Head-pose estimation and
4. Visual tracking.

Task (visual tracking): Estimate a bounding box of a target object in
every frame of a video. The target object is defined by a given box in the
first video frame.

Show Movie!

Fredrik K. Gustafsson, Martin Danelljan, Goutam Bhat and TS. Learning deep conditional target densities for accurate regression.

Submitted, November, 2019 26/27



Conclusion

SMC provide approximate solutions to integration problems where

there is a sequential structure present.

SMC is more general than we first though.

e SMC can indeed be computationally challenging, but it comes
with rather well-developed analysis and guarantees.

There is still a lot of freedom waiting to be exploited.

Constructed a practical deep flexible model for regression

Forthcoming SMC introduction written with an ML audience in mind

Christian A. Naesseth, Fredrik Lindsten, and TS. Elements of sequential Monte Carlo. Foundations and Trends in Machine Learning,
2019.
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Recent developments working with the trend of blending

Develop new approximating families of distributions.

Naesseth, C. A., Linderman, S. W., Ranganath, R. and Blei, D. M. Variational Sequential Monte Carlo. Proceedings of the 21st
International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

Maddison, C. J., Lawson, D., Tucker, G., Heess, N., Norouzi, M., Mnih, A., Doucet, A. and Teh, Y. W. Filtering variational objectives. In
Advances in Neural Information Processing Systems (NIPS), 2017.

Le, T. A, Igl, M., Rainforth, T., Jin, T. and Wood, F. Auto-encoding sequential Monte Carlo. In International Conference on Learning
Representations (ICLR), 2018.

Alter the intermediate targets to take "future variables" into account.
Results in "additional intractability” — use deterministic methods.

Alternative interpretation: Use SMC as a post-correction for the bias
introduced by the deterministic methods.

Lindsten, F., Helske, J. and Vihola, M. Graphical model inference: Sequential Monte Carlo meets deterministic approximations. In
Advances in Neural Information Processing Systems (NeurlPS), 2018.

"The combination of the two ideas mentioned above".

Lawson, D., Tucker, G., Naesseth, C. A., Maddison, C. J., Adams, R. P., and Teh, Y. W. Twisted Variational Sequential Monte Carlo.
Bayesian Deep Learning (NeurlPS Workshop), 2018.
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