Machine Learning

Lecture 9 — Graphical models and message passing

Thomas Schén

Division of Systems and Control
Department of Information Technology
Uppsala University.

UPPSALA

UNIVERSITET Email: thomas.schon@it.uu.se,

WWW: user.it.uu.se/~thoscll?2

Machine Learning, Lecture 9 — Graphical models and message passing
T. Schon, 2014

1. Summary of lecture 8
2. Undirected graphs (Markov random fields)

e General properties
e Conditional independence
e Relation with directed graphs

3. Factor graphs
4. Inference in graphical models
5. Belief propagation (sum-product algorithm)

(Chapter 8.3-8.4)
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Summary of lecture 8 (I/ll) 3277 | Summary of lecture 8 (II/ll) 4(27)

A graphical model is a probabilistic model where a graph is used to
represent the ClI structure between random variables.

We introduced basic concepts for graphical models G = (V, £),
1. a set of vertices V (a.k.a. nodes) representing the random
variables and
2. aset of edges £ (a.k.a. links or arcs) containing elements
(i,j) € € connecting a pair of nodes (i,j) € V and thereby
encoding the probabilistic relations between nodes.
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The set of parents to node j (pa is defined as
pa £{ieV|(ij)e&}

The directed graph describes how the joint distribution p(x) factors
into a product of factors p(x; | xpa,) only depending on a subset of

the variables,
= [ Ip(xi | xpa)-
icy
Hence, for the state space model on the previous slide, we have

N N
= P(xo)qp(xt | xt—1)tllp(yt | xt).

D-separation was used as a means to check conditional
independence among random variables.

p(X,Y)
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2014 Gibbs lecture

Example — Gaussian mixture (I/ll)

“The visible world is awash with ambiguity, and probability, the
calculus of uncertainty, is an important element of the computer
systems that resolve that ambiguity.”

Title: Machines that see, powered by probability

Speaker: Andrew Blake (laboratory director of Microsoft Research
Cambridge)

The talk is available here: research.microsoft.com/en-us/
about/andrew-blake—-gibbs-lecture-2014.pdf

Conclusion:
e Vision must address ambiguity and noise.
e Seeing machines need probabilistic elements
e Variational methods are not enough
e Generative models alone are insufficient
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Suppose we have xq.y i.i.d. and distributed as
K
x;j ~ p(xi| Tk, pk, Ak) = Z N <x,~; 1, Ak_1>
k=1

fori=1,...,N.

In a Bayesian model, all the unknowns {7t1.x, #1.x, A1:x } are
modelled as random variables.

TT1:K NDII‘(TL’lK‘(X())ocH o —1
k=1

K
pr Ak ~p(pa Avx) = T[N (i mo, (BoAk) ™ )W (Ax|Wo, 1)
k=1
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Example — Gaussian mixture (Il/ll)

Undirected graphical model (Markov random fields) s(27)

Define the latent variables z, = [z,1, -+ ,zux|  forn =1,...,N as
we did in the construction used for EM and VB.

Then the joint density can be written as

N K .
p(xin,zin) = [ [T [ "N (xn; e Ak_1>

n=1k=1
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o Nodes and edges carry
similar meanings.

e Conditional independence is
determined by graphical
separation.

A 1 B|C

e A more natural
representation for some
models, e.g., images.

o One must take special care
while converting directed
graphs to undirected ones.
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Conversion from directed to undirected

e When conversion is done
directly some correlations
that would be present in the
original model can be lost.

e One must “marry” the
parents to get those
correlations back, this is
called moralization.

e Moralization has to be
performed for all the pairs of
parents.

1 T3 L1 T3
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Close connection to statistical physics 10(27)
e The Hammersley-Clifford theorem has a physics interpretation

when the functions i (xc) are non-zero everywhere.
e |n this case, we can write

pe(xc) = exp(—E(xc))
where E(-) is called an energy function.
e The overall graph can then be considered as a lattice with a
potential energy function described by E(x¢).

e Finding the maximum of the density can then be considered as
finding the point where the total potential energy is minimized.

plaan) = 5 TTexp(~E(xc)) =  exp (—zam)
C C

e A local maximum then corresponds to an equilibrium.
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Application — image de-noising (I/ll)

Application — image de-noising (Il/ll)

Suppose we have a noisy image and want to
remove the noise.

e Model the true pixel values as x; ;.
o Model the measured image pixel values as

Yij = Xij -+ Vij, Ujj N(O, ﬁz)

e Choose the energy functions as

1
Ey(xij, ¥ij) =5 (yij — xi5)°
p

(1 )
Ey (xilrjl’ xiz,]'z) =min (p (xi1,]'1 - xi2/j2) ’ ')’)
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e The density is then

—log p(¥1.N,,1:N,, Y1:N, 1N, ) = Y Ey(xi,yij) + Ex(Xij, Xig1,41)
ij
+ Ex(xij, Xi—1,j-1) + Ex(xij, Xi—1,+1) + Ex(x;j, Xi11,,-1) + C.

e [f the image is 8 bit grayscale, maximization
in general requires the calculation of
256(N=xNy) different combinations.

e \We instead maximize w.r.t. only one pixel
keeping the others fixed at their last values.

e This is called iterative conditional modes
(ICM).
Run example!
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Conditional random field

Road surface estimation

A conditional random field (CRF) is a particular MRF where all the
cligue potentials are conditioned on input features:

p(x|y Z(y Hch xXe | y).

ceC

This opens up for the possibility of making the potentials (factors)
data dependent.

CRFs do not model things that we observe, means that we are
“saving resources”.

Sutton, C. and McCallum, A. An introduction to conditional random fields. Foundations and Trends in Machine Learning,
4(4): 267-373, 2011.
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Aim: Estimate the road surface using images from a stereo camera.

Solved using a CRF model and message passing.

Show movie

Lorentzon, M. and Andersson, T. Road surface modeling using stereo vision, Master’s thesis, LiTH-ISY-EX-12/4582-SE,
Link6ping university, Sweden, 2012.

http://liu.diva-portal.org/smash/record. jsf?searchld=2&pid=diva2:532767
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Inference in graphical models

Inference on a chain

Inference in graphical models amounts to computing the posterior
distribution of one or more of the nodes that are not observed.

The structure in the graphical model is exploited in finding inference
algorithms.

Most inference algorithms can be expressed in terms of message
passing algorithms, where local messages are propagated around
the graph.
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Hence, inference on a graph consisting of a chain of nodes can be
performed efficiently at a computational cost that is linear in the
number of nodes.

The algorithm can be interpreted as passing messages around in the
graph.

The generalization of this message passing idea to trees is referred
to as the sum-product algorithm.

Definition (Tree): in an undirected graph a tree is defined as a graph
where there is one, and only one, path between any pair of nodes.
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Factor graphs 17¢27) | Inference in factor graphs (I/V) 18(27)

T ZTo I3

e Both directed and undirected
graphs give a factorial
representation for the joint
density. fa b 2 fa
e Factor graphs make this
factorization more explicit by p(x;.3)
adding nodes for each factor.

= fa(x1, x2)fp (x1, 2 )fc (x2, x3)fa (x3)
e Both directed and undirected “ 22 o f o
graphs can be converted into
factor graphs.
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e We have the joint density for the graph on
the right given as

p(xr7) o fi(x)f2(x13)f3(x2)fa(x2, 7)f5(x3:6)

s

e When we have measurements of some
variables, we might need the posteriors of
some or all unobserved variables.

plag)

p(x2, x6)

— P (x1:7)
Z3C1,x3,x4,9€5,x7 p (x1:7)

P(x1,x3,x4l x5,x7|x2, xé) =
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Inference in factor graphs (l1/V) 9277 | Inference in factor graphs (lll/V) 0(27)

e Performing inference requires marginals.

e [t is possible to calculate the marginals on a graph
efficiently by passing local messages along the
graph.

e Two interconnected types of messages are
considered

e Messages from variable nodes to factor nodes

.uxi—>f]~ (xi) = 1__[
feene(x;)\f;

yfg—ﬂq (xi>

e Messages from factor nodes to variable nodes

=Lfiter 11

x,;ene(fj)\xi

P —5f (xe)

Hfi—x; (x)
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Sum product algorithm

e Calculate messages from variable nodes to factor nodes

H Hf—x; (x:)
feene(xi)\f;

e Calculate messages from factor nodes to variable nodes

D? xi,%) [T paesp(x0)
xgene(fj)\xi

e lterate messages until convergence. (Different iteration schemes can

be designed.)
e After convergence, the marginals are calculated as

1T woou(xi)

fe€ne(x;)

in—>fj (xi ) =

]/‘f,—)xl X;)
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Inference in factor graphs (IV/V) 2127) | Inference in factor graphs (V/V) 22(27)

e The values in the observed nodes are just -
substituted into the factors and not integrated out. 1
e [f the graph is a tree, the algorithm can calculate '
all the marginals by making
e a forward pass from the root to the leaves
e a backward pass from the leaves to the root. o
e The sum-product algorithm gives the exact results |
in a tree structured graph.

e The sum-product algorithm is equivalent to a
Kalman smoother for linear Gaussian dynamical
systems.

(Chapter 13.3)
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e When the sum-product algorithm is applied to
directed graphs without loops the resulting x1 fa
algorithm is sometimes referred to as belief
propagation.

e In a graph with loops, the sum-product algorithm 3
is not exact and actually might not converge.

e Despite this, it is applied to graphs with loops, z3
which is called loopy belief propagation.
Even in this form, it has important applications in communications
(decoding of error correcting codes).

Kschischang, F. R., Frey, B. J. and Loeliger, H-A. Factor graphs and the sum-product algorithm. /EEE Transactions on
information theory, 47(2):498-519, 2001.
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Current research — SMC for general GMs (I/1V)

23(27)

Inference in GMs does typically not allow for analytical solutions,
confining us to various approximative methods (recall the conclusion
of Andrew Blake’s Gibbs lecture).

Derived a new sequential Monte Carlo (SMC) algorithm for
inference in general GMs.

Delivers an unbiased estimate of the partition function (normalization
constant), can be used within an MCMC sampler for learning.

SMC methods (e.g. particle filters and particle smoothers) can be
used to approximate a sequence of probability distributions on a
sequence of probability spaces of increasing dimension.

PhD course available on SMC methods
http://user.it.uu.se/~thoscll12/CIDS.html
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Current research — SMC for general GMs (lI/1V)

Constructing an artificial sequence of intermediate (auxiliary) target
distributions in order to be able to employ an SMC sampiler is a
powerful (and quite possibly underutilized) idea.

24(27)

Key idea: Perform and make use of a sequential decomposition of
the graphical model.

Defines a sequence of intermediate (auxiliary) target distributions
defined on an increasing sequence of probability spaces.

Target this sequence using SMC.
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Current research — SMC for general GMs (l11/1V) 25(27)

The joint PDF of the set of random

variables indexed by V, @
Xy = {xl, ey X|V|}
(o o)
p(xv) = - T ye(Xo).
CeC

Sequential decomposition of the above factor graph (the target
distributions are built up by adding factors at each iteration),

T (X£1)
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T2 (Xﬁz)

(x)

Current research — SMC for general GMs (IV/IV)  26(27)

Consider a standard squared lattice Gaussian MRF of size 10 x 10,

1

1 2
2 Xi yi)z H e@('xl_x])

(ij)e€

p(Xy, Yy) < [ e
i€y

—— Gibbs sampler

1 —— PGAS w. partial blocking
Tree sampler
———PGAS

Full details and a loopy,
non-Gaussian and
non-discrete PGM example,

Christian A. Naesseth, Fredrik Lindsten and

Thomas B. Schon, Sequentlal Monte Carlo
hods for graphical dels. Preprint at

arXiv:1402:0330, February, 2014.
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A few concepts to summarize lecture 9

Markov random fields: (Undirected graphs, no directed arrows) A
graphical representation where conditional independence is given by
graph separation.

conditional random field (CRF): A CRF is a particular MRF where
all the clique potentials are conditioned on input features.

Tree: In an undirected graph a tree is defined as a graph where there
is one, and only one, path between any pair of nodes.

Factor graphs: An extension of directed and undirected graphs
which makes the probabilistic factors explicit.

Belief propagation: A message passing algorithm for performing
inference on graphical models, where local messages are
propagated among the graph nodes.
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