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Summary of lecture 8 (I/II) 3(27)

A graphical model is a probabilistic model where a graph is used to
represent the CI structure between random variables.

We introduced basic concepts for graphical models G = (V , E),
1. a set of vertices V (a.k.a. nodes) representing the random

variables and
2. a set of edges E (a.k.a. links or arcs) containing elements

(i, j) ∈ E connecting a pair of nodes (i, j) ∈ V and thereby
encoding the probabilistic relations between nodes.

x0 x1 x2
. . .

xN

y1 y2 yN
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Summary of lecture 8 (II/II) 4(27)

The set of parents to node j (paj) is defined as

paj , {i ∈ V | (i, j) ∈ E}.

The directed graph describes how the joint distribution p(x) factors
into a product of factors p(xi | xpai) only depending on a subset of
the variables,

p(xV ) = ∏
i∈V

p(xi | xpai).

Hence, for the state space model on the previous slide, we have

p(X, Y) = p(x0)
N

∏
t=1

p(xt | xt−1)
N

∏
t=1

p(yt | xt).

D-separation was used as a means to check conditional
independence among random variables.
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2014 Gibbs lecture 5(27)

“The visible world is awash with ambiguity, and probability, the
calculus of uncertainty, is an important element of the computer

systems that resolve that ambiguity.”

Title: Machines that see, powered by probability

Speaker: Andrew Blake (laboratory director of Microsoft Research
Cambridge)

The talk is available here: research.microsoft.com/en-us/
about/andrew-blake-gibbs-lecture-2014.pdf

Conclusion:
• Vision must address ambiguity and noise.
• Seeing machines need probabilistic elements

• Variational methods are not enough
• Generative models alone are insufficient
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Example – Gaussian mixture (I/II) 6(27)

Suppose we have x1:N i.i.d. and distributed as

xi ∼ p(xi|π1:K, µ1:K, Λ1:K) =
K

∑
k=1

πkN
(

xi; µk, Λ−1
k

)

for i = 1, . . . , N.

In a Bayesian model, all the unknowns {π1:K, µ1:K, Λ1:K} are
modelled as random variables.

π1:K ∼Dir(π1:K|α0)
4
∝

K

∏
k=1

πα0−1
k

µ1:K, Λ1:K ∼p(µ1:K, Λ1:K) ,
K

∏
k=1
N (µk; m0, (β0Λk)

−1)W(Λk|W0, ν0)
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Example – Gaussian mixture (II/II) 7(27)

Define the latent variables zn , [zn1, · · · , znK]
T for n = 1, . . . , N as

we did in the construction used for EM and VB.

Then the joint density can be written as

p(x1:N, z1:N) =
N

∏
n=1

K

∏
k=1

πznk
k N

(
xn; µk, Λ−1

k

)znk
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Undirected graphical model (Markov random fields) 8(27)

• Nodes and edges carry
similar meanings.

• Conditional independence is
determined by graphical
separation.

A ⊥ B|C

• A more natural
representation for some
models, e.g., images.

• One must take special care
while converting directed
graphs to undirected ones.

384 8. GRAPHICAL MODELS

Figure 8.27 An example of an undirected graph in
which every path from any node in set
A to any node in set B passes through
at least one node in set C. Conse-
quently the conditional independence
property A ⊥⊥ B | C holds for any
probability distribution described by this
graph.

A

C
B

is indeed the case and corresponds to undirected graphical models. By removing the
directionality from the links of the graph, the asymmetry between parent and child
nodes is removed, and so the subtleties associated with head-to-head nodes no longer
arise.

Suppose that in an undirected graph we identify three sets ofnodes, denotedA,
B, andC, and that we consider the conditional independence property

A ⊥⊥ B | C. (8.37)

To test whether this property is satisfied by a probability distribution defined by a
graph we consider all possible paths that connect nodes in set A to nodes in setB.
If all such paths pass through one or more nodes in setC, then all such paths are
‘blocked’ and so the conditional independence property holds. However, if there
is at least one such path that is not blocked, then the property does not necessarily
hold, or more precisely there will exist at least some distributions corresponding to
the graph that do not satisfy this conditional independencerelation. This is illus-
trated with an example in Figure 8.27. Note that this is exactly the same as the
d-separation criterion except that there is no ‘explainingaway’ phenomenon. Test-
ing for conditional independence in undirected graphs is therefore simpler than in
directed graphs.

An alternative way to view the conditional independence test is to imagine re-
moving all nodes in setC from the graph together with any links that connect to
those nodes. We then ask if there exists a path that connects any node inA to any
node inB. If there are no such paths, then the conditional independence property
must hold.

The Markov blanket for an undirected graph takes a particularly simple form,
because a node will be conditionally independent of all other nodes conditioned only
on the neighbouring nodes, as illustrated in Figure 8.28.

8.3.2 Factorization properties
We now seek a factorization rule for undirected graphs that will correspond to

the above conditional independence test. Again, this will involve expressing the joint
distributionp(x) as a product of functions defined over sets of variables that are local

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML
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Conversion from directed to undirected 9(27)

• When conversion is done
directly some correlations
that would be present in the
original model can be lost.

• One must “marry” the
parents to get those
correlations back, this is
called moralization.

• Moralization has to be
performed for all the pairs of
parents.

=⇒

=⇒

8.3. Markov Random Fields 391

Figure 8.33 Example of a simple
directed graph (a) and the corre-
sponding moral graph (b).

x1 x3

x4

x2

(a)

x1 x3

x4

x2

(b)

This is easily done by identifying

ψ1,2(x1, x2) = p(x1)p(x2|x1)

ψ2,3(x2, x3) = p(x3|x2)

...

ψN−1,N (xN−1, xN) = p(xN |xN−1)

where we have absorbed the marginalp(x1) for the first node into the first potential
function. Note that in this case, the partition functionZ = 1.

Let us consider how to generalize this construction, so thatwe can convert any
distribution specified by a factorization over a directed graph into one specified by a
factorization over an undirected graph. This can be achieved if the clique potentials
of the undirected graph are given by the conditional distributions of the directed
graph. In order for this to be valid, we must ensure that the set of variables that
appears in each of the conditional distributions is a memberof at least one clique of
the undirected graph. For nodes on the directed graph havingjust one parent, this is
achieved simply by replacing the directed link with an undirected link. However, for
nodes in the directed graph having more than one parent, thisis not sufficient. These
are nodes that have ‘head-to-head’ paths encountered in ourdiscussion of conditional
independence. Consider a simple directed graph over 4 nodesshown in Figure 8.33.
The joint distribution for the directed graph takes the form

p(x) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3). (8.46)

We see that the factorp(x4|x1, x2, x3) involves the four variablesx1, x2, x3, and
x4, and so these must all belong to a single clique if this conditional distribution is
to be absorbed into a clique potential. To ensure this, we addextra links between
all pairs of parents of the nodex4. Anachronistically, this process of ‘marrying
the parents’ has become known asmoralization, and the resulting undirected graph,
after dropping the arrows, is called themoral graph. It is important to observe that
the moral graph in this example is fully connected and so exhibits no conditional
independence properties, in contrast to the original directed graph.

Thus in general to convert a directed graph into an undirected graph, we first add
additional undirected links between all pairs of parents for each node in the graph and

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML
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Close connection to statistical physics 10(27)

• The Hammersley-Clifford theorem has a physics interpretation
when the functions ψC(xC) are non-zero everywhere.
• In this case, we can write

ψC(xC) = exp(−E(xC))

where E(·) is called an energy function.
• The overall graph can then be considered as a lattice with a

potential energy function described by E(xC).
• Finding the maximum of the density can then be considered as

finding the point where the total potential energy is minimized.

p(x1:N) =
1
Z ∏

C
exp(−E(xC)) =

1
Z

exp

(
−∑

C
E(xC)

)

• A local maximum then corresponds to an equilibrium.
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Application – image de-noising (I/II) 11(27)

Suppose we have a noisy image and want to
remove the noise.

• Model the true pixel values as xi,j.

• Model the measured image pixel values as

yi,j = xi,j + vi,j, vi,j ∼ N (0, β2).

• Choose the energy functions as

Ey(xi,j, yi,j) =
1
β2 (yi,j − xi,j)

2

Ex(xi1,j1 , xi2,j2) =min
(

1
α2 (xi1,j1 − xi2,j2)

2, γ

)
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Application – image de-noising (II/II) 12(27)

• The density is then

− log p(x1:Nx,1:Ny , y1:Nx,1:Ny) = ∑
i,j

Ey(xi,j, yi,j) + Ex(xi,j, xi+1,j+1)

+ Ex(xi,j, xi−1,j−1) + Ex(xi,j, xi−1,j+1) + Ex(xi,j, xi+1,j−1) + C.

• If the image is 8 bit grayscale, maximization
in general requires the calculation of
256(Nx×Ny) different combinations.

• We instead maximize w.r.t. only one pixel
keeping the others fixed at their last values.

• This is called iterative conditional modes
(ICM).

Run example!
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Conditional random field 13(27)

A conditional random field (CRF) is a particular MRF where all the
clique potentials are conditioned on input features:

p(x | y) =
1

Z(y) ∏
c∈C

ψc(xc | y).

This opens up for the possibility of making the potentials (factors)
data dependent.

CRFs do not model things that we observe, means that we are
“saving resources”.

Sutton, C. and McCallum, A. An introduction to conditional random fields. Foundations and Trends in Machine Learning,
4(4): 267–373, 2011.
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Road surface estimation 14(27)

Aim: Estimate the road surface using images from a stereo camera.

Solved using a CRF model and message passing.

60 5 Experimental Results

shown in Figure 5.15. A more advanced method for keeping track of different
objects and allowing them to overlap is needed to solve this problem.

Figure 5.14: Example of the object detection marking an obstacle that con-
sists of several different parts. In this case a curb, a speed bump and a traffic
isle. To the left is the dem input and to the right the estimated road surface
(red), the estimated curb line (white) and the detected obstacle (purple).

Figure 5.15: Example of two objects receiving the same label when coming
close to each other. To the left, two vehicles being recognized as different
objects. To the right, the vehicles are too close to be recognized as different
objects using the tracking method described.

5.4 Obstacle Detection Evaluation 59

5.4 Obstacle Detection Evaluation

With height measurements in a horizontal grid and a good estimate of the road
surface available, it is shown that a relatively simple but still effective obstacle
detection can be achieved by comparing a node’s deviation from the road surface
to its estimated height deviation. A requirement is that the estimated height
deviations correspond, or at least come close to the real deviations. It shows that
the variance approximation in Section 3.1.2 provides sufficiently reliable results
for this to work.

Example results showing detected obstacles together with estimated road sur-
faces and curb lines can be seen in Figure 5.13.

(a)

(b)

Figure 5.13: Two example results from the obstacle detection. To the left
are the dem inputs and to the right are the final outputs from the algorithm.
Red areas are the classified road nodes with the estimated road surface. The
white lines are the estimated curb lines. The colored objects mark detected
obstacles, where each color represents a separate object.

The method for detecting and tracking obstacles described in this thesis only
works in relative simple scenarios. Object shapes are not taken into consideration
when distributing their labels, and so several adjacent objects can receive the
same label as shown in Figure 5.14. Another problem is when moving objects,
e.g. vehicles or pedestrians, in some time instance come close to each other they
can be perceived as the same object and will therefore receive equal labels as

Show movie

Lorentzon, M. and Andersson, T. Road surface modeling using stereo vision, Master’s thesis, LiTH-ISY-EX–12/4582–SE,
Linköping university, Sweden, 2012.

http://liu.diva-portal.org/smash/record.jsf?searchId=2&pid=diva2:532767
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Inference in graphical models 15(27)

Inference in graphical models amounts to computing the posterior
distribution of one or more of the nodes that are not observed.

The structure in the graphical model is exploited in finding inference
algorithms.

Most inference algorithms can be expressed in terms of message
passing algorithms, where local messages are propagated around
the graph.
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Inference on a chain 16(27)

Hence, inference on a graph consisting of a chain of nodes can be
performed efficiently at a computational cost that is linear in the
number of nodes.

The algorithm can be interpreted as passing messages around in the
graph.

The generalization of this message passing idea to trees is referred
to as the sum-product algorithm.

Definition (Tree): in an undirected graph a tree is defined as a graph
where there is one, and only one, path between any pair of nodes.

Machine Learning, Lecture 9 – Graphical models and message passing

T. Schön, 2014



Factor graphs 17(27)

• Both directed and undirected
graphs give a factorial
representation for the joint
density.

• Factor graphs make this
factorization more explicit by
adding nodes for each factor.

• Both directed and undirected
graphs can be converted into
factor graphs.

400 8. GRAPHICAL MODELS

Figure 8.40 Example of a factor graph, which corresponds
to the factorization (8.60).

x1 x2 x3

fa fb fc fd

individual variables byxi, however, as in earlier discussions, these can comprise
groups of variables (such as vectors or matrices). Each factor fs is a function of a
corresponding set of variablesxs.

Directed graphs, whose factorization is defined by (8.5), represent special cases
of (8.59) in which the factorsfs(xs) are local conditional distributions. Similarly,
undirected graphs, given by (8.39), are a special case in which the factors are po-
tential functions over the maximal cliques (the normalizing coefficient1/Z can be
viewed as a factor defined over the empty set of variables).

In a factor graph, there is a node (depicted as usual by a circle) for every variable
in the distribution, as was the case for directed and undirected graphs. There are also
additional nodes (depicted by small squares) for each factor fs(xs) in the joint dis-
tribution. Finally, there are undirected links connectingeach factor node to all of the
variables nodes on which that factor depends. Consider, forexample, a distribution
that is expressed in terms of the factorization

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3). (8.60)

This can be expressed by the factor graph shown in Figure 8.40. Note that there are
two factorsfa(x1, x2) andfb(x1, x2) that are defined over the same set of variables.
In an undirected graph, the product of two such factors wouldsimply be lumped
together into the same clique potential. Similarly,fc(x2, x3) andfd(x3) could be
combined into a single potential overx2 andx3. The factor graph, however, keeps
such factors explicit and so is able to convey more detailed information about the
underlying factorization.

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fa

fb

(c)

Figure 8.41 (a) An undirected graph with a single clique potential ψ(x1, x2, x3). (b) A factor graph with factor
f(x1, x2, x3) = ψ(x1, x2, x3) representing the same distribution as the undirected graph. (c) A different factor
graph representing the same distribution, whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = ψ(x1, x2, x3).

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML

p(x1:3) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)
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Inference in factor graphs (I/V) 18(27)

• We have the joint density for the graph on
the right given as

p(x1:7) ∝ f1(x1)f2(x1:3)f3(x2)f4(x2, x7)f5(x3:6)

• When we have measurements of some
variables, we might need the posteriors of
some or all unobserved variables.

x1

x2

x3

x4

x5

x6

x7

f1 f2

f3

f4

f5

p(x1, x3, x4, x5, x7|x2, x6) =
p(x1:7)

p(x2, x6)

=
p(x1:7)

∑x1,x3,x4,x5,x7
p(x1:7)
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Inference in factor graphs (II/V) 19(27)

• Performing inference requires marginals.

• It is possible to calculate the marginals on a graph
efficiently by passing local messages along the
graph.
• Two interconnected types of messages are

considered
• Messages from variable nodes to factor nodes

µxi→fj(xi) = ∏
f`∈ne(xi)\fj

µf`→xi
(xi)

• Messages from factor nodes to variable nodes

µfj→xi
(xi) = ∑̄

x
fj(xi, x̄) ∏

x`∈ne(fj)\xi

µx`→fj(x`)

x1

x2

x3

x4

x5

x6

x7

f1 f2

f3

f4

f5

xi fj

µxi→fj(xi)

f`

xi fj

µfj→xi
(xi)

x`
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Inference in factor graphs (III/V) 20(27)

Sum-product algorithm
• Calculate messages from variable nodes to factor nodes

µxi→fj(xi) = ∏
f`∈ne(xi)\fj

µf`→xi(xi)

• Calculate messages from factor nodes to variable nodes

µfj→xi(xi) = ∑̄
x

fj(xi, x̄) ∏
x`∈ne(fj)\xi

µx`→fj(x`)

• Iterate messages until convergence. (Different iteration schemes can
be designed.)
• After convergence, the marginals are calculated as

p(xi) ∝ ∏
f`∈ne(xi)

µf`→xi(xi)
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Inference in factor graphs (IV/V) 21(27)

• The values in the observed nodes are just
substituted into the factors and not integrated out.
• If the graph is a tree, the algorithm can calculate

all the marginals by making
• a forward pass from the root to the leaves
• a backward pass from the leaves to the root.

• The sum-product algorithm gives the exact results
in a tree structured graph.

• The sum-product algorithm is equivalent to a
Kalman smoother for linear Gaussian dynamical
systems.

• (Chapter 13.3)

410 8. GRAPHICAL MODELS

x1 x2 x3

x4

(a)

x1 x2 x3

x4

(b)

Figure 8.52 Flow of messages for the sum-product algorithm applied to the example graph in Figure 8.51. (a)
From the leaf nodes x1 and x4 towards the root node x3. (b) From the root node towards the leaf nodes.

One message has now passed in each direction across each link, and we can now
evaluate the marginals. As a simple check, let us verify thatthe marginalp(x2) is
given by the correct expression. Using (8.63) and substituting for the messages using
the above results, we have

p̃(x2) = µfa→x2
(x2)µfb→x2

(x2)µfc→x2
(x2)

=

[
∑

x1

fa(x1, x2)

][
∑

x3

fb(x2, x3)

][
∑

x4

fc(x2, x4)

]

=
∑

x1

∑

x2

∑

x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
∑

x1

∑

x3

∑

x4

p̃(x) (8.86)

as required.
So far, we have assumed that all of the variables in the graph are hidden. In most

practical applications, a subset of the variables will be observed, and we wish to cal-
culate posterior distributions conditioned on these observations. Observed nodes are
easily handled within the sum-product algorithm as follows. Suppose we partitionx
into hidden variablesh and observed variablesv, and that the observed value ofv

is denoted̂v. Then we simply multiply the joint distributionp(x) by
∏

i I(vi, v̂i),
whereI(v, v̂) = 1 if v = v̂ andI(v, v̂) = 0 otherwise. This product corresponds
to p(h,v = v̂) and hence is an unnormalized version ofp(h|v = v̂). By run-
ning the sum-product algorithm, we can efficiently calculate the posterior marginals
p(hi|v = v̂) up to a normalization coefficient whose value can be found efficiently
using a local computation. Any summations over variables inv then collapse into a
single term.

We have assumed throughout this section that we are dealing with discrete vari-
ables. However, there is nothing specific to discrete variables either in the graphical
framework or in the probabilistic construction of the sum-product algorithm. For

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML
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is denoted̂v. Then we simply multiply the joint distributionp(x) by
∏

i I(vi, v̂i),
whereI(v, v̂) = 1 if v = v̂ andI(v, v̂) = 0 otherwise. This product corresponds
to p(h,v = v̂) and hence is an unnormalized version ofp(h|v = v̂). By run-
ning the sum-product algorithm, we can efficiently calculate the posterior marginals
p(hi|v = v̂) up to a normalization coefficient whose value can be found efficiently
using a local computation. Any summations over variables inv then collapse into a
single term.

We have assumed throughout this section that we are dealing with discrete vari-
ables. However, there is nothing specific to discrete variables either in the graphical
framework or in the probabilistic construction of the sum-product algorithm. For

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML
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Inference in factor graphs (V/V) 22(27)

• When the sum-product algorithm is applied to
directed graphs without loops the resulting
algorithm is sometimes referred to as belief
propagation.

• In a graph with loops, the sum-product algorithm
is not exact and actually might not converge.

• Despite this, it is applied to graphs with loops,
which is called loopy belief propagation.
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Figure 8.45 (a) A fully connected undirected graph. (b) and (c) Two factor graphs each of which corresponds
to the undirected graph in (a).

There is an algorithm for exact inference on directed graphswithout loops known
asbelief propagation(Pearl, 1988; Lauritzen and Spiegelhalter, 1988), and is equiv-
alent to a special case of the sum-product algorithm. Here weshall consider only the
sum-product algorithm because it is simpler to derive and toapply, as well as being
more general.

We shall assume that the original graph is an undirected treeor a directed tree or
polytree, so that the corresponding factor graph has a tree structure. We first convert
the original graph into a factor graph so that we can deal withboth directed and
undirected models using the same framework. Our goal is to exploit the structure of
the graph to achieve two things: (i) to obtain an efficient, exact inference algorithm
for finding marginals; (ii) in situations where several marginals are required to allow
computations to be shared efficiently.

We begin by considering the problem of finding the marginalp(x) for partic-
ular variable nodex. For the moment, we shall suppose that all of the variables
are hidden. Later we shall see how to modify the algorithm to incorporate evidence
corresponding to observed variables. By definition, the marginal is obtained by sum-
ming the joint distribution over all variables exceptx so that

p(x) =
∑

x\x

p(x) (8.61)

wherex \ x denotes the set of variables inx with variablex omitted. The idea is
to substitute forp(x) using the factor graph expression (8.59) and then interchange
summations and products in order to obtain an efficient algorithm. Consider the
fragment of graph shown in Figure 8.46 in which we see that thetree structure of
the graph allows us to partition the factors in the joint distribution into groups, with
one group associated with each of the factor nodes that is a neighbour of the variable
nodex. We see that the joint distribution can be written as a product of the form

p(x) =
∏

s∈ne(x)

Fs(x,Xs) (8.62)

ne(x) denotes the set of factor nodes that are neighbours ofx, andXs denotes the
set of all variables in the subtree connected to the variablenodex via the factor node

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML

Even in this form, it has important applications in communications
(decoding of error correcting codes).

Kschischang, F. R., Frey, B. J. and Loeliger, H-A. Factor graphs and the sum-product algorithm. IEEE Transactions on
information theory, 47(2):498–519, 2001.
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Current research – SMC for general GMs (I/IV) 23(27)

Inference in GMs does typically not allow for analytical solutions,
confining us to various approximative methods (recall the conclusion
of Andrew Blake’s Gibbs lecture).

Derived a new sequential Monte Carlo (SMC) algorithm for
inference in general GMs.

Delivers an unbiased estimate of the partition function (normalization
constant), can be used within an MCMC sampler for learning.

SMC methods (e.g. particle filters and particle smoothers) can be
used to approximate a sequence of probability distributions on a
sequence of probability spaces of increasing dimension.

PhD course available on SMC methods
http://user.it.uu.se/~thosc112/CIDS.html
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Current research – SMC for general GMs (II/IV) 24(27)

Constructing an artificial sequence of intermediate (auxiliary) target
distributions in order to be able to employ an SMC sampler is a
powerful (and quite possibly underutilized) idea.

Key idea: Perform and make use of a sequential decomposition of
the graphical model.

Defines a sequence of intermediate (auxiliary) target distributions
defined on an increasing sequence of probability spaces.

Target this sequence using SMC.
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Current research – SMC for general GMs (III/IV) 25(27)

The joint PDF of the set of random
variables indexed by V ,
XV , {x1, . . . , x|V|}

p(XV ) =
1
Z ∏

C∈C
ψC(XC).

x1 ψ1 x2 ψ2

x3

x4

Sequential decomposition of the above factor graph (the target
distributions are built up by adding factors at each iteration),

γ1(XL1) γ2(XL2)

x1 ψ1 x2 x1 ψ1 x2 ψ2

x3

x4
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Current research – SMC for general GMs (IV/IV) 26(27)

Consider a standard squared lattice Gaussian MRF of size 10× 10,

p(XV , YV ) ∝ ∏
i∈V

e
1

2σ2
i
(xi−yi)

2

∏
(i,j)∈E

e
1

2σ2
ij
(xi−xj)

2
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Full details and a loopy,
non-Gaussian and
non-discrete PGM example,

Christian A. Naesseth, Fredrik Lindsten and
Thomas B. Schön, Sequential Monte Carlo
methods for graphical models. Preprint at
arXiv:1402:0330, February, 2014.
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A few concepts to summarize lecture 9 27(27)

Markov random fields: (Undirected graphs, no directed arrows) A
graphical representation where conditional independence is given by
graph separation.

conditional random field (CRF): A CRF is a particular MRF where
all the clique potentials are conditioned on input features.

Tree: In an undirected graph a tree is defined as a graph where there
is one, and only one, path between any pair of nodes.

Factor graphs: An extension of directed and undirected graphs
which makes the probabilistic factors explicit.

Belief propagation: A message passing algorithm for performing
inference on graphical models, where local messages are
propagated among the graph nodes.
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