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Summary – lecture 7 3(14)

Variational inference is a type of approximate Bayesian inference
where factorial approximations like

p(Z|X) ≈ q(Z) = ∏
i

qi(Zi)

are used for the posterior.

The Kullback-Leibler (KL) distance is used to measure the distance
and hence to find an optimization problem.

Variational Bayes (VB) is a form of variational inference where
KL(q||p) is used for the optimization. We fix all but one of the factors
and optimize as follows,

q̂j(Zj) = arg min
qj

(
qj(Zj)∏

i 6=j
q̂i(Zi)

∣∣∣∣
∣∣∣∣p(X, Z)

)
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Probabilistic graphical models – motivation 4(14)

“Graphical models bring together graph theory and
probability theory in a powerful formalism for multivariate
statistical modeling.” 1

We can of course always handle probabilistic models using pure
algebraic manipulation. Some reasons for using probabilistic
graphical models,

1. A simple way to visualize the structure of a probabilistic model.

2. Knowledge about model properties directly from the graph.

3. A different way of performing and structuring calculations.

1 Wainwright, M. J. and Jordan, M. I. Graphical models, exponential families, and
variational inference, Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.
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3 types of graphical models 5(14)

We are going to consider three types of graphs,

1. Directed graphs (a.k.a. Bayesian networks)
Represents a set of random variables and their
conditional dependencies via a directed
acyclic graph (DAG).

2. Undirected graphs (a.k.a. Markov random
fields) represents a set of random variables
having a Markov property by an undirected
graph.

3. Factor graphs are a more convenient form
that can be obtained from the above two for
the purposes of inference and learning.

8.1. Bayesian Networks 361

Figure 8.1 A directed graphical model representing the joint probabil-
ity distribution over three variables a, b, and c, correspond-
ing to the decomposition on the right-hand side of (8.2).

a

b

c

(8.2). Then, for each conditional distribution we add directed links (arrows) to the
graph from the nodes corresponding to the variables on whichthe distribution is
conditioned. Thus for the factorp(c|a, b), there will be links from nodesa andb to
nodec, whereas for the factorp(a) there will be no incoming links. The result is
the graph shown in Figure 8.1. If there is a link going from a nodea to a nodeb,
then we say that nodea is theparentof nodeb, and we say that nodeb is thechild
of nodea. Note that we shall not make any formal distinction between anode and
the variable to which it corresponds but will simply use the same symbol to refer to
both.

An interesting point to note about (8.2) is that the left-hand side is symmetrical
with respect to the three variablesa, b, andc, whereas the right-hand side is not.
Indeed, in making the decomposition in (8.2), we have implicitly chosen a particular
ordering, namelya, b, c, and had we chosen a different ordering we would have
obtained a different decomposition and hence a different graphical representation.
We shall return to this point later.

For the moment let us extend the example of Figure 8.1 by considering the joint
distribution overK variables given byp(x1, . . . , xK). By repeated application of
the product rule of probability, this joint distribution can be written as a product of
conditional distributions, one for each of the variables

p(x1, . . . , xK) = p(xK |x1, . . . , xK−1) . . . p(x2|x1)p(x1). (8.3)

For a given choice ofK, we can again represent this as a directed graph havingK
nodes, one for each conditional distribution on the right-hand side of (8.3), with each
node having incoming links from all lower numbered nodes. Wesay that this graph
is fully connectedbecause there is a link between every pair of nodes.

So far, we have worked with completely general joint distributions, so that the
decompositions, and their representations as fully connected graphs, will be applica-
ble to any choice of distribution. As we shall see shortly, itis theabsenceof links
in the graph that conveys interesting information about theproperties of the class of
distributions that the graph represents. Consider the graph shown in Figure 8.2.
This is not a fully connected graph because, for instance, there is no link fromx1 to
x2 or fromx3 to x7.

We shall now go from this graph to the corresponding representation of the joint
probability distribution written in terms of the product ofa set of conditional dis-
tributions, one for each node in the graph. Each such conditional distribution will
be conditioned only on the parents of the corresponding nodein the graph. For in-
stance,x5 will be conditioned onx1 andx3. The joint distribution of all7 variables

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML

8.3. Markov Random Fields 389

Figure 8.31 An undirected graphical model representing a
Markov random field for image de-noising, in
which xi is a binary variable denoting the state
of pixel i in the unknown noise-free image, and yi

denotes the corresponding value of pixel i in the
observed noisy image.

xi

yi

indices of neighbouring pixels. Again, we want the energy tobe lower when the
pixels have the same sign than when they have the opposite sign, and so we choose
an energy given by−βxixj whereβ is a positive constant.

Because a potential function is an arbitrary, nonnegative function over a maximal
clique, we can multiply it by any nonnegative functions of subsets of the clique, or
equivalently we can add the corresponding energies. In thisexample, this allows us
to add an extra termhxi for each pixeli in the noise-free image. Such a term has
the effect of biasing the model towards pixel values that have one particular sign in
preference to the other.

The complete energy function for the model then takes the form

E(x,y) = h
∑

i

xi − β
∑

{i,j}

xixj − η
∑

i

xiyi (8.42)

which defines a joint distribution overx andy given by

p(x,y) =
1

Z
exp{−E(x,y)}. (8.43)

We now fix the elements ofy to the observed values given by the pixels of the
noisy image, which implicitly defines a conditional distribution p(x|y) over noise-
free images. This is an example of theIsing model, which has been widely studied in
statistical physics. For the purposes of image restoration, we wish to find an imagex
having a high probability (ideally the maximum probability). To do this we shall use
a simple iterative technique callediterated conditional modes, or ICM (Kittler and
Föglein, 1984), which is simply an application of coordinate-wise gradient ascent.
The idea is first to initialize the variables{xi}, which we do by simply settingxi =
yi for all i. Then we take one nodexj at a time and we evaluate the total energy
for the two possible statesxj = +1 andxj = −1, keeping all other node variables
fixed, and setxj to whichever state has the lower energy. This will either leave
the probability unchanged, ifxj is unchanged, or will increase it. Because only
one variable is changed, this is a simple local computation that can be performedExercise 8.13
efficiently. We then repeat the update for another site, and so on, until some suitable
stopping criterion is satisfied. The nodes may be updated in asystematic way, for

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
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(a) (b) (c)

Figure 8.43 (a) A directed polytree. (b) The result of converting the polytree into an undirected graph showing
the creation of loops. (c) The result of converting the polytree into a factor graph, which retains the tree structure.

precise form of the factorization. Figure 8.45 shows an example of a fully connected
undirected graph along with two different factor graphs. In(b), the joint distri-
bution is given by a general formp(x) = f(x1, x2, x3), whereas in (c), it is given
by the more specific factorizationp(x) = fa(x1, x2)fb(x1, x3)fc(x2, x3). It should
be emphasized that the factorization in (c) does not correspond to any conditional
independence properties.

8.4.4 The sum-product algorithm

We shall now make use of the factor graph framework to derive apowerful class
of efficient, exact inference algorithms that are applicable to tree-structured graphs.
Here we shall focus on the problem of evaluating local marginals over nodes or
subsets of nodes, which will lead us to thesum-productalgorithm. Later we shall
modify the technique to allow the most probable state to be found, giving rise to the
max-sumalgorithm.

Also we shall suppose that all of the variables in the model are discrete, and
so marginalization corresponds to performing sums. The framework, however, is
equally applicable to linear-Gaussian models in which casemarginalization involves
integration, and we shall consider an example of this in detail when we discuss linear
dynamical systems.Section 13.3

Figure 8.44 (a) A fragment of a di-
rected graph having a lo-
cal cycle. (b) Conversion
to a fragment of a factor
graph having a tree struc-
ture, in which f(x1, x2, x3) =
p(x1)p(x2|x1)p(x3|x1, x2).

x1 x2

x3

(a)

x1 x2

x3

f(x1, x2, x3)

(b)
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Observing conditional independence (I/III) 6(14)

Example: Polynomial regression.

• Let t1:N be the values of a function at the points x1:N.

• We would like to find the Kth degree polynomial approximating
this function whose coefficients are shown as w ∈ RK+1.

• w ∼ N (0, Σ)
• Then the model can be written as

tn = φ(xn)w + vn

where φ(x) =
[
1, x, x2, . . . , xK].

• {vn}N
n=1 is i.i.d. and vn ∼ N (0, R).
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Observing conditional independence (II/III) 7(14)

Example: Polynomial regression

tn = φ(xn)w + vn

• The joint density for the problem can be written as

p(t1:N, w) = p(t1:N|w)p(w) = p(w)
N

∏
i=1

p(ti|w)

• What is the reason for the equality p(t1:N|w) = ∏N
i=1 p(ti|w)?
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Observing conditional independence (III/III) 8(14)

Example: Polynomial regression

· · ·

w

t1 t2 tN

· · ·

w

t1 t2 tN

When w is assumed known it is said to “block the path”, rendering
all the variables {tn}N

n=1 conditionally independent.

Important question: Can this be formalized, i.e., can we discern CI
properties directly from the graph?

Machine Learning, Lecture 8 – Graphical models

T. Schön, 2014



CI from DAGs – Ex 1 9(14)

p(a, b|c) =p(a, b, c)
p(c)

=
p(a|c)p(b|c)p(c)

p(c)
=p(a|c)p(b|c)

=⇒ a ⊥ b|c

374 8. GRAPHICAL MODELS

Figure 8.16 As in Figure 8.15 but where we have conditioned on the
value of variable c.

c

a b

where∅ denotes the empty set, and the symbol6⊥⊥ means that the conditional inde-
pendence property does not hold in general. Of course, it mayhold for a particular
distribution by virtue of the specific numerical values associated with the various
conditional probabilities, but it does not follow in general from the structure of the
graph.

Now suppose we condition on the variablec, as represented by the graph of
Figure 8.16. From (8.23), we can easily write down the conditional distribution of
a andb, givenc, in the form

p(a, b|c) =
p(a, b, c)

p(c)

= p(a|c)p(b|c)

and so we obtain the conditional independence property

a ⊥⊥ b | c.

We can provide a simple graphical interpretation of this result by considering
the path from nodea to nodeb via c. The nodec is said to betail-to-tail with re-
spect to this path because the node is connected to the tails of the two arrows, and
the presence of such a path connecting nodesa andb causes these nodes to be de-
pendent. However, when we condition on nodec, as in Figure 8.16, the conditioned
node ‘blocks’ the path froma to b and causesa and b to become (conditionally)
independent.

We can similarly consider the graph shown in Figure 8.17. Thejoint distribu-
tion corresponding to this graph is again obtained from our general formula (8.5) to
give

p(a, b, c) = p(a)p(c|a)p(b|c). (8.26)

First of all, suppose that none of the variables are observed. Again, we can test to
see ifa andb are independent by marginalizing overc to give

p(a, b) = p(a)
∑

c

p(c|a)p(b|c) = p(a)p(b|a).

Figure 8.17 The second of our three examples of 3-node
graphs used to motivate the conditional indepen-
dence framework for directed graphical models.

a c b

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
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CI rule for tail-to-tail nodes
For conditional independence of two nodes, the tail-to-tail nodes
between them must be observed, which blocks the path.
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CI from DAGs – Ex 2 10(14)

Head-to-tail nodes:

374 8. GRAPHICAL MODELS

Figure 8.16 As in Figure 8.15 but where we have conditioned on the
value of variable c.

c

a b

where∅ denotes the empty set, and the symbol6⊥⊥ means that the conditional inde-
pendence property does not hold in general. Of course, it mayhold for a particular
distribution by virtue of the specific numerical values associated with the various
conditional probabilities, but it does not follow in general from the structure of the
graph.

Now suppose we condition on the variablec, as represented by the graph of
Figure 8.16. From (8.23), we can easily write down the conditional distribution of
a andb, givenc, in the form

p(a, b|c) =
p(a, b, c)

p(c)

= p(a|c)p(b|c)

and so we obtain the conditional independence property

a ⊥⊥ b | c.

We can provide a simple graphical interpretation of this result by considering
the path from nodea to nodeb via c. The nodec is said to betail-to-tail with re-
spect to this path because the node is connected to the tails of the two arrows, and
the presence of such a path connecting nodesa andb causes these nodes to be de-
pendent. However, when we condition on nodec, as in Figure 8.16, the conditioned
node ‘blocks’ the path froma to b and causesa and b to become (conditionally)
independent.

We can similarly consider the graph shown in Figure 8.17. Thejoint distribu-
tion corresponding to this graph is again obtained from our general formula (8.5) to
give

p(a, b, c) = p(a)p(c|a)p(b|c). (8.26)

First of all, suppose that none of the variables are observed. Again, we can test to
see ifa andb are independent by marginalizing overc to give

p(a, b) = p(a)
∑

c

p(c|a)p(b|c) = p(a)p(b|a).

Figure 8.17 The second of our three examples of 3-node
graphs used to motivate the conditional indepen-
dence framework for directed graphical models.

a c b
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• Are a and b independent a
?

⊥ b?

• How about when c is given; a
?

⊥ b|c?8.2. Conditional Independence 375

Figure 8.18 As in Figure 8.17 but now conditioning on node c. a c b

which in general does not factorize intop(a)p(b), and so

a 6⊥⊥ b | ∅ (8.27)

as before.
Now suppose we condition on nodec, as shown in Figure 8.18. Using Bayes’

theorem, together with (8.26), we obtain

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(c|a)p(b|c)

p(c)

= p(a|c)p(b|c)

and so again we obtain the conditional independence property

a ⊥⊥ b | c.

As before, we can interpret these results graphically. The nodec is said to be
head-to-tailwith respect to the path from nodea to nodeb. Such a path connects
nodesa andb and renders them dependent. If we now observec, as in Figure 8.18,
then this observation ‘blocks’ the path froma to b and so we obtain the conditional
independence propertya ⊥⊥ b | c.

Finally, we consider the third of our 3-node examples, shownby the graph in
Figure 8.19. As we shall see, this has a more subtle behaviourthan the two
previous graphs.

The joint distribution can again be written down using our general result (8.5) to
give

p(a, b, c) = p(a)p(b)p(c|a, b). (8.28)

Consider first the case where none of the variables are observed. Marginalizing both
sides of (8.28) overc we obtain

p(a, b) = p(a)p(b)

Figure 8.19 The last of our three examples of 3-node graphs used to
explore conditional independence properties in graphi-
cal models. This graph has rather different properties
from the two previous examples.

c

a b

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML

CI rule for head-to-tail nodes
For conditional independence of two nodes, the head-to-tail nodes
between them must be observed, which blocks the path.
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CI from DAGs – Ex 3 11(14)

Head-to-head nodes:

• Are a and b independent a
?

⊥ b? Yes, since∫
p(a, b, c)dc =

∫
p(a)p(b)p(c | a, b)dc =

p(a)p(b).

• How about when c is given; a
?

⊥ b|c? No,

since p(a, b | c) = p(a,b,c)
p(c) =

p(a)p(b)p(c|a,b)
p(c) 6= p(a | c)p(b | c).
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Figure 8.18 As in Figure 8.17 but now conditioning on node c. a c b

which in general does not factorize intop(a)p(b), and so

a 6⊥⊥ b | ∅ (8.27)

as before.
Now suppose we condition on nodec, as shown in Figure 8.18. Using Bayes’

theorem, together with (8.26), we obtain

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(c|a)p(b|c)

p(c)

= p(a|c)p(b|c)

and so again we obtain the conditional independence property

a ⊥⊥ b | c.

As before, we can interpret these results graphically. The nodec is said to be
head-to-tailwith respect to the path from nodea to nodeb. Such a path connects
nodesa andb and renders them dependent. If we now observec, as in Figure 8.18,
then this observation ‘blocks’ the path froma to b and so we obtain the conditional
independence propertya ⊥⊥ b | c.

Finally, we consider the third of our 3-node examples, shownby the graph in
Figure 8.19. As we shall see, this has a more subtle behaviourthan the two
previous graphs.

The joint distribution can again be written down using our general result (8.5) to
give

p(a, b, c) = p(a)p(b)p(c|a, b). (8.28)

Consider first the case where none of the variables are observed. Marginalizing both
sides of (8.28) overc we obtain

p(a, b) = p(a)p(b)

Figure 8.19 The last of our three examples of 3-node graphs used to
explore conditional independence properties in graphi-
cal models. This graph has rather different properties
from the two previous examples.

c

a b

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML

376 8. GRAPHICAL MODELS

Figure 8.20 As in Figure 8.19 but conditioning on the value of node
c. In this graph, the act of conditioning induces a depen-
dence between a and b.

c

a b

and soa andb are independent with no variables observed, in contrast to the two
previous examples. We can write this result as

a ⊥⊥ b | ∅. (8.29)

Now suppose we condition onc, as indicated in Figure 8.20. The conditional
distribution ofa andb is then given by

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(b)p(c|a, b)

p(c)

which in general does not factorize into the productp(a)p(b), and so

a 6⊥⊥ b | c.

Thus our third example has the opposite behaviour from the first two. Graphically,
we say that nodec is head-to-headwith respect to the path froma to b because it
connects to the heads of the two arrows. When nodec is unobserved, it ‘blocks’
the path, and the variablesa and b are independent. However, conditioning onc
‘unblocks’ the path and rendersa andb dependent.

There is one more subtlety associated with this third example that we need to
consider. First we introduce some more terminology. We say that nodey is a de-
scendantof nodex if there is a path fromx to y in which each step of the path
follows the directions of the arrows. Then it can be shown that a head-to-head path
will become unblocked if either the node,or any of its descendants, is observed.Exercise 8.10

In summary, a tail-to-tail node or a head-to-tail node leaves a path unblocked
unless it is observed in which case it blocks the path. By contrast, a head-to-head
node blocks a path if it is unobserved, but once the node, and/or at least one of its
descendants, is observed the path becomes unblocked.

It is worth spending a moment to understand further the unusual behaviour of the
graph of Figure 8.20. Consider a particular instance of sucha graph corresponding
to a problem with three binary random variables relating to the fuel system on a car,
as shown in Figure 8.21. The variables are calledB, representing the state of a
battery that is either charged (B = 1) or flat (B = 0), F representing the state of
the fuel tank that is either full of fuel (F = 1) or empty (F = 0), andG, which is
the state of an electric fuel gauge and which indicates either full (G = 1) or empty

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
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CI rule for head-to-head nodes
For conditional independence of two nodes, the head-to-head nodes
between them must be unobserved, which blocks the path.
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D-separation 12(14)

D-separation for Directed Acyclic Graphs
Consider a directed acyclic graph in which A, B and C are arbitrary
non-intersecting sets of nodes. We have the property

A ⊥ B|C

if, on all possible paths from any node in A to any node in B,

• all tail-to-tail and head-to-tail nodes are in C;

• neither head-to-head nodes nor any of their descendants are in
C.
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D-separation examples 13(14)
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Figure 8.22 Illustration of the con-
cept of d-separation. See the text for
details.

f

e b

a

c

(a)

f

e b

a

c

(b)

be satisfied by any distribution that factorizes according to this graph. Note that this
path is also blocked by nodee becausee is a head-to-head node and neither it nor its
descendant are in the conditioning set.

For the purposes of d-separation, parameters such asα andσ2 in Figure 8.5,
indicated by small filled circles, behave in the same was as observed nodes. How-
ever, there are no marginal distributions associated with such nodes. Consequently
parameter nodes never themselves have parents and so all paths through these nodes
will always be tail-to-tail and hence blocked. Consequently they play no role in
d-separation.

Another example of conditional independence and d-separation is provided by
the concept of i.i.d. (independent identically distributed) data introduced in Sec-
tion 1.2.4. Consider the problem of finding the posterior distribution for the mean
of a univariate Gaussian distribution. This can be represented by the directed graphSection 2.3
shown in Figure 8.23 in which the joint distribution is defined by a priorp(µ) to-
gether with a set of conditional distributionsp(xn|µ) for n = 1, . . . , N . In practice,
we observeD = {x1, . . . , xN} and our goal is to inferµ. Suppose, for a moment,
that we condition onµ and consider the joint distribution of the observations. Using
d-separation, we note that there is a unique path from anyxi to any otherxj 6=i and
that this path is tail-to-tail with respect to the observed nodeµ. Every such path is
blocked and so the observationsD = {x1, . . . , xN} are independent givenµ, so that

p(D|µ) =

N∏

n=1

p(xn|µ). (8.34)

Figure 8.23 (a) Directed graph corre-
sponding to the problem
of inferring the mean µ of
a univariate Gaussian dis-
tribution from observations
x1, . . . , xN . (b) The same
graph drawn using the plate
notation.

µ

x1 xN

(a)

xn

N

N

µ

(b)
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• The path from a to b is not blocked by f ,
since it is a tail-to-tail node and f not
observed.

• Nor is it blocked by e, which is a
head-to-head node, with an observed
node c as descendant.

• Hence, CI (a ⊥ b | c) does not follow
from this graph.
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Figure 8.22 Illustration of the con-
cept of d-separation. See the text for
details.
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ever, there are no marginal distributions associated with such nodes. Consequently
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will always be tail-to-tail and hence blocked. Consequently they play no role in
d-separation.

Another example of conditional independence and d-separation is provided by
the concept of i.i.d. (independent identically distributed) data introduced in Sec-
tion 1.2.4. Consider the problem of finding the posterior distribution for the mean
of a univariate Gaussian distribution. This can be represented by the directed graphSection 2.3
shown in Figure 8.23 in which the joint distribution is defined by a priorp(µ) to-
gether with a set of conditional distributionsp(xn|µ) for n = 1, . . . , N . In practice,
we observeD = {x1, . . . , xN} and our goal is to inferµ. Suppose, for a moment,
that we condition onµ and consider the joint distribution of the observations. Using
d-separation, we note that there is a unique path from anyxi to any otherxj 6=i and
that this path is tail-to-tail with respect to the observed nodeµ. Every such path is
blocked and so the observationsD = {x1, . . . , xN} are independent givenµ, so that

p(D|µ) =

N∏

n=1

p(xn|µ). (8.34)

Figure 8.23 (a) Directed graph corre-
sponding to the problem
of inferring the mean µ of
a univariate Gaussian dis-
tribution from observations
x1, . . . , xN . (b) The same
graph drawn using the plate
notation.
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c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML

• The path from a to b is blocked by f ,
since it is a tail-to-tail node and f is
observed.

• It is also blocked by e, head-to-head
node and neither it not its descendants
are observed.

• Hence, CI (a ⊥ b | c) follows from this
graph.
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A few concepts to summarize lecture 8 14(14)

Probabilistic graphical model: Offers a compact way of encoding
the conditional dependency structure of a set of random variables.

Bayesian network: A probabilistic graphical model that represents a
set of random variables and their conditional dependencies via a
directed acyclic graph (DAG).

Markov random field: A probabilistic graphical model that
represents a set of random variables having a Markov property by an
undirected graph.

D-separation: Checking for conditional independence is somewhat
troublesome for directed graphs requiring a condition called
D-separation to be satisfied.
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