	Contents – lecture 8 2(14)
Machine LearningLecture 8 – Graphical modelsA graphical model is a way to represent a joint distribution by making use of conditional independence assumptions."Image: State of Conditional Independence assumptionsThomas SchönDivision of Systems and Control Department of Information Technology Upsala University.Email: thomas.schon@it.uu.se, www: user.it.uu.se/~thosc112	 Summary of lecture 7 Expectation propagation Introducing graphical models Motivation and some basic facts An example - linear dynamical models Conditional independence d-separation (Chapter 10.7 and Chapter 8)
Machine Learning, Lecture 8 – Graphical models T. Schön, 2014	Machine Learning, Lecture 8 – Graphical models T. Schön, 2014
Summary – lecture 7 3(14)	Probabilistic graphical models – motivation 4(14)
Variational inference is a type of approximate Bayesian inference where factorial approximations like $p(Z X) \approx q(Z) = \prod_i q_i(Z_i)$ are used for the posterior. The Kullback-Leibler (KL) distance is used to measure the distance and hence to find an optimization problem. Variational Bayes (VB) is a form of variational inference where KL(q p) is used for the optimization. We fix all but one of the factors and optimize as follows,	 "Graphical models bring together graph theory and probability theory in a powerful formalism for multivariate statistical modeling." ¹ We can of course always handle probabilistic models using pure algebraic manipulation. Some reasons for using probabilistic graphical models, 1. A simple way to visualize the structure of a probabilistic model. 2. Knowledge about model properties directly from the graph. 3. A different way of performing and structuring calculations.
$\widehat{q_j}(Z_j) = \arg\min_{q_j} \left(q_j(Z_j) \prod_{i \neq j} \widehat{q_i}(Z_i) \middle \middle p(X, Z) \right)$	¹ Wainwright, M. J. and Jordan, M. I. Graphical models, exponential families, and variational inference, Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

D-separation examples

13(14)

- The path from *a* to *b* is not blocked by *f*, since it is a tail-to-tail node and *f* not observed.
- Nor is it blocked by *e*, which is a head-to-head node, with an observed node *c* as descendant.
- Hence, Cl (a ± b | c) does not follow from this graph.

Machine Learning, Lecture 8 – Graphical models T. Schön, 2014 c b is blocked by f, since it is a tail-to-tail node and f is observed.

a

- It is also blocked by *e*, head-to-head node and neither it not its descendants are observed.
- Hence, CI $(a \perp b \mid c)$ follows from this graph.

A few concepts to summarize lecture 8

Probabilistic graphical model: Offers a compact way of encoding the conditional dependency structure of a set of random variables.

Bayesian network: A probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG).

Markov random field: A probabilistic graphical model that represents a set of random variables having a Markov property by an undirected graph.

D-separation: Checking for conditional independence is somewhat troublesome for directed graphs requiring a condition called D-separation to be satisfied.

Machine Learning, Lecture 8 – Graphical models T. Schön, 2014