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Summary of lecture 5 3(35)

A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

By assuming that the considered system is a Gaussian process,
predictions can be made by computing the conditional distribution
p(y(x∗)|all the observations), y(x∗) being the output for which we
seek a prediction. This regression approach is referred to as
Gaussian process regression.

The suppor vector machine (SVM) is a discriminative classifier that
gives the maximum margin decision boundary.
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Latent variables – example 4(35)

A latent variable is a variable that is not directly observed. Other
common names are hidden variables, unobserved variables or
missing data.

An example of a latent variable is the state xt in a state space model.

Consider the following linear Gaussian state space (LGSS) model

xt+1 = θxt + vt,

yt =
1
2

xt + et,

(
vt
et

)
∼ N

((
0
0

)
,
(

0.1 0
0 0.1

))
.
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Expectation Maximization (EM) – strategy and idea 5(35)

The Expectation Maximization (EM) algorithm computes ML
estimates of unknown parameters in probabilistic models involving
latent variables.

Strategy: Use the structure inherent in the probabilistic model to
separate the original ML problem into two closely linked
subproblems, each of which is hopefully in some sense more
tractable than the original problem.

EM focus on the joint log-likelihood function of the observed variables
X and the latent variables Z , {z1, . . . , zN},

Lθ(X, Z) = ln pθ(X, Z).
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Expectation Maximization algorithm 6(35)

Algorithm 1 Expectation Maximization (EM)
1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(θ, θi) = Eθi [ln pθ(Z, X | X)]

=
∫

ln pθ(Z, X)pθi(Z | X)dZ

(b) Maximization (M) step: Compute

θi+1 = arg max
θ

Q(θ, θi)

(c) i← i + 1
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EM example 1 – linear system identification 7(35)

Consider the following scalar LGSS model

xt+1 = θxt + vt,

yt =
1
2

xt + et,

(
vt
et

)
∼ N

((
0
0

)
,
(

0.1 0
0 0.1

))
.

The initial state is fully known (x1 = 0) and the true θ-parameter is
given by θ? = 0.9.

The identification problem is now to determine the parameter θ on the
basis of the observations Y = {y1, . . . , yN}, using the EM algorithm.

The latent variables Z are given by the states
Z = X , {x1, . . . , xN+1}.
Note the difference in notation compared to Bishop! The
observations are denoted Y and the latent variables are denoted X.
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EM Example 1 – linear system identification 8(35)

The expectation (E) step:

Q(θ, θi) , Eθi {ln pθ(X, Y) | Y} =
∫

ln pθ(X, Y)pθi(X | Y)dX.

Let us start investigating ln pθ(X, Y). Using conditional probabilities
we have,

pθ(X, Y) = pθ(xN+1, XN, yN, YN−1)

= pθ(xN+1, yN | XN, YN−1)pθ(XN, YN−1),

According to the Markov property we have

pθ(xN+1, yN | XN, YN−1) = pθ(xN+1, yN | xN),

resulting in

pθ(X, Y) = pθ(xN+1, yN | xN)pθ(XN, YN−1).
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EM Example 1 – linear system identification 9(35)

Repeated use of the above ideas straightforwardly yields

pθ(X, Y) = pθ(x1)
N

∏
t=1

pθ(xt+1, yt | xt).

According to the model, we have

pθ

((
xt+1
yt

)
| xt

)
= N

((
xt+1
yt

)
;
(

θ
1/2

)
xt,
(

0.1 0
0 0.1

))
.
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EM example 1 – linear system identification 10(35)

The resulting Q-function is

Q(θ, θi) ∝ −Eθi

{
N

∑
t=1

x2
t | Y

}
θ2 + 2Eθi

{
N

∑
t=1

xtxt+1 | Y

}
θ

= −ϕθ2 + 2ψθ,

where we have defined

ϕ ,
N

∑
t=1

Eθi

{
x2

t | Y
}

, ψ ,
N

∑
t=1

Eθi {xtxt+1 | Y} .

There exist explicit expressions for these expected values.
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EM example 1 – linear system identification 11(35)

The maximization (M) step,

θi+1 = arg max
θ

Q(θ, θi).

simply amounts to solving the following quadratic problem,

θi+1 = arg max
θ

−ϕθ2 + 2ψθ.

The solution is given by

θi+1 =
ψ

ϕ
.
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EM example 1 – linear system identification 12(35)

Algorithm 2 EM – example 1
1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

ϕ =
N

∑
t=1

Eθi

{
x2

t | Y
}

, ψ =
N

∑
t=1

Eθi {xtxt+1 | Y} .

(b) Maximization (M) step: Find the next iterate according to

θi+1 =
ψ

ϕ
.

(c) If |Lθi(Y)− Lθi−1(Y)| ≥ 10−6, update i := i + 1 and return to
step 2, otherwise terminate.
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EM example 1 – linear system identification 13(35)

• Different number of samples N used.

• Monte Carlo studies, each using 1 000 realisations of data.

• Initial guess θ0 = 0.1.

N 100 200 500 1 000 2 000 5 000 10 000
θ̂ 0.8716 0.8852 0.8952 0.8978 0.8988 0.8996 0.8998

No surprise, since ML is asymptotically efficient.
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EM example 1 – linear system identification 14(35)
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(a) Iteration 1

0 0.2 0.4 0.6 0.8 1 1.2
−700

−600

−500

−400

−300

−200

−100

0

Parameter a

Lo
g−

lik
el

ih
oo

d 
an

d 
Q

 fu
nc

tio
n

 

 

Log−likelihood
Q function

(b) Iteration 2
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EM example 1 – linear system identification 15(35)
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(c) Iteration 3
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(d) Iteration 11

All details (including MATLAB code) are provided in
Thomas B. Schön, An Explanation of the Expectation Maximization Algorithm. Division of Automatic Control, Linköping
University, Sweden, Technical Report nr: LiTH-ISY-R-2915, August 2009.

http://user.it.uu.se/~thosc112/pubpdf/schonem2009.pdf
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Nonlinear system identification using EM (I/VI) 16(35)

A general state space model (SSM) consists of a Markov process
{xt}t≥1 and a measurement process {yt}t≥1, related according to

xt+1 | xt ∼ fθ,t(xt+1 | xt, ut),
yt | xt ∼ hθ,t(yt | xt, ut),

x1 ∼ µθ(x1).

Identification problem: Find θ based on {u1:T, y1:T}.
According to the above, the first step is to compute the Q-function

Q(θ, θ̂k) = Eθk {ln pθ(Z, Y) | Y}

Machine Learning, Lecture 6 – Expectation Maximization (EM) and clustering

T. Schön, 2014



Nonlinear system identification using EM (II/VI) 17(35)

Applying Eθk{· | Y} to

lnpθ(X, Y) = ln pθ(Y | X) + ln pθ(X)

= ln pθ(x1) +
N−1

∑
t=1

ln pθ(xt+1 | xt) +
N

∑
t=1

ln pθ(yt | xt).

This results in Q(θ, θk) = I1 + I2 + I3, where

I1 =
∫

ln pθ(x1)pθk(x1 | Y)dx1,

I2 =
N−1

∑
t=1

∫ ∫
ln pθ(xt+1 | xt)pθk(xt+1, xt | Y)dxtdxt+1,

I3 =
N

∑
t=1

∫
ln pθ(yt | xt)pθk(xt | Y)dxt.
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Nonlinear system identification using EM (III/VI) 18(35)

This leads us to a nonlinear state smoothing problem, which we can
solve using a particle smoother (PS).

The PS provides us with the following approximation of the joint
smoothing density

p(X | Y) ≈ 1
M

M

∑
t=1

δ
(

X−Xi
)

,

which allows for the following approximations of the marginal
smoothing densities that we need,

pθk(xt | Y) ≈ p̂θk(xt | Y) =
1
M

M

∑
i=1

δ(xt − xi
t),

pθk(xt:t+1 | Y) ≈ p̂θk(xt:t+1 | Y) =
1
M

M

∑
i=1

δ(xt:t+1 − xi
t:t+1).
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Nonlinear system identification using EM (IV/VI) 19(35)

Inserting the above approximations into the integrals straight-
forwardly yields the approximation we are looking for,

Î1 =
∫

ln pθ(x1)
M

∑
i=1

1
M

δ(x1 − xi
1)dx1 =

1
M

M

∑
i=1

ln pθ(xi
1),

Î2 =
N−1

∑
t=1

∫ ∫
ln pθ(xt+1 | xt)

M

∑
i=1

1
M

δ
(

xt:t+1 − xi
t:t+1

)
dxt:t+1

=
1
M

N−1

∑
t=1

M

∑
i=1

ln pθ(xi
t+1 | xi

t),

Î3 =
N

∑
t=1

∫
ln pθ(yt | xt)

M

∑
i=1

1
M

δ(xt − xi
t)dxt =

1
M

N

∑
t=1

M

∑
t=1

ln pθ(yt | xi
t)
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Nonlinear system identification using EM (V/VI) 20(35)

It is straightforward to make use of the approximation of the
Q-function just derived in order to compute gradients of the
Q-function,

∂

∂θ
Q̂(θ, θk) =

∂̂I1

∂θ
+

∂̂I2

∂θ
+

∂̂I3

∂θ

For example (the other two terms are treated analogously),

Î3 =
1
M

N

∑
t=1

M

∑
t=1

ln pθ(yt | xi
t),

∂̂I3

∂θ
=

1
M

N

∑
t=1

M

∑
t=1

∂ ln pθ(yt | xi
t)

∂θ

With these gradients in place there are many algorithms that can be
used in order to solve the maximization problem, we employ BFGS.
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Nonlinear system identification using EM (VI/VI) 21(35)

Algorithm 3 Nonlinear System Identification Using EM
1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Run a FFBS PS and compute

Q̂(θ, θk) = Î1(θ, θk) + Î2(θ, θk) + Î3(θ, θk)

(b) Maximization (M) step: Compute θk+1 = arg max θQ̂(θ, θk)
using an off-the-shelf numerical optimization algorithm.

(c) k← k + 1

Thomas B. Schön, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models. Automatica,
47(1):39-49, January 2011.
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EM example 2 – blind Wiener identification (I/III) 22(35)

Lut

h1(zt, β)

h2(zt, β)

Σ

e1,t

y1,t

Σ

e2,t

y2,t

zt

xt+1 =
(
A B

) (xt
ut

)
, ut ∼ N (0, Q),

zt = Cxt, yt = h(zt, β) + et, et ∼ N (0, R).

Identification problem: Find A, B, C, β, Q, and R based on
{y1,1:T, y2,1:T} using EM.
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EM example 2 – blind Wiener identification (I/III) 23(35)

• Second order LGSS model with
complex poles.

• Employ the EM-PS with
M = 100 particles.

• EM-PS was terminated after
100 iterations.

• Results obtained using
T = 1 000 samples.

• The plots are based on 100
realizations of data.

• Nonlinearities (dead-zone and
saturation) shown on next slide.
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EM example 2 – blind Wiener identification (I/III) 24(35)
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Adrian Wills, Thomas B. Schön, Lennart Ljung and Brett Ninness. Identification of Hammerstein-Wiener Models.
Automatica, 49(1): 70-81, January 2013.
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Gaussian mixture (GM) – standard construction 25(35)

A linear superposition of Gaussians

p(x) =
K

∑
k=1

πk︸︷︷︸
p(k)

N (xn | µk, Σk)︸ ︷︷ ︸
p(xn|k)

is called a Gaussian mixture (GM). The mixture coefficients πk
satisfies

K

∑
k=1

πk = 1, 0 ≤ πk ≤ 1.

Interpretation: The density p(x | k) = N (x | µk, Σk) is the
probability of x, given that component k was chosen. The probability
of choosing component k is given by the prior probability p(k).
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GM – example 26(35)

Consider the following GM,

p(x) = 0.3︸︷︷︸
π1

N
(

x |
(

4
4.5

)

︸ ︷︷ ︸
µ1

,
(

1.2 0.6
0.6 0.5

)

︸ ︷︷ ︸
Σ1

)
+ 0.5︸︷︷︸

π2

N
(

x |
(

8
1

)

︸︷︷︸
µ2

,
(

1 0
0 1

)

︸ ︷︷ ︸
Σ2

)
+ 0.2︸︷︷︸

π3

N
(

x |
(

9
8

)

︸︷︷︸
µ3

,
(

0.6 0.5
0.5 1.5

)

︸ ︷︷ ︸
Σ3

)

Figure: Probability density function.
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GM – problem with standard construction 27(35)

Given N independent observations {xn}N
n=1, the log-likelihood

function if given by

ln p(X; π1:K, µ1:K, Σ1:K) =
N

∑
n=1

ln

(
K

∑
k=1

πkN (xn | µk, Σk)

)

There is no closed form solution available (due to the sum inside the
logarithm).

Let us now see how this problem can be separated into two simple
problems using the EM algorithm.

First we introduce an equivalent construction of the Gaussian
mixture by introducing a latent variable.

Machine Learning, Lecture 6 – Expectation Maximization (EM) and clustering

T. Schön, 2014

EM for Gaussian mixtures – intuitive preview 28(35)

Based on

p(zn) =
K

∏
k=1

πznk
k and p(xn | zn) =

K

∏
k=1
N (xn | µk, Σk)

znk

we have (for independent observations {xn}N
n=1)

p(X, Z) =
N

∏
n=1

K

∏
k=1

πznk
k N (xn | µk, Σk)

znk ,

resulting in the following log-likelihood

ln p(X, Z) =
N

∑
n=1

K

∑
k=1

znk (ln πk + lnN (xn | µk, Σk)) . (1)

Let us now use wishful thinking and assume that Z is known. Then,
maximization of (1) is straightforward.
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EM for Gaussian mixtures – explicit algorithm 29(35)

Algorithm 4 EM for Gaussian mixtures

1. Initialise: Initialize µ1
k , Σ1

k , π1
k and set i = 1.

2. While not converged do:

(a) Expectation (E) step: Compute

γ(znk) =
πi

kN (xn | µi
k, Σi

k)

∑K
j=1 πi

jN (xn | µi
j, Σi

j)
, n = 1, . . . , N, k = 1, . . . , K.

(b) Maximization (M) step: Compute

µi+1
k =

1
Nk

N

∑
n=1

γ(znk)xn, πi+1
k =

Nk

N
, Nk =

N

∑
n=1

γ(znk)

Σi+1
k =

1
Nk

N

∑
n=1

γ(znk)(xn − µi+1
k )(xn − µi+1

k )T

(c) i← i + 1
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Example – EM for Gaussian mixtures (I/III) 30(35)

Consider the same Gaussian mixture as before,

p(x) = 0.3︸︷︷︸
π1

N
(

x |
(

4
4.5

)

︸ ︷︷ ︸
µ1

,
(

1.2 0.6
0.6 0.5

)

︸ ︷︷ ︸
Σ1

)
+ 0.5︸︷︷︸

π2

N
(

x |
(

8
1

)

︸︷︷︸
µ2

,
(

1 0
0 1

)

︸ ︷︷ ︸
Σ2

)
+ 0.2︸︷︷︸

π3

N
(

x |
(

9
8

)

︸︷︷︸
µ3

,
(

0.6 0.5
0.5 1.5

)

︸ ︷︷ ︸
Σ3

)

Figure: Probability density function.
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Gaussian mixture p(x).
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Example – EM for Gaussian mixtures (II/III) 31(35)

• Apply the EM algorithm to
estimate a Gaussian mixture
with K = 3 Gaussians, i.e.
use the 1 000 samples to
compute estimates of π1, π2,
π3, µ1, µ2, µ3, Σ1, Σ2, Σ3.

• 200 iterations. x
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Figure: Initial guess.
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Example – EM for Gaussian mixtures (III/III) 32(35)
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The K-means algorithm (I/II) 33(35)

Algorithm 5 K-means algorithm, a.k.a. Lloyd’s algorithm

1. Initialize µ1
k and set i = 1.

2. Minimize J w.r.t. rnk keeping µk = µi
k fixed.

ri+1
nk =

{
1 if k = arg minj ‖xn − µi

j‖2

0 otherwise

3. Minimize J w.r.t. µk keeping rnk = ri+1
nk fixed.

µi+1
k =

∑N
n=1 ri+1

nk xn

∑N
n=1 ri+1

nk

.

4. If not converged, update i := i + 1 and return to step 2.
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The K-means algorithm (II/II) 34(35)

The name K-means stems from the fact that in step 3 of the
algorithm, uk is give by the mean of all the data points assigned to
cluster k.

Note the similarities between the K-means algorithm and the EM
algorithm for Gaussian mixtures!

K-means is deterministic with “hard” assignment of data points to
clusters (no uncertainty), whereas EM is a probabilistic method that
provides a “soft” assignment.

If the Gaussian mixtures are modeled using covariance matrices

Σk = εI, k = 1, . . . , K,

it can be shown that the EM algorithm for a mixture of K Gaussian’s
is equivalent to the K-means algorithm, when ε→ ∞.
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A few concepts to summarize lecture 6 35(35)

Latent variable: A variable that is not directly observed. Sometimes
also referred to as hidden variable or missing data.

Expectation Maximization (EM): The EM algorithm computes
maximum likelihood estimates of unknown parameters in
probabilistic models involving latent variables.

Jensen’s inequality: States that if f is a convex function, then
E(f (x)) ≥ f (E(x)).

Clustering: Unsupervised learning, where a set of observations is
divided into clusters. The observations belonging to a certain cluster
are similar in some sense.

K-means algorithm (a.k.a. Lloyd’s algorithm): A clustering
algorithm assigning N observations into K clusters, where each
observation belongs to the closest (Euclediean sense) cluster.
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