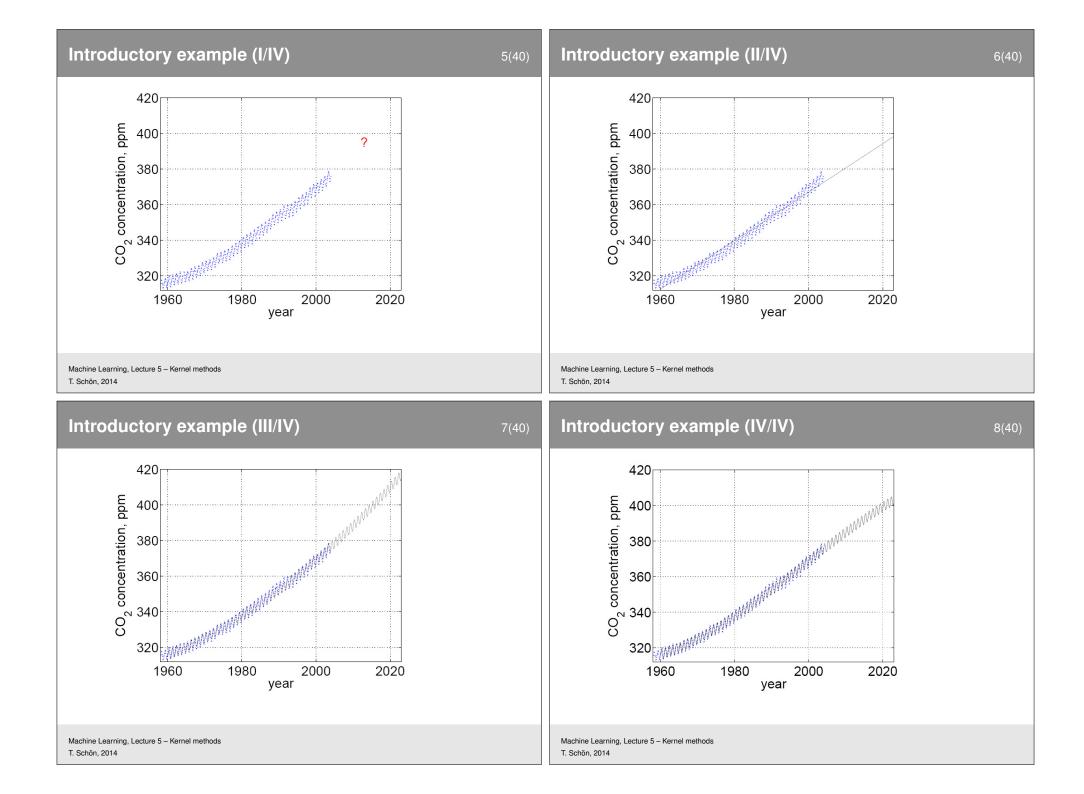
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contents – lecture 5 2(40)                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hachine LearningLecture 5 – Kernel methodsThomas SchönDivision of Systems and Control<br>Department of Information Technology<br>Upsala University.Division of Systems and Control<br>Department of Information Technology<br>Upsala University.Email: thomas.schon@it.uu.se,<br>www: user.it.uu.se/~thosc112                                                                                                                                                                                               | <ol> <li>Summary of lecture 4</li> <li>Introductory GP example</li> <li>Stochastic processes</li> <li>Gaussian processes (GP)         <ul> <li>Construct a GP from a Bayesian linear regression model</li> <li>GP regression</li> <li>Examples where we have made use of GPs in recent research</li> </ul> </li> <li>Support vector machines (SVM)</li> <li>Chapter 6.4 – 7.2 (Chapter 12 in HTF, GP not covered in HTF)</li> </ol>      |
| Machine Learning, Lecture 5 - Kernel methods<br>T. Schön, 2014<br>Summary of lecture 4 (I/II) 3(40)                                                                                                                                                                                                                                                                                                                                                                                                         | Machine Learning, Lecture 5 - Kernel methods<br>T. Schön, 2014<br>Summary of lecture 4 (II/II) 4(40)                                                                                                                                                                                                                                                                                                                                     |
| A neural network is a nonlinear function (as a function expansion)                                                                                                                                                                                                                                                                                                                                                                                                                                          | A kernel function $k(x, z)$ is defined as an inner product                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>from a set of input variables to a set of output variables controlled by adjustable parameters <i>w</i>.</li> <li>This function expansion is found by formulating the problem as usual, which results in a (non-convex) optimization problem. This problem is solved using numerical methods.</li> <li>Backpropagation refers to a way of computing the gradients by making use of the chain rule, combined with clever reuse of information that is needed for more than one gradient.</li> </ul> | $k(x,z) = \phi(x)^T \phi(z)$ ,<br>where $\phi(x)$ is a fixed mapping.<br>Introduced the <b>kernel trick</b> (a.k.a. kernel substitution). In an<br>algorithm where the input data <i>x</i> enters only in the form of scalar<br>products we can replace this scalar product with another choice of<br>kernel.<br>The use of kernels allows us to implicitly use basis functions of high,<br>even infinite, dimensions $(M \to \infty)$ . |



# Linear regression model on matrix form **Stochastic processes** 9(40) Write the linear regression model (without noise) as $y_n = w^T \phi(x_n), \qquad n = 1, \dots, N,$ **Definition (Stochastic process):** A stochastic process can be where $w = \begin{pmatrix} w_0 & w_1 & \dots & w_{M-1} \end{pmatrix}^T$ and $\phi = \begin{pmatrix} 1 & \phi_1(x_n) & \dots & \phi_{M-1}(x_n) \end{pmatrix}^T$ on matrix form defined as a family of random variables $\{y(x), x \in \mathcal{X}\}$ . **Property:** For a fixed $x \in \mathcal{X}$ , y(x) is a random variable. $Y = \Phi w$ . **Examples:** Wiener process, Chinese restaurant process, Dirichlet where processes, Poisson process, Gaussian process, Markov process. $Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{M-1} \end{pmatrix} \quad \Phi = \begin{pmatrix} \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_{M-1}(x_1) \\ \phi_0(x_2) & \phi_1(x_2) & \dots & \phi_{M-1}(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(x_M) & \phi_1(x_M) & \dots & \phi_{M-1}(x_N) \end{pmatrix}$ Åström K. J. (2006). Introduction to Stochastic Control Theory. Dover Publications, Inc., NY, USA. Machine Learning, Lecture 5 - Kernel methods Machine Learning, Lecture 5 - Kernel methods T. Schön, 2014 T. Schön, 2014 Gram matrix made up of kernels A Gaussian Process (GP) 11(40)The matrix *K* is formed from covariance functions (kernels) $k(x_n, x_m)$ $K_n = k(x_n, x_m)$ Definition (Gaussian process): A Gaussian process is a collection and it is referred to as the Gram matrix. of random variables, any finite number of which have a joint Gaussian distribution. Definition (covariance function (kernel)): Given any collection of points $x_1, \ldots, x_N$ , a covariance function $k(x_n, x_m)$ defines the What does this mean? elements of an $N \times N$ matrix $K_{n m} = k(x_n, x_m),$ such that K is positive semidefinite.

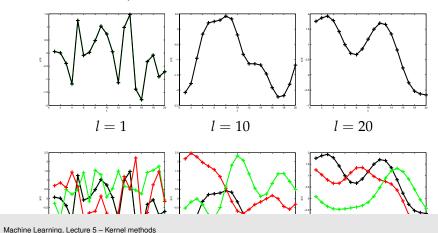
Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014 Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014 10(40)

12(40)

### Samples from a GP

15(40)

Let y(x) be a Gaussian process with mean function m = 0 and a covariance function  $\text{Cov}(y(x), y(x')) = k(x, x') = e^{-(x-x')^2/l}$ . Let x = 1 : 20. Samples from this GP are shown below.



So how do we use this for regression? Assume that we are given the training data  $\{(y_n, x_n)\}_{n=1}^N$  and that we seek an estimate for  $y(x^*)$ . If

 $\begin{bmatrix} \mathbf{y} \\ y(x^*) \end{bmatrix} \sim N\left( \begin{bmatrix} m(\mathbf{x}) \\ m(x^*) \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}, \mathbf{x}) & k(\mathbf{x}, x^*) \\ k(x^*, \mathbf{x}) & k(x^*, x^*) \end{bmatrix} \right)$ 

 $y(x^*)|\mathbf{y} \sim N\Big(k(x^*, \mathbf{x})k(\mathbf{x}, \mathbf{x})^{-1}\big(\mathbf{y} - m(\mathbf{x})\big) + m(x^*),$ 

 $k(x^*, x^*) - k(x^*, \mathbf{x})k(\mathbf{x}, \mathbf{x})^{-1}k(\mathbf{x}, x^*)$ 

and using standard Gaussian identities (lecture 1) we obtain the

we then assume that y(x) can be modeled by a GP, we have

Gaussian Process Regression (GPR)

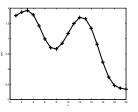
predictive (or conditional) density

# GP as a distribution over functions

It is commonly said that the GP defined by

$$p(Y \mid X) = \mathcal{N}(Y \mid 0, K),$$

specifies a *distribution over functions*. The term "function" is potentially confusing, since it merely referes to a set of outputs values  $y_1, \ldots, y_N$  that corresponds to a set of input variables  $x_1, \ldots, x_N$ .

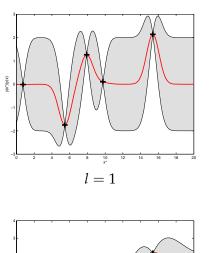


Hence, there is no explicit functional form for the input-output map.

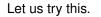
Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014

## **GP** predictive distribution

16(40)



Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014



T. Schön, 2014

Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014

#### 14(40)

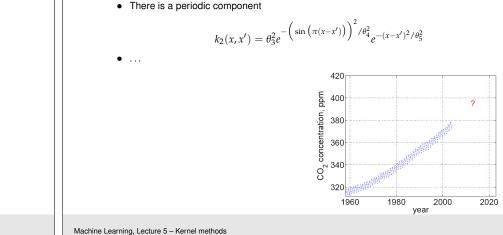
#### Finding the hyperparameters Some kernels 17(40) 18(40)The kernel k (i.e. the covariance function) should ideally be The parameters of the kernels (e.g. *l*) are often referred to as hyper $k(x_t, x_s) = \text{Cov}(y_t, y_s)$ . Some common choices are: parameters and they are typically found using empirical Bayes • The $\gamma$ -exponential kernel (lecture 2). $k(x_t, x_s) = me^{-\|x_t - x_s\|^{\gamma}/l}, \quad 0 < \gamma < 2,$ Recall that empirical Bayes amounts to maximizing the log marginal likelihood where m and l have to be chosen. Squared exponential $(\gamma = 2)$ , Ornstein-Uhlenbeck $(\gamma = 1)$ . $\max_{\text{hyperpar}} \log p(\mathbf{t}) = \max_{\text{hyperpar}} \log \int p(\mathbf{t}|\mathbf{y}) p(\mathbf{y}) d\mathbf{y}$ The Matérn kernel $= \max_{\text{hyperperiod}} \log \int N(\mathbf{t}; \mathbf{y}, \sigma^2) N(\mathbf{y}; \mathbf{0}, k(\mathbf{x}, \mathbf{x})) d\mathbf{y}$ $k(x_t, x_s) = ||x_t - x_s||^{\nu} K_{\nu}(||x_t - x_s||)$ $= \max_{\text{hypercar}} -\frac{1}{2} \mathbf{t}^T \left( \sigma^2 I + k(\mathbf{x}, \mathbf{x}) \right)^{-1} \mathbf{t} - \frac{1}{2} \log |\sigma^2 I + k(\mathbf{x}, \mathbf{x})| - \frac{N}{2} \log 2\pi$ where $K_{\nu}$ is a modified Bessel function, $\nu > 0$ . • . . . Machine Learning, Lecture 5 - Kernel methods Machine Learning, Lecture 5 - Kernel methods T. Schön, 2014 T. Schön, 2014 Some GP properties **Example** – $CO_2$ 19(40)20(40) What covariance functions to chose? · There is a long-term smooth trend Probabilistic $k_1(x, x') = \theta_1^2 e^{-(x-x')^2/\theta_2^2}$ Discriminative

- Nonparametric (a member of the model class referred to as Bayesian nonparametric (BNP) models (lecture 11)).
- Classification can also be done.
- Known under many names, e.g. Kriging (Daniel Krige, 1951).
- Can only handle Gaussian measurement noise.
- Multidimensional output

Machine Learning, Lecture 5 - Kernel methods

T. Schön, 2014

- Have to invert an  $N \times N$  matrix,  $\mathcal{O}(N^3)$  computational complexity. There are techniques to reduce this.
- Strong relations to neural networks.



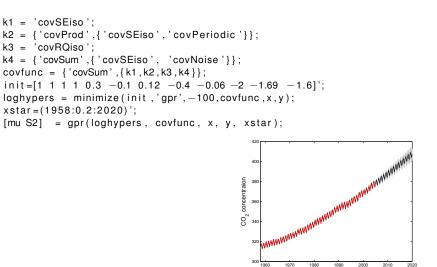
T. Schön, 2014

# **Example –** $CO_2$

#### Example – inverted pendulum

21(40)

23(40)



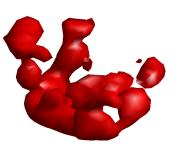
Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014

## Example – GPs obeying Maxwell's equations

**Idea:** Make use of GPs (obeying Maxwell's equations) in modeling the magnetic field and the magnetic sources in complex environments. The result is a map of magnetized items.

#### Preliminary results:





vear

Niklas Wahlström, Manon Kok, Thomas B. Schön and Fredrik Gustafsson. **Modeling magnetic fields using Gaussian** processes. In *Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, Vancouver, Canada, May 2013.

Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014



#### Research conducted by Marc Deisenroth and Carl Rasmussen.

Movie: http://www.youtube.com/watch?v=XiigTGKZfks

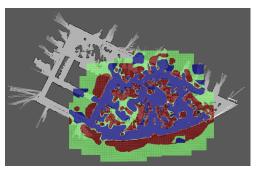
Deisenroth, M. Efficient Reinforcement Learning using Gaussian Processes, PhD thesis, Karlsruhe Institute of Technology. 2011.

Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014

# Example – Occupancy grid maps

24(40)

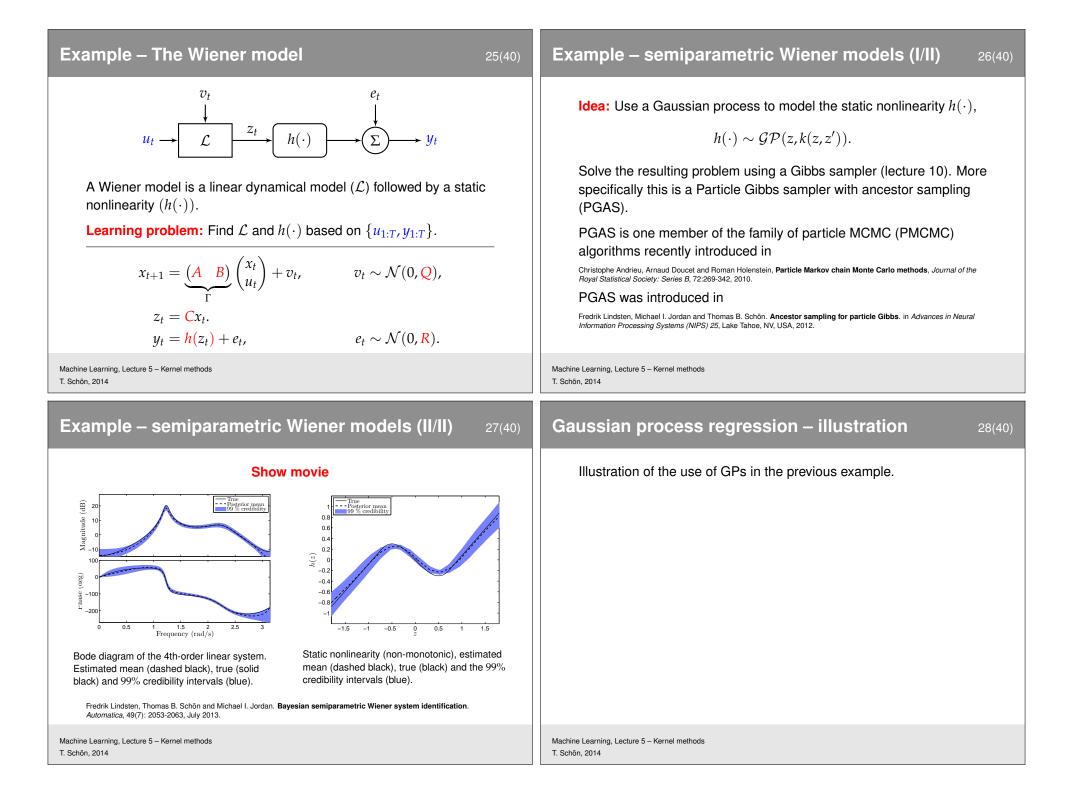
**Idea:** Build continuous occupancy maps using GPs. Allows for spatial correlation to be accounted for in a natural way, and a priori discretization of the area is not necessary as within most standard methods. Downside: computationally complex.



Wågberg, J. and Walldén Viklund, E. Continuous occupancy mapping using Gaussian processes. Master's thesis. Department of Electrical Engineering, Linköping University, Sweden.

Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014

#### 22(40)



| GP state space models for nonlinear systems 29(40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Support Vector Machines (SVM) 30(40)                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| We have been able to construct and learn a Gaussian process (GP) state space model<br>$\begin{aligned} f(x_t) &\sim \mathcal{GP}(m_{\theta_x}(x_t), k_{\theta_x}(x_t, x_t')), \\ x_{t+1} \mid f_t &\sim \mathcal{N}(x_{t+1} \mid f_t, Q), \\ y_t \mid x_t &\sim p(y_t \mid x_t, \theta_y). \end{aligned}$ Key idea: Marginalize out the entire function $f$ .<br>Problem: Renders the model non-Markovian. Solution: PGAS<br>For details, see<br>Roger Frigola, Fredrik Lindsten, Thomas B. Schön and Carl E. Rasmussen, Bayesian inference and learning in Gaussian process state-space models with particle MCMC. In Advances in Neural Information Processing Systems (NIPS) 26, Lake Tahoe, NV, USA, December 2013. | <ul> <li>Very popular classifier.</li> <li>Non-probabilistic</li> <li>Discriminative</li> <li>Can also be used for regression (then called <i>support vector regression</i>, SVR).</li> <li>Convex optimization</li> <li>Sparse</li> <li>SMV are often used to illustrate the interplay between optimization and machine learning.</li> </ul>                  |
| Machine Learning, Lecture 5 – Kernel methods<br>T. Schön, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Machine Learning, Lecture 5 – Kernel methods<br>T. Schön, 2014                                                                                                                                                                                                                                                                                                 |
| SVM for classification (I/IV) 31(40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SVM for classification (II/IV) 32(40)                                                                                                                                                                                                                                                                                                                          |
| Assume: $\{(t_n, x_n)\}_{n=1}^N, x_n \in \mathbb{R}^{n_x} \text{ and } t_n \in \{-1, 1\}, \text{ is a given training data set (linearly separable).}$<br>Task: Given $x^*$ , what is the corresponding label?<br>SVM is a discriminative classifier, i.e. it provides a decision boundary. The decision boundary is given by $\{x w^T\phi(x) + b = 0\}$ .<br>Goal: Find the decision boundary that maximizes the margin! The <i>margin</i> is the distance to the closest point on the decision boundary.                                                                                                                                                                                                               | The decision boundary that maximizes the margin is given as the solution to the <b>quadratic program (QP)</b><br>$ \min_{w,b} \frac{1}{2}   w  ^2 $ s.t. $t_n(w^T \phi(x_n) + b) - 1 \ge 0$ , $n = 1,, N$ . To make it possible to let the dimension of the feature space (dim of $\phi(x_n)$ ) go to infinity, we have to work with the <b>dual problem</b> . |
| Machine Learning, Lecture 5 – Kernel methods<br>T. Schön, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Machine Learning, Lecture 5 – Kernel methods<br>T. Schön, 2014                                                                                                                                                                                                                                                                                                 |

### SVM for classification (III/IV)

33(40)

First, the Lagrangian is

$$L(w, b, \mathbf{a}) = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \Big( t_n (w^T \phi(x_n) + b) - 1 \Big)$$

and minimizing w.r.t. w, b we obtain the dual objective  $g(\mathbf{a})$ . Taking the derivative w.r.t. w, b and set them to zero,

$$\frac{dL(w,b,\mathbf{a})}{db} = \sum_{n=1}^{N} a_n t_n = 0, \quad \frac{dL(w,b,\mathbf{a})}{dw} = w - \sum_{n=1}^{N} a_n t_n \phi(x_n) = 0.$$

This gives

$$g(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} a_n a_m t_n t_m \phi(x_m)^T \phi(x_n).$$

Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014

# Support vectors – sparse version of training data 35(40)

It can be shown that the KKT conditions for this optimization problem satisfies

$$a_n \ge 0,$$
  
 $t_n y(x_n) - 1 \ge 0,$   
 $a_n(t_n y(x_n) - 1) = 0.$ 

The result is that for each training data the following is true

- 1. Either  $a_n = 0$  or
- 2.  $t_n y(x_n) = 1$ .

Training data with  $a_n = 0$  do not appear in the solution. The remaining training data (i.e., where  $t_n y_n = 1$ ) are referred to as **support vectors** (training data that lie on the maximum margin decision boundary).

Let  $k(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ . The dual objective then becomes

$$g(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} a_n a_m t_n t_m k(x_m, x_n)$$

which we can maximize w.r.t. a and subject to

$$a_n \geq 0, \qquad \sum_{n=1}^N a_n t_n = 0.$$

The maximizing **a** (let us call it **â**) gives using  $w^T \phi(x^*) = (\sum_{n=1}^N a_n t_n \phi(x_n))^T \phi(x^*)$  that

$$y(x^*) = \sum_{n=1}^{N} \hat{a}_n t_n k(x^*, x_n) + b.$$

Many  $\hat{a}$ 's will be zero (**sparseness**)  $\Rightarrow$  computational remedy.

Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014

### SVM for classification – non-separable classes 36(40)

If points are on the right side of the decision boundary, then  $t_n(w^T\phi(x_n) + b) \ge 1$ . To allow for some violations, we introduce slack variables  $\zeta_n$ , n = 1, ..., N. The modified optimization problem becomes

$$\begin{split} \min_{w,b,\zeta} \frac{1}{2} \|w\|^2 + C \sum_n^N \zeta_n \\ \text{s.t.} \quad t_n(w^T \phi(x_n) + b) + \zeta_n - 1 \ge 0, \quad n = 1, \dots, N, \\ \zeta_n \ge 0, \quad n = 1, \dots, N. \end{split}$$

Machine Learning, Lecture 5 – Kernel methods T. Schön, 2014

