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1. Summary of lecture 4
2. Introductory GP example
3. Stochastic processes

4. Gaussian processes (GP)

e Construct a GP from a Bayesian linear regression model
o GP regression
e Examples where we have made use of GPs in recent research

5. Support vector machines (SVM)

Chapter 6.4 — 7.2 (Chapter 12 in HTF, GP not covered in HTF)
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Summary of lecture 4 (I/ll) 340) | Summary of lecture 4 (II/ll) 4(40)

A neural network is a nonlinear function (as a function expansion)
from a set of input variables to a set of output variables controlled by
adjustable parameters w.

This function expansion is found by formulating the problem as usual,
which results in a (non-convex) optimization problem. This problem is
solved using numerical methods.

Backpropagation refers to a way of computing the gradients by
making use of the chain rule, combined with clever reuse of
information that is needed for more than one gradient.
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A kernel function k(x, z) is defined as an inner product

k(x,2) = ¢(x)"9(2),
where ¢(x) is a fixed mapping.

Introduced the kernel trick (a.k.a. kernel substitution). In an
algorithm where the input data x enters only in the form of scalar
products we can replace this scalar product with another choice of
kernel.

The use of kernels allows us to implicitly use basis functions of high,

even infinite, dimensions (M — o).
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Introductory example (l1I/1V) 7(40) Introductory example (IV/IV) 8(40)
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Stochastic processes 9(40) Linear regression model on matrix form 0(40)

Definition (Stochastic process): A stochastic process can be
defined as a family of random variables {y(x), x € X'}.

Property: For a fixed x € X', y(x) is a random variable.

Examples: Wiener process, Chinese restaurant process, Dirichlet
processes, Poisson process, Gaussian process, Markov process.

Astrom K. J. (2006). Introduction to Stochastic Control Theory. Dover Publications, Inc., NY, USA.
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Write the linear regression model (without noise)
Yn = qub(xn), n=1,...,N,

where w = (wy w1 wM_1)T and

o= (1 ¢r1(xn) 4>M,1(xn))Ton matrix form
Y = dw,
where
n ¢o(x1)  ¢r1(x1) ... pm-1(x)
Y y.z ©— ¢0(.x2) (Pl(.xz) <PM—-1(X2)
y.N 4’0(.XN) <P1(IXN) (PM—l-(xN)
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Gram matrix made up of kernels 11(40) | A Gaussian Process (GP)

The matrix K is formed from covariance functions (kernels) k(x;, x,)
Kn,m = k(xnr xm)

and it is referred to as the Gram matrix.

Definition (covariance function (kernel)): Given any collection of
points x1, ..., Xn, a covariance function k(x,, x,,) defines the
elements of an N x N matrix

Kn,m = k(xn/ xm);

such that K is positive semidefinite.
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Definition (Gaussian process): A Gaussian process is a collection
of random variables, any finite number of which have a joint
Gaussian distribution.

What does this mean?
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Samples from a GP 1340) | GP as a distribution over functions

Let y(x) be a Gaussian process with mean function m = 0 and a It is commonly said that the GP defined by
covariance function Cov(y(x),y(x')) = k(x,x') = e~ C—¥)*/1_ | et

x = 1:20. Samples from this GP are shown below. p(Y | X) = N(Y|0,K),

specifies a distribution over functions. The term “function” is
potentially confusing, since it merely referes to a set of outputs values
Y1, ..., YN that corresponds to a set of input variables x1, ..., xn.

|
o { J\ o Hence, there is no explicit functional form for the input-output map.
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Gaussian Process Regression (GPR) 1540) I GP predictive distribution 16(40)

So how do we use this for regression? Assume that we are given the
training data { (, x,) }\_, and that we seek an estimate for y(x*). If
we then assume that y(x) can be modeled by a GP, we have

Y | on m(x) k(x,x)  k(x,x*)
y(x*) m(x*) | [k(x*,x)  k(x*,x*)
and using standard Gaussian identities (lecture 1) we obtain the
predictive (or conditional) density

YOY)

() |y ~ N(k(x*,x)k(x, x) "L (y — m(x)) +m(x*), I=1
k(x*, x*) — k(x*, x)k(x,x) " k(x, x*))

Let us try this. ’ m
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Finding the hyperparameters

The parameters of the kernels (e.g. ) are often referred to as hyper-
parameters and they are typically found using empirical Bayes
(lecture 2).

Recall that empirical Bayes amounts to maximizing the log marginal
likelihood

pmax logp(t) = max log / p(tly)p(y)dy

= max log/N(t;y,UZ)N(y;O,k(x,x))dy
hyperpar

B 1, a1 N
_h%}::;(ar—it (021 + k(x,x)) t—§10g|021+k(x,x)\ ElogZT[
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Some kernels

The kernel k (i.e. the covariance function) should ideally be
k(xt, xs) = Cov(yt,ys). Some common choices are:

e The y-exponential kernel
k(xt, xs) = me_||xt—xs”7/l’ 0<y<2,

where m and I have to be chosen. Squared exponential
(7 = 2), Ornstein-Uhlenbeck (y = 1).

e The Matérn kernel
k(xt, x5) = [|oce — x| Ko ([|2c¢ — xs )
where K, is a modified Bessel function, v > 0.
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Some GP properties

o Probabilistic
e Discriminative

e Nonparametric (a member of the model class referred to as
Bayesian nonparametric (BNP) models (lecture 11)).

o (Classification can also be done.

e Known under many names, e.g. Kriging (Daniel Krige, 1951).
e Can only handle Gaussian measurement noise.

e Multidimensional output

e Have to invert an N x N matrix, O(N?) computational
complexity. There are techniques to reduce this.

e Strong relations to neural networks.
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Example — CO,

What covariance functions to chose?
e There is a long-term smooth trend
ki (x,x') = 02~ (/%3

e There is a periodic component

2
kz(x,x’) _ 9§6*<sin (n(xfx’))) /GZE—(X—X/)Z/(%

CO, concentration, ppm

1980 2000
year
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Example — CO,

k1 "covSEiso ’;

k2 = {’covProd’,{’ covSEiso’,’covPeriodic '}};

k3 = ’'covRQiso’;

k4 = {’covSum’ ,{’covSEiso’, ’covNoise'}};

covfunc = {’covSum’ , {k1,k2,k3,k4}};

init=[1 11103 —01 0.12 —04 —0.06 —2 —1.69 —1.6]";
loghypers = minimize(init, gpr’,—100,covfunc,x,y);
xstar=(1958:0.2:2020) ’;

[mu S2] = gpr(loghypers, covfunc, x, y, xstar);

CO, concentraion
8
g

1960 1970 1980 1990 2000 2010 2020
year
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Example — inverted pendulum

Research conducted by Marc Deisenroth and Carl Rasmussen.
Movie: http://www.youtube.com/watch?v=XiigTGKZfks

Deisenroth, M. Efficient Reinforcement Learning using Gaussian Processes, PhD thesis, Karlsruhe Institute of
Technology. 2011.
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Example — GPs obeying Maxwell’s equations 23(40)

Idea: Make use of GPs (obeying Maxwell’s equations) in modeling
the magnetic field and the magnetic sources in complex
environments. The result is a map of magnetized items.

Preliminary results:

Niklas Wahlstrom, Manon Kok, Thomas B. Schon and Fredrik Gustafsson. M ic fields using Gaussian
processes. In Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Vancouver, Canada, May 2013.
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Example — Occupancy grid maps

Idea: Build continuous occupancy maps using GPs. Allows for
spatial correlation to be accounted for in a natural way, and a priori
discretization of the area is not necessary as within most standard
methods. Downside: computationally complex.

Wagberg, J. and Walldén Viklund, E. Continuous occupancy mapping using Gaussian processes. Master’s thesis.
Department of Electrical Engineering, Linkdping University, Sweden.
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Example — semiparametric Wiener models (l/11) 26(40)

Example — The Wiener model

Ot et
Idea: Use a Gaussian process to model the static nonlinearity (-),

Zt l
up— L —> e Yt h(-) ~ GP(z,k(z,2)).
Solve the resulting problem using a Gibbs sampler (lecture 10). More
specifically this is a Particle Gibbs sampler with ancestor sampling
(PGAS).
PGAS is one member of the family of particle MCMC (PMCMC)
algorithms recently introduced in

Xt ) . ! ’ ;
— Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
X1 = (A B) (u ) + Ut Ot ~ N(O’ Q)’ Royal Statistical Society: Series B, 72:269-342, 2010.
t . .
PGAS was introduced in

A Wiener model is a linear dynamical model (£) followed by a static
nonlinearity (h(-)).
Learning problem: Find £ and h(-) based on {u1.7, y1.7}.

r
Zy = Cxt . Fredrik Lindsten, Michael I. Jordan and Thomas B. Schén. Ancestor sampling for particle Gibbs. in Advances in Neural
Information Processing Systems (NIPS) 25, Lake Tahoe, NV, USA, 2012.
Yr = h(Zt) + ey, ey NN(O,R).
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Gaussian process regression — illustration

Example — semiparametric Wiener models (ll/ll) 27(40)

Show movie lllustration of the use of GPs in the previous example.
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Static nonlinearity (non-monotonic), estimated
mean (dashed black), true (black) and the 99%
credibility intervals (blue).

Bode diagram of the 4th-order linear system.
Estimated mean (dashed black), true (solid
black) and 99% credibility intervals (blue).

ic Wiener sy identification.

Fredrik Lindsten, Thomas B. Schén and Michael I. Jordan. Bayesi; ip
Automatica, 49(7): 2053-2063, July 2013.
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GP state space models for nonlinear systems 29¢40) | Support Vector Machines (SVM) 30(40)

We have been able to construct and learn a Gaussian process (GP)

state space model Very popular classifier.
Non-pr ilisti
f(x1) ~ GP(ma, (x1), ko, (31, %))), ® Non-probablisti
X1 | fi ~ N(xt-H | £,Q), e Discriminative | o
ye | xe ~p(ys | xt,0y) e Can also be used for regression (then called o X
Y support vector regression, SVR). o y
Key idea: Marginalize out the entire function f. e Convex optimization % X
Problem: Renders the model non-Markovian. Solution: PGAS e Sparse
e SMV are often used to illustrate the interplay

For details, see between optimization and machine learning.

Roger Frlgola Fredrik Lindsten, Thomas B. Schén and Carl E. Rasmussen, Bayesian inference and learning in Gaussian
dels with particle MCMC. In Advances in Neural Information Processing Systems (NIPS) 26, Lake
Tahoe NV, USA, December 2013.
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SVM for classification (1/1V) SVM for classification (Il/1V)

Assume: {(t,, x,) 1, x, € R™ and
:”e ear{agli,)l}, 's agiven training data set (linearly The decision boundary that maximizes the margin is given as the
P ’ solution to the quadratic program (QP)
Task: Given x*, what is the corresponding label? o 1
L, . 2
o mig Il
SVM is a discriminative classifier, i.e. it provides a o A x ’ T b <
decision boundary. The decision boundary is given N st ta(w ¢(x) +0) =120, n=1,...,N.
by {x|w ¢ (x) +b = 0}. T . . . : :
To make it possible to let the dimension of the feature space (dim of
Goal: Find the decision boundary that maximizes ¢(x,)) go to infinity, we have to work with the dual problem.
the margin! The margin is the distance to the
closest point on the decision boundary.
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SVM for classification (lIl/IV) 3340) | SVM for classification (IV/IV)

First, the Lagrangian is
1 2 A T
L(w,b,a) = 5|[wl? = } ax (tn(w ¢(xy) +b) — 1)
n=1

and minimizing w.r.t. w, b we obtain the dual objective g(a). Taking
the derivative w.r.t. w, b and set them to zero,

dL(w,b,a dL(w, b, a)

» »
- antn - 0, =W — antn¢(x;1) - 0.
n=1 dw n=1

This gives

N
g(a) = ;an - E Z Z anamtntmfp(xm)

m=1n=

¢ (xn).
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Let k(x;, xj) = ¢(x;)"¢(x;). The dual objective then becomes

N 1
g(a) = Z nT Z Zanﬂmtntm (%X, Xn)

n=1 m=1n=

which we can maximize w.r.t. a and subject to

N
Y anty =0.
n=1

The maximizing a (let us call it &) gives using

wTp(x*) = (TN antu(x,)) T (x*) that

aTlZO/

N
y(x*) =) Autak(x*, xy) + .
n=1

Many a’s will be zero (sparseness) = computational remedy.
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34(40)

Support vectors — sparse version of training data 35(40)

It can be shown that the KKT conditions for this optimization problem
satisfies

ai’l 2 O/
tny(xn) -1>0,
an(tay(x,) —1) = 0.

The result is that for each training data the following is true

1. Eithera, = 0or

2. tny(xn) - 1.
Training data with a,, = 0 do not appear in the solution. The
remaining training data (i.e., where t,;y,, = 1) are referred to as

support vectors (training data that lie on the maximum margin
decision boundary).
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SVM for classification — non-separable classes

If points are on the right side of the decision boundary, then
ta(w'¢(x,) +b) > 1. To allow for some violations, we introduce
slack variables {,,, n =1, ..., N. The modified optimization problem
becomes

1o Y
- C
g};}gzllwll + )n:én

st t(w g(xy) +b)+ 0 —1>0,
gn > 0/
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Example — CVX to compute SVM (I/11)

Example — CVX to compute SVM (lI/11)

Linearly separable data: Y i
cvx_begin °° e} © o
variables w(nx,1) b - ><
minimize (0.5%w’%w) . Q.~* X

subject to o

y % (W % x+bxones (1,N))—ones (1,N) >= 0 LI
cvx_end X

Loy

Non-separable data: \

_ o ", o
cvx_begin o OO (8
variables w(nx,1) b zeta(1,N) o4
minimize (0.5%xw’xw + Cxones(1,N)xzeta’) ° ‘\‘O

subject to Lk X Y

y.% (W xx+bxones (1,N)) —ones(1,N)+zeta >= 0 y G,

zeta >= 0 &,
cvx_end °: «
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SVM - Solving the dual:

k=@(x1,x2) exp(—sum((x1xones(1,size(x2,2))—x2).72)/0.5)"
for t=1:N;for s=t:N
K(t,s)=k(x(:,t),x(:,s));K(s,t)=K(t,s);

end;end
cvx_begin .
variables a(N,1) os
minimize ( 1/2x(a.xy’) 'xK«x(a.xy’) — ones(1,N)*xa) o o x
subject to o4
ones(1,N)*(a.xy’) == 0 "
a>=20 o
cvx_end o o © 8
ind=find (a>0.01);
wphi = @(xstar) ones(1,N)x(a.xy’'.xk(xstar,x)) | x
b=0; Boee e o4 ez ooz on 0s 0s

for i=1:length(ind)

b=b+1/y (ind (i))—wphi(x(:,ind(i)));
end

b=b/length (ind);

ystar = @(xstar) wphi(xstar)+b
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A few concepts to summarize lecture 5

Kernel: Kernel is another name for covariance function, i.e., a
function k that depends in input data in the following way

k(xm, xXn) = 4’(xm)T47(xn)-
Gaussian processes (GP): A GP is a collection of random variables,
any finite number of which have a joint Gaussian distribution.

Gaussian process regression: Assume that the underlying process
can be modeled using a GP. Use Gaussian identities to compute the
conditional distribution.

Support vector machines: A discriminative classifier that gives the
maximum margin decision boundary.

Support vector: A training data that lies on the maximum margin
decision boundary.
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Further reading and code

e Rasmussen & Williams, 2006 (electronic version:

WWW.gaussianprocess. org/gpml/).

e Bernhard Schélkopf and Alex Smola. Learning
with Kernels. MIT Press, Cambridge, MA, 2002.

e GP site WWW.gaussianprocess.org/

e Yalmip can be downloaded from

users.isy.liu.se/johanl/yalmip/
o CVX can be downloaded from cvxr.com/cvx/
o GPR MATLAB toolbox can be downloaded from:

WWW.gaussianprocess.org/gpml/

e Video lecture on GPR:

videolectures.net/mlss09uk_rasmussen_gp/
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