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Summary of lecture 3 (I/III) 3(25)

Investigated one linear discriminant (a function that takes an input
and assigns it to one of K classes) method in detail (least squares).

Modelled each class as yk(x) = wT
k x + wk,0 and solved the LS

problem, resulting in ŵ = (XTX)−1XTT.

Showed how probabilistic generative models could be built for
classification using the strategy,

1. Model p(x | Ck) (a.k.a. class-conditional density)

2. Model p(Ck)

3. Use ML to find the parameters in p(x | Ck) and p(Ck).

4. Use Bayes’ rule to find p(Ck | x)
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Summary of lecture 3 (II/III) 4(25)

The “direct” method called logistic regression was introduced. Start
by stating the model

p(C1 | φ) = σ(wTφ) =
1

1 + e−wTφ
,

which results in a log-likelihood function according to

L(w) = − ln p(T | w) = −
N

∑
n=1

(tn ln(yn) + (1− tn) ln(1− yn)) ,

where yn = p(C1 | φ) = σ(wTφ). Note that this is a nonlinear, but
concave function of w.

Hence, we can easily find the global minimum using Newton’s
method (resulting in an algorithm known as IRLS).
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Summary of lecture 3 (III/III) 5(25)

The likelihood function for logistic regression is

p(T | w) =
N

∏
n=1

σ(wTφn)
tn
(

1− σ(wTφn)
)1−tn

Hence, computing the posterior density p(w | T) = p(T|w)p(w)
p(T) is

intractable and we considered the Laplace approximation.

The Laplace appr. is a simple (local) appr. obtained by fitting a
Gaussian centered around the (MAP) mode of the distribution.

An interesting, relatively recent and influential application of Laplace
approximations, see (this would make for a perfect project...)
Rue, H. Martino, S. and Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated
nested Laplace approximations. Journal of the Royal Statistical Society: Series B, 71(2):319–393, 2009.
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Two examples of neural networks in use 6(25)

1. System identification

2. Handwritten digit classification

These examples will provide a glimpse into a few real life applications
of models based in nonlinear function expansions (i.e., neural
networks) both for regression and classification problems.
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NN example 1 – system identification (I/V) 7(25)

Neural networks are one of the standard models used in nonlinear
system identification.

Problem background: The task here is to identify a dynamical
model of a Magnetorheological (MR) fluid damper. The MR fluid
(typically some kind of oil) will greatly increase its so called apparent
viscosity when the fluid is subjected to a magnetic field.

MR fluid dampers are semi-active control devices which are used to
reduce vibrations.

Input signal: velocity v(t) [cm/s] of the damper
Output signal: Damping force f (t) [N].
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NN example 1 – system identification (II/V) 8(25)

Have a look at the data
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NN example 1 – system identification (III/V) 9(25)

As usual, we try simple things first, that is a linear model. The best
linear model turns out to be an output error (OE) model which gives
51% fit on validation data.

LinMod2 = oe ( ze , [4 2 1 ] ) ; % OE model y = B/ F u + e

Try a sigmoidal neural network using 10 hidden units
Options = { ’ MaxIter ’ , 5 0 , ’ SearchMethod ’ , ’LM ’ } ;
Narx1 = n la r x ( ze , [2 4 1 ] , ’ s igmoidnet ’ , Options { : } )

This model already gives a 72% fit on test/validation data.
compare ( zv , Narx1 ) ;
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NN example 1 – system identification (IV/V) 10(25)

Using 12 hidden units and only making use of some of the
regressors,

Sig = sigmoidnet ( ’ NumberOfUnits ’ , 1 2 ) ; % create SIGMOIDNET ob jec t
Narx5 = n la r x ( ze , [2 3 1 ] , Sig , ’ Nonl inearRegressors ’ , [1 3 4 ] , . . .

Options { : } ) ;

the performance can be increased to a 85% fit on validation data.

Of course, this model need further validation, but the improvement
from 51% fit for the best linear model is substantial.
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NN example 1 – system identification (V/V) 11(25)

This example if borrowed from
Wang, J., Sano, A., Chen, T. and Huang. B. Identification of Hammerstein systems without explicit parameterization of
nonlinearity. International Journal of Control, 82(5):937–952, May 2009.

and it is used as one example in illustrating Lennart’s toolbox,
http://www.mathworks.com/products/sysid/demos.html?file=/products/demos/shipping/
ident/idnlbbdemo_damper.html

More about the use of neural networks in system identification can
be found in,
Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P-Y., Hjalmarsson, H. and Juditsky, A. Nonlinear
black-box modeling in system identification: a unified overview, Automatica, 31(12):1691–1724, December 1995.
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NN example 2 – digit classification (I/IV) 12(25)

You have tried solving this problem using linear methods before. Let
us see what can be done if we generalize to nonlinear function
expansions (neural networks) instead.

Let us now investigate 4 nonlinear models and one linear model
solving the same task,

• Net-1: No hidden layer (equivalent to logistic regression).

• Net-2: One hidden layer, 12 hidden units fully connected.

• Net-3: Two hidden layers locally connected.

• Net-4: Two hidden layers, locally connected with weight
sharing.

• Net-5: Two hidden layers, locally connected with two levels of
weight sharing.
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NN example 2 – digit classification (II/IV) 13(25)

Local connectivity
(Net3-Net5) means that
each hidden unit is
connected only to a small
number of units in the layer
before. It makes use of the
key property that nearby
pixels are more strongly
correlated than distant
pixels.
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NN example 2 - digit classification (III/IV) 14(25)

Network Architecture Links Weights Correct
Net-1: 0 hidden layer 2570 2570 80.0%
Net-2: 1 hidden layer network 3214 3214 87.0%
Net-3: 2 hidden layer, locally connected 1226 1226 88.5%
Net-4: 2 hidden layer, constrained network 2266 1132 94.0%
Net-5: 2 hidden layer, constrained network 5194 1060 98.4%

Copyright IEEE 1989.

Net-4 and Net-5 are referred to as convolutional networks.

This example illustrates that knowledge about the problem at hand
can be very useful in order to improve the performance!
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NN example 2 – digit classification (IV/IV) 15(25)

This example if borrowed from Section 11.7 in HTF, who in turn
borrowed it from,

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-Based Learning Applied to Document Recognition, Proceedings
of the IEEE, 86(11):2278–2324, November 1998.

The best performance as of today is provided by a deep neural
network published at CVPR in 2012 (99.77%),
Ciresan, D., Meier, U. and Schmidhuber, J. Multi-column Deep Neural Networks for Image Classification, In proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, USA, June, 2012.

Recall the page mentioned during lecture 1 on this problem,

http://yann.lecun.com/exdb/mnist/

There is plenty of software support for neural networks, for example
MATLAB’s neural network toolbox (for general problems) and the
system identification toolbox (for sys. id.).
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The “deep learning hype” 16(25)

Even made it into the New York Times in November, 2012,
http://www.nytimes.com/2012/11/24/science/
scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?
pagewanted=1&_r=2&

Deep learning is a very active topic at NIPS.

A good entry point (tutorial papers, talks, groups, etc.) into the deep
learning hype is provided by

http://deeplearning.net/

Interesting topic for a project!
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Introducing kernel methods (I/III) 17(25)

Let us introduce the kernel methods as an equivalent formulation of
the linear regression problem.

Recall that linear regression models the relationship between a cont-
inuous target variable t and a function φ(x) of the input variable x,

tn = wTφ(xn)︸ ︷︷ ︸
y(xn,w)

+εn.

From lecture 2 we have that the posterior distribution is given by

p(w | T) = N (w | mN, SN),

mN = βSNΦTT,

SN = (αI + βΦTΦ)−1.
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Introducing kernel methods (II/III) 18(25)

Inserting this into y(x, w) = wTφ(x) provides the following
expression for the predictive mean

y(x, mN) = mT
Nφ(x) = φ(x)TmN = βφ(x)TSNΦTT

=
N

∑
n=1

βφ(x)TSNφ(xn)︸ ︷︷ ︸
k(x,xn)

tn =
N

∑
n=1

k(x, xn)tn,

where

k(x, x′) = βφ(x)TSNφ(x′)

is referred to as the equivalent kernel.

This suggests and alternative approach to regression where we
instead of introducing a set of basis functions directly make use of a
localized kernel.
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Introducing kernel methods (III/III) 19(25)

Kernel methods constitutes a class of algorithms where the training
data (or a subset thereof) is kept also during the prediction phase.

Many linear methods can be re-cast into an equivalent “dual
representation” where the predictions are based on linear
combinations of kernel functions (one example provided above).

A general property of kernels is that they are inner products

k(x, z) = ψ(x)Tψ(z)

(Linear regression example, ψ(x) = β1/2S1/2
N φ(x))

The above development suggests the following idea. In an algorithm
where the input data x enters only in the form of scalar products we
can replace this scalar product with another choice of kernel! This is
referred to as the kernel trick.
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Kernel representation of `2-reg. LS (I/II) 20(25)

Inserting the solution ŵ = ΦTâ = ΦT(K + λI)−1T into y(x, w)
provides the following prediction for a new input x

y(x, ŵ) = ŵTφ(x) = âTΦφ(x) =
((

(K + λI)−1T
)T

Φφ(x)
)T

= φ(x)TΦT(K + λI)−1T

= φ(x)T (φ(x1) φ(x2) · · · φ(xN)
)
(K + λI)−1T

=
(
k(x, x1) k(x, x2) · · · k(x, xN)

)
(K + λI)−1T,

where we have made use of the definition of a kernel function

k(x, z) , φ(x)Tφ(z)

Hence, the solution to the `2-regularized least squares problem is
expressed in terms of the kernel function k(x, z).
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Kernel representation of `2-reg. LS (II/II) 21(25)

Note (again) that the prediction at x is given by a linear combination
of the target values from the training set (expensive).

Furthermore, we are required to invert an N×N matrix (compared
to an M×M matrix in the original formulation), where typically
N � M.

Relevant question, So what is the point?

The fact that it is expressed only using the kernel function k(x, z)
implies that we can work entirely using kernels and avoid introducing
basis functions φ(x). This in turn allows us to implicitly use basis
functions of high, even infinite, dimensions (M→ ∞).
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Constructing kernels 22(25)

1. Chose a feature mapping φ(x) and then use this to find the
corresponding kernel,

k(x, z) = φ(x)Tφ(z) =
M

∑
i=1

φi(x)φi(z)

2. Chose a kernel function directly. In this case it is important to
verify that it is in fact a kernel. (we will see two examples of this)

A function k(x, z) is a kernel iff the Gram matrix K is positive semi-definite for all
possible inputs.

3. Form new kernels from simpler kernels.

4. Start from probabilistic generative models.
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Techniques for constructing new kernels 23(25)

Given valid kernels k1(x, z) and k2(x, z), the following are also valid
kernels

k(x, z) = ck1(x, z), k(x, z) = f (x)k1(x, z)f (z),
k(x, z) = q(k1(x, z)), k(x, z) = exp(k1(x, z)),
k(x, z) = k1(x, z) + k2(x, z), k(x, z) = k1(x, z)k2(x, z),

k(x, z) = k3(φ(x), φ(z)), k(x, z) = xTAx,

where c > 0 is a constant, f is a function, q is a polynomial with
nonnegative coefficients, φ(x) is a function from x to RM, k3 is a
valid kernel in RM and A � 0.
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Example – polynomial kernel 24(25)

Let us investigate if the polynomial kernel

k(x, z) = (xTz + c)n, c > 0

is a kernel for the special case n = 2 and a 2D input space
x = (x1, x2)

T,

k(x, z) = (xTz)2 = (x1z1 + x2z2 + c)2

= x2
1z2

1 + 2x1z1x2z2 + x2
2z2

2 + 2cx1z1 + 2cx2z2 + c2

= φ(x)Tφ(z),

where

φ(x) =
(
x2

1

√
2x1x2 x2

2

√
2cx1

√
2cx2 c

)T

Hence, it contains all possible terms (constant, linear and quadratic)
up to order 2.
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A few concepts to summarize lecture 4 25(25)

Neural networks: A nonlinear function (as a function expansion)
from a set of input variables {xi} to a set of output variables {yk}
controlled by a vector w of parameters.

Backpropagation: Computing the gradients via the chain rule,
combined with clever reuse of information that is needed for more
than one gradient.

Convolutional neural networks: The hidden units takes their inputs
from a small part of the available inputs and all units have the same
weights (called weight sharing).

Kernel function: A kernel function k(x, z) is defined as an inner
product k(x, z) = φ(x)Tφ(z), where φ(x) is a fixed mapping.

Kernel trick: When the input data x enters only in the form of scalar
products, replace this scalar product with a different kernel.
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