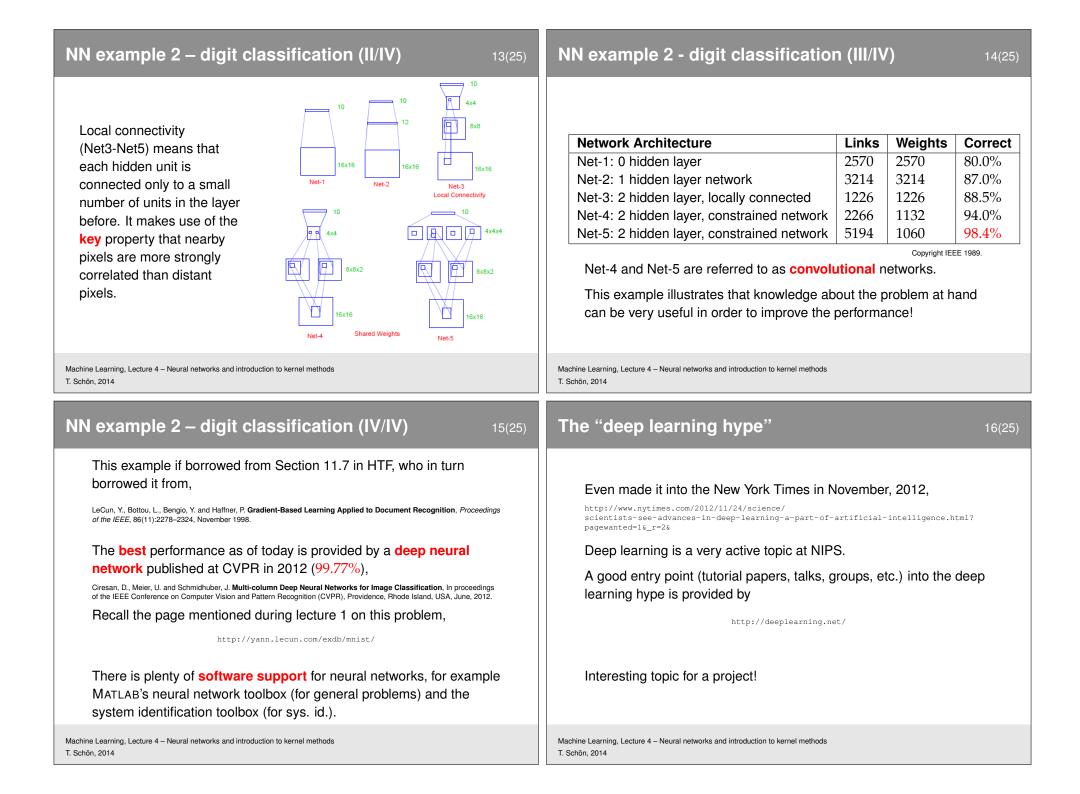
	Contents – lecture 4 2(25)
December of the end of the	 Summary of lecture 3 Generalize the linear model to a nonlinear function expansion Training of neural networks Successful examples of NN in real life examples System identification Handwritten digit classification Introducing kernel methods Different ways of constructing kernels
Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014	Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014
Summary of lecture 3 (I/III) 3(25)	Summary of lecture 3 (II/III) 4(25)
Investigated one linear discriminant (a function that takes an input and assigns it to one of K classes) method in detail (least squares).	The "direct" method called logistic regression was introduced. Start by stating the model
Modelled each class as $y_k(x) = w_k^T x + w_{k,0}$ and solved the LS	$p(\mathcal{C}_1 \mid \phi) = \sigma(w^T \phi) = \frac{1}{1 + e^{-w^T \phi}},$
problem, resulting in $\widehat{w} = (X^T X)^{-1} X^T T$.	
problem, resulting in $w = (X^T X)^{-1} X^T T$. Showed how probabilistic generative models could be built for classification using the strategy, 1. Model $p(x C_k)$ (a.k.a. class-conditional density) 2. Model $p(C_k)$ 3. Use ML to find the parameters in $p(x C_k)$ and $p(C_k)$. 4. Use Bayes' rule to find $p(C_k x)$	which results in a log-likelihood function according to $L(w) = -\ln p(T \mid w) = -\sum_{n=1}^{N} (t_n \ln(y_n) + (1 - t_n) \ln(1 - y_n)),$ where $y_n = p(C_1 \mid \phi) = \sigma(w^T \phi)$. Note that this is a nonlinear, but concave function of w . Hence, we can easily find the global minimum using Newton's method (resulting in an algorithm known as IRLS).

Summary of lecture 3 (III/III) 5(25)	Two examples of neural networks in use 6(25)
The likelihood function for logistic regression is $p(T \mid w) = \prod_{n=1}^{N} \sigma(w^{T}\phi_{n})^{t_{n}} \left(1 - \sigma(w^{T}\phi_{n})\right)^{1-t_{n}}$ Hence, computing the posterior density $p(w \mid T) = \frac{p(T \mid w)p(w)}{p(T)}$ is intractable and we considered the Laplace approximation. The Laplace appr. is a simple (local) appr. obtained by fitting a Gaussian centered around the (MAP) mode of the distribution. An interesting, relatively recent and influential application of Laplace approximations, see (this would make for a perfect project) Rue, H. Martino, S. and Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B, 71(2):319-393, 2009.	 System identification Handwritten digit classification These examples will provide a glimpse into a few real life applications of models based in nonlinear function expansions (i.e., neural networks) both for regression and classification problems.
Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014	Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014
NN example 1 – system identification (I/V) 7(25)	NN example 1 – system identification (II/V) 8(25)
Neural networks are one of the standard models used in nonlinear system identification. Problem background: The task here is to identify a dynamical model of a Magnetorheological (MR) fluid damper. The MR fluid (typically some kind of oil) will greatly increase its so called apparent viscosity when the fluid is subjected to a magnetic field. MR fluid dampers are semi-active control devices which are used to reduce vibrations. Input signal: velocity $v(t)$ [cm/s] of the damper Output signal: Damping force $f(t)$ [N].	Have a look at the data
Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014	Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014

NN example 1 – system identification (III/V) 9(25)	NN example 1 – system identification (IV/V) 10(25)
As usual, we try simple things first , that is a linear model. The best linear model turns out to be an output error (OE) model which gives 51% fit on validation data. LinMod2 = oe(ze, [4 2 1]); % OE model y = B/F u + e Try a sigmoidal neural network using 10 hidden units Options = {'MaxIter',50, 'SearchMethod', 'LM'}; Narx1 = nlarx(ze, [2 4 1], 'sigmoidnet',Options {:}) This model already gives a 72% fit on test/validation data. compare(zv, Narx1);	Using 12 hidden units and only making use of some of the regressors, Sig = sigmoidnet('NumberOfUnits',12); % create SIGMOIDNET object Narx5 = nlarx(ze, [2 3 1], Sig, 'NonlinearRegressors', [1 3 4], Options{:}); the performance can be increased to a 85% fit on validation data. Of course, this model need further validation, but the improvement from 51% fit for the best linear model is substantial.
Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014	Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014
NN example 1 – system identification (V/V) 11(25)	NN example 2 – digit classification (I/IV) 12(25)
This example if borrowed from Wang, J., Sano, A., Chen, T. and Huang. B. Identification of Hammerstein systems without explicit parameterization of nonlinearity. International Journal of Control, 82(5):937–952, May 2009. and it is used as one example in illustrating Lennart's toolbox, http://www.mathworks.com/products/sysid/demos.html?file=/products/demos/shipping/ ident/idnlbbdemo_damper.html More about the use of neural networks in system identification can be found in, Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P-Y., Hjalmarsson, H. and Juditsky, A. Nonlinear black-box modeling in system identification: a unified overview, Automatica, 31(12):1691–1724, December 1995.	 You have tried solving this problem using linear methods before. Let us see what can be done if we generalize to nonlinear function expansions (neural networks) instead. Let us now investigate 4 nonlinear models and one linear model solving the same task, Net-1: No hidden layer (equivalent to logistic regression). Net-2: One hidden layer, 12 hidden units fully connected. Net-3: Two hidden layers locally connected. Net-4: Two hidden layers, locally connected with weight sharing. Net-5: Two hidden layers, locally connected with two levels of weight sharing.
Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014	Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014



Introducing kernel methods (I/III)

18(25)

Let us introduce the kernel methods as an **equivalent** formulation of the linear regression problem.

Recall that linear regression models the relationship between a continuous target variable *t* and a function $\phi(x)$ of the input variable *x*,

$$t_n = \underbrace{w^T \phi(x_n)}_{y(x_n,w)} + \epsilon_n.$$

From lecture 2 we have that the posterior distribution is given by

$$p(w \mid T) = \mathcal{N}(w \mid m_N, S_N),$$

$$m_N = \beta S_N \Phi^T T,$$

$$S_N = (\alpha I + \beta \Phi^T \Phi)^{-1}.$$

Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014

Introducing kernel methods (III/III)

Kernel methods constitutes a class of algorithms where the training data (or a subset thereof) is kept also during the prediction phase.

Many linear methods can be re-cast into an **equivalent** "dual representation" where the predictions are based on linear combinations of kernel functions (one example provided above).

A general property of kernels is that they are inner products

$$k(x,z) = \psi(x)^T \psi(z)$$

(Linear regression example, $\psi(x) = \beta^{1/2} S_N^{1/2} \phi(x)$)

The above development suggests the following idea. In an algorithm where the input data x enters only in the form of scalar products we can replace this scalar product with another choice of kernel! This is referred to as the **kernel trick**.

Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014 Inserting this into $y(x, w) = w^T \phi(x)$ provides the following expression for the predictive mean

$$(x, m_N) = m_N^T \phi(x) = \phi(x)^T m_N = \beta \phi(x)^T S_N \Phi^T T$$
$$= \sum_{n=1}^N \underbrace{\beta \phi(x)^T S_N \phi(x_n)}_{k(x, x_n)} t_n = \sum_{n=1}^N k(x, x_n) t_n,$$

where

y

$$k(x, x') = \beta \phi(x)^T S_N \phi(x')$$

is referred to as the **equivalent kernel**.

Introducing kernel methods (II/III)

This suggests and alternative approach to regression where we instead of introducing a set of basis functions directly make use of a localized kernel.

Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014

Kernel representation of ℓ_2 -reg. LS (I/II)

20(25)

Inserting the solution $\hat{w} = \Phi^T \hat{a} = \Phi^T (K + \lambda I)^{-1} T$ into y(x, w) provides the following prediction for a new input *x*

$$y(x,\widehat{w}) = \widehat{w}^T \phi(x) = \widehat{a}^T \Phi \phi(x) = \left(\left((K + \lambda I)^{-1} T \right)^T \Phi \phi(x) \right)^T$$

= $\phi(x)^T \Phi^T (K + \lambda I)^{-1} T$
= $\phi(x)^T \left(\phi(x_1) \quad \phi(x_2) \quad \cdots \quad \phi(x_N) \right) (K + \lambda I)^{-1} T$
= $\left(k(x, x_1) \quad k(x, x_2) \quad \cdots \quad k(x, x_N) \right) (K + \lambda I)^{-1} T$,

where we have made use of the definition of a kernel function

$$k(x,z) \triangleq \phi(x)^T \phi(z)$$

Hence, the solution to the ℓ_2 -regularized least squares problem is expressed in terms of the kernel function k(x, z).

Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014

Kernel representation of ℓ_2 -reg. LS (II/II) 21(25)	Constructing kernels 22(25)
Note (again) that the prediction at x is given by a linear combination of the target values from the training set (expensive). Furthermore, we are required to invert an $N \times N$ matrix (compared to an $M \times M$ matrix in the original formulation), where typically $N \gg M$. Relevant question, So what is the point? The fact that it is expressed only using the kernel function $k(x, z)$ implies that we can work entirely using kernels and avoid introducing basis functions $\phi(x)$. This in turn allows us to implicitly use basis functions of high, even infinite, dimensions $(M \to \infty)$.	 Chose a feature mapping φ(x) and then use this to find the corresponding kernel, k(x,z) = φ(x)^Tφ(z) = ∑_{i=1}^{M} φ_i(x)φ_i(z) Chose a kernel function directly. In this case it is important to verify that it is in fact a kernel. (we will see two examples of this) A function k(x,z) is a kernel iff the Gram matrix K is positive semi-definite for all possible inputs. Form new kernels from simpler kernels. Start from probabilistic generative models.
Iachine Learning, Lecture 4 – Neural networks and introduction to kernel methods Schön, 2014 Fechniques for constructing new kernels 23(25)	Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014 Example – polynomial kernel 24(25)
Given valid kernels $k_1(x, z)$ and $k_2(x, z)$, the following are also valid kernels $\begin{aligned} k(x, z) &= ck_1(x, z), & k(x, z) &= f(x)k_1(x, z)f(z), \\ k(x, z) &= q(k_1(x, z)), & k(x, z) &= \exp(k_1(x, z)), \\ k(x, z) &= k_1(x, z) + k_2(x, z), & k(x, z) &= k_1(x, z)k_2(x, z), \end{aligned}$	Let us investigate if the polynomial kernel $k(x,z) = (x^T z + c)^n, c > 0$ is a kernel for the special case $n = 2$ and a 2D input space $x = (x_1, x_2)^T,$ $k(x,z) = (x^T z)^2 = (x_1 z_1 + x_2 z_2 + c)^2$
$k(x,z) = k_3(\phi(x),\phi(z)),$ $k(x,z) = x^T A x,$ where $c > 0$ is a constant, f is a function, q is a polynomial with nonnegative coefficients, $\phi(x)$ is a function from x to \mathbb{R}^M , k_3 is a valid kernel in \mathbb{R}^M and $A \succeq 0$.	$= x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2 + 2c x_1 z_1 + 2c x_2 z_2 + c^2$ $= \phi(x)^T \phi(z),$ where $\phi(x) = \begin{pmatrix} x_1^2 & \sqrt{2} x_1 x_2 & x_2^2 & \sqrt{2c} x_1 & \sqrt{2c} x_2 & c \end{pmatrix}^T$ Hence, it contains all possible terms (constant, linear and quadratic) up to order 2.

A few concepts to summarize lecture 4

25(25)

Neural networks: A nonlinear function (as a function expansion) from a set of input variables $\{x_i\}$ to a set of output variables $\{y_k\}$ controlled by a vector w of parameters.

Backpropagation: Computing the gradients via the chain rule, combined with clever reuse of information that is needed for more than one gradient.

Convolutional neural networks: The hidden units takes their inputs from a small part of the available inputs and all units have the *same* weights (called weight sharing).

Kernel function: A kernel function k(x, z) is defined as an inner product $k(x, z) = \phi(x)^T \phi(z)$, where $\phi(x)$ is a fixed mapping.

Kernel trick: When the input data x enters only in the form of scalar products, replace this scalar product with a different kernel.

Machine Learning, Lecture 4 – Neural networks and introduction to kernel methods T. Schön, 2014