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Linear regression models the relationship between a continuous
target variable t and a possibly nonlinear function φ(x) of the input
variable x,

tn = wTφ(xn)︸ ︷︷ ︸
y(xn,w)

+εn.

Solved this problem using

1. Maximum Likelihood (ML)

2. Bayesian approach

ML with a Gaussian noise model is equivalent to least squares (LS).
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Summary of lecture 2 (II/III) 4(21)

Theorem (Gauss-Markov)
In a linear regression model

T = Φw + E,

where E is white noise with zero mean and covariance R, the best
linear unbiased estimate (BLUE) of w is

ŵ = (ΦTR−1Φ)−1ΦTR−1T, Cov(ŵ) = (ΦTR−1Φ)−1.

Interpretation: The least squares estimator has the smallest mean
square error (MSE) of all linear estimators with no bias, BUT there
may exist a biased estimator with lower MSE.
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Summary of lecture 2 (III/III) 5(21)

Two potentially biased estimators are ridge regression (p = 2) and
the Lasso (p = 1)

min
w

∑N
n=1

(
tn −wTφ(xn)

)2

s.t. ∑M−1
j=0 |wj|p ≤ η

which using a Lagrange multiplier λ can be stated

min
w

N

∑
n=1

(
tn −wTφ(xn)

)2
+ λ

M−1

∑
j=0
|wj|p

Alternative interpretation: The MAP estimate with the likelihood
∏N

n=1(tn −wTφ(xn))2 together with a Gaussian prior leads to ridge
regression and together with a Laplacian prior it leads to the LASSO.
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Generative and discriminative models 6(21)

Approaches that model the distributions of both the inputs and the
outputs are known as generative models. The reason for the name
is the fact that using these models we can generate new samples in
the input space.

Approaches that models the posterior probability directly are referred
to as discriminative models.
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ML for probabilistic generative models (I/IV) 7(21)

Consider the two class case, where the class-conditional densities
p(x | Ck) are Gaussian and the training data is given by {xn, tn}N

n=1.
Furthermore, assume that p(C1) = α.

The task is now to find the parameters α, µ1, µ2, Σ by maximizing the
likelihood function (i.i.d. Bernoulli),

p(T, X | α, µ1, µ2, Σ) =
N

∏
n=1

(p(xn, C1))
tn(p(xn, C2))

1−tn ,

where

p(xn, C1) = p(C1)p(xn | C1) = αN (xn | µ1, Σ),
p(xn, C2) = p(C2)p(xn | C2) = (1− α)N (xn | µ2, Σ).
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ML for probabilistic generative models (II/IV) 8(21)

Let us now maximize the logarithm of the likelihood function,

L(α, µ1, µ2, Σ) = ln

(
N

∏
n=1

(αN (xn | µ1, Σ))tn ((1− α)N (xn | µ2, Σ))1−tn

)

The terms that depends on α are

N

∑
n=1

(tn ln α + (1− tn) ln(1− α))

which is maximized by α̂ = 1
N ∑N

n=1 tn = N1
N1+N2

(as expected). Nk
denotes the number of data in class Ck. Straightforwardly we get

µ̂1 =
1

N1

N

∑
n=1

tnxn, µ̂2 =
1

N2

N

∑
n=1

(1− tn)xn.
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ML for probabilistic generative models (III/IV) 9(21)

L(Σ) = −1
2

N

∑
n=1

tn ln det Σ− 1
2

N

∑
n=1

tn(xn − µ1)
TΣ−1(xn − µ1)

− 1
2

N

∑
n=1

(1− tn) ln det Σ− 1
2

N

∑
n=1

(1− tn)(xn − µ2)
TΣ−1(xn − µ2)

Using the fact that xTAx = Tr
(
AxxT) we have

L(Σ) = −N
2

ln det Σ− N
2

Tr
(

Σ−1S
)

,

where

S =
1
N

N

∑
n=1

(
tn(xn − µ1)(xn − µ1)

T + (1− tn)(xn − µ2)(xn − µ2)
T
)
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ML for probabilistic generative models (IV/IV) 10(21)

Lemma (Useful matrix derivatives)

∂

∂M
ln det M = M−T,

∂

∂M
Tr
(

M−1N
)
= −M−TNTM−T.

Differentiating L(Σ) = −N
2 ln det Σ− N

2 Tr
(
Σ−1S

)
results in

∂L
∂Σ

= −N
2

Σ−T +
N
2

Σ−TSΣ−T

∂L
∂Σ

= 0

Hence, Σ = S

More results on matrix derivatives are available in
Magnus, J. R., & Neudecker, H. (1999). Matrix differential calculus with applications in statistics and econometrics. 2nd
Edition, UK: Wiley.
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Generalized linear models for classification 11(21)

In linear regression we made use of a linear model

tn = y(x, w) = wTφ(xn) + εn.

For classification problems the target variables are discrete, or
slightly more general, posterior probabilities in the range (0, 1). This
is achieved using a so called activation function f (f−1 must exist),

y(x) = f (wTx + w0). (1)

Note that the decision surface corresponds to y(x) = constant,
implying that wTx + w0 = constant. This means that the decision
surface is a linear function of x, even if f is nonlinear. Hence, the
name generalized linear model for (1).
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Gradient of L(w) for logistic regression (I/II) 12(21)

The negative log-likelihood is

L(w) = −
N

∑
n=1

(tn ln yn + (1− tn) ln(1− yn)) ,

where

yn = σ(an) =
1

1 + exp(−an)
, and an = wTφn.

Using the chain rule we have,

g =
∂L
∂w

=
N

∑
n=1

∂L
∂yn

∂yn

∂an

∂an

∂w

where
∂L
∂yn

=
1− tn

1− yn
− tn

yn
=

yn − tn

yn(1− yn)
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Gradient of L(w) for logistic regression (II/II) 13(21)

Furthermore,

∂yn

∂an
=

∂σ(an)

∂an
= · · · = σ(an)(1− σ(an)) = yn(1− yn),

∂an

∂w
= φn.

which results in the following expression for the gradient

g =
N

∑
n=1

(yn − tn)φn = ΦT(Y− T),

where

Φ =




φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)


 Y =




y1
y2
...

yN


 T =




t1
t2
...

tN
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Hessian of L(w) for logistic regression 14(21)

H =
∂2L

∂w∂wT = · · · =
N

∑
n=1

(yn − tn)φnφT
n = ΦTRΦ

where

R =




y1(1− y1) 0 . . . 0
0 y2(1− y2) . . . 0
...

...
. . .

...
0 0 . . . yN(1− yN)
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Bayesian logistic regression 15(21)

Recall that

p(T | w) =
N

∏
n=1

σ(wTφn)
tn
(

1− σ(wTφn)
)1−tn

Hence, computing the posterior density

p(w | T) =
p(T | w)p(w)

p(T)

is intractable. We are forced to an approximation. Three alternatives

1. Laplace approximation (this lecture)

2. VB & EP (lecture 7)

3. Sampling methods, e.g., MCMC (lecture 10)
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Laplace approximation (I/III) 16(21)

The Laplace approximation is a simple approximation that is
obtained by fitting a Gaussian centered around the (MAP) mode of
the distribution.

Consider the density function p(z) of a scalar stochastic variable z,
given by

p(z) =
1
Z

f (z),

where Z =
∫

f (z)dz is the normalization coefficient.

1. Find the MAP mode: We start by finding a mode z0 of the density
function,

df (z)
dz

∣∣∣∣
z=z0

= 0.
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Laplace approximation (II/III) 17(21)

2. Compute a Gaussian approximation around the MAP mode:
Start by considering a Taylor expansion of ln f (z) around z0,

ln f (z) ≈ ln f (z0) +
d
dz

ln f (z)
∣∣∣∣
z=z0︸ ︷︷ ︸

=0

(z− z0) +
1
2

d2

dz2 ln f (z)
∣∣∣∣
z=z0

(z− z0)
2

= ln f (z0)−
A
2
(z− z0)

2, (2)

where

A = − d2

dz2 ln f (z)
∣∣∣∣
z=z0

Taking the exponential of both sides in (2) results in

f (z) ≈ f (z0) exp
(
−A

2
(z− z0)

2
)
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Laplace approximation (III/III) 18(21)

By normalizing this expression we have now obtained a Gaussian
approximation

q(z) =
(

A
2π

)1/2

exp
(
−A

2
(z− z0)

2
)

where

A = − d2

dz2 ln f (z)
∣∣∣∣
z=z0

The main limitation of the Laplace approximation is that it is a local
method that only captures aspects of the true density around a
specific value z0.
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Bayesian logistic regression (I/II) 19(21)

The posterior is

p(w | T) ∝ p(T | w)p(w), (3)

where we assume a Gaussian prior p(w) = N (w | m0, S0) and
make use of the Laplace approximation. Taking the logarithm of both
sides of (3) gives

ln p(w | t) = −1
2
(w−m0)

TS−1
0 (w−m0)

+
N

∑
n=1

(tn ln yn + (1− tn) ln(1− yn)) + const.

where yn = σ(wTφn).
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Bayesian logistic regression (II/II) 20(21)

Using the Laplace approximation we can now obtain a Gaussian
approximation

q(w) = N (w | wMAP, SN)

where wMAP is the MAP estimate of p(w | T) and the covariance SN
is the Hessian of ln p(w | T),

SN =
∂2

∂w∂wT ln p(w | T) = S−1
0 +

N

∑
n=1

yn(1− yn)φnφT
n

Based on this distribution we can now start making predictions for
new input data φ(x), which is typically what we are interested in.
Recall that prediction corresponds to marginalization w.r.t. w.
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A few concepts to summarize lecture 3 21(21)

Classification: The goal of classification is to assign an input vector x to one of K classes,
Ck, k = 1, . . . , K.

Discriminant: A discriminant is a function that takes an input x and assigns it to one of K
classes.

Generative models: Approaches that model the distributions of both the inputs and the
outputs are known as generative models. In classification this amounts to modelling the
class-conditional densities p(x | Ck), as well as the prior densities p(Ck). The reason for the
name is the fact that using these models we can generate new samples in the input space.

Discriminative models: Approaches that models the posterior probability directly are referred
to as discriminative models.

Logistic Regression: Discriminative model that makes direct use of a generalized linear
model in the form of a logistic sigmoid to solve the classification problem.

Laplace approximation: A local approximation method that finds the mode of the posterior
distribution and then fits a Gaussian centered at that mode.
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