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About the exam (I/II) 3(48)

• If you have followed the course and completed the exercises
you will not be surprised when you see the exam.

• You will learn new things during the exam.

Practicalities:

• Time frame: 3 days (72h), somewhere in the time frame April 4,
2014 - May 5, 2014 (May 5, 2014 is the last day to start the
exam).

• You collect the exam from X.

• Within 72 hours after you have collected the exam, you put your
solutions in an envelope (seal it) and hand it in to X.
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About the exam (II/II) 4(48)

As usual the graduate exam honor code applies. This means,

• The course books, other books and MATLAB are all allowed
aids.
• Internet services such as email, web browsers and other

communication with the surrounding world concerning the exam
is NOT allowed.
• You are NOT allowed to actively search for the solutions in

books, papers, the Internet or anywhere else.
• You are NOT allowed to talk to others (save for the responsible

teacher) about the exam at all.
• You are NOT allowed to look at exams from earlier version of

the course.
• If anything is unclear concerning what is allowed and not, just

ask me.
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Summary of lecture 9 (I/III) 5(48)

Introduced the Hammersley-Clifford theorem to find the PDF for an
undirected graph (Markov random field). The joint pdf,

p(x1:N ) =
1
Z ∏

c∈C
ψc(xc),

C is the set of all maximal cliques and Z is the partition function,

Z = ∑
x1:N

∏
c∈C

ψc(xc).

Inference in graphical models amounts to computing the posterior
distribution of one or more of the nodes that are not observed.
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Summary of lecture 9 (II/III) 6(48)

The inference algorithm is expressed in terms of a message
passing algorithm, where local messages are propagated around
the graph. Two interconnected types of messages are considered:

• Messages from variable nodes to factor
nodes

µxi→fj(xi) = ∏
f`∈ne(xi)\fj

µf`→xi(xi)

• Messages from factor nodes to variable
nodes

µfj→xi(xi) = ∑
x`∈ne(fj)\xi

fj ∏
x`∈ne(fj)\xi

µx`→fj(x`)

xi fj

µxi→fj(xi)

f`

xi fj

µfj→xi
(xi)

x`
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Summary of lecture 9 (III/III) 7(48)

Sum-Product Algorithm
• Calculate messages from variable nodes to factor nodes

µxi→fj(xi) = ∏
f`∈ne(xi)\fj

µf`→xi(xi)

• Calculate messages from factor nodes to variable nodes

µfj→xi(xi) = ∑
x`∈ne(fj)\xi

fj ∏
x`∈ne(fj)\xi

µx`→fj(x`)

• Iterate messages until convergence. (Different iteration schemes can
be designed.)
• After convergence, the marginals are calculated as

p(xi) ∝ ∏
f`∈ne(xi)

µf`→xi(xi)
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Motivation – Monte Carlo 8(48)

In solving inference problems we are sooner or later typically faced
with various integration problems, which tend to live in high
dimensional spaces.

This hols for both Maximum likelihood and Bayesian approaches.

To be concrete, we have (for example) the following general
problems

1. Expectation

2. Marginalization (includes normalization)
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MC motivation 1 – expectation 9(48)

An expected value often provides an interesting (and interpretable)
point estimate.

Computing an expectation amounts to solving the following integral

E [g(z)] =
∫

Z
g(z)p(z)dz,

for some function g : Z → Rng .

Example: Computing a point estimate (g(xt) = xt).
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MC motivation 2 – marginalization 10(48)

If we are interested in the properties of a stochastic variable z1 and
have access to the PDF p(z1, z2 | y1:T), then we can marginalize out
the variable z2, resulting in p(z1 | y1:T).

p(z1 | y1:T) =
∫

Z2

p(z1, z2 | y1:T)dz2

Examples: Normalization p(y1:T) =
∫

p(y1:T | z)p(z)dz (used in
e.g., empirical Bayes). As another example (in using the EM
algorithm for nonlinear ML identification) we need the two-step
smoothing densities p(xt:t+1 | y1:T), whereas several smoothing
algorithms provides the entire joint smoothing density p(x1:T | y1:T).
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Approximation methods 11(48)

Many of the models we are currently interested in do not allow for
closed form expressions. We are forced to approximations. Broadly
speaking there are two classes,

1. Deterministic analytical approximations: Either approximate
the model or restrict the solution to belong to an analytically
tractable form. Examples, Laplace approximation, variational
Bayes (VB), expectation propagation (EP).

2. Stochastic approximations: Keep the model and
approximate the solution without imposing any restrictions other
than the computational resources available.

In this lecture we are concerned with stochastic approximations
(deterministic approximations are already covered).
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Monte Carlo methods 12(48)

Monte Carlo methods provides computational solutions, where the
obtained accuracy is limited only by our computational resources.

Monte Carlo methods respects the model and the general solution.
The approximation does not impose any restricting assumptions on
the model or the solution.
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The Monte Carlo idea (I/II) 13(48)

(Very) restrictive assumption: Assume that we have N samples
{zi}N

i=1 from the target density π(z),

π̂(z) =
N

∑
i=1

1
N

δzi(z)

Allows for the following approximation of the integral,

E [g(z)] =
∫

g(z)π(z)dz ≈
∫

g(z)
N

∑
i=1

1
N

δzi(z)dz =
1
N

N

∑
i=1

g(zi)

”
∫

+ δ→∑ ”
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The Monte Carlo idea (II/II) 14(48)

The integral

I(g(z)) , Eπ(z) [g(z)] =
∫

g(z)π(z)dz.

is approximated by

ÎM(g(z)) =
1
M

M

∑
i=1

g(zi).

The strong law of large numbers tells us that

ÎM(g(z)) a.s.−→ I(g(z)), M→ ∞,

and the central limit theorem state that
√

M
(

ÎM(g(z))− I(g(z))
)

σg

d−→ N (0, 1) , M→ ∞.
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The Monte Carlo idea – toy illustration 15(48)

π(z) = 0.3N (z | 2, 2) + 0.7N (z | 9, 19)

5 000 samples 50 000 samples

Obvious problem: In general we are not able to directly sample
from the density we are interested in.
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Rejection sampling (I/VII) 16(48)

Rejection sampling is a Monte Carlo method that produce i.i.d.
samples from a target distribution

π(z) =
π̃(z)
Cπ

,

where π̃(z) can be evaluated and Cπ is a normalization constant.

Key idea: Generate random
numbers uniformly from the area
under the graph of the target
distribution π(z).

Just as hard as the original
problem, but what if...
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Rejection sampling (II/VII) 17(48)

z̃

π( z̃)

Bq ( z̃)

uBq ( z̃)

Generate a sample z̃ from a
proposal distribution q(z) and a
sample u ∼ U [0, 1].

The sample z̃ is then an i.i.d.
sample from the target if

u ≤ π̃(z̃)
Bq(z̃)
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Rejection sampling (III/VII) 18(48)

Assumptions:

1. It is easy to sample from q(z).
2. There exists a constant B such that π(z) ≤ Bq(z), ∀z ∈ Z .

3. The support of q(z) includes the support of π(z), i.e., q(z) > 0
when π(z) > 0.

Algorithm 1 Rejection sampling (RS)
1. Sample z̃ ∼ q(z).
2. Sample u ∼ U [0, 1].
3. If u ≤ π̃(z̃)

Bq(z̃) accept z̃ as a sample from π(z) and go to 1.

4. Otherwise, reject z̃ and go to 1.
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Rejection sampling (IV/VII) 19(48)

• The procedure can be used with multivariate densities in the
same way.

• The rejection rate depends on B, choose B as small as possible,
while still satisfying π(z) ≤ Bq(z), ∀z ∈ Z .

• Choosing a good proposal distribution q(z) is very important.

• Rejection sampling is used to construct fast particle
smoothers via backward simulation.
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Rejection sampling (V/VII) 20(48)

Task: Generate M i.i.d. samples from the following distribution,

π(z) =
1

Cπ
e−

1
2 z2
(

sin(6z)2 + 3 cos(z)2 sin(4z)2 + 1
)

,

z̃

π( z̃)

Bq ( z̃)

uBq ( z̃)

Solution: Use rejection sampling
where q(z) = N (z | 0, 1) and
B = 12.
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Rejection sampling (VI/VII) 21(48)
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(b) 100 samples
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Rejection sampling (VII/VII) 22(48)

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(c) 10 000 samples
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(d) Showing rejected (red) and accepted
(blue) samples
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Importance sampling (IS) 23(48)

Algorithm 2 Importance sampler (IS)

1. Sample zi ∼ q(z).
2. Compute the weights w̃i = π̃(zi)/q(zi).
3. Normalize the weights wi = w̃i/ ∑N

j=1 w̃j.

Each step is carried out for i = 1, . . . M.
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Importance sampling – alternative interpretation 24(48)

IS does not provide samples from the target density, but the samples
{zi}M

i=1 together with the normalized weights {wi}M
i=1 provides an

empirical approximation of the target density,

π̂(z) =
M

∑
i=1

wiδzi(z).

When this approximation is inserted into I(g(z)) =
∫

g(z)π(z)dz
the resulting estimate is

ÎM(g(z)) =
M

∑
i=1

wig(zi).
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The importance of a good proposal density 25(48)

q1(x) = N (5, 20) (dashed curve) q2(x) = N (1, 20) (dashed curve)

50 000 samples used in booth simulations.

Lesson learned: It is important to be careful in selecting the
importance density.
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Importance sampling – example (I/VII) 26(48)

Let us revisit the same problem (scalar LGSS) used in illustrating the
EM and the VB algorithms,

xt+1 = θxt + vt,

yt =
1
2

xt + et,

(
vt
et

)
∼ N

((
0
0

)
,
(

0.1 0
0 0.1

))
.

p(x1) = N (x1 | 0, 0.1). The true parameter value for θ is given by
θ? = 0.9. We use p(θ) = N

(
θ | µθ , σ2

θ

)
as prior distribution for θ.

The identification problem is now to determine the parameter θ on
the basis of the observations y1:T and the above model, using the IS
algorithm. The result will be an estimate of the posterior distribution
p(θ | y1:T).
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Importance sampling – example (II/VII) 27(48)

The importance sampler will target

π(θ) = p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)
∝ p(y1:T | θ)p(θ).

Chose the proposal distribution to be the same as the prior,

q(θ) = N
(

θ | µθ , σ2
θ

)
.

The importance weights are then computed according to

w̃i =
π̃(θi)

q̃(θi)
= p(y1:T | θi), i = 1, . . . , M,

i.e., the likelihood.
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Importance sampling – example (III/VII) 28(48)

The Kalman filter straightforwardly allows us to evaluate the
importance weights w̃i = p(y1:T | θi),

p(y1:T | θi) =
T

∏
t=1

p(yt | y1:t−1, θi) =
T

∏
t=1
N
(

yt | ŷt|t−1(θ
i), St|t−1(θ

i)
)

,

ŷt|t−1(θ
i) = 0.5x̂t|t−1(θ

i),

St|t−1(θ
i) = 0.52Pt|t−1(θ

i) + 0.1,

where x̂t|t−1(θ
i) and Pt|t−1(θ

i) are provided by the Kalman filter.
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Importance sampling – example (IV/VII) 29(48)

Algorithm 3 Importance sampler targeting p(θ | y1:T)

1. Generate M i.i.d. samples from the proposal distribution,

θi ∼ N
(

θ | µθ , σ2
θ

)
.

2. Compute importance weights w̃i = p(y1:T | θi).
3. Normalize the importance weights wi = w̃i

∑M
j=1 w̃j .

Each step is carried out for i = 1, . . . M.
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Importance sampling – example (V/VII) 30(48)
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Importance sampling – example (VI/VII) 31(48)

Using T = 15 measurements, y1:15.
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(
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Importance sampling – example (VII/VII) 32(48)
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Lesson learned (again): Note the different proposal distributions
used above. It is very important to be careful in selecting the
importance density.
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Markov Chain Monte Carlo
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What’s the point with the AR(1) example? (I/II) 34(48)

Task: How do we generate samples from the stationary distribution

πs(x) = N
(

x | 0, q
1−a2

)
? Put in other words, the target distribution

π(x) is given by the stationary distribution πs(x), i.e.,
π(x) = πs(x).

Two solutions for this problem:
1. Simulate sufficiently many samples from the Markov chain and discard the

initial samples. The remaining samples will then be approximately distributed
according to the target distribution (we just proved that xt is distributed
according to π(x) for a large enough t).

2. We proved that the stationary distribution is Gaussian. Generate samples
directly from this distribution.

Clearly a somewhat contrived example (obviously solution 2 is
preferred), but solution 1 is a simple illustration of the strategy
underlying all MCMC methods.
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What’s the point with the AR(1) example? (II/II) 35(48)

In the example, the Markov chain was fully specified and it was
possible to explicitly compute the stationary distribution.

We are of course interested in the reverse situation, where we want
to generate samples from a (typically rather complicated) target
distribution π(z).

The task is now to find a transition kernel such that the resulting
Markov chain has the target distribution π(z) as its stationary
distribution.

This can be done in many different ways and constructive
strategies for doing this are provided by the Gibbs sampler and the
Metropolis Hastings sampler.
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AR(1) example again (I/II) 36(48)

One realisation from xt+1 = axt + vt using a = 0.8, vt ∼ N (0, 1).
The process is initialised in x0 = −40.
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AR(1) example again (II/II) 37(48)
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The true stationary distribution is showed in black and the empirical
histogram obtained by simulating the Markov chain xt+1 = axt + vt

is plotted in gray.

The initial 1 000 samples are discarded (burn-in).

Machine Learning, Lecture 10 – MCMC and sampling methods

T. Schön, 2014

Metropolis Hastings (MH) sampler 38(48)

The Metropolis Hastings (MH) sampler provides a constructive way
of producing a Markov chain that can be used to obtain samples
approximately distributed according to the target distribution.

More pragmatically speaking, the MH sampler generates samples
{zm}M

m=1 which can for example be used to approximately compute
integrals.
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Metropolis Hastings (MH) sampler – intuition 39(48)

The basic idea underlying the Metropolis Hastings sampler is
surprisingly simple.

Starting from an initial state of the Markov chain z1, a new candidate
sample z∗ is generated using a proposal distribution
z∗ ∼ q(z | z1).

This proposed sample z∗ is then accepted with a certain probability,
the so called acceptance probability

a(z∗, zm) = min
(

1,
π(z∗)q(zm | z∗)
π(zm)q(z∗ | zm)

)
.

If the sample is accepted, the new state of the Markov chain is set to
the proposed sample z2 = z∗, otherwise it is simply set to the
previous value, z2 = z1.

Machine Learning, Lecture 10 – MCMC and sampling methods

T. Schön, 2014

Metropolis Hastings (MH) sampler – algorithm 40(48)

Algorithm 4 Metropolis Hastings (MH) sampler

1. Initialise: Set the initial state of the Markov chain z1.
2. For m = 1 to M, iterate:

a. Sample z∗ ∼ q(z | zm).

b. Sample u ∼ U [0, 1].
c. Compute the acceptance probability

a(z∗, zm) = min (1, α(z∗, zm)) , where α(z∗, zm) =
π(z∗)q(zm | z∗)
π(zm)q(z∗ | zm)

d. Set the next state zm+1 of the Markov chain according to

zm+1 =

{
z∗ u ≤ a(z∗, zm)

zm otherwise
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Metropolis Hastings (MH) sampler 41(48)

Note that the MH sampler only requires two things,

1. It requires the definition of a proposal distribution q(· | ·) that
can be used to generate candidate samples.

2. It must be possible to point-wise evaluate the target distribution
up to a possibly unknown normalization factor.

Point-wise evaluation of the target density π(θ) for a specific θ = θ̄

π(θ̄) = p(θ̄ | y1:T) =
p(y1:T | θ̄)p(θ̄)

p(y1:T)
.
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MH example – sampling from a Gaussian (I/II) 42(48)

• Suppose the target density over x ∈ R2 is

π(x) = N
(

x;
[

4
4

]
,
[

1 0.8
0.8 1

])
σmax

σmin

ρ

• Choose the proposal density q(x|z) as

q(x|x(i−1)) = N
(

x; x(i−1),
[

0.01 0
0 0.01

])

• Noticing that q(x|x(i−1)) = q(x(i−1)|x) for all x, we have

min

(
1,

π(x̄)
π(x(i−1))

q(x(i−1)|x̄)
q(x̄|x(i−1))

)
= min

(
1,

π(x̄)
π(x(i−1))

)

• This version of the Metropolis Hastings algorithm is called the
Metropolis algorithm.
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MH example – sampling from a Gaussian (II/II) 43(48)
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MH – general comments (I/II) 44(48)

• The MH sampler generates samples that
converge to the samples of a stationary
distribution which is the target distribution.

• The time that passes before the samples
start to represent the target density is
called burn-in period.

• We generally have to use only the samples
obtained after the burn-in period.

• Diagnosing convergence to the target
distribution with MCMC algorithms is still
an active area of research.

• After the burn-in period is over, the Markov
chain is said to be mixed.
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MH – general comments (II/II) 45(48)

• Proposal selection is still an important
problem.

• If the proposal is selected too narrow, then
step-sizes get smaller and the burn-in
period becomes longer.

• If the proposal is too wide, then the burn-in
gets shorter, however, the acceptance rate
is decreased significantly.
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Gibbs Sampling 46(48)

• Gibbs sampling is a special case
of the Metropolis-Hastings
algorithm where the proposal
function is set to be the
conditional distribution of the
variables.

• It is especially useful when the
dimension of the space to
sample is very large e.g. images.

• Suppose, we are sampling in a
two dimensional space
x = [x1, x2]

T. Then the Gibbs
sampler works as follows.

Gibbs Sampler for 2D

• Sample x(1) ∼ q(·).
• For i = 2, 3, . . .,

• Sample x(i)1 ∼ p(x1|x(i−1)
2 ).

• Sample x(i)2 ∼ p(x2|x(i)1 ).

• Set x(i) = [x(i)1 , x(i)2 ]T.

• Note that due to the special
proposal, a Gibbs sampler does
not have an accept-reject step
as MH.
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Outlook – MC for dynamical systems 47(48)

Targeting p(xt | y1:t) in a nonlinear/non-Gaussian SSM using an
importance sampler results in the particle filter (a member of the
more general class of Sequential Monte Carlo (SMC) methods).

The Bayesian parameter inference problem in a general
nonlinear/non-Gaussian SSM can be solved using the so called
Particle Markov Chain Monte Carlo (PMCMC) methods. Here, an
SMC algorithm is used as proposal to generate samples in an
MCMC sampler.

Should you find this interesting I have a PhD course – Computational
learning in dynamical systems – covering this material, see

http://user.it.uu.se/~thosc112/CIDS.html
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A few concepts to summarize lecture 11 48(48)

Monte Carlo Methods: Approximate inference tools using the
samples from the target densities.

Basic Sampling Methods: The sampling methods to obtain
independent samples from target densities. Though quite powerful,
these would give bad results with high dimensions.

MCMC: Monte Carlo methods which produce dependent samples
but more robust in high dimensions.

Metropolis Hastings Algorithm: The most well-known MCMC
algorithm using arbitrary proposal densities.

Gibbs Sampler: A specific case of the MH sampler, which samples
from conditionals iteratively and always accepts a new sample.
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