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What is machine learning all about? 2(41)

"Machine learning is about learning, reasoning
and acting based on data."
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Outline lecture 1 3(41)

1. Introduction and some motivating examples

2. Course administration
3. Probability distributions and some basic ideas

1. Exponential family
2. Properties of the multivariate Gaussian
3. Maximum Likelihood (ML) estimation
4. Bayesian modeling
5. Robust statistics ("heavy tails")
6. Mixture of Gaussians
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Problem classes 4(41)

• Supervised learning. The training data consists of both input
and output (target) data.
• Classification: Discrete output variables.
• Regression: Continuous output variables.

• Unsupervised learning. The training data consists of input
data only.
• Clustering: Discover groups of similar examples in data.

• Reinforcement learning. Finding suitable actions (control
signals) in a given situation in order to maximize a reward.
Close to control theory.

This course is focused on supervised learning.
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Example 1 – autonomous helicopter aerobatics 5(41)

• Learning good controllers for tasks
demonstrated by a human expert.
Currently a hot topic in many areas
(related to ILC).

• Includes learning a model, estimating
the states, learning a controller

Pieter Abbeel, Adam Coates and Andrew Y. Ng. Autonomous helicopter aerobatics through apprenticeship learning,
International Journal of Robotics Research (IJRR), 29(13):1608-1639, November 2010.

Interesting (very recent) developments on learning controllers are available here,

Marc P. Deisenroth, Dieter Fox, and Carl E. Rasmussen Gaussian processes for data-efficient learning in robotics and
control, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2014.
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Example 2 – handwritten digit classification 6(41)

• Input data: 16× 16 grayscale
images.

• Task: classify each input
image as accurately as
possible.

• This data set will be used
throughout the course.

• Solutions and their
performance are summarized
on yann.lecun.com/
exdb/mnist/
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Data set available from
http://statweb.stanford.edu/~tibs/ElemStatLearn/
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Example 3 – BNP for dynamical systems 7(41)

BNP (lecture 11) offers flexible models capable of dealing with
• How many states should be used?
• How many modes? (i.e., hybrid systems)
• What if new modes/states arise over time?
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Figure 3: (a)-(b) The 10th, 50th, and 90th Hamming distance quantilesfor object 3 over 1000 trials for the
HDP-AR-HMMs and BP-AR-HMM, respectively. (c)-(d) Examples of typical segmentations into behavior
modes for the three objects at Gibbs iteration 1000 for the two models (top = estimate, bottom = truth).
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Figure 4:Each skeleton plot displays the trajectory of a learned contiguous segment of more than 2 seconds.
To reduce the number of plots, we preprocessed the data to bridge segments separated by fewer than 300 msec.
The boxes group segments categorized under the same featurelabel, with the color indicating the true feature
label. Skeleton rendering done by modifications to Neil Lawrence’s Matlab MoCap toolbox [13].

by ak ∈ {−0.8,−0.4, 0.8} and the third object usedak ∈ {−0.3, 0.8}. The results shown in
Fig. 3 indicate that the multiple HDP-AR-HMM model typically describes the third object using
ak ∈ {−0.4, 0.8} since this assignment better matches the parameters definedby the other (lengthy)
time series. These results reiterate that the feature modelemphasizes choosing behaviors rather than
assuming all objects are performing minor variations of thesame dynamics.

For the experiments above, we placed a Gamma(1, 1) prior onα andγ, and a Gamma(100, 1) prior
onκ. The gamma proposals usedσ2

γ = 1 andσ2
κ = 100 while the MNIW prior was givenM = 0,

K = 0.1 ∗ Id, n0 = d + 2, andS0 set to 0.75 times the empirical variance of the joint set of
first difference observations. At initialization, each time series was segmented into five contiguous
blocks, with feature labels unique to that sequence.

6 Motion Capture Experiments

The linear dynamical system is a common model for describingsimple human motion [11], and the
more complicated SLDS has been successfully applied to the problem of human motion synthesis,
classification, and visual tracking [17, 18]. Other approaches develop non-linear dynamical models
using Gaussian processes [25] or based on a collection of binary latent features [20]. However, there
has been little effort in jointly segmenting and identifying common dynamic behaviors amongst a
set ofmultiplemotion capture (MoCap) recordings of people performing various tasks. The BP-AR-
HMM provides an ideal way of handling this problem. One benefit of the proposed model, versus
the standard SLDS, is that it does not rely on manually specifying the set of possible behaviors.

7

E.B. Fox, E.B. Sudderth, M.I. Jordan, A.S. Willsky. Sharing Features among Dynamical Systems with Beta Processes,
Proceeding of Neural Information Processing Systems (NIPS), Vancouver, Canada December 2009.
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Example 4 – animal detection and tracking (I/II) 8(41)
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Example 4 – animal detection and tracking (II/II) 9(41)

• Learning detectors for
animals.

• Sensor fusion between
radar and infrared
camera.
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Field of machine learning 10(41)

Top 3 conferences on general machine learning

1. Neural Information Processing Systems (NIPS)

2. International Conference on Machine Learning (ICML)

3. Uncertainty in Artificial Intelligence (UAI) and Inter. Conf. on
Artificial Intelligence and Statistics (AISTATS)

Top 3 journals on general machine learning

1. Journal of Machine Learning Research (JMLR)

2. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI)

3. IEEE Trans. on Neural Networks (TNN) and Neural computation
(NECO)

For new (and non-peer reviewed) material see arXiv.org
arxiv.org/list/stat.ML/recent
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Course administration 11(41)

• Lecturer and examiner: Thomas Schön

• 11 lectures (do not cover everything)

• We will try to provide examples of active research throughout
the lectures (especially connections to "our" areas)

• Suggested exercises are provided for each lecture

• Written exam, 3 days (72 hours). Code of honor applies as
usual

• All course information, including lecture material is available
from the course home page
http://user.it.uu.se/~thosc112/ML/
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Course administration – projects (3 hp) 12(41)

• Voluntary and must be based on a data set.
• Project ideas: discuss with me for ideas or even better, make up

your own!!
• Form teams (1-3 students/project).
• Project time line:

Date Action
Mar. 21 Project proposals are due
Mar. 24 Project proposal presentation
May 2 Final reports are due
May 7 Final project presentations

• See course home page for details.
• Note that the deadline for NIPS is in the beginning of June.
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Project example from the 2011 edition 13(41)

Detection and classification of cars in video images

Task: Train a detector/classifier, which can be used to detect, track
and eventually classify different vehicles in the video recordings.

Supervised tracking - Training data

400 positive examples and 1000 negative examples has been used.
Positive examples Negative examples

Positive Examples Negative Examples

Niklas WahlströmKarl Granström
Detection and tracking of cars in video

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Positive training samples.

Supervised tracking - Training data

400 positive examples and 1000 negative examples has been used.
Positive examples Negative examples

Positive Examples Negative Examples

Niklas WahlströmKarl Granström
Detection and tracking of cars in video

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Negative training samples.

A semi-supervised tracker was also developed (see movie).
Wahlström, N. and Granström, K. Detection and classification of cars in video images, Project report, May, 2011.
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Project example from the 2013 edition 14(41)

Calibration of a magnetometer in combination with inertial
sensors

Task: Compute the calibration parameters of the magnetometer.
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Illustration of the effect of calibration.

Work by Manon Kok. The resulting algorithm has been submitted to
19th IFAC World Congress, Cape Town, South Africa, August, 2014.
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Project example from the dynamic vision course 15(41)

Helicopter pose estimation using a map

Image from on-board camera (top left), extracted superpixels (top right),
superpixels classified as grass, asphalt or house (bottom left) and three
circular regions used for computing the class histograms (bottom right).

Map over the operational area (top),
manually classified reference map
(bottom).

Fredrik Lindsten, Jonas Callmer, Henrik Ohlsson, David Törnqvist, Thomas B. Schön, Fredrik Gustafsson. Geo-referencing
for UAV Navigation using Environmental Classification. Proceedings of the International Conference on Robotics and
Automation (ICRA), Anchorage, Alaska, USA, May 2010.
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Course overview – Topics 16(41)

1. Linear regression
2. Linear classification
3. Expectation Maximization (EM)
4. Neural networks
5. Gaussian processes (first BNP)
6. Support vector machines
7. Clustering
8. Approximate inference (VB and EP)
9. Graphical models

10. Message passing algorithms
11. MCMC and sampling methods
12. Bayesian nonparametric (BNP) models
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Literature 17(41)

Course literature:
1. Christopher M. Bishop. Pattern Recognition and Machine

Learning, Springer, 2006.
2. Trevor Hastie, Robert Tibshirani and Jerome Friedman. The

Elements of Statistical Learning: Data Mining, Inference and
Prediction, Second edition, Springer, 2009. (partly)

Recommended side reading:
1. Kevin P. Murphy. Machine learning - a probabilistic perspective,

MIT Press, 2012.
2. Daphne Koller and Nir Friedman. Probabilistic Graphical Models

Principles and Techniques, MIT Press, 2012.
3. David Barber. Bayesian Reasoning and Machine Learning,

Cambridge University Press, 2012.

Good introductory book on statistical ML:
1. Gareth James, Daniela Witten, Trevor Hastie and Robert

Tibshirani. An Introduction to Statistical Learning - with
Applications in R, Springer, 2013.
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A few words about probability distributions 18(41)

• Important in their own right.

• Forms building blocks for more sophisticated probabilistic
models.

• Touch upon some important statistical concepts.

See Chapter 2, Appendix B (useful summary) and Wikipedia.
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The exponential family 19(41)

The exponential family of distributions over x, parameterized by η,

p(x | η) = h(x)g(η) exp
(

ηTu(x)
)

Some of the members in the exponential family: Bernoulli, Beta,
Binomial, Dirichlet, Gamma, Gaussian, Gaussian-Gamma,
Gaussian-Wishart, Student’s t, Multinomial, Wishart.
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Multivariate Gaussian (I/VI) 20(41)

N (x | µ, Σ) , 1
(2π)n/2

√
det Σ

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)

Let us study a partitioned Gaussian,

x =

(
xa
xb

)
µ =

(
µa
µb

)
Σ =

(
Σaa Σab
Σba Σbb

)

with precision (information) matrix Λ = Σ−1

Λ =

(
Λaa Λab
Λba Λbb

)
=

(
Σ−1

aa + Σ−1
aa Σab∆−1

a ΣbaΣ−1
aa −Σ−1

aa Σab∆−1
a

−∆−1
a ΣbaΣ−1

aa ∆−1
a

)

where ∆a = Σbb − ΣbaΣ−1
aa Σab is the Schur complement of Σaa in Σ.
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Multivariate Gaussian (II/VI) 21(41)

Theorem (Conditioning)

Let x be Gaussian distributed and partitioned x =
(
xT

a xT
b

)T
, then

the conditional density p(xa | xb) is given by

p(xa | xb) = N (xa | µa|b, Σa|b),

µa|b = µa + ΣabΣ−1
bb (xb − µb),

Σa|b = Σaa − ΣabΣ−1
bb Σba,

which using the information (precision) matrix can be written,

µa|b = µa −Λ−1
aa Λab(xb − µb),

Σa|b = Λ−1
aa .
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Multivariate Gaussian (III/VI) 22(41)

Theorem (Marginalization)

Let x be Gaussian distributed and partitioned x =
(
xT

a xT
b

)T
, then

the marginal density p(xa) is given by

p(xa) = N (xa | µa, Σaa).
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Multivariate Gaussian (IV/VI) 23(41)

Theorem (Affine transformations)
Assume that xa, as well as xb conditioned on xa, are Gaussian
distributed

p(xa) = N (xa | µa, Σa),
p(xb | xa) = N (xb | Mxa + b, Σb|a),

where M is a matrix and b is a constant vector. The marginal density
of xb is then given by

p(xb) = N (xb | µb, Σb),
µb = Mµa + b,

Σb = Σb|a + MΣaMT.
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Multivariate Gaussian (V/VI) 24(41)

Theorem (Affine transformations, cont.)
The conditional density of xa given xb is

p(xa | xb) = N (xa | µa|b, Σa|b),

with

µa|b = Σa|b
(

MTΣ−1
b|a (xb − b) + Σ−1

a µa

)

= µa + ΣaMTΣ−1
b (xb − b−Mµa),

Σa|b =
(

Σ−1
a + MTΣ−1

b|a M
)−1

= Σa − ΣaMTΣ−1
b MΣa.
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Multivariate Gaussian (VI/VI) 25(41)

Multivariate Gaussian’s are important building blocks in more
sophisticated models.

For more details, proofs and an example where the Kalman filter is
derived using the above theorems is provided here,
http://user.it.uu.se/~thosc112/pubpdf/schonl2011.pdf
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Maximum Likelihood (ML) estimation 26(41)

Maximum likelihood provides a systematic way of computing point
estimates of the unknown parameters θ in a given model, by
exploiting the information present in the measurements {xn}N

n=1.

Computing ML estimates of the parameters in a model amounts to:
1. Model the obtained measurements x1, . . . , xN as a realisation

from the stochastic variables x1, . . . , xN.
2. Decide on which model to use.
3. Assume that the stochastic variables x1, . . . , xN are

conditionally iid.

In ML the parameters θ are chosen in such a way that the
measurements {xn}N

n=1 are as likely as possible, i.e.,

θ̂ML = arg max
θ

p(x1, · · · , xN | θ).
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Bayesian modeling 27(41)

The goal in Bayesian modeling is to compute the posterior
p(θ | x1:N).

Provided that it makes sense from a modeling point of view it is
convenient to choose prior distributions rendering a computationally
tractable posterior distribution.

This leads to the so called conjugate priors (if the prior and the
posterior have the same functional form, the prior is said to be a
conjugate prior for the likelihood).

Again, only make use of conjugate priors if this makes sense from a
modeling point of view!

Machine Learning, Lecture 1 – Introduction

T. Schön, 2014

Conjugate priors – example 1 (I/II) 28(41)

Let X = {xn}N
n=1 be independent identically distributed (iid)

observations of x ∼ N (µ, σ2). Assume that the variance σ2 is
known.

The likelihood is given by

p(X | µ) =
N

∏
n=1

p(xn | µ) =
1

(2πσ2)
N/2 exp

(
− 1

2σ2

N

∑
n=1

(xn − µ)2

)

If we choose the prior as p(µ) = N (µ | µ0, σ2
0 ), the posterior will

also be Gaussian. Hence, this Gaussian prior is a conjugate prior for
the likelihood.
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Conjugate priors – example 1 (II/II) 29(41)

The resulting posterior is

p(µ | X) = N (µB, σ2
B),

where the parameters are given by

µB =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML,

1
σ2

B
=

1
σ2

0
+

N
σ2 .

The ML estimate of the mean is

µML =
1
N

N

∑
n=1

xn.
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Conjugate priors – some examples 30(41)

Likelihood Model Parameters Conjugate Prior
Normal (known mean) Variance Inverse-Gamma
Multivariate Normal Precision Wishart
(known mean)
Multivariate Normal Covariance Inverse-Wishart
(known mean)
Multivariate Normal Mean and covariance Normal-Inverse-

Wishart
Multivariate Normal Mean and precision Normal-Wishart
Exponential Rate Gamma
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Conjugate prior is just one of many possibilities! 31(41)

Note that using a conjugate prior is just one of the many possible
choices for modeling the prior! If it makes sense, use it, since it leads
to simple calculations.

Let’s have a look at an example where we do not make use of the
conjugate prior and end up in a useful and interesting result.

Linear regression models the relationship between a continuous
target variable t and an (input) variable x according to

tn = w0 + w1x1,n + w2x2,n + · · ·+ wDxD,n + εn

= wTφ(xn) + εn,

where φ(xn) =
(
1 x1,n . . . xD,n

)T
and n = 1, . . . , N.
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Conjugate prior is just one of many possibilities! 32(41)

Let εn ∼ N (0, σ2), resulting in the following likelihood

p(tn | w) = N (tn | wTφ(xn), σ2).

Let us now assume wn to be independent and Laplacian distributed
(i.e. not conjugate prior), wn ∼ L(0, 2σ2/λ)

Def. (Laplacian distribution) L(x | a, b) = 1
2b exp

(
− |x−a|

b

)
.

The resulting MAP estimate is given by,

ŵMAP = arg max
w

N

∑
n=1

(tn −wTφ(xn))
2 + λ

D

∑
n=1
|wn|

Known as the LASSO and it leads to sparse estimates.
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Robust statistics 33(41)

Modeling the error as a Gaussian leads to very high sensitivity to
outliers in the data. This is due to the fact that the Gaussian assigns
very low probability to points far from the mean. The Gaussian is
said to have "thin tails".
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Two possible solutions
1. Model using a distribution with "heavy tails".
2. Outlier detection models
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Example – heavy tails (I/III) 34(41)

Generate N = 50 samples,

x ∼ N (0, 0.1)

Plot showing a realization
(gray histogram) and the
corresponding ML estimate
of a Gaussian (red) and a
Student’s t-distribution
(blue).
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Note that (as expected?) the red curve sits on top of the blue curve.
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Example – heavy tails (II/III) 35(41)

Let us now add 3 outliers
9, 9.2 and 9.5 to the data
set.

Plot showing resulting ML
estimate of a Gaussian
(red) and a Student’s
t-distribution (blue).

Clearly the Student’s
t-distribution is a better
model here! −5 0 5 10
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Example – heavy tails (III/III) 36(41)

Below: 400 samples from a Student’s
t-distribution and a Gaussian distribution.

Right: The corresponding pdf’s and negative
log-likelihoods.
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Outlier detection models 37(41)

Model the data as if it comes from a mixture of two Gaussians,

p(xi) = p(xi | ki = 0)p(ki = 0) + p(xi | ki = 1)p(ki = 1)

= N (0, σ2)p(ki = 0) +N (0, ασ2)p(ki = 1).

where α > 1, p(ki = 0) is the probability that the sample is ok and
p(ki = 1) is the probability that the sample is an outlier.

Note the similarity between these two "robustifications":

• The Student’s t-distribution is an infinite mixture of Gaussians,
where the mixing is controlled by the ν-parameter.

• The outlier detection model above consists of a sum of two
Gaussians.
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Summary – robust statistics 38(41)

• Do not use distributions with thin tails (non-robust) if there are
outliers present. Use more realistic robust "heavy tailed"
distribution such as the Student’s t-distribution or simply a
mixture of two Gaussians.

• A nice account on robustness in a computer vision context is
available in Section 3.1 in
B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle Adjustment - A Modern Synthesis. In: Vision
algorithms: theory and practice. Lecture Notes in Computer Science, Vol 1883:152–177. Springer, Berlin, 2000.
dx.doi.org/10.1007/3-540-44480-7_21
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Example – range measurements with outliers 39(41)

We measure range (r), contaminated by a disturbance dn ≥ 0 and
noise en ∼ N (0, σ2), yn = r + dn + en. Compute the MAP estimate
of θ = {r, d1, . . . , dN} under an exponential prior on dn,

p(dn) =

{
λ exp(−λdn), dn ≥ 0,
0, dn < 0.

Resulting problem

θ̂MAP = arg max
θ

p(θ | y1:N) = arg min
θ

∑
n=1

N
(yn − r− dn)2

σ2 + λ
N

∑
n=1

dn

For details, see Example 2.2. in the PhD thesis of Jeroen Hol.

This principle is used for ultra-wideband positioning, incorporated into
MotionGrid (www.xsens.com/en/general/motiongrid)
from our partners Xsens (www.xsens.com).
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Important message! 40(41)

Given the computational tools that we have
today it can be rewarding to resist the Gaussian

convenience!!

We will try to repeat and illustrate this message throughout the
course using theory and examples.
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A few concepts to summarize lecture 1 41(41)

Supervised learning: The data consists of both input and output
signals (e.g., regressions and classification).

Unsupervised learning: The data consists of output signals only
(e.g., clustering).

Reinforcement learning: Finding suitable actions (control signals)
in a given situation in order to maximize a reward. (Very similar to
control theory)

Conjugate prior: If the posterior distribution is in the same family as
the prior distribution, the prior and posterior are conjugate
distributions and the prior is called a conjugate prior for the
likelihood.

Maximum likelihood: Choose the parameters such that the
observations are as likely as possible.
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