
Retargetable Graph-Coloring Register

Allocation for Irregular Architectures

Johan Runeson and Sven-Olof Nyström

Department of Information Technology
Uppsala University

{jruneson,svenolof}@csd.uu.se

Abstract. Global register allocation is one of the most important opti-
mizations in a compiler. Since the early 80’s, register allocation by graph
coloring has been the dominant approach. The traditional formulation
of graph-coloring register allocation implicitly assumes a single bank of
non-overlapping general-purpose registers and does not handle irregu-
lar architectural features like overlapping register pairs, special purpose
registers, and multiple register banks. We present a generalization of
graph-coloring register allocation that can handle all such irregularities.
The algorithm is parameterized on a formal target description, allowing
fully automatic retargeting. We report on experiments conducted with a
prototype implementation in a framework based on a commercial com-
piler.

1 Introduction

Embedded applications are growing larger and more complex, often reaching
more than 100.000 lines of C code. To develop and maintain such an application
requires a fast compiler. However, due to constraints on memory space, power
consumption and other system resources, the compiler must also produce high-
quality code. State-of-the-art optimization techniques from high-end RISC com-
pilers are not always applicable, because embedded processor architectures are
often irregular. Furthermore, the large number of different architectures means
the compiler techniques must also be retargetable.

In this paper we focus on global register allocation, one of the most im-
portant transformations in a modern optimizing compiler [1] (page 92). For
RISC-machines, Chaitin-style graph-coloring [2] is the dominant approach, as
witnessed by its prominence in modern compiler construction textbooks [3–5]. It
gives high-quality allocations, runs fast in practice, and is supported by a large
body of research work (e.g. [6, 7]). Unfortunately, the algorithm assumes a regu-

lar register architecture consisting of a single, homogenous set of general-purpose
registers.

We propose a generalization of Chaitin’s algorithm which allows it to be
used with a wide range of irregular architectures, featuring for example register
pairs or other clusters, and non-orthogonal constraints on the operands of certain
instructions. The generalized algorithm is parameterized by an expressive formal

description of the register architecture, allowing fully automatic retargeting. It
has the same time complexity as the original algorithm and is provably correct
for any applicable architecture. The changes compared to the original algorithm
are modest, so most existing improvements and extensions can be incorporated
with little or no work.

2 Background

We assume that the register allocator is presented with low-level intermediate
code, where the instructions correspond to target assembly language instruc-
tions, but where variables (taken from an unlimited set of names) are used
instead of registers.

The goal of register allocation is to determine where to store each variable
— in a particular register or in memory — in the most cost-effective way, and
to rewrite the program to reflect these decisions. Local register allocation works
in the scope of a single basic block. Global register allocation considers a whole
function at a time.

Register allocation for a regular architecture can be formulated as a graph-
coloring problem. A variable is live if it holds a value which may be used later in
the program. Two variables which are live simultaneously are said to interfere,
since they can not use the same register resources. Using liveness analysis, an
interference graph can be built, where each node represents a variable, and where
there is an edge between two nodes if their variables interfere. A k-coloring of a
graph is an assignment of one of at most k colors to each node, such that no two
neighbors have the same color. For a regular architecture with k registers, a k-
coloring of the interference graph represents a solution to the register allocation
problem, where all nodes with the same color share the same register.

Graph coloring is known to be an NP-complete problem, so heuristic tech-
niques are used to perform register allocation in practice. Chaitin et al. [2] pre-
sented the first heuristic global register allocation algorithm based on graph
coloring. Although it has a worst-case time complexity of O(n2), experiments
in [6] indicate that in practice it runs in less than O(n log n) time. Due to space
limitations, we can not give the full algorithm here. For the interested reader,
we refer to the description by Briggs [6], or the more elaborate presentation in
our technical report [8].

3 Retargetability through Parameterization

In modern retargetable compilers, target descriptions are often used to parame-
terize code generation and optimization passes in order to achieve retargetabil-
ity [9, 10]. We use the same approach for our register allocator. For simplicity,
our target descriptions deal only with architectural features that affect register
allocation. They can easily be incorporated in or derived from more extensive
target descriptions.

In Chaitin’s algorithm, the target is characterized only by the number of
registers, k. It is assumed that the architecture is regular, i.e. that all registers
are interchangeable in every situation. This assumption does not hold for ir-
regular architectures. In our generalized algorithm, the target is characterized
by an expressive target model, defined below, which allows features like overlap-
ping register pairs, special purpose registers, and multiple register banks to be
described. No further assumptions are made, so any architecture which can be
described by a target model is applicable.

3.1 Target Models

We define a target model to be a tuple 〈Regs,Conflict ,Classes〉, where

1. Regs is a set of register names,
2. Conflict is a symmetric and reflexive relation over the registers, and
3. Classes is a set of register classes, where each register class is a non-empty

subset of Regs .

For a given architecture, we include a register name in Regs if there is an in-
struction which accepts that name as a register operand. There does not have
to be a one-to-one mapping between register names and physical registers. Some
register names may represent register pairs or other clusters, which overlap other
registers wholly or partially.

Two register names (r, r′) are in Conflict if they can not be allocated simul-
taneously, typically because they overlap. For example, a register pair conflicts
with its component registers. The set Regs and the relation Conflict form a con-

flict graph, which describes how the register resources in the processor interact.
A register class C is included in Classes if there are operations which restrict

a variable to be from the set C only. These restrictions are mostly imposed by the
instruction set architecture, which may require, for example, that a particular
operand for a particular instruction is an aligned register pair, or that the result
of a particular instruction be placed in a particular register or set of registers.
The run-time system may also affect the choice of register classes, by reserving
certain registers for system use, or specifying that the arguments to a function
are passed in particular registers.

We use register classes to enforce constraints on the operands to certain
instructions. If a variable is used as an operand to an instruction which only
allows that operand to be from a set R ⊆ Regs , that variable is given a register
class which is included in R. A variable which is used in more than one operation
must satisfy the constraints from each of those operations, and will consequently
be given a register class which is included in the intersection of the register classes
required by those operations.

As an example, consider a simple architecture with four basic registers R0–R3,
which some instructions use as pairs W0 = R0:R1 and W1 = R2:R3. In the target
model for this architecture, Regs is the set {R0, R1, R2, R3, W0, W1}. The Conflict

relation is defined so that each register in Regs conflicts with itself, and the

pairs conflict with their components: W0 with R0 and R1, and W1 with R2 and R3,
respectively. We define two register classes A and B, where A is {R0, R1, R2, R3}
and B is {W0, W1}. These two classes make up the set Classes .

The diagram in Fig. 1(a) illustrates this target model. Each box is a register,
and each row gives the name and members of one register class. Furthermore,
the boxes are arranged so that two registers conflict if they appear in the same
column. More examples of target models can be found in Sect. 6, and in [8].

W0 W1

(a) (b)
A:

B: B

R0 R1 R2 R3 A A
x y

z

Fig. 1. A simple example: (a) target model diagram, (b) generalized interference graph

3.2 Generalized Interference Graphs

For a given target model we define a generalized interference graph to be a
tuple 〈N, E, class〉 where N and E form an interference graph 〈N, E〉, and the
function class : N → Classes maps each node to a register class. The nodes in
N correspond to variables, and there is an edge in E between two nodes if their
variables are simultaneously live at some point in the program.

The register class for a node constrains what registers may be assigned to
that node by the allocator: We define an assignment for M ⊆ N to be a mapping
A from M to Regs such that A(n) is in class(n) for all n ∈ M . Furthermore, we
say that an assignment A for M is a coloring iff there are no neighboring pairs
of nodes m and n in M such that A(m) conflicts with A(n).

Given a target model and a generalized interference graph, the register allo-
cation problem reduces to the problem of finding a coloring for the graph.

Register allocation for regular architectures is a special case of the more
general problem, with a target model consisting of a single class of k registers
and an identity conflict relation. It follows that the problem of finding a coloring
for a generalized interference graph is NP-hard.

Figure 1(b) shows a generalized interference graph under the target model
in (a). The nodes x, y and z are annotated with register classes (A, A, and
B, respectively), and from the interference edges we can see that the variables
corresponding to the nodes are all live simultaneously.

4 Local Colorability

Chaitin’s graph-coloring algorithm is based on a concept which we call local

colorability1 . In a generalized interference graph 〈N, E, class〉, a node n ∈ N is

1 Briggs uses the term “trivial colorability”. For an irregular architecture, determining
local colorability is not always trivial.

locally colorable iff, for any assignment of registers to the neighbors of n, there
exists a register r in class(n) which does not conflict with any register assigned
to a neighbor of n.

The coloring problem can be simplified by removing a node n which is locally
colorable: given a coloring for the rest of the graph, the local colorability property
guarantees that we can always find a free register to assign to n. If we can
recursively simplify the graph until it is empty, then by induction it is possible
to construct a coloring by assigning colors to the nodes in the reverse order from
which they were removed.

4.1 Approximating Colorability

In a regular architecture with k registers, a node n is locally colorable iff it has
less than k neighbors in the interference graph. Chaitin’s algorithm therefore
removes nodes with degree < k.

For irregular architectures, the degree < k test is not always a good indica-
tor of local colorability. Consider the example in Fig. 1. It is easy to see that
regardless of how we assign registers to y and z, there is always a free register
for x. In other words, x is locally colorable, and by symmetry, the same goes for
y. Now consider z. If we assign R0 to x, and R2 to y, then there is no free register
for z, which is therefore not locally colorable.

All three nodes in the example have degree = 2, but only two of them are
locally colorable. Consequently, the degree < k test is not an accurate indication
of local colorability in this case.

If we can not use the degree < k test, what can we use instead? The defi-
nition of local colorability suggests a test based on generating and checking all
possible assignments of registers to the neighbors of a node. Since there is an
exponential number of possible assignments, we expect that such a test would
be too expensive to use in practice.

Fortunately, the coloring algorithm does not require a precise test for local
colorability. In order to guarantee that it is possible to color the nodes in the
reverse order from which they were removed from the graph, it is enough if the
test implies local colorability. What we need is therefore an inexpensive test
which safely approximates local colorability with minimal inaccuracy.

4.2 The 〈p, q〉 Test

We propose the following approximation of the local colorability test. Given a
target model as defined in Sect. 3.1, let pB and qB,C be defined for all classes B
and C by

pB = |B|

qB,C = max
rC∈C

|{rB ∈ B|(rB , rC) ∈ Conflict}|

In other words, pB is the number of registers in the class B, and qB,C is the
largest number of registers in B that a single register from C can conflict with.

A node n of class B in 〈N, E, class〉 is locally colorable if

∑

(n,j)∈E

C=class(j)

qB,C < pB .

We will call this the 〈p, q〉 test.
The intuition behind the 〈p, q〉 test is as follows. To begin with there are pB

registers available for assigning to n. Each neighbor may block some of these
registers. In the worst case, a neighbor from class C can block qB,C registers in
B. If the sum of the maximum number of registers each neighbor can block is
less than the number of available registers, then it is safe to say that we will be
able to find a free register for n. In Sect. 4.3 we prove formally that the 〈p, q〉
test is a safe approximation of local colorability in any generalized interference
graph, for any given target model.

The 〈p, q〉 test is efficient: Since p and q are fixed for a given target model, they
can be pre-computed and stored in static lookup tables. This makes it possible
to evaluate the 〈p, q〉 test with the same time complexity as the degree < k test.

For a regular architecture with k registers, we get p = k and q = 1, which
means that the 〈p, q〉 test degenerates to the precise degree < k test. Any impre-
cision in the 〈p, q〉 test is thus induced only by certain irregular features of the
architecture.

Note that for two disjoint register classes B and C, we get qB,C = 0. Inter-
ference edges between nodes from disjoint classes therefore do not contribute to
the sum in the 〈p, q〉 test. Also, for a self-overlapping class B (e.g. a class of
unaligned pairs), qB,B > 1, since a single register from B can conflict with both
itself and one or more other registers in B.

4.3 Proof of Safety

We will show for a given target model 〈Regs,Conflict ,Classes〉 that in any gen-
eralized interference graph G = 〈N, E, class〉, if a node is not locally colorable,
then the 〈p, q〉 test for that node is false.

Let n be a node which is not locally colorable in G. Let B be the register
class of n, and J the set of neighbors of n in G. Since n is not locally colorable,
there must exist an assignment A of registers to the neighbors of n, such that
for all registers rB in B, rB conflicts with A(j) for some j in J .

This allows us to express B as follows.

B =
⋃

j∈J

{rB ∈ B|(rB , A(j)) ∈ Conflict}

By definition, pB = |B|, so we have

pB = |B| =

∣

∣

∣

∣

∣

∣

⋃

j∈J

{rB ∈ B|(rB , A(j)) ∈ Conflict}

∣

∣

∣

∣

∣

∣

Now, the size of a union of sets is less than or equal to the sum of the sizes of
the individual sets, so we can limit the size of the big union as follows.

pB ≤
∑

j∈J

|{rB ∈ B|(rB , A(j)) ∈ Conflict}|

But, for any node j, the number of registers in B in conflict with A(j) can not
be more than the maximum number of registers from B in conflict with any
register from class(j), which is exactly the definition of qB,C .

pB ≤
∑

j∈J
C=class(j)

max
rC∈C

|{rB ∈ B|(rB , rC) ∈ Conflict}| =
∑

j∈J
C=class(j)

qB,C

Thus, if n is not locally colorable in G, then the 〈p, q〉 test for n is false. Con-
versely, if the 〈p, q〉 test is true, then n is locally colorable. This proves that
the 〈p, q〉 test is a safe approximation of local colorability, for any graph in any
target model.

5 The Complete Algorithm

For simplicity, we present the algorithm without coalescing and optimistic col-
oring. These extensions are discussed separately below.

Given a target model as in Sect. 3.1, we use the formulae in Sect. 4.2 to
pre-compute pB and qB,C for all classes B and C.

The algorithm is divided into four phases (Fig. 2).

1. Build constructs the generalized interference graph.
2. Simplify initializes an empty stack, and then repeatedly removes nodes from

the graph which satisfy the 〈p, q〉 test. Each node which is removed is pushed
on the stack.
This continues until either the graph is empty, in which case the algorithm
proceeds to Select, or there are no more nodes in the graph which satisfy the
test. In that case, Simplify has failed, and we go to the Spill phase.

3. Select rebuilds the graph by re-inserting the nodes in the opposite order to
which Simplify removed them. Each time a node n is popped from the stack,
it is assigned a register r from class(n) such that r does not conflict with
the registers assigned to any of the neighbors of n.
When Select finishes, it has produced a complete register allocation for the
input program, and the algorithm terminates.

4. Spill is invoked if Simplify fails to remove all nodes in the graph. It picks
one of the remaining nodes to spill, and inserts a load before each use of the
variable, and a store after each definition. After the program is rewritten,
the algorithm is restarted from the Build phase.

Select always finds a free register for each node, because the 〈p, q〉 test in Simplify
guarantees that the node was locally colorable in the graph which it was removed
from, and the use of a stack guarantees that it is reinserted into the same graph.

SelectSimplifyBuild

Spill

Fig. 2. Phases of the basic register allocation algorithm

In Chaitin’s original algorithm, there are no register classes. Nodes are re-
moved in Simplify when their degree < k, and in Select registers conflict only
with themselves. Other than that, the algorithms are identical.

5.1 A Simple Example

As a simple example, we run the generalized algorithm on the problem in Fig. 1.
Based on the target model illustrated in (a), we compute the following param-
eters: pA = 4, pB = 2, qA,A = 1, qA,B = 2, qB,A = 1, qB,B = 1. Computing the
〈p, q〉 test for all the nodes of the graph in (b), we see that it is true for x and
y, but not for z.

The fact that z is not locally colorable does not mean that it can not be
colored – it just means that we should color it before some of its neighbors in
order to guarantee that it will be colored. This is fine with the other two nodes:
since they are locally colorable we know that we can always color them regardless
of how we color z.

We pick one of the colorable nodes, x, remove it from the graph, and push
it on the stack. In the resulting simplified graph, the 〈p, q〉 test is true not just
for y, but for z as well. We therefore remove y and z, and proceed to the Select
phase.

The first node to be popped is z. None of z’s neighbors have been inserted in
the graph yet, so we only have to worry about picking a node from the correct
register class. Out of the class B, we select register W0 for z. The next node to
be popped is y. Since y interferes with z, we can not assign registers R0 or R1 to
it, because these registers conflict with W0. Therefore, we select R2 for y. Finally,
we reinsert x into the graph. The only register available for x is R3.

5.2 Extensions

Optimistic coloring [6] is an important extension to Chaitin’s algorithm, where
spilling decisions are postponed from the Simplify to the Select phase: If Simplify
can find no more locally colorable nodes, one node is picked to be removed
anyway and pushed on the stack optimistically. When it is popped in Select,
it may be possible to color it, for example if two neighbors have been assigned
the same color. If so, there is no need to spill. Nodes which are popped later
and which were locally colorable when pushed are still guaranteed to find a free
color. Optimistic coloring often reduces the number of spills significantly, and

can hide much of the imprecision of an approximating local colorability test [6].
It is completely orthogonal to the modifications presented here, and can (and
should) be implemented just like in a regular graph coloring register allocator.

Another standard extension is coalescing [2], where copy-related non-interfering
nodes are merged before the Simplify phase. If nodes n and n′ are merged into
m, then m must obey the constraints imposed on both n and n′. Therefore, it
is given a register class from the intersection of the classes for n and n′. (If the
intersection is empty, coalescing is not possible.)

Aggressive coalescing may sometimes cause unnecessary spills, when a node
which is simple to color is merged with a node which is hard to color [6]. There-
fore, conservative coalescing only merges two nodes if it can be guaranteed that
the merged node will be locally colorable. It is straightforward to replace the
degree < k test with the 〈p, q〉 test to take register classes into account when
doing this.

The spill metric, used to determine which node to pick for spilling, also
deserves mention. It, too, should take register classes into account. We achieve
this by picking the node with the smallest ratio

cost(n)/benefit(n).

However, rather than using degree(n) as a measure of the benefit of removing
that node, we define

benefit(n) =
∑

(n,j)∈E

C=class(j)

(qC,B / pC).

Dividing qC,B by pC allows us to compare the benefits for neighbors of different
classes.

Figure 3 shows the phases of the register allocator when all the extensions
described in this section are included. (The spill metric is used in the Simplify
phase to determine which node to push optimistically on the stack.) Some further
extensions are discussed in [8], including an alternative local colorability test
which is slower, but has higher precision.

Coalesce Simplify

Spill

Build Select

Fig. 3. Phases of the register allocation algorithm with extensions

6 Experiments

There are many factors besides register allocation which affect the quality of the
code generated from a particular compiler. To make a fair comparison between
different allocators, they must all be implemented in the same compiler. Often,
though, there are strong dependencies between the allocator and the rest of the
compiler, which could favour one allocator design unfairly over another. A good
testbed for register allocation should strive to minimize such dependencies.

We have created a prototype framework for comparing different register al-
locators based on a commercial C/EC++ compiler from IAR Systems [11]. The
framework short-circuits the existing allocator, which is closely tied to the code
selection phase of the compiler. The allocator to be evaluated is inserted after the
code selection phase, and presented with assembly code where the instruction
operands contain virtual registers annotated with register classes. The new allo-
cator is responsible for rewriting the code with physical registers and inserting
spill code, after which regular compilation resumes.

Although the compiler is retargetable2, incorporation of the prototype frame-
work requires substantial changes in the target-dependent parts of the backend.
Therefore, it currently only generates code for a single target: the Thumb mode
of the ARM/Thumb architecture [12]. In ARM mode, the ARM/Thumb is a
RISC-like 32-bit processor with 16 registers. In Thumb mode, a compressed in-
struction encoding is used, with 16-bit instructions. Most instructions in Thumb
mode are two-address, and can only access the first 8 registers.

6.1 Implementation

The algorithm from Sect. 5, including optimistic coloring, conservative coalescing
and the spill metric from Sect. 5.2, has been implemented in the prototype
framework described above. Fig. 4 illustrates the target model that we use,
derived from the register classes that the framework generates for us. These
classes reflect constraints imposed both by the instruction set and by the runtime
system. There are classes for 32-bit and 64-bit data (in unaligned pairs), for
individual 32-bit and 64-bit values (used in the calling convention), a larger
class of 32-bit registers which can sometimes be used for spilling to registers,
and some classes of 96 and 128-bit values used for passing structs into functions.
Registers R13 and R15 are dedicated by the runtime system. Registers R8–R11
are too expensive to use profitably in Thumb mode. Table 1 shows the p and
q values that we compute for the target model in Fig. 4. (The value of qB,C is
located in the row for B and the column for C.)

We have implemented three different variants of the allocator.

1. Full is the full allocator described above, including the extensions from
Sect. 5.2.

2 Currently, IAR Systems supports over 30 different target architecture families with
its suite of development tools.

reg32low R0 R1 R2 R3 R4 R5 R6 R7

reg64low R0 1 R2 3 R4 5 R6 7

(R7 0) R1 2 R3 4 R5 6 R7 0

reg96 R0 1 2

R1 2 3

r0 1 2 3 R0 1 2 3

spill32 R0 R1 R2 R3 R4 R5 R6 R7 R12 R14

r0 R0

r1 R1

r2 R2

r3 R3

r0 1 R0 1

r1 2 R1 2

r2 3 R2 3

r0 1 2 R0 1 2

r1 2 3 R1 2 3

r12 R12

r14 R14

Fig. 4. Target model diagram for the Thumb architecture.

Table 1. Computed p and q values for Thumb.

class p r
e
g
3
2
l
o
w

r
e
g
6
4
l
o
w

r
e
g
9
6

r
0
1
2
3

s
p
i
l
l
3
2

r
0

r
1

r
2

r
3

r
0
1

r
1
2

r
2
3

r
0
1
2

r
1
2
3

r
1
2

r
1
4

reg32low 8 1 2 3 4 1 1 1 1 1 2 2 2 3 3 0 0

reg64low 8 2 3 4 5 2 2 2 2 2 3 3 3 4 4 0 0

reg96 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 0 0

r0 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

spill32 10 1 2 3 4 1 1 1 1 1 2 2 2 3 3 1 1

r0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0

r1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0

r2 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0

r3 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0

r0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0

r1 2 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0

r2 3 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0

r0 1 2 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0

r1 2 3 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0

r12 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

r14 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

2. Local is the same allocator, but made to spill all variables that are live across
basic block boundaries.

3. Worst-Case spills all variables.

The Local allocator is intended to mimic heuristic local register allocators such
as used in e.g. Lcc [13]. The Worst-Case allocator represents the worst case, and
gives a crude base line for comparisons.

Due to some simplifying design decisions, the prototype framework generates
spill code which is less efficient than what would be acceptable in a produc-
tion compiler. This exaggerates the negative effects of spilling somewhat, which
should be taken into account when looking at the experimental results.

6.2 Results

Finding good benchmarks for embedded systems is hard, since typical embedded
applications differ from common desktop applications in significant ways [14,
15]. We have chosen to use the suites Automotive, Network and Telecomm from
MiBench [14], a freely available3 collection of embedded benchmarks.

The benchmark suites were compiled with each variant of the allocator4. The
first part of Table 2 gives the number of functions (funcs) in each suite, and the
average number of variables per function (vars). The largest number of variables
in any function is 1016. For each allocator, we then report the total size of the
generated code (size), and for Full and Local the number of spilled variables
(spill). The Full allocator is not optimized for speed, yet. Currently, the average
time spent in the allocator is 1.67 seconds per function.

Table 2. Results compiling benchmark suites

Full Local Worst-Case
Suite funcs vars size spill cost size spill cost size cost

Automotive 29 113 8918 77 5232 12598 175 9452 59076 65722

Network 17 84 3260 8 690 6048 100 4501 17970 25961

Telecomm 130 118 35116 154 6020 70778 1021 51992 329102 322858

Total 176 114 47294 239 11942 89424 1296 65945 406148 414541

Many programs in MiBench rely on the presence of a file system for input and
output. Since this was not available in our test environment we were unable to
run many of the programs. To give some indication of the performance impact of
the different allocators, we give the accumulated spill cost for all spilled variables
(cost). These costs are weighted by loop-nesting depth, so that spills inside
loops are more costly. In Table 3, we compare the accumulated spill costs (cost)

3 See http://www.eecs.umich.edu/mibench/.
4 All files were compiled except toast.c, which failed because of a missing header file,

and susan.c, which failed for unknown reasons.

with cycle counts (kCycles∗103) from runs of three programs, one from each
benchmark suite. The programs were executed in the simulator/debugger that
comes with the compiler [11], using the “small” input sets.

Table 3. Results running benchmark programs

Full Local Worst-Case
Program cost kCycles cost kCycles cost kCycles

Automotive/qsort 0 136729 280 142556 1990 152005

Network/dijkstra 20 154339 820 188772 7360 979790

Telecomm/CRC32 20 3416 750 12618 3210 30731

7 Related Work

Briggs’ [6] approach to handling multiple register classes (in part suggested al-
ready by [2]) is to add the physical registers to the interference graph, and make
each node interfere with all registers it can not be allocated to. Edges between
nodes from non-overlapping classes are removed. To handle register pairs, mul-
tiple edges are used between nodes where one is a pair. Thus, the interference
graph is modified to represent both architectural and program-dependent con-
straints, leaving the graph-coloring algorithm unchanged.

Our approach is fundamentally different, in that we separate the constraints
of the program from those of the architecture and run-time system into different
structures. Instead of modifying the interference graph, we change the inter-

pretation of the graph based on a separate data structure. We believe that our
approach leads to a simpler and more intuitive algorithm, which avoids increas-
ing the size of the interference graphs before simplification, and where expensive
calculations relating to architectural constraints can be performed off-line.

For an architecture with aligned register pairs, the solution proposed by
Briggs is equivalent to ours in terms of precision. However, Briggs gives only
vague rules (“add enough edges”) for adapting the algorithm to other irregular
architectures [6]. Our generalized algorithm, on the other hand, works for any
architecture that can be described by a target model.

The scheme proposed by Smith and Holloway [16] is more similar to ours,
in that it also leaves the interference graph (largely) unchanged. Their inter-
pretation of the graph is based on assigning class-dependent weights to each
node. Rules for assigning weights are given for a handful of common classes of
irregular architectures. In contrast, our algorithm covers a much wider range of
architectures without requiring classification, we give sufficient details to gen-
erate allocators automatically from target descriptions, and we prove that our
local colorability test is safe for arbitrary target models.

Scholz and Eckstein [17] have recently described a new technique based on
expressing global register allocation as a boolean quadratic problem, which is

solved heuristically. The range of architectures which can be handled by their
technique is slightly larger than what can be represented by our target models.
Practical experience with this new approach is limited, however, and it is not
supported by the large body of research work that exists for Chaitin-style graph
coloring.

There have been some attempts to use integer linear programming techniques
to find optimal or near-optimal solutions to the global register allocation problem
for irregular architectures [18, 19]. These methods give allocations of very high
quality, but, like other high-complexity techniques, they are much too slow to
be useful for large applications.

Some people argue that longer compile times are justified for certain em-
bedded systems with extremely high performance requirements [20]. This has
prompted researchers to look into compiler techniques with worse time com-
plexity that what is usually accepted for desk-top computing, often integrating
register allocation with scheduling and/or code selection. For example, Bashford
and Leupers [21] describe a backtracking algorithm with either O(n4) or expo-
nential complexity, depending on strategy. Kessler and Bednarski [22] give an
optimal algorithm for integrated code selection, register allocation and schedul-
ing, based on dynamic programming. Still, with embedded applications reaching
several 100.000 lines of C code, there is a need for fast techniques such as ours,
for compilers in the middle of the code-compile-test loop.

8 Conclusions

With our simple modifications, Chaitin-style graph-coloring register allocation
can be used for irregular architectures. It is easy to incorporate well-known ex-
tensions into the generalized algorithm, allowing compiler writers to leverage the
existing body of supporting research. The register allocator is parameterized on a
formal target description, and we give sufficient details to allow automatic retar-
geting. Our plans for future work include comparisons with optimal allocations,
incorporation of more extensions, and creating a free-standing implementation
of the allocator to better demonstrate retargetability.

9 Acknowledgements

This work was conducted within the WPO project, a part of the ASTEC compe-
tence center. Johan Runeson is an industrial Ph.D. student at Uppsala University
and IAR Systems. The register allocation framework used for the experiments in
this paper was implemented by Daniel Widenfalk at IAR Systems. The register
allocator itself was implemented by Axel Burström as a part of his Masters’ the-
sis project. The authors wish to thank Carl von Platen for fruitful discussions
and comments on drafts of this paper. We also thank the anonymous reviewers
for valuable comments and suggestions for improvements.

References

1. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach, Second Edition. Morgan Kaufmann Publishers (1996)

2. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Computer Languages 6 (1981) 47–57

3. Appel, A.W.: Modern Compiler Implementation in ML. Cambridge University
Press (1998)

4. Morgan, R.: Building an Optimizing Compiler. Digital Press (1998)
5. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-

mann (1997)
6. Briggs, P.: Register allocation via graph coloring. PhD thesis, Rice University

(1992)
7. George, L., Appel, A.W.: Iterated register coalescing. TOPLAS 18 (1996) 300–324
8. Runeson, J., Nyström, S.O.: Generalizing Chaitin’s algorithm: Graph-coloring

register allocation for irregular architectures. Technical Report 021, Department
of Information Technology, Uppsala University, Sweden (2002)

9. Ramsey, N., Davidson, J.W.: Machine descriptions to build tools for embedded
systems. In: LCTES. Springer LNCS 1474 (1998) 176–188

10. Bradlee, D.G., Henry, R.R., Eggers, S.J.: The Marion system for retargetable
instruction scheduling. In: PLDI. (1991)

11. IAR Systems: EWARM (2003) http://www.iar.com/Products/?name=EWARM.
12. Jagger, D., Seal, D.: ARM Architecture Reference Manual (2nd Edition). Addison-

Wesley (2000)
13. Fraser, C.W., Hanson, D.R.: Simple register spilling in a retargetable compiler.

Software - Practice and Experience 22 (1992) 85–99
14. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,

R.B.: MiBench: A free, commercially representative embedded benchmark suite.
In: IEEE 4th Annual Workshop on Workload Characterization. (2001)

15. Engblom, J.: Why SpecInt95 should not be used to benchmark embedded systems
tools. In: LCTES, ACM Press (1999)

16. Smith, M.D., Holloway, G.: Graph-coloring register allocation for ar-
chitectures with irregular register resources. Unpublished manuscript,
www.eecs.harvard.edu/machsuif/publications/publications.html (2001)

17. Scholz, B., Eckstein, E.: Register allocation for irregular architectures. In: LCTES-
SCOPES, ACM Press (2002)

18. Kong, T., Wilken, K.D.: Precise register allocation for irregular register architec-
tures. In: Proc. Int’l Symp. on Microarchitecture. (1998)

19. Appel, A.W., George, L.: Optimal spilling for CISC machines with few registers.
In: PLDI. (2001)

20. Marwedel, P., Goosens, G.: Code Generation for Embedded Processors. Kluwer
(1995)

21. Bashford, S., Leupers, R.: Phase-coupled mapping of data flow graphs to irregular
data paths. In: Design Automation for Embedded Systems. Volume 4., Kluwer
Academic Publishers (1999) 1–50

22. Kessler, C., Bednarski, A.: Optimal integrated code generation for clustered VLIW
architectures. In: LCTES, ACM Press (2002) 102–111

