Chapter 8

A Case Study: Solitaire

A program for playing the card game solitaire will illustrate the utility and power of in-
heritance and overriding. A major part of the game of Solitaire is moving cards from one
card pile to another. There are a number of different types of card piles, each having some
features in common with the others, while other features are unique. A common parent class
CardPile can therefore be used to capture the common elements, while inheritance and over-
riding can be used to produce specialized types of piles. The developement of this program
will illustrate how inheritance can be used to simplify the creation of these components and
ensure that they can all be manipulated in a similar fashion.

8.1 The Class Card

To create a card game, we first need to define a class to represent a playing card. Each
instance of class Card (Figure 8.1) maintains a suit value and a rank. To prevent modification
of these values, the instance variables maintaining them are declared private and access is
mediated through accessor functions. The value of the suit and rank fields are set by the
constructor for the class. Integer constant values (in Java defined by the use of final static
constants) are defined for the height and width of the card as well as for the suits. Another
function permits the user to determine the color of the card. The Java library class Color
is used to represent the color abstraction. The Color class defines constants for various
colors. The values Color.red, Color.black, Color.yellow and Color.blue are used in the solitare
program.

There are important reasons that data values representing suit and rank should be
returned through an accessor function, as opposed to defining the data fields s and r as
public and allowing direct access to the data values. One of the most important is that
access through a function ensures that the rank and suit characteristics of a card can be
read but not altered once the card has been created.

99

100

CHAPTER 8. A CASE STUDY: SOLITAIRE

import java.awt.x;

public class Card {

/7
public
public
public
public
public
public

//

public
final
final
final
final
final
final

constants for card width and suits
static int width = 50;
static int height = 70;

static int heart = 0;
static int spade = 1;
static int diamond = 2;

static int club = 3;

internal data fields for rank and suit
private boolean faceup;

private int r;

private int s;

// constructor
Card (int sv, int rv) { s = sv; r = rv; faceup = false; }

//
public

public
public
public

public
if

}

access

attributes of card

int rank () { return r; }

int suit() { return s; }

boolean faceUp() { return faceup; }

void flip() { faceup = ! faceup; }

Color

color() {

(facelp())
if (suit() == heart || suit() == diamond)
return Color.red;

else

return Color.black;
return Color.yellow;

public void draw (Graphics g, int x, int y) { ... }

Figure 8.1: Description of the class card.

8.2. THE GAME 101

The only other actions a card can perform, besides setting and returning the state of
the card, are to flip over and to display itself. The function flip() is a one-line function
that simply reverses the value held by an instance variable. The drawing function is more
complex, making use of the drawing facilities provided by the Java standard application
library. As we have seen in the earlier case studies, the application library provides a data
type called Graphics that provides a variety of methods for drawing lines and common shapes,
as well as for coloring. An argument of this type is passed to the draw function, as are the
integer coordinates representing the upper left corner of the card.

The card images are simple line drawings, as shown below. Diamonds and hearts are
drawn in red, spades and clubs in black. The hash marks on the back are drawn in yellow.
A portion of the procedure for drawing a playing card is shown in Figure 8.2.

A 3

The most important feature of the playing-card abstraction is the manner in which each
card is responsible for maintaining within itself all card-related information and behaviors.
The card knows both its value and how to draw itself. In this manner the information is
encapsulated and isolated from the application using the playing card. If, for example, one
were to move the program to a new platform using different graphics facilities, only the draw
method within the class itself would need to be altered.

8.2 The Game

The version of solitaire we will describe is known as klondike. The countless variations on
this game make it probably the most common version of solitaire; so much so that when
you say “solitaire,” most people think of klondike. The version we will use is that described
in [?]; in the exercises we will explore some of the common variations.

The layout of the game is shown in Figure 8.3. A single standard pack of 52 cards is
used. The tableau, or playing table, consists of 28 cards in 7 piles. the first pile has 1 card,
the second 2, and so on up to 7. The top card of each pile is initially face up; all other cards
are face down.

The suit piles (sometimes called foundations) are built up from aces to kings in suits.
They are constructed above the tableau as the cards become available. The object of the

102 CHAPTER 8. A CASE STUDY: SOLITAIRE

public class Card {

public void draw (Graphics g, int x, int y) {
String names [] = {"A", ||2||’ ||3||’ ||4||’ ||5||’ ||6||’
||7||’ ||8||’ ||9||’ ||10||’ ||J||’ ||Q||’ ||K||};
// clear rectangle, draw border
g.clearRect(x, y, width, height);
g.setColor(Color.blue);
g.drawRect(x, y, width, height);
// draw body of card
g.setColor(color());
if (faceUp()) {
g.drawString (names[rank ()], x+3, y+15);
if (suit() == heart) {
g.drawLine (x+25, y+30, x+35, y+20);

g.drawLine(x+35, y+20, x+45, y+30);
g.drawLine (x+45, y+30, x+25, y+60);
g.drawLine (x+25, y+60, x+5, y+30);
g.drawLine (x+5, y+30, x+15, y+20);
g.drawLine(x+15, y+20, x+25, y+30);
}

else if (suit() == spade) { ... }

else if (suit() == diamond) { ... }

else if (suit() == club) {

.drawQval (x+20, y+25, 10, 10);
.drawQval (x+25, y+35, 10, 10);
.drawQval (x+15, y+35, 10, 10);
.drawLine (x+23, y+45, x+20, y+55);
.drawLine (x+20, y+55, x+30, y+55);
.drawLine (x+30, y+55, x+27, y+45);

-~ 0] 08 08 08 0] 039

else { // face down
g.drawLine(x+15, y+5, x+15, y+65);
g.drawLine (x+35, y+5, x+35, y+65);
g.drawLine(x+5, y+20, x+45, y+20);
g.drawLine(x+5, y+35, x+45, y+35);
g.drawLine(x+5, y+50, x+45, y+50);

}

Figure 8.2: Procedure to draw a playing card.

8.2. THE GAME 103

Suit Piles

Discard Deck

Table Piles

Figure 8.3: Layout for the solitaire game.

game is to build all 52 cards into the suit piles.

The cards that are not part of the tableau are initially all in the deck. Cards in the deck
are face down, and are drawn one by one from the deck and placed, face up, on the discard
pile. From there, they can be moved onto either a tableau pile or a foundation. Cards are
drawn from the deck until the pile is empty; at this point, the game is over if no further
moves can be made.

Cards can be placed on a tableau pile only on a card of next-higher rank and opposite
color. They can be placed on a foundation only if they are the same suit and next higher
card or if the foundation is empty and the card is an ace. Spaces in the tableau that arise
during play can be filled only by kings.

The topmost card of each tableau pile and the topmost card of the discard pile are always
available for play. The only time more than one card is moved is when an entire collection
of face-up cards from a tableau (called a build) is moved to another tableau pile. This can
be done if the bottommost card of the build can be legally played on the topmost card of

104 CHAPTER 8. A CASE STUDY: SOLITAIRE

the destination. Our initial game will not support the transfer of a build, but we will discuss
this as a possible extension. The topmost card of a tableau is always face up. If a card is
moved from a tableau, leaving a face-down card on the top, the latter card can be turned
face up.

From this short description, it is clear that the game of solitaire mostly involves manip-
ulating piles of cards. Each type of pile has many features in common with the others and
a few aspects unique to the particular type. In the next section, we will investigate in detail
how inheritance can be used in such circumstances to simplify the implementation of the
various card piles by providing a common base for the generic actions and permitting this
base to be redefined when necessary.

8.3 Card Piles—Inheritance in Action

Much of the behavior we associate with a card pile is common to each variety of pile in
the game. For example, each pile maintains a collection of the cards in the pile (held in
a Stack), and the operations of inserting and deleting elements from this collection are
common. Other operations are given default behavior in the class CardPile, but they are
sometimes overridden in the various subclasses. The class CardPile is shown in Figure 8.4.

Each card pile maintains the coordinate location for the upper left corner of the pile,
as well as a Stack. The stack is used to hold the cards in the pile. All three of these
values are set by the constructor for the class. The data fields are declared as protected
and thus accessible to member functions associated with this class and to member functions
associated with subclasses.

The three functions top(), pop(), and isEmpty() manipulate the list of cards, using func-
tions provided by the Stack utility class. Note that these three methods have been declared
as final. This modifier serves two important purposes. First, it is a documentation aid,
signaling to the reader of the listing that the methods cannot be overridden by subclasses.
Second, in some situations the Java compiler can optimize the invocation of final methods,
creating faster code than could be generated for the execution of non-final methods.

The topmost card in a pile is returned by the function top(). This card will be the last
card in the underlying container. Note that the function peek() provided by the Stack class
returns a value declared as Object. This result must be cast to a Card value before it can be
returned as the result.

The method pop() uses the pop() operation provided by the underlying stack. The stack
method throws an exception if an attempt is made to remove an element from an empty
stack. The pop() method in the class CardPile catches the exception, and returns a null
value in this situation.

The five operations that are not declared final are common to the abstract notion of our
card piles, but they differ in details in each case. For example, the function canTake(Card)
asks whether it is legal to place a card on the given pile. A card can be added to a foundation
pile, for instance, only if it is an ace and the foundation is empty, or if the card is of the

8.3. CARD PILES-INHERITANCE IN ACTION 105

import java.util.Stack;
import java.util.EmptyStackException;

public class CardPile {
protected int x; // coordinates of the card pile
protected int y;
protected Stack thePile; // the collection of cards

CardPile (int x1, int yl) { x = x1; y = yl; thePile = new Stack(); }
public final Card top() { return (Card) thePile.peek(); }
public final boolean isEmpty() { return thePile.empty(); }

public final Card pop() {

try {
return (Card) thePile.pop();

} catch (EmptyStackException e) { return null; }

}

// the following are sometimes overridden
public boolean includes (int tx, int ty) {
return x <= tx && tx <= x + Card.width &&
y <= ty && ty <= y + Card.height;
}

public void select (int tx, int ty) { }
public void addCard (Card aCard) { thePile.push(aCard); }
public void display (Graphics g) {

g.setColor(Color.blue) ;

if (isEmpty()) g.drawRect(x, y, Card.width, Card.height);
else top().draw(g, x, ¥);

}

public boolean canTake (Card aCard) { return false; }

Figure 8.4: Description of the class CardPile.

106 CHAPTER 8. A CASE STUDY: SOLITAIRE

same suit as the current topmost card in the pile and has the next-higher value. A card
can be added to a tableau pile, on the other hand, only if the pile is empty and the card is
a king, or if it is of the opposite color as the current topmost card in the pile and has the
next lower value.

The actions of the five virtual functions defined in CardPile can be characterized as
follows:

includes —Determines if the coordinates given as arguments are contained within the bound-
aries of the pile. The default action simply tests the topmost card; this is overridden
in the tableau piles to test all card values.

canTake —Tells whether a pile can take a specific card. Only the tableau and suit piles can
take cards, so the default action is simply to return no; this is overridden in the two
classes mentioned.

addCard —Adds a card to the card list. It is redefined in the discard pile class to ensure that
the card is face up.

display —Displays the card deck. The default method merely displays the topmost card of
the pile, but is overridden in the tableau class to display a column of cards. The top
half of each hidden card is displayed. So that the playing surface area is conserved,
only the topmost and bottommost face-up cards are displayed (this permits us to give
definite bounds to the playing surface).

select —Performs an action in response to a mouse click. It is invoked when the user selects
a pile by clicking the mouse in the portion of the playing field covered by the pile. The
default action does nothing, but is overridden by the table, deck, and discard piles to
play the topmost card, if possible.

The following table illustrates the important benefits of inheritance. Given five oper-
ations and five classes, there are 25 potential methods we might have had to define. By
making use of inheritance we need to implement only 13. Furthermore, we are guaranteed
that each pile will respond in the same way to similar requests.

CardPile SuitPile DeckPile DiscardPile TableauPile
includes X X
canTake X X X
addCard X X
display X X
select X X X X

8.3. CARD PILES-INHERITANCE IN ACTION 107

class SuitPile extends CardPile {
SuitPile (int x, int y) { super(x, y); }

public boolean canTake (Card aCard) {
if (isEmpty())
return aCard.rank() == 0;
Card topCard = top();
return (aCard.suit() == topCard.suit()) &&
(aCard.rank() == 1 + topCard.rank());
}

Figure 8.5: The class SuitPile.

8.3.1 The Suit Piles

We will examine each of the subclasses of CardPile in detail, pointing out various uses of
object-oriented features as they are encountered. The simplest subclass is the class SuitPile,
shown in Figure 8.5, which represents the pile of cards at the top of the playing surface, the
pile being built up in suit from ace to king.

The class SuitPile defines only two methods. The constructor for the class takes two
integer arguments and does nothing more than invoke the constructor for the parent class
CardPile. Note the use of the keyword super to indicate the parent class. The method
canTake determines whether or not a card can be placed on the pile. A card is legal if the
pile is empty and the card is an ace (that is, has rank zero) or if the card is the same suit
as the topmost card in the pile and of the next higher rank (for example, a three of spades
can only be played on a two of spades).

All other behavior of the suit pile is the same as that of our generic card pile. When
selected, a suit pile does nothing. When a card is added it is simply inserted into the
collection of cards. To display the pile only the topmost card is drawn.

8.3.2 The Deck Pile

The DeckPile (Figure 8.6) maintains the original deck of cards. It differs from the generic
card pile in two ways. When constructed, rather than creating an empty pile of cards, it
creates the complete deck of 52 cards, inserting them in order into the collection. Once all
the cards have been created, the collection is then shuffled. To do this, a random number
generator is first created. This generator is provided by the Java utility class Random. A
loop then examines each card in turn, exchaning the card with another randomly selected
card. To produce the index of the latter card, the random number generator first produces
a randomly selected integer value (using by the method nextlnt). Since this value could

108 CHAPTER 8. A CASE STUDY: SOLITAIRE

potentially be negative, the math library function abs is called to make it positive. The
modular division operation is finally used to produce a randomly selected integer value
between 0 and 52.

A subtle feature to note is that we are here performing a random access to the elements
of a Stack. The conventional view of a stack does not allow access to any but the topmost
element. However, in the Java library the Stack container is constructed using inheritance
from the Vector class. Thus, any legal operation on a Vector, such as the method elementAt(),
can also be applied to a Stack.

The method select is invoked when the mouse button is used to select the card deck. If
the deck is empty, it does nothing. Otherwise, the topmost card is removed from the deck
and added to the discard pile.

Java does not have global variables. Where a value is shared between multiple instances
of similar classes, such as the various piles used in our solitaire game, an instance variable
can be declared static. As we will noted in Chapter 2, one copy of a static variable is created
and shared between all instances. In our present program, static variables will be used to
maintain all the various card piles. These will be held in an instance of class Solitaire, which
we will subsequently describe. To access these values we use a complete qualified name,
which includes the name of the class as well as the name of the variable. This is shown in
the select method in Figure 8.6, which refers to the variable Solitare.discardPile to access the
discard pile.

8.3.3 The Discard Pile

The class DiscardPile (Figure 8.7) is interesting in that it exhibits two very different forms of
inheritance. The select method overrides or replaces the default behavior provided by class
CardPile, replacing it with code that when invoked (when the mouse is pressed over the card
pile) checks to see if the topmost card can be played on any suit pile or, alternatively, on
any tableau pile. If the card cannot be played, it is kept in the discard pile.

The method addCard is a different sort of overriding. Here the behavior is a refinement
of the default behavior in the parent class. That is, the behavior of the parent class is
completely executed, and, in addition, new behavior is added. In this case, the new behavior
ensures that when a card is placed on the discard pile it is always face up. After satisfying
this condition, the code in the parent class is invoked to add the card to the pile by passing
the message to the pseudo-variable named super.

Another form of refinement occurs in the constructors for the various subclasses. Each
must invoke the constructor for the parent class to guarantee that the parent is properly
initialized before the constructor performs its own actions. The parent constructor is in-
voked by the pseudo-variable super being used as a function inside the constructor for the
child class. In Chapter ?? we will have much more to say about the distinction between
replacement and refinement in overriding.

8.3. CARD PILES-INHERITANCE IN ACTION 109

class DeckPile extends CardPile {

DeckPile (int x, int y) {
// first initialize parent
super(x, y);
// then create the new deck
// first put them into a local pile
for (int 1 = 0; i < 4; i++)
for (int j = 0; j <= 12; j++)
addCard(new Card(i, j));

// then shuffle the cards
Random generator = new Random() ;
for (int i = 0; i < B52; i++) {
int j = Math.abs(generator.nextInt()) % 52;
// swap the two card values
Object temp = thePile.elementAt(i);
thePile.setElementAt (thePile.elementAt(j), i);
thePile.setElementAt (temp, j);

}
}

public void select(int tx, int ty) {
if (isEmpty())
return;
Solitare.discardPile.addCard(pop());

}

Figure 8.6: The class DeckPile.

110 CHAPTER 8. A CASE STUDY: SOLITAIRE

class DiscardPile extends CardPile {
DiscardPile (int x, int y) { super (x, y); }

public void addCard (Card aCard) {
if (! aCard.faceUp())
aCard.flip();
super.addCard (aCard) ;

}

public void select (int tx, int ty) {
if (isEmpty())
return;
Card topCard = pop();
for (int 1 = 0; i < 4; i++)
if (Solitare.suitPile[i].canTake(topCard)) {
Solitare.suitPile[i].addCard(topCard) ;
return;
}
for (int 1 = 0; 1 < 7; i++)
if (Solitare.tableau[i].canTake(topCard)) {
Solitare.tableau[i] .addCard(topCard) ;
return;
}
// nobody can use it, put it back on our list
addCard (topCard) ;

}

Figure 8.7: The class DiscardPile.

8.4. THE APPLICATION CLASS 111

8.3.4 The Tableau Piles

The most complex of the subclasses of CardPile is that used to hold a tableau, or table
pile. It is shown in Figures 8.8 and 8.9. Table piles differ from the generic card pile in the
following ways:

e When initialized (by the constructor), the table pile removes a certain number of cards
from the deck, placing them in its pile. The number of cards so removed is determined
by an additional argument to the constructor. The topmost card of this pile is then
displayed face up.

e A card can be added to the pile (method canTake) only if the pile is empty and the
card is a king, or if the card is the opposite color from that of the current topmost
card and one smaller in rank.

e When a mouse press is tested to determine if it covers this pile (method includes) only
the left, right, and top bounds are checked; the bottom bound is not tested since the
pile may be of variable length.

e When the pile is selected, the topmost card is flipped if it is face down. If it is face
up, an attempt is made to move the card first to any available suit pile, and then to
any available table pile. Only if no pile can take the card is it left in place.

e To display the pile, each card in the pile is drawn in turn, each moving down slightly.
To access the individual elements of the stack, an Enumeration is created. Enumeration
objects are provided by all the containers in the Java library, and allow one to easily
loop over the elements in the container.

8.4 The Application Class

Figure 8.10 shows the central class for the solitare application. As in our earlier case studies,
the control is initially given to the static procedure named main, which creates an instance
of the application class. The constructor for the application creates a window for the
application, by constructing an instance of a nested class SolitareFrame that inherits from
the library class Frame. After invoking the init method, which performs the application
initialization, the window is given the message show, which will cause it to display itself.

We noted earlier that the variables maintaining the different piles, which are shared in
common between all classes, are declared as static data fields in this class. These data fields
are initialized in the method name init.

Arrays in Java are somewhat different from arrays in most languages. Java distinguishes
the three activities of array declaration, array allocation, and assignment to an array lo-
cation. Note that the declaration statements indicate only that the named objects are an
array and not that they have any specific bound. One of the first steps in the initialization

112 CHAPTER 8. A CASE STUDY: SOLITAIRE

class TablePile extends CardPile {

TablePile (int x, int y, int c) {
// initialize the parent class
super(x, y);
// then initialize our pile of cards
for (int i = 0; i < c¢; i++) {
addCard(Solitare.deckPile.pop());
}
// flip topmost card face up
top() .£f1lip();

}

public boolean canTake (Card aCard) {
if (isEmpty())
return aCard.rank() == 12;
Card topCard = top();
return (aCard.color() != topCard.color()) &&
(aCard.rank() == topCard.rank() - 1);
}

public boolean includes (int tx, int ty) {
// don’t test bottom of card
return x <= tx && tx <= x + Card.width &&

y <= ty;
}

public void display (Graphics g) {
int localy = y;
for (Enumeration e = thePile.elements(); e.hashMoreElements();) {
Card aCard = (Card) e.nextElement();
aCard.draw (g, x, localy);
localy += 35;

}

Figure 8.8: The class TablePile, part 1.

8.4. THE APPLICATION CLASS 113

class TablePile extends CardPile {

public void select (int tx, int ty) {
if (isEmpty())
return;

// if face down, then flip
Card topCard = top();
if (! topCard.faceUp()) {
topCard.flip();
return;

}

// else see if any suit pile can take card
topCard = popQ);
for (int 1 = 0; i < 4; i++)
if (Solitare.suitPile[i].canTake(topCard)) {
Solitare.suitPile[i].addCard(topCard) ;
return;

// else see if any other table pile can take card
for (int i = 0; i < 7; i++)
if (Solitare.tableauli].canTake(topCard)) {
Solitare.tableau[i] .addCard(topCard) ;
return;
}
// else put it back on our pile
addCard (topCard) ;

}

Figure 8.9: The class TablePile, part 2.

114 CHAPTER 8. A CASE STUDY: SOLITAIRE

public class Solitare {
static public DeckPile deckPile;
static public DiscardPile discardPile;
static public TablePile tableau [];
static public SuitPile suitPile [];
static public CardPile allPiles []1;
private Frame window;

static public void main (String [1 args) {
Solitare world = new Solitare();

}

public Solitare () {
window = new SolitareFrame();
init();
window.show() ;

}

public void init () {
// first allocate the arrays
allPiles = new CardPile[13];
suitPile = new SuitPile[4];
tableau = new TablePilel7];
// then fill them in
allPiles[0] = deckPile = new DeckPile(335, 30);
allPiles[1] = discardPile = new DiscardPile(268, 30);
for (int i = 0; i < 4; i++)
allPiles[2+i] = suitPile[i] =
new SuitPile(15 + (Card.width+10) * i, 30);
for (int 1 = 0; 1 < 7; i++)
allPiles[6+i] = tableau[i] =
new TablePile(15+(Card.width+5)*i, Card.height+35, i+1);

}

private class SolitareFrame extends Frame { ... }

Figure 8.10: The class Solitaire.

8.5. PLAYING THE POLYMORPHIC GAME 115

routine is to allocate space for the three arrays (the suit piles, the tableau, and the array
allPiles we will discuss shortly). The new command allocates space for the arrays, but does
not assign any values to the array elements.

The next step is to create the deck pile. Recall that the constructor for this class creates
and shuffles the entire deck of 52 cards. The discard pile is similarly constructed. A loop
then creates and initializes the four suit piles, and a second loop creates and initializes the
tableau piles. Recall that as part of the initialization of the tableau, cards are removed from
the deck and inserted in the tableau pile.

The inner class SolitareFrame, used to manage the application window, is shown in Fig-
ure 8.11. In addition to the cards, a button will be placed at the bottom of the window.
Listeners are created both for mouse events (see Chapter 5) and for the button. When
pressed, the button will invoke the button listener method. This method will reinitialize the
game, then repaint the window. Similarly, when the mouse listener is invoked (in response
to a mouse press) the collection of card piles will be examined, and the appropriate pile will
be displayed.

8.5 Playing the Polymorphic Game

Both the mouse listener and the repaint method for the application window make use of
the array allPiles. This array is used to represent all 13 card piles. Note that as each
pile is created it is also assigned a location in this array, as well as in the appropriate static
variable. We will use this array to illustrate yet another aspect of inheritance. The principle
of substitutability is used here: The array allPiles is declared as an array of CardPile, but in
fact is maintaining a variety of card piles.

This array of all piles is used in situations where it is not important to distinguish
between various types of card piles; for example, in the repaint procedure. To repaint the
display, each different card pile is simply asked to display itself. Similarly, when the mouse is
pressed, each pile is queried to see if it contains the given position; if so, the card is selected.
Remember, of the piles being queried here seven are tableau piles, four are foundations, and
the remaining are the discard pile and the deck. Furthermore, the actual code executed in
response to the invocation of the includes and select routines may be different in each call,
depending upon the type of pile being manipulated.

The use of a variable declared as an instance of the parent class holding a value from
a subclass is one aspect of polymorphism, a topic we will return to in more detail in a
subsequent chapter.

8.6 Building a More Complete Game

The solitaire game described here is minimal and exceedingly hard to win. A more realistic
game would include at least a few of the following variations:

116 CHAPTER 8. A CASE STUDY: SOLITAIRE

private class SolitareFrame extends Frame {

private class RestartButtonListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
init();
repaint () ;
}
}

private class MouseKeeper extends MouseAdapter {
public void mousePressed (MouseEvent e) {
int x = e.getX();
int y = e.getY();
for (int i = 0; i < 13; i++)
if (allPiles[i].includes(x, y)) {
allPiles[i].select(x, y);
repaint () ;

}

public SolitareFrame() { // constructor for window
setSize (600, 500);
setTitle("Solitaire Game");
addMouseListener (new MouseKeeper());
Button restartButton = new Button("New Game") ;
restartButton.addActionlListener (new RestartButtonListener());
add("South", restartButton);

}

public void paint(Graphics g) {
for (int i = 0; i < 13; i++)
allPiles[i].display(g);

}

Figure 8.11: The inner class SolitareFrame

8.6. BUILDING A MORE COMPLETE GAME 117

e The method select in class TablePile would be extended to recognize builds. That

is, if the topmost card could not be played, the bottommost face-up card in the pile
should be tested against each tableau pile; if it could be played, the entire collection
of face-up cards should be moved.

Our game halts after one series of moves through the deck. An alternative would be
that when the user selected the empty deck pile (by clicking the mouse in the area
covered by the deck pile) the discard pile would be reshuffled and copied back into the
deck, allowing execution to continue.

Various other alternatives are described in the exercises.

Study Questions

1.

10.

What data values are maintained by class Card? What behaviors can a card perform?
(That is, what methods are implemented by the class Card?)

. Explain why the suit and rank data fields are declared as private.

What is a default constructor? What is a copy constructor?

What is an accessor function? What is what advantage of using an accessor function
as opposed to direct access to a data member?

Why might you want to make accessor functions into inline functions? What factors
should you consider in deciding whether to declare a function in an inline fashion?

What are the 13 different card piles that are used in the solitare game?

What is a virtual member function? Describe the five virtual functions implemented
in class CardPile and overridden in at least one child class.

How does the use of inheritance reduce the amount of code that would otherwise be
necessary to implement the various types of card piles?

Explain the difference between overriding used for replacment and overriding used
for refinement. Find another example of each in the methods associated with class

CardPile and its various subclasses.

Explain how polymorphism is exhibited in the solitare game application.

118 CHAPTER 8. A CASE STUDY: SOLITAIRE

Exercises

1. The solitaire game has been designed to be as simple as possible. A few features are
somewhat annoying, but can be easily remedied with more coding. These include the
following;:

(a) The topmost card of a tableau pile should not be moved to another tableau pile
if there is another face-up card below it.

(b) An entire build should not be moved if the bottommost card is a king and there
are no remaining face-down cards.

For each, describe what procedures need to be changed, and give the code for the
updated routine.

2. The following are common variations of klondike. For each, describe which portions
of the solitaire program need to be altered to incorporate the change.

(a) If the user clicks on an empty deck pile, the discard pile is moved (perhaps with
shuffling) back to the deck pile. Thus, the user can traverse the deck pile multiple
times.

(b) Cards can be moved from the suit pile back into the tableau pile.

(c) Cards are drawn from the deck three at a time and placed on the discard pile in
reverse order. As before, only the topmost card of the discard pile is available
for playing. If fewer than three cards remain in the deck pile, all the remaining
cards (as many as that may be) are moved to the discard pile. (In practice, this
variation is often accompanied by variation 1, permitting multiple passes through
the deck).

(d) The same as variation 3, but any of the three selected cards can be played. (This
requires a slight change to the layout as well as an extensive change to the discard
pile class).

(e) Any royalty card, not simply a king, can be moved onto an empty tableau pile.

3. The game “thumb and pouch” is similar to klondike except that a card may be built
on any card of next-higher rank, of any suit but its own. Thus, a nine of spades can be
played on a ten of clubs, but not on a ten of spades. This variation greatly improves
the chances of winning. (According to Morehead [?], the chances of winning Klondike
are 1 in 30, whereas the chances of winning thumb and pouch are 1 in 4.) Describe
what portions of the program need to be changed to accommodate this variation.

4. The game “whitehead” is superficially similar to klondike, in the sense that it uses the
same layout. However, uses different rules for when card can be played in the tableau:

EXERCISES 119

(a) A card can be moved onto another faceup card in the tableau only if it has the
same color and is one smaller in rank. For example, a five of spades can be played
on either a six or clubs or a six of spades, but not on a six of diamonds or a six
of hearts.

(b) A build can only be moved if all cards in the build are of the same suit.

Describe what portions of the program need to be changed to accomodate this varia-
tion.

