
Chapter 8A Case Study: SolitaireA program for playing the card game solitaire will illustrate the utility and power of in-heritance and overriding. A major part of the game of Solitaire is moving cards from onecard pile to another. There are a number of di�erent types of card piles, each having somefeatures in common with the others, while other features are unique. A common parent classCardPile can therefore be used to capture the common elements, while inheritance and over-riding can be used to produce specialized types of piles. The developement of this programwill illustrate how inheritance can be used to simplify the creation of these components andensure that they can all be manipulated in a similar fashion.8.1 The Class CardTo create a card game, we �rst need to de�ne a class to represent a playing card. Eachinstance of class Card (Figure 8.1) maintains a suit value and a rank. To prevent modi�cationof these values, the instance variables maintaining them are declared private and access ismediated through accessor functions. The value of the suit and rank �elds are set by theconstructor for the class. Integer constant values (in Java de�ned by the use of �nal staticconstants) are de�ned for the height and width of the card as well as for the suits. Anotherfunction permits the user to determine the color of the card. The Java library class Coloris used to represent the color abstraction. The Color class de�nes constants for variouscolors. The values Color.red, Color.black, Color.yellow and Color.blue are used in the solitareprogram.There are important reasons that data values representing suit and rank should bereturned through an accessor function, as opposed to de�ning the data �elds s and r aspublic and allowing direct access to the data values. One of the most important is thataccess through a function ensures that the rank and suit characteristics of a card can beread but not altered once the card has been created.99

100 CHAPTER 8. A CASE STUDY: SOLITAIREimport java.awt.�;public class Card f// public constants for card width and suitspublic final static int width = 50;public final static int height = 70;public final static int heart = 0;public final static int spade = 1;public final static int diamond = 2;public final static int club = 3;// internal data �elds for rank and suitprivate boolean faceup;private int r;private int s;// constructorCard (int sv, int rv) f s = sv; r = rv; faceup = false; g// access attributes of cardpublic int rank () f return r; gpublic int suit() f return s; gpublic boolean faceUp() f return faceup; gpublic void flip() f faceup = ! faceup; gpublic Color color() fif (faceUp())if (suit() == heart jj suit() == diamond)return Color.red;elsereturn Color.black;return Color.yellow;gpublic void draw (Graphics g, int x, int y) f ... gg Figure 8.1: Description of the class card.

8.2. THE GAME 101The only other actions a card can perform, besides setting and returning the state ofthe card, are to
ip over and to display itself. The function
ip() is a one-line functionthat simply reverses the value held by an instance variable. The drawing function is morecomplex, making use of the drawing facilities provided by the Java standard applicationlibrary. As we have seen in the earlier case studies, the application library provides a datatype called Graphics that provides a variety of methods for drawing lines and common shapes,as well as for coloring. An argument of this type is passed to the draw function, as are theinteger coordinates representing the upper left corner of the card.The card images are simple line drawings, as shown below. Diamonds and hearts aredrawn in red, spades and clubs in black. The hash marks on the back are drawn in yellow.A portion of the procedure for drawing a playing card is shown in Figure 8.2.A ��@@

JJJJJ��@@ 3 AAAAA�������� DDDThe most important feature of the playing-card abstraction is the manner in which eachcard is responsible for maintaining within itself all card-related information and behaviors.The card knows both its value and how to draw itself. In this manner the information isencapsulated and isolated from the application using the playing card. If, for example, onewere to move the program to a new platform using di�erent graphics facilities, only the drawmethod within the class itself would need to be altered.8.2 The GameThe version of solitaire we will describe is known as klondike. The countless variations onthis game make it probably the most common version of solitaire; so much so that whenyou say \solitaire," most people think of klondike. The version we will use is that describedin [?]; in the exercises we will explore some of the common variations.The layout of the game is shown in Figure 8.3. A single standard pack of 52 cards isused. The tableau, or playing table, consists of 28 cards in 7 piles. the �rst pile has 1 card,the second 2, and so on up to 7. The top card of each pile is initially face up; all other cardsare face down.The suit piles (sometimes called foundations) are built up from aces to kings in suits.They are constructed above the tableau as the cards become available. The object of the

102 CHAPTER 8. A CASE STUDY: SOLITAIREpublic class Card f...public void draw (Graphics g, int x, int y) fString names[] = f"A", "2", "3", "4", "5", "6","7", "8", "9", "10", "J", "Q", "K"g;// clear rectangle, draw borderg.clearRect(x, y, width, height);g.setColor(Color.blue);g.drawRect(x, y, width, height);// draw body of cardg.setColor(color());if (faceUp()) fg.drawString(names[rank()], x+3, y+15);if (suit() == heart) fg.drawLine(x+25, y+30, x+35, y+20);g.drawLine(x+35, y+20, x+45, y+30);g.drawLine(x+45, y+30, x+25, y+60);g.drawLine(x+25, y+60, x+5, y+30);g.drawLine(x+5, y+30, x+15, y+20);g.drawLine(x+15, y+20, x+25, y+30);gelse if (suit() == spade) f ... gelse if (suit() == diamond) f ... gelse if (suit() == club) fg.drawOval(x+20, y+25, 10, 10);g.drawOval(x+25, y+35, 10, 10);g.drawOval(x+15, y+35, 10, 10);g.drawLine(x+23, y+45, x+20, y+55);g.drawLine(x+20, y+55, x+30, y+55);g.drawLine(x+30, y+55, x+27, y+45);ggelse f // face downg.drawLine(x+15, y+5, x+15, y+65);g.drawLine(x+35, y+5, x+35, y+65);g.drawLine(x+5, y+20, x+45, y+20);g.drawLine(x+5, y+35, x+45, y+35);g.drawLine(x+5, y+50, x+45, y+50);ggg Figure 8.2: Procedure to draw a playing card.

8.2. THE GAME 103

Table Piles

DeckDiscardSuit Piles

Figure 8.3: Layout for the solitaire game.game is to build all 52 cards into the suit piles.The cards that are not part of the tableau are initially all in the deck. Cards in the deckare face down, and are drawn one by one from the deck and placed, face up, on the discardpile. From there, they can be moved onto either a tableau pile or a foundation. Cards aredrawn from the deck until the pile is empty; at this point, the game is over if no furthermoves can be made.Cards can be placed on a tableau pile only on a card of next-higher rank and oppositecolor. They can be placed on a foundation only if they are the same suit and next highercard or if the foundation is empty and the card is an ace. Spaces in the tableau that ariseduring play can be �lled only by kings.The topmost card of each tableau pile and the topmost card of the discard pile are alwaysavailable for play. The only time more than one card is moved is when an entire collectionof face-up cards from a tableau (called a build) is moved to another tableau pile. This canbe done if the bottommost card of the build can be legally played on the topmost card of

104 CHAPTER 8. A CASE STUDY: SOLITAIREthe destination. Our initial game will not support the transfer of a build, but we will discussthis as a possible extension. The topmost card of a tableau is always face up. If a card ismoved from a tableau, leaving a face-down card on the top, the latter card can be turnedface up.From this short description, it is clear that the game of solitaire mostly involves manip-ulating piles of cards. Each type of pile has many features in common with the others anda few aspects unique to the particular type. In the next section, we will investigate in detailhow inheritance can be used in such circumstances to simplify the implementation of thevarious card piles by providing a common base for the generic actions and permitting thisbase to be rede�ned when necessary.8.3 Card Piles{Inheritance in ActionMuch of the behavior we associate with a card pile is common to each variety of pile inthe game. For example, each pile maintains a collection of the cards in the pile (held ina Stack), and the operations of inserting and deleting elements from this collection arecommon. Other operations are given default behavior in the class CardPile, but they aresometimes overridden in the various subclasses. The class CardPile is shown in Figure 8.4.Each card pile maintains the coordinate location for the upper left corner of the pile,as well as a Stack. The stack is used to hold the cards in the pile. All three of thesevalues are set by the constructor for the class. The data �elds are declared as protectedand thus accessible to member functions associated with this class and to member functionsassociated with subclasses.The three functions top(), pop(), and isEmpty() manipulate the list of cards, using func-tions provided by the Stack utility class. Note that these three methods have been declaredas �nal. This modi�er serves two important purposes. First, it is a documentation aid,signaling to the reader of the listing that the methods cannot be overridden by subclasses.Second, in some situations the Java compiler can optimize the invocation of �nal methods,creating faster code than could be generated for the execution of non-�nal methods.The topmost card in a pile is returned by the function top(). This card will be the lastcard in the underlying container. Note that the function peek() provided by the Stack classreturns a value declared as Object. This result must be cast to a Card value before it can bereturned as the result.The method pop() uses the pop() operation provided by the underlying stack. The stackmethod throws an exception if an attempt is made to remove an element from an emptystack. The pop() method in the class CardPile catches the exception, and returns a nullvalue in this situation.The �ve operations that are not declared �nal are common to the abstract notion of ourcard piles, but they di�er in details in each case. For example, the function canTake(Card)asks whether it is legal to place a card on the given pile. A card can be added to a foundationpile, for instance, only if it is an ace and the foundation is empty, or if the card is of the

8.3. CARD PILES{INHERITANCE IN ACTION 105import java.util.Stack;import java.util.EmptyStackException;public class CardPile fprotected int x; // coordinates of the card pileprotected int y;protected Stack thePile; // the collection of cardsCardPile (int xl, int yl) f x = xl; y = yl; thePile = new Stack(); gpublic final Card top() f return (Card) thePile.peek(); gpublic final boolean isEmpty() f return thePile.empty(); gpublic final Card pop() ftry freturn (Card) thePile.pop();g catch (EmptyStackException e) f return null; gg// the following are sometimes overriddenpublic boolean includes (int tx, int ty) freturn x <= tx && tx <= x + Card.width &&y <= ty && ty <= y + Card.height;gpublic void select (int tx, int ty) f gpublic void addCard (Card aCard) f thePile.push(aCard); gpublic void display (Graphics g) fg.setColor(Color.blue);if (isEmpty()) g.drawRect(x, y, Card.width, Card.height);else top().draw(g, x, y);gpublic boolean canTake (Card aCard) f return false; gg Figure 8.4: Description of the class CardPile.

106 CHAPTER 8. A CASE STUDY: SOLITAIREsame suit as the current topmost card in the pile and has the next-higher value. A cardcan be added to a tableau pile, on the other hand, only if the pile is empty and the card isa king, or if it is of the opposite color as the current topmost card in the pile and has thenext lower value.The actions of the �ve virtual functions de�ned in CardPile can be characterized asfollows:includes {Determines if the coordinates given as arguments are contained within the bound-aries of the pile. The default action simply tests the topmost card; this is overriddenin the tableau piles to test all card values.canTake {Tells whether a pile can take a speci�c card. Only the tableau and suit piles cantake cards, so the default action is simply to return no; this is overridden in the twoclasses mentioned.addCard {Adds a card to the card list. It is rede�ned in the discard pile class to ensure thatthe card is face up.display {Displays the card deck. The default method merely displays the topmost card ofthe pile, but is overridden in the tableau class to display a column of cards. The tophalf of each hidden card is displayed. So that the playing surface area is conserved,only the topmost and bottommost face-up cards are displayed (this permits us to givede�nite bounds to the playing surface).select {Performs an action in response to a mouse click. It is invoked when the user selectsa pile by clicking the mouse in the portion of the playing �eld covered by the pile. Thedefault action does nothing, but is overridden by the table, deck, and discard piles toplay the topmost card, if possible.The following table illustrates the important bene�ts of inheritance. Given �ve oper-ations and �ve classes, there are 25 potential methods we might have had to de�ne. Bymaking use of inheritance we need to implement only 13. Furthermore, we are guaranteedthat each pile will respond in the same way to similar requests.CardPile SuitPile DeckPile DiscardPile TableauPileincludes � �canTake � � �addCard � �display � �select � � � �

8.3. CARD PILES{INHERITANCE IN ACTION 107class SuitPile extends CardPile fSuitPile (int x, int y) f super(x, y); gpublic boolean canTake (Card aCard) fif (isEmpty())return aCard.rank() == 0;Card topCard = top();return (aCard.suit() == topCard.suit()) &&(aCard.rank() == 1 + topCard.rank());gg Figure 8.5: The class SuitPile.8.3.1 The Suit PilesWe will examine each of the subclasses of CardPile in detail, pointing out various uses ofobject-oriented features as they are encountered. The simplest subclass is the class SuitPile,shown in Figure 8.5, which represents the pile of cards at the top of the playing surface, thepile being built up in suit from ace to king.The class SuitPile de�nes only two methods. The constructor for the class takes twointeger arguments and does nothing more than invoke the constructor for the parent classCardPile. Note the use of the keyword super to indicate the parent class. The methodcanTake determines whether or not a card can be placed on the pile. A card is legal if thepile is empty and the card is an ace (that is, has rank zero) or if the card is the same suitas the topmost card in the pile and of the next higher rank (for example, a three of spadescan only be played on a two of spades).All other behavior of the suit pile is the same as that of our generic card pile. Whenselected, a suit pile does nothing. When a card is added it is simply inserted into thecollection of cards. To display the pile only the topmost card is drawn.8.3.2 The Deck PileThe DeckPile (Figure 8.6) maintains the original deck of cards. It di�ers from the genericcard pile in two ways. When constructed, rather than creating an empty pile of cards, itcreates the complete deck of 52 cards, inserting them in order into the collection. Once allthe cards have been created, the collection is then shu�ed. To do this, a random numbergenerator is �rst created. This generator is provided by the Java utility class Random. Aloop then examines each card in turn, exchaning the card with another randomly selectedcard. To produce the index of the latter card, the random number generator �rst producesa randomly selected integer value (using by the method nextInt). Since this value could

108 CHAPTER 8. A CASE STUDY: SOLITAIREpotentially be negative, the math library function abs is called to make it positive. Themodular division operation is �nally used to produce a randomly selected integer valuebetween 0 and 52.A subtle feature to note is that we are here performing a random access to the elementsof a Stack. The conventional view of a stack does not allow access to any but the topmostelement. However, in the Java library the Stack container is constructed using inheritancefrom the Vector class. Thus, any legal operation on a Vector, such as the method elementAt(),can also be applied to a Stack.The method select is invoked when the mouse button is used to select the card deck. Ifthe deck is empty, it does nothing. Otherwise, the topmost card is removed from the deckand added to the discard pile.Java does not have global variables. Where a value is shared between multiple instancesof similar classes, such as the various piles used in our solitaire game, an instance variablecan be declared static. As we will noted in Chapter 2, one copy of a static variable is createdand shared between all instances. In our present program, static variables will be used tomaintain all the various card piles. These will be held in an instance of class Solitaire, whichwe will subsequently describe. To access these values we use a complete quali�ed name,which includes the name of the class as well as the name of the variable. This is shown inthe select method in Figure 8.6, which refers to the variable Solitare.discardPile to access thediscard pile.8.3.3 The Discard PileThe class DiscardPile (Figure 8.7) is interesting in that it exhibits two very di�erent forms ofinheritance. The select method overrides or replaces the default behavior provided by classCardPile, replacing it with code that when invoked (when the mouse is pressed over the cardpile) checks to see if the topmost card can be played on any suit pile or, alternatively, onany tableau pile. If the card cannot be played, it is kept in the discard pile.The method addCard is a di�erent sort of overriding. Here the behavior is a re�nementof the default behavior in the parent class. That is, the behavior of the parent class iscompletely executed, and, in addition, new behavior is added. In this case, the new behaviorensures that when a card is placed on the discard pile it is always face up. After satisfyingthis condition, the code in the parent class is invoked to add the card to the pile by passingthe message to the pseudo-variable named super.Another form of re�nement occurs in the constructors for the various subclasses. Eachmust invoke the constructor for the parent class to guarantee that the parent is properlyinitialized before the constructor performs its own actions. The parent constructor is in-voked by the pseudo-variable super being used as a function inside the constructor for thechild class. In Chapter ?? we will have much more to say about the distinction betweenreplacement and re�nement in overriding.

8.3. CARD PILES{INHERITANCE IN ACTION 109
class DeckPile extends CardPile fDeckPile (int x, int y) f// �rst initialize parentsuper(x, y);// then create the new deck// �rst put them into a local pilefor (int i = 0; i < 4; i++)for (int j = 0; j <= 12; j++)addCard(new Card(i, j));// then shu�e the cardsRandom generator = new Random();for (int i = 0; i < 52; i++) fint j = Math.abs(generator.nextInt()) % 52;// swap the two card valuesObject temp = thePile.elementAt(i);thePile.setElementAt(thePile.elementAt(j), i);thePile.setElementAt(temp, j);ggpublic void select(int tx, int ty) fif (isEmpty())return;Solitare.discardPile.addCard(pop());gg Figure 8.6: The class DeckPile.

110 CHAPTER 8. A CASE STUDY: SOLITAIRE
class DiscardPile extends CardPile fDiscardPile (int x, int y) f super (x, y); gpublic void addCard (Card aCard) fif (! aCard.faceUp())aCard.flip();super.addCard(aCard);gpublic void select (int tx, int ty) fif (isEmpty())return;Card topCard = pop();for (int i = 0; i < 4; i++)if (Solitare.suitPile[i].canTake(topCard)) fSolitare.suitPile[i].addCard(topCard);return;gfor (int i = 0; i < 7; i++)if (Solitare.tableau[i].canTake(topCard)) fSolitare.tableau[i].addCard(topCard);return;g// nobody can use it, put it back on our listaddCard(topCard);gg Figure 8.7: The class DiscardPile.

8.4. THE APPLICATION CLASS 1118.3.4 The Tableau PilesThe most complex of the subclasses of CardPile is that used to hold a tableau, or tablepile. It is shown in Figures 8.8 and 8.9. Table piles di�er from the generic card pile in thefollowing ways:� When initialized (by the constructor), the table pile removes a certain number of cardsfrom the deck, placing them in its pile. The number of cards so removed is determinedby an additional argument to the constructor. The topmost card of this pile is thendisplayed face up.� A card can be added to the pile (method canTake) only if the pile is empty and thecard is a king, or if the card is the opposite color from that of the current topmostcard and one smaller in rank.� When a mouse press is tested to determine if it covers this pile (method includes) onlythe left, right, and top bounds are checked; the bottom bound is not tested since thepile may be of variable length.� When the pile is selected, the topmost card is
ipped if it is face down. If it is faceup, an attempt is made to move the card �rst to any available suit pile, and then toany available table pile. Only if no pile can take the card is it left in place.� To display the pile, each card in the pile is drawn in turn, each moving down slightly.To access the individual elements of the stack, an Enumeration is created. Enumerationobjects are provided by all the containers in the Java library, and allow one to easilyloop over the elements in the container.8.4 The Application ClassFigure 8.10 shows the central class for the solitare application. As in our earlier case studies,the control is initially given to the static procedure named main, which creates an instanceof the application class. The constructor for the application creates a window for theapplication, by constructing an instance of a nested class SolitareFrame that inherits fromthe library class Frame. After invoking the init method, which performs the applicationinitialization, the window is given the message show, which will cause it to display itself.We noted earlier that the variables maintaining the di�erent piles, which are shared incommon between all classes, are declared as static data �elds in this class. These data �eldsare initialized in the method name init.Arrays in Java are somewhat di�erent from arrays in most languages. Java distinguishesthe three activities of array declaration, array allocation, and assignment to an array lo-cation. Note that the declaration statements indicate only that the named objects are anarray and not that they have any speci�c bound. One of the �rst steps in the initialization

112 CHAPTER 8. A CASE STUDY: SOLITAIREclass TablePile extends CardPile fTablePile (int x, int y, int c) f// initialize the parent classsuper(x, y);// then initialize our pile of cardsfor (int i = 0; i < c; i++) faddCard(Solitare.deckPile.pop());g//
ip topmost card face uptop().flip();gpublic boolean canTake (Card aCard) fif (isEmpty())return aCard.rank() == 12;Card topCard = top();return (aCard.color() != topCard.color()) &&(aCard.rank() == topCard.rank() - 1);gpublic boolean includes (int tx, int ty) f// don't test bottom of cardreturn x <= tx && tx <= x + Card.width &&y <= ty;gpublic void display (Graphics g) fint localy = y;for (Enumeration e = thePile.elements(); e.hashMoreElements();) fCard aCard = (Card) e.nextElement();aCard.draw (g, x, localy);localy += 35;gg...g Figure 8.8: The class TablePile, part 1.

8.4. THE APPLICATION CLASS 113
class TablePile extends CardPile f...public void select (int tx, int ty) fif (isEmpty())return;// if face down, then
ipCard topCard = top();if (! topCard.faceUp()) ftopCard.flip();return;g// else see if any suit pile can take cardtopCard = pop();for (int i = 0; i < 4; i++)if (Solitare.suitPile[i].canTake(topCard)) fSolitare.suitPile[i].addCard(topCard);return;g// else see if any other table pile can take cardfor (int i = 0; i < 7; i++)if (Solitare.tableau[i].canTake(topCard)) fSolitare.tableau[i].addCard(topCard);return;g// else put it back on our pileaddCard(topCard);gg Figure 8.9: The class TablePile, part 2.

114 CHAPTER 8. A CASE STUDY: SOLITAIREpublic class Solitare fstatic public DeckPile deckPile;static public DiscardPile discardPile;static public TablePile tableau [];static public SuitPile suitPile [];static public CardPile allPiles [];private Frame window;static public void main (String [] args) fSolitare world = new Solitare();gpublic Solitare () fwindow = new SolitareFrame();init();window.show();gpublic void init () f// �rst allocate the arraysallPiles = new CardPile[13];suitPile = new SuitPile[4];tableau = new TablePile[7];// then �ll them inallPiles[0] = deckPile = new DeckPile(335, 30);allPiles[1] = discardPile = new DiscardPile(268, 30);for (int i = 0; i < 4; i++)allPiles[2+i] = suitPile[i] =new SuitPile(15 + (Card.width+10) � i, 30);for (int i = 0; i < 7; i++)allPiles[6+i] = tableau[i] =new TablePile(15+(Card.width+5)�i, Card.height+35, i+1);gprivate class SolitareFrame extends Frame f ... gg Figure 8.10: The class Solitaire.

8.5. PLAYING THE POLYMORPHIC GAME 115routine is to allocate space for the three arrays (the suit piles, the tableau, and the arrayallPiles we will discuss shortly). The new command allocates space for the arrays, but doesnot assign any values to the array elements.The next step is to create the deck pile. Recall that the constructor for this class createsand shu�es the entire deck of 52 cards. The discard pile is similarly constructed. A loopthen creates and initializes the four suit piles, and a second loop creates and initializes thetableau piles. Recall that as part of the initialization of the tableau, cards are removed fromthe deck and inserted in the tableau pile.The inner class SolitareFrame, used to manage the application window, is shown in Fig-ure 8.11. In addition to the cards, a button will be placed at the bottom of the window.Listeners are created both for mouse events (see Chapter 5) and for the button. Whenpressed, the button will invoke the button listener method. This method will reinitialize thegame, then repaint the window. Similarly, when the mouse listener is invoked (in responseto a mouse press) the collection of card piles will be examined, and the appropriate pile willbe displayed.8.5 Playing the Polymorphic GameBoth the mouse listener and the repaint method for the application window make use ofthe array allPiles. This array is used to represent all 13 card piles. Note that as eachpile is created it is also assigned a location in this array, as well as in the appropriate staticvariable. We will use this array to illustrate yet another aspect of inheritance. The principleof substitutability is used here: The array allPiles is declared as an array of CardPile, but infact is maintaining a variety of card piles.This array of all piles is used in situations where it is not important to distinguishbetween various types of card piles; for example, in the repaint procedure. To repaint thedisplay, each di�erent card pile is simply asked to display itself. Similarly, when the mouse ispressed, each pile is queried to see if it contains the given position; if so, the card is selected.Remember, of the piles being queried here seven are tableau piles, four are foundations, andthe remaining are the discard pile and the deck. Furthermore, the actual code executed inresponse to the invocation of the includes and select routines may be di�erent in each call,depending upon the type of pile being manipulated.The use of a variable declared as an instance of the parent class holding a value froma subclass is one aspect of polymorphism, a topic we will return to in more detail in asubsequent chapter.8.6 Building a More Complete GameThe solitaire game described here is minimal and exceedingly hard to win. A more realisticgame would include at least a few of the following variations:

116 CHAPTER 8. A CASE STUDY: SOLITAIREprivate class SolitareFrame extends Frame fprivate class RestartButtonListener implements ActionListener fpublic void actionPerformed (ActionEvent e) finit();repaint();ggprivate class MouseKeeper extends MouseAdapter fpublic void mousePressed (MouseEvent e) fint x = e.getX();int y = e.getY();for (int i = 0; i < 13; i++)if (allPiles[i].includes(x, y)) fallPiles[i].select(x, y);repaint();gggpublic SolitareFrame() f // constructor for windowsetSize(600, 500);setTitle("Solitaire Game");addMouseListener (new MouseKeeper());Button restartButton = new Button("New Game");restartButton.addActionListener(new RestartButtonListener());add("South", restartButton);gpublic void paint(Graphics g) ffor (int i = 0; i < 13; i++)allPiles[i].display(g);gg Figure 8.11: The inner class SolitareFrame

8.6. BUILDING A MORE COMPLETE GAME 117� The method select in class TablePile would be extended to recognize builds. Thatis, if the topmost card could not be played, the bottommost face-up card in the pileshould be tested against each tableau pile; if it could be played, the entire collectionof face-up cards should be moved.� Our game halts after one series of moves through the deck. An alternative would bethat when the user selected the empty deck pile (by clicking the mouse in the areacovered by the deck pile) the discard pile would be reshu�ed and copied back into thedeck, allowing execution to continue.Various other alternatives are described in the exercises.Study Questions1. What data values are maintained by class Card? What behaviors can a card perform?(That is, what methods are implemented by the class Card?)2. Explain why the suit and rank data �elds are declared as private.3. What is a default constructor? What is a copy constructor?4. What is an accessor function? What is what advantage of using an accessor functionas opposed to direct access to a data member?5. Why might you want to make accessor functions into inline functions? What factorsshould you consider in deciding whether to declare a function in an inline fashion?6. What are the 13 di�erent card piles that are used in the solitare game?7. What is a virtual member function? Describe the �ve virtual functions implementedin class CardPile and overridden in at least one child class.8. How does the use of inheritance reduce the amount of code that would otherwise benecessary to implement the various types of card piles?9. Explain the di�erence between overriding used for replacment and overriding usedfor re�nement. Find another example of each in the methods associated with classCardPile and its various subclasses.10. Explain how polymorphism is exhibited in the solitare game application.

118 CHAPTER 8. A CASE STUDY: SOLITAIREExercises1. The solitaire game has been designed to be as simple as possible. A few features aresomewhat annoying, but can be easily remedied with more coding. These include thefollowing:(a) The topmost card of a tableau pile should not be moved to another tableau pileif there is another face-up card below it.(b) An entire build should not be moved if the bottommost card is a king and thereare no remaining face-down cards.For each, describe what procedures need to be changed, and give the code for theupdated routine.2. The following are common variations of klondike. For each, describe which portionsof the solitaire program need to be altered to incorporate the change.(a) If the user clicks on an empty deck pile, the discard pile is moved (perhaps withshu�ing) back to the deck pile. Thus, the user can traverse the deck pile multipletimes.(b) Cards can be moved from the suit pile back into the tableau pile.(c) Cards are drawn from the deck three at a time and placed on the discard pile inreverse order. As before, only the topmost card of the discard pile is availablefor playing. If fewer than three cards remain in the deck pile, all the remainingcards (as many as that may be) are moved to the discard pile. (In practice, thisvariation is often accompanied by variation 1, permitting multiple passes throughthe deck).(d) The same as variation 3, but any of the three selected cards can be played. (Thisrequires a slight change to the layout as well as an extensive change to the discardpile class).(e) Any royalty card, not simply a king, can be moved onto an empty tableau pile.3. The game \thumb and pouch" is similar to klondike except that a card may be builton any card of next-higher rank, of any suit but its own. Thus, a nine of spades can beplayed on a ten of clubs, but not on a ten of spades. This variation greatly improvesthe chances of winning. (According to Morehead [?], the chances of winning Klondikeare 1 in 30, whereas the chances of winning thumb and pouch are 1 in 4.) Describewhat portions of the program need to be changed to accommodate this variation.4. The game \whitehead" is super�cially similar to klondike, in the sense that it uses thesame layout. However, uses di�erent rules for when card can be played in the tableau:

EXERCISES 119(a) A card can be moved onto another faceup card in the tableau only if it has thesame color and is one smaller in rank. For example, a �ve of spades can be playedon either a six or clubs or a six of spades, but not on a six of diamonds or a sixof hearts.(b) A build can only be moved if all cards in the build are of the same suit.Describe what portions of the program need to be changed to accomodate this varia-tion.

