
1

A subtype system for functional programming

SVEN-OLOF NYSTRÖM, Uppsala University

Subtyping o�ers a theoretical foundation for the integration of static and dynamic

typing. Subtyping system can reason about types that are more general, for example

the universal type that can represent any value. However, subtyping systems are

usually limited and lack features that one would like to see in a type system for a

programming language. �ey are also tend to be complex and di�cult to extend.

�is paper presents a new theoretical approach for subtyping based on logic infer-

ence. �e new approach is simpler and (we hope) easier to extend.

Using this approach, we have developed a subtyping system for Erlang. �e imple-

mentation checks ordinary Erlang programs (though naturally not all Erlang programs

can be typed, and sometimes it is necessary to add speci�cations of functions and data

types). We describe the implementation of the type checker and give performance

measurements.

1 INTRODUCTION
Subtyping systems o�er a theoretical foundation for the integration of static

and dynamic typing. Subtyping system can reason about more general types,

for example the universal type that can represent any value. However, sub-

typing systems are usually limited and lack features that one would like to

see in a type system for a programming languages. �ey are also tend to be

complex and di�cult to extend.

�is paper presents a static type system for Erlang, a functional program-

ming language with dynamic typing. �e type system is designed with

Hindley-Milner type inference as a starting point, but relies on subtyping

to provide a greater �exibility. �e type system is safe; programs that type

should be free from type errors at run-time.

In functional programming, the standard approach to static typing is to use

Hindley-Milner type inference (Milner 1978). Hindley-Milner type inference

traces its roots to various forms of typed lambda calculus and has many strong

points–it is quite simple, is easy to implement, allows parametric polymor-

phism and is fast in practice. It is used by many functional programming

languages (for example SML and Haskell). However, Hindley-Milner type

inference has some important limitations. One is that a recursive data type

must be de�ned using constructors that have are speci�c to that data type.

�us, a constructor cannot be used for di�erent data types.

Our framework is intended to be �exible and extensible. To type Erlang, the

framework has been extended with features that allow it to reason about data

types where the sets of constructors is overlapping, and there is a mechanism

for conversion of constructors.

Like other subtyping systems, the type system generates a set of constraints

when typing a program. �e constraints capture the problem of typing the

2016. XXXX-XXXX/2016/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

program–thus the program is typable if and only if there is a solution to

the constraint system. Unlike other systems, in the system described here,

whether a set of constraints has a solution depends only on the derivation

rules of the constraints–no assumptions are made about the domain of types.

We describe an implementation of the type checker and give performance

measurements. �e implementation checks ordinary Erlang programs (though

naturally not all Erlang programs can be typed, and sometimes it is necessary

to add speci�cations of functions and type declarations).

We have two reasons for choosing Erlang: the language is dynamically

typed, thus the run-time system is already adopted to a richer range of values.

Second, Erlang does not allow side e�ects that modify data structures. �is

simpli�es the design of the subtyping system. Our algorithm for type inference

does not extract type information for function de�nitions in a human-readable

format, instead the checker compares function de�nitions to speci�cations

and conversely, that functions are used according to speci�cation.

�e rest of this paper is organised as follows. In Section 2 we give an

overview of our approach by de�ning a subtyping system for a simple formal

language based on lambda calculus. We describe a simple type checker for this

language and discuss how the type system can be extended to manage more

powerful constraint languages. Section 3 describes our approach to polymor-

phism. In Section 4 we extend the subtyping system with constructors, �lters

(that allow a form of discriminated unions) and conversion of constructors.

In Section 5 we discuss the problem of adapting a static type system to Erlang

and describe how type declarations and function speci�cations can be added

to Erlang code. Section 6 describes the implementation. Section 7 presents

our experimental evaluation and Section 8 places our results in the context of

earlier work.

2 HOW TO BUILD A TYPE SYSTEM
Let’s start with an overview of the approach. We �rst develop a simple type

checker for a simple functional language and then consider how it can be

extended to express more powerful concepts.

2.1 What is a type?
A type expression could be de�ned as, for example

t ::= (t1 → t2) | a | X

where→ builds function types, a represents primitive types, and X ranges

over type variables. �e idea is that each type expression should evaluate to

a type. Now, what is a type? It is possible to use the building blocks of type

expressions when building the domain of types, thus the set of types could be

de�ned as follows:

T ::= (T1 → T2) | a (1)

Using a �xed domain of types derived from the syntax of type expressions

o�en works reasonably well and of course saves us the trouble of de�ning

what is meant by a type.

2

However, sometimes a type domain given by the set of type expressions is

not what we want. �e most obvious limitation is that a domain of this kind

lacks solutions to circular equations such as X = (t → X). Now, there have

been many a�empts to overcome these di�culties by extending the set of

types types to include recursive types, see for example (Amadio and Cardelli

1993) but we then lose the simplicity of inductively de�ned types.

A de�nition by Barendregt (Barendregt et al. 2013) suggests a di�erent

approach:

Definition (Barendregt 11A.1). A type structure is of the form S =
〈|S | , 6,→〉 , where 〈|S | , 6〉 is a poset and→ : |S |2 → |S | is a binary operation
such that for a, b, a′, b ′ ∈ |S | one has

a′ 6 a & b 6 b ′ ⇒ (a → b) 6 (a′ → b ′).

�e structure intended is an algebraic structure, i.e., a set of elements with

some operations on the set, where the operations should satisfy some alge-

braic properties. (A poset is a partial order, i.e., the relation 6 is transitive,

anti-symmetric and re�exive.) �e interesting thing is that elements of a

type structure do not need to look like type expressions. �e properties of

Barendregt’s type structures are the ones typically seen in subtyping systems;

the 6 relation de�nes a partial order, and the arrow operation (which takes

two types and builds a new type) satis�es the rule

a′ 6 a b 6 b ′

(a → b) 6 (a′ → b ′)

In other words, this de�nition says that any combination of a set |S | with an

ordering 6 and a binary operation→ over |S | that satis�es the properties is a

type structure.

�e inductive de�nition of types earlier (1) (together with some appropriate

de�nition of 6) satis�es the de�nition of type structures. However, there are

other interesting type structures, for example type structures with in�nite

types.

Now, it would be useful to show that it is possible to type the program

using some type structure, even if we did not know precisely which type

structure. �is is the approach taken in this paper. But �rst we need to re�ne

the de�nition of type structures.

For our purposes, the axioms in Barendregt’s de�nition are insu�cient as

there would not be any program that did not type. �is would in turn make the

problem of type checking rather uninteresting. To remedy this we introduce a

set of atomic types, types that are distinct from each other and from function

types.

Let T ,U range over types. Assume a set Atom of atoms, and let A,B range

over types associated with these values. Also require that if two function

types T → U and T ′ → U ′ are related, i.e., if (T → U) 6 (T ′ → U ′), then it

holds that T ′ 6 T and U 6 U ′. Barendregt calls type structures that satisfy

this property invertible but we will assume that all type structures satisfy this

property.

3

De�nition 2.1. A type structure S is an algebraic structure of the form

S = 〈|S |, 6,→,Atom, a〉

such that

(1) the relation 6 ⊆ |S | × |S | is transitive and re�exive,

(2) (→) : |S |×|S | → |S | is a binary operation where for typesT ,T ′,U ,U ′ ∈
S we have (T → U) 6 (T ′ → U ′) i� T ′ 6 T and U 6 U ′,

(3) Atom is some set,

(4) a : Atom→ |S|,
(5) for A,B ∈ Atom, A , B, it never holds that a(A) 6 a(B), and

(6) for A ∈ Atom and types T ,U it never holds that a(A) 6 (T → U) or

(T → U) 6 a(A).

2.2 Simple constraints
Let X ,Y ∈ TVar be the set of type variables. Also let A,B ∈ Atom be the set

of atomic types. Let the set of type expressions t ,u,v,w ∈ TExp be de�ned as

follows:

(1) TVar ⊆ TExp,

(2) A ∈ TExp, if A ∈ Atom.

(3) (t1 → t2) ∈ TExp, if t1, t2 ∈ TExp,

Let the set of constraints φ ∈ Constraint be formulas of the following forms

(where ⊥ is the inconsistent constraint):

(1) t1 6 t2, for t1, t2 ∈ TExp
(2) ⊥

A constraint system G is a set of constraints.

We express the properties of type structures as derivation rules for con-

straints; that the 6 relation is re�exive and transitive, properties of the→

operator, and things that must not occur, for example A 6 (t → u) for some

atomic type A and arbitrary types t and u.

To describe situations which must not occur, we use ⊥ to indicate inconsis-

tency, for example in rule AW. Now, it should be easy to see that the derivation

rules for constraints of Figure 1 correspond exactly to the axioms given for

type structures in De�nition 2.1.

We say that a constraint system G is consistent if G ` ⊥ does not hold. Nat-

urally we are only interested in consistent constraint systems. We would not

expect to �nd a solution for a constraint system containing, say, a constraint

A 6 (t → u).

2.3 Some mathematical logic
To solve constraint systems, or, more precisely, to determine whether a con-

straint system can be solved, we will turn to mathematical logic. Mathematical

logic is a complex subject and we will only mention some basic de�nitions and

results. We will be brief as details are not important for the rest of the paper.

Textbooks on the subject will provide further information, see for example

van Dalen (2013).

4

ϕ ∈ G

G ` ϕ
(∈)

G ` t 6 t
(R)

G ` t 6 u, G ` u 6 v

G ` t 6 v
(T)

G ` t ′ 6 t , G ` u 6 u ′

G ` (t → u) 6 (t ′ → u ′)
(W)

G ` (t → u) 6 (t ′ → u ′)

G ` t ′ 6 t
(WL)

G ` (t → u) 6 (t ′ → u ′)

G ` u 6 u ′
(WR)

G ` A 6 (t → u)

G ` ⊥
(AW)

G ` (t → u) 6 A

G ` ⊥
(WA)

G ` A 6 B A , B

G ` ⊥
(AA)

Fig. 1. Derivation rules for constraints. The rules define the relation `.

In predicate logic, a sentence may be composed of predicate symbols and

expressions (as the constraints de�ned earlier). A sentence may also be com-

posed using the usual connectives (∧, ∨ and ¬) and existential and universal

quanti�ers. As for constraint systems, we say that a set of sentences is consis-
tent if a contradiction cannot be derived.

�e rules of Figure 1 can be expressed as sentences, for example rule (T)

can be stated

∀XYZ .X 6 Y ∧ Y 6 Z =⇒ X 6 Z .

A constraint system can of course also be viewed as a set of sentences. �us,

the combination of the derivation rules and a constraint system G forms a set

of sentences. It should be clear that if a constraint system is consistent, then

the corresponding set of sentences is also consistent.

A structure is a set of values with a set of symbols; constants (that map to

values), functions (that map to operations on the set) and relation symbols

over the set (van Dalen 2013, Section 3.2). It should be easy to see that a type

structure is also a structure. A structure is said to model a set of sentences if

each of the sentences holds in the structure (van Dalen 2013, Section 3.4).

In the context of constraint solving, a solution to a constraint system corre-

sponds to a structure that models a set of sentences. If we want to determine

whether a constraint system can be solved, but we are not interested in the

details of the solution, we can use a result by Henkin, known as the model ex-
istence property (Henkin 1949), see also (van Dalen 2013, Section 4.1). Henkin

shows that for a consistent set of sentences, it is possible to construct a struc-

ture that models the set of sentences.

In other words, if a constraint system is consistent, there is some type

structure for which it has a solution. In Section 2.7 we show that there is

a straight-forward algorithm for checking the consistency of a constraint

5

system. If the algorithm �nds that the constraint system is consistent, the

program types.

2.4 Lambda calculus
We �rst develop a system for subtype inference for lambda calculus. We will

later look at variations of lambda calculus extended with important features

of Erlang and discuss how they can be typed.

Why lambda calculus? Lambda calculus is a simple and e�cient formal-

ism. Using a simple formalism will simplify reasoning and reduce clu�er.

Lambda calculus is close to functional programming, and particularly suited

for reasoning about types.

�is presentation is intended to provide an overview for readers who are

not familiar with lambda calculus, focusing on features of lambda calculus

that di�er from theoretical models of functional programming languages.

We extend lambda terms to include terms that represent atoms. Given a set

of variables x ∈ Var and a set of atoms A ∈ Atom, the set of lambda terms is

inductively de�ned as:

M ::= x | M1M2 | λx .M1 | A

We will let the variables M,N , P range over lambda terms. A term which is

an atom will have the atom as type.

We say that an occurrence of a variable in a lambda term is free if it is not

”bound” by a lambda. For example, the variable x is free in the terms λy.x and

xz but bound in λx .x . �ere are terms in which one occurrence of a variable

is free and another is bound, for example x (λx .x).
Now, one important feature of lambda calculus which is easy to overlook is

that terms are considered to be equivalent up to renaming of bound variables,

for example, the terms λx .x and λy.y represent the same function (the identity

function). �us a lambda term may have many syntactic representations. In

the typing of a term M , we will assume that the representation of M is chosen

such that any free variable is not also bound, and no variable is bound in more

than one sub-term.

We will need a substitution operator. For a variable x and terms M and N ,

let M [x := N] be the result of replacing the variable x with the term N in M .

�e reader may have noted a potential pitfall; if a free variable of N becomes

bound in the substitution the result is probably not the intended one. �is

can be avoided with a careful de�nition of substitution, but to keep things

simple we will simply assume that in a substitution, the representation of M
is chosen so that no free variable of N becomes bound.

�e semantics of lambda calculus can now be expressed using a single

reduction rule:

(λx .M)N −→β M [x := N] .

A lambda term is said to be a redex if it can be on the le� hand side in this

rule above, i.e., if it is of the form (λx .M)N . Clearly, for any redex M there is

a lambda term M ′ such that M −→ M ′.
We say that M −→ M ′ if M ′ if there is some sub-term N of M such that

N −→β N ′, and M ′ is the result of replacing one occurrence of N in M with

6

(x : t) ∈ Γ

Γ
 x : t
(axiom)

Γ
 M : t → u Γ
 N : t

Γ
 MN : u
(application)

Γ ∪ {x : t }
 M : u

Γ
 λx .M : t → u
(abstraction)

Γ
 A : A
(atom)

Γ
 M : t t 6 u

Γ
 M : u
(subsumption)

Fig. 2. Subtyping rules.

N ′. We write M −� N if there is a sequence

M1 −→ M2 −→ . . . −→ Mn

with M = M1 and N = Mn .

2.5 Typing lambda calculus
An environment Γ is a set {x1 : t1, . . . ,xn : tn } where the xi are distinct

variables, and the ti are type expressions. For a variable x , an environment

should contain at most one binding x : t of x .

A typing is wri�en Γ
 M : t and indicates that the lambda term M has the

type t in environment Γ. (We use the symbol
 for typings to reduce the risk

of confusion between derivations in the constraint system and typings.) If Γ
is empty, we will sometimes write
 M : t .

�e type rules are given in Figure 2. �e �rst three type rules are the

standard rules of simply typed lambda calculus (see for example (Barendregt

et al. 2013, Figure 1.6)). �e subsumption rule says simply that any type can

be replaced with a more general type (Mitchell 1991)

It is o�en convenient to make the constraints of a typing explicit, thus we

will sometimes write Γ
 M : t [G] to indicate that the typing Γ
 M : t holds,

provided that the constraint system G can be solved. Naturally, whenever

Γ
 M : t there is some constraint system G such that Γ
 M : t [G]. For the

reader’s convenience we show the rules on this format in Figure 3.

From a practical point of view the subsumption rule poses some di�culties

as it can be inserted anywhere in the derivation of a typing. �e other rules

are associated with di�erent ways of building terms, so that the tree shape

of the derivation of a typing for a term is given by the term. Now, since the

subtyping relation is re�exive and transitive there is for any derivation of a

typing an equivalent derivation where every other rule is an application of

the subsumption rule. In other words, it is always possible to �nd a derivation

of the typing with a shape that is given by the term. �is is discussed in more

detail by Kozen et al. (1994) and Palsberg and O’Keefe (1995).

7

(x : t) ∈ Γ

Γ
 x : t [∅]
(axiom)

Γ
 M : t → u [G1] Γ
 N : t [G2]

Γ
 MN : u [G1 ∪G2]

(application)

Γ ∪ {x : t }
 M : u [G]

Γ
 λx .M : t → u [G]

(abstraction)

Γ
 A : A [∅]
(atom)

Γ
 M : t [G]

Γ
 M : u [G ∪ {t 6 u}]
(subsumption)

Fig. 3. Subtyping rules with explicit constraint systems.

wΓ (x) = 〈∅, Γ(x)〉

wΓ (M1M2) = 〈G1 ∪G2 ∪ {t1 6 (t2 → X)},X 〉
where X is a fresh type variable,

〈G1, t1〉 = wΓ (M1), and

〈G2, t2〉 = wΓ (M2)

wΓ (λx .M1) = 〈G1,X → t1〉
where Y is a fresh type variable,

Γ1 = Γ ∪ [x : Y], and

〈G1, t1〉 = wΓ1
(M1)

wΓ (A) = 〈0,A〉

Fig. 4. Explicit construction of constraint system

We can use this insight in an explicit construction of the constraint system

that needs to be solved in order to type the term. For a type environment Γ
and a term M , compute a pair of a constraint system and a type expression:

wΓ (M) = 〈G, t〉. �e constraint system G has a solution exactly in the cases

M can be typed (Figure 4). �us the constraint system necessary to type a

lambda-term can be constructed by a straight-forward traversal of the term.

�e term types exactly when the constraint system has a solution.

2.6 Safety
A desirable property of a type system is safety. �is is usually taken to mean

that if a program types, certain errors should not occur at run time. Milner

(1978) shows that a program that types is “semantically free of type violation”,

i.e., that “for example, an integer is never added to a truth value or applied

to an argument”. One way to show this property is via the subject reduction
property.

�e subject reduction property states an invariant for typings; if M is a term

that types, that is, Γ
 M : t , for some environment Γ and type expression t ,

8

and M reduces in one or more steps to some other term (M −� N) then that

term will have the same type, Γ
 N : t . If N is a term that cannot type, for

example an application of an arithmetic operation to strings, then the subject

reduction property guarantees that no term that types can be reduced to N .

(�e word “subject” refers to the term M in a typing Γ
 M : t .)

Lemma 2.2. IfM −� N and Γ
 M : t [G] then Γ
 N : t [G].

�e original proof of the subject reduction property for lambda calculus

was given by Curry and later extended to subtyping by Mitchell (1984, 1991).

See also Barendregt et al. (2013, Section 1.2 and 11.1). We will not repeat the

proofs here.

Wright and Felleisen (1994) suggested that in addition to the subject reduc-

tion property it would also be useful to show a property sometimes called

“progress”; that any term that types in an empty environment is either a value

or can be reduced to another term. See also Pierce (2002, Section 8.3). In our

extended lambda calculus the values would be atoms and abstractions (terms

of the form λx .M). To show progress a simple inductive argument on M will

su�ce.

2.7 Checking that a program types
A lambda term M types if there is some derivation of the typing
 M : t [G],

where the constraint systemG has a solution. By the model existence property

(Section 2.3) it is su�cient to show that the constraint system G is consistent.

We will now describe an algorithm for checking consistency of a constraint

system.

De�nition 2.3. Given a constraint system G, de�ne (G)n , for n ≥ 0, to be

the smallest sets that satisfy the following:

(1) (G)0 = G,

(2) for all n, (G)n+1 ⊇ (G)n ,

(3) for all even n > 0, if the constraint (t → u) 6 (t ′ → u ′) is in (G)n−1,

then the constraints t ′ 6 t and u 6 u ′ are in (G)n , and

(4) for all odd n > 0, if the constraints t 6 X and X 6 u are in (G)n−1,

then (t 6 u) ∈ (G)n .

Let G∗ =
⋃

n (G)n .

�e complexity of constructing G∗ can be determined by a simple argu-

ment (Heintze 1994). First, note thatG∗ only contains type expressions present

in G. �us if the size of G is n, and G contains no more than n expressions,

there are less than n2
inequalities in G∗, which sets a bound to the space used

by the construction. When an inequality t 6 u is added to the constraint

system, the algorithm must examine inequalities of the forms t ′ 6 t and

u 6 u ′ (in the odd step). �is may, at worst, require work proportional to the

number of expressions in G, thus the cost of adding one constraint is O (n)
and the worst-case complexity of the algorithm is O (n3).

(Cubic worst-case complexity is actually a good result. Many widely used

algorithms in programming language implementation have worse complexity

but perform well for typical programs. �e results by Heintze and Tardieu

9

(2001) on e�cient implementation of a form of points-to analysis for an

imperative language are particularly promising as that form of points-to

analysis shares many properties with the computation of G∗.)
�e de�nition ofG∗ might seem unnecessarily restrictive as it would not add

to the complexity of computing G∗ if Item 4 of the de�nition was generalised

to allow arbitrary expressions instead of a variable. However, it turns out that

this seemingly straight-forward change would make the proof of �eorem 2.4

more complicated, in particular Proposition 2.7 would need to be restated.

We say that a constraint system is locally consistent if G∗ does not contain

any immediately inconsistent constraints such as ⊥, A 6 (t → U), (t → U) 6
A, or A 6 B, for distinct atoms A and B. It turns out that local consistency

coincides with consistency.

Theorem 2.4. A constraint system G is consistent i� G is locally consistent.

It should be clear that a consistent constraint system is also locally con-

sistent. To show the converse, that a locally consistent constraint system is

consistent, we consider the proof rules of Figure 1. �e question we need to

ask is: If we can deduce G ` φ in a single application of one of the rules, how

will (G ∪ {φ})∗ di�er from G∗?
Rules (∈), (WL) and (WR) are applied in the computation of G∗, so if G ` φ

can be deduced using one application of one of these rules we have φ ∈ G∗.
As G is assumed to be locally consistent the rules (AW), (WA) and (AA) can

be excluded as their use implies that G is not locally consistent.

We next consider the remaining rules (R), (T) and (W) and show that while

they add new constraints, local consistency will not change. We state prop-

erties of these derivation rules in the following propositions. �ey can be

shown by induction over n.

Proposition 2.5 (Rule R). Suppose that G is a constraint system, t some
type expression and φ an inequality. Let H = G ∪ {t 6 t }.
Whenever φ ∈ (H)n it holds either that

(1) φ ∈ (G)n , or
(2) φ = (u 6 u), some subexpression u of t .

Proposition 2.6 (Rule T). Suppose that G is locally consistent and contains
the constraints t 6 t ′ and t ′ 6 t ′′. Let H = G ∪ {t 6 t ′′}.
Whenever a constraint u 6 v occurs in (H)n , there are type expressions

w1,w2, . . . ,wm and an integer k such thatw1 = u,wm = v , and the constraint
wi 6 wi+1 occurs in (G)k , for i < m.

Proposition 2.7 (Rule W). Let G be a constraint system containing the
constraints t 6 t ′ and u 6 u ′. Let φ = ((t ′ → u) 6 (t → u ′)) and H = G ∪ {φ}.
It follows that whenever a constraintψ occurs in (H)n , we have either

(1) ψ ∈ (G)n , or
(2) ψ = φ.

�e proof of the theorem uses these propositions to show that a sequence

of applications of the derivation rules R, T and W to a locally consistent

constraint system cannot lead to the derivation of ⊥, thus if a constraint

system is locally consistent it is also consistent.

10

2.8 How to extend the constraint language
In our framework, introducing new forms of type expressions is entirely

unproblematic, since without any derivation rules that operate on them, it

is not possible to use the new expressions to prove new things. Adding

derivation rules is a di�erent ma�er. A new derivation rule allows us to draw

new conclusions, thus it could cause a previously consistent constraint system

to become inconsistent. We will consider a simple example; the addition of a

universal type. We will show how universal types can be accommodated in

our framework.

We use the symbol 1 for the type expression that represents the universal

type. �e additional rules are stated in Figure 5

Rule (U) states that 1 is the greatest type according to the subtyping order.

For any type t , we can conclude that t is a subtype of 1. Rules (UW) and

(UA) state that no type given by an atom expression or an arrow expression

may be greater than the universal type. More explicitly, if a constraint which

states that the universal type is a subtype of (for example) an atomic type

is encountered a contradiction can be derived. To handle these rules in our

framework, we de�ne constraints of the forms 1 6 (t → u) and 1 6 A to be

immediately inconsistent. We also need to show that rule (U) preserves local

consistency.

Generally speaking our framework can be extended to accommodate new

derivation rules if they fall into one of three categories:

(1) Rules that describe situations where inconsistency follows from a

constraint. Such constraints can be included in the set of immediately

inconsistent constraints, provided that it is possible to implement a

constant-time test that recognises them. In our example Rules (UW)

and (UA) fall into this category,

(2) Rules that preserve local consistency. Our example has one such rule;

Rule (U).

(3) Rules that require extending the computation of G∗. Such rules must

not introduce new type expressions (as that could a�ect complexity

and might even cause the computation to loop). We have seen one

rule that falls into this category: Rule (W) of Figure 1.

t 6 1

(U)

1 6 (t → u)

⊥
(UW)

1 6 A

⊥
(UA)

Fig. 5. Derivation rules for the universal types.

11

2.9 Workflow in the design of a type system

Reduction rules

Safety

Type rules Constraint rules

Algorithm for checking consistency

�e dependencies are summarised in the diagram above. If the reduction

rules are modi�ed or extended, the derivation rules (of constraints) need to

be su�ciently powerful to show safety properties (in particular, the subject

reduction property), thus it may be necessary to introduce new constraint

rules. A change in the constraint rules may in turn require a change in the

constraint checking algorithm. On one hand the derivation rules need to

be su�ciently powerful to guarantee the subject reduction property, on the

other hand they must not be so expressive that they cannot be implemented

e�ciently.

3 POLYMORPHISM
Hindley-Milner type checking implements a form of polymorphism which

is sometimes known as parametric polymorphism. A function de�ned in a

let-expression, for example

let f x = ...
in
...

end

is treated as polymorphic. �is means that any occurrence of f in the body of

the let is typed independently of the other occurrences of f. (In a sequence

of function de�nitions, any earlier de�nition is treated as if it was de�ned in

a let whose body contains the following function de�nitions.) Parametric

polymorphism is accomplished by representing the type of f as a type scheme
which can be instantiated many times. In Hindley-Milner typing, this type

scheme has a minimal form (sometimes referred to as the principal type),
For subtyping it seems di�cult to �nd a minimal representation of the

information needed to type a let-bound function. We have instead taken a

straight-forward approach: extract the constraints needed to type f. �en

generate a copy of the constraint system for each use of f in the body of the

function. To reduce the cost of duplicating the constraint system, we apply

various simpli�cations to reduce the size of the constraint system.

Finding minimal representations of constraint systems would help perfor-

mance. However, Po�ier (Po�ier 2001) and Flanagan and Felleisen (Flana-

gan and Felleisen 1999) show that computing an optimal representation of

a constraint system for subtyping is related to the problem of minimizing

non-deterministic �nite automata which is known to be a problem of high

complexity. Since the goal of minimisation is to speed up the type checker

it seems counter-productive to use an expensive algorithm for minimisation.

Both Po�ier and Flanagan conclude that a reasonable compromise is the use of

12

faster simpli�cation algorithms which are not guaranteed to produce optimal

results.

Surprisingly, Mairson (1990) shows that Hindley-Milner type checking is

actually DEXPTIME-hard. In other words, the cost of typing a program is,

in the worst case, exponential in the size of the program. Making the very

reasonable assumption that the problem of typing a program does not become

easier when one goes from equality-based typing to subtyping, this suggests

that the straight-forward approach sketched here is actually asymptotically

optimal.

4 THE EXTENDED LAMBDA CALCULUS
We extend the simple language of Section 2 to accommodate the Erlang

programming language. First, Erlang has a rich set of data type constructors

(in contrast to the simple language which only has atoms and functions). A

type can be described by a set of constructors, each applied to a number of

types. An Erlang program, say something like this:

f({leaf, X}) -> ...
f(Y) -> ...

can easily distinguish between data built using a particular constructor and

data that is not. �us we want to be able to isolate data that does not match

a constructor, both in the extended lambda calculus and in the constraint

language. In the extended lambda calculus we express this using a special

construct, the open case expression. �e constraint language uses �lters to

separate the part of a type that is built using a particular set of constructors.

Filters are also used to reason about discriminated unions. Last, in some cases

we need to allow conversion between types created using di�erent constructors.

4.1 Constructors
�e data types of Erlang include (for example) tuples, lists, atoms, integers

and �oating point values. In the extended lambda calculus and the constraint

language, we model all these constructors uniformly. We assume a set of

constructors c ∈ C, where each constructor has an arity. Each argument of a

constructor is either covariant or contravariant (the only constructors with

contravariant arguments are function types). Constructors form terms in the

the extended lambda calculus and type expressions in the constraint language,

thus constructors build both data and types.

For the representation of function types we reserve a constructor cλ with ar-

ity 2 that does not occur in any term. �e �rst argument of cλ is contravariant,

the second covariant.

We will always assume that a constructor is used with the correct number

of arguments, thus we will o�en omit reference to the arity of the constructor.

We will sometimes refer to a term or a type expression of the form 〈c . . .〉 as

a constructor term or a constructor expression or more speci�cally as a c-term

or a c-expression.

13

4.2 Filters and unions
Erlang has a �xed set of constructors that can be used to build recursive data

types. �is should be contrasted with the situation in programming languages

based on Hindley-Milner type checking, where each data type has its own set

of constructors.

Consider, for example, the following Haskell data type de�nition:

data Tree = Leaf Integer
| Branch Tree Tree

�is type de�nition introduces the constructors Leaf and Branch (and they

cannot be used to build data structures of any other type). In our system, the

corresponding data type might be de�ned

+type tree() = {leaf, integer()}
+ {branch, tree(), tree()}.

Here, the data structure uses the tagged tuples {leaf, ...} and {branch, ...}
as constructors. �ey may of course be used in other parts of the program.

�e speci�cation language can express that a type is a union of two types,

but there are limitations. Consider an inequality

〈c1 . . .〉 ∪ 〈c2 . . .〉 6 X .

A constraint of this form could occur if one wanted to type check an Erlang

function that is speci�ed to accept the tree data type as a parameter. Expressing

this in the constraint language is easy:

〈c1 . . .〉 6 X , 〈c2 . . .〉 6 X .

However, sometimes we want to put the union on the right-hand side of the

inequality. An inequality of this type would take the form:

Y 6 〈c1 . . .〉 ∪ 〈c2 . . .〉. (2)

A constraint of this form could occur (for example) when the type checker

veri�es that a function does indeed return a tree. We will consider the case

when the two constructors c1 and c2 are distinct.

Instead of adding union types to our constraint language, we introduce a

new form of type expressions which we will call �lters. A constraint that uses

a �lter takes the form

X � S 6 t ,

where S is a set of constructors, X is a type variable and t is a type expression.

Filters may only occur on the le�-hand side of an inequality. (Applying �lters

to other type expressions or allowing �lters on the right-hand side of 6 would

not cause any major di�culties but would complicate derivation rules and

the formulation of the consistency checking algorithm, so we focus on the

case where �lters are really useful.)

�e idea is that a �lter only lets through those subtypes of X that use a

constructor which is a member of S . �is can be expressed in the following

derivation rule:

G ` 〈c t1 . . . tn〉 6 X X � S 6 u c ∈ S

G ` 〈c t1 . . . tn〉 6 u
(F)

14

Note that this derivation rule �ts Category 3 of Section 2.8 as it is straight-

forward to extend the algorithm for computing G∗ to handle this rule.

Turning back to our example (2), checking that a type belongs to one of

the two type expressions 〈c1 . . .〉 and 〈c2 . . .〉 can be expressed with the

constraints

Y � {c1} 6 〈c1 . . .〉 and Y � S 6 〈c2 . . .〉

where S is the largest set of constructors that does not contain c1. �us the

�rst �lter will match only those type expressions that use the constructor c1,

but the second �lter will match those that do not use c1. (Please recall that we

assumed that c1 and c2 were distinct.)

4.3 Open case statements
As mentioned, Erlang makes it easy to write code that performs a case analysis

on a data structure depending on whether it belongs to one subtype or not. In

the extended lambda calculus we express this mechanism through open case
terms. �ese take the form

case(M,

〈c x1 . . . xn〉 ⇒ N ,

y ⇒ P).

�e idea is that if the term M matches the pa�ern 〈c x1 . . . xn〉, the �rst branch,

the term N , is selected. �e second branch is only selected when the term

does not match the pa�ern. �e syntactic form used here was �rst considered

by Heintze (1994) in the context of set-based analysis.

�e reduction rules and the type rule for the open case expression will need

to take conversion into account, but we �rst show them without conversion.

�e reduction rules for the open case expression are straight-forward, one

rule for the case where the matching succeeds, and two for the cases where

matching fails because the term is either an abstraction or a term built using

a di�erent constructor.

case(〈c M1 . . .Mn〉, 〈c x1 . . . xn〉 ⇒ N ,y ⇒ P) −→

N [x1 :=M1, . . . ,xn :=Mn] ,

case(λx .M, 〈c . . .〉 ⇒ N ,y ⇒ P) −→ P [y := λx .M]

case(M, 〈c . . .〉 ⇒ N ,y ⇒ P) −→ P [y :=M] ,

where M = 〈d . . .〉and d , c

In the type rule for open case, we use �lters to separate the cases where the

term matches from the ones where the term does not match the pa�ern. �e

15

type rule becomes rather elaborate:

Γ
 M : t
t 6 X

X � {c} 6 〈c u1 . . .un〉 (3)
Γ [x1 7→ u1, . . . ,xn 7→ un]
 N : w

X � C \ {c} 6 Z (5)
Γ[y 7→ Z]
 P : w

Γ
 case(M, 〈c x1 . . . xn〉 ⇒ N ,y ⇒ P) : w
(case)

Note the use of �lters to extract the subtypes of t that match the constructor

(line 3) and those that do not match the pa�ern (line 5).

Showing the subject reduction property is straight-forward but somewhat

tedious. �e progress property can be established by extending the induction

proof.

4.4 Conversion
Since Erlang was not designed as a typed language from the start, the way con-

structors are used by applications, libraries and built-in primitives sometimes

makes it di�cult to determine which a�ributes of a data structure should

be thought of as a constructor. For example, while it is clear that each atom

should be its own constructor, there are operations that work on any atom,

so one would like a type that represented all atoms. We have seen tagged

tuples, but sometimes tuples are not tagged (di�erent untagged tuples are

only distinguished by their length), thus one would like a type for untagged

tuples for each length. Some Erlang primitives treat tuples as arrays, so one

would also like a type that describes tuples of any length.

4.4.1 Some Erlang constructors. We will look at the constructors listed in

Table 1. (Erlang has other constructors, but the ones listed here are the most

interesting.) �e constructor tuplena represents a tuple of length n which is

tagged with the atom a. �is constructor has arity n − 1, as the �rst element

of the tuple is implicit. For untagged tuples of length n we use the constructor

tuplen which of course has arity n. �e constructor tuple (of arity 1) is used

when a tuple is uniform, i.e., each element of the tuple has the same type.

For an atom a, the nullary constructor atoma represents that atom, in other

words, the term 〈atoma〉 is that atom. �e type expression 〈atoma〉 gives us

the type consisting of the atom a. �e type expression 〈atom〉 gives the type

of all atoms, and the type expression 〈any〉 the universal type.

4.4.2 Specifying conversion. Generally speaking, we need to resolve con-

straints of the form

〈c t1 . . . tn〉 6 〈d u1 . . .um〉,

where the le�-hand expression can be converted to the right-hand expression.

In the extended lambda calculus, conversion comes into play in the open

case expressions. If the pa�ern of an open case expression is an untagged

tuple, and the term being matched is a tagged tuple, the matching may succeed

(if the lengths of the tuples are the same).

16

Table 1. Some constructors in the Erlang type system. The variable n ranges over
non-negative integers and a over Erlang atoms.

Constructor Description Arity

tuplena tagged tuple n − 1

tuplen untagged tuple n
tuple uniform tuple 1

atoma a speci�c atom 0

atom any atom 0

any universal type 0

Fig. 6. Conversion over terms
〈tuplena M2 . . . Mn〉 C 〈tuplen 〈atoma〉M2 . . . Mn〉

〈tuplen M . . . M〉 C 〈tupleM〉
〈atoma〉 C 〈atom〉

t C 〈any〉

Fig. 7. Conversion over type expressions
〈tuplena t2 . . . tn〉 C 〈tuple

n
〈atoma〉 t2 . . . tn〉

〈tuplen t . . . t〉 C 〈tuple t〉
〈atoma〉 C 〈atom〉

t C 〈any〉

We start by specifying relationsC over terms and type expression. We de�ne

these relations as the minimal transitive and re�exive relation which satis�es

the properties stated in �gures 6 and 7, for arbitrary terms M , M1, . . . ,Mn ,

type expressions t , t1, . . . , tn and atoms a.

�e de�nition of C allows conversions such as

〈tuple2

leaf t〉 C 〈tuple
2
〈atomleaf〉t〉.

In other words, a tagged tuple is also an untagged tuple.

We can now give a subtype rule that allows conversion:

G ` t C u

G ` t ≤ u
(C)

According to this rule, an expression t a subtype of u whenever t can be

converted to u.

Note however, that Rule (C) does not quite �t the type checking algorithm

(Section 2.7) as a constraint t 6 u may need to be resolved via a combination

of the (C) rule and a generalization of Rule W of Figure 1. However, it is easy

to de�ne a general rule that combines these rules. Given a constraint t 6 u,

where both t and u are constructor expressions, we can �nd a �nite set S of

constraints (using only proper sub-expressions of t and u) such that for any

constraint system G, G ` t 6 u i� G ` φ, for all φ ∈ S .

We de�ne a function coerce to satisfy:

17

Fig. 8. Some constructors and how they are related under�.

any

atom

atoma

tuple

tuple0 . . . tuplen

tuplena

. . .

(1) coerce 〈c t1, . . . , tn〉〈c u1, . . . ,un〉 = {φ1, . . . ,φn }, where φi = (ti 6
ui), if the ith argument of c is covariant, and φi = (ui 6 ti) otherwise,

(2) coerce 〈tuplena t2 . . . tn〉〈tuple
n u1 . . .un〉 = {〈atoma〉 6 u1, t2 6 u2,

. . . , tn 6 un },
(3) coerce 〈tuplen t1 . . . tn〉〈tuple u〉 = {t1 6 u, . . . , tn 6 u},
(4) coerce 〈atoma〉〈atom〉 = ∅.
(5) coerce t 〈any〉 = ∅.

For any pairs of constructor expressions t and u, coerce t u provides a set of

constraints that need to hold in order for the constraint t 6 u to hold.

We use the symbol� for conversion of constructors, i.e., we write c � c ′

if there are some terms and type expressions 〈c . . .〉 that can be converted to

〈c ′ . . .〉 and write c 3 c ′ when this is not the case. Note that� is a partial

order, i.e., the relation is transitive, re�exive and anti-symmetric. We say that

a constructor c has a parent c ′ if c � c ′ but c , c ′ and whenever c � d , either

c = d or c ′ � d . Also note that a constructor has a parent unless it is the

universal constructor. �us the constructors form a tree where the root is the

universal constructor (Figure 8),

4.4.3 Conversion of terms. In the extended lambda calculus, conversion

comes into play in the open case statements. �e conversion relation M C N
holds when M and N are constructor terms and M can be converted to N . In

a case expression, a term may be converted to �t a pa�ern.

case(M, 〈c x1 . . . xn〉 ⇒ N ,y ⇒ P) −→ N [x1 :=M1, . . . ,xn :=Mn] ,

where M C 〈c M1 . . .Mn〉

For example, when the term being matched is a tagged tuple and the pa�ern

is an untagged tuple, we have the conversion

〈tuple2

leaf M〉 C 〈tuple
2
〈atomleaf〉M〉.

4.4.4 Filters and conversion. We will assume that in all constraints X � S 6
Y the set S is up-closed, i.e., when c � c ′ and c ∈ S , we also have c ′ ∈ S .

Consider an example. Suppose S is a non-empty set of constructors not

containing the constructor any and t = 〈any〉. IfG ` t 6 X andG ` X � S 6 Y ,

18

Fig. 9. Derivation rules for extended constraints.

φ ∈ G

G ` φ
(∈)

G ` t 6 t
(R)

G ` t 6 u, G ` u 6 v

G ` t 6 v
(T)

G ` coerce(t ,u)
G ` t 6 u

(Ci)

G ` t 6 u

G ` coerce(t ,u)
(Ce)

G ` t 6 u, t = 〈c . . .〉, u = 〈d . . .〉, c 3 u

G ` ⊥
(C⊥)

G ` 〈c t1 . . . tn〉 6 X X � S 6 u c ∈ S

G ` 〈c t1 . . . tn〉 6 u
(F)

then for any t ′ = 〈c ′ . . .〉, where c ′ ∈ S , we also have G ` t ′ 6 X and thus

G ` t ′ 6 Y . Now, we de�nitely do not want to create new type expressions out

of thin air (as it would endanger the termination of the constraint checking

algorithm). Also, intuitively it makes sense that if one type can pass a �lter, a

more general type should also pass the �lter.

4.5 Pu�ing everything together
Let the set of type expressions t ,u ∈ TExp be the minimal set such that:

(1) TVar ⊆ TExp, and

(2) 〈c t1 . . . tn〉 ∈ TExp, where n is the arity of c , and ti ∈ TExp, for i ≤ n.

Let the set of constraints φ ∈ Constraint be formulas of the following forms:

(1) t 6 u, for t ,u ∈ TExp,

(2) X � S 6 t , for X ∈ TVar, t ∈ TExp, and S an up-closed set of construc-

tors, and

(3) ⊥.

We give the derivation rules for extended constraints in Figure 9 and the type

rules for the extended lambda calculus in Figure 10. A �lter expression X � c
is a shorthand for X � S , where S is the smallest up-closed set containing

c . Similarly, we use X \ c as a shorthand for X � S , where S is the largest

up-closed set not containing c .

19

Fig. 10. Subtyping rules for extended lambda calculus.

(x : t) ∈ Γ

Γ
 x : t
(axiom)

Γ [x 7→ t]
 M : u

Γ
 λx .M : 〈cλ t u〉
(abstraction)

Γ
 M : 〈cλ t u〉 Γ
 N : t

Γ
 MN : u
(application)

Γ
 Mi : ti , 1 ≤ i ≤ n

Γ
 〈c M1 . . .Mn〉 : 〈c t1 . . . tn〉
(constructor)

Γ
 M : t
t 6 X

X � c 6 〈c u1 . . .un〉
Γ [x1 7→ u1, . . . ,xn 7→ un]
 N : w

X \ c 6 Z
Γ[y 7→ Z]
 P : w

Γ
 case(M, 〈c x1 . . . xn〉 ⇒ N ,y ⇒ P) : w
(case)

Γ
 M : t t 6 u

Γ
 M : u
(subsumption)

4.6 The extended type checking algorithm
We are now ready to de�ne the extended type checking algorithm. �e

derivation rules are given in Figure 9. Note that conversion of type expression

is de�ned using the function coerce, as discussed in Section 4.4.

From the rules it is easy to see that a constraint should be immediately
inconsistent if it is ⊥ or of the form 〈c . . .〉 6 〈d . . .〉, where c 3 d .

�e computation of G∗ needs to maintain two derivation rules; Rule (Ce)

and Rule (F) which propagates �lters.

De�nition 4.1. Given a constraint system G, de�ne (G)n , for n ≥ 0, to be

the smallest sets that satisfy the following:

(1) (G)0 = G.

(2) For all n, (G)n ⊆ (G)n+1.

(3) If (G)n−1 contains the constraint t 6 u, where t and u are constructor

expressions, and coerce(t ,u) is de�ned, then coerce(t ,u) ⊆ (G)n .

(4) If (G)n−1 contains t 6 X and X 6 u then (G)n contains t 6 u.

(5) If (G)n−1 contains the constraints 〈c t1 . . . tm〉 6 X and X � S 6 u,

where c ∈ S then (G)n contains the constraint 〈c t0 . . . tm〉 6 u.

Let G∗ =
⋃

n (G)n .

�e proof has the same structure as the proof sketched in Section 2.

20

5 HOW TOMAKE ERLANG STATICALLY TYPED
�e type rules of the subtyping system are more general than those of Hindley-

Milner typing and thus the subtyping system should be able to type any pro-

gram typable in Hindley-Milner, by simply removing data type de�nitions and

using prede�ned constructors instead of those given in data type de�nitions.

�e subtyping system should in principle be able to type check a complex

program, relying only on top-level speci�cations and deducing internal data

types. In practice, it is probably a good idea to introduce function speci�cations

and data types declarations for various intermediate function de�nitions and

data types as this will help locating the sources of type errors and speed up

type checking.

5.1 Type definitions and function specifications
�e system accepts source �les containing Erlang code, type de�nitions and

function speci�cations. One example:

-module(example1).
%: +type list(X) = [] + [X|list(X)].

%: +func append :: list(X) * list(X) -> list(X).
append([A | B], C) ->

[A | append(B, C)];
append([], C) -> C.

%: +func dup :: list(integer()) -> list(integer()).
dup(S) ->

append(S, S).

(In Erlang, lower case identi�ers without arguments indicate atoms, upper case

variables are variables.) �e �rst type declaration de�nes the polymorphic and

recursive type list(), which is of course either the empty list constructor

([]) or the cons constructor applied to the type parameter and the list type,

([X|list(X)]).

�e character combination “%:” is treated as white space by the type sys-

tem’s scanner while the Erlang compiler treats any sequence of characters

that begins with % as a comment. �us de�nitions and speci�cations will be

read by the type checker but ignored by the compiler.

Type de�nitions use the keyword type. �e type speci�cation of the func-

tion append simply states that the function takes two lists as arguments, and

returns a list of the same type.

In the language for types used in speci�cations and type de�nitions, an

atom followed by an argument list (for example, list(integer()) as in

the example above) indicates either a type constructor or a type de�ned in

some type de�nition. Some constructors use di�erent syntax, for example

the empty list [] and the list constructor [...|...]. Also, atoms and tagged

and untagged tuples have the same syntax as in Erlang. As Erlang allows a

function to have any number of arguments, we use a function type constructor

for each number of arguments. Examples of function types with zero, one, or

two arguments:

21

() -> atom() integer() -> atom() integer() * float() -> atom().

Among other primitive types in the source language are atom(), the type of

atoms, and integer(), the type of integers.

Finally, we use the notation any() and none() for the universal and empty

types, respectively.

5.2 Unsafe features
5.2.1 Promises. Many functions in the standard library are ill-suited for

static typing. For example, there are many functions that may return a value

of any type. Among these are primitives for process communication and

functions that read data from a �le or from standard input.

Rather than barring programmers from using such operations, our system

includes a primitive promise that allows the programmer to assert that a

variable has a particular type. We illustrate the use of the primitive with a

simple example.

%: +func f::() -> integer().
f() ->

{ok, X} = io:read(">"),
%: promise X :: integer(),

X.

Now, promises are unsafe in the sense that if the programmer lies to the

type system in a promise the type system will trust the promise. A cautious

programmer could of course insert code that checked the promise, and in a

more well-integrated system such tests could be inserted automatically.

�e implementation of the type system uses promises in four locations.

Two uses occur in the module program and are associated with calls to the

function get value of the library module proplists, which extracts a �eld

from a property list. Since a property list may store any value, and di�erent

types of values are associated with di�erent properties, there is no way to

statically determine the type of one particular �eld.

�e two other uses of promise occur in the module record expand which

expands records. �is use of a promise could perhaps be avoided by more

careful coding and be�er use of polymorphism.

5.2.2 External modules. �e type system checks one module at the time.

If a second module is referenced, and speci�cations are available, the type

system will under default se�ings use the speci�cations instead of analysing

the second module. Naturally, until the second module is also checked, there

is no way of knowing whether the speci�cation in the second module really

conforms with the actual code.

In the type system, there are some places where typing relies on speci�ca-

tion �les, but the type system has not checked that the speci�cations match

the corresponding function de�nitions. �e parser which is based on the

standard Erlang parser is not checked. Instead, the abstract syntax tree which

is generated by the parser is speci�ed separately. Also, there is a module that

implements a modi�ed version of the standard Erlang preprocessor. �e type

system relies on speci�cations of three functions of that module that are not

22

checked. �ere are also seven functions in standard libraries (involving IO,

the �le system and timers) that are not checked. Perhaps more importantly,

the module lists which implements various operations on lists could not be

checked. �e reason is that many functions in that library manipulate lists of

tuples, for example keysort, which takes an integer and a list of tuples. �e

list is sorted by the position given by the integer. To type programs that use

the function, a precise speci�cation of this function should re�ect not only

that the second argument and the result are both lists of tuples but also that

the tuples are of the same type as the input tuple.

5.2.3 Calls with unknown destinations. One feature that makes Erlang

programs hard to analyse is the ability to write calls whose destination is

determined at run time. One can even write code that could call any exported

function in any module, depending on data read from a �le or standard input.

�e type checker allows calls where the destination cannot be determined

but do not a�empt to track their destination. Since the destination may be any

exported function in any module it is impossible to guarantee that a function

called will not have a speci�cation that the call breaks. �us, whenever a

call occurs where the destination cannot be determined the responsibility for

ensuring that the call does not break any speci�cation falls on the programmer.

(�e implementation of the type system does not contain any calls where the

destination cannot be determined.)

6 THE IMPLEMENTATION
6.1 Predicates
�e front end of the type checker translates function de�nitions, type de�ni-

tions and speci�cations into predicates.
A�er the predicates have been generated, the remaining phases of the type

checker do not rely on any other information beside the structure of the

predicates and the constraint systems explicit in the predicates.

A predicate takes the form

predicate Name [X1, ...,Xn] Body

where Name is an identi�er, X1, . . . ,Xn are variables (the parameters of the

predicate), Body is a set of constraints and calls. A call is of the form

call Name [Y1, . . . ,Ym]

We refer to Y1, . . . ,Ym as the arguments of the call. Free variables of Body that

are not among the parameters are implicitly for-all quanti�ed. �e resolution

of a call is simple; the call is replaced with the body of the predicate where

every variable that occurs as a parameter is replaced with the corresponding

argument, and other free variables are replaced with fresh variables.

6.1.1 Examples. We show predicates for simple type de�nitions. First, a

simple type de�nition with two alternatives:

+type bool() = true + false.

Type de�nitions are used in two situations, when generating a type, and when

checking that a supplied type is indeed as speci�ed. Since these two cases

23

require di�erent constraints and don’t interact we de�ne two predicates for

each type de�nition, a lower predicate and an upper predicate.

Consider �rst the lower predicate for the type bool().

predicate type lower bool [T]

([]→ A) 6 T , (3)

〈atomtrue〉 6 A, (4)

〈atomfalse〉 6 A. (5)

Like all predicates for type de�nitions, the predicate takes a single parameter

(T). As the type bool does not take any parameters, the predicate generates

a function type without parameters (3). �e result type (A) describes the

possible values of a variable or expression of type bool(). �ere are two

possible values, the atom true or the atom false.

Next, the upper predicate for bool().

predicate type upper bool [T]

([]→ A) 6 T , (6)

A � atomtrue 6 〈atomtrue〉, (7)

A \ atomtrue 6 〈atomfalse〉. (8)

In the upper predicates for bool(), we use �lters (as explained in Section 4.2)

to isolate the two cases. When �ltered with the set {atomtrue} the type of A
must be a subtype of 〈atomtrue〉 (7). �e third line (8) uses a �lter to exclude

any use of the atom true. If A is not the atom true, the type of A must be a

subtype of the atom false.

Next we consider a simple parametric type.

+type option(X) = none + {some, X}.

Both the lower and upper predicate de�ne the type of T as a function with

one parameter. In the lower predicate, the parameter X is introduced in

constraint (9) and used in constraint (11). By constraint (10) the result may

be the atom none and by constraint (11) the result may be a tuple, where the

second element is given by the parameter X .

predicate type lower option [T]

([X]→ A) 6 T , (9)

〈atomnone〉 6 A, (10)

〈tuple2

some X 〉 6 A. (11)

�e upper predicate follows a similar pa�ern. �e type passed to the predicate

needs to be a function type with one parameter, as the type is parametric

(12). Filters are used to distinguish between the cases when the result of the

supplied type is the atom none (13) and when it is not (14).

predicate type upper option [T]

T 6 ([X]→ A), (12)

A � atomnone 6 atomnone, (13)

A \ atomnone 6 〈tuple2

some X 〉. (14)

24

We end with a (non-parametric) recursive type,

+type intlist() = [] + [integer() | intlist()].

Both the lower and upper predicate are recursive. In the lower predicate, the

recursive call supplies the type of the rest of the list (19).

predicate type lower intlist [T]

([]→ A) 6 T , (15)

〈nil〉 6 A, (16)

〈cons 〈integer〉 B〉 6 A, (17)

call type lower intlist [U], (18)

U 6 ([]→ B). (19)

In the upper predicate, constraint (24) gives an upper bound to the rest of the

list. �e next section will describe how recursive predicates are replaced with

constraints.

predicate type upper intlist [T]

T 6 ([]→ A), (20)

A � nil 6 〈nil〉, (21)

A \ nil 6 〈cons 〈integer〉 B〉, (22)

call type upper intlist [U], (23)

([]→ B) 6 U . (24)

6.2 Recursion in predicates
Let’s �rst look at the case where a predicate is recursive, but there are no

mutually recursive predicates. Consider the predicate type lower intlist of the

previous section. It contains a call call type lower intlist [U]. �e strategy is

simply to merge the parameters with the arguments in the recursive calls,

i.e., replace all of them with a single variable. �e recursive calls can now be

removed. In the example, this gives us the following predicate:

predicate type lower intlist [T]

([]→ A) 6 T , (25)

〈nil〉 6 A, (26)

〈cons 〈integer〉 B〉 6 A, (27)

T 6 ([]→ B). (28)

Now, it should be stressed that this approach to recursion will sometimes be

overly aggressive; it is possible to create a recursive predicate where merging

recursive calls in this manner gives a non-recursive predicate where the body

is inconsistent, but where a more conservative approach would have avoided

inconsistency. However, as our approach generalises Hindley-Milner typing,

it seems safe to assume that it will work well in practice.

To handle mutual recursion, it is useful to view the predicates as a directed

graph where each predicate is a node and an edge connects two predicates if

25

there is a call in the �rst predicate to the second. Mutually recursive predicates

form strongly connected components.

Predicates that form a strongly connected component are combined into

a new predicate. �e parameter list of this predicate is the concatenation

of the parameter lists of the predicates it replaces. Any call to one of the

predicates in the strongly connected component is replaced with a call to the

new predicate, where the argument list is adjusted to take into account the

position in the new predicate.

Non-recursive calls between predicates are treated as polymorphic. �us

each such call results in the duplication of constraints. To reduce the cost of

duplication, various simpli�cation algorithms are applied before duplication.

6.3 The constraint solver
�e constraint solver uses a graph representation where nodes are type vari-

ables and edges are labeled with �lters and represent constraints of the form

X � S 6 Y . With each node, say for a variable X , we associate constructor

expressions t such that t 6 X (supports) and X 6 t (covers). As suggested

by Heintze and Tardieu (2001), we do not compute a representation of the

transitive closure. Instead, when a linkX � S 6 Y is added, a depth �rst search

collects the direct and indirect supports of X and a second dfs collects the

covers of Y . �e covers and supports are then combined.

�e solver (and the rest of the type checker) is wri�en in a pure functional

style, with the exception of IO and calls to the timer library.

6.4 Constraint simplification
Since our implementation of polymorphic type checking sometimes requires

a constraint system to be duplicated, it reasonable to use constraint simpli�ca-

tion to (hopefully) improve performance. We have developed two approaches

to constraint simpli�cation.

Our starting point is a constraint system G and the set of variables P
which serve as an interface to the constraints in G. �e constraint system

G represents a de�nition of a function or a type de�nition. �e constraint

system needs to be duplicated if it is used in di�erent contexts.

In the �rst simpli�cation, we consider reachability, i.e., the set of constraints

in G that can be reached from P .

�e second simpli�cation considers stability. Given a constraint system

G and a set of visible variables P it sometimes happens that a variable is

reachable, but that there is no need to duplicate the variable if the constraint

system is duplicated. Suppose, for example:

P = {X },G = {〈cons Y Z 〉 6 X , 〈cons Y1 Y2〉 6 Y }. (29)

Even ifG is used in di�erent contexts, there is no need to duplicate the variables

Y , Y1 and Y2. �is situation occurs for example ifG is the constraint system of

a function that returns a complex data structure but the data structure does

not depend on the input. Obviously, the type of the result will always be the

same.

26

7 MEASUREMENTS
Table 2 summarises the source �les examined in the measurements and the

results.

In addition to the source modules listed in the table, there are a few �les con-

taining only type declarations and speci�cations. �e largest is absyn.espec
(112 lines), containing type declarations describing the abstract syntax tree

generated by the parser.

�e module poly serves as top level, coordinates some tasks and also

implements polymorphism as described in Sections 3 and 6.2. Module program
stores the source code in an intermediate form, supplied by convert and

where record expand has expanded any use of records. Module pos helps in

the introduction of temporaries by tracking the position in a program, this

is used both in convert and in the later translation to constraints. sanity
traverses the code and checks that all referenced de�nitions and speci�cations

have been loaded by program. agenda takes a program and a list of speci�ed

functions and creates a list of de�nitions and speci�cations (an agenda) that

need to be translated into constraints. �e module walker takes an agenda

and generates predicates (see Section 6.1).

�e module match generates constraints from pa�ern matching but as it

contains no speci�cations the module has been measured with walker, which

is the only other module that calls it. �e module poly will then merge mutu-

ally recursive predicates,relying on graph for detecting strongly connected

components, and the module coalesce for coalescing them. poly will then

expand predicate calls, perhaps interleaved with constraint simpli�cation

(module reach).

�e module solver implements the constraint solver (Section 6.3) relying

on module conn for various properties of constructors, for example variance

and the function coerce (Section 4.4) which implements conversion. It should

be noted that both solver and reach are independent of the set of constructors

used by the type checker. �e modules rfilter implements �lters, i.e., sets of

constructors. Finally, worklist supports solver in the scheduling of tasks.

�e type checker was set to use constraint simpli�cation and “prefer speci-

�cations”, i.e., to use speci�cations of functions, when available, to check the

outcomes of recursive calls.

All measurements have been run on a 1.3 GHz Intel Core i5 (a 2013 Macbook

Air). In the measurements, only one core was used. �e Erlang implementation

used a BEAM byte-code emulator.

8 RELATEDWORK
Kozen et al. (1994) showed that the problem of checking that an term in lambda

calculus can be typed by a subtyping system could be solved in O (n3) time.

Palsberg and O’Keefe (1995) show that it is possible to use control �ow
analysis to check that a lambda term can be typed under a subtyping system.

�eir language is richer than that of Kozen et al. (it has a universal type, an

empty type and a primitive type distinct from function types). It is not clear

that Kozen’s approach could be used to type a language with these features.

On the other hand, even though Palsberg’s language is quite limited, the

27

Table 2. Modules in the type checker. LOC: lines of code. LOD: lines of specifications
and declarations. Blank lines and comments are not counted. The final column shows
time to check the module.

Module LOC LOD Time

agenda 239 15 1.50

coalesce 269 11 0.96

conn 98 10 0.15

convert 943 103 16.11

graph 168 13 0.12

poly 362 23 7.26

pos 18 6 0.01

program 372 49 9.84

reach 501 26 2.00

record expand 119 22 1.39

r�lter 343 15 0.75

sanity 237 12 0.77

scfa �le 60 5 0.05

solver 508 67 2.09

walker+match 992 67 4.27

worklist 39 8 0.04

approach requires several representations and transformations, and careful

proofs that the transformations preserve relationships.

Eifrig et al. (1995) present an interesting approach to subtyping. Types

are constrained, i.e., each type comes with a constraint system which gives

a rich type system, though it does not seem that this gives any additional

expressiveness compared to the approach in this paper. Like this paper, Eifrig

uses a propagation algorithm to determine whether a constraint system is

acceptable. Unlike this paper, there is no a�empt to link the propagation

algorithm to a de�nition of consistency using derivation rules, instead they

give a subject reduction proof where they show that each reduction step

preserves the outcome of the propagation algorithm. �is is unsatisfactory

from a theoretical point of view, a practical problem is that it makes the type

system hard to extend; any modi�ed version of the type system requires a new

algorithm for checking constraints. Since the proof of the subject reduction

property depends on the algorithm every new version of the algorithm needs

a new version of the (rather tedious) proof. Any mistakes in the design of

the algorithm will become apparent at a late stage, and it will be hard to tell

whether the problem is due to a mistake in the design of the algorithm or in

the underlying type system.

Marlow and Wadler (1997) describe an early prototype of a static type

system for Erlang wri�en in Haskell and report very promising results; the

type system has been applied to thousands of lines of library code and no

di�culties are antipicated. However, Erlang has many features that the type

system should not be able to handle, and even “nice” functional programs

sometimes do things that should be hard to express in their type system. �eir

28

constraint language uses a form of discriminated unions that give about the

same expressiveness as the �lter concept described in Section 4.2. Like the

type system described by Eifrig et al. above, consistency is de�ned using an

algorithm instead of by a set of derivation rules. �is would make extending

the system di�cult and error-prone.

Typed Scheme (Tobin-Hochstadt and Felleisen 2008) requires that the pro-

gram contains type speci�cations of all functions and data structures. �us,

the problem of type checking is in some regards much simpler as there is only

a limited need to deduce types for immediate values. In contrast, the system

presented here can deduce complex intermediate data structures.

�ere are several other recent a�empts to integrate static and dynamic

typing that rely on some form of subtyping but not in combination with type

inference, for example (Flanagan 2006; Knowles and Flanagan 2010; Siek and

Garcia 2012; Siek and Taha 2006; Wadler and Findler 2009; Wrigstad et al.

2010). �ese systems rely on run-time type checks in the conversion from

dynamically typed values to values with static types.

Dolan and Mycro� (2017) present a subtype system for SML, extended with

a universal type, an empty type and a record concept. Interestingly, they

report that their type system has principal types. However, as the principal

types are not minimal (in fact, a function may have an in�nite set of principal

types of unbounded size) the advantage of principal types is unclear. �eir

implementation of polymorphism relies on heuristic simpli�cation of principal

types, analogous to the constraint simpli�cation algorithms exploited in this

paper.

Most type systems (including the one presented in this paper) a�empt to

guarantee some degree of safety from type errors at run-time. Lindahl and

Sagonas (2006) take the opposite approach and give a type system for Erlang

that that only rejects programs that are guaranteed to fail. �is allows the

type system to work with programs that were not wri�en with static typing

in mind.

9 CONCLUSIONS
Designing a static type system for a programming language that was not

designed for static typing poses many challenges. Sometimes typing a program

requires some minor adjustments, sometimes there are features that seem

fundamentally unsuited for static typing. More interesting are situations that

seem amenable to static typing, if only the type system was a li�le bit more

powerful.

�e subtyping system we have developed is a generalisation of Hindley-

Milner type inference. As Hindley-Milner type inference has been used in

functional programming for decades, we expected that a generalisation should

be capable of handling most functional programs that did not involve any

exotic features of Erlang. Experience has con�rmed this expectation; programs

that would have typed in, say, an SML implementation will indeed type here.

�e interesting question is: which programs can be typed under a subtyping

system that cannot be typed by the Hindley-Milner system? �ere are some

obvious situations. For example: a complex type that uses fewer constructors

29

than another and is thus a subtype or a type that uses the same constructors

as another (but is otherwise unrelated). �e use of the subtyping system in

the typing of the implementation of the subtyping system has o�ered some

insight in the practical aspects of using subtyping in development.

REFERENCES
Roberto M Amadio and Luca Cardelli. 1993. Subtyping recursive types. ACM Transactions on

Programming Languages and Systems (TOPLAS) 15, 4 (1993), 575–631.

Lars Ole Andersen. 1994. Program analysis and specialization for the C programming language.
Ph.D. Dissertation. University of Copenhagen.

Henk Barendregt, Wil Dekkers, and Richard Statman. 2013. Lambda calculus with types. Cambridge

University Press.

Stephen Dolan and Alan Mycro�. 2017. Polymorphism, Subtyping, and Type Inference in MLsub.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2017). ACM, New York, NY, USA, 60–72. DOI:h�p://dx.doi.org/10.1145/3009837.3009882

Jonathan Eifrig, Sco� Smith, and Valery Trifonov. 1995. Type inference for recursively constrained

types and its application to OOP. Electronic Notes in �eoretical Computer Science 1 (1995),

132–153.

Cormac Flanagan. 2006. Hybrid Type Checking. In POPL’06. ACM, New York, NY, USA, 245–256.

Cormac Flanagan and Ma�hias Felleisen. 1999. Componential Set-based Analysis. ACM Trans.
Program. Lang. Syst. 21, 2 (March 1999), 370–416. DOI:h�p://dx.doi.org/10.1145/316686.316703

Nevin Heintze. 1994. Set-Based Analysis of ML Programs. In ACM Conference on Lisp and
Functional Programming. 306–317.

Nevin Heintze and Olivier Tardieu. 2001. Ultra-fast aliasing analysis using CLA: A million lines

of C code in a second. In Programming Language Design and Implementation (PLDI). 254–263.

Leon Henkin. 1949. �e Completeness of the First-Order Functional Calculus. Journal of Symbolic
Logic 14, 3 (1949), 159–166.

Neil D. Jones. 1981. Flow analysis of lambda expressions. In Automata, Languages and Program-
ming. 114–128.

Kenneth Knowles and Cormac Flanagan. 2010. Hybrid Type Checking. ACM Trans. Program.
Lang. Syst. 32, 2, Article 6 (Feb. 2010), 34 pages.

Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. 1994. E�cient inference of partial

types. J. Comput. System Sci. 49, 2 (1994), 306–324.

Tobias Lindahl and Konstantinos Sagonas. 2006. Practical type inference based on success typings.

In Proceedings of the 8th ACM SIGPLAN international conference on Principles and practice of
declarative programming. ACM, 167–178.

Harry G. Mairson. 1990. Deciding ML Typability is Complete for Deterministic Exponential Time.

In POPL’90. ACM, New York, NY, USA, 382–401. DOI:h�p://dx.doi.org/10.1145/96709.96748

Simon Marlow and Philip Wadler. 1997. A practical subtyping system for Erlang. ACM SIGPLAN
Notices 32, 8 (Aug. 1997), 136–149.

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17

(1978), 348–375.

John C. Mitchell. 1984. Coercion and Type Inference. In Principles of Programming Languages.
ACM, 175–185.

John C. Mitchell. 1991. Type inference with simple subtypes. Journal of Functional Programming
1 (1991), 245–285.

Jens Palsberg and Patrick O’Keefe. 1995. A type system equivalent to �ow analysis. ACM Toplas
17, 4 (July 1995), 576–599.

Benjamin C. Pierce. 2002. Types and programming languages. MIT press.

François Po�ier. 2001. Simplifying subtyping constraints: a theory. Information and Computation
170, 2 (2001), 153–183.

John C. Reynolds. 1968. Automatic Computation of Data Set De�nition. In Proceedings of the IFIP
Congress. 456–461.

Olin Shivers. 1988. Control Flow Analysis in Scheme. In PLDI’88. 164–174.

Jeremy G. Siek and Ronald Garcia. 2012. Interpretations of the gradually-typed lambda calculus.

In Proceedings of the 2012 Annual Workshop on Scheme and Functional Programming. ACM,

30

http://dx.doi.org/10.1145/3009837.3009882
http://dx.doi.org/10.1145/316686.316703
http://dx.doi.org/10.1145/96709.96748

68–80.

Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, Vol. 6. 81–92.

Sam Tobin-Hochstadt and Ma�hias Felleisen. 2008. �e design and implementation of typed

scheme. ACM SIGPLAN Notices 43, 1 (2008), 395–406.

Dirk van Dalen. 2013. Logic and structure, ��h edition. Springer-Verlag.

Philip Wadler and Robert Bruce Findler. 2009. Well-typed programs can’t be blamed. In Program-
ming Languages and Systems. Springer, 1–16.

Andrew K. Wright and Ma�hias Felleisen. 1994. A syntactic approach to type soundness. Infor-
mation and computation 115, 1 (1994), 38–94.

Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek. 2010.

Integrating Typed and Untyped Code in a Scripting Language. In POPL’10. New York, NY,

USA, 377–388. DOI:h�p://dx.doi.org/10.1145/1706299.1706343

31

http://dx.doi.org/10.1145/1706299.1706343

	Abstract
	1 Introduction
	2 How to build a type system
	2.1 What is a type?
	2.2 Simple constraints
	2.3 Some mathematical logic
	2.4 Lambda calculus
	2.5 Typing lambda calculus
	2.6 Safety
	2.7 Checking that a program types
	2.8 How to extend the constraint language
	2.9 Workflow in the design of a type system

	3 Polymorphism
	4 The extended lambda calculus
	4.1 Constructors
	4.2 Filters and unions
	4.3 Open case statements
	4.4 Conversion
	4.5 Putting everything together
	4.6 The extended type checking algorithm

	5 How to make Erlang statically typed
	5.1 Type definitions and function specifications
	5.2 Unsafe features

	6 The Implementation
	6.1 Predicates
	6.2 Recursion in predicates
	6.3 The constraint solver
	6.4 Constraint simplification

	7 Measurements
	8 Related work
	9 Conclusions
	References

