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Outline

I Background: design of vertical axis wind turbines

I Discretization through vortex formulation

I Fast multipole method...

I ...with adaptivity...

I ...and done in parallel

Joint work in part with Paul Deglaire and Anders Goude at the Division
for Electricity and Lightning Research, Uppsala University.
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Background

Pros/cons of VAWTs:

+ Generator at ground level

+ Less gravitational loads

+ No gears

+ Easier maintenance

+ Less noise

- Fatigue loads

- Start-up

- Aerodynamics model

YouTube: Vertical Wind
200kW (March 2010)
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Vortex formulation (the very short version)

In 2D, let the velocity field u(z , t) solve the Navier-Stokes equations with
BCs (using the complex number z = x + iy for the space coordinate
(x , y)). Introduce the vorticity ω ≡ ∇× u · k̂ and consider the two-step
formulation:

ωt + u · ∇ω = 0 (advection),
ωt = ν∆ω (diffusion).

-Hence; how do we obtain u from ω?
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One can show that u = uω +∇φ for some φ s.t. ∆φ = 0 accounting for
the BCs. In turn,

uω(z , t) =

∫
Ω

K (z − z ′)ω(z ′, t) dz ′,

where K = −i/(2πz) is the Green’s function for −∆.
If the vorticity is discretized,

ω(z , t) =
∑
j

δ(z − zj)Γj ,

with zj = zj(t), then the velocity field is obtained from

uω(z , t) =
∑
j

K (z − zj)Γj .
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To advect, evaluate the velocity field in all vorticity points zj ,

uω(zj , t) =
∑
i 6=j

K (zj − zi )Γi ,

an N-body problem.
To diffuse, just add a normally distributed random number,

uω(zj , t + ∆t) = uω(zj , t) +
√

2ν∆tN (0, 1).

In practice, there are also redistribution-type methods such that Γi is made
time-dependent.
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Fast multipole method (the very short version)
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We restrict our attention in this paper to the case where
the potential (or force) at a point is a sum of pairwiseAn algorithm is presented for the rapid evaluation of the potential

and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of
whose interactions are Coulombic or gravitational in nature. For a the form
system of N particles, an amount of work of the order O(N 2) has
traditionally been required to evaluate all pairwise interactions, un-

F 5 Ffar 1 (Fnear 1 Fexternal),less some approximation or truncation method is used. The algo-
rithm of the present paper requires an amount of work proportional
to N to evaluate all interactions to within roundoff error, making it where Fnear (when present) is a rapidly decaying potential
considerably more practical for large-scale problems encountered in (e.g., Van der Waals), Fexternal (when present) is indepen-
plasma physics, fluid dynamics, molecular dynamics, and celestial

dent of the number of particles, and Ffar , the far-fieldmechanics. Q 1987 Academic Press

potential, is Coulombic or gravitational. Such models de-
scribe classical celestial mechanics and many problems in
plasma physics and molecular dynamics. In the vortex1. INTRODUCTION
method for incompressible fluid flow calculations [4], an

The study of physical systems by means of particle simu- important and expensive portion of the computation has
lations is well established in a number of fields and is the same formal structure (the stream function and the
becoming increasingly important in others. The most classi- vorticity are related by Poisson’s equation).
cal example is probably celestial mechanics, but much re- In a system of N particles, the calculation of Fnear re-
cent work has been done in formulating and studying parti- quires an amount of work proportional to N, as does the
cle models in plasma physics, fluid dynamics, and molecular calculation of Fexternal . The decay of the Coulombic or
dynamics [5]. gravitational potential, however, is sufficiently slow that

There are two major classes of simulation methods. Dy- all interactions must be accounted for, resulting in CPU
namical simulations follow the trajectories of N particles time requirements of the order O(N 2). In this paper a
over some time interval of interest. Given initial positions method is presented for the rapid (order O(N)) evaluation
hxij and velocities, the trajectory of each particle is gov- of these interactions for all particles.
erned by Newton’s second law of motion, There have been a number of previous efforts aimed

at reducing the computational complexity of the N-body
problem. Particle-in-cell methods [5] have received careful

mi
d 2xi

dt2 5 2=iF for i 5 1, ..., N, study and are used with much success, most notably in
plasma physics. Assuming the potential satisfies Poisson’s
equation, a regular mesh is layed out over the computa-where mi is the mass of the ith particle and the force is
tional domain and the method proceeds by:obtained from the gradient of a potential function F. When

one is interested in an equilibrium configuration of a set (1) interpolating the source density at mesh points,
of particles rather than their time-dependent properties, (2) using a ‘‘fast Poisson solver’’ to obtain potential
an alternative approach is the Monte Carlo method. In values on the mesh,
this case, the potential function F has to be evaluated for

(3) computing the force from the potential and inter-a large number of configurations in an attempt to deter-
polating to the particle positions.mine the potential minimum.

The complexity of these methods is of the order
O(N 1 M log M), where M is the number of mesh points.Reprinted from Volume 73, Number 2, December 1987, pages 325–348.
The number of mesh points is usually chosen to be propor-* The authors were supported in part by the Office of Naval Research

under Grant N00014-82-K-0184. tional to the number of particles, but with a small constant
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A FAST ADAPTIVE MULTIPOLE ALGORITHM
FOR PARTICLE SIMULATIONS*
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Abstract. This paper describes an algorithm for the rapid evaluation of the potential and force fields
in systems involving large numbers of particles whose interactions are described by Coulomb’s law. Unlike
previously published schemes, the algorithm of this paper has an asymptotic CPU time estimate of O(N),
where N is the number of particles in the simulation, and does not depend on the statistics of the distribution
for its efficient performance. The numerical examples we present indicate that it should be an algorithm of
choice in many situations of practical interest.
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1. Introduction. The evaluation of Coulombic and gravitational interactions in
large-scale ensembles of particles is an integral part of the numerical simulation of a
large number of physical processes. Typical examples include celestial mechanics,
plasma simulations, the vortex method in fluid dynamics, and the solution of the
Laplace equation via potential theory (see 1]-[3], [8], 10]). In such cases, the potential
has the form

(1) (I) external + (I) local "" (I)far,

where Cloca is a rapidly decaying function of distance (such as the Van der Waals
potential in chemical physics), (I) external is a function which is independent of the
number and relative positions of the particles (such as an external gravitational field)
and (I)fa is Coulombic or gravitational.

In the numerical evaluation of fields of the form (1), the cost of computing the
terms (I) external and @ocal is of the order O(N), where N is the number of particles in
the ensemble. Indeed, (I) external is evaluated separately for each particle, and @oca
decays rapidly, involving the interactions of each particle with a small number of
nearest neighbors. Unfortunately, evaluation of the term far, if done directly, requires
order O(N2) operations, since the Coulombic potential decays slowly, and the interac-
tions between each pair of particles have to be taken into account. In many situations,
in order to be of physical interest, the simulation has to involve thousands of particles
(or more), making the estimate O(N2) excessive in some cases, and prohibitive in others.

Several different approaches have been used to reduce the cost of the Coulombic
part of the computation. For a detailed discussion of these algorithms, we refer the
reader to [7] and to the original papers [1], [2], [8], [10]. Here, we just observe that
each of the algorithms [1], [2], [7], [8], [10] imposes strong requirements on the
statistics of the charge distribution. In particular, the methods of [1], [7], and [8]
require that the distribution be reasonably uniform in a square-shaped region of interest,
the algorithm of [10] assumes that the charges are located on a curve in R2, and the
algorithm of[2] works fairly well for highly clustered distributions, but fails for uniform
ones.

* Received by the editors February 2, 1987; accepted for publication October 8, 1987.
f Elf Aquitaine and Department of Computer Science, Yale University, New Haven, Connecticut 06520.
t Department of Computer Science, Yale University, New Haven, Connecticut 06520. The work of this

author was supported in part by the Office of Naval Research under grant N00014-82-K-0184.
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Fast multipole method (cont)

282 GREENGARD AND ROKHLIN

THEOREM 2.1. (Multipole expansion). Suppose that m
charges of strengths hqi , i 5 1, ..., mj are located at points
hzi , i 5 1, ..., mj, with uzi u , r. Then for any z [ C with
uzu . r, the potential f(z) is given by

f(z) 5 Q log(z) 1 Oy
k51

ak

zk , (2.2)

FIG. 1. Well-separated sets in the plane.
where

Q 5 Om
i51

qi , ak 5 Om
i51

2qizk
i

k
. (2.3) that hy1 , y2 , ..., ynj is another set of points in C (Fig. 1).

We say that the sets hxij and hyij are well separated if there
exist points x0 , y0 [ C and a real r . 0 such that

Furthermore, for any p $ 1,

uxi 2 x0u , r for all i 5 1, ..., m,
uyj 2 y0u , r for all j 5 1, ..., n,Uf(z) 2 Q log(z) 2 Op

k51

ak

zkU# a Ur
zUp11

# S A
c 2 1DS1

cDp

, ux0 2 y0u . 3r.
(2.4)

In order to obtain the potential (or force) at the points
hyj j due to the charges at the points hxij directly, wewhere
could compute

c 5 UzrU, A 5 Om
i51

uqi u, and a 5
A

1 2 ur/zu
. (2.5) Om

i51
fxi

(yj ) for all j 5 1, ..., n. (2.7)

Proof. The form of the multipole expansion (2.2) is an This clearly requires order nm work (evaluating m fields
immediate consequence of the preceding lemma and the at n points). Now suppose that we first compute the coeffi-
fact that f(z) 5 om

i51 fzi
(z). To obtain the error bound cients of a p-term multipole expansion of the potential due

(2.4), observe that to the charges q1 , q2 , ..., qm about x0 , using Theorem 2.1.
This requires a number of operations proportional to mp.
Evaluating the resulting multipole expansion at all pointsUf(z) 2 Q log(z) 2 Op

k51

ak

zkU5 U Oy
k5p11

ak

zkU. yj requires order np work, and the total amount of compu-
tation is of the order O(mp 1 np). Moreover, by (2.6),

Substituting for ak the expression in (2.3), we have UOm
i51

fxi
(yj ) 2 Q log(yj 2 x0) 2 Op

k51

ak

uyj 2 x0uk
U# A S1

2Dp

,

U Oy
k5p11

ak

zkU# A Oy
k5p11

rk

k uzuk
# A Oy

k5p11
Ur
zUk

5 a Ur
zUp11

and in order to obtain a relative precision « (with respect
to the total charge), p must be of the order 2log2(«). Once

5 S A
c 2 1DS1

cDp

. the precision is specified, the amount of computation has
been reduced to

In particular, if c $ 2, then O(m) 1 O(n),

which is significantly smaller than nm for large n and m.Uf(z) 2 Q log(z) 2 Op
k51

ak

zkU# A S1
2Dp

. (2.6)

2.1. Translation Operators and Error Bounds

The following three lemmas constitute the principal ana-Finally, we demonstrate, with a simple example, how
multipole expansions can be used to speed up calculations lytical tool of this paper, allowing us to manipulate

multipole expansions in the manner required by the fastwith potential fields. Suppose that charges of strengths q1 ,
q2 , ..., qm are located at the points x1 , x2 , ..., xm [ C and algorithm. Lemma 2.3 provides a formula for shifting the

Figure: Found at p. 3 of Greengard and Rokhlin: “A Fast Algorithm for Particle
Simulations” J. Comput. Phys. 73(2):325–348 (1987).
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Fast multipole method (cont)

Main idea: all charges/potentials/bodies inside two well-separated sets
can interact through an operator of low effective rank.
In a nutshell: distribute the points in a recursive tree of boxes where each
box has 4 children (2D).

1. Initialize at the finest level in the tree, expanding each potential in a
multipole series around the midpoint of the box.

2. Go upwards and shift all expansions to parents, yielding a “top
expansion” for the whole enclosing box.

3. Go downwards and shift-and-convert all expansions into local
expansions (eg. polynomials). Also, shift all such expansions to
children, yielding a local field in each box.
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Illustrations

Test: flat plate.
Production run: 3-bladed turbine.
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Adaptivity
Want adaptivity, but quite complicated... The “C ” in O (N) can be rather
large.
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Asymmetric adaptivity
Idea: split around the median point instead of around the geometric
midpoint. Easier to get the communication localized.
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The θ-criterion

As the mesh looses regularity, it becomes important to keep track of what
sets are really well-separated.

Criterion
Let the sets S1,S2 ⊂ RD be contained inside two disjoint spheres such
that ‖S1 − x0‖ ≤ r1 and ‖S2 − y0‖ ≤ r2. Given θ ∈ (0, 1), if
d ≡ ‖x0 − y0‖, R ≡ max{r1, r2}, and r ≡ min{r1, r2}, then the two sets
are well-separated whenever R + θr ≤ θd .

In other words: any of the two sets may be expanded by a factor of 1/θ
and arbitrarily rotated about its center point without touching the other
set.
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Asymmetric adaptivity (cont)

Figure: Typical shift-and-convert interaction list (θ = 1/2).
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Accurate?

Theory: the relative error for the pth order adaptive fast multipole method
under the θ-criterion is bounded by a constant× θp+1/(1− θ)2.
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Figure: Errors for two different distribution of points and three distinct θs.
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Efficient?

Theory: O
(
θ−2 log−2 θ · N log2 TOL

)
. (=⇒ θopt = exp(−1) ≈ 0.368...)
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Figure: Adaptive vs. uniform FMM. Two different distribution of points.

“Normal” := N (0, σ), but rejected to fit within the positive unit square.

“Layer” := the x-coordinate is U[0, 1] instead.
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Robustness: does it scale?
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Implementation at the GPU (ongoing...)

I Started with off-loading the perfectly parallel direct evaluation at the
finest level.

I Next came the (not so expensive) local shift operation....

I ...and finally the expensive shift-and-convert operation.

What remains serial is currently the initial sorting which is the
median-of-three algorithm used in eg. quicksort. It now takes almost
60–80% of the running time!
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GPU Performance
GeForce 480 (NB @ 700MHz!)
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Conclusions

I Academic sw-project: hardly no planning or overall strategy, just a
concrete problem to be solved.

I Nice aspect: the steady and controlled growth of performance and
complexity:

1. Stand-alone recursive C99 implementation.
2. Matlab-interface to a direct N-body evaluation.
3. First working copy; later heavily optimized (eg. BLAS L3).
4. Added adaptivity – took the time to investigate a novel approach.
5. Parallel GPU-implementation CUDA/C++ (still ongoing).
6. 3D...?

I Increasingly sophisticated regression tests.

I In such an academic environment, clarity wrt to goals is very
important.
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