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Outline
Bayesian epidemics

1. With little data

2. Without data

3. Conclusions

=⇒ Joint work with Robin Eriksson @ Dept of IT, Uppsala university, and

Stefan Widgren @ Dept of Disease Control and Epidemiology, National

Veterinary Institute (SVA). ⇐=
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Case study: modeling the spread of VTEC O157
Verotoxinogenic E. coli O157:H7 in the Swedish cattle population

I Zoonotic pathogen (animal →
human) of great public health
interest

I Substantial amount of data:

I individual-level cattle data
from 2005 and onwards

I meteorological data

I Less data:

I actual disease
measurements at farms
(enough for
parametrization?)
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The SISE model
Replicated across a data-driven network

Susceptible individuals, Infected individuals,
and ϕ, the infectious pressure.

(b)(a)

SimInf

www.siminf.org
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Severely limited by data

126 out of 37,221 holdings were sampled once every 6 to 8 weeks for 38

months; so disease data is 6–8 binary true/false samples per year at 0.3% of

the nodes. Also, the sensitivity of the test had to be estimated...
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Synthetic Likelihood Adaptive Metropolis (“SLAM”)
Bayesian computations with untractable likelihoods

I Multiple simulations zi for a proposed
θ; zθ = (z1, z2, . . . , zN).

I Assume that some summary statistics
S(·) is an observation from a
multivariate Gaussian distribution
N (µθ,Σθ), estimated by

µ̂θ =
1

N

N∑
i=1

S(zi )

Σ̂θ =
1

N − 1
(S− µ̂1(N))(S− µ̂1(N))

>

I We get the “synthetic” likelihood
P(sobs|S) = N (sobs|µ̂θ, Σ̂θ)

SLAM sampling:

Consider initial (θ(1),Lθ) and
summarized data sobs.
for i = 2, . . . ,Nsample do

Compute C (i) =

ξd Cov(θ(1), . . . , θ(i−1)) + ξdεId
Propose θ∗ ∼ N (θ(i−1),C (i))
Simulate

Y =
(
y1, . . . , yN

)
, yj ∼ F (θ∗)

Bootstrap
Z =

(
z1, . . . , zR

)
, zj ∼ F̂N (Y )

Estimate (µ̂θ∗ , Σ̂θ∗ ) from
S = S(Z)

Compute Lθ∗ = P(sobs|S)
if U(0, 1) < min

(
1,Lθ∗/Lθ

)
θ(i) = θ∗ and Lθ = Lθ∗

else
θ(i) = θ(i−1)
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A series of inverse crimes

Navigating through a forest of complexity
Basic idea: Solve a series of increasingly realistic inverse problems using
known truth data until the desired set-up is reached.

Personal reflections

I Model correctness cannot be assumed

I Identifiability cannot be assumed

I Real data is much worse than synthetic data

I The main insight comes from solving problems on the way
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Suitable summary statistics?

N parameters −→ find at least N SS.

I Need “normal”-like SS for the SL ansatz

I And they are!
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Feasible optimization?

I Need that the (− log SL) minima are well defined in each parameter
dimension

I And they are!
inside outside
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Finally, full model results
∼5% std error

Real network & actual observations

I From the mean posterior
estimate, θ̂, we construct new
synthetic data and bootstrap to
estimate the bias

I Posterior use: evaluate
surveillance- and mitigation
strategies probabilistically
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Figure: Posterior samples.
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Case study: spread of Antimicrobial Resistance (AMR)
Question-driven rather than data-driven modeling

How can we understand the ‘flow’ of AMR spread?
- “understand” ∼ identify the dominating processes and their timescales,
estimate qualitatively, or simply get a feeling for...

BUT: No “hard” data to easily build models on!
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The SISE framework again

Being verotoxinogenic is caused by a certain strand, and so is resistance
to antibiotics:

1. {γ, β} set the time scale of recovery and open space decay of
bacteria, respectively.

2. Hence υ alone determines the stationary prevalence.

So, the latent variables (AMR fitness & antibiotic pressure)
proxy−−−→ υ

t→∞−−−→ P∞, the stationary prevalence.
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Network data
Sample real networks

(a) Worldwide travel routes and emergence of
antimicrobial resistance Source: Holmes et al., “Understanding the
mechanisms and drivers of antimicrobial resistance”, Lancet 387 (2016)

(b) Cattle network
data: ∼10 years of
data, ∼40,000 nodes
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Model reduction
Bayesian homogenization

Ansatz borrowed from statistical physics: SDE in gradient form for the
prevalence P(t) := I (t)/N(t) ∈ [0, 1],

dP(t) = −V ′(P) dt + σ dW (t),

where V is the epidemic potential energy.

-We can find V and σ by many full simulations over a range of the
(proxy) parameter using (Variational-) Bayes techniques.

-Fokker-Planck equation for density ρ(t,P), known stationary (Gibbs)
distribution:

ρt = [V ′(P)ρ]′P +
σ2

2
[ρ]′′PP + certain BCs,

ρ∞(P) ∝ exp(−2σ−2V (P)).

The SDE form fascilitates detailed computational analysis.
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Homogenized SDE
What it looks like
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Left: epidemic potential V (P), right: (blue) data from full model, (red) homogenized SDE model.
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Endemic or not?
Courtesy of the Fokker-Planck

Fitness: parameter
0 0.05 0.1 0.15

E
x
p

e
c
te

d
 e

x
ti
n

c
ti
o

n
 [

y
e

a
rs

]

10
1

10
2

10
3

baseline
simulations

Very strong nonlinear response =⇒ new question: what is the effect if
nodes experience a heterogeneous antibiotic pressure?
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Locally increased antibiotic pressure
According to in-degree: hospitals, schools, resorts...

I The antibiotic pressure is set
higher in the top-0.1%
in-degree nodes

I Everywhere else the conditions
are such that extinction within
a few years can be expected

I Result: the nonlinear response
makes the full system endemic
for indefinite times
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Conclusions
Bayesian epidemiological modeling

With little data:

1. Put effort into the model itself, this is part of the prior

2. Use inverse crimes to ensure identifiability (=⇒ bootstrap)

3. Synthetic Likelihood Adaptive Metropolis (SLAM) performed well

Without data:

1. Question-driven modeling =⇒ identify proxy variables (& proxy
data)

2. Effective gradient SDE model enabled a detailed computational
analysis not possible from simulations alone

Thanks for listening!
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