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Outline

Bayesian epidemics

1. With little data

2. Without data

3. Conclusions

— Joint work with Robin Eriksson @ Dept of IT, Uppsala university, and
Stefan Widgren @ Dept of Disease Control and Epidemiology, National
Veterinary Institute (SVA). <=
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Case study: modeling the spread of VTEC 0157

Verotoxinogenic E. coli O157:H7 in the Swedish cattle population

» Zoonotic pathogen (animal —
human) of great public health
interest

» Substantial amount of data:

» individual-level cattle data
from 2005 and onwards
» meteorological data

» Less data:

» actual disease
measurements at farms
(enough for
parametrization?)
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The SISE model

Replicated across a data-driven network

Susceptible individuals, Infected individuals,
and ¢, the infectious pressure.
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www.siminf.org
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Severely limited by data

126 out of 37,221 holdings were sampled once every 6 to 8 weeks for 38
months; so disease data is 6—8 binary true/false samples per year at 0.3% of

the nodes. Also, the sensitivity of the test had to be estimated...
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Synthetic Likelihood Adaptive Metropolis (“SLAM™)

Bayesian computations with untractable likelihoods

SLAM sampling:

» Multiple simulations z; for a proposed
Consider initial (0, L) and

9; 26 = (Zl’ 2290 ’ZN)' summarized data sops.
» Assume that some summary statistics fori=2,..., ’(\_’)sample do
S(-) is an observation from a Compute C7 =
oS . T €4 Cov(0W, ..., 00D 4+ ghely
multivariate Gaussian distribution Py (i—1)" ~()
. Propose 6* ~ N(6 ,CY)
N (e, Zg), estimated by Simulate
Y = (y1,--yn), ¥ ~ F(67)
1 N Bootstrap .
,)9:*25(2,.) Z=(z,...,2),z ~ Fu(Y)
N P Estimate (fig=, Xg* ) from
s 1 ) )y T * compute £ P(sobsS)
_ o _ ompute Lgx = Sobs
To= =1 (8- ALTY)(S - A1T) if £(0,1) < min (1, Lox/Lo)
R 0" = 0% and Lo = L=
» We get the “synthetic” likelihood else iy
o) = gli—

P(50bs|S) = N (Sobs|fia, £4)
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A series of inverse crimes

Navigating through a forest of complexity

Basic idea: Solve a series of increasingly realistic inverse problems using
known truth data until the desired set-up is reached.

Personal reflections

» Model correctness cannot be assumed
» Identifiability cannot be assumed
» Real data is much worse than synthetic data

» The main insight comes from solving problems on the way
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Suitable summary statistics?

N parameters — find at least N SS.

» Need “normal’-like SS for the SL ansatz
» And they are!
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Feasible optimization?

» Need that the (—log SL) minima are well defined in each parameter
dimension

» And they are!
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Finally, full model results

~5% std error

method [[] SLAM i SLAM /filtered _ i SLAM / observations.

v B. v Po

Real network & actual observations

» From the mean posterior
estimate, é we construct new
synthetic data and bootstrap to
estimate the bias

g

» Posterior use: evaluate
surveillance- and mitigation
strategies probabilistically
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Figure: Posterior samples.
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Case study: spread of Antimicrobial Resistance (AMR)

Question-driven rather than data-driven modeling

How can we understand the ‘flow’ of AMR spread?
- “understand” ~ identify the dominating processes and their timescales,
estimate qualitatively, or simply get a feeling for...

BUT: No “hard” data to easily build models on!
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The SISg framework again

Being verotoxinogenic is caused by a certain strand, and so is resistance
to antibiotics:

1. {v, B} set the time scale of recovery and open space decay of
bacteria, respectively.

2. Hence v alone determines the stationary prevalence.

So, the latent variables (AMR fitness & antibiotic pressure)

rox: t— .
POY 2% P, the stationary prevalence.
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Network data

Sample real networks

 Linezold-resistant enterococci

(b) Cattle network
data: ~10 years of

(a) Worldwide travel routes and emergence of
data, ~40,000 nodes

antimicrobial resistance source: Holmes et al., “Understanding the
mechanisms and drivers of antimicrobial resistance”, Lancet 387 (2016)
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Model reduction

Bayesian homogenization
Ansatz borrowed from statistical physics: SDE in gradient form for the
prevalence P(t) := I(t)/N(t) € [0, 1],
dP(t) = —V/(P)dt + o dW(t),

where V' is the epidemic potential energy.

-We can find V and o by many full simulations over a range of the
(proxy) parameter using (Variational-) Bayes techniques.

-Fokker-Planck equation for density p(t, P), known stationary (Gibbs)
distribution:

2
pe=[V'(P)olp + S [plte  + certain BCs,

poo(P) o exp(—20 2V(P)).

The SDE form fascilitates detailed computational analysis.

Stefan Engblom, TDB/IT UU Bayesian epidemics: with little and without data 14/18



Homogenized SDE

What it looks like
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Left: epidemic potential V/(P), right: (blue) data from full model, (red) homogenized SDE model.
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Endemic or not?
Courtesy of the Fokker-Planck
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Fitness: parameter

Very strong nonlinear response = new question: what is the effect if
nodes experience a heterogeneous antibiotic pressure?
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Locally increased antibiotic pressure

According to in-degree: hospitals, schools, resorts...

» The antibiotic pressure is set
higher in the top-0.1%
in-degree nodes

» Everywhere else the conditions
are such that extinction within
a few years can be expected

» Result: the nonlinear response
makes the full system endemic
for indefinite times
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Conclusions

Bayesian epidemiological modeling

With little data:
1. Put effort into the model itself, this is part of the prior

2. Use inverse crimes to ensure identifiability (= bootstrap)
3. Synthetic Likelihood Adaptive Metropolis (SLAM) performed well

Without data:

1. Question-driven modeling = identify proxy variables (& proxy
data)

2. Effective gradient SDE model enabled a detailed computational
analysis not possible from simulations alone

Thanks for listening!
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