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Preface

Spectral analysis considers the problem of determining the spectral content
(i.e., the distribution of power over frequency) of a time series from a finite set of
measurements, by means of either nonparametric or parametric techniques. The
history of spectral analysis as an established discipline started more than a century
ago with the work by Schuster on detecting cyclic behavior in time series. An
interesting historical perspective on the developments in this field can be found in
[Marple 1987]. This reference notes that the word “spectrum” was apparently
introduced by Newton in relation to his studies of the decomposition of white light
into a band of light colors, when passed through a glass prism (as illustrated on the
front cover). This word appears to be a variant of the Latin word “specter” which
means “ghostly apparition”. The contemporary English word that has the same
meaning as the original Latin word is “spectre”. Despite these roots of the word
“spectrum”, we hope the student will be a “vivid presence” in the course that has
just started!

This text, which is a revised and expanded version of Introduction to Spectral
Analysis (Prentice Hall, 1997), is designed to be used with a first course in spec-
tral analysis that would typically be offered to senior undergraduate or first–year
graduate students. The book should also be useful for self-study, as it is largely
self-contained. The text is concise by design, so that it gets to the main points
quickly and should hence be appealing to those who would like a fast appraisal on
the classical and modern approaches of spectral analysis.

In order to keep the book as concise as possible without sacrificing the rigor
of presentation or skipping over essential aspects, we do not cover some advanced
topics of spectral estimation in the main part of the text. However, several advanced
topics are considered in the complements that appear at the end of each chapter,
and also in the appendices. For an introductory course, the reader can skip the
complements and refer to results in the appendices without having to understand
in detail their derivation.

For the more advanced reader, we have included three appendices and a num-
ber of complement sections in each chapter. The appendices provide a summary
of the main techniques and results in linear algebra, statistical accuracy bounds,
and model order selection, respectively. The complements present a broad range of
advanced topics in spectral analysis. Many of these are current or recent research
topics in the spectral analysis literature.

At the end of each chapter we have included both analytical exercises and
computer problems. The analytical exercises are more–or–less ordered from least
to most difficult; this ordering also approximately follows the chronological presen-
tation of material in the chapters. The more difficult exercises explore advanced
topics in spectral analysis and provide results which are not available in the main
text. Answers to selected exercises are found in Appendix D. The computer prob-
lems are designed to illustrate the main points of the text and to provide the reader
with first–hand information on the behavior and performance of the various spectral
analysis techniques considered. The computer exercises also illustrate the relative
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performance of the methods and explore other topics such as statistical accuracy,
resolution properties, and the like, that are not analytically developed in the book.
We have used Matlab1 to minimize the programming chore and to encourage
the reader to “play” with other examples. We provide a set of Matlab functions
for data generation and spectral estimation that form a basis for a comprehensive
set of spectral estimation tools; these functions are available at the text web site
www.prenhall.com/stoica.

Supplementary material may also be obtained from the text web site. We
have prepared a set of overhead transparencies which can be used as a teaching
aid for a spectral analysis course. We believe that these transparencies are useful
not only to course instructors but also to other readers, because they summarize
the principal methods and results in the text. For readers who study the topic on
their own, it should be a useful exercise to refer to the main points addressed in
the transparencies after completing the reading of each chapter.

As we mentioned earlier, this text is a revised and expanded version of In-
troduction to Spectral Analysis (Prentice Hall, 1997). We have maintained the
conciseness and accessability of the main text; the revision has primarily focused
on expanding the complements, appendices, and bibliography. Specifically, we have
expanded Appendix B to include a detailed discussion of Cramér-Rao bounds for
direction-of-arrival estimation. We have added Appendix C, which covers model
order selection, and have added new computer exercises on order selection. We
have more than doubled the number of complements from the previous book to 32,
most of which present recent results in spectral analysis. We have also expanded
the bibliography to include new topics along with recent results on more established
topics.

The text is organized as follows. Chapter 1 introduces the spectral analysis
problem, motivates the definition of power spectral density functions, and reviews
some important properties of autocorrelation sequences and spectral density func-
tions. Chapters 2 and 5 consider nonparametric spectral estimation. Chapter
2 presents classical techniques, including the periodogram, the correlogram, and
their modified versions to reduce variance. We include an analysis of bias and
variance of these techniques, and relate them to one another. Chapter 5 considers
the more recent filter bank version of nonparametric techniques, including both
data-independent and data-dependent filter design techniques. Chapters 3 and 4
consider parametric techniques; Chapter 3 focuses on continuous spectral models
(Autoregressive Moving Average (ARMA) models and their AR and MA special
cases), while Chapter 4 focuses on discrete spectral models (sinusoids in noise).
We have placed the filter bank methods in Chapter 5, after Chapters 3 and 4,
mainly because the Capon estimator has interpretations as both an averaged AR
spectral estimator and as a matched filter for line spectral models, and we need
the background of Chapters 3 and 4 to develop these interpretations. The data-
independent filter bank techniques in Sections 5.1–5.4 can equally well be covered
directly following Chapter 2, if desired.

Chapter 6 considers the closely-related problem of spatial spectral estimation
in the context of array signal processing. Both nonparametric (beamforming) and

1Matlab R© is a registered trademark of The Mathworks, Inc.
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parametric methods are considered, and tied into the temporal spectral estimation
techniques considered in Chapters 2, 4 and 5.

The Bibliography contains both modern and classical references (ordered both
alphabetically and by subject). We include many historical references as well, for
those interested in tracing the early developments of spectral analysis. However,
spectral analysis is a topic with contributions from many diverse fields, including
electrical and mechanical engineering, astronomy, biomedical spectroscopy, geo-
physics, mathematical statistics, and econometrics to name a few. As such, any
attempt to accurately document the historical development of spectral analysis is
doomed to failure. The bibliography reflects our own perspectives, biases, and limi-
tations; while there is no doubt that the list is incomplete, we hope that it gives the
reader an appreciation of the breadth and diversity of the spectral analysis field.

The background needed for this text includes a basic knowledge of linear al-
gebra, discrete-time linear systems, and introductory discrete-time stochastic pro-
cesses (or time series). A basic understanding of estimation theory is helpful, though
not required. Appendix A develops most of the needed background results on ma-
trices and linear algebra, Appendix B gives a tutorial introduction to the Cramér-
Rao bound, and Appendix C develops the theory of model order selection. We have
included concise definitions and descriptions of the required concepts and results
where needed. Thus, we have tried to make the text as self-contained as possible.

We are indebted to Jian Li and Lee Potter for adopting a former version of
the text in their spectral estimation classes, for their valuable feedback, and for
contributing to this book in several other ways. We would like to thank Torsten
Söderström for providing the initial stimulus for preparation of lecture notes that led
to the book, and Hung-Chih Chiang, Peter Händel, Ari Kangas, Erlendur Karlsson,
and Lee Swindlehurst for careful proofreading and comments, and for many ideas
on and early drafts of the computer problems. We are grateful to Mats Bengtsson,
Tryphon Georgiou, K.V.S. Hari, Andreas Jakobsson, Erchin Serpedin, and Andreas
Spanias for comments and suggestions that helped us eliminate some inadvertencies
and typographical errors from the previous edition of the book. We also wish
to thank Wallace Anderson, Alfred Hero, Ralph Hippenstiel, Louis Scharf, and
Douglas Williams, who reviewed a former version of the book and provided us
with numerous useful comments and suggestions. It was a pleasure to work with
the excellent staff at Prentice Hall, and we are particularly appreciative of Tom
Robbins for his professional expertise.

Many of the topics described in this book are outgrowths of our research pro-
grams in statistical signal and array processing, and we wish to thank the sponsors
of this research: the Swedish Foundation for Strategic Research, the Swedish Re-
search Council, the Swedish Institute, the U.S. Army Research Laboratory, the U.S.
Air Force Research Laboratory, and the U.S. Defense Advanced Research Projects
Administration.

Finally, we are indebted to Anca and Liz for their continuing support and
understanding throughout this project.

Petre Stoica
Uppsala University

Randy Moses
The Ohio State University
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Notational Conventions

R the set of real numbers

C the set of complex numbers

N (A) the null space of the matrix A (p. 328)

R(A) the range space of the matrix A (p. 328)

Dn the nth definition in Appendix A or B

Rn the nth result in Appendix A

‖x‖ the Euclidean norm of a vector x

∗ convolution operator

(·)T transpose of a vector or matrix

(·)c conjugate of a vector or matrix

(·)∗ conjugate transpose of a vector or matrix;
also used for scalars in lieu of (·)c

Aij the (i, j)th element of the matrix A

ai the ith element of the vector a

x̂ an estimate of the quantity x

A > 0 (≥ 0) A is positive definite (positive semidefinite) (p. 341)

arg max
x

f(x) the value of x that maximizes f(x)

arg min
x
f(x) the value of x that minimizes f(x)

cov{x, y} the covariance between x and y

|x| the modulus of the (possibly complex) scalar x

|A| the determinant of the square matrix A

diag(a) the square diagonal matrix whose diagonal elements are the elements of
the vector a

δk,l Kronecker delta: δk,l = 1 if k = l and δk,l = 0 otherwise

δ(t− t0) Dirac delta: δ(t− t0) = 0 for t 6= t0;
∫∞

−∞ δ(t− t0)dt = 1

E {x} the expected value of x (p. 5)

f (discrete-time) frequency: f = ω/2π, in cycles per sampling
interval (p. 8)

φ(ω) a power spectral density function (p. 6)

Im{x} the imaginary part of x

O(x) on the order of x (p. 32)
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p(x) probability density function

Pr{A} the probability of event A

r(k) an autocovariance sequence (p. 5)

Re{x} the real part of x

t discrete-time index

tr(A) the trace of the matrix A (p. 331)

var{x} the variance of x

w(k), W (ω) a window sequence and its Fourier transform

wB(k), WB(ω) the Bartlett (or triangular) window sequence and its Fourier
transform (p. 29)

wR(k), WR(ω) the rectangular (or Dirichlet) window sequence and its Fourier
transform (p. 30)

ω radian (angular) frequency, in radians/sampling interval (p. 3)

z−1 unit delay operator: z−1x(t) = x(t− 1) (p. 10)



“sm2”
2004/2/22
page xix

i

i

i

i

i

i

i

i

Abbreviations

ACS autocovariance sequence (p. 5)

APES amplitude and phase estimation (p. 244)

AR autoregressive (p. 88)

ARMA autoregressive moving-average (p. 88)

BSP beamspace processing (p. 323)

BT Blackman-Tukey (p. 37)

CM Capon method (p. 222)

CCM constrained Capon method (p. 300)

CRB Cramér-Rao bound (p. 355)

DFT discrete Fourier transform (p. 25)

DGA Delsarte-Genin algorithm (p. 95)

DOA direction of arrival (p. 264)

DTFT discrete-time Fourier transform (p. 3)

ESP elementspace processing (p. 323)

ESPRIT estimation of signal parameters by rotational invariance
techniques (p. 166)

EVD eigenvalue decomposition (p. 330)

FB forward-backward (p. 168)

FBA filter bank approach (p. 208)

FFT fast Fourier transform (p. 26)

FIR finite impulse response (p. 17)

flop floating point operation (p. 26)

GAPES gapped amplitude and phase estimation (p. 247)

GS Gohberg-Semencul (formula) (p. 122)

HOYW high–order Yule–Walker (p. 155)

i.i.d. independent, identically distributed (p. 317)

LDA Levinson–Durbin algorithm (p. 95)

LS least squares (p. 350)

MA moving-average (p. 88)

MFD matrix fraction description (p. 137)

ML maximum likelihood (p. 356)

MLE maximum likelihood estimate (p. 356)
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MSE mean squared error (p. 28)

MUSIC multiple signal classification (or characterization) (p. 159)

MYW modified Yule–Walker (p. 96)

NLS nonlinear least squares (p. 145)

PARCOR partial correlation (p. 96)

PSD power spectral density (p. 5)

RFB refined filter bank (p. 212)

QRD Q-R decomposition (p. 351)

RCM robust Capon method (p. 299)

SNR signal-to-noise ratio (p. 81)

SVD singular value decomposition (p. 336)

TLS total least squares (p. 352)

ULA uniform linear array (p. 271)

YW Yule–Walker (p. 90)
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C H A P T E R 1

Basic Concepts

1.1 INTRODUCTION

The essence of the spectral estimation problem is captured by the following informal
formulation.

From a finite record of a stationary data sequence, estimate how
the total power is distributed over frequency.

(1.1.1)

Spectral analysis finds applications in many diverse fields. In vibration monitoring,
the spectral content of measured signals give information on the wear and other
characteristics of mechanical parts under study. In economics, meteorology, astron-
omy and several other fields, the spectral analysis may reveal “hidden periodicities”
in the studied data, which are to be associated with cyclic behavior or recurring
processes. In speech analysis, spectral models of voice signals are useful in better
understanding the speech production process, and — in addition — can be used
for both speech synthesis (or compression) and speech recognition. In radar and
sonar systems, the spectral contents of the received signals provide information on
the location of the sources (or targets) situated in the field of view. In medicine,
spectral analysis of various signals measured from a patient, such as electrocardio-
gram (ECG) or electroencephalogram (EEG) signals, can provide useful material
for diagnosis. In seismology, the spectral analysis of the signals recorded prior to
and during a seismic event (such as a volcano eruption or an earthquake) gives
useful information on the ground movement associated with such events and may
help in predicting them. Seismic spectral estimation is also used to predict sub-
surface geologic structure in gas and oil exploration. In control systems, there is
a resurging interest in spectral analysis methods as a means of characterizing the
dynamical behavior of a given system, and ultimately synthesizing a controller for
that system. The previous and other applications of spectral analysis are reviewed
in [Kay 1988; Marple 1987; Bloomfield 1976; Bracewell 1986; Haykin

1991; Haykin 1995; Hayes III 1996; Koopmans 1974; Priestley 1981; Perci-

val and Walden 1993; Porat 1994; Scharf 1991; Therrien 1992; Proakis,

Rader, Ling, and Nikias 1992]. The textbook [Marple 1987] also contains
a well–written historical perspective on spectral estimation which is worth read-
ing. Many of the classical articles on spectral analysis, both application–driven
and theoretical, are reprinted in [Childers 1978; Kesler 1986]; these excellent
collections of reprints are well worth consulting.

There are two broad approaches to spectral analysis. One of these derives its
basic idea directly from definition (1.1.1): the studied signal is applied to a band-
pass filter with a narrow bandwidth, which is swept through the frequency band of

1
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2 Chapter 1 Basic Concepts

interest, and the filter output power divided by the filter bandwidth is used as a
measure of the spectral content of the input to the filter. This is essentially what
the classical (or nonparametric) methods of spectral analysis do. These methods are
described in Chapters 2 and 5 of this text (the fact that the methods of Chapter 2
can be given the above filter bank interpretation is made clear in Chapter 5). The
second approach to spectral estimation, called the parametric approach, is to postu-
late a model for the data, which provides a means of parameterizing the spectrum,
and to thereby reduce the spectral estimation problem to that of estimating the
parameters in the assumed model. The parametric approach to spectral analysis
is treated in Chapters 3, 4 and 6. Parametric methods may offer more accurate
spectral estimates than the nonparametric ones in the cases where the data indeed
satisfy the model assumed by the former methods. However, in the more likely
case that the data do not satisfy the assumed models, the nonparametric meth-
ods may outperform the parametric ones owing to the sensitivity of the latter to
model misspecifications. This observation has motivated renewed interest in the
nonparametric approach to spectral estimation.

Many real–world signals can be characterized as being random (from the ob-
server’s viewpoint). Briefly speaking, this means that the variation of such a signal
outside the observed interval cannot be determined exactly but only specified in
statistical terms of averages. In this text, we will be concerned with estimating the
spectral characteristics of random signals. In spite of this fact, we find it useful
to start the discussion by considering the spectral analysis of deterministic signals
(which we do in the first section of this chapter). Throughout this work, we consider
discrete signals (or data sequences). Such signals are most commonly obtained by
the temporal or spatial sampling of a continuous (in time or space) signal. The
main motivation for focusing on discrete signals lies in the fact that spectral analy-
sis is most often performed by a digital computer or by digital circuitry. Chapters
2 to 5 of this text deal with discrete–time signals, while Chapter 6 considers the
case of discrete–space data sequences.

In the interest of notational simplicity, the discrete–time variable t, as used in
this text, is assumed to be measured in units of sampling interval. A similar conven-
tion is adopted for spatial signals, whenever the sampling is uniform. Accordingly,
the units of frequency are cycles per sampling interval.

The signals dealt with in the text are complex–valued. Complex–valued data
may appear in signal processing and spectral estimation applications, for instance,
as a result of a “complex demodulation” process (this is explained in detail in
Chapter 6). It should be noted that the treatment of complex–valued signals is not
always more general or more difficult than the analysis of corresponding real–valued
signals. A typical example which illustrates this claim is the case of sinusoidal
signals considered in Chapter 4. A real–valued sinusoidal signal, α cos(ωt + ϕ),
can be rewritten as a linear combination of two complex–valued sinusoidal signals,
α1e

i(ω1t+ϕ1) + α2e
i(ω2t+ϕ2), whose parameters are constrained as follows: α1 =

α2 = α/2, ϕ1 = −ϕ2 = ϕ and ω1 = −ω2 = ω. Here i =
√

−1. The fact
that we need to consider two constrained complex sine waves to treat the case
of one unconstrained real sine wave shows that the real–valued case of sinusoidal
signals can actually be considered to be more complicated than the complex–valued
case! Fortunately, it appears that the latter case is encountered more frequently
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Section 1.2 Energy Spectral Density of Deterministic Signals 3

in applications, where often both the in–phase and quadrature components of the
studied signal are available. (For more details and explanations on this aspect, see
Chapter 6’s introductory section.)

1.2 ENERGY SPECTRAL DENSITY OF DETERMINISTIC SIGNALS

Let {y(t); t = 0,±1,±2, . . .} denote a deterministic discrete–time data sequence.
Most commonly, {y(t)} is obtained by sampling a continuous–time signal. For
notational convenience, the time index t is expressed in units of sampling interval;
that is, y(t) = yc(t · Ts), where yc(·) is the continuous time signal and Ts is the
sampling time interval.

Assume that {y(t)} has finite energy, which means that

∞∑

t=−∞
|y(t)|2 < ∞ (1.2.1)

Then, under some additional regularity conditions, the sequence {y(t)} possesses a
discrete–time Fourier transform (DTFT) defined as

Y (ω) =

∞∑

t=−∞
y(t)e−iωt (DTFT) (1.2.2)

In this text we use the symbol Y (ω), in lieu of the more cumbersome Y (eiω), to
denote the DTFT. This notational convention is commented on a bit later, following
equation (1.4.6). The corresponding inverse DTFT is then

y(t) =
1

2π

∫ π

−π
Y (ω)eiωtdω (Inverse DTFT) (1.2.3)

which can be verified by substituting (1.2.3) into (1.2.2). The (angular) frequency ω
is measured in radians per sampling interval. The conversion from ω to the physical
frequency variable ω̄ = ω/Ts [rad/sec] can be done in a straightforward manner, as
described in Exercise 1.1.

Let

S(ω) = |Y (ω)|2 (Energy Spectral Density) (1.2.4)

A straightforward calculation gives

1

2π

∫ π

−π
S(ω)dω =

1

2π

∫ π

−π

∞∑

t=−∞

∞∑

s=−∞
y(t)y∗(s)e−iω(t−s)dω

=

∞∑

t=−∞

∞∑

s=−∞
y(t)y∗(s)

[
1

2π

∫ π

−π
e−iω(t−s)dω

]

=

∞∑

t=−∞
|y(t)|2 (1.2.5)
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4 Chapter 1 Basic Concepts

To obtain the last equality in (1.2.5) we have used the fact that 1
2π

∫ π

−π e
−iω(t−s)dω =

δt,s (the Kronecker delta). The symbol (·)∗ will be used in this text to denote the
complex–conjugate of a scalar variable or the conjugate transpose of a vector or
matrix. Equation (1.2.5) can be restated as

∞∑

t=−∞
|y(t)|2 =

1

2π

∫ π

−π
S(ω)dω (1.2.6)

This equality is called Parseval’s theorem. It shows that S(ω) represents the dis-
tribution of sequence energy as a function of frequency. For this reason, S(ω) is
called the energy spectral density.

The previous interpretation of S(ω) also comes up in the following way. Equa-
tion (1.2.3) represents the sequence {y(t)} as a weighted “sum” (actually, an inte-
gral) of orthonormal sequences { 1√

2π
eiωt} (ω ∈ [−π, π]), with weighting 1√

2π
Y (ω).

Hence, 1√
2π

|Y (ω)| “measures” the “length” of the projection of {y(t)} on each of

these basis sequences. In loose terms, therefore, 1√
2π

|Y (ω)| shows how much (or

how little) of the sequence {y(t)} can be “explained” by the orthonormal sequence
{ 1√

2π
eiωt} for some given value of ω.

Define

ρ(k) =

∞∑

t=−∞
y(t)y∗(t− k) (1.2.7)

It is readily verified that

∞∑

k=−∞
ρ(k)e−iωk =

∞∑

k=−∞

∞∑

t=−∞
y(t)y∗(t− k)e−iωteiω(t−k)

=

[ ∞∑

t=−∞
y(t)e−iωt

][ ∞∑

s=−∞
y(s)e−iωs

]∗

= S(ω) (1.2.8)

which shows that S(ω) can be obtained as the DTFT of the “autocorrelation”
(1.2.7) of the finite–energy sequence {y(t)}.

The above definitions can be extended in a rather straightforward manner to
the case of random signals treated throughout the remaining text. In fact, the only
purpose for discussing the deterministic case in this section was to provide some
motivation for the analogous definitions in the random case. As such, the discussion
in this section has been kept brief. More insights into the meaning and properties
of the previous definitions are provided by the detailed treatment of the random
case in the following sections.

1.3 POWER SPECTRAL DENSITY OF RANDOM SIGNALS

Most of the signals encountered in applications are such that their variation in the
future cannot be known exactly. It is only possible to make probabilistic statements
about that variation. The mathematical device to describe such a signal is that
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Section 1.3 Power Spectral Density of Random Signals 5

of a random sequence which consists of an ensemble of possible realizations, each
of which has some associated probability of occurrence. Of course, from the whole
ensemble of realizations, the experimenter can usually observe only one realization
of the signal, and then it might be thought that the deterministic definitions of the
previous section could be carried over unchanged to the present case. However, this
is not possible because the realizations of a random signal, viewed as discrete–time
sequences, do not have finite energy, and hence do not possess DTFTs. A random
signal usually has finite average power and, therefore, can be characterized by an
average power spectral density. For simplicity reasons, in what follows we will use
the name power spectral density (PSD) for that quantity.

The discrete–time signal {y(t); t = 0,±1,±2, . . .} is assumed to be a sequence
of random variables with zero mean:

E {y(t)} = 0 for all t (1.3.1)

Hereafter, E {·} denotes the expectation operator (which averages over the ensemble
of realizations). The autocovariance sequence (ACS) or covariance function of y(t)
is defined as

r(k) = E {y(t)y∗(t− k)} (1.3.2)

and it is assumed to depend only on the lag between the two samples averaged. The
two assumptions (1.3.1) and (1.3.2) imply that {y(t)} is a second–order stationary
sequence. When it is required to distinguish between the autocovariance sequences
of several signals, a lower index will be used to indicate the signal associated with
a given covariance lag, such as ry(k).

The autocovariance sequence r(k) enjoys some simple but useful properties:

r(k) = r∗(−k) (1.3.3)

and

r(0) ≥ |r(k)| for all k (1.3.4)

The equality (1.3.3) directly follows from definition (1.3.2) and the stationarity
assumption, while (1.3.4) is a consequence of the fact that the covariance matrix of
{y(t)}, defined as follows

Rm =









r(0) r∗(1) . . . r∗(m− 1)

r(1) r(0)
. . .

...
...

. . .
. . . r∗(1)

r(m− 1) . . . r(1) r(0)









= E















y∗(t− 1)
...
...

y∗(t−m)









[y(t− 1) . . . y(t−m)]







(1.3.5)
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6 Chapter 1 Basic Concepts

is positive semidefinite for all m. Recall that a Hermitian matrix M is positive
semidefinite if a∗Ma ≥ 0 for every vector a (see Section A.5 for details). Since

a∗Rma = a∗E














y∗(t− 1)
...

y∗(t−m)








[y(t− 1) . . . y(t−m)]







a

= E {z∗(t)z(t)} = E
{
|z(t)|2

}
≥ 0 (1.3.6)

where
z(t) = [y(t− 1) . . . y(t−m)]a

we see that Rm is indeed positive semidefinite for every m. Hence, (1.3.4) fol-
lows from the properties of positive semidefinite matrices (see Definition D11 in
Appendix A and Exercise 1.5).

1.3.1 First Definition of Power Spectral Density

The PSD is defined as the DTFT of the covariance sequence:

φ(ω) =

∞∑

k=−∞
r(k)e−iωk (Power Spectral Density) (1.3.7)

Note that the previous definition (1.3.7) of φ(ω) is similar to the definition (1.2.8)
in the deterministic case. The inverse transform, which recovers {r(k)} from given
φ(ω), is

r(k) =
1

2π

∫ π

−π
φ(ω)eiωkdω (1.3.8)

We readily verify that

1

2π

∫ π

−π
φ(ω)eiωkdω =

∞∑

p=−∞
r(p)

[
1

2π

∫ π

−π
eiω(k−p)dω

]

= r(k)

which proves that (1.3.8) is the inverse transform for (1.3.7). Note that to obtain
the first equality above, the order of integration and summation has been inverted,
which is possible under weak conditions (such as under the requirement that φ(ω)
is square integrable; see Chapter 4 in [Priestley 1981] for a detailed discussion
on this aspect).

From (1.3.8), we obtain

r(0) =
1

2π

∫ π

−π
φ(ω)dω (1.3.9)

Since r(0) = E
{
|y(t)|2

}
measures the (average) power of {y(t)}, the equality (1.3.9)

shows that φ(ω) can indeed be named PSD, as it represents the distribution of the
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Section 1.3 Power Spectral Density of Random Signals 7

(average) signal power over frequencies. Put another way, it follows from (1.3.9)
that φ(ω)dω/2π is the infinitesimal power in the band (ω−dω/2, ω+dω/2), and the
total power in the signal is obtained by integrating these infinitesimal contributions.
Additional motivation for calling φ(ω) a PSD is provided by the second definition
of φ(ω), given next, which resembles the usual definition (1.2.2), (1.2.4) in the
deterministic case.

1.3.2 Second Definition of Power Spectral Density

The second definition of φ(ω) is:

φ(ω) = lim
N→∞

E







1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iωt

∣
∣
∣
∣
∣

2





(1.3.10)

This definition is equivalent to (1.3.7) under the mild assumption that the covari-
ance sequence {r(k)} decays sufficiently rapidly, so that

lim
N→∞

1

N

N∑

k=−N
|k||r(k)| = 0 (1.3.11)

The equivalence of (1.3.7) and (1.3.10) can be verified as follows:

lim
N→∞

E







1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iωt

∣
∣
∣
∣
∣

2





= lim

N→∞

1

N

N∑

t=1

N∑

s=1

E {y(t)y∗(s)} e−iω(t−s)

= lim
N→∞

1

N

N−1∑

τ=−(N−1)

(N − |τ |)r(τ)e−iωτ

=

∞∑

τ=−∞
r(τ)e−iωτ − lim

N→∞

1

N

N−1∑

τ=−(N−1)

|τ |r(τ)e−iωτ

= φ(ω)

The second equality is proven in Exercise 1.6, and we used (1.3.11) in the last
equality.

The above definition of φ(ω) resembles the definition (1.2.4) of energy spec-
tral density in the deterministic case. The main difference between (1.2.4) and
(1.3.10) consists of the appearance of the expectation operator in (1.3.10) and the
normalization by 1/N ; the fact that the “discrete–time” variable in (1.3.10) runs
over positive integers only is just for convenience and does not constitute an es-
sential difference, compared to (1.2.2). In spite of these differences, the analogy
between the deterministic formula (1.2.4) and (1.3.10) provides further motivation
for calling φ(ω) a PSD. The alternative definition (1.3.10) will also be quite useful
when discussing the problem of estimating the PSD by nonparametric techniques
in Chapters 2 and 5.
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8 Chapter 1 Basic Concepts

We can see from either of these definitions that φ(ω) is a periodic function,
with the period equal to 2π. Hence, φ(ω) is completely described by its variation
in the interval

ω ∈ [−π, π] (radians per sampling interval) (1.3.12)

Alternatively, the PSD can be viewed as a function of the frequency

f =
ω

2π
(cycles per sampling interval) (1.3.13)

which, according to (1.3.12), can be considered to take values in the interval

f ∈ [−1/2, 1/2] (1.3.14)

We will generally write the PSD as a function of ω whenever possible, since this
will simplify the notation.

As already mentioned, the discrete–time sequence {y(t)} is most commonly
derived by sampling a continuous–time signal. To avoid aliasing effects which might
be incurred by the sampling process, the continuous–time signal should be (at
least, approximately) bandlimited in the frequency domain. To ensure this, it may
be necessary to low–pass filter the continuous–time signal before sampling. Let
F0 denote the largest (“significant”) frequency component in the spectrum of the
(possibly filtered) continuous signal, and let Fs be the sampling frequency. Then it
follows from Shannon’s sampling theorem that the continuous–time signal can be
“exactly” reconstructed from its samples {y(t)}, provided that

Fs ≥ 2F0 (1.3.15)

In particular, “no” frequency aliasing will occur when (1.3.15) holds (see, e.g.,
[Oppenheim and Schafer 1989]). Since the frequency variable, F , associated
with the continuous–time signal, is related to f by the equation

F = f · Fs (1.3.16)

it follows that the interval of F corresponding to (1.3.14) is

F ∈
[

−Fs
2
,
Fs
2

]

(cycles/sec) (1.3.17)

which is quite natural in view of (1.3.15).

1.4 PROPERTIES OF POWER SPECTRAL DENSITIES

Since φ(ω) is a power density, it should be real–valued and nonnegative. That this
is indeed the case is readily seen from definition (1.3.10) of φ(ω). Hence,

φ(ω) ≥ 0 for all ω (1.4.1)
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Section 1.4 Properties of Power Spectral Densities 9

From (1.3.3) and (1.3.7), we obtain

φ(ω) = r(0) + 2

∞∑

k=1

Re{r(k)e−iωk}

where Re{·} denotes the real part of the bracketed quantity. If y(t), and hence
r(k), is real valued then it follows that

φ(ω) = r(0) + 2

∞∑

k=1

r(k) cos(ωk) (1.4.2)

which shows that φ(ω) is an even function in such a case. In the case of complex–
valued signals, however, φ(ω) is not necessarily symmetric about the ω = 0 axis.
Thus:

For real–valued signals:
φ(ω) = φ(−ω), ω ∈ [−π, π]

For complex–valued signals:
in general φ(ω) 6= φ(−ω), ω ∈ [−π, π]

(1.4.3)

Remark: The reader might wonder why we did not define the ACS as

c(k) = E {y(t)y∗(t+ k)}

Comparing with the ACS {r(k)} used in this text, as defined in (1.3.2), we obtain
c(k) = r(−k). Consequently, the PSD associated with {c(k)} is related to the PSD
corresponding to {r(k)} (see (1.3.7)) via:

ψ(ω) ,

∞∑

k=−∞
c(k)e−iωk =

∞∑

k=−∞
r(k)eiωk = φ(−ω)

It may seem arbitrary as to which definition of the ACS (and corresponding defini-
tion of PSD) we choose. In fact, from a mathematical standpoint we can use either
definition of the ACS, but the ACS definition r(k) is preferred from a practical
standpoint as we now explain.

First, we should stress that the PSD describes the spectral content of the
ACS, as seen from equation (1.3.7). The PSD φ(ω) is sometimes perceived as
showing the (infinitesimal) power at frequency ω in the signal itself, but that is
not strictly true. If the PSD represented the power in the signal itself, then we
should have had ψ(ω) = φ(ω) because the signal’s spectral content should not
depend on the ACS definition. However, as shown above, in the general complex
case ψ(ω) = φ(−ω) 6= φ(ω), which means that the signal power interpretation of
the PSD is not (always) correct. Indeed, the PSD φ(ω) “measures” the power at
frequency ω in the signal’s ACS.
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10 Chapter 1 Basic Concepts

e(t)

φe(ω)

y(t)

φy(ω) = |H(ω)|2φe(ω)
H(z) --

Figure 1.1. Relationship between the PSDs of the input and output of a linear
system.

On the other hand, our motivation for considering spectral analysis is to
characterize the average power at frequency ω in the signal, as given by the sec-
ond definition of the PSD in equation (1.3.10). If c(k) is used as the ACS, its
corresponding second definition of the PSD is

ψ(ω) = lim
N→∞

E







1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e+iωt

∣
∣
∣
∣
∣

2






which is the average power of y(t) at frequency −ω. Clearly, the second PSD
definition corresponding to r(k) aligns with this average power motivation, while
the one for c(k) does not; it is for this reason that we use the definition r(k) for the
ACS. �

Next, we present a useful result which concerns the transfer of PSD through
an asymptotically stable linear system. Let

H(z) =

∞∑

k=−∞
hkz

−k (1.4.4)

denote an asymptotically stable linear time–invariant system. The symbol z−1

denotes the unit delay operator defined by z−1y(t) = y(t − 1). Also, let e(t) be
the stationary input to the system and y(t) the corresponding output, as shown in
Figure 1.1. Then {y(t)} and {e(t)} are related via the convolution sum

y(t) = H(z)e(t) =

∞∑

k=−∞
hke(t− k) (1.4.5)

The transfer function of this filter is

H(ω) =

∞∑

k=−∞
hke

−iωk (1.4.6)

Throughout the text, we will follow the convention of writing H(z) for the con-
volution operator of a linear system and its corresponding Z-transform, and H(ω)
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Section 1.4 Properties of Power Spectral Densities 11

for its transfer function. We obtain the transfer function H(ω) from H(z) by the
substitution z = eiω:

H(ω) = H(z)
∣
∣
z=eiω

While we recognize the slight abuse of notation in writing H(ω) instead of H(eiω)
and in using z as both an operator and a complex variable, we prefer the simplicity
of notation it affords.

From (1.4.5), we obtain

ry(k) =

∞∑

p=−∞

∞∑

m=−∞
hph

∗
mE {e(t− p)e∗(t−m− k)}

=

∞∑

p=−∞

∞∑

m=−∞
hph

∗
mre(m+ k − p) (1.4.7)

Inserting (1.4.7) in (1.3.7) gives

φy(ω) =

∞∑

k=−∞

∞∑

p=−∞

∞∑

m=−∞
hph

∗
mre(m+ k − p)e−iω(k+m−p)eiωme−iωp

=

[ ∞∑

p=−∞
hpe

−iωp
][ ∞∑

m=−∞
h∗
me

iωm

][ ∞∑

τ=−∞
re(τ)e

−iωτ
]

= |H(ω)|2φe(ω) (1.4.8)

From (1.4.8), we get the following important formula

φy(ω) = |H(ω)|2φe(ω) (1.4.9)

that will be much used in the following chapters.
Finally, we derive a property that will be of use in Chapter 5. Let the signals

y(t) and x(t) be related by
y(t) = eiω0tx(t) (1.4.10)

for some given ω0. Then, it holds that

φy(ω) = φx(ω − ω0) (1.4.11)

In other words, multiplication by eiω0t of a temporal sequence shifts its spectral
density by the angular frequency ω0. Owing to this interpretation, the process
of constructing y(t) as in (1.4.10) is called complex (de)modulation. The proof of
(1.4.11) is immediate: since (1.4.10) implies that

ry(k) = eiω0krx(k) (1.4.12)

we obtain

φy(ω) =

∞∑

k=−∞
rx(k)e

−i(ω−ω0)k = φx(ω − ω0) (1.4.13)

which is the desired result.
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12 Chapter 1 Basic Concepts

1.5 THE SPECTRAL ESTIMATION PROBLEM

The spectral estimation problem can now be stated more formally as follows.

From a finite–length record {y(1), . . . , y(N)} of a second–order

stationary random process, determine an estimate φ̂(ω) of its
power spectral density φ(ω), for ω ∈ [−π, π]

(1.5.1)

It would, of course, be desirable that φ̂(ω) is as close to φ(ω) as possible. As
we shall see, the main limitation on the quality of most PSD estimates is due to
the quite small number of data samples usually available for processing. Note that
N will be used throughout this text to denote the number of points of the available
data sequence. In some applications, N is small since the cost of obtaining large
amounts of data is prohibitive. Most commonly, the value of N is limited by the
fact that the signal under study can be considered second–order stationary only
over short observation intervals.

As already mentioned in the introductory part of this chapter, there are two
main approaches to the PSD estimation problem. The nonparametric approach,
discussed in Chapters 2 and 5, proceeds to estimate the PSD by relying essentially
only on the basic definitions (1.3.7) and (1.3.10) and on some properties that di-
rectly follow from these definitions. In particular, these methods do not make any
assumption on the functional form of φ(ω). This is in contrast with the parametric
approach, discussed in Chapters 3, 4 and 6. That approach makes assumptions on
the signal under study, which lead to a parameterized functional form of the PSD,
and then proceeds by estimating the parameters in the PSD model. The paramet-
ric approach can thus be used only when there is enough information about the
studied signal, that allows formulation of a model. Otherwise the nonparametric
approach should be used. Interestingly enough, the nonparametric methods are
close competitors to the parametric ones, even when the model form assumed by
the latter is a reasonable description of reality.

1.6 COMPLEMENTS

1.6.1 Coherency Spectrum

Let

Cyu(ω) =
φyu(ω)

[φyy(ω)φuu(ω)]1/2
(1.6.1)

denote the so–called complex–coherency of the stationary signals y(t) and u(t). In
the definition above, φyu(ω) is the cross–spectrum of the two signals, and φyy(ω)
and φuu(ω) are their respective PSDs. (We implicitly assume in (1.6.1) that φyy(ω)
and φuu(ω) are strictly positive for all ω.) Also, let

ε(t) = y(t) −
∞∑

k=−∞
hku(t− k) (1.6.2)
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Section 1.6 Complements 13

denote the residues of the least squares problem in Exercise 1.11. Hence, {hk} in
equation (1.6.2) satisfy

∞∑

k=−∞
hke

−iωk , H(ω) = φyu(ω)/φuu(ω).

In what follows, we will show that

E
{
|ε(t)|2

}
=

1

2π

∫ π

−π
(1 − |Cyu(ω)|2)φyy(ω) dω (1.6.3)

where |Cyu(ω)| is the so–called coherency spectrum. We will deduce from (1.6.3)
that the coherency spectrum shows the extent to which y(t) and u(t) are linearly
related to one another, hence providing a motivation for the name given to |Cyu(ω)|.
We will also show that |Cyu(ω)| ≤ 1 with equality, for all ω values, if and only if
y(t) and u(t) are related as in equation (1.6.2) with ε(t) ≡ 0 (in the mean square
sense). Finally, we will show that |Cyu(ω)| is invariant to linear filtering of u(t) and
y(t) (possibly by different filters); that is, if ũ = g ∗ u and ỹ = f ∗ y where f and g
are linear filters, then |Cỹũ(ω)| = |Cyu(ω)|.

Let x(t) =
∑∞
k=−∞ hku(t − k). It can be shown that u(t − k) and ε(t) are

uncorrelated with one another for all k. (The reader is required to verify this claim;
see also Exercise 1.11). Hence x(t) and ε(t) are also uncorrelated with each other.
As

y(t) = ε(t) + x(t), (1.6.4)

it then follows that

φyy(ω) = φεε(ω) + φxx(ω) (1.6.5)

By using the fact that φxx(ω) = |H(ω)|2φuu(ω), we can write

E
{
|ε(t)|2

}
=

1

2π

∫ π

−π
φεε(ω) dω

=
1

2π

∫ π

−π

[

1 − |H(ω)|2 φuu(ω)

φyy(ω)

]

φyy(ω) dω

=
1

2π

∫ π

−π

[

1 − |φyu(ω)|2
φuu(ω)φyy(ω)

]

φyy(ω) dω

=
1

2π

∫ π

−π

[
1 − |Cyu(ω)|2

]
φyy(ω) dω

which is (1.6.3).

Since the left-hand side in (1.6.3) is nonnegative and the PSD function φyy(ω)
is arbitrary, we must have |Cyu(ω)| ≤ 1 for all ω. It can also be seen from (1.6.3)
that the closer |Cyu(ω)| is to one, the smaller the residual variance. In particular, if
|Cyu(ω)| ≡ 1 then ε(t) ≡ 0 (in the mean square sense) and hence y(t) and u(t) must
be linearly related as in (1.7.11). Owing to the previous interpretation, Cyu(ω) is
sometimes called the correlation coefficient in the frequency domain.
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14 Chapter 1 Basic Concepts

Next, consider the filtered signals

ỹ(t) =

∞∑

k=−∞
fky(t− k)

and

ũ(t) =

∞∑

k=−∞
gku(t− k)

where the filters {fk} and {gk} are assumed to be stable. As

rỹũ(p) , E {ỹ(t)ũ∗(t− p)}

=

∞∑

k=−∞

∞∑

j=−∞
fkg

∗
jE {y(t− k)u∗(t− j − p)}

=

∞∑

k=−∞

∞∑

j=−∞
fkg

∗
j ryu(j + p− k),

it follows that

φỹũ(ω) =

∞∑

p=−∞

∞∑

k=−∞

∞∑

j=−∞
fke

−iωk g∗
j e
iωj ryu(j + p− k)e−iω(j+p−k)

=

( ∞∑

k=−∞
fke

−iωk
) 



∞∑

j=−∞
gje

−iωj





∗ ( ∞∑

s=−∞
ryu(s)e

−iωs
)

= F (ω)G∗(ω)φyu(ω)

Hence

|Cỹũ(ω)| =
|F (ω)| |G(ω)| |φyu(ω)|

|F (ω)|φ1/2
yy (ω)|G(ω)|φ1/2

uu (ω)
= |Cyu(ω)|

which is the desired result. Observe that the latter result is similar to the invariance
of the modulus of the correlation coefficient in the time domain,

|ryu(k)|
[ryy(0)ruu(0)]1/2

,

to a scaling of the two signals: ỹ(t) = f · y(t) and ũ(t) = g · u(t).

1.7 EXERCISES

Exercise 1.1: Scaling of the Frequency Axis
In this text, the time variable t has been expressed in units of the sampling

interval Ts (say). Consequently, the frequency is measured in cycles per sampling
interval. Assume we want the frequency units to be expressed in radians per sec-
ond or in Hertz (Hz = cycles per second). Then we have to introduce the scaled
frequency variables

ω̄ = ω/Ts ω̄ ∈ [−π/Ts, π/Ts] rad/sec (1.7.1)
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and f̄ = ω̄/2π (in Hz). It might be thought that the PSD in the new frequency
variable is obtained by inserting ω = ω̄Ts into φ(ω), but this is wrong. Show that
the PSD, as expressed in units of power per Hz, is in fact given by:

φ̄(ω̄) = Tsφ(ω̄Ts) , Ts

∞∑

k=−∞
r(k)e−iω̄Tsk, |ω̄| ≤ π/Ts (1.7.2)

(See [Marple 1987] for more details on this scaling aspect.)

Exercise 1.2: Time–Frequency Distributions
Let y(t) denote a discrete–time signal, and let Y (ω) be its discrete–time

Fourier transform. As explained in Section 1.2, Y (ω) shows how the energy in
the whole sequence {y(t)}∞

t=−∞ is distributed over frequency.
Assume that we want to determine how the energy of the signal is distributed

in time and frequency. If D(t, ω) is a function that characterizes the time–frequency
distribution, then it should satisfy the so–called marginal properties:

∞∑

t=−∞
D(t, ω) = |Y (ω)|2 (1.7.3)

and
1

2π

∫ π

−π
D(t, ω)dω = |y(t)|2 (1.7.4)

Use intuitive arguments to explain why the previous conditions are desirable prop-
erties of a time–frequency distribution. Next, show that the so–called Rihaczek
distribution,

D(t, ω) = y(t)Y ∗(ω)e−iωt (1.7.5)

satisfies conditions (1.7.3) and (1.7.4). (For treatments of the time–frequency dis-
tributions, the reader is referred to [Therrien 1992] and [Cohen 1995]).

Exercise 1.3: Two Useful Z–Transform Properties

(a) Let hk be an absolutely summable sequence, and let H(z) =
∑∞
k=−∞ hkz

−k

be its Z–transform. Find the Z–transforms of the following two sequences:

(i) h−k

(ii) gk =
∑∞
m=−∞ hmh

∗
m−k

(b) Show that if zi is a zero of A(z) = 1 + a1z
−1 + · · · + anz

−n, then (1/z∗
i ) is a

zero of A∗(1/z∗) (where A∗(1/z∗) = [A(1/z∗)]∗).

Exercise 1.4: A Simple ACS Example
Let y(t) be the output of a linear system as in Figure 1.1 with filter H(z) =

(1 + b1z
−1)/(1 + a1z

−1), and whose input is zero mean white noise with variance
σ2 (the ACS of such an input is σ2δk,0).
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16 Chapter 1 Basic Concepts

(a) Find r(k) and φ(ω) analytically in terms of a1, b1, and σ2.

(b) Verify that r(−k) = r∗(k), and that |r(k)| ≤ r(0). Also verify that when a1

and b1 are real, r(k) can be written as a function of |k|.

Exercise 1.5: Alternative Proof that |r(k)| ≤ r(0)
We stated in the text that (1.3.4) follows from (1.3.6). Provide a proof of that

statement. Also, find an alternative, simple proof of (1.3.4) by using (1.3.8).

Exercise 1.6: A Double Summation Formula
A result often used in the study of discrete–time random signals is the follow-

ing summation formula:

N∑

t=1

N∑

s=1

f(t− s) =

N−1∑

τ=−N+1

(N − |τ |)f(τ) (1.7.6)

where f(·) is an arbitrary function. Provide a proof of the above formula.

Exercise 1.7: Is a Truncated Autocovariance Sequence (ACS) a Valid
ACS?

Suppose that {r(k)}∞
k=−∞ is a valid ACS; thus,

∑∞
k=−∞ r(k)e−iωk ≥ 0 for all

ω. Is it possible that for some integer p the partial (or truncated) sum

p
∑

k=−p
r(k)e−iωk

is negative for some ω? Justify your answer.

Exercise 1.8: When Is a Sequence an Autocovariance Sequence?
We showed in Section 1.3 that if {r(k)}∞

k=−∞ is an ACS, then Rm ≥ 0 for
m = 0, 1, 2, . . .. We also implied that the first definition of the PSD in (1.3.7)
satisfies φ(ω) ≥ 0 for all ω; however, we did not prove this by using (1.3.7) solely.
Show that

φ(ω) =

∞∑

k=−∞
r(k)e−iωk ≥ 0 for all ω

if and only if

a∗Rma ≥ 0 for every m and for every vector a

Exercise 1.9: Spectral Density of the Sum of Two Correlated Signals
Let y(t) be the output to the system shown in Figure 1.2. Assume H1(z) and

H2(z) are linear, asymptotically stable systems. The inputs e1(t) and e2(t) are each
zero mean white noise, with

E

{[
e1(t)
e2(t)

]
[
e∗
1(s) e∗

2(s)
]
}

=

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]

δt,s
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H1(z)-

H2(z)-

m+

J
J
Ĵ






�

-

e1(t)

e2(t)

x1(t)

x2(t)

y(t)

Figure 1.2. The system considered in Exercise 1.9.

(a) Find the PSD of y(t).

(b) Show that for ρ = 0, φy(ω) = φx1(ω) + φx2(ω).

(c) Show that for ρ = ±1 and σ2
1 = σ2

2 = σ2, φy(ω) = σ2|H1(ω) ±H2(ω)|2.

Exercise 1.10: Least Squares Spectral Approximation
Assume we are given an ACS {r(k)}∞

k=−∞ or, equivalently, a PSD function
φ(ω) as in equation (1.3.7). We wish to find a finite–impulse response (FIR) filter
as in Figure 1.1, where H(ω) = h0 + h1e

−iω + . . . + hme
−imω, whose input e(t) is

zero mean, unit variance white noise, and such that the output sequence y(t) has
PSD φy(ω) “close to” φ(ω). Specifically, we wish to find h = [h0 . . . hm]T so that
the approximation error

ε =
1

2π

∫ π

−π
[φ(ω) − φy(ω)]2 dω (1.7.7)

is minimum.

(a) Show that ε is a quartic (fourth–order) function of h, and thus no simple
closed–form solution h exists to minimize (1.7.7).

(b) We attempt to reparameterize the minimization problem as follows. We note
that ry(k) ≡ 0 for |k| > m; thus,

φy(ω) =

m∑

k=−m
ry(k)e

−iωk (1.7.8)

Equation (1.7.8) and the fact that ry(−k) = r∗
y(k) mean that φy(ω) is a

function of g = [ry(0) . . . ry(m)]T . Show that the minimization problem in
(1.7.7) is quadratic in g; it thus admits a closed–form solution. Show that the
vector g that minimizes ε in equation (1.7.7) gives

ry(k) =

{

r(k), |k| ≤ m

0, otherwise
(1.7.9)
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18 Chapter 1 Basic Concepts

(c) Can you identify any problems with the “solution” (1.7.9)?

Exercise 1.11: Linear Filtering and the Cross–Spectrum
For two stationary signals y(t) and u(t), with (cross)covariance sequence

ryu(k) = E {y(t)u∗(t− k)}, the cross–spectrum is defined as:

φyu(ω) =

∞∑

k=−∞
ryu(k)e

−iωk
(1.7.10)

Let y(t) be the output of a linear filter with input u(t),

y(t) =

∞∑

k=−∞
hku(t− k) (1.7.11)

Show that the input PSD, φuu(ω), the filter transfer function

H(ω) =

∞∑

k=−∞
hke

−iωk

and φyu(ω) are related through the so–called Wiener–Hopf equation:

φyu(ω) = H(ω)φuu(ω) (1.7.12)

Next, consider the following least squares (LS) problem,

min
{hk}

E







∣
∣
∣
∣
∣
y(t) −

∞∑

k=−∞
hku(t− k)

∣
∣
∣
∣
∣

2





(1.7.13)

where now y(t) and u(t) are no longer necessarily related through equation (1.7.11).
Show that the filter minimizing the above LS criterion is still given by the Wiener–
Hopf equation, by minimizing the expectation in (1.7.13) with respect to the real
and imaginary parts of hk (assume that φuu(ω) > 0 for all ω).

COMPUTER EXERCISES

Exercise C1.12: Computer Generation of Autocovariance Sequences
Autocovariance sequences are two–sided sequences. In this exercise we develop

computer techniques for generating two–sided ACSs.
Let y(t) be the output of the linear system in Figure 1.1 with filter H(z) =

(1 + b1z
−1)/(1 + a1z

−1), and whose input is zero mean white noise with variance
σ2.
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(a) Find r(k) analytically in terms of a1, b1, and σ2 (see also Exercise 1.4).

(b) Plot r(k) for −20 ≤ k ≤ 20 and for various values of a1 and b1. Notice that
the tails of r(k) decay at a rate dictated by |a1|.

(c) When a1 ' b1 and σ2 = 1, then r(k) ' δk,0. Verify this for a1 = −0.95,
b1 = −0.9, and for a1 = −0.75, b1 = −0.7.

(d) A quick way to generate (approximately) r(k) on the computer is to use the
fact that r(k) = σ2h(k) ∗ h∗(−k) where h(k) is the impulse response of the
filter in Figure 1.1 (see equation (1.4.7)) and ∗ denotes convolution. Consider
the case where

H(z) =
1 + b1z

−1 + · · · + bmz
−m

1 + a1z−1 + · · · + anz−n .

Write a Matlab function genacs.m whose inputs are M , σ2, a and b, where a
and b are the vectors of denominator and numerator coefficients, respectively,
and whose output is a vector of ACS coefficients from 0 to M . Your function
should make use of the Matlab function filter to generate {hk}Mk=0, and
conv to compute r(k) = σ2h(k)∗h∗(−k) using the truncated impulse response
sequence.

(e) Test your function using σ2 = 1, a1 = −0.9 and b1 = 0.8. Try M = 20 and
M = 150; why is the result more accurate for larger M? Suggest a “rule of
thumb” about a good choice of M in relation to the poles of the filter.

The above method is a “quick and simple” way to compute an approximation
to the ACS, but it is sometimes not very accurate because the impulse response is
truncated. Methods for computing the exact ACS from σ2, a and b are discussed
in Exercise 3.2 and also in [Kinkel, Perl, Scharf, and Stubberud 1979;
Demeure and Mullis 1989].

Exercise C1.13: DTFT Computations using Two–Sided Sequences

In this exercise we consider the DTFT of two–sided sequences (including au-
tocovariance sequences), and in doing so illustrate some basic properties of autoco-
variance sequences.

(a) We first consider how to use the DTFT to determine φ(ω) from r(k) on a
computer. We are given an ACS:

r(k) =

{
M−|k|
M , |k| ≤ M

0, otherwise
(1.7.14)

Generate r(k) forM = 10. Now, in Matlab form a vector x of length L = 256
as:

x = [r(0), r(1), . . . , r(M), 0 . . . , 0, r(−M), . . . , r(−1)]

Verify that xf=fft(x) gives φ(ωk) for ωk = 2πk/L. (Note that the elements
of xf should be nonnegative and real.). Explain why this particular choice of
x is needed, citing appropriate circular shift and zero padding properties of
the DTFT.
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Note that xf often contains a very small imaginary part due to computer
roundoff error; replacing xf by real(xf) truncates this imaginary component
and leads to more expected results when plotting.

A word of caution — do not truncate the imaginary part unless you are sure
it is negligible; the command zf=real(fft(z)) when

z = [r(−M), . . . , r(−1), r(0), r(1), . . . , r(M), 0 . . . , 0]

gives erroneous “spectral” values; try it and explain why it does not work.

(b) Alternatively, since we can readily derive the analytical expression for φ(ω),
we can instead work backwards. Form a vector

yf = [φ(0), φ(2π/L), φ(4π/L), . . . , φ((L− 1)2π/L)]

and find y=ifft(yf). Verify that y closely approximates the ACS.

(c) Consider the ACS r(k) in Exercise C1.12; let a1 = −0.9 and b1 = 0, and set
σ2 = 1. Form a vector x as above, with M = 10, and find xf. Why is xf

not a good approximation of φ(ωk) in this case? Repeat the experiment for
M = 127 and L = 256; is the approximation better for this case? Why?

We can again work backwards from the analytical expression for φ(ω). Form
a vector

yf = [φ(0), φ(2π/L), φ(4π/L), . . . , φ((L− 1)2π/L)]

and find y=ifft(yf). Verify that y closely approximates the ACS for large L
(say, L = 256), but poorly approximates the ACS for small L (say, L = 20).
By citing properties of inverse DTFTs of infinite, two–sided sequences, explain
how the elements of y relate to the ACS r(k), and why the approximation is
poor for small L. Based on this explanation, give a “rule of thumb” on the
choice of L for good approximations of the ACS.

(d) We have seen above that the fft command results in spectral estimates from 0
to 2π instead of the more common range of −π to π. The Matlab command
fftshift can be used to exchange the first and second halves of the fft

output to correspond to a frequency range of −π to π. Similarly, fftshift can
be used on the output of the ifft operation to “center” the zero lag of an ACS.
Experiment with fftshift to achieve both of these results. What frequency
vector w is needed so that the command plot(w, fftshift(fft(x))) gives
the spectral values at the proper frequencies? Similarly, what time vector t is
needed to get a proper plot of the ACS with stem(t,fftshift(ifft(xf)))?
Do the results depend on whether the vectors are even or odd in length?

Exercise C1.14: Relationship between the PSD and the Eigenvalues of
the ACS Matrix

An interesting property of the ACS matrix R in equation (1.3.5) is that for
large dimensions m, its eigenvalues are close to the values of the PSD φ(ωk) for
ωk = 2πk/m, k = 0, 1, . . . ,m− 1 (see, e.g., [Gray 1972]). We verify this property
here.

Consider the ACS in Exercise C1.12, with the values a1 = −0.9, b1 = 0.8, and
σ2 = 1.



“sm2”
2004/2/22
page 21

i

i

i

i

i

i

i

i
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(a) Compute a vector phi which contains the values of φ(ωk) for ωk = 2πk/m,
with m = 256 and k = 0, 1, . . . ,m− 1 . Plot a histogram of these values with
hist(phi). Also useful is the cumulative distribution of the values of phi
(plotted on a logarithmic scale), which can be found with the command
semilogy( (1/m:1/m:1), sort(phi) ).

(b) Compute the eigenvalues of R in equation (1.3.5) for various values of m. Plot
the histogram of the eigenvalues, and their cumulative distribution. Verify
that as m increases, the cumulative distribution of the eigenvalues approaches
the cumulative distribution of the φ(ω) values. Similarly, the histograms
also approach the histogram for φ(ω), but it is easier to see this result using
cumulative distributions than using histograms.
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C H A P T E R 2

Nonparametric Methods

2.1 INTRODUCTION

The nonparametric methods of spectral estimation rely entirely on the definitions
(1.3.7) and (1.3.10) of PSD to provide spectral estimates. These methods constitute
the “classical means” for PSD estimation [Jenkins and Watts 1968]. The present
chapter reviews the main nonparametric methods, their properties and the Fast
Fourier Transform (FFT) algorithm for their implementation. A related discussion
is to be found in Chapter 5, where the nonparametric approach to PSD estimation
is given a filter bank interpretation.

We first introduce two common spectral estimators, the periodogram and the
correlogram, derived directly from (1.3.10) and (1.3.7), respectively. These methods
are then shown to be equivalent under weak conditions. The periodogram and
correlogram methods provide reasonably high resolution for sufficiently long data
lengths, but are poor spectral estimators because their variance is high and does not
decrease with increasing data length. (In Chapter 5 we provide an interpretation
of the periodogram and correlogram methods as a power estimate based on a single
sample of a filtered version of the signal under study; it is thus not surprising that
the periodogram or correlogram variance is large).

The high variance of the periodogram and correlogram methods motivates the
development of modified methods that have lower variance, at a cost of reduced
resolution. Several modified methods have been introduced, and we present some
of the most popular ones. We show them all to be more–or–less equivalent in their
properties and performance for large data lengths.

2.2 PERIODOGRAM AND CORRELOGRAM METHODS

2.2.1 Periodogram

The periodogram method relies on the definition (1.3.10) of the PSD. Neglecting
the expectation and the limit operation in (1.3.10), which cannot be performed
when the only available information on the signal consists of the samples {y(t)}Nt=1,
we get

φ̂p(ω) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iωt

∣
∣
∣
∣
∣

2

(Periodogram) (2.2.1)

One of the first uses of the periodogram spectral estimator, (2.2.1), has been in
determining possible “hidden periodicities” in time series, which may be seen as a
motivation for the name of this method [Schuster 1900].

22



“sm2”
2004/2/22
page 23

i

i

i

i

i

i

i

i

Section 2.2 Periodogram and Correlogram Methods 23

2.2.2 Correlogram

The correlation–based definition (1.3.7) of the PSD leads to the correlogram spectral
estimator [Blackman and Tukey 1959]:

φ̂c(ω) =

N−1∑

k=−(N−1)

r̂(k)e−iωk (Correlogram) (2.2.2)

where r̂(k) denotes an estimate of the covariance lag r(k), obtained from the avail-
able sample {y(1), . . . , y(N)}. When no assumption is made on the signal under
study, except for the stationarity assumption, there are two standard ways to obtain
the sample covariances required in (2.2.2):

r̂(k) =
1

N − k

N∑

t=k+1

y(t)y∗(t− k), 0 ≤ k ≤ N − 1 (2.2.3)

and

r̂(k) =
1

N

N∑

t=k+1

y(t)y∗(t− k) 0 ≤ k ≤ N − 1 (2.2.4)

The sample covariances for negative lags are then constructed using the property
(1.3.3) of the covariance function:

r̂(−k) = r̂∗(k), k = 0, . . . , N − 1 (2.2.5)

The estimator (2.2.3) is called the standard unbiased ACS estimate, and
(2.2.4) is called the standard biased ACS estimate. The biased ACS estimate is
most commonly used, for the following reasons:

• For most stationary signals, the covariance function decays rather rapidly, so
that r(k) is quite small for large lags k. Comparing the definitions (2.2.3) and
(2.2.4), it can be seen that r̂(k) in (2.2.4) will be small for large k (provided N
is reasonably large), whereas r̂(k) in (2.2.3) may take large and erratic values
for large k, as it is obtained by averaging only a few products in such a case
(in particular, only one product for k = N − 1!). This observation implies
that (2.2.4) is likely to be a more accurate estimator of r(k), than (2.2.3), for
medium and large values of k (compared to N). For small values of k, the
two estimators in (2.2.3) and (2.2.4) can be expected to behave in a similar
manner.

• The sequence {r̂(k), k = 0,±1,±2, . . .} obtained with (2.2.4) is guaranteed to
be positive semidefinite (as it should, see equation (1.3.5) and the related dis-
cussion), while this is not the case for (2.2.3). This fact is especially important
for PSD estimation, since a sample covariance sequence that is not positive
definite, when inserted in (2.2.2), may lead to negative spectral estimates,
and this is undesirable in most applications.
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When the sample covariances (2.2.4) are inserted in (2.2.2), it can be shown
that the so–obtained spectral estimate is identical to (2.2.1). In other words, we
have the following result.

φ̂c(ω) evaluated using the standard biased ACS estimates

coincides with φ̂p(ω)
(2.2.6)

A simple proof of (2.2.6) runs as follows. Consider the signal

x(t) =
1√
N

N∑

k=1

y(k)e(t− k) (2.2.7)

where {y(k)} are considered to be fixed (nonrandom) constants and e(t) is a white
noise of unit variance: E {e(t)e∗(s)} = δt,s (= 1 if t = s; and = 0 otherwise). Hence
x(t) is the output of a filter with the following transfer function:

Y (ω) =
1√
N

N∑

k=1

y(k)e−iωk

Since the PSD of the input to the filter is given by φe(ω) = 1, it follows from (1.4.5)
that

φx(ω) = |Y (ω)|2 = φ̂p(ω) (2.2.8)

On the other hand, a straightforward calculation gives (for k ≥ 0):

rx(k) = E {x(t)x∗(t− k)}

=
1

N

N∑

p=1

N∑

s=1

y(p)y∗(s)E {e(t− p)e∗(t− k − s)}

=
1

N

N∑

p=1

N∑

s=1

y(p)y∗(s)δp,k+s =
1

N

N∑

p=k+1

y(p)y∗(p− k)

=

{

r̂(k) given by (2.2.4), k = 0, . . . , N − 1

0, k ≥ N
(2.2.9)

Inserting (2.2.9) in the definition (1.3.7) of PSD, the following alternative expression
for φx(ω) is obtained:

φx(ω) =

N−1∑

k=−(N−1)

r̂(k)e−iωk = φ̂c(ω) (2.2.10)

Comparing (2.2.8) and (2.2.10) concludes the proof of the claim (2.2.6).
The equivalence of the periodogram and correlogram spectral estimators can

be used to derive their properties simultaneously. These two methods are shown in
Section 2.4 to provide poor estimates of the PSD. There are two reasons for this,
and both can be explained intuitively using φ̂c(ω).
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• The estimation errors in r̂(k) are on the order of 1/
√
N for large N (see

Exercise 2.4), at least for |k| not too close to N . Because φ̂c(ω) = φ̂p(ω) is a
sum that involves (2N − 1) such covariance estimates, the difference between
the true and estimated spectra will be a sum of “many small” errors. Hence
there is no guarantee that the total error will die out as N increases. The
spectrum estimation error is even larger than what is suggested by the above
discussion, because errors in {r̂(k)}, for |k| close to N , are typically of an

order larger than 1/
√
N . The consequence is that the variance of φ̂c(ω) does

not go to zero as N increases.

• In addition, if r(k) converges slowly to zero, then the periodogram estimates
will be biased. Indeed, for lags |k| ' N , r̂(k) will be a poor estimate of r(k)
since r̂(k) is the sum of only a few lag products that are divided by N (see
equation (2.2.4)). Thus, r̂(k) will be much closer to zero than r(k) is; in fact,
E {r̂(k)} = [(N − |k|)/N ]r(k), and the bias is significant for |k| ' N if r(k)
is not close to zero in this region. If r(k) decays rapidly to zero, the bias

will be small and will not contribute significantly to the total error in φ̂c(ω);
however, the nonzero variance discussed above will still be present.

Both the bias and the variance of the periodogram are discussed more quantitatively
in Section 2.4.

Another intuitive explanation for the poor statistical accuracy of the peri-
odogram and correlogram methods is given in Chapter 5, where it is shown, roughly
speaking, that these methods can be viewed as procedures attempting to estimate
the variance of a data sequence from a single sample.

In spite of their poor quality as spectral estimators, the periodogram and
correlogram methods form the basis for the improved nonparametric spectral es-
timation methods, to be discussed later in this chapter. As such, computation
of these two basic estimators is relevant to many other nonparametric estimators
derived from them. The next section addresses this computational task.

2.3 PERIODOGRAM COMPUTATION VIA FFT

In practice it is not possible to evaluate φ̂p(ω) (or φ̂c(ω)) over a continuum of
frequencies. Hence, the frequency variable must be sampled for the purpose of
computing φ̂p(ω). The following frequency sampling scheme is most commonly
used:

ω =
2π

N
k, k = 0, . . . , N − 1 (2.3.1)

Define
W = e−i 2π

N (2.3.2)

Then, evaluation of φ̂p(ω) (or φ̂c(ω)) at the frequency samples in (2.3.1) basically
reduces to the computation of the following Discrete Fourier Transform (DFT):

Y (k) =

N∑

t=1

y(t)W tk, k = 0, . . . , N − 1 (2.3.3)
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A direct evaluation of (2.3.3) would require about N2 complex multiplications and
additions, which might be a prohibitive burden for large values of N . Any proce-
dure that computes (2.3.3) in less than N2 flops (1 flop = 1 complex multiplication
plus 1 complex addition) is called a Fast Fourier Transform (FFT) algorithm. In
recent years, there has been significant interest in developing more and more com-
putationally efficient FFT algorithms. In the following, we review one of the first
FFT procedures — the so–called radix–2 FFT — which, while not being the most
computationally efficient of all, is easy to program in a computer and yet quite
computationally efficient [Cooley and Tukey 1965; Proakis, Rader, Ling,

and Nikias 1992].

2.3.1 Radix–2 FFT

Assume that N is a power of 2,

N = 2m (2.3.4)

If this is not the case, then we can resort to zero padding, as described in the next
subsection. By splitting the sum in (2.3.3) into two parts, we get

Y (k) =

N/2
∑

t=1

y(t)W tk +

N∑

t=N/2+1

y(t)W tk

=

N/2
∑

t=1

[y(t) + y(t+N/2)W
Nk
2 ]W tk (2.3.5)

Next, note that

W
Nk
2 =

{

1, for even k

−1, for odd k
(2.3.6)

Using this simple observation in (2.3.5), we obtain:

For k = 2p = 0, 2, . . .

Y (2p) =

N̄∑

t=1

[y(t) + y(t+ N̄)]W̄ tp (2.3.7)

For k = 2p+ 1 = 1, 3, . . .

Y (2p+ 1) =

N̄∑

t=1

{[y(t) − y(t+ N̄)]W t}W̄ tp (2.3.8)

where N̄ = N/2 and W̄ = W 2 = e−i2π/N̄ .
The above two equations are the core of the radix–2 FFT algorithm. Both of

these equations represent DFTs for sequences of length equal to N̄ . Computation
of the sequences transformed in (2.3.7) and (2.3.8) requires roughly N̄ flops. Hence,
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the computation of an N–point transform has been reduced to the evaluation of two
N/2–point transforms plus a sequence computation requiring about N/2 flops. This
reduction process is continued until N̄ = 1 (which is made possible by requiring N
to be a power of 2).

In order to evaluate the number of flops required by a radix–2 FFT, let ck
denote the computational cost (expressed in flops) of a 2k–point radix–2 FFT.
According to the discussion in the previous paragraph, ck satisfies the following
recursion:

ck = 2k/2 + 2ck−1 = 2k−1 + 2ck−1 (2.3.9)

with initial condition c1 = 1 (the number of flops required by a 1–point transform).
By iterating (2.3.9), we obtain the solution

ck = k2k−1 =
1

2
k2k (2.3.10)

from which it follows that cm = 1
2m2m = 1

2N log2N ; thus

An N–point radix–2 FFT requires about 1
2N log2N flops (2.3.11)

As a comparison, the number of complex operations required to carry out an
N–point split–radix FFT, which at present appears to be the most practical algo-
rithm for general–purpose computers when N is a power of 2, is about 1

3N log2N
(see [Proakis, Rader, Ling, and Nikias 1992]).

2.3.2 Zero Padding

In some applications, N is not a power of 2 and hence the previously described
radix–2 FFT algorithm cannot be applied directly to the original data sequence.
However, this is easily remedied since we may increase the length of the given
sequence by means of zero padding {y(1), . . . , y(N), 0, 0, . . .} until the length of the
so–obtained sequence is, say, L (which is generally chosen as a power of 2).

Zero padding is also useful when the frequency sampling (2.3.1) is considered
to be too sparse to provide a good representation of the continuous–frequency
estimated spectrum, for example φ̂p(ω). Applying the FFT algorithm to the data
sequence padded with zeroes, which gives

φ̂p(ω) at frequencies ωk =
2πk

L
, 0 ≤ k ≤ L− 1

may reveal finer details in the spectrum, which were not visible without zero
padding.

Since the continuous–frequency spectral estimate, φ̂p(ω), is the same for both
the original data sequence and the sequence padded with zeroes, zero padding
cannot of course improve the spectral resolution of the periodogram methods. See
[Oppenheim and Schafer 1989; Porat 1997] for further discussion.

In a zero-padded data sequence the number of nonzero data points may be
considerably smaller than the total number of samples, i.e., N � L. In such a case
a significant time saving can be obtained by pruning the FFT algorithm, which is
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done by reducing or eliminating operations on zeroes (see, e.g., [Markel 1971]).
FFT pruning, along with a decimation in time, can also be used to reduce the
computation time when we want to evaluate the FFT only in a narrow region of
the frequency domain (see [Markel 1971]).

2.4 PROPERTIES OF THE PERIODOGRAM METHOD

The analysis of the statistical properties of φ̂p(ω) (or φ̂c(ω)) is important in that
it shows the poor quality of the periodogram as an estimator of the PSD and, in
addition, provides some insight into how we can modify the periodogram so as to
obtain better spectral estimators. We split the analysis in two parts: bias analysis
and variance analysis (see also [Priestley 1981]).

The bias and variance of an estimator are two measures often used to char-
acterize its performance. A primary motivation is that the total squared error of
the estimate is the sum of the bias squared and the variance. To see this, let a
denote any quantity to be estimated, and let â be an estimate of a. Then the mean
squared error (MSE) of the estimate is:

MSE , E
{
|â− a|2

}
= E

{
|â− E {â} + E {â} − a|2

}

= E
{
|â− E {â} |2

}
+ |E {â} − a|2

+2 Re [E {â− E {â}} · (E {â} − a)]

= var{â} + |bias{â}|2 (2.4.1)

By separately considering the bias and variance components of the MSE, we gain
some additional insight into the source of error and in ways to reduce the error.

2.4.1 Bias Analysis of the Periodogram

By using the result (2.2.6), we obtain

E
{

φ̂p(ω)
}

= E
{

φ̂c(ω)
}

=

N−1∑

k=−(N−1)

E {r̂(k)} e−iωk (2.4.2)

For r̂(k) defined in (2.2.4)

E {r̂(k)} =

(

1 − k

N

)

r(k), k ≥ 0 (2.4.3)

and

E {r̂(−k)} = E {r̂∗(k)} =

(

1 − k

N

)

r(−k), −k ≤ 0 (2.4.4)

Hence

E
{

φ̂p(ω)
}

=

N−1∑

k=−(N−1)

(

1 − |k|
N

)

r(k)e−iωk (2.4.5)

Define

wB(k) =

{

1 − |k|
N , k = 0,±1, . . . ,±(N − 1)

0, otherwise
(2.4.6)
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The above sequence is called the triangular window, or the Bartlett window. By
using wB(k), we can write (2.4.5) as a DTFT:

E
{

φ̂p(ω)
}

=

∞∑

k=−∞
[wB(k)r(k)]e−iωk (2.4.7)

The DTFT of the product of two sequences is equal to the convolution of their
respective DTFTs. Hence, (2.4.7) leads to

E
{

φ̂p(ω)
}

=
1

2π

∫ π

−π
φ(ψ)WB(ω − ψ)dψ (2.4.8)

where WB(ω) is the DTFT of the triangular window. For completeness, we include
a direct proof of (2.4.8). Inserting (1.3.8) in (2.4.7), we get

E
{

φ̂p(ω)
}

=

∞∑

k=−∞
wB(k)

[
1

2π

∫ π

−π
φ(ψ)eiψkdψ

]

e−iωk (2.4.9)

=
1

2π

∫ π

−π
φ(ψ)

[ ∞∑

k=−∞
wB(k)e−ik(ω−ψ)

]

dψ (2.4.10)

=
1

2π

∫ π

−π
φ(ψ)WB(ω − ψ)dψ (2.4.11)

which is (2.4.8).
We can find an explicit expression for WB(ω) as follows. A straightforward

calculation gives

WB(ω) =

N−1∑

k=−(N−1)

N − |k|
N

e−iωk (2.4.12)

=
1

N

N∑

t=1

N∑

s=1

e−iω(t−s) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

eiωt

∣
∣
∣
∣
∣

2

(2.4.13)

=
1

N

∣
∣
∣
∣

eiωN − 1

eiω − 1

∣
∣
∣
∣

2

=
1

N

∣
∣
∣
∣

eiωN/2 − e−iωN/2

eiω/2 − e−iω/2

∣
∣
∣
∣

2

(2.4.14)

or, in final form,

WB(ω) =
1

N

[
sin(ωN/2)

sin(ω/2)

]2

(2.4.15)

WB(ω) is sometimes referred to as the Fejer kernel. As an illustration, WB(ω) is
displayed as a function of ω, for N = 25, in Figure 2.1.

The convolution formula (2.4.8) is the key equation to understanding the

behavior of the mean estimated spectrum E{φ̂p(ω)}. In order to facilitate the in-
terpretation of this equation, the reader may think of it as representing a dynamical
system with “input” φ(ω), “weighting function” WB(ω) and “output” E{φ̂p(ω)}.
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Figure 2.1. WB(ω)/WB(0), for N = 25.

Note that a similar equation would be obtained if the covariance estimator (2.2.3)

were used in φ̂c(ω), in lieu of (2.2.4). As in that case E {r̂(k)} = r(k), the corre-
spondingW (ω) function that would appear in (2.4.8) is the DTFT of the rectangular
window

wR(k) =

{

1, k = 0,±1, . . . ,±(N − 1)

0, otherwise
(2.4.16)

A straightforward calculation gives

WR(ω) =

(N−1)
∑

k=−(N−1)

e−iωk = 2 Re

[
eiNω − 1

eiω − 1

]

− 1

=
2 cos

[
(N−1)ω

2

]

sin
[
Nω
2

]

sin
[
ω
2

] − 1 =
sin
[(
N − 1

2

)
ω
]

sin
[
ω
2

] (2.4.17)

which is displayed in Figure 2.2 (for N = 25; to facilitate comparison with WB(ω)).
WR(ω) is sometimes called the Dirichlet kernel.

As can be seen, there are no “essential” differences between WR(ω) and
WB(ω). For conciseness, in the following we focus on the use of the triangular
window.

Since we would like E
{

φ̂p(ω)
}

to be as close to φ(ω) as possible, it follows

from (2.4.8) that WB(ω) should be a close approximation to a Dirac impulse. The
half–power (3 dB) width of the main lobe of WB(ω) can be shown to be approxi-
mately 2π/N radians (see Exercise 2.15), so in frequency units (with f = ω/2π)

main lobe width in frequency f ' 1/N (2.4.18)

(Also, see the calculation of the time–bandwidth product for windows in the next
section, which supports (2.4.18).) It follows from (2.4.18) that WB(ω) is a poor
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Figure 2.2. WR(ω)/WR(0), for N = 25.

approximation of a Dirac impulse for small values of N . In addition, unlike the
Dirac delta function, WB(ω) has a large number of sidelobes. It follows that the bias
of the periodogram spectral estimate can basically be divided into two components.
These two components correspond respectively to the nonzero main lobe width and
the nonzero sidelobe height of the window function WB(ω), as we explain below.

The principal effect of the main lobe of WB(ω) is to smear or smooth the
estimated spectrum. Assume, for instance, that φ(ω) has two peaks separated in
frequency f by less than 1/N . Then these two peaks appear as a single broader

peak in E{φ̂p(ω)} since (see (2.4.8)) the “response” of the “system” corresponding
to WB(ω) to the first peak does not get the time to die out before the “response”
to the second peak starts. This kind of effect of the main lobe on the estimated
spectrum is called smearing. Owing to smearing, the periodogram–based methods
cannot resolve details in the studied spectrum that are separated by less than 1/N
in cycles per sampling interval. For this reason, 1/N is called the spectral resolution
limit of the periodogram method.

Remark: The previous comments on resolution give us the occasion to stress that, in
spite of the fact that we have seen the PSD as a function of the angular frequency
(ω), we generally refer to the resolution in frequency (f) in units of cycles per
sampling interval. Of course, the “resolution in angular frequency” is determined
from the “resolution in frequency” by the simple relation ω = 2πf . �

The principal effect of the sidelobes on the estimated spectrum consists of
transferring power from the frequency bands that concentrate most of the power
in the signal to bands that contain less or no power. This effect is called leakage.
For instance, a dominant peak in φ(ω) may through convolution with the sidelobes
of WB(ω) lead to an estimated spectrum that contains power in frequency bands
where φ(ω) is zero. Note that the smearing effect associated with the main lobe can
also be interpreted as a form of leakage from a local peak of φ(ω) to neighboring
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frequency bands.

It follows from the previous discussion that smearing and leakage are partic-
ularly critical for spectra with large amplitude ranges, such as peaky spectra. For
smooth spectra, these effects are less important. In particular, we see from (2.4.7)
that for white noise (which has a maximally smooth spectrum) the periodogram is

an unbiased spectral estimator: E{φ̂p(ω)} = φ(ω) (see also Exercise 2.9).

The bias of the periodogram estimator, even though it might be severe for
spectra with large dynamic ranges when the sample length is small, does not con-
stitute the main limitation of this spectral estimator. In fact, if the bias were the
only problem, then by increasing N (assuming this is possible) the bias in φ̂p(ω)
would be eliminated. In order to see this, note from (2.4.5), for example, that

lim
N→∞

E
{

φ̂p(ω)
}

= φ(ω)

Hence, the periodogram is an asymptotically unbiased spectral estimator. The main
problem of the periodogram method lies in its large variance, as explained next.

2.4.2 Variance Analysis of the Periodogram

The finite–sample variance of φ̂p(ω) can be easily established only in some specific

cases, such as in the case of Gaussian white noise. The asymptotic variance of φ̂p(ω),
however, can be derived for more general signals. In the following, we present an
asymptotic (for N � 1) analysis of the variance of φ̂p(ω) since it turns out to
be sufficient for showing the poor statistical accuracy of the periodogram (for a
finite–sample analysis, see Exercise 2.13).

Some preliminary discussion is required. A sequence {e(t)} is called complex
(or circular) white noise if it satisfies

E {e(t)e∗(s)} = σ2δt,s

E {e(t)e(s)} = 0, for all t and s
(2.4.19)

Note that σ2 = E
{
|e(t)|2

}
is the variance (or power) of e(t). Equation (2.4.19) can

be rewritten as






E {Re[e(t)] Re[e(s)]} = σ2

2 δt,s

E {Im[e(t)] Im[e(s)]} = σ2

2 δt,s

E {Re[e(t)] Im[e(s)]} = 0

(2.4.20)

Hence, the real and imaginary parts of a complex/circular white noise are real–
valued white noise sequences of identical power equal to σ2/2, and uncorrelated
with one another. See Appendix B for more details on circular random sequences,
such as {e(t)} above.

In what follows, we shall also make use of the symbol O(1/Nα), for some
α > 0, to denote a random variable which is such that the square root of its
second–order moment goes to zero at least as fast as 1/Nα, as N tends to infinity.
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First, we establish the asymptotic variance/covariance of φ̂p(ω) in the case of
Gaussian complex/circular white noise. The following result holds.

lim
N→∞

E
{

[φ̂p(ω1) − φ(ω1)][φ̂p(ω2) − φ(ω2)]
}

=

{

φ2(ω1), ω1 = ω2

0, ω1 6= ω2

(2.4.21)

Note that, for white noise, φ(ω) = σ2 (for all ω). Since limN→∞E {φ̂p(ω)} =
φ(ω) (cf. the analysis in the previous subsection), in order to prove (2.4.21) it
suffices to show that

lim
N→∞

E
{

φ̂p(ω1)φ̂p(ω2)
}

= φ(ω1)φ(ω2) + φ2(ω1)δω1,ω2 (2.4.22)

From (2.2.1), we obtain

E
{

φ̂p(ω1)φ̂p(ω2)
}

=
1

N2

N∑

t=1

N∑

s=1

N∑

p=1

N∑

m=1

E {e(t)e∗(s)e(p)e∗(m)}

·e−iω1(t−s)e−iω2(p−m)

(2.4.23)

For general random processes, the evaluation of the expectation in (2.4.23) is rel-
atively complicated. However, the following general result for Gaussian random
variables can be used: If a, b, c, and d are jointly Gaussian (complex or real)
random variables, then

E {abcd} = E {ab}E {cd} + E {ac}E {bd} + E {ad}E {bc}
−2E {a}E {b}E {c}E {d}

(2.4.24)

For a proof of (2.4.24), see, e.g., [Janssen and Stoica 1988] and references
therein. Thus, if the white noise e(t) is Gaussian as assumed, the fourth–order
moment in (2.4.23) is found to be:

E {e(t)e∗(s)e(p)e∗(m)} = [E {e(t)e∗(s)}] [E {e(p)e∗(m)}]

+ [E {e(t)e(p)}] [E {e(s)e(m)}]
∗

+ [E {e(t)e∗(m)}] [E {e∗(s)e(p)}]

= σ4(δt,sδp,m + δt,mδs,p) (2.4.25)

Inserting (2.4.25) in (2.4.23) gives

E
{

φ̂p(ω1)φ̂p(ω2)
}

= σ4 +
σ4

N2

N∑

t=1

N∑

s=1

e−i(ω1−ω2)(t−s)

= σ4 +
σ4

N2

∣
∣
∣
∣
∣

N∑

t=1

ei(ω1−ω2)t

∣
∣
∣
∣
∣

2

= σ4 +
σ4

N2

{
sin[(ω1 − ω2)N/2]

sin[(ω1 − ω2)/2]

}2

(2.4.26)
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The limit of the second term in (2.4.26) is σ4 when ω1 = ω2 and zero otherwise,
and (2.4.22) follows at once.

Remark: Note that in the previous case, it was indeed possible to derive the finite–
sample variance of φ̂p(ω). For colored noise the above derivation becomes more
difficult, and a different approach (presented below) is needed. See Exercise 2.13
for yet another approach that applies to general Gaussian signals. �

Next, we consider the case of a much more general signal obtained by linearly
filtering the Gaussian white noise sequence {e(t)} considered above:

y(t) =

∞∑

k=1

hke(t− k) (2.4.27)

whose PSD is given by

φy(ω) = |H(ω)|2φe(ω) (2.4.28)

(cf. (1.4.9)). Here H(ω) =
∑∞
k=1 hke

−iωk. The following intermediate result, con-
cerned with signals of the above type, appears to have an independent interest.
(Below, we omit the index “p” of φ̂p(ω) in order to simplify the notation.)

For N � 1,

φ̂y(ω) = |H(ω)|2φ̂e(ω) + O(1/
√
N) (2.4.29)

Hence, the periodograms approximately satisfy an equation of the form of (2.4.28)
that is satisfied by the true PSDs.

In order to prove (2.4.29), first observe that

1√
N

N∑

t=1

y(t)e−iωt =
1√
N

N∑

t=1

∞∑

k=1

hke(t− k)e−iω(t−k)e−iωk

=
1√
N

∞∑

k=1

hke
−iωk

N−k∑

p=1−k
e(p)e−iωp

=
1√
N

∞∑

k=1

hke
−iωk

·





N∑

p=1

e(p)e−iωp +

0∑

p=1−k
e(p)e−iωp −

N∑

p=N−k+1

e(p)e−iωp





, H(ω)

[

1√
N

N∑

p=1

e(p)e−iωp
]

+ ρ(ω) (2.4.30)
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where

ρ(ω) =
1√
N

∞∑

k=1

hke
−iωk





0∑

p=1−k
e(p)e−iωp −

N∑

p=N−k+1

e(p)e−iωp





,
1√
N

∞∑

k=1

hke
−iωkεk(ω) (2.4.31)

Next, note that

E {εk(ω)} = 0,

E {εk(ω)εj(ω)} = 0 for all k and j, and

E
{
εk(ω)ε∗

j (ω)
}

= 2σ2 min(k, j)

which imply
E {ρ(ω)} = 0, E

{
ρ2(ω)

}
= 0

and

E
{
|ρ(ω)|2

}
=

1

N

∣
∣
∣
∣
∣
∣

∞∑

k=1

∞∑

j=1

hke
−iωkh∗

je
iωjE

{
εk(ω)ε∗

j (ω)
}

∣
∣
∣
∣
∣
∣

=
2σ2

N

∣
∣
∣
∣
∣
∣

∞∑

k=1

hke
−iωk







k∑

j=1

h∗
je
iωjj +

∞∑

j=k+1

h∗
je
iωjk







∣
∣
∣
∣
∣
∣

≤ 2σ2

N

∞∑

k=1

|hk|







∞∑

j=1

|hj |j +

∞∑

j=1

|hj |k







=
4σ2

N

( ∞∑

k=1

|hk|
)



∞∑

j=1

|hj |j





If
∑∞
j=1 k|hk| is finite (which, for example, is true if {hk} is exponentially stable;

see [Söderström and Stoica 1989]), we have

E
{
|ρ(ω)|2

}
≤ constant

N
(2.4.32)

Now, from (2.4.30) we obtain

φ̂y(ω) = |H(ω)|2φ̂e(ω) + γ(ω) (2.4.33)

where
γ(ω) = H∗(ω)E∗(ω)ρ(ω) +H(ω)E(ω)ρ∗(ω) + ρ(ω)ρ∗(ω)

and where

E(ω) =
1√
N

N∑

t=1

e(t)e−iωt



“sm2”
2004/2/22
page 36

i

i

i

i

i

i

i

i

36 Chapter 2 Nonparametric Methods

Since E(ω) and ρ(ω) are linear combinations of Gaussian random variables, they
are also Gaussian distributed. This means that the fourth–order moment formula
(2.4.24) can be used to obtain the second–order moment of γ(ω). By doing so, and
also by using (2.4.32) and the fact that, for example,

|E {ρ(ω)E∗(ω)}| ≤
[
E
{
|ρ(ω)|2

}]1/2 [
E
{
|E(ω)|2

}]1/2

=
constant√

N
·
[

E
{

|φ̂e(ω)|2
}]1/2

=
constant√

N

we can verify that γ(ω) = O(1/
√
N), and hence the proof of (2.4.29) is concluded.

The main result of this section is derived by combining (2.4.21) and (2.4.29).

The asymptotic variance/covariance result (2.4.21) is also valid
for a general linear signal as defined in (2.4.27).

(2.4.34)

Remark: In the introduction to Chapter 1, we mentioned that the analysis of a
complex–valued signal is not always more general than the analysis of the corre-
sponding real–valued signal; we supported this claim by the example of a complex
sine wave. Here, we have another instance where the claim is valid. Similarly to
the complex sinusoidal signal case, the complex (or circular) white noise does not
specialize, in a direct manner, to real white noise. Indeed, if we would let e(t) in
(2.4.19) be real, then the two equations in (2.4.19) would conflict with each other
(for t = s). The real white noise random process is a stationary signal which satisfies

E {e(t)e(s)} = σ2δt,s (2.4.35)

If we try to carry out the proof of (2.4.21) under (2.4.35), then we find that the proof

has to be modified. This was expected: both φ(ω) and φ̂p(ω) are even functions in
the real–valued case; hence (2.4.21) should be modified to include the case of both
ω1 = ω2 and ω1 = −ω2. �

It follows from (2.4.34) that for a fairly general class of signals, the peri-
odogram values are asymptotically (for N � 1) uncorrelated random variables
whose means and standard deviations are both equal to the corresponding true
PSD values. Hence, the periodogram is an inconsistent spectral estimator which
continues to fluctuate around the true PSD, with a nonzero variance, even if the
length of the processed sample increases without bound. Furthermore, the fact
that the periodogram values φ̂p(ω) are uncorrelated (for large N values) makes the
periodogram exhibit an erratic behavior (similar to that of a white noise realiza-
tion). These facts constitute the main limitations of the periodogram approach to
PSD estimation. In the next sections, we present several modified periodogram–
based methods which attempt to cure the aforementioned difficulties of the basic
periodogram approach. As we shall see, the “improved methods” decrease the vari-
ance of the estimated spectrum at the expense of increasing its bias (and, hence,
decreasing the average resolution).
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2.5 THE BLACKMAN–TUKEY METHOD

In this section we develop the Blackman–Tukey method [Blackman and Tukey

1959] and compare it to the periodogram. In later sections we consider several other
refined periodogram–based methods that, like the Blackman–Tukey (BT) method,
seek to reduce the statistical variability of the estimated spectrum; we will compare
these methods to one another and to the Blackman–Tukey method.

2.5.1 The Blackman–Tukey Spectral Estimate

As we have seen, the main problem with the periodogram is the high statistical
variability of this spectral estimator, even for very large sample lengths. The poor
statistical quality of the periodogram PSD estimator has been intuitively explained
as arising from both the poor accuracy of r̂(k) in φ̂c(ω) for extreme lags (|k| '
N) and the large number of (even if small) covariance estimation errors that are

cumulatively summed up in φ̂c(ω). Both these effects may be reduced by truncating

the sum in the definition formula of φ̂c(ω), (2.2.2). Following this idea leads to the
Blackman–Tukey estimator, which is given by

φ̂BT (ω) =

M−1∑

k=−(M−1)

w(k)r̂(k)e−iωk
(2.5.1)

where {w(k)} is an even function (i.e., w(−k) = w(k)) which is such that w(0) = 1,
w(k) = 0 for |k| ≥ M , and w(k) decays smoothly to zero with k, and where M < N .
Since w(k) in (2.5.1) weights the lags of the sample covariance sequence, it is called
a lag window.

If w(k) in (2.5.1) is selected as the rectangular window, then we simply obtain

a truncated version of φ̂c(ω). However, we may choose w(k) in many other ways,
and this flexibility may be employed to improve the accuracy of the Blackman–
Tukey spectral estimator or to emphasize some of its characteristics that are of
particular interest in a given application. In the following subsections, we address
the principal issues which concern the problem of window selection. However, before
doing so we rewrite (2.5.1) in an alternative form that will be used in several places
of the discussion that follows.

Let W (ω) denote the DTFT of w(k),

W (ω) =

∞∑

k=−∞
w(k)e−iωk =

M−1∑

k=−(M−1)

w(k)e−iωk (2.5.2)
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Making use of the DTFT property that led to (2.4.8), we can then write

φ̂BT (ω) =

∞∑

k=−∞
w(k)r̂(k)e−iωk

= DTFT of the product of the sequences

{. . . , 0, 0, w(−(M − 1)), . . . , w(M − 1), 0, 0, . . .} and

{. . . , 0, 0, r̂(−(N − 1)), . . . , r̂(N − 1), 0, 0, . . .}
= {DTFT(r̂(k))} ∗ {DTFT(w(k))}

As DTFT{. . . , 0, 0, r̂(−(N − 1)), . . . , r̂(N − 1), 0, 0, . . .} = φ̂p(ω), we obtain

φ̂BT (ω) = φ̂p(ω) ∗W (ω) =
1

2π

∫ π

−π
φ̂p(ψ)W (ω − ψ)dψ (2.5.3)

This equation is analogous to (2.4.8) and can be interpreted in the same way.
Hence, since for most windows in common use W (ω) has a dominant, relatively
narrow peak at ω = 0, it follows from (2.5.3) that

The Blackman–Tukey spectral estimator (2.5.1) corresponds to a
“locally” weighted average of the periodogram.

(2.5.4)

Since the function W (ω) in (2.5.3) acts as a window (or weighting) in the
frequency domain, it is sometimes called a spectral window. As we shall see, several
refined periodogram–based spectral estimators discussed in what follows can be
given an interpretation similar to that afforded by (2.5.3).

The form (2.5.3) under which the Blackman–Tukey spectral estimator has
been put is quite appealing from an intuitive standpoint. The main problem with
the periodogram lies in its large variations about the true PSD. The weighted
average in (2.5.3), in the neighborhood of the current frequency point ω, should
smooth the periodogram and hence eliminate its large fluctuations.

On the other hand, this smoothing by the spectral window W (ω) will also
have the undesirable effect of reducing the resolution. We may expect that the
smaller the M , the larger the reduction in variance and the lower the resolution.
These qualitative arguments may be made exact by a statistical analysis of φ̂BT (ω),
similar to that in the previous section. In fact, it is clear from (2.5.3) that the mean

and variance of φ̂BT (ω) can be derived from those of φ̂p(ω). Roughly speaking, the

results that can be established by the analysis of φ̂BT (ω), based on (2.5.3), show
that the resolution of this spectral estimator is on the order of 1/M , whereas its
variance is on the order of M/N . The compromise between resolution and variance,
which should be considered when choosing the window’s length, is clearly seen from
the above considerations. We will look at the tradeoff resolution–variance in more
detail in what follows. The next discussion addresses some of the main issues which
concern window design.
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2.5.2 Nonnegativeness of the Blackman–Tukey Spectral Estimate

Since φ(ω) ≥ 0, it is natural to also require that φ̂BT (ω) ≥ 0. The lag window
can be selected to achieve this desirable property of the estimated spectrum. The
following result holds true.

If the lag window {w(k)} is positive semidefinite (i.e., W (ω) ≥ 0),
then the windowed covariance sequence {w(k)r̂(k)} (with r̂(k)
given by (2.2.4)) is positive semidefinite, too; which implies that

φ̂BT (ω) ≥ 0 for all ω.

(2.5.5)

In order to prove the above result, first note that φ̂BT (ω) ≥ 0 if and only if
the sequence {. . . , 0, 0, w(−(M − 1))r̂(−(M − 1)), . . . , w(M − 1)r̂(M − 1), 0, 0, . . .}
is positive semidefinite or, equivalently, the following Toeplitz matrix is positive
semidefinite for all dimensions:











w(0)r̂(0) . . . w(M − 1)r̂(M − 1) 0
...

. . .

w(−M + 1)r̂(−M + 1)
. . . w(M − 1)r̂(M − 1)

. . .
...

0 w(−M + 1)r̂(−M + 1) . . . w(0)r̂(0)












=












w(0) . . . w(M − 1) 0
...

. . .

w(−M + 1)
. . . w(M − 1)

. . .
...

0 w(−M + 1) . . . w(0)












�












r̂(0) . . . r̂(M − 1) 0
...

. . .

r̂(−M + 1)
. . . r̂(M − 1)

. . .
...

0 r̂(−M + 1) . . . r̂(0)












The symbol � denotes the Hadamard matrix product (i.e., element–wise multi-
plication). By a result in matrix theory, the Hadamard product of two positive
semidefinite matrices is also a positive semidefinite matrix (see Result R19 in Ap-
pendix A). Thus, the proof of (2.5.5) is concluded.

Another, perhaps simpler, proof of (2.5.5) makes use of (2.5.3) in the following
way. Since the sequence {w(k)} is real and symmetric about the point k = 0, its
DTFT W (ω) is an even, real–valued function. Furthermore, if {w(k)} is a positive
semidefinite sequence then W (ω) ≥ 0 for all ω values (see Exercise 1.8). By (2.5.3),

W (ω) ≥ 0 immediately implies φ̂BT (ω) ≥ 0, as φ̂p(ω) ≥ 0 by definition.
It should be noted that some lag windows, such as the rectangular window,

do not satisfy the assumption made in (2.5.5) and hence their use may lead to
estimated spectra that take negative values. The Bartlett window, on the other
hand, is positive semidefinite (as can be seen from (2.4.15)).

2.6 WINDOW DESIGN CONSIDERATIONS

The properties of the Blackman–Tukey estimator (and of other refined periodogram
methods discussed in the next section) are directly related to the choice of the lag



“sm2”
2004/2/22
page 40

i

i

i

i

i

i

i

i

40 Chapter 2 Nonparametric Methods

window. In this section, we discuss several relevant properties of windows that are
useful in selecting or designing a window to use in a refined spectral estimation
procedure.

2.6.1 Time–Bandwidth Product and Resolution–Variance Tradeoffs in Window Design

Most windows are such that they take only nonnegative values in both time and
frequency domains (or, if they also take negative values, these are much smaller
than the positive values of the window). In addition, they peak at the origin in
both domains. For this type of window, it is possible to define an equivalent time
width, Ne, and an equivalent bandwidth, βe, as follows:

Ne =

∑M−1
k=−(M−1) w(k)

w(0)
(2.6.1)

and

βe =
1
2π

∫ π

−πW (ω)dω

W (0)
(2.6.2)

From the definitions of direct and inverse DTFTs, we obtain

W (0) =

∞∑

k=−∞
w(k) =

M−1∑

k=−(M−1)

w(k) (2.6.3)

and

w(0) =
1

2π

∫ π

−π
W (ω)dω (2.6.4)

Using (2.6.3) and (2.6.4) in (2.6.1) and (2.6.2) gives the following result.

The (equivalent) time–bandwidth product equals unity:
Neβe = 1

(2.6.5)

As already indicated, the result above applies to window–like signals. Some
extended results of the time–bandwidth product type, which apply to more general
classes of signals, are presented in Complement 2.8.5.

It is clearly seen from (2.6.5) that a window cannot be both time–limited and
band–limited. The more slowly the window decays to zero in one domain, the more
concentrated it is in the other domain. The simple result above, (2.6.5), has several
other interesting consequences, as explained below.

The equivalent temporal extent (or aperture), Ne, of w(k) is essentially de-
termined by the window’s length. For example, for a rectangular window we have
Ne ' 2M , whereas for a triangular window Ne ' M . This observation, together
with (2.6.5), implies that the equivalent bandwidth βe is basically determined by
the window’s length. More precisely, βe = O(1/M). This fact lends support to a
claim made previously that for a window which concentrates most of its energy in
its main lobe, the width of that lobe should be on the order of 1/M . Since the
main lobe’s width sets a limit on the spectral resolution achievable (as explained
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in Section 2.4), the above observation shows that the spectral resolution limit of a
windowed method should be on the order of 1/M . On the other hand, as explained
in the previous section, the statistical variance of such a method is essentially pro-
portional to M/N . Hence, we reached the following conclusion.

The choice of window’s length should be based on a tradeoff be-
tween spectral resolution and statistical variance

(2.6.6)

As a rule of thumb, we should choose M ≤ N/10 in order to reduce the
standard deviation of the estimated spectrum at least three times, compared with
the periodogram.

Once M is determined, we cannot decrease simultaneously the energy in the
main lobe (to reduce smearing) and the energy in the sidelobes (to reduce leakage).
This follows, for example, from (2.6.4) which shows that the area of W (ω) is fixed
once w(0) is fixed (such as w(0) = 1). In other words, if we want to decrease the
main lobe’s width then we should accept an increase in the sidelobe energy and
vice versa. In summary:

The selection of window’s shape should be based on a tradeoff
between smearing and leakage effects.

(2.6.7)

The above tradeoff is usually dictated by the specific application at hand. A
number of windows have been developed to address this tradeoff. In some sense,
each of these windows can be seen as a design at a specific point in the resolu-
tion/leakage tradeoff curve. We consider several such windows in the next subsec-
tion.

2.6.2 Some Common Lag Windows

In this section, we list some of the most common lag windows and outline their rele-
vant properties. Our purpose is not to provide a detailed derivation or an exhaustive
listing of such windows, but rather to provide a quick reference of common windows.
More detailed information on these and other windows can be found in [Harris

1978; Kay 1988; Marple 1987; Oppenheim and Schafer 1989; Priestley

1981; Porat 1997], where many of the closed–form windows have been compiled.
Table 2.1 lists some common windows along with some useful properties.

In addition to the fixed window designs in Table 2.1, there are windows that
contain a design parameter which may be varied to trade between resolution and
sidelobe leakage. Two such common designs are the Chebyshev window and the
Kaiser window. The Chebyshev window has the property that the peak level of the
sidelobe “ripples” is constant. Thus, unlike most other windows, the sidelobe level
does not decrease as ω increases. The Kaiser window is defined by

w(k) =
I0

(

γ
√

1 − [k/(M − 1)]2
)

I0(γ)
, −(M − 1) ≤ k ≤ M − 1 (2.6.8)

where I0(·) is the zeroth–order modified Bessel function of the first kind. The
parameter γ trades the main lobe width for the sidelobe leakage level; γ = 0
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TABLE 2.1: Some Common Windows and their Properties

The windows satisfy w(k) ≡ 0 for |k| ≥ M , and w(k) = w(−k); the defining equations

below are valid for 0 ≤ k ≤ (M − 1).

Window Approx. Main Lobe Sidelobe
Name Defining Equation Width (radians) Level (dB)

Rectangular w(k) = 1 2π/M -13

Bartlett w(k) = M−k
M 4π/M -25

Hanning w(k) = 0.5 + 0.5 cos
(
πk
M

)
4π/M -31

Hamming w(k) = 0.54 + 0.46 cos
(

πk
M−1

)

4π/M -41

Blackman w(k) = 0.42 + 0.5 cos
(

πk
M−1

)

6π/M -57

+ 0.08 cos
(

πk
M−1

)

corresponds to a rectangular window, and γ > 0 results in lower sidelobe leakage at
the expense of a broader main lobe. The approximate value of γ needed to achieve
a peak sidelobe level of B dB below the peak value is

γ '







0, B < 21

0.584(B − 21)0.4 + 0.0789(B − 21), 21 ≤ B ≤ 50

0.11(B − 8.7), B > 50

The Kaiser window is an approximation of the optimal window described in
the next subsection. It is often chosen over the fixed window designs because it
has a lower sidelobe level when γ is selected to have the same main lobe width as
the corresponding fixed window (or narrower main lobe width for a given sidelobe
level). The optimal window of the next subsection improves on the Kaiser design
slightly.

Figure 2.3 shows plots of several windows with M = 26. The Kaiser window
is shown for γ = 1 and γ = 4, and the Chebyshev window is designed to have a −40
dB sidelobe level. Figure 2.4 shows the corresponding normalized window transfer
functions W (ω). Note the constant sidelobe ripple level of the Chebyshev design.

We remark that except for the Bartlett window, none of the windows we have
introduced (including the Chebyshev and Kaiser windows) has nonnegative Fourier
transform. On the other hand, it is straightforward to produce such a nonnegative
definite window by convolving the window with itself. Recall that the Bartlett
window is the convolution of a rectangular window with itself. We will make use of
the convolution of windows with themselves in the next two subsections, both for
window design and for relating temporal windows to covariance lag windows.
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Figure 2.3. Some common window functions (shown for M = 26). The Kaiser
window uses γ = 1 and γ = 4 and the Chebyshev window is designed for a −40 dB
sidelobe level.
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Figure 2.4. The DTFTs of the window functions in Figure 2.3.
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2.6.3 Window Design Example

Assume a situation where it is known that the observed signal consists of a useful
weak signal and a strong interference, and that both the useful signal and the
interference can be assumed to be narrowband signals which are well separated in
frequency. However, there is no a priori quantitative information available on the
frequency separation between the desired signal and the interference. It is required
to design a lag window for use in a Blackman–Tukey spectral estimation method,
with the purpose of detecting and locating in frequency the useful signal.

The main problem in the application outlined above lies in the fact that
the (strong) interference may completely mask the (weak) desired signal through
leakage. In order to get rid of this problem, the window design should compromise
smearing for leakage. Note that the smearing effect is not of main concern in this
application, as the useful signal and the interference are well separated in frequency.
Hence, smearing cannot affect our ability to detect the desired signal; it will only
limit, to some degree, our ability to accurately locate in frequency the signal in
question.

We consider a window sequence whose DTFT W (ω) is constructed as the
squared magnitude of the DTFT of another sequence {v(k)}; in this way, we
guarantee that the constructed window is positive semidefinite. Mathematically,
the above design problem can be formulated as follows. Consider a sequence
{v(0), . . . , v(M − 1)}, and let

V (ω) =

M−1∑

k=0

v(k)e−iωk (2.6.9)

The DTFT V (ω) can be rewritten in the more compact form

V (ω) = v∗a(ω) (2.6.10)

where
v = [v(0) . . . v(M − 1)]∗ (2.6.11)

and
a(ω) = [1 e−iω . . . e−i(M−1)ω]T (2.6.12)

Define the spectral window as

W (ω) = |V (ω)|2 (2.6.13)

The corresponding lag window can be obtained from (2.6.13) as follows:

M−1∑

k=−(M−1)

w(k)e−iωk =

M−1∑

n=0

M−1∑

p=0

v(n)v∗(p)e−iω(n−p)

=

M−1∑

n=0

n−(M−1)
∑

k=n

v(n)v∗(n− k)e−iωk

=

M−1∑

k=−(M−1)

[
M−1∑

n=0

v(n)v∗(n− k)

]

e−iωk (2.6.14)
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which gives

w(k) =

M−1∑

n=0

v(n)v∗(n− k) (2.6.15)

The last equality in (2.6.14), and hence the equality (2.6.15), are valid under the
convention that v(k) = 0 for k < 0 and k ≥ M .

As already mentioned, this method of constructing {w(k)} from the convolu-
tion of the sequence {v(k)} with itself has the advantage that the so–obtained lag
window is always positive semidefinite or, equivalently, the corresponding spectral
window satisfies W (ω) ≥ 0 (which is easily seen from (2.6.13)). Besides this, the
design of {w(k)} can be reduced to the selection of {v(k)} which may be more
conveniently done, as explained next.

In the present application, the design objective is to reduce the leakage in-
curred by {w(k)} as much as possible. This objective can be formulated as the
problem of minimizing the relative energy in the sidelobes of W (ω) or, equivalently,
as the problem of maximizing the relative energy in the main lobe of W (ω):

max
v







∫ βπ

−βπW (ω)dω
∫ π

−πW (ω)dω






(2.6.16)

Here, β is a design parameter which quantifies how much smearing (or, basically
equivalent, resolution) we can tradeoff for leakage reduction. The larger the β,
the more leakage free the optimal window derived from (2.6.16) but also the more
diminished the spectral resolution associated with that window.

By writing the criterion in (2.6.16) in the following form

1
2π

∫ βπ

−βπ |V (ω)|2dω
1
2π

∫ π

−π |V (ω)|2dω =
v∗
[

1
2π

∫ βπ

−βπ a(ω)a∗(ω)dω
]

v

v∗v
(2.6.17)

(cf. (2.6.10) and Parseval’s theorem, (1.2.6)), the optimization problem (2.6.16)
becomes

max
v

v∗Γv

v∗v
(2.6.18)

where

Γ =
1

2π

∫ βπ

−βπ
a(ω)a∗(ω)dω , [γm−n] (2.6.19)

and where

γm−n =
1

2π

∫ βπ

−βπ
e−i(m−n)ωdω =

sin[(m− n)βπ]

(m− n)π
(2.6.20)

(note that γ0 = β). By using the function

sinc(x) ,
sinx

x
, (sinc(0) = 1) (2.6.21)

we can write (2.6.20) as

γm−n = βsinc[(m− n)βπ] (2.6.22)
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The solution to the problem (2.6.18) is well known: the maximizing v is given by
the dominant eigenvector of Γ, associated with the maximum eigenvalue of this
matrix (see Result R13 in Appendix A). To summarize:

The optimal lag window which minimizes the relative energy in
the sidelobe interval [−π,−βπ]∪[βπ, π] is given by (2.6.15), where
v is the dominant eigenvector of the matrix Γ defined in (2.6.19)
and (2.6.22).

(2.6.23)

Regarding the choice of the design parameter β, it is clear that β should be
larger than 1/M in order to allow for a significant reduction of leakage. Otherwise,
by selecting for example β ' 1/M , we weigh the resolution issue too much in the
design problem, with unfavorable consequences for leakage reduction.

Finally, we remark that a problem quite similar to the above one, although
derived from different considerations, will be encountered in Chapter 5 (see also
[Mullis and Scharf 1991]).

2.6.4 Temporal Windows and Lag Windows

As we have seen previously, the unwindowed periodogram coincides with the un-
windowed correlogram. The Blackman–Tukey estimator is a windowed correlogram
obtained using a lag window. Similarly, we can define a windowed periodogram

φ̂W (ω) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

v(t)y(t)e−iωt

∣
∣
∣
∣
∣

2

(2.6.24)

where the weighting sequence {v(t)} may be called a temporal window. A tem-
poral window is sometimes called a taper. Welch [Welch 1967] was one of the
first researchers who considered windowed periodogram spectral estimators (see
Section 2.7.2 for a description of Welch’s method), and hence the subscript “W”

attached to φ̂(ω) in (2.6.24). However, while the reason for windowing the cor-
relogram is clearly motivated, the reason for windowing the periodogram is less
obvious. In order to motivate (2.6.24), at least partially, write this equation as

φ̂W (ω) =
1

N

N∑

t=1

N∑

s=1

v(t)v∗(s)y(t)y∗(s)e−iω(t−s) (2.6.25)

Next, take expectation of both sides of (2.6.25) to obtain

E
{

φ̂W (ω)
}

=
1

N

N∑

t=1

N∑

s=1

v(t)v∗(s)r(t− s)e−iω(t−s) (2.6.26)

Inserting

r(t− s) =
1

2π

∫ π

−π
φ(ω)eiω(t−s)dω (2.6.27)
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in (2.6.26) gives

E
{

φ̂W (ω)
}

=
1

N2π

∫ π

−π
φ(ψ)

[
N∑

t=1

N∑

s=1

v(t)v∗(s)e−i(ω−ψ)(t−s)
]

dψ

=
1

N2π

∫ π

−π
φ(ψ)

∣
∣
∣
∣
∣

N∑

t=1

v(t)e−i(ω−ψ)t

∣
∣
∣
∣
∣

2

dψ (2.6.28)

Define

W (ω) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

v(t)e−iωt

∣
∣
∣
∣
∣

2

(2.6.29)

By using this notation, we can write (2.6.28) as

E
{

φ̂W (ω)
}

=
1

2π

∫ π

−π
φ(ψ)W (ω − ψ)dψ (2.6.30)

As the equation (2.6.29) is similar to (2.6.13), the sequence whose DTFT is equal
to W (ω) immediately follows from (2.6.15):

w(k) =
1

N

N∑

n=1

v(n)v∗(n− k) (2.6.31)

Next, by comparing (2.6.30) and (2.5.3), we get the following result.

The windowed periodogram and the windowed correlogram have
the same average behavior, provided the temporal and lag win-
dows are related as in (2.6.31).

(2.6.32)

Hence E{φ̂W (ω)} = E{φ̂BT (ω)}, provided the temporal and lag windows

are matched to one another. A similarly simple relationship between φ̂W (ω) and

φ̂BT (ω), however, does not seem to exist. This makes it somewhat difficult to
motivate the windowed periodogram as defined in (2.6.24). The Welch periodogram,
though, does not weigh all data samples as in (2.6.24), and is a useful spectral
estimator (see the next section).

2.7 OTHER REFINED PERIODOGRAM METHODS

In Section 2.5 we introduced the Blackman–Tukey estimator as an alternative to
the periodogram. In this section we present three other modified periodograms:
the Bartlett, Welch, and Daniell methods. Like the Blackman–Tukey method, they
seek to reduce the variance of the periodogram by smoothing or averaging the
periodogram estimates in some way. We will relate these methods to one another
and to the Blackman–Tukey method.
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2.7.1 Bartlett Method

The basic idea of the Bartlett method [Bartlett 1948; Bartlett 1950] is sim-
ple: to reduce the large fluctuations of the periodogram, split up the available
sample of N observations into L = N/M subsamples of M observations each, and
then average the periodograms obtained from the subsamples for each value of ω.
Mathematically, the Bartlett method can be described as follows. Let

yj(t) = y((j − 1)M + t),
t = 1, . . . ,M
j = 1, . . . , L

(2.7.1)

denote the observations of the jth subsample, and let

φ̂j(ω) =
1

M

∣
∣
∣
∣
∣

M∑

t=1

yj(t)e
−iωt

∣
∣
∣
∣
∣

2

(2.7.2)

denote the corresponding periodogram. The Bartlett spectral estimate is then given
by

φ̂B(ω) =
1

L

L∑

j=1

φ̂j(ω) (2.7.3)

Since the Bartlett method operates on data segments of length M , the resolution
afforded should be on the order of 1/M . Hence, the spectral resolution of the
Bartlett method is reduced by a factor L, compared to the resolution of the original
periodogram method. In return for this reduction in resolution, we can expect that
the Bartlett method has a reduced variance. It can, in fact, be shown that the
Bartlett method reduces the variance of the periodogram by the same factor L (see
below). The compromise between resolution and variance when selecting M (or L)
is thus evident.

An interesting way to look at the Bartlett method and its properties is by
relating it to the Blackman–Tukey method. As we know, φ̂j(ω) of (2.7.2) can be
rewritten as

φ̂j(ω) =

M−1∑

k=−(M−1)

r̂j(k)e
−iωk (2.7.4)

where {r̂j(k)} is the sample covariance sequence corresponding to the jth subsam-
ple. Inserting (2.7.4) in (2.7.3) gives

φ̂B(ω) =

M−1∑

k=−(M−1)




1

L

L∑

j=1

r̂j(k)



 e−iωk (2.7.5)

We see that φ̂B(ω) is similar in form to the Blackman–Tukey estimator that uses
a rectangular window. The average, over j, of the subsample covariance r̂j(k) is
an estimate of the ACS r(k). However, the ACS estimate in (2.7.5) does not make
efficient use of available data lag products y(t)y∗(t−k), especially for |k| near M−1
(see Exercise 2.14). In fact, for k = M − 1, only about 1/Mth of the available lag
products are used to form the ACS estimate in (2.7.5). We expect that the variance
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of these lags is higher than for the corresponding r̂(k) lags used in the Blackman–

Tukey estimate, and similarly, the variance of φ̂B(ω) is higher than that of φ̂BT (ω).
In addition, the Bartlett method uses a fixed rectangular lag window, and thus
has less flexibility in resolution–leakage tradeoff than does the Blackman–Tukey
method. For these reasons, we conclude that

The Bartlett estimate, as defined in (2.7.1)–(2.7.3), is similar
in form to, but typically has a slightly higher variance than,
the Blackman–Tukey estimate with a rectangular lag window of
length M .

(2.7.6)

The reduction in resolution and the decrease of variance (both by a factor
L = N/M) for the Bartlett estimate, as compared to the basic periodogram method,
follows from (2.7.6) and the properties of the Blackman–Tukey spectral estimator
given previously.

The main lobe of the rectangular window is narrower than that associated
with most other lag windows (this follows from the observation that the rectangular
window clearly has the largest equivalent time width , and the fact that the time–
bandwidth product is constant, see (2.6.5)). Thus, it follows from (2.7.6) that in
the class of Blackman–Tukey estimates, the Bartlett estimator can be expected to
have the least smearing (and hence the best resolution) but the most significant
leakage.

2.7.2 Welch Method

The Welch method [Welch 1967] is obtained by refining the Bartlett method in
two respects. First, the data segments in the Welch method are allowed to overlap.
Second, each data segment is windowed prior to computing the periodogram. To
describe the Welch method in a mathematical form, let

yj(t) = y((j − 1)K + t),
t = 1, . . . ,M
j = 1, . . . , S

(2.7.7)

denote the jth data segment. In (2.7.7), (j − 1)K is the starting point for the jth
sequence of observations. If K = M , then the sequences do not overlap (but are
contiguous) and we get the sample splitting used by the Bartlett method (which
leads to S = L = N/M data subsamples). However, the value recommended for K
in the Welch method is K = M/2, in which case S ' 2M/N data segments (with
50% overlap between successive segments) are obtained.

The windowed periodogram corresponding to yj(t) is computed as

φ̂j(ω) =
1

MP

∣
∣
∣
∣
∣

M∑

t=1

v(t)yj(t)e
−iωt

∣
∣
∣
∣
∣

2

(2.7.8)

where P denotes the “power” of the temporal window {v(t)}:

P =
1

M

M∑

t=1

|v(t)|2 (2.7.9)
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The Welch estimate of PSD is determined by averaging the windowed periodograms
in (2.7.8):

φ̂W (ω) =
1

S

S∑

j=1

φ̂j(ω) (2.7.10)

The reasons for the above modifications to the Bartlett method, which led to the
Welch method, are simple to explain. By allowing overlap between the data seg-
ments and hence by getting more periodograms to be averaged in (2.7.10), we hope
to decrease the variance of the estimated PSD. By introducing the window in the
periodogram computation it may be hoped to get more control over the bias/re-
solution properties of the estimated PSD (see Section 2.6.4). Additionally, the
temporal window may be used to give less weight to the data samples at the ends
of each subsample, hence making the consecutive subsample sequences less corre-
lated to one another, even though they are overlapping. The principal effect of this
“decorrelation” should be a more effective reduction of variance via the averaging
in (2.7.10).

The analysis that led to the results (2.6.30)–(2.6.32) can be modified to show
that the use of windowed periodograms in the Welch method, as contrasted to the
unwindowed periodograms in the Bartlett method, indeed offers more flexibility
in controlling the bias properties of the estimated spectrum. The variance of the
Welch spectral estimator is more difficult to analyze (except in some special cases).
However, there is empirical evidence that the Welch method can offer lower variance
than the Bartlett method but the difference in the variances corresponding to the
two methods is not dramatic.

We can relate the Welch estimator to the Blackman–Tukey spectral estimator
by a straightforward calculation as we did for the Bartlett method. By inserting
(2.7.8) in (2.7.10), we obtain

φ̂W (ω) =
1

S

S∑

j=1

1

MP

M∑

t=1

M∑

k=1

v(t)v∗(k)yj(t)y
∗
j (k)e

−iω(t−k) (2.7.11)

For large values of N and for K = M/2 or smaller, S results sufficiently large for

the average (1/S)
∑S
j=1 yj(t)y

∗
j (k) to be close to the covariance r(t−k). We do not

replace the previous sum by the true covariance lag. However, we assume that this
sum does not depend on both t and k, but only on their difference (t− k), at least
approximately; say

r̃(t, k) =
1

S

S∑

j=1

yj(t)y
∗
j (k) ' r̃(t− k) (2.7.12)
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Using (2.7.12) in (2.7.11) gives

φ̂W (ω) ' 1

MP

M∑

t=1

M∑

k=1

v(t)v∗(k)r̃(t− k)e−iω(t−k)

=
1

MP

M∑

t=1

t−M∑

τ=t−1

v(t)v∗(t− τ)r̃(τ)e−iωτ

=

M−1∑

τ=−(M−1)

[

1

MP

M∑

t=1

v(t)v∗(t− τ)

]

r̃(τ)e−iωτ (2.7.13)

By introducing

w(τ) =
1

MP

M∑

t=1

v(t)v∗(t− τ) (2.7.14)

(under the convention that v(k) = 0 for k < 1 and k > M), we can write (2.7.13)
as

φ̂W (ω) '
M−1∑

τ=−(M−1)

w(τ)r̃(τ)e−iωτ (2.7.15)

which is to be compared to the form of the Blackman–Tukey estimator. To summa-
rize, the Welch estimator has been shown to approximate a Blackman–Tukey–type
estimator for the estimated covariance sequence (2.7.12) (which may be expected
to have finite–sample properties different from those of r̂(k)).

The Welch estimator can be efficiently computed via the FFT, and is one of
the most frequently used PSD estimation methods. Its previous interpretation is
pleasing, even if approximate, since the Blackman–Tukey form of spectral estimator
is theoretically the most favored one. This interpretation also shows that we may
think of replacing the usual covariance estimates {r̂(k)} in the Blackman–Tukey
estimator by other sample covariances, with the purpose of either reducing the
computational burden or improving the statistical accuracy.

2.7.3 Daniell Method

As shown in (2.4.21), the periodogram values φ̂(ωk) corresponding to different fre-
quency values ωk are (asymptotically) uncorrelated random variables. One may
then think of reducing the large variance of the basic periodogram estimator by
averaging the periodogram over small intervals centered on the current frequency
ω. This is the idea behind the Daniell method [Daniell 1946]. The practical form
of the Daniell estimate, which can be implemented by means of the FFT, is the
following:

φ̂D(ωk) =
1

2J + 1

k+J∑

j=k−J
φ̂p(ωj) (2.7.16)

where

ωk =
2π

Ñ
k, k = 0, . . . , Ñ − 1 (2.7.17)
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and where Ñ is (much) larger than N to ensure a fine sampling of φ̂p(ω). The
periodogram samples needed in (2.7.16) can be obtained, for example, by using a
radix–2 FFT algorithm applied to the zero–padded data sequence, as described in
Section 2.3. The parameter J in the Daniell method should be chosen sufficiently
small to guarantee that φ(ω) is nearly constant on the interval(s):

[

ω − 2π

Ñ
J, ω +

2π

Ñ
J

]

(2.7.18)

Since Ñ can in principle be chosen as large as we want, we can choose J fairly
large without violating the above requirement that φ(ω) is nearly constant over
the interval in (2.7.18). For the sake of illustration, let us assume that we keep
the ratio J/Ñ constant, but increase both J and Ñ significantly. As J/Ñ is con-
stant, the resolution/bias properties of the Daniell estimator should be basically
unaffected. On the other hand, the fact that the number of periodogram values
averaged in (2.7.16) increases with increased J might suggest that the variance de-
creases. However, we know that this should not be possible, as the variance can
be decreased only at the expense of increasing the bias (and vice versa). Indeed,
in the case under discussion the periodogram values averaged in (2.7.16) become

more and more correlated as Ñ increases and hence the variance of φ̂D(ω) does not
necessarily decrease with J if Ñ is larger than N (see, e.g., Exercise 2.13). We will
return to the bias and variance properties of the Daniell method a bit later.

By introducing β = 2J/Ñ , one can write (2.7.18) in a form that is more
convenient for the discussion that follows, namely

[ω − πβ, ω + πβ] (2.7.19)

Equation (2.7.16) is a discrete approximation of the theoretical version of the
Daniell estimator, which is given by

φ̂D(ω) =
1

2πβ

∫ ω+βπ

ω−βπ
φ̂p(ψ)dψ (2.7.20)

The larger the Ñ , the smaller the difference between the approximation (2.7.16)
and the continuous version, (2.7.20), of the Daniell spectral estimator.

It is intuitively clear from (2.7.20) that as β increases, the resolution of the
Daniell estimator decreases (or, essentially equivalent, the bias increases) and the
variance gets lower. In fact, if we introduce

M = 1/β (2.7.21)

(in an approximate sense, as 1/β is not necessarily an integer) then we may expect
that the resolution and the variance of the Daniell estimator are both decreased by
a factor M , compared to the basic periodogram method. In order to support this
claim, we relate the Daniell estimator to the Blackman–Tukey estimation technique.
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By simply comparing (2.7.20) and (2.5.3), we obtain the following result.

The Daniell estimator is a particular case of the Blackman–Tukey
class of spectral estimators, corresponding to a rectangular spec-
tral window:

W (ω) =

{

1/β, ω ∈ [−βπ, βπ]

0, otherwise

(2.7.22)

The above observation, along with the time–bandwidth product result and
the properties of the Blackman–Tukey spectral estimator, lends support to the pre-
viously made claim on the Daniell estimator. Note that the Daniell estimate of PSD
is a nonnegative function by its very definition, (2.7.20), which is not necessarily
the case for several members of the Blackman–Tukey class of PSD estimators.

The lag window corresponding to the W (ω) in (2.7.22) is readily evaluated as
follows:

w(k) =
1

2π

∫ π

−π
W (ω)eiωkdω =

1

2πβ

∫ πβ

−πβ
eiωkdω

=
sin(kπβ)

kπβ
= sinc(kπβ) (2.7.23)

Note that w(k) does not vanish as k increases, which leads to a subtle (but not
essential) difference between the lag windowed forms of the Daniell and Blackman–

Tukey estimators. Since the inverse DTFT of φ̂p(ω) is given by the sequence
{. . . , 0, 0, r̂(−(N − 1)), . . . , r̂(N − 1), 0, 0, . . .}, it follows immediately from (2.7.20)

that φ̂D(ω) can also be written as

φ̂D(ω) =

N−1∑

k=−(N−1)

w(k)r̂(k)e−iωk (2.7.24)

It is seen from (2.7.24) that, like the Blackman–Tukey estimator, φ̂D(ω) is a win-
dowed version of the correlogram but, unlike the Blackman–Tukey estimator, the
sum in (2.7.24) is not truncated to a value M < N . Hence, contrary to what might
have been expected intuitively, the parameter M defined in (2.7.21) cannot be ex-

actly interpreted as a “truncation point” for the lag windowed version of φ̂D(ω).
However, since the equivalent bandwidth of W (ω) is clearly equal to β,

βe = β

it follows that the equivalent time width of w(k) is

Ne = 1/βe = M

which shows that M plays essentially the same role here as the “truncation point”
in the Blackman–Tukey estimator (and, indeed, it can be verified that w(k) in
(2.7.23) takes small values for |k| > M).
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In closing this section and this chapter, we point out that the periodogram–
based methods for spectrum estimation are all variations on the same theme. These
methods attempt to reduce the variance of the basic periodogram estimator, at the
expense of some reduction in resolution, by various means such as: averaging peri-
odograms derived from data subsamples (Bartlett and Welch methods); averaging
periodogram values locally around the frequency of interest (Daniell method); and
smoothing the periodogram (Blackman–Tukey method). The unifying theme of
these methods is seen in that they are essentially special forms of the Blackman–
Tukey approach. In Chapter 5 we will push the unifying theme one step further
by showing that the periodogram–based methods can also be obtained as special
cases of the filter bank approach to spectrum estimation described there (see also
[Mullis and Scharf 1991]).

Finally, it is interesting to note that, while the modifications of the peri-
odogram described in this chapter are indeed required when estimating a continu-
ous PSD, the unmodified periodogram can be shown to be a satisfactory estimator
(actually, the best one in large samples) for discrete (or line) spectra corresponding
to sinusoidal signals. This is shown in Chapter 4.

2.8 COMPLEMENTS

2.8.1 Sample Covariance Computation via FFT

Computation of the sample covariances is a ubiquitous problem in spectral esti-
mation and signal processing applications. In this complement we make use of the
DTFT–like formula (2.2.2), relating the periodogram and the sample covariance se-
quence, to devise an FFT–based algorithm for computation of the {r̂(k)}N−1

k=0 . We
also compare the computational requirements of such an algorithm with those cor-
responding to the evaluation of {r̂(k)} via the temporal averaging formula (2.2.4),
and show that the former may be computationally more efficient than the latter if
N is larger than a certain value.

From (2.2.2) and (2.2.6) we have that (we omit the subscript p of φ̂p(ω) for
notational simplicity):

φ̂(ω) =

N−1∑

k=−N+1

r̂(k)e−iωk =

2N−1∑

p=1

r̂(p−N)e−iω(p−N)

or, equivalently,

e−iωN φ̂(ω) =

2N−1∑

p=1

ρ(p)e−iωp (2.8.1)

where ρ(p) , r̂(p − N). Equation (2.8.1) has the standard form of a DFT. It is
evident from (2.8.1) that in order to determine the sample covariance sequence we
need at least (2N − 1) values of the periodogram. This is expected: the sequence
{r̂(k)}N−1

k=0 contains (2N − 1) real–valued unknowns for the determination of which

at least (2N − 1) periodogram values should be necessary (as φ̂(ω) is real valued).
Let

ωk =
2π

2N − 1
(k − 1), k = 1, . . . , 2N − 1
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Also, let the sequence {y(t)}2N−1
t=1 be obtained by padding the raw data sequence

with (N − 1) zeroes. Compute

Yk =

2N−1∑

t=1

y(t)e−iωkt (k = 1, 2, . . . , 2N − 1) (2.8.2)

by means of a (2N − 1)–point FFT algorithm. Next, evaluate

φ̃k = e−iωkN |Yk|2/N (k = 1, . . . , 2N − 1) (2.8.3)

Finally, determine the sample covariances via the “inversion” of (2.8.1):

ρ(p) =

2N−1∑

k=1

φ̃ke
iωkp/(2N − 1)

=

2N−1∑

k=1

φ̃ke
iωpk/(2N − 1) (2.8.4)

The previous computation may once again be done by using a (2N −1)–point FFT
algorithm. The bulk of the procedure outlined above consists of the FFT–based
computation of (2.8.2) and (2.8.4). That computation requires about 2N log2(2N)
flops (assuming that the radix–2 FFT algorithm is used; the required number of
operations is larger than the one previously given whenever N is not a power of
two). The direct evaluation of the sample covariance sequence via (2.2.4) requires

N + (N − 1) + · · · + 1 ' N2/2 flops

Hence, the FFT–based computation would be more efficient whenever

N > 4 log2(2N)

This inequality is satisfied for N ≥ 32. (Actually, N needs to be greater than 32
because we neglected the operations needed to implement equation (2.8.3).)

The previous discussion assumes that N is a power of two. If this is not the
case then the relative computational efficiency of the two procedures may be differ-
ent. Note, also, that there are several other issues that may affect this comparison.
For instance, if only the lags {r̂(k)}M−1

k=0 (with M � N) are required, then the num-
ber of computations required by (2.2.4) is drastically reduced. On the other hand,
the FFT–based procedure can also be implemented in a more efficient way in such
a case, so that it remains computationally more efficient than a direct calculation,
for instance, for N ≥ 100 [Oppenheim and Schafer 1989]. We conclude that
the various implementation details may change the value of N beyond which the
FFT–based procedure is more efficient than the direct approach, and hence may
influence the decision as to which of the two procedures should be used in a given
application.
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2.8.2 FFT–Based Computation of Windowed Blackman–Tukey Periodograms

The windowed Blackman–Tukey periodogram (2.5.1), unlike its unwindowed ver-
sion, is not amenable to a direct computation via a single FFT. In this complement
we show that three FFTs are sufficient to evaluate (2.5.1): two FFTs for the compu-
tation of the sample covariance sequence entering the equation (2.5.1) (as described
in Complement 2.8.1), and one FFT for the evaluation of (2.5.1). We also show that
the computational formula for {r̂(k)} derived in Complement 2.8.1 can be used to

obtain an FFT–based algorithm for evaluation of (2.5.1) directly in terms of φ̂p(ω).

We relate the latter way of computing (2.5.1) to the evaluation of φ̂BT (ω) from
the integral equation (2.5.3). Finally, we compare the two ways outlined above for
evaluating the windowed Blackman–Tukey periodogram.

The windowed Blackman–Tukey periodogram can be written as

φ̂BT (ω) =

N−1∑

k=−(N−1)

w(k)r̂(k)e−iωk

=

N−1∑

k=0

w(k)r̂(k)e−iωk +

N−1∑

k=0

w(k)r̂∗(k)eiωk − w(0)r̂(0)

= 2 Re

{
N−1∑

k=0

w(k)r̂(k)e−iωk
}

− w(0)r̂(0) (2.8.5)

where we made use of the facts that the window sequence is even and r̂(−k) =

r̂∗(k). It is now evident that an N–point FFT can be used to evaluate φ̂BT (ω)
at ω = 2πk/N (k = 0, . . . , N − 1). This requires about 1

2N log2(N) flops that
should be added to the 2N log2(2N) flops required to compute {r̂(k)} (as in Com-
plement 2.8.1), hence giving a total of about N [ 12 log2(N) + 2 log2(2N)] flops for

this way of evaluating φ̂BT (ω).

Next, we make use of the expression (2.8.4) for {r̂(k)} that is derived in
Complement 2.8.1,

r̂(p−N) =
1

2N − 1

2N−1∑

k=1

φ̂(ω̄k)e
iω̄k(p−N) (p = 1, . . . , 2N − 1) (2.8.6)

where ω̄k = 2π(k − 1)/(2N − 1), (k = 1, . . . , 2N − 1), and where φ̂(ω) is the
unwindowed periodogram. Inserting (2.8.6) into (2.5.1), we obtain

φ̂BT (ω) =
1

2N − 1

N−1∑

s=−(N−1)

w(s)e−iωs
2N−1∑

k=1

φ̂(ω̄k)e
iω̄ks

=
1

2N − 1

2N−1∑

k=1

φ̂(ω̄k)





N−1∑

s=−(N−1)

w(s)e−i(ω−ω̄k)s



 (2.8.7)
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which gives

φ̂BT (ω) =
1

2N − 1

2N−1∑

k=1

φ̂(ω̄k) W (ω − ω̄k) (2.8.8)

where W (ω) is the spectral window.
It might be thought that the last step in the above derivation requires that

{w(k)} is a “truncated–type” window (i.e., w(k) = 0 for |k| ≥ N). However, no
such requirement on {w(k)} is needed, as explained next. By inserting the usual

expression for φ̂(ω) into (2.8.6) we obtain:

r̂(p−N) =
1

2N − 1

2N−1∑

k=1





N−1∑

s=−(N−1)

r̂(s)e−iω̄ks



 eiω̄k(p−N)

=
1

2N − 1

N−1∑

s=−(N−1)

r̂(s)

[
2N−1∑

k=1

eiω̄k(p−N−s)
]

,
1

2N − 1

N−1∑

s=−(N−1)

r̂(s)∆(s, p)

where

∆(s, p) =

2N−1∑

k=1

eiω̄p−N−sk = eiω̄p−N−s
ei(2N−1)ω̄p−N−s − 1

eiω̄p−N−s − 1

As (2N − 1)ω̄p−N−s = 2π(p−N − s), it follows that

∆(s, p) = (2N − 1)δp−N,s

from which we immediately get

1

2N − 1

N−1∑

s=−(N−1)

r̂(s)∆(s, p) =

{

r̂(p−N) p = 1, . . . , 2N − 1

0, otherwise
(2.8.9)

First, the above calculation provides a cross–checking of the derivation of equation
(2.8.6) in Complement 2.8.1. Second, the result (2.8.9) implies that the values
of r̂(p − N) calculated with the formula (2.8.6) are equal to zero for p < 1 or
p > 2N − 1. It follows that the limits for the summation over s in (2.8.7) can be
extended to ±∞, hence showing that (2.8.8) is valid for an arbitrary window. In
the general case there seems to be no way for evaluating (2.8.8) by means of an
FFT algorithm. Hence, it appears that for a general window it is more efficient
to base the computation of φ̂BT (ω) on (2.8.5) rather than on (2.8.8). For certain
windows, however, (2.8.8) may be computationally more efficient than (2.8.5). For
instance, in the case of the Daniell method, which corresponds to a rectangular
spectral window, (2.8.8) takes a very convenient computational form and should
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be preferred to (2.8.5). It should be noted that (2.8.8) can be viewed as an exact
formula for evaluation of the integral in equation (2.5.3). In particular, (2.8.8)
provides an exact implementation formula for the Daniell periodogram (2.7.20)
(whereas (2.7.16) is only an approximation of the integral (2.7.20) that is valid for
sufficiently large values of N).

2.8.3 Data and Frequency Dependent Temporal Windows: The Apodization Approach

All windows discussed so far are both data and frequency independent; in other
words, the window used is the same at any frequency of the spectrum and for any
data sequence. Apparently this is a rather serious restriction. A consequence of
this restriction is that for such non-adaptive windows (i.e., windows that do not
adapt to the data under analysis) any attempt to reduce the leakage effect (by
keeping the sidelobes low) inherently leads to a reduction of the resolution (due to
the widening of the main lobe), and vice versa; see Section 2.6.1.

In this complement we show how to design a data and frequency dependent
temporal window that has the following desirable properties:

• It mitigates the leakage problem of the periodogram without compromising
its resolution; and

• It does so with only a very marginal increase in the computational burden.

Our presentation is based on the apodization approach of [Stankwitz, Dal-

laire, and Fienup 1994], even though in some places we will deviate from it to
some extent. Apodization is a term borrowed from optics where it has been used
to mean a reduction of the sidelobes induced by diffraction.

We begin our presentation with a derivation of the temporally windowed pe-
riodogram, (2.6.24), in a least-squares (LS) framework. Consider the following
weighted LS fitting problem

min
a

N∑

t=1

ρ(t)
∣
∣y(t) − aeiωt

∣
∣
2

(2.8.10)

where ω is given and so are the weights ρ(t) ≥ 0. It can be readily verified that the
minimizer of (2.8.10) is given by

â =

∑N
t=1 ρ(t)y(t)e

−iωt
∑N
t=1 ρ(t)

(2.8.11)

If we let

v(t) =
ρ(t)

∑N
t=1 ρ(t)

(2.8.12)

then we can rewrite (2.8.11) as a windowed DFT

â =

N∑

t=1

v(t)y(t)e−iωt (2.8.13)
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The squared magnitude of (2.8.13) appears in the windowed periodogram formula
(2.6.24), which of course is not accidental as |â|2 should indicate the power in y(t)
at frequency ω (cf. (2.8.10)).

The usefulness of the LS-based derivation of (2.6.24) above lies in the fact
that it reveals two constraints which must be satisfied by a temporal window:

v(t) ≥ 0 (2.8.14)

which follows from ρ(t) ≥ 0, and

N∑

t=1

v(t) = 1 (2.8.15)

which follows from (2.8.12). The constraint (2.8.15) can also be obtained by in-
spection of (2.6.24); indeed, if y(t) had a component with frequency ω then that
component would pass undistorted (or unbiased) through the DFT in (2.6.24) if
and only if (2.8.15) holds. For this reason, (2.8.15) is sometimes called the unbi-
asedness condition. On the other hand, the constraint (2.8.14) appears to be more
difficult to obtain directly from (2.6.24).

Next, we turn our attention to window design, which is the problem of main in-
terest here. To emphasize the dependence of the temporally windowed periodogram
in (2.6.24) on {v(t)} we use the notation φ̂v(ω):

φ̂v(ω) = N

∣
∣
∣
∣
∣

N∑

t=1

v(t)y(t)e−iωt

∣
∣
∣
∣
∣

2

(2.8.16)

Note that in (2.8.16) the squared modulus is multiplied by N whereas in (2.6.24)
it is divided by N ; this difference is due to the fact that the window {v(t)} in this
complement is constrained to satisfy (2.8.15), whereas in Section 2.6 it is implicitly

assumed to satisfy
∑N
t=1 v(t) = N .

In the apodization approach the window is selected such that

φ̂v(ω) = minimum (2.8.17)

for each ω and for the given data sequence. Evidently, the apodization window will
in general be both frequency and data dependent. Sometimes such a window is said
to be frequency and data adaptive. Let C denote the class of windows over which we
perform the minimization in (2.8.17). Each window in C must satisfy the constraints
(2.8.14) and (2.8.15). Usually, C is generated by an archetype window that depends
on a number of unknown or free parameters, most commonly in a linear manner.
It is important to observe that we should not use more than two free parameters
to describe the windows v(t) ∈ C. Indeed, one parameter is needed to satisfy the
constraint (2.8.15) and the remaining one(s) to minimize the function in (2.8.17)

under the inequality constraint (2.8.14); if in the minimization operation, φ̂v(ω)
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Figure 2.5. An apodization window design example using a rectangular window
(v1(t)) and a Kaiser window (v2(t)). Shown are the periodograms corresponding
to v1(t) and v2(t), and to the apodization window v(t) selected using (2.8.17), for
a data sequence of length 16 consisting of two noise-free sinusoids.

depends quadratically on more than one parameter, then in general the minimum
value will be zero, φ̂v(ω) = 0 for all ω, which is not acceptable. We postpone a
more detailed discussion on the parameterization of C until we have presented a
motivation for the apodization design criterion in (2.8.17).

To understand intuitively why (2.8.17) makes sense, consider an example in
which the data consists of two noise-free sinusoids. In this example we use a rect-
angular window {v1(t)} and a Kaiser window {v2(t)}. The use of these windows
leads to the windowed periodograms in Figure 2.5. As is apparent from this figure,
v1(t) is a “high-resolution” window that trades off leakage for resolution, whereas
v2(t) compromises resolution (the two sinusoids are not resolved in the correspond-
ing periodogram) for less leakage. By using the apodization principle in (2.8.17)

to choose between φ̂v1(ω) and φ̂v2(ω), at each frequency ω, we obtain the spectral

estimate shown in Figure 2.5, which inherits the high resolution of φ̂v1(ω) and the

low leakage of φ̂v2(ω).
A more formal motivation of the apodization approach can be obtained as

follows. Let
ht = v(t)e−iωt

In terms of {ht} the equality constraint (2.8.15) becomes

N∑

t=1

hte
iωt = 1 (2.8.18)

and hence the apodization design problem is to minimize

∣
∣
∣
∣
∣

N∑

t=1

hty(t)

∣
∣
∣
∣
∣

2

(2.8.19)
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subject to (2.8.18) as well as (2.8.14) and any other conditions resulting from the
parameterization used for {v(t)} (and therefore for {ht}). We can interpret {ht}
as an FIR filter of length N , and consequently (2.8.19) is the “power” of the filter
output and (2.8.18) is the (complex) gain of the filter at frequency ω. Therefore,
making use of {ht}, we can describe the apodization principle in words as follows:
find the (parameterized) FIR filter {ht} which passes without distortion the sinu-
soid with frequency ω (see (2.8.18)) and minimizes the output power (see (2.8.19)),
and thus attenuates any other frequency components in the data as much as pos-
sible. The (normalized) power at the output of the filter is taken as an estimate
of the power in the data at frequency ω. This interpretation can clearly serve as a
motivation of the apodization approach and it sheds more light on the apodization
principle. In effect, minimizing (2.8.19) subject to (2.8.18) (along with the other
constraints on {ht} resulting from the parameterization used for {v(t)}) is a special
case of a sound approach to spectral analysis that will be described in Section 5.4.1
(a fact apparently noted for the first time in [Lee and Munson Jr. 1995]).

As already stated above, an important aspect that remains to be discussed
is the parameterization of {v(t)}. For the apodization principle to make sense, the
class C of windows must be chosen carefully. In particular, as explained above,
we should not use more than two parameters to describe {v(t)} (to prevent the

meaningless “spectral estimate” φ̂v(ω) ≡ 0). The choice of the class C is also
important from a computational standpoint. Indeed, the task of solving (2.8.17),

for each ω, and then computing the corresponding φ̂v(ω) may be computationally
demanding unless C is carefully chosen.

In the following we will consider the class of temporal windows used in [Stank-

witz, Dallaire, and Fienup 1994]:

v(t) =
1

N

[

α− β cos

(
2π

N
t

)]

, t = 1, . . . , N (2.8.20)

It can be readily checked that (2.8.20) satisfies the constraints (2.8.14) and (2.8.15)
if and only if

α = 1 and |β| ≤ 1 (2.8.21)

In addition we require that

β ≥ 0 (2.8.22)

to ensure that the peak of v(t) occurs in the middle of the interval [1, N ]; this
condition guarantees that the window in (2.8.20) (with β > 0) has lower sidelobes
than the rectangular window corresponding to β = 0 (the window (2.8.20) with
β < 0 generally has higher sidelobes than the rectangular window, and hence β < 0
cannot be a solution to the apodization design problem).

Remark: The temporal window (2.8.20) is of the same type as the lag Hanning and
Hamming windows in Table 2.1. For the latter windows the interval of interest is
[−N,N ] and hence for the peak of these windows to occur in the middle of the
interval of interest, we need β ≤ 0 (cf. Table 2.1). This observation explains the
difference between (2.8.20) and the lag windows in Table 2.1. �
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Combining (2.8.20), (2.8.21), and (2.8.22) leads to the following (constrained)
parameterization of the temporal windows:

v(t) =
1

N

[

1 − β cos

(
2π

N
t

)]

=
1

N

[

1 − β

2

(

ei
2π
N t + e−i 2π

N t
)]

, β ∈ [0, 1] (2.8.23)

Assume, for simplicity, that N is a power of two (for the general case we refer to
[DeGraaf 1994]) and that a radix-2 FFT algorithm is used to compute

Y (k) =

N∑

t=1

y(t)e−i 2πk
N t, k = 1, . . . , N (2.8.24)

(see Section 2.3). Then the windowed periodogram corresponding to (2.8.23) can
be conveniently computed as follows:

φ̂v(k) =
1

N

∣
∣
∣
∣
Y (k) − β

2

[
Y (k − 1) + Y (k + 1)

]
∣
∣
∣
∣

2

, k = 2, . . . , N − 1 (2.8.25)

Furthermore, in (2.8.25) β is the solution to the following apodization design prob-
lem:

min
β∈[0,1]

∣
∣
∣
∣
Y (k) − β

2

[
Y (k − 1) + Y (k + 1)

]
∣
∣
∣
∣

2

(2.8.26)

The unconstrained minimizer of the above function is given by:

β0 = Re

[
2Y (k)

Y (k − 1) + Y (k + 1)

]

(2.8.27)

Because the function in (2.8.26) is quadratic in β, it follows that the constrained
minimizer of (2.8.26) is given by

β =







0, if β0 < 0

β0, if 0 ≤ β0 ≤ 1

1, if β0 > 1

(2.8.28)

Remark: It is interesting to note from (2.8.28) that a change of the value of α in
the window expression (2.8.20) will affect the apodization (optimal) window in a
more complicated way than just a simple scaling. Indeed, if we change the value of
α, for instance to α = 0.75, then the interval for β becomes β ∈ [0, 0.75] and this
modification will affect the apodization window nonlinearly via (2.8.28). �

The apodizaton-based windowed periodogram is simply obtained by using β
given by (2.8.28) in (2.8.25). Hence, despite the fact that the apodization window is
both frequency and data dependent (via β in (2.8.27), (2.8.28)) the implementation
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of the corresponding spectral estimate is only marginally more computationally de-
manding than the implementation of an unwindowed periodogram. Compared with
the latter, however, the apodization-based windowed periodogram has a consider-
ably reduced leakage problem and essentially the same resolution (see [Stankwitz,

Dallaire, and Fienup 1994; DeGraaf 1994] for numerical examples illustrat-
ing this fact).

2.8.4 Estimation of Cross–Spectra and Coherency Spectra

As can be seen from Complement 1.6.1, the estimation of the cross–spectrum φyu(ω)
of two stationary signals, y(t) and u(t), is a useful operation when studying possible
linear (dynamic) relations between y(t) and u(t). Let z(t) denote the bivariate signal

z(t) = [y(t) u(t)]T

and let

φ̂(ω) =
1

N
Z(ω)Z∗(ω) (2.8.29)

denote the unwindowed periodogram estimate of the spectral density matrix of z(t).
In equation (2.8.29),

Z(ω) =

N∑

t=1

z(t)e−iωt

is the DTFT of {z(t)}Nt=1. Partition φ̂(ω) as

φ̂(ω) =

[
φ̂yy(ω) φ̂yu(ω)

φ̂∗
yu(ω) φ̂uu(ω)

]

(2.8.30)

As indicated by the notation previously used, estimates of φyy(ω), φuu(ω) and of
the cross–spectrum φyu(ω) may be obtained from the corresponding elements of

φ̂(ω).
We first show that the estimate of the coherency spectrum obtained from

(2.8.30) is always such that

|Ĉyu(ω)| = 1 for all ω (2.8.31)

and hence it is useless. To see this, note that since the rank of the 2 × 2 matrix in
(2.8.30) is equal to one (see Result R22 in Appendix A), we must have

φ̂uu(ω)φ̂yy(ω) = |φ̂yu(ω)|2

which readily leads to the conclusion that the coherency spectrum estimate obtained
from the elements of φ̂(ω) is bound to satisfy (2.8.31), and hence is meaningless.
This result is yet another indication that the unwindowed periodogram is a poor
estimate of the PSD.

Consider next a windowed Blackman–Tukey periodogram estimate of the
cross–spectrum:

φ̂yu(ω) =

M∑

k=−M
w(k)r̂yu(k)e

−iωk (2.8.32)
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where w(k) is the lag window, and r̂yu(k) is some usual estimate of ryu(k). Unlike
ryy(k) or ruu(k), ryu(k) does not necessarily peak at k = 0 and, moreover, is not
an even function in general. The choice of the lag window for estimating cross–
spectra may hence be governed by different rules from those commonly used in the
autospectrum estimation.

The main task of a lag window is to retain the “essential part” of the covari-
ance sequence in the defining equation for the spectral density. In this way the bias
is kept small and the variance is also reduced as the noisy tails of the sample co-
variance sequence are weighted out. For simplicity of discussion, assume that most
of the area under the plot of r̂yu(k) is concentrated about k = k0, with |k0| � N .
As r̂yu(k) is a reasonably accurate estimate of ryu(k), provided |k| � N , we can
assume that {r̂yu(k)} and {ryu(k)} have similar shapes. In such a case, one can
redefine (2.8.32) as

φ̂yu(ω) =

M∑

k=−M
w(k − k0)r̂yu(k)e

−iωk

where the lag window w(s) is of the type recommended for autospectrum estimation.
The choice of an appropriate value for k0 in the above cross–spectral estimator is
essential, for if k0 is poorly selected the following situations can occur:

• If M is chosen small to reduce the variance, the bias may be significant as
“essential” lags of the cross–covariance sequence may be left out.

• If M is chosen large to reduce the bias, the variance may significantly be
inflated as poorly estimated high–order “nonessential” lags are included into
the spectral estimation formula.

Finally, let us look at the cross–spectrum estimators derived from (2.8.30) and
(2.8.32), respectively, with a view of establishing a relation between them. Partition
Z(ω) as

Z(ω) =

[
Y (ω)
U(ω)

]

and observe that

1

2πN

∫ π

−π
Y (ω)U∗(ω)eiωk dω

=
1

2πN

∫ π

−π

N∑

t=1

N∑

s=1

y(t)u∗(s)e−iω(t−s) eiωk dω

=
1

N

N∑

t=1

N∑

s=1

y(t)u∗(s)δk,t−s

=
1

N

∑

t∈[1,N ]∩[1+k,N+k]

y(t)u∗(t− k) , r̂yu(k) (2.8.33)
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where r̂yu(k) can be rewritten in the following more familiar form:

r̂yu(k) =







1

N

N∑

t=k+1

y(t)u∗(t− k), k = 0, 1, 2, . . .

1

N

N+k∑

t=1

y(t)u∗(t− k), k = 0,−1,−2, . . .

Let

φ̂pyu(ω) =
1

N
Y (ω)U∗(ω)

denote the unwindowed cross–spectral periodogram–like estimator, given by the off–
diagonal element of φ̂(ω) in (2.8.30). With this notation, (2.8.33) can be written
more compactly as

r̂yu(k) =
1

2π

∫ π

−π
φ̂pyu(µ)eiµk dµ

By using the above equation in (2.8.32), we obtain:

φ̂yu(ω) =
1

2π

∫ π

−π
φ̂pyu(µ)

M∑

k=−M
w(k)e−i(ω−µ)k dµ

=
1

2π

∫ π

−π
W (ω − µ)φ̂pyu(µ) dµ (2.8.34)

where W (ω) =
∑∞
k=−∞ w(k)e−iωk is the spectral window. The previous equation

should be compared with the similar equation, (2.5.3), that holds in the case of
autospectra.

For implementation purposes, one can use the following discrete approxima-
tion of (2.8.34):

φ̂yu(ω) =
1

N

N∑

k=−N
W (ω − ωk)φ̂

p
yu(ωk)

where ωk = 2π
N k are the Fourier frequencies. The periodogram (cross–spectral)

estimate that appears in the above equation can be efficiently computed by means
of an FFT algorithm.

2.8.5 More Time–Bandwidth Product Results

The time (or duration)–bandwidth product result (2.6.5) relies on the assumptions
that both w(t) and W (ω) have a dominant peak at the origin, that they both are
real–valued, and that they take on nonnegative values only. While most window–
like signals (nearly) satisfy these assumptions, many other signals do not satisfy
them. In this complement we obtain time–bandwidth product results that apply
to a much broader class of signals.
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We begin by showing how the result (2.6.5) can be extended to a more general
class of signals. Let x(t) denote a general discrete–time sequence and let X(ω)
denote its DTFT. Both x(t) and X(ω) are allowed to take negative or complex
values, and neither is required to peak at the origin. Let t0 and ω0 denote the
maximum points of |x(t)| and |X(ω)|, respectively. The time width (or duration)
and bandwidth definitions in (2.6.1) and (2.6.2) are modified as follows:

N̄e =

∑∞
t=−∞ |x(t)|
|x(t0)|

and

β̄e =
1
2π

∫ π

−π |X(ω)|dω
|X(ω0)|

Because x(t) and X(ω) form a Fourier transform pair, we obtain

|X(ω0)| =

∣
∣
∣
∣
∣

∞∑

t=−∞
x(t)e−iω0t

∣
∣
∣
∣
∣
≤

∞∑

t=−∞
|x(t)|

and

|x(t0)| =

∣
∣
∣
∣

1

2π

∫ π

−π
X(ω)eiωt0dω

∣
∣
∣
∣
≤ 1

2π

∫ π

−π
|X(ω)|dω

which implies that

N̄eβ̄e ≥ 1 (2.8.35)

The above result, similar to (2.6.5), can be used to conclude that:

A sequence {x(t)} cannot be narrow in both time and frequency. (2.8.36)

More precisely, if x(t) is narrow in one domain it must be wide in the other domain.
However, the inequality result (2.8.35), unlike (2.6.5), does not necessarily imply
that β̄e decreases whenever N̄e increases (or vice versa). Furthermore, the result
(2.8.35) — again unlike (2.6.5) — does not exclude the possibility that the signal
is broad in both domains. In fact, in the general class of signals to which (2.8.35)
applies there are signals which are broad in both the time and frequency domains
(for such signals Ñeβ̃e � 1); see, e.g., [Papoulis 1977]. Evidently, the significant
consequence of (2.8.35) is (2.8.36), which is precisely what makes the duration–
bandwidth result an important one.

The duration–bandwidth product type of result (such as (2.6.5) or (2.8.35),
and (2.8.40) below) has been sometimes referred to by using the generic name of
uncertainty principle, in an attempt to relate it to the Heisenberg Uncertainty Prin-
ciple in quantum mechanics. (Briefly stated, the Heisenberg Uncertainty Principle
asserts that the position and velocity of a particle cannot be simultaneously speci-
fied to arbitrary precision.) To support the relationship, one can argue as follows:
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Suppose that we are given a sequence with (equivalent) duration equal to Ne and
that we are asked to use a linear filtering device to determine the sequence’s spec-
tral content in a certain narrow band. Because the filter impulse response cannot
be longer than Ne (in fact, it should be (much) shorter!), it follows from the time–
bandwidth product result that the filter’s bandwidth can be on the order of 1/Ne
but not smaller. Hence, the sequence’s spectral content in fine bands on an order
smaller than 1/Ne cannot be exactly determined and therefore is “uncertain”. This
is in effect the type of limitation that applies to the nonparametric spectral meth-
ods discussed in this chapter. However, this way of arguing is related to a specific
approach to spectral estimation and not to a fundamental limitation associated with
the signal itself. (As we will see in later chapters of this text, there are parametric
methods of spectral analysis that can provide the “high resolution” necessary to
determine the spectral content in bands that are on an order less than 1/Ne).

Next, we present another, slightly more general form of time–bandwidth prod-
uct result. The definitions of duration and bandwidth used to obtain (2.8.35) make
full sense whenever |x(t)| and |X(ω)| are single pulse–like waveforms, though these
definitions may give reasonable results in many other instances as well. There
are several other possible definitions of the broadness of a waveform in either the
time or frequency domain. The definition used below and the corresponding time–
bandwidth product result appear to be among the most general.

Let

x̃(t) =
x(t)

√
∑∞
t=−∞ |x(t)|2

(2.8.37)

and

X̃(ω) =
X(ω)

√
1
2π

∫ π

−π |X(ω)|2dω
(2.8.38)

By Parseval’s theorem (see (1.2.6)) the denominators in (2.8.37) and (2.8.38) are
equal to each other. Therefore, X̃(ω) is the DTFT of x̃(t) as is already indicated
by notation. Observe that

∞∑

t=−∞
|x̃(t)|2 =

1

2π

∫ π

−π
|X̃(ω)|2dω = 1

Hence, both {|x̃(t)|2} and {|X̃(ω)|2/2π} can be interpreted as probability density
functions in the sense that they are nonnegative and that they sum or integrate
to one. The means and variances associated with these two “probability” densities
are given by the following equations.

Time Domain:

µ =

∞∑

t=−∞
t|x̃(t)|2

σ2 =

∞∑

t=−∞
(t− µ)2|x̃(t)|2
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Frequency Domain:

ν =
1

(2π)2

∫ π

−π
ω|X̃(ω)|2dω

ρ2 =
1

(2π)3

∫ π

−π
(ω − 2πν)2|X̃(ω)|2dω

The values of the “standard deviations” σ and ρ show whether the normalized
functions {|x̃(t)|} and {|X̃(ω)|}, respectively, are narrow or broad. Hence, we can
use σ and ρ as definitions for the duration and bandwidth, respectively, of the
original functions {x(t)} and {X(ω)}.

In what follows, we assume that:

µ = 0, ν = 0 (2.8.39)

For continuous–time signals, the zero–mean assumptions can always be made to
hold by appropriately translating the origin on the time and frequency axes (see,
e.g., [Cohen 1995]). However, doing the same in the case of the discrete–time
sequences considered here does not appear to be possible. Indeed, µ may not be
integer–valued, and the support of X(ω) is finite and hence is affected by transla-
tion. Consequently, in the present case the zero–mean assumption introduces some
restriction; nevertheless we impose it to simplify the analysis.

According to the discussion above and assumption (2.8.39), we define the
(equivalent) time width and bandwidth of x(t) as follows:

Ñe =

[ ∞∑

t=−∞
t2|x̃(t)|2

]1/2

β̃e =
1

2π

[
1

2π

∫ π

−π
ω2|X̃(ω)|2dω

]1/2

In the remainder of this complement, we prove the following time–bandwidth prod-
uct result:

Ñeβ̃e ≥ 1

4π
(2.8.40)

which holds true under (2.8.39) and the weak additional assumption that

|X̃(π)| = 0 (2.8.41)

To prove (2.8.40), first we note that

X̃ ′(ω) ,
dX̃(ω)

dω
= −i

∞∑

t=−∞
tx̃(t)e−iωt
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Hence, iX̃ ′(ω) is the DTFT of {tx̃(t)}, which implies (by Parseval’s theorem) that

∞∑

t=−∞
t2|x̃(t)|2 =

1

2π

∫ π

−π
|X̃ ′(ω)|2dω (2.8.42)

Consequently, by the Cauchy–Schwartz inequality for functions (see Result R23 in
Appendix A),

Ñeβ̃e =

[
1

2π

∫ π

−π
|X̃ ′(ω)|2dω

]1/2 [
1

(2π)3

∫ π

−π
ω2|X̃(ω)|2dω

]1/2

≥ 1

(2π)2

∣
∣
∣
∣

∫ π

−π
ωX̃∗(ω)X̃ ′(ω)dω

∣
∣
∣
∣

=
1

2(2π)2

{∣
∣
∣
∣

∫ π

−π
ωX̃∗(ω)X̃ ′(ω)dω

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ π

−π
ωX̃(ω)X̃∗′(ω)dω

∣
∣
∣
∣

}

(2.8.43)

(the first equality above follows from (2.8.42) and the last one from a simple calcu-
lation). Hence

Ñeβ̃e ≥ 1

2(2π)2

∣
∣
∣
∣

∫ π

−π
ω
[

X̃∗(ω)X̃ ′(ω) + X̃(ω)X̃∗′(ω)
]

dω

∣
∣
∣
∣

=
1

2(2π)2

∣
∣
∣
∣

∫ π

−π
ω
[

|X̃(ω)|2
]′
dω

∣
∣
∣
∣

which, after integrating by parts and using (2.8.41), yields

Ñeβ̃e ≥ 1

2(2π)2

∣
∣
∣
∣
∣
ω|X̃(ω)|2

∣
∣
∣
∣

π

−π
−
∫ π

−π
|X̃(ω)|2dω

∣
∣
∣
∣
∣
=

1

2(2π)

and the proof is concluded.

Remark: There is an alternative way to complete the proof above, starting from the
inequality in (2.8.43). In fact, as we will see, this alternative proof yields a tighter
inequality than (2.8.40). Let ϕ(ω) denote the phase of X̃(ω):

X̃(ω) = |X̃(ω)|eiϕ(ω)

Then,

ωX̃∗(ω)X̃ ′(ω) = ω|X̃(ω)|
[

|X̃(ω)|
]′

+ iωϕ′(ω)|X̃(ω)|2

=
1

2

[

ω|X̃(ω)|2
]′

− 1

2
|X̃(ω)|2 + iωϕ′(ω)|X̃(ω)|2 (2.8.44)

Inserting (2.8.44) into (2.8.43) yields

Ñeβ̃e ≥ 1

(2π)2

∣
∣
∣
∣
∣

ω

2
|X̃(ω)|2

∣
∣
∣
∣

π

−π
− π + i2πγ

∣
∣
∣
∣
∣

(2.8.45)
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where

γ =
1

2π

∫ π

−π
ωϕ′(ω)|X̃(ω)|2dω

can be interpreted as the “covariance” of ω and ϕ′(ω) under the “probability density
function” given by |X̃(ω)|2/(2π). From (2.8.45) we obtain at once

Ñeβ̃e ≥ 1

4π

√

1 + 4γ2 (2.8.46)

which is a slightly stronger result than (2.8.40). �

The results (2.8.40) and (2.8.46) are similar to (2.8.35), and hence the type of
comments previously made about (2.8.35) applies to (2.8.40) and (2.8.46) as well.

For a more general time-bandwidth product result than the one above, see
[Doroslovacki 1998]; the papers [Calvez and Vilbé 1992] and [Ishii and

Furukawa 1986] contain similar results to the one presented in this complement.

2.9 EXERCISES

Exercise 2.1: Covariance Estimation for Signals with Unknown Means
The sample covariance estimators (2.2.3) and (2.2.4) are based on the assump-

tion that the signal mean is equal to zero. A simple calculation shows that, under
the zero–mean assumption,

E {r̃(k)} = r(k) (2.9.1)

and

E {r̂(k)} =
N − |k|
N

r(k) (2.9.2)

where {r̃(k)} denotes the sample covariance estimate in (2.2.3). Equations (2.9.1)
and (2.9.2) show that r̃(k) is an unbiased estimate of r(k), whereas r̂(k) is a biased
one (note, however, that the bias in r̂(k) is small for N � |k|). For this reason,
{r̃(k)} and {r̂(k)} are often called the unbiased and, respectively, biased sample
covariances.

Whenever the signal mean is unknown, a most natural modification of the
covariance estimators (2.2.3) and (2.2.4) is as follows:

r̃(k) =
1

N − k

N∑

t=k+1

[y(t) − ȳ] [y(t− k) − ȳ]∗ (2.9.3)

and

r̂(k) =
1

N

N∑

t=k+1

[y(t) − ȳ] [y(t− k) − ȳ]∗ (2.9.4)
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where ȳ is the sample mean

ȳ =
1

N

N∑

t=1

y(t) (2.9.5)

Show that in the unknown mean case, the usual names of unbiased and biased
sample covariances associated with (2.9.3) and (2.9.4), respectively, may no longer
be appropriate. Indeed, in such a case both estimators may be biased; furthermore,
r̂(k) may be less biased than r̃(k). To simplify the calculations, assume that y(t) is
white noise.

Exercise 2.2: Covariance Estimation for Signals with Unknown Means
(cont’d)

Show that the sample covariance sequence {r̂(k)} in equation (2.9.4) of Exer-
cise 2.1 satisfies the following equality:

N−1∑

k=−(N−1)

r̂(k) = 0 (2.9.6)

The above equality may seem somewhat surprising. (Why should the {r̂(k)} satisfy
such a constraint, which the true covariances do not necessarily satisfy? Note, for
instance, that the latter covariance sequence may well comprise only positive ele-
ments.) However, the equality in (2.9.6) has a natural explanation when viewed in
the context of periodogram–based spectral estimation. Derive and explain formula
(2.9.6) in the aforementioned context.

Exercise 2.3: Unbiased ACS Estimates may lead to Negative Spectral
Estimates

We stated in Section 2.2.2 that if unbiased ACS estimates, given by equation
(2.2.3), are used in the correlogram spectral estimate (2.2.2), then negative spectral
estimates may result. Find an example data sequence {y(t)}Nt=1 that gives such a
negative spectral estimate.

Exercise 2.4: Variance of Estimated ACS
Let {y(t)}Nt=1 be real Gaussian (for simplicity), with zero mean, ACS equal

to {r(k)}, and ACS estimate (either biased or unbiased) equal to {r̂(k)} (given by
equation (2.2.3) or (2.2.4); we treat both cases simultaneously). Assume, without
loss of generality, that k ≥ 0.

(a) Make use of equation (2.4.24) to show that

var{r̂(k)} = α2(k)

N−k−1∑

m=−(N−k−1)

(N − k − |m|)
[
r2(m) + r(m+ k)r(m− k)

]

where

α(k) =







1

N − k
for unbiased ACS estimates

1

N
for biased ACS estimates
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Hence, for large N , the standard deviation of the ACS estimate is O(1/
√
N)

under weak conditions on the true ACS {r(k)}.

(b) For the special case that y(t) is white Gaussian noise, show that
cov{r̂(k), r̂(l)} = 0 for k 6= l, and find a simple expression for var{r̂(k)}.

Exercise 2.5: Another Proof of the Equality φ̂p(ω) = φ̂c(ω)
The proof of the result (2.2.6) in the text introduces an auxiliary random

sequence and treats the original data sequence as deterministic (nonrandom). That
proof relies on several results previously derived. A more direct proof of (2.2.6) can
be found using only (2.2.1), (2.2.2), and (2.2.4). Find such a proof.

Exercise 2.6: A Compact Expression for the Sample ACS
Show that the expressions for the sample ACS given in the text (equations

(2.2.3) or (2.2.4) for k ≥ 0 and (2.2.5) for k < 0) can be rewritten using a single
formula as follows:

r̂(k) = ρ

N∑

p=1

N∑

s=1

y(p)y∗(s)δs,p−k, k = 0,±1, . . . ,±(N − 1) (2.9.7)

where ρ = 1
N for (2.2.4) and ρ = 1

N−|k| for (2.2.3).

Exercise 2.7: Yet Another Proof of the Equality φ̂p(ω) = φ̂c(ω)
Use the compact expression for the sample ACS derived in Exercise 2.6 to

obtain a very simple proof of (2.2.6).

Exercise 2.8: Linear Transformation Interpretation of the DFT
Let F be the N × N matrix whose (k, t)th element is given by W kt, where

W is as defined in (2.3.2). Then the DFT, (2.3.3), can be written as a linear
transformation of the data vector y , [y(1) . . . y(N)]T ,

Y , [Y (0) . . . Y (N − 1)]T = Fy (2.9.8)

Show that F is an orthogonal matrix that satisfies

1

N
FF ∗ = I (2.9.9)

and, as a result, that the inverse transform is

y =
1

N
F ∗Y (2.9.10)

Deduce from the above that the DFT is nothing but a representation of the data
vector y via an orthogonal basis in Cn (the basis vectors are the columns of F ∗).
Also, deduce that if the sequence {y(t)} is periodic with a period equal to N , then
the Fourier coefficient vector, Y , determines the whole sequence {y(t)}t=1,2,..., and
that in effect the inverse transform (2.9.10) can be extended to include all samples
y(1), . . . , y(N), y(N + 1), y(N + 2), . . .
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Exercise 2.9: For White Noise the Periodogram is an Unbiased PSD
Estimator

Let y(t) be a zero–mean white noise with variance σ2 and let

Y (ωk) =
1√
N

N−1∑

t=0

y(t)e−iωkt ; ωk =
2π

N
k (k = 0, . . . , N − 1)

denote its (normalized) DFT evaluated at the Fourier frequencies.

(a) Derive the covariances

E {Y (ωk)Y
∗(ωr)} , k, r = 0, . . . , N − 1

(b) Use the result of the previous calculation to conclude that the periodogram

φ̂(ωk) = |Y (ωk)|2 is an unbiased estimator of the PSD of y(t).

(c) Explain whether the unbiasedness property holds for ω 6= ωk as well. Present
an intuitive explanation for your finding.

Exercise 2.10: Shrinking the Periodogram
First, we introduce a simple general result on mean squared error (MSE)

reduction by shrinking. Let x̂ be some estimate of a true (and unknown) parameter
x. Assume that x̂ is unbiased, i.e., E(x̂) = x, and let σ2

x̂ denote the MSE of x̂

σ2
x̂ = E

{
(x̂− x)2

}

(Since x̂ is unbiased, σ2
x̂ also equals the variance of x̂.) For a fixed (nonrandom) ρ,

let
x̃ = ρx̂

be another estimate of x. The “shrinkage coefficient” ρ can be chosen so as to make
the MSE of x̃ (much) smaller than σ2

x̂. (Note that x̃, for ρ 6= 1, is a biased estimate
of x; hence x̃ trades off bias for variance.) More precisely, show that the MSE of x̃,
σ2
x̃, achieves its minimum value (with respect to ρ) of

σ2
x̃o

= ρo σ
2
x̂

for

ρo =
x2

x2 + σ2
x̂

Next, consider the application of the previous result to the periodogram. As we
explained in the chapter, the periodogram–based spectral estimate is asymptotically
unbiased and has an asymptotic MSE equal to the squared PSD value:

E
{

φ̂p(ω)
}

→ φ(ω), E
{

(φ̂p(ω) − φ(ω))2
}

→ φ2(ω) as N → ∞

Show that the “optimally shrunk” periodogram estimate is

φ̃(ω) = φ̂p(ω)/2
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and that the MSE of φ̃(ω) is half the MSE of φ̂p(ω).
Finally, comment on the general applicability of this extremely simple tool for

MSE reduction.

Exercise 2.11: Asymptotic Maximum Likelihood Estimation of φ(ω)
from φ̂p(ω)

It follows from the calculations in Section 2.4 that, asymptotically in N , φ̂p(ω)

has mean φ(ω) and variance φ2(ω). In this exercise we assume that φ̂p(ω) is (asymp-
totically) Gaussian distributed (which is not necessarily the case; however, the
spectral estimator derived here under the Gaussian assumption may also be used
when this assumption does not hold). Hence, the asymptotic probability density

function of φ̂p(ω) is (we omit the index p as well as the dependence on ω to simplify
the notation):

pφ(φ̂) =
1

√

2πφ2
exp

[

− (φ̂− φ)2

2φ2

]

Show that the maximum likelihood estimate (MLE) of φ based on φ̂, which by

definition is equal to the maximizer of pφ(φ̂) (see Appendices B and C for a short
introduction of maximum likelihood estimation) is given by

φ̃ =

√
5 − 1

2
φ̂

Compare φ̃ with the “optimally shrunk” estimate of φ derived in Exercise 2.10.

Exercise 2.12: Plotting the Spectral Estimates in dB
It has been shown in this chapter that the spectral estimate φ̂(ω), obtained

via an improved periodogram method, is asymptotically unbiased with a variance
of the form µ2φ2(ω), where µ is a constant that can be made (much) smaller than
one by appropriately choosing the window. This fact implies that the confidence
interval φ̂(ω) ± µφ(ω), constructed around the estimated PSD, should include the
true (and unknown) PSD with a large probability. Now, obtaining a confidence
interval as above has a twofold drawback: first, φ(ω) is unknown; secondly, the
interval may have significantly different widths for different frequency values.

Show that plotting φ̂(ω) in decibels eliminates the previous drawbacks. More

precisely, show that when φ̂(ω) is expressed in dB, its asymptotic variance is c2µ2

(with c = 10 log10 e), and hence that the confidence interval for a log–scale plot has
the same width (independent of φ(ω)) for all ω.

Exercise 2.13: Finite–Sample Variance/Covariance Analysis of the Peri-
odogram

This exercise has two aims. First, it shows that in the Gaussian case the
variance/covariance analysis of the periodogram can be done in an extremely simple
manner (even without the assumption that the data comes from a linear process, as
in (2.4.26)). Secondly, the exercise asks for a finite–sample analysis which, for some
purposes, may be more useful than the asymptotic analysis presented in the text.
Indeed, the asymptotic analysis result (2.4.21) may be misleading if not interpreted
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with care. For instance, (2.4.21) says that asymptotically (for N → ∞) φ̂(ω1)

and φ̂(ω2) are uncorrelated with one another, no matter how close ω1 and ω2 are.
This cannot be true in finite samples, and hence the following question naturally
arises: For a given N , how close can ω1 be to ω2 such that φ̂(ω1) and φ̂(ω2) are
(nearly) uncorrelated with each other? The finite–sample analysis of this exercise
can provide an answer to such questions, whereas the asymptotic analysis cannot.
Let

a(ω) = [eiω . . . eiNω]T

y = [y(1) . . . y(N)]T

Then the periodogram, (2.2.1), can be written as (we omit the subindex p of φ̂p(ω)
in this exercise):

φ̂(ω) = |a∗(ω)y|2/N (2.9.11)

Assume that {y(t)} is a zero mean, stationary circular Gaussian process. The
“circular Gaussianity” assumption (see, e.g., Appendix B) allows us to write the
fourth–order moments of {y(t)} as (see equation (2.4.24)):

E {y(t)y∗(s)y(u)y∗(v)} = E {y(t)y∗(s)}E {y(u)y∗(v)}
+E {y(t)y∗(v)}E {y(u)y∗(s)} (2.9.12)

Make use of (2.9.11) and (2.9.12) to show that

cov{φ̂(µ), φ̂(ν)} , E
{[

φ̂(µ) − E{φ̂(µ)}
] [

φ̂(ν) − E{φ̂(ν)}
]}

= |a∗(µ)Ra(ν)|2/N2
(2.9.13)

where R = E {yy∗}. Deduce from (2.9.13) that

var{φ̂(µ)} = |a∗(µ)Ra(µ)|2/N2 (2.9.14)

Use (2.9.14) to readily rederive the variance part of the asymptotic result (2.4.21).

Next, use (2.9.14) to show that the covariance between φ̂(µ) and φ̂(ν) is not signif-
icant if

|µ− ν| > 4π/N

and also that it may be significant otherwise. Hint: To show the inequality above,
make use of the Carathéodory parameterization of a covariance matrix in Sec-
tion 4.9.2.

Exercise 2.14: Data–Weighted ACS Estimate Interpretation of Bartlett
and Welch Methods

Consider the Bartlett estimator, and assume LM = N .

(a) Show that the Bartlett spectral estimate can be written as:

φ̂B(ω) =

M−1∑

k=−(M−1)

r̃(k)e−iωk
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where

r̃(k) =

N∑

t=k+1

α(k, t)y(t)y∗(t− k), 0 ≤ k < M

for some α(k, t) to be derived. Note that this is nearly of the form of the
Blackman–Tukey spectral estimator, with the exception that the “standard”
biased ACS estimate that is used in the Blackman–Tukey estimator is replaced
by the “generalized” ACS estimate r̃(k).

(b) Make use of the derived expression for α(k, t) to conclude that the Bartlett
estimator is inferior to the Blackman–Tukey estimator (especially for small
N) because it fails to use all available lag products in forming ACS estimates.

(c) Find α(k, t) for the Welch method. What overlap values (K in equation
(2.7.7)) give lag product usage similar to the Blackman–Tukey method?

Exercise 2.15: Approximate Formula for Bandwidth Calculation
Let W (ω) denote a general spectral window that has a peak at ω = 0 and is

symmetric about that point. In addition, assume that the peak of W (ω) is narrow
(as usually it should be). Under these assumptions, make use of a Taylor series
expansion to show that an approximate formula for calculating the bandwidth B of
the peak of W (ω) is the following:

B ' 2
√

|W (0)/W ′′(0)| (2.9.15)

The spectral peak bandwidth B is mathematically defined as follows. Let ω1 and
ω2 denote the “half–power points,” defined through

W (ω1) = W (ω2) = W (0)/2, ω1 < ω2

(hence the ratio 10 log10 (W (0)/W (ωj)) ' 3dB for j = 1, 2; we use 10 log10 rather
than 20 log10 because the spectral window is applied to a power quantity, φ(ω)).
Then since W (ω) is symmetric, so ω2 = −ω1,

B , ω2 − ω1 = 2ω2

As an application of (2.9.15), show that

B ' 0.78 · 2π/N (in radians per sampling interval)

or, equivalently, that

B ' 0.78/N (in cycles per sampling interval)

for the Bartlett window (2.4.15).
Note that this formula remains approximate even as N → ∞. Even though

the half power bandwidth of the window gets smaller as N increases (so that one
would expect the Taylor series expansion to be more accurate), the curvature of
the window at ω = 0 increases without bound as N increases. For the Bartlett



“sm2”
2004/2/22
page 78

i

i

i

i

i

i

i

i

78 Chapter 2 Nonparametric Methods

window, verify that B ' 0.9 · 2π/N for N large, which differs from the prediction
in this exercise by about 16%.

Exercise 2.16: A Further Look at the Time–Bandwidth Product

We saw in Section 2.6.1 that the product between the equivalent time and
frequency widths of a regular window equals unity. Use the formula (2.9.15) derived
in Exercise 2.15 to show that the spectral peak bandwidth B of a window w(k) that
is nonzero only for |k| < N , satisfies

B ·N ≥ 1/π, (in cycles per sampling interval) (2.9.16)

This once again illustrates the “time–bandwidth product” type of result. Note
that (2.9.16) involves the effective window time length and spectral peak width, as
opposed to (2.6.5) which is concerned with equivalent time and frequency widths.

Exercise 2.17: Bias Considerations in Blackman–Tukey Window Design

The discussion in this chapter treated the bias of a spectral estimator and its
resolution as two interrelated properties. This exercise illustrates further the strong
relationship between bias and resolution.

Consider φ̂BT (ω) as in (2.5.1), and without loss of generality assume that
E{r̂(k)} = r(k). (Generality is not lost because, if E{r̂(k)} = α(k)r(k), then
replacing w(k) by α(k)w(k) and r̂(k) by r̂(k)/α(k) results in an equivalent estimator
with unbiased ACS estimates.) Find the weights {w(k)}M−1

k=−M+1 that minimize the
squared bias, as given by the error measure:

ε =
1

2π

∫ π

−π

[

φ(ω) − E{φ̂BT (ω)}
]2

dω (2.9.17)

In particular, show that the weight function that minimizes ε is the rectangular
window. Recall that the rectangular window also has the narrowest main lobe, and
hence the best resolution.

Exercise 2.18: A Property of the Bartlett Window

Let the window length, M , be given. Then, in the general case, the rectan-
gular window can be expected to yield the windowed spectral estimate with the
most favorable bias properties, owing to the fact that the sample covariance lags
{r̂(k)}M−1

k=−(M−1), appearing in (2.5.1), are left unchanged by this window (also see

Exercise 2.17). The rectangular window, however, has the drawback that it is not
positive definite and hence may produce negative spectral estimates. The Bartlett
window, on the other hand, is positive definite and therefore yields a spectral esti-
mate that is positive for all frequencies. Show that the latter window is the positive
definite window which is closest to the rectangular one, in the sense of minimizing
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the following criterion:

min
{w(k)}

M−1∑

k=0

|1 − w(k)| subject to:

1) w(k) ≡ 0 for |k| ≥ M
2) {w(k)}∞

k=−∞ is a positive definite sequence
3) w(0) = 1

(2.9.18)
Conclude that the Bartlett window is the positive definite window that distorts
the sample covariances {r̂(k)}M−1

k=−(M−1) least in the windowed spectral estimate

formula. Hint: Any positive definite real window {w(k)}M−1
k=−(M−1) can be written

as

w(k) =

M−1∑

i=0

bi bi+k (bi = 0 for i ≥ M) (2.9.19)

for some real–valued parameters {bi}M−1
i=0 . Make use of the above parameterization

of the set of positive definite windows to transform (2.9.18) into an optimization
problem without constraints.

COMPUTER EXERCISES

Tools for Periodogram Spectral Estimation:
The text web site www.prenhall.com/stoica contains the following Matlab

functions for use in computing periodogram-based spectral estimates. In each case,
y is the input data vector, L controls the frequency sample spacing of the output, and
the output vector phi= φ(ωk) where ωk = 2πk

L . Matlab functions that generate
the Correlogram, Blackman–Tukey, Windowed Periodogram, Bartlett, Welch, and
Daniell spectral estimates are as follows:

• phi = correlogramse(y,L)

Implements the correlogram spectral estimate in equation (2.2.2).

• phi = btse(y,w,L)

Implements the Blackman–Tukey spectral estimate in equation (2.5.1); w is
the vector [w(0), . . . , w(M − 1)]T .

• phi = periodogramse(y,v,L)

Implements the windowed periodogram spectral estimate in equation (2.6.24);
v is a vector of window function elements [v(1), . . . , v(N)]T , and should be
the same size as y. If v is a vector of ones, this function implements the
unwindowed periodogram spectral estimate in equation (2.2.1).

• phi = bartlettse(y,M,L)

Implements the Bartlett spectral estimate in equations (2.7.2) and (2.7.3); M
is the size of each subsequence as in equation (2.7.2).

• phi = welchse(y,v,K,L)

Implements the Welch spectral estimate in equation (2.7.8); M is the size of
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each subsequence, v is the window function [v(1), . . . , v(M)]T applied to each
subsequence, and K is the overlap parameter, as in equation (2.7.7).

• phi = daniellse(y,J,Ntilde)

Implements the Daniell spectral estimate in equation (2.7.16); J and Ntilde

correspond to J and Ñ there.

Exercise C2.19: Zero Padding Effects on Periodogram Estimators
In this exercise we study the effect zero padding has on the periodogram.
Consider the sequence

y(t) = 10 sin(0.2 · 2πt+ φ1) + 5 sin((0.2 + 1/N)2πt+ φ2) + e(t), (2.9.20)

where t = 0, . . . , N − 1, and e(t) is white Gaussian noise with variance 1. Let
N = 64 and φ1 = φ2 = 0.

From the results in Chapter 4, we find the spectrum of y(t) to be

φ(ω) = 50π [δ(ω − 0.2 · 2π) + δ(ω + 0.2 · 2π)]

+12.5π [δ(ω − (0.2 + 1/N) · 2π) + δ(ω + (0.2 + 1/N) · 2π)] + 1

Plot the periodogram for the sequence {y(t)}, and the sequence {y(t)} zero
padded with N , 3N , 5N , and 7N zeroes.

Explain the difference between the five periodograms. Why does the first
periodogram not give a good description of the spectral content of the signal? Note
that zero padding does not change the resolution of the estimator.

Exercise C2.20: Resolution and Leakage Properties of the Periodogram
We have seen from Section 2.4 that the expected value of the periodogram is

the convolution of the true spectrum φy(ω) with the Fourier transform of a Bartlett
window, denoted WB(ω) (see equation (2.4.15)). The shape and size of the WB(ω)
function determines the amount of smearing and leakage in the periodogram. Sim-
ilarly, in Section 2.5 we introduced a windowed periodogram in (2.6.24) whose
expected value is equal to the expected value of a corresponding Blackman–Tukey
estimate with weights w(k) given by (2.6.31). Different window functions than
the rectangular window could be used in the periodogram estimate, giving rise to
correspondingly different windows in the correlogram estimate. The choice of win-
dow affects the resolution and leakage properties of the periodogram (correlogram)
spectral estimate.

Resolution Properties: The amount of smearing of the spectral estimate is de-
termined by the width of the main lobe, and the amount of leakage is determined
by the energy in the sidelobes. The amount of smearing is what limits the resolving
power of the periodogram, and is studied empirically below.

We first study the resolution properties by considering a sequence made up of
two sinusoids in noise, where the two sinusoidal frequencies are “close”. Consider

y(t) = a1 sin(f0 · 2πt+ φ1) + a2 sin((f0 + α/N)2πt+ φ2) + e(t), (2.9.21)

where e(t) is real–valued Gaussian white noise with zero mean and variance σ2. We
choose f0 = 0.2 and N = 256, but the results are nearly independent of f0 and N .



“sm2”
2004/2/22
page 81

i

i

i

i

i

i

i

i

Section 2.9 Exercises 81

(a) Determine empirically the 3 dB width of the main lobe of WB(ω) as a function
of N , and verify equation (2.4.18). Also determine the peak sidelobe height
(in dB) as a function of N . Note that the sidelobe level of a window function is
generally independent of N . Verify this by examining plots of the magnitude
of WB(ω) for several values of N ; try both linear and dB scales in your plots.

(b) Set σ2 = 0 (this eliminates the statistical variation in the periodogram, so
that the bias properties can be isolated and studied). Set a1 = a2 = 1 and
φ1 = φ2 = 0. Plot the (zero–padded) periodogram of y(t) for various α and
determine the resolution threshold (i.e., the minimum value of α for which
the two frequency components can be resolved). How does this value of α
compare with the predicted resolution in Section 2.4?

(c) Repeat part (b) for a Hamming–windowed correlogram estimate.

(d) For reasonably high signal–to–noise ratio (SNR) values and reasonably close
signal amplitudes, the resolution thresholds in parts (b) and (c) above are
not very sensitive to variations in the signal amplitudes and frequency f0.
However, these thresholds are sensitive to the phases φ1 and φ2, especially if
α is smaller than 1. Try two pairs (φ1, φ2) so that the two sinusoids are in
phase and out of phase, respectively, at the center of the observation interval,
and compare the resolution thresholds. Also, try different values of a1, a2,
and σ2 to verify that their values have relatively little effect on the resolution
threshold.

Spectral Leakage: In this part we analyze the effects of leakage on the peri-
odogram estimate. Leakage properties can be clearly seen when trying to estimate
two sinusoidal terms that are well separated but have greatly differing amplitudes.

(a) Generate the sinusoidal sequence above for α = 4, σ2 = 0, and φ1 = φ2 = 0.
Set a1 = 1 and vary a2 (choose a2 = 1, 0.1, 0.01, and 0.001, for example).
Compute the periodogram (using a rectangular data window), and comment
on the ability to identify the second sinusoidal term from the spectral estimate.

(b) Repeat part (a) for α = 12. Does the amplitude threshold for identifiability
of the second sinusoidal term change?

(c) Explain your results in parts (a) and (b) by looking at the amplitude of the
Bartlett window’s Fourier transform at frequencies corresponding to α/N for
α = 4 and α = 12.

(d) The Bartlett window (and many other windows) has the property that the
leakage level depends on the distance between spectral components in the
data, as seen in parts (a) and (b). For many practical applications it may be
known what dynamic range the sinusoidal components in the data may have,
and it is thus desirable to use a data window with a constant sidelobe level
that can be chosen by the user. The Chebyshev window (or Taylor window) is
a good choice for these applications, because the user can select the (constant)
sidelobe level in the window design (see the Matlab command chebwin).

Assume we know that the maximum dynamic range of sinusoidal components
is 60 dB. Design a Chebyshev window v(t) and corresponding Blackman–
Tukey window w(k) using (2.6.31) so that the two sinusoidal components of
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the data can be resolved for this dynamic range using (i) the Blackman–Tukey
spectral estimator with window w(k), and (ii) the windowed periodogram
method with window v(t). Plot the Fourier transform of the window and
determine the spectral resolution of the window.

Test your window design by computing the Blackman–Tukey and windowed
periodogram estimates for two sinusoids whose amplitudes differ by 50 dB
in dynamic range, and whose frequency separation is the minimum value you
predicted. Compare the resolution results with your predictions. Explain why
the smaller amplitude sinusoid can be detected using one of the methods but
not the other.

Exercise C2.21: Bias and Variance Properties of the Periodogram Spec-
tral Estimate

In this exercise we verify the theoretical predictions about bias and variance
properties of the periodogram spectral estimate. We use autoregressive moving
average (ARMA) signals (see Chapter 3) as test signals.

Bias Properties — Resolution and Leakage: We consider a random process
y(t) generated by filtering white noise:

y(t) = H(z)e(t)

where e(t) is zero mean Gaussian white noise with variance σ2 = 1, and the filter
H(z) is given by:

H(z) =

2∑

k=1

Ak

[
1 − zkz

−1

1 − pkz−1
+

1 − z∗
kz

−1

1 − p∗
kz

−1

]

(2.9.22)

with
p1 = 0.99ei2π0.3 p2 = 0.99ei2π(0.3+α)

z1 = 0.95ei2π0.3 z2 = 0.95ei2π(0.3+α) (2.9.23)

We first let A1 = A2 = 1 and α = 0.05.

(a) Plot the true spectrum φ(ω). Using a sufficiently fine grid for ω so that
approximation errors are small, plot the ACS using an inverse FFT of φ(ω).

(b) For N = 64, plot the Fourier transform of the Bartlett window, and also

plot the expected value of the periodogram estimate φ̂p(ω) as given by equa-
tion (2.4.8). We see that for this example and data length, the main lobe
width of the Bartlett window is wider than the distance between the spectral
peaks in φ(ω). Discuss how this relatively wide main lobe width affects the
resolution properties of the estimator.

(c) Generate 50 realizations of y(t), each of length N = 64 data points. You
can generate the data by passing white noise through the filter H(z) (see the
Matlab commands dimpulse and filter); be sure to discard a sufficient
number of initial filter output points to effectively remove the transient part
of the filter output. Compute the periodogram spectral estimates for each data
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sequence; plot 10 spectral estimates overlaid on a single plot. Also plot the
average of the 50 spectral estimates. Compare the average with the predicted
expected value as found in part (b).

(d) The resolution of the spectral peaks in φ(ω) will depend on their separation
relative to the width of the Bartlett window main lobe. Generate realizations
of y(t) for N = 256, and find the minimum value of α so that the spectral
peaks can be resolved in the averaged spectral estimate. Compare your results
with the predicted formula (2.4.18) for spectral resolution.

(e) Leakage from the Bartlett window will impact the ability to identify peaks
of different amplitudes. To illustrate this, generate realizations of y(t) for
N = 64, for both α = 4/N and α = 12/N . For each value of α, set A1 = 1,
and vary A2 to find the minimum amplitude for which the lower amplitude
peak can reliably be identified from the averaged spectral estimate. Compare
this value with the Bartlett window sidelobe level for ω = 2πα and for the two
values of α. Does the window sidelobe level accurately reflect the amplitude
separation required to identify the second peak?

Variance Properties: In this part we will verify that the variance of the pe-
riodogram is almost independent of the data length, and compare the empirical
variance with theoretical predictions. For this part, we consider a broadband signal
y(t) for which the Bartlett window smearing and leakage effects are small.

Consider the broadband ARMA process

y(t) =
B1(z)

A1(z)
e(t)

with

A1(z) = 1 − 1.3817z−1 + 1.5632z−2 − 0.8843z−3 + 0.4096z−4

B1(z) = 1 + 0.3544z−1 + 0.3508z−2 + 0.1736z−3 + 0.2401z−4

(a) Plot the true spectrum φ(ω).

(b) Generate 50 Monte–Carlo data realizations using different noise sequences,
and compute the corresponding 50 periodogram spectral estimates. Plot the
sample mean, the sample mean plus one sample standard deviation and sample
mean minus one sample standard deviation spectral estimate curves. Do this
for N = 64, 256, and 1024. Note that the variance does not decrease with N .

(c) Compare the sample variance to the predicted variance in equation (2.4.21).

It may help to plot stdev{φ̂(ω)}/φ(ω) and determine to what degree this curve
is approximately constant. Discuss your results.

Exercise C2.22: Refined Methods: Variance–Resolution Tradeoff
In this exercise we apply the Blackman–Tukey and Welch estimators to both

a narrowband and broadband random process. We consider the same processes in
Chapters 3 and 5 to facilitate comparison with the spectral estimation methods
developed in those chapters.
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Broadband ARMA Process: Generate realizations of the broadband autore-
gressive moving–average (ARMA) process

y(t) =
B1(z)

A1(z)
e(t)

with

A1(z) = 1 − 1.3817z−1 + 1.5632z−2 − 0.8843z−3 + 0.4096z−4

B1(z) = 1 + 0.3544z−1 + 0.3508z−2 + 0.1736z−3 + 0.2401z−4

Choose the number of samples as N = 256.

(a) Generate 50 Monte–Carlo data realizations using different noise sequences,
and compute the corresponding 50 spectral estimates using the following
methods:

• The Blackman–Tukey spectral estimate using the Bartlett window wB(t).
Try both M = N/4 and M = N/16.

• The Welch spectral estimate using the rectangular window wR(t), and
using both M = N/4 and M = N/16 and overlap parameter K = M/2.

Plot the sample mean, the sample mean plus one sample standard devia-
tion and sample mean minus one sample standard deviation spectral estimate
curves. Compare with the periodogram results from Exercise C2.21, and with
each other.

(b) Judging from the plots you have obtained, how has the variance decreased
in the refined estimates? How does this variance decrease compare to the
theoretical expectations?

(c) As discussed in the text, the value of M should be chosen to compromise be-
tween low “smearing” and low variance. For the Blackman–Tukey estimate,
experiment with different values of M and different window functions to find
a “best design” (in your judgment), and plot the corresponding spectral esti-
mates.

Narrowband ARMA Process: Generate realizations of the narrowband ARMA
process

y(t) =
B2(z)

A2(z)
e(t)

with

A2(z) = 1 − 1.6408z−1 + 2.2044z−2 − 1.4808z−3 + 0.8145z−4

B2(z) = 1 + 1.5857z−1 + 0.9604z−2

and N = 256.
Repeat the experiments and comparisons in the broadband example for the

narrowband process.
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Exercise C2.23: Periodogram–Based Estimators applied to Measured
Data

Consider the data sets in the files sunspotdata.mat and lynxdata.mat.
These files can be obtained from the text web site www.prenhall.com/stoica.
Apply periodogram–based estimation techniques (possibly after some preprocess-
ing; see the following) to estimate the spectral content of these data. Try to answer
the following questions:

(a) Are there sinusoidal components (or periodic structure) in the data? If so,
how many components and at what frequencies?

(b) Nonlinear transformations and linear or polynomial trend removal are often
applied before spectral analysis of a time series. For the lynx data, compare
your spectral analysis results from the original data, and the data transformed
first by taking the logarithm of each sample and then by subtracting the
sample mean of this logarithmic data. Does the logarithmic transformation
make the data more sinusoidal in nature?
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C H A P T E R 3

Parametric Methods for
Rational Spectra

3.1 INTRODUCTION

The principal difference between the spectral estimation methods of Chapter 2 and
those in this chapter, is that in Chapter 2 we made no assumption on the stud-
ied signal (except for its stationarity). The parametric or model–based methods of
spectral estimation assume that the signal satisfies a generating model with known
functional form, and then proceed by estimating the parameters in the assumed
model. The signal’s spectral characteristics of interest are then derived from the
estimated model. In those cases where the assumed model is a close approximation
to the reality, it is no wonder that the parametric methods provide more accu-
rate spectral estimates than the nonparametric techniques. The nonparametric
approach to PSD estimation remains useful, though, in applications where there is
little or no information about the signal in question.

Our discussion of parametric methods for spectral estimation is divided into
two parts. In this chapter, we discuss parametric methods for rational spectra which
form a dense set in the class of continuous spectra (see Section 3.2) [Anderson

1971; Wei 1990]; more precisely, we discuss methods for estimating the param-
eters in rational spectral models. The parametric methods of spectral analysis,
unlike the nonparametric approaches, also require the selection of the structure
(or order) of the spectral model. A review of methods that can be used to solve
the structure selection problem can be found in Appendix C. Furthermore, in Ap-
pendix B we discuss the Cramér–Rao bound and the best accuracy achievable in the
rational class of spectral models. However, we do not include detailed results on the
statistical properties of the estimation methods discussed in the following sections
since: (i) such results are readily available in the literature [Kay 1988; Priestley

1981; Söderström and Stoica 1989]; (ii) parametric methods provide consistent
spectral estimates and hence (for large sample sizes, at least) the issue of statistical
behavior is not so critical; and (iii) a detailed statistical analysis is beyond the
scope of an introductory course.

The second part of our discussion on parametric methods is contained in
the next chapter where we consider discrete spectra such as those associated with
sinusoidal signals buried in white noise. Mixed spectra (containing both continuous
and discrete spectral components, such as in the case of sinusoidal signals corrupted
by colored noise) are not covered explicitly in this text, but we remark that some
methods in Chapter 4 can be extended to deal with such spectra as well.

86



“sm2”
2004/2/22
page 87

i

i

i

i

i

i

i

i

Section 3.2 Signals with Rational Spectra 87

3.2 SIGNALS WITH RATIONAL SPECTRA

A rational PSD is a rational function of e−iω (i.e., the ratio of two polynomials in
e−iω):

φ(ω) =

∑m
k=−m γke

−iωk
∑n
k=−n ρke

−iωk (3.2.1)

where γ−k = γ∗
k and ρ−k = ρ∗

k. The Weierstrass Theorem from calculus asserts that
any continuous PSD can be approximated arbitrarily closely by a rational PSD of
the form (3.2.1), provided the degrees m and n in (3.2.1) are chosen sufficiently
large; that is, the rational PSDs form a dense set in the class of all continuous
spectra. This observation partly motivates the significant interest in the model
(3.2.1) for φ(ω), among the researchers in the “spectral estimation community”.

It is not difficult to show that, since φ(ω) ≥ 0, the rational spectral density
in (3.2.1) can be factored as follows:

φ(ω) =

∣
∣
∣
∣

B(ω)

A(ω)

∣
∣
∣
∣

2

σ2 (3.2.2)

where σ2 is a positive scalar, and A(ω) and B(ω) are the polynomials

A(ω) = 1 + a1e
−iω + . . .+ ane

−inω

B(ω) = 1 + b1e
−iω + . . .+ bme

−imω (3.2.3)

The result (3.2.2) can similarly be expressed in the Z–domain. With the notation
φ(z) =

∑m
k=−m γkz

−k/
∑n
k=−n ρkz

−k, we can factor φ(z) as:

φ(z) = σ2B(z)B∗(1/z∗)

A(z)A∗(1/z∗)
(3.2.4)

where, for example,

A(z) = 1 + a1z
−1 + · · · + anz

−n

A∗(1/z∗) = [A(1/z∗)]∗ = 1 + a∗
1z + · · · + a∗

nz
n

Recall the notational convention in this text that we write, for example, A(z) and
A(ω) with the implicit understanding that when we convert from a function of z
to a function of ω, we use the substitution z = eiω.

We note that the zeroes and poles of φ(z) are in symmetric pairs about the
unit circle; if zi = reiθ is a zero (pole) of φ(z), then (1/z∗

i ) = (1/r)eiθ is also a
zero (pole) (see Exercise 1.3). Under the assumption that φ(z) has no pole with
modulus equal to one, the region of convergence of φ(z) includes the unit circle
z = eiω. The result that (3.2.1) can be written as in (3.2.2) and (3.2.4) is called the
spectral factorization theorem (see, e.g., [Söderström and Stoica 1989; Kay

1988]).
The next point of interest is to compare (3.2.2) and (1.4.9). This comparison

leads to the following result.

The arbitrary rational PSD in (3.2.2) can be associated with a
signal obtained by filtering white noise of power σ2 through the
rational filter with transfer function H(ω) = B(ω)/A(ω).

(3.2.5)
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The filtering referred to in (3.2.5) can be written in the time domain as

y(t) =
B(z)

A(z)
e(t) (3.2.6)

or, alternatively,
A(z)y(t) = B(z)e(t) (3.2.7)

where y(t) is the filter output, and

z−1 = the unit delay operator (z−ky(t) = y(t− k))
e(t) = white noise of variance equal to σ2

Hence, by means of the spectral factorization theorem, the parameterized
model of φ(ω) turned into a model of the signal itself. The spectral estimation
problem can then be reduced to a problem of signal modeling. In the following sec-
tions, we present several methods for estimating the parameters in the signal model
(3.2.7) and in two of its special cases corresponding to m = 0 and, respectively,
n = 0.

A signal y(t) satisfying the equation (3.2.6) is called an autoregressive moving
average (ARMA or ARMA(n,m)) signal. If m = 0 in (3.2.6), then y(t) is an
autoregressive (AR or AR(n)) signal; and y(t) is a moving average (MA or MA(m))
signal if n = 0. For easy reference, we summarize these naming conventions below.

ARMA : A(z)y(t) = B(z)e(t)

AR : A(z)y(t) = e(t)

MA : y(t) = B(z)e(t)

(3.2.8)

By assumption, φ(ω) is finite for all ω values; as a result, A(z) cannot have any
zero exactly on the unit circle. Furthermore, since the poles and zeroes of φ(z) are
in reciprocal pairs, as explained before, it is always possible to choose A(z) to have
all its zeroes strictly inside the unit disc. The corresponding model (3.2.6) is then
said to be stable. If we assume, for simplicity, that φ(ω) does not vanish at any ω
then — similarly to the above — we can choose the polynomial B(z) so that it has
all zeroes inside the unit (open) disc. The corresponding model (3.2.6) is said to be
minimum phase (see Exercise 3.1 for a motivation for the name minimum phase).

We remark that in the previous paragraph we actually provided a sketch of
the proof of the spectral factorization theorem. That discussion also showed that
the spectral factorization problem associated with a rational PSD has multiple
solutions, with the stable and minimum phase ARMA model being only one of
them. In the following, we will consider the problem of estimating the parameters
in this particular ARMA equation. When the final goal is the estimation of φ(ω),
focusing on the stable and minimum phase ARMA model is no restriction.

3.3 COVARIANCE STRUCTURE OF ARMA PROCESSES

In this section we derive an expression for the covariances of an ARMA process
in terms of the parameters {ai}ni=1, {bi}mi=1, and σ2. The expression provides a



“sm2”
2004/2/22
page 89

i

i

i

i

i

i

i

i

Section 3.3 Covariance Structure of ARMA Processes 89

convenient method for estimating the ARMA parameters by replacing the true
autocovariances with estimates obtained from data. Nearly all ARMA spectral
estimation methods exploit this covariance structure either explicitly or implicitly,
and thus it will be widely used in the remainder of the chapter.

Equation (3.2.7) can be written as

y(t) +

n∑

i=1

aiy(t− i) =

m∑

j=0

bje(t− j), (b0 = 1) (3.3.1)

Multiplying (3.3.1) by y∗(t− k) and taking expectation yields

r(k) +

n∑

i=1

air(k − i) =

m∑

j=0

bjE {e(t− j)y∗(t− k)} (3.3.2)

Since the filter H(z) = B(z)/A(z) is asymptotically stable and causal, we can write

H(z) = B(z)/A(z) =

∞∑

k=0

hkz
−k, (h0 = 1)

which gives

y(t) = H(z)e(t) =

∞∑

k=0

hke(t− k).

Then the term E {e(t− j)y∗(t− k)} becomes

E {e(t− j)y∗(t− k)} = E

{

e(t− j)

∞∑

s=0

h∗
se

∗(t− k − s)

}

= σ2
∞∑

s=0

h∗
sδj,k+s = σ2h∗

j−k

where we use the convention that hk = 0 for k < 0. Thus, equation (3.3.2) becomes

r(k) +

n∑

i=1

air(k − i) = σ2
m∑

j=0

bjh
∗
j−k (3.3.3)

In general, hk is a nonlinear function of the {ai} and {bi} coefficients. However,
since hs = 0 for s < 0, equation (3.3.3) for k ≥ m+ 1 reduces to

r(k) +

n∑

i=1

air(k − i) = 0, for k > m (3.3.4)

Equation (3.3.4) is the basis for many estimators of the AR coefficients of AR(MA)
processes, as we will see.
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3.4 AR SIGNALS

In the ARMA class, the autoregressive or all–pole signals constitute the type that
is most frequently used in applications. The AR equation may model spectra with
narrow peaks by placing zeroes of the A–polynomial in (3.2.2) (with B(ω) ≡ 1) close
to the unit circle. This is an important feature since narrowband spectra are quite
common in practice. In addition, the estimation of parameters in AR signal models
is a well–established topic; the estimates are found by solving a system of linear
equations, and the stability of the estimated AR polynomial can be guaranteed.

We consider two methods for AR spectral estimation. The first is based di-
rectly on the linear relationship between the covariances and the AR parameters
derived in equation (3.3.4); it is called the Yule–Walker method. The second method
is based on a least squares solution of AR parameters using the time–domain equa-
tion A(z)y(t) = e(t). This so–called least squares method is closely related to the
problem of linear prediction, as we shall see.

3.4.1 Yule–Walker Method

In this section, we focus on a technique for estimating the AR parameters which
is called the Yule–Walker (YW) method [Yule 1927; Walker 1931]. For AR
signals, m = 0 and B(z) = 1. Thus, equation (3.3.4) holds for k > 0. Also, we have
from equation (3.3.3) that

r(0) +

n∑

i=1

air(−i) = σ2
0∑

j=0

bjh
∗
j = σ2 (3.4.1)

Combining (3.4.1) and (3.3.4) for k = 1, . . . , n gives the following system of linear
equations









r(0) r(−1) . . . r(−n)

r(1) r(0)
...

...
. . . r(−1)

r(n) . . . r(0)
















1
a1

...
an








=








σ2

0
...
0








(3.4.2)

The above equations are called the Yule–Walker equations or Normal equations,
and form the basis of many AR estimation methods. If {r(k)}nk=0 were known, we
could solve (3.4.2) for

θ = [a1, . . . , an]
T (3.4.3)

by using all but the first row of (3.4.2):






r(1)
...

r(n)




+






r(0) · · · r(−n+ 1)
...

. . .
...

r(n− 1) · · · r(0)











a1

...
an




 =






0
...
0




 (3.4.4)

or, with obvious definitions,

rn +Rnθ = 0. (3.4.5)
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The solution is θ = −R−1
n rn. Once θ is found, σ2 can be obtained from the first

row of (3.4.2) or, equivalently, from (3.4.1).

The Yule–Walker method for AR spectral estimation is based directly on
(3.4.2). Given data {y(t)}Nt=1, we first obtain sample covariances {r̂(k)}nk=0 using
the standard biased ACS estimator (2.2.4). We insert these ACS estimates in (3.4.2)

and solve for θ̂ and σ̂2 as explained above in the known–covariance case.

Note that the covariance matrix in (3.4.2) can be shown to be positive definite
for any n, and hence the solution to (3.4.2) is unique [Söderström and Stoica

1989]. When the covariances are replaced by standard biased ACS estimates,
the matrix can be shown to be positive definite for any sample (not necessarily
generated by an AR equation) that is not identically equal to zero; see the remark
in the next section for a proof.

To explicitly stress the dependence of θ and σ2 on the order n, we can write
(3.4.2) as

Rn+1

[
1
θn

]

=

[
σ2
n

0

]

(3.4.6)

We will return to the above equation in Section 3.5.

3.4.2 Least Squares Method

The Yule–Walker method for estimating the AR parameters is based on equation
(3.4.2) with the true covariance elements {r(k)} replaced by the sample covariances
{r̂(k)}. In this section, we derive another type of AR estimator based on a least
squares (LS) minimization criterion using the time–domain relation A(z)y(t) = e(t).
We develop the LS estimator by considering the closely related problem of linear
prediction. We then interpret the LS method as a Yule–Walker-type method that
uses a different estimate of Rn+1 in equation (3.4.6).

We first relate the Yule–Walker equations to the linear prediction problem.
Let y(t) be an AR process of order n. Then y(t) satisfies

e(t) = y(t) +

n∑

i=1

aiy(t− i) = y(t) + ϕT (t)θ (3.4.7)

, y(t) + ŷ(t)

where ϕ(t) = [y(t − 1), . . . , y(t − n)]T . We interpret ŷ(t) as a linear prediction of
y(t) from the n previous samples y(t − 1), . . . , y(t − n), and we interpret e(t) as
the corresponding prediction error . See Complement 3.9.1 and also Exercises 3.3–
3.5 for more discussion on this and other related linear prediction problems. The
vector θ that minimizes the prediction error variance σ2

n , E
{
|e(t)|2

}
is the AR

coefficient vector in (3.4.6), as we will show. From (3.4.7) we have

σ2
n = E

{
|e(t)|2

}
= E

{[
y∗(t) + θ∗ϕc(t)

] [
y(t) + ϕT (t)θ

]}

= r(0) + r∗
nθ + θ∗rn + θ∗Rnθ (3.4.8)
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where rn and Rn are defined in equations (3.4.4)–(3.4.5). The vector θ that mini-
mizes (3.4.8) is given by (see Result R34 in Appendix A)

θ = −R−1
n rn (3.4.9)

with corresponding minimum prediction error

σ2
n = r(0) − r∗

nR
−1
n rn (3.4.10)

Equations (3.4.9) and (3.4.10) are exactly the Yule–Walker equations in (3.4.5) and
(3.4.1) (or, equivalently, in (3.4.6)). Thus, we see that the Yule–Walker equations
can be interpreted as the solution to the problem of finding the best linear predictor
of y(t) from its n most recent past samples. For this reason, AR modeling is
sometimes referred to as linear predictive modeling.

The Least Squares AR estimation method is based on a finite–sample ap-
proximate solution of the above minimization problem. Given a finite set of mea-
surements {y(t)}Nt=1, we approximate the minimization of E

{
|e(t)|2

}
by the finite–

sample cost function

f(θ) =

N2∑

t=N1

|e(t)|2 =

N2∑

t=N1

∣
∣
∣
∣
∣
y(t) +

n∑

i=1

aiy(t− i)

∣
∣
∣
∣
∣

2

=

∥
∥
∥
∥
∥
∥
∥
∥
∥








y(N1)
y(N1 + 1)

...
y(N2)








+








y(N1 − 1) · · · y(N1 − n)
y(N1) · · · y(N1 + 1 − n)

...
...

y(N2 − 1) · · · y(N2 − n)







θ

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

, ‖y + Y θ‖2 (3.4.11)

where we assume y(t) = 0 for t < 1 and t > N . The vector θ that minimizes f(θ)
is given by (see Result R32 in Appendix A)

θ̂ = −(Y ∗Y )−1(Y ∗y) (3.4.12)

where, as seen from (3.4.11), the definitions of Y and y depend on the choice of
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(N1, N2) considered. If N1 = 1 and N2 = N + n we have:

y =

























y(1)

y(2)
...

y(n+ 1)
y(n+ 2)

...
y(N)

0
0
...
0

























, Y =

























0 0 . . . 0

y(1) 0
...

...
. . .

. . . 0
y(n) y(n− 1) · · · y(1)

y(n+ 1) y(n) · · · y(2)
...

...
y(N − 1) y(N − 2) · · · y(N − n)
y(N) y(N − 1) · · · y(N − n+ 1)

0 y(N)
...

. . .
. . .

...
0 . . . 0 y(N)

























(3.4.13)
Notice the Toeplitz structure of Y , and also that y matches this Toeplitz structure
when it is appended to the left of Y ; that is, [y|Y ] also shares this Toeplitz structure.

The two most common choices for N1 and N2 are:

• N1 = 1, N2 = N + n (considered above). This choice yields the so–called
autocorrelation method.

• N1 = n+1, N2 = N . This choice corresponds to removing the first n and last
n rows of Y and y in equation (3.4.13), and hence eliminates all the arbitrary
zero values there. The estimate (3.4.12) with this choice of (N1, N2) is often
named the covariance method. We refer to this method as the covariance LS
method, or the LS method .

Other choices for N1 and N2 have also been suggested. For example, the prewindow
method uses N1 = 1 and N2 = N , and the postwindow method uses N1 = n+1 and
N2 = N .

The least squares methods can be interpreted as approximate solutions to the
Yule–Walker equations in (3.4.4) by recognizing that Y ∗Y and Y ∗y are, to within a
multiplicative constant, finite–sample estimates of Rn and rn, respectively. In fact,
it is easy to show that for the autocorrelation method, the elements of (Y ∗Y )/N
and (Y ∗y)/N are exactly the biased ACS estimates (2.2.4) used in the Yule–Walker

AR estimate. Writing θ̂ in (3.4.12) as

θ̂ = −
[

1

N
(Y ∗Y )

]−1 [
1

N
(Y ∗y)

]

we see as a consequence that

The autocorrelation method of least squares AR estimation is
equivalent to the Yule–Walker method.

Remark: We can now prove a claim made in the previous subsection that the
matrix Y ∗Y in (3.4.12), with Y given by (3.4.13), is positive definite for any sample
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{y(t)}Nt=1 that is not identically equal to zero. To prove this claim it is necessary
and sufficient to show that rank(Y ) = n. If y(1) 6= 0, then clearly rank(Y ) = n. If
y(1) = 0 and y(2) 6= 0, then again we clearly have rank(Y ) = n, and so on. �

For the LS estimator, (Y ∗Y )/(N − n) and (Y ∗y)/(N − n) are unbiased es-
timates of Rn and rn in equations (3.4.4) and (3.4.5), and they do not use any
measurement data outside the available interval 1 ≤ t ≤ N . On the other hand, the
matrix (Y ∗Y )/(N − n) is not Toeplitz, so the Levinson–Durbin or Delsarte–Genin
algorithms in the next section cannot be used (although similar fast algorithms for
the LS method have been developed; see, e.g., [Marple 1987]).

AsN increases, the difference between the covariance matrix estimates used by
the Yule–Walker and the LS methods diminishes. Consequently, for large samples
(i.e., for N � 1), the YW and LS estimates of the AR parameters nearly coincide
with one another.

For small or medium sample lengths, the Yule–Walker and covariance LS
methods may behave differently. First, the estimated AR model obtained with the
Yule–Walker method is always guaranteed to be stable (see, e.g., [Stoica and Ne-

horai 1987] and Exercise 3.8), whereas the estimated LS model may be unstable.
For applications in which one is interested in the AR model (and not just the AR
spectral estimate), stability of the model is often an important requirement. It may,
therefore, be thought that the potential instability of the AR model provided by
the LS method is a significant drawback of this method. The case, however, is that
estimated LS models which are unstable only appear infrequently and, moreover,
when they do occur there are simple means to “stabilize” them (for instance, by
reflecting the unstable poles inside the unit circle). Hence, to conclude this point,
the lack of guaranteed stability is a drawback of the LS method, when compared
with the Yule–Walker method, but often not a serious one.

Second, the LS method has been found to be more accurate than the Yule–
Walker method in the sense that the estimated parameters of the former are on the
average closer to the true values than those of the latter [Marple 1987; Kay 1988].
Since the finite–sample statistical analysis of these methods is underdeveloped, a
theoretical explanation of this behavior is not possible at this time. Only heuristic
explanations are available. One such explanation is that the assumption that y(t) =
0 outside the interval 1 ≤ t ≤ N , and the corresponding zero elements in Y and y,
result in bias in the Yule–Walker estimates of the AR parameters. When N is not
much greater than n, this bias can be significant.

3.5 ORDER–RECURSIVE SOLUTIONS TO THE YULE–WALKER EQUATIONS

In applications, where a priori information about the true order n is usually lacking,
AR models with different orders have to be tested and hence the Yule–Walker
system of equations, (3.4.6), has to be solved for n = 1 up to n = nmax (some
prespecified maximum order); see Appendix C. By using a general solving method,
this task requires O(n4

max) flops. This may be a significant computational burden
if nmax is large. This is, for example, the case in the applications dealing with
narrowband signals, where values of 50 or even 100 for nmax are not uncommon.
In such applications, it may be important to reduce the number of flops required
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to determine {θn, σ2
n} in (3.4.6). In order to be able to do so, the special algebraic

structure of (3.4.6) should be exploited, as explained next.
The matrix Rn+1 in the Yule–Walker system of equations is highly struc-

tured: it is Hermitian and Toeplitz. The first algorithm which exploited this fact
to determine {θn, σ2

n}nmax
n=1 in n2

max flops is the Levinson–Durbin algorithm (LDA)
[Levinson 1947; Durbin 1960]. The number of flops required by the LDA is
on the order of nmax times smaller than that required by a general linear equation
solver to determine (θnmax , σ

2
nmax

), and on the order of n2
max times smaller than that

required by a general linear equation solver to determine {θn, σ2
n}nmax
n=1 . The LDA

is discussed in Section 3.5.1. In Section 3.5.2 we present another algorithm, the
Delsarte–Genin algorithm (DGA), also named the split–Levinson algorithm, which
in the case of real–valued signals is about two times faster than the LDA [Delsarte

and Genin 1986].
Both the LDA and DGA solve, recursively in the order n, equation (3.4.6).

The only requirement is that the matrix there be positive definite, Hermitian, and
Toeplitz. Thus, the algorithms apply equally well to the Yule–Walker AR estimator
(or, equivalently, the autocorrelation least squares AR method), in which the “true”
ACS elements are replaced by estimates. Hence, to cover both cases simultaneously,
in the following:

ρk is used to represent either r(k) or r̂(k) (3.5.1)

By using the above convention, we have

Rn+1 =









ρ0 ρ−1 . . . ρ−n

ρ1 ρ0

...
...

. . . ρ−1

ρn . . . ρ1 ρ0









=









ρ0 ρ∗
1 . . . ρ∗

n

ρ1 ρ0

...
...

. . . ρ∗
1

ρn . . . ρ1 ρ0









(3.5.2)

The following notational convention will also be frequently used in this section.
For a vector x = [x1 . . . xn]

T , we define

x̃ = [x∗
n . . . x

∗
1]
T

An important property of any Hermitian Toeplitz matrix R is that

y = Rx ⇒ ỹ = Rx̃ (3.5.3)

The result (3.5.3) follows from the following calculation

ỹi = y∗
n−i+1 =

n∑

k=1

R∗
n−i+1,kx

∗
k

=

n∑

k=1

ρ∗
n−i+1−kx

∗
k =

n∑

p=1

ρ∗
p−ix

∗
n−p+1 =

n∑

p=1

Ri,px̃p

= (Rx̃)i

where Ri,j denotes the (i, j)th element of the matrix R.
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3.5.1 Levinson–Durbin Algorithm

The basic idea of the LDA is to solve (3.4.6) recursively in n, starting from the
solution for n = 1 (which is easily determined). By using (3.4.6) and the nested
structure of the R matrix, we can write

Rn+2





1
θn
0



 =




Rn+1

ρ∗
n+1

r̃n
ρn+1 r̃∗

n ρ0









1
θn
0



 =





σ2
n

0
αn



 (3.5.4)

where

rn = [ρ1 . . . ρn]
T (3.5.5)

αn = ρn+1 + r̃∗
nθn (3.5.6)

Equation (3.5.4) would be the counterpart of (3.4.6) when n is increased by one, if
αn in (3.5.4) could be nulled. To do so, let

kn+1 = −αn/σ2
n (3.5.7)

It follows from (3.5.3) and (3.5.4) that

Rn+2











1
θn
0



+ kn+1





0

θ̃n
1










=





σ2
n

0
αn



+ kn+1





α∗
n

0
σ2
n





=

[
σ2
n + kn+1α

∗
n

0

]

(3.5.8)

which has the same structure as

Rn+2

[
1

θn+1

]

=

[
σ2
n+1

0

]

(3.5.9)

Comparing (3.5.8) and (3.5.9) and making use of the fact that the solution to (3.4.6)
is unique for any n, we reach the conclusion that

θn+1 =

[
θn
0

]

+ kn+1

[

θ̃n
1

]

(3.5.10)

and
σ2
n+1 = σ2

n

(
1 − |kn+1|2

)
(3.5.11)

constitute the solution to (3.4.6) for order (n+ 1).
Equations (3.5.10) and (3.5.11) form the core of the LDA. The initialization of

these recursive–in–n equations is straightforward. The box below summarizes the
LDA in a form that should be convenient for machine coding. The LDA has many
interesting properties and uses for which we refer to [Söderström and Stoica

1989; Marple 1987; Kay 1988]. The coefficients ki in the LDA are often called
the reflection coefficients; −ki are also called the partial correlation (PARCOR) co-
efficients. The motivation for the name “partial correlation coefficient” is developed
in Complement 3.9.1
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The Levinson–Durbin Algorithm

Initialization:

θ1 = −ρ1/ρ0 = k1 [1 flop]

σ2
1 = ρ0 − |ρ1|2/ρ0 [1 flop]

For n = 1, . . . , nmax, do:

kn+1 = −ρn+1 + r̃∗
nθn

σ2
n

[n+ 1 flops]

σ2
n+1 = σ2

n(1 − |kn+1|2) [2 flops]

θn+1 =

[
θn
0

]

+ kn+1

[

θ̃n
1

]

[n flops]

It can be seen from the box above that the LDA requires on the order of 2n
flops to compute {θn+1, σ

2
n+1} from {θn, σ2

n}. Hence a total of about n2
max flops

is needed to compute all the solutions to the Yule–Walker system of equations,
from n = 1 to n = nmax. This confirms the claim that the LDA reduces the
computational burden associated with a general solver by two orders of magnitude.

3.5.2 Delsarte–Genin Algorithm

In the real data case (i.e., whenever y(t) is real valued), the Delsarte–Genin al-
gorithm (DGA), or the split Levinson algorithm, exploits some further structure
of the Yule–Walker problem, which is not exploited by the LDA, to decrease even
more the number of flops required to solve for {θn, σ2

n} [Delsarte and Genin

1986]. In the following, we present a derivation of the DGA which is simpler than
the original derivation. As already stated, we assume that the covariance elements
{ρk} in the Yule–Walker equations are real valued.

Let ∆n be defined by

Rn+1∆n = βn






1
...
1




 (3.5.12)

where the scalar βn is unspecified for the moment. As the matrix Rn+1 is positive
definite, the (n+1)–vector ∆n is uniquely defined by (3.5.12) (once βn is specified;
as a matter of fact, note that βn only has a scaling effect on the components of
∆n). It follows from (3.5.12) and (3.5.3) that ∆n is a “symmetric vector”, i.e., it
satisfies

∆n = ∆̃n (3.5.13)

The key idea of the DGA is to introduce such symmetric vectors into the compu-
tations involved by the LDA, as only half of the elements of these vectors need to
be computed.
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Next, note that by using the nested structure of Rn+1 and the defining equa-
tion (3.5.12), we can write:

Rn+1

[
0

∆n−1

]

=

[
ρ0 rTn
rn Rn

] [
0

∆n−1

]

=








γn−1

βn−1

...
βn−1








(3.5.14)

where rn is defined in (3.5.5) and

γn−1 = rTn∆n−1 (3.5.15)

The systems of equations (3.5.12) and (3.5.14) can be linearly combined into a
system having the structure of (3.4.6). To do so, let

λn = βn/βn−1 (3.5.16)

Then, from (3.5.12), (3.5.14) and (3.5.16), we get

Rn+1

{

∆n − λn

[
0

∆n−1

]}

=

[
βn − λnγn−1

0

]

(3.5.17)

It will be shown that βn can always be chosen so as to make the first element of
∆n equal to one,

(∆n)1 = 1 (3.5.18)

In such a case, (3.5.17) has exactly the same structure as (3.4.6) and, as the solutions
to these two systems of equations are unique, we are led to the following relations:

[
1
θn

]

= ∆n − λn

[
0

∆n−1

]

(3.5.19)

σ2
n = βn − λnγn−1 (3.5.20)

Furthermore, since (∆n)1 = 1 and ∆n is a symmetric vector, we must also have
(∆n)n+1 = 1. This observation, along with (3.5.19) and the fact that kn is the last
element of θn (see (3.5.10)), gives the following expression for kn:

kn = 1 − λn (3.5.21)

The equations (3.5.19)–(3.5.21) express the LDA variables {θn, σ2
n, kn} as functions

of {∆n} and {βn}. It remains to derive recursive–in–n formulas for {∆n} and {βn},
and also to prove that (3.5.18) really holds. This is done in the following.

Let {βn} be defined recursively by the following second–order difference equa-
tion:

βn = 2βn−1 − αnβn−2 (3.5.22)

where

αn = (βn−1 − γn−1)/(βn−2 − γn−2) (3.5.23)
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The initial values required to start the recursion (3.5.22) are: β0 = ρ0 and β1 =
ρ0 + ρ1. With this definition of {βn}, we claim that the vectors {∆n} (as defined
in (3.5.12)) satisfy (3.5.18) as well as the following second–order recursion:

∆n =

[
∆n−1

0

]

+

[
0

∆n−1

]

− αn





0
∆n−2

0



 (3.5.24)

In order to prove the above claim, we first apply the result (3.5.3) to (3.5.14) to get

Rn+1

[
∆n−1

0

]

=








βn−1

...
βn−1

γn−1








(3.5.25)

Next, we note that

Rn+1





0
∆n−2

0



 =





ρ0 rTn−1 ρn
rn−1 Rn−1 r̃n−1

ρn r̃Tn−1 ρ0









0
∆n−2

0



 =










γn−2

βn−2

...
βn−2

γn−2










(3.5.26)

The right–hand sides of equations (3.5.14), (3.5.25) and (3.5.26) can be linearly
combined, as described below, to get the right–hand side of (3.5.12):








γn−1

βn−1

...
βn−1








+








βn−1

...
βn−1

γn−1








− αn










γn−2

βn−2

...
βn−2

γn−2










= βn






1
...
1




 (3.5.27)

The equality in (3.5.27) follows from the defining equations of βn and αn. This
observation, in conjunction with (3.5.14), (3.5.25) and (3.5.26), gives the following
system of linear equations

Rn+1







[
∆n−1

0

]

+

[
0

∆n−1

]

− αn





0
∆n−2

0










= βn






1
...
1




 (3.5.28)

which has exactly the structure of (3.5.12). Since the solutions to (3.5.12) and
(3.5.28) are unique, they must coincide and hence (3.5.24) follows.

Next, turn to the condition (3.5.18). From (3.5.24) we see that (∆n)1 =
(∆n−1)1. Hence, in order to prove that (3.5.18) holds, it suffices to show that
∆1 = [1 1]T . The initial values β0 = ρ0 and β1 = ρ0 + ρ1 (purposely chosen for
the sequence {βn}), when inserted in (3.5.12), give ∆0 = 1 and ∆1 = [1 1]T . With
this observation, the proof of (3.5.18) and (3.5.24) is finished.
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The DGA consists of the equations (3.5.16) and (3.5.19)–(3.5.24). These
equations include second–order recursions and appear to be more complicated than
the first–order recursive equations of the LDA. In reality, owing to the symmetry
of the ∆n vectors, the DGA is computationally more efficient than the LDA (see
below). The DGA equations are summarized in the box below, along with an
approximate count of the number of flops required for implementation.

The Delsarte–Genin Algorithm

DGA equations Operation count
no. of (×) no. of (+)

Initialization:
∆0 = 1, β0 = ρ0, γ0 = ρ1 – –
∆1 = [1 1]T , β1 = ρ0 + ρ1, γ1 = ρ1 + ρ2 – 2

For n = 2, . . . , nmax do:

(a) αn = (βn−1 − γn−1)/(βn−2 − γn−2) 1 2
βn = 2βn−1 − αnβn−2 2 1

∆n =

[
∆n−1

0

]

+

[
0

∆n−1

]

− αn





0
∆n−2

0



 ∼ n/2 ∼ n

γn = rTn+1∆n = (ρ1 + ρn+1)
+∆n,2(ρ2 + ρn) + . . . ∼ n/2 ∼ n

(b) λn = βn/βn−1 1 –
σ2
n = βn − λnγn−1 1 1
kn = 1 − λn – 1

(c)

[
1
θn

]

= ∆n − λn

[
0

∆n−1

]

∼ n/2 ∼ n

The DGA can be implemented in two principal modes, depending on the
application at hand.

DGA — Mode 1: In most AR modeling exercises, we do not really need all
{θn}nmax

n=1 . We do, however, need {σ2
1 , σ

2
2 , . . .} for the purpose of order selection (see

Appendix C). Assume that we determined the AR order on the basis of the σ2

sequence. For simplicity, let this order be denoted by nmax. Then the only θ vector
to be computed is θnmax . We may also need to compute the {kn} sequence since
this bears useful information about the stability of the determined AR model (see,
e.g., [Söderström and Stoica 1989; Kay 1988; Therrien 1992]).

In the modeling application outlined above, we need to iterate only the groups
(a) and (b) of equations in the previous DGA summary. The matrix equation (c) is
computed only for n = nmax. This way of implementing the DGA requires the
following number of multiplications and additions:

no. of (×) ' n2
max/2 no. of (+) ' n2

max (3.5.29)
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Recall that, for LDA, no. of (×) = no. of (+) ' n2
max. Thus, the DGA is

approximately two times faster than the LDA (on computers for which multiplica-
tion is much more time consuming than addition). We may remark that in some
parameter estimation applications, the equations in group (b) of the DGA can also
be left out, but this will speed up the implementation of the DGA only slightly.

DGA — Mode 2: In other applications, we need all {θn}nmax
n=1 . An example of

such an application is the Cholesky factorization of the inverse covariance matrix
R−1
nmax

(see, e.g., Exercise 3.7 and [Söderström and Stoica 1989]). In such a
case, we need to iterate all equations in the DGA, which results in the following
number of arithmetic operations:

no. of (×) ' 0.75n2
max no. of (+) ' 1.5n2

max (3.5.30)

This is still about 25% faster than the LDA (assuming, once again, that the com-
putation time required for multiplication dominates the time corresponding to an
addition).

In closing this section, we note that the computational comparisons between
the DGA and the LDA above neglected terms on the order O(nmax). This is
acceptable if nmax is reasonably large (say, nmax ≥ 10). If nmax is small, then
these comparisons are no longer valid and, in fact, LDA may be computationally
more efficient than the DGA in such a case. In such low–dimensional applications,
the LDA is therefore to be preferred to the DGA. Also recall that the LDA is the
algorithm to use with complex–valued data, since the DGA does not appear to have
a computationally efficient extension for complex–valued data.

3.6 MA SIGNALS

According to the definition in (3.2.8), an MA signal is obtained by filtering white
noise with an all–zero filter. Owing to this all–zero structure, it is not possible to
use an MA equation to model a spectrum with sharp peaks unless the MA order
is chosen “sufficiently large”. This is to be contrasted to the ability of the AR
(or “all–pole”) equation to model narrowband spectra by using fairly low model
orders (cf. the discussion in the previous sections). The MA model provides a good
approximation for those spectra which are characterized by broad peaks and sharp
nulls. Such spectra are encountered less frequently in applications than narrowband
spectra, so there is a somewhat limited engineering interest in using the MA signal
model for spectral estimation. Another reason for this limited interest is that the
MA parameter estimation problem is basically a nonlinear one, and is significantly
more difficult to solve than the AR parameter estimation problem. In any case, the
types of difficulties we must face in MA and ARMA estimation problems are quite
similar, and hence we may almost always prefer to use the more general ARMA
model in lieu of the MA one. For these reasons, our discussion of the MA spectral
estimation will be brief.

One method to estimate an MA spectrum consists of two steps: (i) Estimate
the MA parameters {bk}mk=1 and σ2; and (ii) Insert the estimated parameters from
the first step in the MA PSD formula (see (3.2.2)):

φ(ω) = σ2|B(ω)|2 (3.6.1)
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The difficulty with this approach lies in step (i) which is a nonlinear estimation
problem. Approximate linear solutions to this problem do, however, exist. One of
these approximate procedures, perhaps the most used method for MA parameter
estimation, is based on a two–stage least squares methodology [Durbin 1959]. It
is called Durbin’s method and will be described in the next section in the more
general context of ARMA parameter estimation.

Another method to estimate an MA spectrum is based on the reparameter-
ization of the PSD in terms of the covariance sequence. We see from (3.2.8) that
for an MA of order m,

r(k) = 0 for |k| > m (3.6.2)

Owing to this simple observation, the definition of the PSD as a function of {r(k)}
turns into a finite–dimensional spectral model:

φ(ω) =

m∑

k=−m
r(k)e−iωk (3.6.3)

Hence a simple estimator of MA PSD is obtained by inserting estimates of
{r(k)}mk=0 in (3.6.3). If the standard sample covariances {r̂(k)} are used to estimate
{r(k)}, then we obtain:

φ̂(ω) =

m∑

k=−m
r̂(k)e−iωk

(3.6.4)

This spectral estimate is of the form of the Blackman–Tukey estimator (2.5.1). More
precisely, (3.6.4) coincides with a Blackman–Tukey estimator using a rectangular
window of length 2m + 1. This is not unexpected. If we impose the zero–bias
restriction on the nonparametric approach to spectral estimation (to make the
comparison with the parametric approach fair) then the Blackman–Tukey estimator
with a rectangular window of length 2m+ 1 implicitly assumes that the covariance
lags outside the window interval are equal to zero. This is, however, precisely the
assumption behind the MA signal model; see (3.6.2). Alternatively, if we make use
of the assumption (3.6.2) in a Blackman–Tukey estimator, then we definitely end up
with (3.6.4) as in such a case this is the spectral estimator in the Blackman–Tukey
class with zero bias and “minimum” variance.

The analogy between the Blackman–Tukey and MA spectrum estimation
methods makes it simpler to understand a problem associated with the MA spectral
estimator (3.6.4). Owing to the (implicit) use of a rectangular window in (3.6.4),
the so–obtained spectral estimate is not necessarily positive at all frequencies (see
(2.5.5) and the discussion following that equation). Indeed, it is often noted in
applications that (3.6.4) produces negative PSD estimates. In order to cure this
deficiency of (3.6.4), we may use another lag window which is guaranteed to be

positive semidefinite, in lieu of the rectangular one. This way of correcting φ̂(ω)
in (3.6.4) is, of course, reminiscent of the Blackman–Tukey approach. It should be
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noted, however, that the so–corrected φ̂(ω) is no longer an unbiased estimator of
the PSD of an MA(m) signal (see, e.g., [Moses and Beex 1986] for details on
this aspect).

3.7 ARMA SIGNALS

Spectra with both sharp peaks and deep nulls cannot be modeled by either AR or
MA equations of reasonably small orders. There are, of course, other instances of
rational spectra that cannot be exactly described as AR or MA spectra. It is in
these cases where the more general ARMA model, also called the pole–zero model,
is valuable. However, the great initial promise of ARMA spectral estimation di-
minishes to some extent because there is yet no well–established algorithm, from
both theoretical and practical standpoints, for ARMA parameter estimation. The
“theoretically optimal ARMA estimators” are based on iterative procedures whose
global convergence is not guaranteed. The “practical ARMA estimators”, on the
other hand, are computationally simple and often quite reliable, but their statistical
accuracy may be poor in some cases. In the following, we describe two ARMA spec-
tral estimation algorithms which have been used in applications with a reasonable
degree of success (see also [Byrnes, Georgiou, and Lindquist 2000; Byrnes,

Georgiou, and Lindquist 2001] for some recent results on ARMA parameter
estimation).

3.7.1 Modified Yule–Walker Method

The modified Yule–Walker method is a two–stage procedure for estimating the
ARMA spectral density. In the first stage we estimate the AR coefficients using
equation (3.3.4). In the second stage, we use the AR coefficient and ACS estimates
in equation (3.2.1) to estimate the γk coefficients. We describe the two steps below.

Writing equation (3.3.4) for k = m + 1,m + 2, . . . ,m + M in a matrix form
gives








r(m) r(m− 1) . . . r(m− n+ 1)
r(m+ 1) r(m) r(m− n+ 2)

...
. . .

...
r(m+M − 1) . . . . . . r(m− n+M)













a1

...
an




 = −








r(m+ 1)
r(m+ 2)

...
r(m+M)








(3.7.1)
If we set M = n in (3.7.1) we obtain a system of n equations in n unknowns. This
constitutes a generalization of the Yule–Walker system of equations that holds in
the AR case. Hence, these equations are said to form the modified Yule–Walker
(MYW) system of equations [Gersh 1970; Kinkel, Perl, Scharf, and Stub-

berud 1979; Beex and Scharf 1981; Cadzow 1982]. Replacing the theoretical
covariances {r(k)} by their sample estimates {r̂(k)} in these equations leads to:






r̂(m) . . . r̂(m− n+ 1)
...

...
r̂(m+ n− 1) . . . r̂(m)











â1

...
ân




 = −






r̂(m+ 1)
...

r̂(m+ n)




 (3.7.2)
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The above linear system can be solved for {âi}, which are called the modified
Yule–Walker estimates of {ai}. The square matrix in (3.7.2) can be shown to be
nonsingular under mild conditions. Note that there exist fast algorithms of the
Levinson type for solving non–Hermitian Toeplitz systems of equations of the form
of (3.7.2); they require about twice the computational burden of the LDA algorithm
(see [Marple 1987; Kay 1988; Söderström and Stoica 1989]).

The MYW AR estimate has reasonable accuracy if the zeroes of B(z) in the
ARMA model are well inside the unit circle. However, (3.7.2) may give very in-
accurate estimates in those cases where the poles and zeroes of the ARMA model
description are closely spaced together at positions near the unit circle. Such ARMA
models, with nearly coinciding poles and zeroes of modulus close to one, correspond
to narrowband signals. The covariance sequence of narrowband signals decays very
slowly. Indeed, as we know, the more concentrated a signal is in frequency, usually
the more expanded it is in time, and vice versa. This means that there is “informa-
tion” in the higher–lag covariances of the signal that can be exploited to improve the
accuracy of the AR coefficient estimates. We can exploit the additional information
by choosing M > n in equation (3.7.1) and solving the so–obtained overdetermined
system of equations. If we replace the true covariances in (3.7.1) with M > n by
finite–sample estimates, there will in general be no exact solution. A most natural
idea to overcome this problem is to solve the resultant equations

R̂â ' −r̂ (3.7.3)

in a least squares (LS) or total least squares (TLS) sense (see Appendix A). Here,
R̂ and r̂ represent the ACS matrix and vector in (3.7.1) with sample ACS estimates
replacing the true ACS there. For instance, the (weighted) least squares solution
to (3.7.3) is mathematically given by1

â = −(R̂∗WR̂)−1(R̂∗Wr̂) (3.7.4)

where W is an M×M positive definite weighting matrix. The AR estimate derived
from (3.7.3) with M > n is called the overdetermined modified YW estimate [Beex

and Scharf 1981; Cadzow 1982].
Some notes on the choice between (3.7.2) and (3.7.3), and on the selection of

M , are in order.

• Choosing M > n does not always improve the accuracy of the previous AR
coefficient estimates. In fact, if the poles and zeroes are not close to the unit
circle, choosing M > n can make the accuracy worse. When the ACS decays
slowly to zero, however, choosing M > n generally improves the accuracy
of â [Cadzow 1982; Stoica, Friedlander, and Söderström 1987b].
A qualitative explanation for this phenomenon can be seen by thinking of a
finite–sample ACS estimate as being the sum of its “signal” component r(k)
and a “noise” component due to finite–sample estimation: r̂(k) = r(k)+n(k).
If the ACS decays slowly to zero, the signal component is “large” compared
to the noise component even for relatively large values of k, and including

1From a numerical viewpoint, equation (3.7.4) is not a particularly good way to solve (3.7.3).
A more numerically sound approach is to use the QR decomposition; see Section A.8.2 for details.
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r̂(k) in the estimation of â improves accuracy. If the noise component of r̂(k)
dominates, including r̂(k) in the estimation of â may decrease the accuracy
of â.

• The statistical and numerical accuracies of the solution {âi} to (3.7.3) are
quite interrelated. In more exact but still loose terms, it can be shown that
the statistical accuracy of {âi} is poor (good) if the condition number of
the matrix R̂ in (3.7.3) is large (small) (see [Stoica, Friedlander, and

Söderström 1987b; Söderström and Stoica 1989] and also Appendix
A). This observation suggests that M should be selected so as to make the
matrix in (3.7.3) reasonably well–conditioned. In order to make a connection
between this rule of thumb for selecting M and the previous explanation for
the poor accuracy of (3.7.2) in the case of narrowband signals, note that for
slowly decaying covariance sequences the columns of the matrix in (3.7.2) are
nearly linearly dependent. Hence, the condition number of the covariance
matrix may be quite high in such a case, and we may need to increase M in
order to lower the condition number to a reasonable value.

• The weighting matrix W in (3.7.4) can also be chosen to improve the accu-
racy of the AR coefficient estimates. A simple first choice is W = I, resulting
in the regular (unweighted) least squares estimate. Some accuracy improve-
ment can be obtained by choosing W to be diagonal with decreasing positive
diagonal elements (to reflect the decreased confidence in higher ACS lag es-
timates). In addition, optimal weighting matrices have been derived (see
[Stoica, Friedlander, and Söderström 1987a]); the optimal weight
minimizes the covariance of â (for large N) over all choices of W . Unfor-
tunately, the optimal weight depends on the (unknown) ARMA parameters.
Thus, to use optimally weighted methods, a two–step “bootstrap” approach
is used, in which a fixed W is first chosen and initial parameter estimates are
obtained; these initial estimates are used to form an optimal W , and a second
estimation gives the “optimal accuracy” AR coefficients. As a general rule,
the performance gain in using optimal weighting is relatively small compared
to the computational overhead required to compute the optimal weighting
matrix. Most accuracy improvement can be realized by choosing M > n and
W = I for many problems. We refer the reader to [Stoica, Friedlander,

and Söderström 1987a; Cadzow 1982] for a discussion on the effect of
W on the accuracy of â and on optimal weighting matrices.

Once the AR estimates are obtained, we turn to the problem of estimating
the MA part of the ARMA spectrum. Let

γk = E {[B(z)e(t)][B(z)e(t− k)]∗} (3.7.5)

denote the covariances of the MA part. Since the PSD of this part of the ARMA
signal model is given by (see (3.6.1) and (3.6.3)):

σ2|B(ω)|2 =

m∑

k=−m
γke

−iωk (3.7.6)
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it suffices to estimate {γk} in order to characterize the spectrum of the MA part.
From (3.2.7) and (3.7.5), we obtain

γk = E {[A(z)y(t)][A(z)y(t− k)]∗}

=

n∑

j=0

n∑

p=0

aja
∗
pE {y(t− j)y∗(t− k − p)}

=

n∑

j=0

n∑

p=0

aja
∗
pr(k + p− j) (a0 , 1) (3.7.7)

for k = 0, . . . ,m. Inserting the previously calculated estimates of {ak} and {rk} in
(3.7.7) leads to the following estimator of {γk}

γ̂k =







n∑

j=0

n∑

p=0

âj â
∗
pr̂(k + p− j), k = 0, . . . ,m (â0 , 1)

γ̂∗
−k, k = −1, . . . ,−m

(3.7.8)

Finally, the ARMA spectrum is estimated as follows:

φ̂(ω) =

m∑

k=−m
γ̂ke

−iωk

|Â(ω)|2
(3.7.9)

The MA estimate used by the above ARMA spectral estimator is of the type (3.6.4)
encountered in the MA context. Hence, the criticism of (3.6.4) in the previous
section is still valid. In particular, the numerator in (3.7.9) is not guaranteed to
be positive for all ω values, which may lead to negative ARMA spectral estimates
(see, e.g., [Kinkel, Perl, Scharf, and Stubberud 1979; Moses and Beex

1986]).
Since (3.7.9) relies on the modified YW method of AR parameter estimation,

we call (3.7.9) the modified YW ARMA spectral estimator. Refined versions of this
ARMA spectral estimator, which improve the estimation accuracy if N is suffi-
ciently large, were proposed in [Stoica and Nehorai 1986; Stoica, Friedlan-

der, and Söderström 1987a; Moses, Šimonytė, Stoica, and Söderström

1994]. A related ARMA spectral estimation method is outlined in Exercise 3.14.

3.7.2 Two–Stage Least Squares Method

If the noise sequence {e(t)} were known, then the problem of estimating the param-
eters in the ARMA model (3.2.7) would have been a simple input–output system
parameter estimation problem which could be solved by a diversity of means of
which the most simple is the least squares (LS) method. In the LS method, we
express equation (3.2.7) as

y(t) + ϕT (t)θ = e(t) (3.7.10)
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where

ϕT (t) = [y(t− 1), . . . , y(t− n)| − e(t− 1), . . . ,−e(t−m)]

θ = [a1, . . . , an|b1, . . . , bm]T

Writing (3.7.10) in matrix form for t = L + 1, . . . , N (for some L > max(m,n))
gives

z + Zθ = e (3.7.11)

where

Z =








y(L) . . . y(L− n+ 1) −e(L) . . . −e(L−m+ 1)
y(L+ 1) . . . y(L− n+ 2) −e(L+ 1) . . . −e(L−m+ 2)

...
...

...
...

y(N − 1) . . . y(N − n) −e(N − 1) . . . −e(N −m)








(3.7.12)

z = [y(L+ 1), y(L+ 2), . . . , y(N)]T (3.7.13)

e = [e(L+ 1), e(L+ 2), . . . , e(N)]T (3.7.14)

Assume we know Z; then we could solve for θ in (3.7.11) by minimizing ‖e‖2.
This leads to a least squares estimate similar to the AR LS estimate introduced in
Section 3.4.2 (see also Result R32 in Appendix A):

θ̂ = −(Z∗Z)−1(Z∗z) (3.7.15)

Of course, the {e(t)} in Z are not known. However, they may be estimated as
described next.

Since the ARMA model (3.2.7) is minimum phase, by assumption, it can
alternatively be written as an infinite–order AR equation:

(1 + α1z
−1 + α2z

−2 + . . .)y(t) = e(t) (3.7.16)

where the coefficients {αk} of 1+α1z
−1+α2z

−2+ · · · , A(z)/B(z) converge to zero
as k increases. An idea to estimate {e(t)} is to first determine the AR parameters
{αk} in (3.7.16) and next obtain {e(t)} by filtering {y(t)} as in (3.7.16). Of course,
we cannot estimate an infinite number of (independent) parameters from a finite
number of samples. In practice, the AR equation must be approximated by one of
order K (say). The parameters in the truncated AR model of y(t) can be estimated
by using either the YW or the LS procedure in Section 3.4.

The above discussion leads to the two–stage LS algorithm summarized in the
box below. The two–stage LS parameter estimator is also discussed, for example,
in [Mayne and Firoozan 1982; Söderström and Stoica 1989]. The spectral
estimate is guaranteed to be positive for all frequencies by construction. Owing
to the practical requirement to truncate the AR model (3.7.16), the two–stage LS
estimate is biased. The bias can be made small by choosing K sufficiently large;
however, K should not be too large with respect to N or the accuracy of θ̂ in Step 2
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will decrease. The difficult case for this method is apparently that of ARMA signals
with zeroes close to the unit circle. In such a case, it may be necessary to select
a very large value of K in order to keep the approximation (bias) errors in Step
1 at a reasonable level. The computational burden of Step 1 may then become
prohibitively large. It should be noted, however, that the case of ARMA signals
with zeroes near the unit circle is a difficult one for all known ARMA estimation
methods [Kay 1988; Marple 1987; Söderström and Stoica 1989].

The Two–Stage Least Squares ARMA Method

Step 1. Estimate the parameters {αk} in an AR(K) model of y(t) by the YW
or covariance LS method. Let {α̂k}Kk=1 denote the estimated parameters.

Obtain an estimate of the noise sequence {e(t)} by

ê(t) = y(t) +

K∑

k=1

α̂ky(t− k)

for t = K + 1, . . . , N .

Step 2. Replace e(t) in (3.7.12) by ê(t) determined in Step 1. Obtain θ̂ from
(3.7.15) with L = K +m. Estimate

σ̂2 =
1

N − L
ẽ∗ẽ

where ẽ = Zθ̂ + z is the LS error from (3.7.11).

Insert {θ̂, σ̂2} into the PSD expression (3.2.2) to estimate the ARMA spectrum.

Finally, we remark that the two–stage LS algorithm may be modified to esti-
mate the parameters in MA models, simply by skipping over the estimation of AR
parameters in Step 2. The so–obtained method was for the first time suggested in
[Durbin 1959], and is often called Durbin’s Method.
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3.8 MULTIVARIATE ARMA SIGNALS

The multivariate analog of the ARMA signal in equation (3.2.7) is:

A(z)y(t) = B(z)e(t) (3.8.1)

where y(t) and e(t) are ny×1 vectors, and A(z) and B(z) are ny×ny matrix poly-
nomials in the unit delay operator. The task of estimating the matrix coefficients,
{Ai, Bj} say, of the AR and MA polynomials in (3.8.1) is much more complicated
than in the scalar case for at least one reason: The representation of y(t) in (3.8.1),
with all elements in {Ai, Bj} assumed to be unknown, may well be nonunique even
though the orders of A(z) and B(z) may have been chosen correctly. More pre-
cisely, assume that we are given the spectral density matrix of an ARMA signal
y(t) along with the (minimal) orders of the AR and MA polynomials in its ARMA
equation. If all elements of {Ai, Bj} are considered to be unknown, then, unlike
in the scalar case, the previous information may not be sufficient to determine the
matrix coefficients {Ai, Bj} uniquely (see, e.g., [Hannan and Deistler 1988]
and also Exercise 3.16). The lack of uniqueness of the representation may lead
to a numerically ill–conditioned parameter estimation problem. For instance, this
would be the case with the multivariate analog of the modified Yule–Walker method
discussed in Section 3.7.1.

Apparently the only possible cure to the aforementioned problem consists
of using a canonical parameterization for the AR and MA coefficients. Basically
this amounts to setting some of the elements of {Ai, Bj} to known values, such
as 0 or 1, hence reducing the number of unknowns. The problem, however, is
that to know which elements should be set to 0 or 1 in a specific case, we need to
know ny indices (called “structure indices”) which are usually difficult to determine
in practice [Kailath 1980; Hannan and Deistler 1988]. The difficulty in
obtaining those indices has hampered the use of canonical parameterizations in
applications. For this reason we do not go into any detail of the canonical forms
for ARMA signals. The nonuniqueness of the fully parameterized ARMA equation
will, however, receive further attention in the next subsection.

Concerning the other approach to ARMA parameter estimation discussed in
Section 3.7.2, namely the two–stage least squares method, it is worth noting that it
can be extended to the multivariate case in a straightforward manner. In particular
there is no need for using a canonical parameterization in either step of the extended
method (see, e.g., [Söderström and Stoica 1989]). Working the details of the
extension is left as an interesting exercise to the reader. We stress that the two–
stage LS approach is perhaps the only real competitor to the subspace ARMA
parameter estimation method described in the next subsections.

3.8.1 ARMA State–Space Equations

The difference equation representation in (3.8.1) can be transformed into the fol-
lowing state–space representation, and vice versa (see, e.g., [Aoki 1987; Kailath

1980]):

x(t+ 1) = Ax(t) +Be(t) (n× 1)
y(t) = Cx(t) + e(t) (ny × 1)

(3.8.2)
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Thereafter, x(t) is the state vector of dimension n; A, B, and C are matrices of
appropriate dimensions (with A having all eigenvalues inside the unit circle); and
e(t) is white noise with zero mean and covariance matrix denoted by Q:

E {e(t)} = 0 (3.8.3)

E {e(t)e∗(s)} = Qδt,s (3.8.4)

where Q is positive definite by assumption.
The transfer filter corresponding to (3.8.2), also called the ARMA shaping

filter, is readily seen to be:

H(z) = z−1C(I −Az−1)−1B + I (3.8.5)

By paralleling the calculation leading to (1.4.9), it is then possible to show that the
ARMA power spectral density (PSD) matrix is given by:

φ(ω) = H(ω)QH∗(ω) (3.8.6)

(The derivation of (3.8.6) is left as an exercise to the reader.)
In the next subsections, we will introduce a methodology for estimating the

matrices A, B, C, and Q of the state–space equation (3.8.2), and hence the ARMA’s
power spectral density (via (3.8.5) and (3.8.6)). In this subsection, we derive a
number of results that prepare the discussion in the next subsections.

Let

Rk = E {y(t)y∗(t− k)} (3.8.7)

P = E {x(t)x∗(t)} (3.8.8)

Observe that, for k ≥ 1,

Rk = E {[Cx(t+ k) + e(t+ k)][x∗(t)C∗ + e∗(t)]}
= CE {x(t+ k)x∗(t)}C∗ + CE {x(t+ k)e∗(t)} (3.8.9)

From equation (3.8.2), we obtain (by induction):

x(t+ k) = Akx(t) +

k−1∑

`=0

Ak−`−1 Be(t+ `) (3.8.10)

which implies that
E {x(t+ k)x∗(t)} = AkP (3.8.11)

and
E {x(t+ k)e∗(t)} = Ak−1BQ (3.8.12)

Inserting (3.8.11) and (3.8.12) into (3.8.9) yields:

Rk = CAk−1D (for k ≥ 1) (3.8.13)
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where

D = APC∗ +BQ (3.8.14)

From the first equation in (3.8.2), we also readily obtain

P = APA∗ +BQB∗ (3.8.15)

and from the second equation,

R0 = CPC∗ +Q (3.8.16)

It follows from (3.8.14) and (3.8.16) that

B = (D −APC∗)Q−1 (3.8.17)

and, respectively,

Q = R0 − CPC∗ (3.8.18)

Finally, inserting (3.8.17) and (3.8.18) into (3.8.15) gives the following Riccati equa-
tion for P :

P = APA∗ + (D −APC∗)(R0 − CPC∗)−1(D −APC∗)∗ (3.8.19)

The above results lead to a number of interesting observations.

The (Non)Uniqueness Issue: It is well known that a linear nonsingular transfor-
mation of the state vector in (3.8.2) leaves the transfer function matrix associated
with (3.8.2) unchanged. To be more precise, let the new state vector be given by:

x̃(t) = Tx(t), (|T | 6= 0) (3.8.20)

It can be verified that the state–space equations in x̃(t), corresponding to (3.8.2),
are:

x̃(t+ 1) = Ãx̃(t) + B̃e(t)

y(t) = C̃x̃(t) + e(t)
(3.8.21)

where
Ã = TAT−1; B̃ = TB; C̃ = CT−1 (3.8.22)

As {y(t)} and {e(t)} in (3.8.21) are the same as in (3.8.2), the transfer function
H(z) from e(t) to y(t) must be the same for both (3.8.2) and (3.8.21). (Verifying
this by direct calculation is left to the reader.) The consequence is that there
exists an infinite number of triples (A,B,C) (with all matrix elements assumed
unknown) that lead to the same ARMA transfer function, and hence the same
ARMA covariance sequence and PSD matrix. For the transfer function matrix, the
nonuniqueness induced by the similarity transformation (3.8.22) is the only type
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possible (as we know from the deterministic system theory, e.g., [Kailath 1980]).
For the covariance sequence and the PSD, however, other types of nonuniqueness
are also possible (see, e.g., [Faurre 1976] and [Söderström and Stoica 1989,
Problem 6.3]).

Most ARMA estimation methods require the use of a uniquely parameterized
representation. The previous discussion has clearly shown that letting all elements
of A, B, C, and Q be unknown does not lead to such a unique representation.
The latter representation is obtained only if a canonical form is used. As already
explained, the ARMA parameter estimation methods relying on canonical param-
eterizations are impractical. The subspace–based estimation approach discussed in
the next subsection circumvents the canonical parameterization requirement in an
interesting way: The nonuniqueness of the ARMA representation with A, B, C,
and Q fully parameterized is reduced to the nonuniqueness of a certain decompo-
sition of covariance matrices; then by choosing a specific decomposition, a triplet
(A,B,C) is isolated and determined in a numerically well–posed manner.

The Minimality Issue: Let, for some integer–valued m,

O =








C
CA
...
CAm−1








(3.8.23)

and

C∗ = [D AD · · · Am−1D] (3.8.24)

The similarity between the above matrices and the observability and controllability
matrices, respectively, from the theory of deterministic state–space equations is ev-
ident. In fact, it follows from the aforementioned theory and from (3.8.13) that the
triplet (A,D,C) is a minimal representation (i.e., one with the minimum possible
dimension n) of the covariance sequence {Rk} if and only if (see, e.g., [Kailath

1980; Hannan and Deistler 1988]):

rank(O) = rank(C) = n (for m ≥ n) (3.8.25)

As shown previously, the other matrices P , Q, and B of the state–space equation
(3.8.2) can be obtained from A, C, and D (see equations (3.8.19), (3.8.18), and
(3.8.17), respectively). It follows that the state–space equation (3.8.2) is a minimal
representation of the ARMA covariance sequence {Rk} if and only if the condition
(3.8.25) is satisfied. In what follows, we assume that the “minimality condition”
(3.8.25) holds true.
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3.8.2 Subspace Parameter Estimation — Theoretical Aspects

We begin with showing how A, C, and D can be obtained from a sequence of
theoretical ARMA covariances. Let

R =








R1 R2 · · · Rm
R2 R3 · · · Rm+1

...
...

...
Rm Rm+1 · · · R2m−1








= E












y(t)
...

y(t+m− 1)




 [y∗(t− 1) · · · y∗(t−m)]







(3.8.26)

denote the block–Hankel matrix of covariances. (The name given to (3.8.26) is due to
its special structure: the submatrices on its block antidiagonals are identical. Such
a matrix is a block extension to the standard Hankel matrix; see Definition D14 in
Appendix A.) According to (3.8.13), we can factor R as follows:

R =








C
CA
...

CAm−1








[D AD · · ·Am−1 D] = OC∗ (3.8.27)

It follows from (3.8.25) and (3.8.27) that (see Result R4 in Appendix A):

rank(R) = n (for m ≥ n) (3.8.28)

Hence, n could in principle be obtained as the rank of R. To determine A, C, and
D let us consider the singular value decomposition (SVD) of R (see Appendix A):

R = UΣV ∗ (3.8.29)

where Σ is a nonsingular n× n diagonal matrix, and

U∗U = V ∗V = I (n× n)

By comparing (3.8.27) and (3.8.29), we obtain

O = UΣ1/2T for some nonsingular transformation matrix T (3.8.30)

because the columns of both O and UΣ1/2 are bases of the range space of R.
Henceforth, Σ1/2 denotes a square root of Σ (that is, Σ1/2Σ1/2 = Σ). By inserting
(3.8.30) in the equation OC∗ = UΣV ∗, we also obtain:

C = V Σ1/2(T−1)∗ (3.8.31)

Next, observe that

OT−1 =








(CT−1)
(CT−1)(TAT−1)

...
(CT−1)(TAT−1)m−1








(3.8.32)
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and
TC∗ = [(TD) · · · (TAT−1)m−1(TD)] (3.8.33)

This implies that by identifying O and C with the matrices made from all
possible bases of the range spaces of R and R∗, respectively, we obtain the set of
similarity–equivalent triples (A,D,C). Hence, picking up a certain basis yields a
specific triple (A,D,C) in the aforementioned set. This is how the subspace ap-
proach to ARMA state–space parameter estimation circumvents the nonuniqueness
problem associated with a fully parameterized model.

In view of the previous discussion we can, for instance, set T = I in (3.8.30)
and (3.8.31) and obtain C as the first ny rows of UΣ1/2 and D as the first ny
columns of Σ1/2V ∗. Then, A may be obtained as the solution to the linear system
of equations

(ŪΣ1/2)A = U
¯
Σ1/2 (3.8.34)

where Ū and U
¯

are the matrices made from the first and, respectively, the last
(m− 1) block rows of U . Once A, C, and D have been determined, P is obtained
by solving the Riccati equation (3.8.19) and then Q and B are derived from (3.8.18)
and (3.8.17). Algorithms for solving the Riccati equation are presented, for instance,
in [van Overschee and de Moor 1996] and the references therein.

A modification of the above procedure that does not change the solution
obtained in the theoretical case but which appears to have beneficial effects on the
parameter estimates obtained from finite samples is as follows. Let us denote the
two vectors appearing in (3.8.26) by the following symbols:

f(t) = [yT (t) · · · yT (t+m− 1)]T (3.8.35)

p(t) = [yT (t− 1) · · · yT (t−m)]T (3.8.36)

Let
Rfp = E {f(t)p∗(t)} (3.8.37)

and let Rff and Rpp be similarly defined. Redefine the matrix in (3.8.26) as

R = R
−1/2
ff RfpR

−1/2
pp (3.8.38)

where R
−1/2
ff and R

−1/2
pp are the Hermitian square roots of R−1

ff and R−1
pp (see Ap-

pendix A). A heuristic explanation why the previous modification should lead to
better parameter estimates in finite samples is as follows. The matrix R in (3.8.26)
is equal to Rfp, whereas the R in (3.8.38) can be written as Rf̃ p̃ where both

f̃(t) = R
−1/2
ff f(t) and p̃(t) = R

−1/2
pp p(t) have unity covariance matrices. Owing to

the latter property the cross–covariance matrix Rf̃ p̃ and its singular elements are
usually estimated more accurately from finite samples than are Rfp and its singular
elements. This fact should eventually lead to better parameter estimates.

By making use of the factorization (3.8.27) of Rfp along with the formula
(3.8.38) for the matrix R, we can write:

R = R
−1/2
ff RfpR

−1/2
pp =

= R
−1/2
ff OC∗R−1/2

pp = UΣV ∗ (3.8.39)
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where UΣV ∗ is now the SVD of R in (3.8.38). Identifying R
−1/2
ff O with UΣ1/2 and

R
−1/2
pp C with V Σ1/2, we obtain

O = R
1/2
ff UΣ1/2 (3.8.40)

C = R1/2
pp V Σ1/2 (3.8.41)

The matrices A, C, and D can be determined from these equations as previously
described. Then we can derive P , Q, and B as has also been indicated before.

3.8.3 Subspace Parameter Estimation — Implementation Aspects

Let R̂fp be the sample estimate of Rfp, for example,

R̂fp =
1

N

N−m+1∑

t=m+1

f(t)p∗(t) (3.8.42)

and let R̂ff etc be similarly defined. Compute R̂ as

R̂ = R̂
−1/2
ff R̂fpR̂

−1/2
pp (3.8.43)

and its SVD. Estimate n as the “practical rank” of R̂:

n̂ = p-rank(R̂) (3.8.44)

(i.e., the number of singular values of R̂ which are significantly larger than the
remaining ones; statistical tests for deciding whether a singular value of a given
sample covariance matrix is significantly different from zero are discussed in, e.g.,
[Fuchs 1987].) Let Û , Σ̂ and V̂ denote the matrices made from the n̂ principal
singular elements of R̂, corresponding to the matrices U , Σ and V in (3.8.39). Take

Ĉ = the first ny rows of R̂
1/2
ff Û Σ̂1/2

D̂ = the first ny columns of Σ̂1/2V̂ ∗R̂1/2
pp

(3.8.45)

Next, let

Γ̄ and Γ
¯

= the matrices made from the first and, respectively, last

(m− 1) block rows of R̂
1/2
ff Û Σ̂1/2.

(3.8.46)

Estimate A as

Â = the LS or TLS solution to Γ̄A ' Γ
¯

(3.8.47)

Finally, estimate P as

P̂ = the positive definite solution, if any, of the Riccati equation
(3.8.19) with A, C, D and R0 replaced by their estimates

(3.8.48)
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and Q and B as:

Q̂ = R̂0 − ĈP̂ Ĉ∗

B̂ = (D̂ − ÂP̂ Ĉ∗)Q̂−1
(3.8.49)

In some cases, the previous procedure cannot be completed because the Riccati equa-
tion has no positive definite solution or even no solution at all. (In the case of
a real–valued ARMA signal, for instance, that equation may have no real–valued
solution.) In such cases, we can approximately determine P as follows. (Note that
only the estimation of P has to be modified; all the other parameter estimates can
be obtained as described above.)

A straightforward calculation making use of (3.8.11) and (3.8.12) yields:

E {x(t)y∗(t− k)} = AkPC∗ +Ak−1BQ

= Ak−1D (for k ≥ 1) (3.8.50)

Hence,
C∗ = E {x(t)p∗(t)} (3.8.51)

Let
ψ = C∗R−1

pp (3.8.52)

and define ε(t) via the equation:

x(t) = ψp(t) + ε(t) (3.8.53)

It is not difficult to verify that ε(t) is uncorrelated with p(t). Indeed,

E {ε(t)p∗(t)} = E {[x(t) − ψp(t)]p∗(t)} = C∗ − ψRpp = 0 (3.8.54)

This implies that the first term in (3.8.53) is the least squares approximation of
x(t) based on the past signal values in p(t) (see, e.g., [Söderström and Stoica

1989] and Appendix A). It follows from this observation that ψp(t) approaches x(t)
as m increases. Hence,

ψRppψ
∗ = C∗R−1

pp C → P (as m → ∞) (3.8.55)

However, in view of (3.8.41),
C∗R−1

pp C = Σ (3.8.56)

The conclusion is that, provided m is chosen large enough, we can approximate P
as

P̃ = Σ̂, for m � 1 (3.8.57)

This is the alternative estimate of P which can be used in lieu of (3.8.48) whenever
the latter estimation procedure fails. The estimate P̃ approaches the true value P
as N tends to infinity provided m is also increased without bound at an appropriate
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rate. However, if (3.8.57) is used with too small a value of m the estimate of P so
obtained may be heavily biased.

The reader interested in more aspects on the subspace approach to parameter
estimation for rational models should consult [Aoki 1987; van Overschee and

de Moor 1996; Rao and Arun 1992; Viberg 1995] and the references therein.

3.9 COMPLEMENTS

3.9.1 The Partial Autocorrelation Sequence

The sequence {kj} computed in equation (3.5.7) of the LDA has an interesting
statistical interpretation, as explained next. The covariance lag ρj “measures” the
degree of correlation between the data samples y(t) and y(t − j) (in the chapter
ρj is equal to either r(j) or r̂(j); here ρj = r(j)). The normalized covariance
sequence {ρj/ρ0} is often called the autocorrelation function. Now, y(t) and y(t−j)
are related to one another not only “directly” but also through the intermediate
samples:

[y(t− 1) . . . y(t− j + 1)]T , ϕ(t)

Let εf (t) and εb(t − j) denote the errors of the LS linear predictions of y(t) and
y(t−j), respectively, based on ϕ(t) above; in particular, εf (t) and εb(t−j) must then
be uncorrelated with ϕ(t): E {εf (t)ϕ∗(t)} = E {εb(t− j)ϕ∗(t)} = 0. (Note that
εf (t) and εb(t− j) are termed forward and backward prediction errors respectively;
see also Exercises 3.3 and 3.4.) We show that

kj = − E {εf (t)ε∗b(t− j)}
[E {|εf (t)|2}E {|εb(t− j)|2}]

1/2 (3.9.1)

Hence, kj is the negative of the so–called partial correlation (PARCOR) coefficient
of {y(t)}, which measures the “partial correlation” between y(t) and y(t− j) after
the correlation due to the intermediate values y(t − 1), . . . , y(t − j + 1) has been
eliminated.

Let
εf (t) = y(t) + ϕT (t)θ (3.9.2)

where, similarly to (3.4.9),

θ = −{E
{
ϕc(t)ϕT (t)

}
}−1 E {ϕc(t) y(t)} , −R−1r

It is readily verified (by making use of the previous definition for θ) that:

E {ϕc(t)εf (t)} = 0

which shows that εf (t), as defined above, is indeed the error of the linear forward
LS prediction of y(t), based on ϕ(t).

Similarly, define the following linear backward LS prediction error:

εb(t− j) = y(t− j) + ϕT (t)α
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where
α = −{E

{
ϕc(t)ϕT (t)

}
}−1E {ϕc(t)y(t− j)} = −R−1r̃ = θ̃

The last equality above follows from (3.5.3). We thus have

E {ϕc(t)εb(t− j)} = 0

as required.
Next, some simple calculations give:

E
{
|εf (t)|2

}
= E

{
y∗(t)[y(t) + ϕT (t)θ]

}

= ρ0 + [ρ∗
1 . . . ρ

∗
j−1]θ = σ2

j−1

E
{
|εb(t− j)|2

}
= E

{
y∗(t− j)[y(t− j) + ϕT (t)α]

}

= ρ0 + [ρj−1 . . . ρ1]θ̃ = σ2
j−1

and

E {εf (t)ε∗b(t− j)} = E
{
[y(t) + ϕT (t)θ]y∗(t− j)

}

= ρj + [ρj−1 . . . ρ1]θ = αj−1

(cf. (3.4.1) and (3.5.6)). By using the previous equations in (3.9.1), we obtain

kj = −αj−1/σ
2
j−1

which coincides with (3.5.7).

3.9.2 Some Properties of Covariance Extensions

Assume we are given a finite sequence {r(k)}m−1
k=−(m−1) with r(−k) = r∗(k), and such

that Rm in equation (3.4.6) is positive definite. We show that the finite sequence
can be extended to an infinite sequence that is a valid ACS. Moreover, there are
an infinite number of possible covariance extensions and we derive an algorithm to
construct these extensions. One such extension, in which the reflection coefficients
km, km+1, . . . are all zero (and thus the infinite ACS corresponds to an AR process of
order less than or equal to (m−1)), gives the so-called Maximum Entropy extension
[Burg 1975].

We begin by constructing the set of r(m) values for which Rm+1 > 0. Using
the result of Exercise 3.7, we have

|Rm+1| = σ2
m|Rm| (3.9.3)

From the Levinson–Durbin algorithm,

σ2
m = σ2

m−1

[
1 − |km|2

]
= σ2

m−1

[

1 − |r(m) + r̃∗
m−1θm−1|2

σ4
m−1

]

(3.9.4)

Combining (3.9.3) and (3.9.4) gives

|Rm+1| = |Rm| · σ2
m−1

[

1 − |r(m) + r̃∗
m−1θm−1|2

σ4
m−1

]

(3.9.5)
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which shows that |Rm+1| is quadratic in r(m). Since σ2
m−1 > 0 and Rm is positive

definite, it follows that

|Rm+1| > 0 if and only if |r(m) + r̃∗
m−1θm−1|2 < σ4

m−1 (3.9.6)

The above region is an open disk in the complex plane whose center is −r̃∗
m−1θm−1

and radius is σ2
m−1.

Equation (3.9.6) leads to a construction of all possible covariance extenstions.
Note that if Rp > 0 and we choose r(p) inside the disk |r(p) + r̃∗

p−1θp−1|2 < σ4
p−1,

then |Rp+1| > 0. This implies σ2
p > 0, and the admissible disk for r(p + 1) has

nonzero radius, so there are an infinite number of possible choices for r(p+ 1) such
that |Rp+2| > 0. Arguing inductively in this way for p = m,m + 1, . . . shows that
there are an infinite number of covariance extensions and provides a construction
for them.

If we choose r(p) = −r̃∗
p−1θp−1 for p = m,m + 1, . . . (i.e., r(p) is chosen to

be at the center of each disk in (3.9.6)), then from (3.9.4) we see that the reflec-
tion coefficient kp = 0. Thus, from the Levinson–Durbin algorithm (see equation
(3.5.10)) we have

θp =

[
θp−1

0

]

(3.9.7)

and
σ2
p = σ2

p−1 (3.9.8)

Arguing inductively again, we find that kp = 0, θp =

[
θm−1

0

]

, and σ2
p = σ2

m−1 for

p = m,m + 1, . . .. This extension, called the Maximum Entropy extension [Burg

1975], thus gives an ACS sequence that corresponds to an AR process of order
less than or equal to (m− 1). The name maximum entropy arises because the so–
obtained spectrum has maximum entropy rate

∫ π

−π lnφ(ω)dω under the Gaussian
assumption [Burg 1975]; the entropy rate is closely related to the numerator in
the spectral flatness measure introduced in Exercise 3.6.

For some recent results on the covariance extension problem and its variations,
we refer to [Byrnes, Georgiou, and Lindquist 2001] and the references therein.

3.9.3 The Burg Method for AR Parameter Estimation

The thesis [Burg 1975] developed a method for AR parameter estimation that is
based on forward and backward prediction errors, and on direct estimation of the
reflection coefficients in equation (3.9.1). In this complement, we develop the Burg
estimator and discuss some of its properties.

Assume we have data measurements {y(t)} for t = 1, 2, . . . , N . Similarly
to Complement 3.9.1, we define the forward and backward prediction errors for a
pth–order model as:

êf,p(t) = y(t) +

p
∑

i=1

âp,iy(t− i), t = p+ 1, . . . , N (3.9.9)

êb,p(t) = y(t− p) +

p
∑

i=1

â∗
p,iy(t− p+ i), t = p+ 1, . . . , N (3.9.10)
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(we have shifted the time index in the definition of eb(t) from that in equation
(3.9.2) to reflect that êb,p(t) is computed using data up to time t; also, the fact
that the coefficients in (3.9.10) are given by {â∗

p,i} follows from Complement 3.9.1).
We use hats to denote estimated quantities, and we explicitly denote the order p in
both the prediction error sequences and the AR coefficients. The AR parameters
are related to the reflection coefficient k̂p by (see (3.5.10))

âp,i =

{

âp−1,i + k̂pâ
∗
p−1,p−i, i = 1, . . . , p− 1

k̂p, i = p
(3.9.11)

Burg’s method considers the recursive–in–order estimation of k̂p given that the AR
coefficients for order p− 1 have been computed. In particular, Burg’s method finds
k̂p to minimize the arithmetic mean of the forward and backward prediction error
variance estimates:

min
k̂p

1

2
[ρ̂f (p) + ρ̂b(p)] (3.9.12)

where

ρ̂f (p) =
1

N − p

N∑

t=p+1

|êf,p(t)|2

ρ̂b(p) =
1

N − p

N∑

t=p+1

|êb,p(t)|2

and where {âp−1,i}p−1
i=1 are assumed to be known from the recursion at the previous

order.
The prediction errors satisfy the following recursive–in–order expressions

êf,p(t) = êf,p−1(t) + k̂pêb,p−1(t− 1) (3.9.13)

êb,p(t) = êb,p−1(t− 1) + k̂∗
p êf,p−1(t) (3.9.14)

Equation (3.9.13) follows directly from (3.9.9)–(3.9.11) as

êf,p(t) = y(t) +

p−1
∑

i=1

(

âp−1,i + k̂pâ
∗
p−1,p−i

)

y(t− i) + k̂py(t− p)

=

[

y(t) +

p−1
∑

i=1

âp−1,iy(t− i)

]

+ k̂p

[

y(t− p) +

p−1
∑

i=1

â∗
p−1,iy(t− p+ i)

]

= êf,p−1(t) + k̂pêb,p−1(t− 1)

Similarly,

êb,p(t) = y(t− p) +

p−1
∑

i=1

[â∗
p−1,i + k̂∗

p âp−1,p−i]y(t− p+ i) + k̂∗
py(t)

= êb,p−1(t− 1) + k̂∗
p êf,p−1(t)
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which shows (3.9.14).
We can use the above expressions to develop a recursive–in–order algorithm

for estimating the AR coefficients. Note that the quantity to be minimized in
(3.9.12) is quadratic in k̂p since

1

2
[ρ̂f (p) + ρ̂b(p)] =

1

2(N − p)

N∑

t=p+1

{∣
∣
∣êf,p−1(t) + k̂pêb,p−1(t− 1)

∣
∣
∣

2

+
∣
∣
∣êb,p−1(t− 1) + k̂∗

p êf,p−1(t)
∣
∣
∣

2
}

=
1

2(N − p)

N∑

t=p+1

{[

|êf,p−1(t)|2 + |êb,p−1(t− 1)|2
] [

1 + |k̂p|2
]

+2êf,p−1(t)ê
∗
b,p−1(t− 1)k̂∗

p

+ 2ê∗
f,p−1(t)êb,p−1(t− 1)k̂p

}

Using Result R34 in Appendix A, we find that the k̂p that minimizes the above
quantity is given by

k̂p =
−2
∑N
t=p+1 êf,p−1(t)ê

∗
b,p−1(t− 1)

∑N
t=p+1

[

|êf,p−1(t)|2 + |êb,p−1(t− 1)|2
] (3.9.15)

A recursive–in–order algorithm for estimating the AR parameters, called the
Burg algorithm, is as follows:

The Burg Algorithm
Step 0. Initialize êf,0(t) = êb,0(t) = y(t).
Step 1. For p = 1, . . . , n,

(a) Compute êf,p−1(t) and êb,p−1(t) for t = p + 1, . . . , N from (3.9.13) and
(3.9.14).

(b) Compute k̂p from (3.9.15).

(c) Compute âp,i for i = 1, . . . , p from (3.9.11).

Then θ̂ = [âp,1, . . . , âp,p]
T is the vector of AR coefficient estimates.

Finally, we show that the resulting AR model is stable; this is accomplished
by showing that |k̂p| ≤ 1 for p = 1, . . . , n (see Exercise 3.9). To do so, we express

k̂p as

k̂p =
−2c∗d

c∗c+ d∗d
(3.9.16)

where

c = [êb,p−1(p), . . . , êb,p−1(N − 1)]T

d = [êf,p−1(p+ 1), . . . , êf,p−1(N)]T



“sm2”
2004/2/22
page 122

i

i

i

i

i

i

i

i

122 Chapter 3 Parametric Methods for Rational Spectra

Then

0 ≤ ‖c− eiαd‖2 = c∗c+ d∗d− 2 Re {eiαc∗d} for every α ∈ [−π, π]

=⇒ 2 Re {eiαc∗d} ≤ c∗c+ d∗d for every α ∈ [−π, π]

=⇒ 2|c∗d| ≤ c∗c+ d∗d =⇒ |k̂p| ≤ 1

The Burg algorithm is computationally simple, and is amenable to both order–
recursive and time–recursive solutions. In addition, the Burg AR model estimate
is guaranteed to be stable. On the other hand, the Burg method is suboptimal
in that it estimates the n reflection coefficients by decoupling an n–dimensional
minimization problem into the n one–dimensional minimizations in (3.9.12). This
is in contrast to the Least Squares AR method in Section 3.4.2, in which the AR
coefficients are found by an n–dimensional minimization. For large N , the two
algorithms give very similar performance; for short or medium data lengths, the
Burg algorithm usually behaves somewhere between the LS method and the Yule–
Walker method.

3.9.4 The Gohberg–Semencul Formula

The Hermitian Toeplitz matrix Rn+1 in (3.4.6) is highly structured. In particular,
it is completely defined by its first column (or row). As shown in Section 3.5,
exploitation of the special algebraic structure of (3.4.6) makes it possible to solve
this system of equations very efficiently. In this complement we show that the
Toeplitz structure of Rn+1 may also be exploited to derive a closed–form expression
for the inverse of this matrix. This expression is what is usually called the Gohberg–
Semencul (GS) formula (or the Gohberg–Semencul–Heining formula, in recognition
of the contribution also made by Heining to its discovery) [Söderström and

Stoica 1989; Iohvidov 1982; Böttcher and Silbermann 1983]. As will be
seen, an interesting consequence of the GS formula is the fact that, even if R−1

n+1 is
not Toeplitz in general, it is still completely determined by its first column. Observe
from (3.4.6) that the first column of R−1

n+1 is given by [1 θ]T /σ2. In what follows,
we drop the subscript n of θ for notational convenience.

The derivation of the GS formula requires some preparations. First, note that
the following nested structures of Rn+1,

Rn+1 =

[
ρ0 r∗

n

rn Rn

]

=

[
Rn r̃n
r̃∗
n ρ0

]

along with (3.4.6) and the result (3.5.3), imply that

θ = −R−1
n rn, θ̃ = −R−1

n r̃n

σ2
n = ρ0 − r∗

nR
−1
n rn = ρ0 − r̃∗

nR
−1
n r̃n

Next, make use of the above equations and a standard formula for the inverse of a
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partitioned matrix (see Result R26 in Appendix A) to write

R−1
n+1 =

[
0 0
0 R−1

n

]

+

[
1
θ

]

[1 θ∗]/σ2
n (3.9.17)

=

[
R−1
n 0
0 0

]

+

[

θ̃
1

]

[θ̃∗ 1]/σ2
n (3.9.18)

Finally, introduce the following (n+ 1) × (n+ 1) matrix

Z =









0 . . . 0

1
. . .

...
. . .

0 1 0









=








0 . . . 0
...

In×n
0








and observe that multiplication by Z of a vector or a matrix has the effects indicated
below.

q

q
q

q q q

0

00

0

n× n

n× n

n× 1

n× 1

ZXZTX

Zxx

PPPPPPPPPPPPq

u

PPPPPPPPPq

u

Owing to these effects of the linear transformation by Z, this matrix is called a
shift or displacement operator.

We are now prepared to present a simple derivation of the GS formula. The
basic idea of this derivation is to eliminate R−1

n from the expressions for R−1
n+1

in (3.9.17) and (3.9.18) by making use of the above displacement properties of Z.
Hence, using the expression (3.9.17) for R−1

n+1, and its “dual” (3.9.18) for calculating
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ZR−1
n+1Z

T , gives

R−1
n+1 − ZR−1

n+1Z
T =

1

σ2
n














1
a1

...
an








[1 a∗
1 . . . a

∗
n] −








0
a∗
n
...
a∗
1








[0 an . . . a1]







(3.9.19)

Premultiplying and postmultiplying (3.9.19) by Z and ZT , respectively, and then
continuing to do so with the resulting equations, we obtain

ZR−1
n+1Z

T − Z2R−1
n+1Z

2T =

1

σ2
n
















0
1
a1

...
an−1










[0 1 a∗
1 . . . a

∗
n−1] −










0
0
a∗
n
...
a∗
2










[0 0 an . . . a2]







(3.9.20)

...

ZnR−1
n+1Z

nT − 0 =
1

σ2
n














0
...
0
1








[0 . . . 0 1]







(3.9.21)

In (3.9.21), use is made of the fact that Z is a nilpotent matrix of order n + 1, in
the sense that:

Zn+1 = 0

(which can be readily verified). Now, by simply summing up the above equations
(3.9.19)–(3.9.21), we derive the following expression for R−1

n+1:

R−1
n+1 =

1

σ2
n















1 0

a1
. . .

...
. . .

. . .

an . . . a1 1

















1 a∗
1 . . . a∗

n

. . .
. . .

...
. . . a∗

1

0 1









−









0 0

a∗
n

. . .
...

. . .
. . .

a∗
1 . . . a∗

n 0

















0 an . . . a1

. . .
. . .

...
. . . an

0 0















(3.9.22)

which is the GS formula. Note from (3.9.22) that R−1
n+1 is, indeed, completely

determined by its first column, as is claimed earlier.
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The GS formula is inherently related to the Yule–Walker method of AR mod-
eling, and this is one of the reasons for including it in this book. The GS formula
is also useful in studying other spectral estimators, such as the Capon method,
which is discussed in Chapter 5. The hope that the curious reader who studies this
part will become interested in the fascinating topic of Toeplitz matrices and allied
subjects is another reason for its inclusion. In particular, it is indeed fascinating
to be able to derive an analytical formula for the inverse of a given matrix, as is
shown above to be the case for Toeplitz matrices. The basic ideas of the previous
derivation may be extended to more general matrices. Let us explain this briefly.
For a given matrix X, the rank of X −ZXZT is called the displacement rank of X
under Z. As can be seen from (3.9.19), the inverse of a Hermitian Toeplitz matrix
has a displacement rank equal to two. Now, assume we are given a (structured)
matrix X for which we are able to find a nilpotent matrix Y such that X−1 has a
low displacement rank under Y ; the matrix Y does not need to have the previous
form of Z. Then, paralleling the calculations in (3.9.19)–(3.9.22), we might be able
to derive a simple “closed–form” expression for X−1. See [Friedlander, Morf,

Kailath, and Ljung 1979] for more details on the topic of this complement.

3.9.5 MA Parameter Estimation in Polynomial Time

The parameter estimation of an AR process via the LS method leads to a quadratic
minimization problem that can be solved in closed form (see (3.4.11), (3.4.12)). On
the other hand, for an MA process the LS criterion similar to (3.4.11), which is
given by

N2∑

t=N1

∣
∣
∣
∣

1

B(z)
y(t)

∣
∣
∣
∣

2

(3.9.23)

is a highly nonlinear function of the MA parameters (and likewise for an ARMA
process).

A simple MA spectral estimator, that does not require solving a nonlinear
minimization problem, is given by equation (3.6.4) and is repeated here:

φ̂(ω) =

m̂∑

k=−m̂
r̂(k)e−iωk (3.9.24)

where m̂ is the assumed MA order and {r̂(k)} are the standard sample covariances.
As explained in Section 3.6 the main problem associated with (3.9.24) is the fact

that φ̂(ω) is not guaranteed to be positive for all ω ∈ [0, 2π]. If the final goal of the
signal processing exercise is spectral analysis then an occurrence of negative values
φ̂(ω) < 0 (for some values of ω) is not acceptable, as the true spectral density of
course satisfies φ(ω) ≥ 0 for all ω ∈ [0, 2π]. If the goal is MA parameter estimation,

then the problem induced by φ̂(ω) < 0 (for some values of ω) is even more serious

because in such a case φ̂(ω) cannot be factored as in (3.6.1), and hence no MA

parameter estimates can be determined directly from φ̂(ω). In this complement we

will show how to get around the problem of φ̂(ω) < 0, and hence how to obtain
MA parameter estimates from such an invalid MA spectral density estimate, using
an indirect but computationally efficient method (see [Stoica, McKelvey, and
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Mari 2000; Dumitrescu, Tabus, and Stoica 2001]). Note that obtaining

MA parameter estimates from the φ̂(ω) in (3.9.24) is not only of interest for MA
estimation, but also as a step of some ARMA estimation methods (see, e.g., (3.7.9)
as well as Exercise 3.12).

A sound way of tackling this problem of “factoring the unfactorable” is as
follows. Let φ(ω) denote the PSD of an MA process of order m:

φ(ω) =

m∑

k=−m
r(k)e−iωk ≥ 0, ω ∈ [0, 2π] (3.9.25)

We would like to determine the φ(ω) in (3.9.25) that is closest to φ̂(ω) in (3.9.24),
in the following LS sense:

min
1

2π

∫ π

−π

[

φ̂(ω) − φ(ω)
]2

dω (3.9.26)

The order m in (3.9.25) may be different from the order m̂ in (3.9.24). Without
loss of generality we can assume that m ≤ m̂ (indeed, if m > m̂ we can extend
the sequence {r̂(k)} with zeroes to make m ≤ m̂). Once φ(ω) has been obtained
by solving (3.9.26) we can factor it by using any of a number of available spectral
factorization algorithms (see, e.g., [Wilson 1969; Vostry 1975; Vostry 1976]),
and in this way derive MA parameter estimates {bk} satisfying

φ(ω) = σ2|B(ω)|2 (3.9.27)

(see (3.6.1)). This step of obtaining {bk} and σ2 from φ(ω) can be computed in
O(m2) flops. The problem that remains is to solve (3.9.26) for φ(ω) in a similarly
efficient computational way.

As

φ̂(ω) − φ(ω) =

m∑

k=−m
[r̂(k) − r(k)] e−iωk +

∑

|k|>m
r̂(k)e−iωk

it follows from Parseval’s theorem (see (1.2.6)) that the spectral LS criterion of
(3.9.26) can be rewritten as a covariance fitting criterion:

1

2π

∫ π

−π

[

φ̂(ω) − φ(ω)
]2

dω =

m∑

k=−m

∣
∣r̂(k) − r(k)

∣
∣
2

+
∑

|k|>m
|r̂(k)|2

Consequently, the approximation problem (3.9.26) is equivalent to:

min
{r(k)}

‖r̂ − r‖2
W subject to (3.9.25) (3.9.28)
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where ‖x‖2
W = x∗Wx and

r̂ =
[
r̂(0) . . . r̂(m)

]T

r =
[
r(0) . . . r(m)

]T

W =








1 0
2

. . .

0 2








In the following we will describe a computationally efficient and reliable algorithm
for solving problem (3.9.28) (with a general W matrix) in a time that is a polynomial
function of m (a more precise flop count is given below). Note that a possible way
of tackling (3.9.28) would consist of writing the covariances {r(k)} as functions of
the MA parameters (see (3.3.3)), which would guarantee that they satisfy (3.9.25),
and then minimize the function in (3.9.28) with respect to the MA parameters.
However, the so-obtained minimization problem would be, similarly to (3.9.23),
nonlinear in the MA parameters (more precisely, the criterion in (3.9.28) is quartic
in {bk}), which is exactly the type of problem we tried to avoid in the first place.

As a preparation step for solving (3.9.28) we first derive a parameterization
of the MA covariance sequence {r(k)}, which will turn out to be more convenient
than the parameterization via {bk}. Let Jk denote the (m + 1) × (m + 1) matrix
with ones on the (k + 1)st diagonal and zeroes everywhere else:

Jk =

k+1
︷ ︸︸ ︷















0 . . . 0 1 0
... 0

. . .

. . . 1
... 0 0

...
0 . . . . . . . . . 0















, (m+ 1) × (m+ 1)

(for k = 0, . . . ,m). Note that J0 = I. Then the following result holds:

Any MA covariance sequence {r(k)}mk=0 can be written as r(k) =
tr(JkQ) for k = 0, . . . ,m, where Q is an (m+1)×(m+1) positive
semidefinite matrix.

(3.9.29)

To prove this result, let

a(ω) =
[
1 eiω . . . eimω

]T
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and observe that

a(ω)a∗(ω) =









1 e−iω · · · e−imω

eiω 1
. . .

...
...

. . .
. . . e−iω

eimω · · · eiω 1









=

m∑

k=−m
Jke

−ikω

where J−k = JTk (for k ≥ 0). Hence, for the sequence parameterized as in (3.9.29),
we have that

m∑

k=−m
r(k)e−ikω = tr

[
m∑

k=−m
JkQe

−ikω
]

= tr [a(ω)a∗(ω)Q] = a∗(ω)Qa(ω) ≥ 0, for ω ∈ [0, 2π]

which implies that {r(k)} indeed is an MA(m) covariance sequence. To show that
any MA(m) covariance sequence can be parameterized as in (3.9.29), we make use
of (3.3.3) to write (for k = 0, . . . ,m)

r(k) = σ2
m∑

j=k

bjb
∗
j−k = σ2

[
b∗0 · · · b∗m

]
Jk






b0
...
bm






= tr







Jk · σ2






b0
...
bm






[
b∗0 · · · b∗m

]







(3.9.30)

Evidently (3.9.30) has the form stated in (3.9.29) with

Q = σ2






b0
...
bm






[
b∗0 · · · b∗m

]

With this observation, the proof of (3.9.29) is complete.
We can now turn our attention to the main problem, (3.9.28). We will describe

an efficient algorithm for solving (3.9.28) with a general weighting matrix W > 0
(as already stated.). For a choice of W that usually yields more accurate MA
parameter estimates than the simple diagonal weighting in (3.9.28), we refer the
reader to [Stoica, McKelvey, and Mari 2000]. Let

µ = C(r̂ − r)

where C is the Cholesky factor of W (i.e., C is an upper triangular matrix and
W = C∗C). Also, let α be a vector containing all the elements in the upper triangle
of Q, including the diagonal:

α = [Q1,1 Q1,2 . . . Q1,m+1 ; Q2,2 . . . Q2,m+1 ; . . . ;Qm+1,m+1]
T
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Note that α defines Q; that is, the elements of Q are either elements of α or complex
conjugates of elements of α. Making use of this notation and of (3.9.29) we can
rewrite (3.9.28) in the following form (for real-valued sequences):

min
ρ,µ,α

ρ subject to:

‖µ‖ ≤ ρ

Q ≥ 0







tr[Q]
tr
[
1
2

(
J1 + JT1

)
Q
]

...
tr
[
1
2

(
Jm + JTm

)
Q
]








+ C−1µ = r̂

(3.9.31)

Note that to obtain the equality constraint in (3.9.31) we used the fact that (in the
real-valued case; the complex-valued case can be treated similarly):

r(k) = tr(JkQ) = tr(QTJTk ) = tr(JTk Q) =
1

2
tr
[
(Jk + JTk )Q

]

The reason for this seemingly artificial trick is that we need the matrices multiplying
Q in (3.9.31) to be symmetric. In effect, the problem (3.9.31) has precisely the
form of a semidefinite quadratic program (SQP) which can be solved efficiently
by means of interior point methods (see [Sturm 1999] and also [Dumitrescu,

Tabus, and Stoica 2001] and references therein). Specifically, it can be shown
that an interior point method (such as the ones in [Sturm 1999]) when applied to
the SQP in (3.9.31) requires O(m4) flops per iteration; furthermore, the number of
iterations needed to achieve practical convergence of the method is typically quite
small (and nearly independent of m), for instance between 10 and 20 iterations.
The overall conclusion, therefore, is that (3.9.31), and hence the original problem
(3.9.28), can be efficiently solved in O(m4) flops. Once the solution to (3.9.31)
has been computed, we can obtain the corresponding MA covariances either as
r = r̂ − C−1µ or as r(k) = tr(JkQ) for k = 0, . . . ,m. Numerical results obtained
with the MA parameter estimation algorithm outlined above have been reported in
[Dumitrescu, Tabus, and Stoica 2001] (see also [Stoica, McKelvey, and

Mari 2000]).

3.10 EXERCISES

Exercise 3.1: The Minimum Phase Property

As stated in the text, a polynomial A(z) is said to be minimum phase if all its
zeroes are inside the unit circle. In this exercise, we motivate the name minimum
phase. Specifically, we will show that if A(z) = 1 + a1z

−1 + · · · + anz
−n has real-

valued coefficients and has all its zeroes inside the unit circle, and if B(z) is any
other polynomial in z−1 with real-valued coefficients that satisfies |B(ω)| = |A(ω)|
and B(0) = A(0) (where B(ω) , B(z)|z=eiω ), then the phase lag of B(ω), given by
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− argB(ω)), is greater than or equal to the phase lag of A(ω):

− argB(ω) ≥ − argA(ω)

Since we can factor A(z) as

A(z) =

n∏

k=1

(1 − αkz
−1)

and argA(ω) =
∑n
k=1 arg

(
1 − αke

−iω), we begin by proving the minimum phase
property for first–order polynomials. Let

C(z) = 1 − αz−1, α , reiθ, r < 1

D(z) = z−1 − α∗ = C(z)
z−1 − α∗

1 − αz−1
, C(z)E(z)

(3.10.1)

(a) Show that the zero ofD(z) is outside the unit circle, and that |D(ω)| = |C(ω)|.
(b) Show that

− argE(ω) = ω + 2 tan−1

[
r sin(ω − θ)

1 − r cos(ω − θ)

]

Also, show that the above function is increasing.

(c) If α is real, conclude that − argD(ω) ≥ − argC(ω) for 0 ≤ ω ≤ π, which
justifies the name minimum phase for C(z) in the first–order case.

(d) Generalize the first–order results proven in parts (a)–(c) to polynomials A(z)
and B(z) of arbitrary order; in this case, the αk are either real or occur in
complex-conjugate pairs.

Exercise 3.2: Generating the ACS from ARMA Parameters
In this chapter we developed equations expressing the ARMA coefficients

{σ2, ai, bj} in terms of the ACS {r(k)}∞
k=−∞. Find the inverse map; that is, given

σ2, a1, . . . , an, b1 . . . , bm, find equations to determine {r(k)}∞
k=−∞.

Exercise 3.3: Relationship between AR Modeling and Forward Linear
Prediction

Suppose we have a zero mean stationary process {y(t)} (not necessarily AR)
with ACS {r(k)}∞

k=−∞. We wish to predict y(t) by a linear combination of its n
past values; that is, the predicted value is given by

ŷf (t) =

n∑

k=1

(−ak)y(t− k)

We define the forward prediction error as

ef (t) = y(t) − ŷf (t) =

n∑

k=0

aky(t− k)
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with a0 = 1. Show that the vector θf = [a1 . . . an]
T of prediction coefficients that

minimizes the prediction error variance σ2
f , E{|ef (t)|2} is the solution to (3.4.2).

Show also that σ2
f = σ2

n, i.e., that σ2
n in (3.4.2) is the prediction error variance.

Furthermore, show that if {y(t)} is an AR(p) process with p ≤ n, then the
prediction error is white noise, and that

kj = 0 for j > p

where kj is the jth reflection coefficient defined in (3.5.7). Show that, as a conse-
quence, ap+1, . . . , an = 0. Hint: The calculations performed in Section 3.4.2 and
in Complement 3.9.2 will be useful in solving this problem.

Exercise 3.4: Relationship between AR Modeling and Backward Linear
Prediction

Consider the signal {y(t)} as in Exercise 3.3. This time, we will consider
backward prediction; that is, we will predict y(t) from its n immediate future
values:

ŷb(t) =

n∑

k=1

(−bk)y(t+ k)

with corresponding backward prediction error eb(t) = y(t) − ŷb(t). Such backward
prediction is useful in applications where noncausal processing is permitted; for
example, when the data has been prerecorded and is stored in memory or on a
tape and we want to make inferences on samples that precede the observed ones.
Find an expression similar to (3.4.2) for the backward prediction coefficient vector
θb = [b1 . . . bn]

T . Find a relationship between the θb and the corresponding forward
prediction coefficient vector θf . Relate the forward and backward prediction error
variances.

Exercise 3.5: Prediction Filters and Smoothing Filters
The smoothing filter is a practically useful variation on the theme of linear

prediction. A result of Exercises 3.3 and 3.4 should be that for the forward and
backward prediction filters

A(z) = 1 +

n∑

k=1

akz
−k and B(z) = 1 +

n∑

k=1

bkz
−k,

the prediction coefficients satisfy ak = b∗k, and the prediction error variances are
equal.

Now consider the smoothing filter

es(t) =

m∑

k=1

cky(t− k) + y(t) +

m∑

k=1

dky(t+ k).

(a) Derive a system of linear equations, similar to the forward and backward
linear prediction equations, that relate the smoothing filter coefficients, the
smoothing prediction error variance σ2

s = E
{
|es(t)|2

}
, and the ACS of y(t).
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(b) For n = 2m, provide an example of a zero–mean stationary random process
for which the minimum smoothing prediction error variance is greater than the
minimum forward prediction error variance. Also provide a second example
where the minimum smoothing filter prediction error variance is less than the
corresponding minimum forward prediction error variance.

(c) Assume m = n, but now constrain the smoothing prediction coefficients to be
complex–conjugate symmetric: ck = d∗

k for k = 1, . . . ,m. In this case the two
prediction filters and the smoothing filter have the same number of degrees
of freedom. Prove that the minimum smoothing prediction error variance is
less than or equal to the minimum (forward or backward) prediction error
variance. Hint: Show that the unconstrained minimum smoothing error
variance solution (where we do not impose the constraint ck = d∗

k) satisfies
ck = d∗

k anyway.

Exercise 3.6: Relationship between Minimum Prediction Error and Spec-
tral Flatness

Consider a random process {y(t)} with ACS {r(k)} (y(t) is not necessarily an
AR process). We find an AR(n) model for y(t) by solving (3.4.6) for σ2

n and θn.
These parameters generate an AR PSD model:

φAR(ω) =
σ2
n

|A(ω)|2

whose inverse Fourier transform we denote by {rAR(k)}∞
k=−∞. In this exercise

we explore the relationship between {r(k)} and {rAR(k)}, and between φy(ω) and
φAR(ω).

(a) Verify that the AR model has the property that

rAR(k) = r(k), k = 0, . . . , n.

(b) We have seen from Exercise 3.3 that the AR model minimizes the nth–order
forward prediction error variance; that is, the variance of

e(t) = y(t) + a1y(t− 1) + . . .+ any(t− n).

For the special case that {y(t)} is AR of order n or less, we also know that
{e(t)} is white noise, so φe(ω) is flat. We will extend this last property by
showing that, for general {y(t)}, φe(ω) is maximally flat in the sense that the
AR model maximizes the spectral flatness measure given by

fe =
exp

[
1
2π

∫ π

−π lnφe(ω)dω
]

1
2π

∫ π

−π φe(ω) dω
(3.10.2)

where

φe(ω) = |A(ω)|2 φy(ω) = σ2
n

φy(ω)

φAR(ω)
.

Show that the measure fe has the following “desirable” properties of a spectral
flatness measure:
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(i) fe is unchanged if φe(ω) is multiplied by a constant.

(ii) 0 ≤ fe ≤ 1.

(iii) fe = 1 if and only if φe(ω) = constant.

Hint: Use the fact that

1

2π

∫ π

−π
ln |A(ω)|2 dω = 0 (3.10.3)

(The above result can be proven using the Cauchy integral formula). Show
that (3.10.3) implies

fe = fy
ry(0)

re(0)
(3.10.4)

and thus that minimizing re(0) maximizes fe.

Exercise 3.7: Diagonalization of the Covariance Matrix
Show that Rn+1 in equation (3.5.2) satisfies

L∗Rn+1L = D

where

L =











1 0 . . . 0 0

1
...

...
. . . 0

1 0
θn θn−1 θ1 1











and D = diag [σ2
n σ

2
n−1 . . . σ

2
0 ]

and where θk and σ2
k are defined in (3.4.6). Use this property to show that

|Rn+1| =

n∏

k=0

σ2
k

Exercise 3.8: Stability of Yule–Walker AR Models
Assume that the matrix Rn+1 in equation (3.4.6) is positive definite. (This can

be achieved by using the sample covariances in (2.2.4) to build Rn+1, as explained
in Section 2.2.) Then show that the AR model obtained from the Yule–Walker
equations (3.4.6) is stable in the sense that the polynomial A(z) has all its zeroes
strictly inside the unit circle. (Most of the available proofs for this property are
discussed in [Stoica and Nehorai 1987]).

Exercise 3.9: Three Equivalent Representations for AR Processes
In this chapter we have considered three ways to parameterize an AR(n),

but we have not explicitly shown when they are equivalent. Show that, for a
nondegenerate AR(n) process (i.e., one for which Rn+1 is positive definite), the
following three parameterizations are equivalent:

(R) r(0), . . . , r(n) such that Rn+1 is positive definite.

(K) r(0), k1, . . . , kn such that r(0) > 0 and |ki| < 1 for i = 1, . . . , n.
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(A) σ2
n, a1, . . . , an such that σ2

n > 0 and all the zeroes of A(z) are inside the unit
circle.

Find the mapping from each parameterization to the others (some of these have
already been derived in the text and in the previous exercises).

Exercise 3.10: An Alternative Proof of the Stability Property of Reflec-
tion Coefficients

Prove that k̂p which minimizes (3.9.12) must be such that |k̂p| ≤ 1, without

using the expression (3.9.15) for k̂p. Hint: Write the criterion in (3.9.12) as

f(kp) = E

(∥
∥
∥
∥

[
1 kp
k∗
p 1

]

z(t)

∥
∥
∥
∥

2
)

where

E(·) =
1

2(N − p)

N∑

t=p+1

(·)

z(t) =
[
êf,p−1(t) êb,p−1(t− 1)

]T

and show that if |kp| > 1 then f(kp) > f(1/k∗
p).

Exercise 3.11: Recurrence Properties of Reflection Coefficient Sequence
for an MA Model

For an AR process of order n, the reflection coefficients satisfy ki = 0 for
i > n (see Exercise 3.3), and the ACS satisfies the linear recurrence relationship
A(z)r(k) = 0 for k > 0. Since an MA process of order m has the property that
r(i) = 0 for i > m, we might wonder if a recurrence relationship holds for the
reflection coefficients corresponding to a MA process. We will investigate this “con-
jecture” for a simple case.

Consider an MA process of order 1 with parameter b1. Show that |Rn| satisfies
the relationship

|Rn| = r(0)|Rn−1| − |r(1)|2|Rn−2|, n ≥ 2

Show that kn = (−r(1))n/|Rn| and that the reflection coefficient sequence satisfies
the recurrence relationship:

1

kn
= −r(0)

r(1)

1

kn−1
− r∗(1)

r(1)

1

kn−2
(3.10.5)

with appropriate initial conditions (state them). Show that the solution to (3.10.5)
for |b1| < 1 is

kn =
(1 − |b1|2)(−b1)n

1 − |b1|2n+2
(3.10.6)

This sequence decays exponentially to zero. When b1 = −1, show that kn = 1/n.
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It has been shown that for large n, B(z)kn ' 0, where ' 0 means that the
residue is small compared to the kn terms [Georgiou 1987]. This result holds
even for MA processes of order higher than 1. Unfortunately, the result is of little
practical use as a means of estimating the bk coefficients since for large n the kn
values are (very) small.

Exercise 3.12: Asymptotic Variance of the ARMA Spectral Estimator
Consider the ARMA spectral estimator (3.2.2) with any consistent estimate

of σ2 and {ai, bj}. For simplicity, assume that the ARMA parameters are real;
however, the result holds for complex ARMA processes as well. Show that the
asymptotic (for large data sets) variance of this spectral estimator can be written
in the form

E
{

[φ̂(ω) − φ(ω)]2
}

= C(ω)φ2(ω) (3.10.7)

where C(ω) = ϕT (ω)Pϕ(ω). Here, P is the covariance matrix of the estimate of
the parameter vector [σ2, aT , bT ]T and the vector ϕ(ω) has an expression that is
to be found. Deduce that (3.10.7) has the same form as the asymptotic variance
of the periodogram spectral estimator but with the essential difference that in the
ARMA estimator case C(ω) goes to zero as the number of data samples processed
increases (and that C(ω) in (3.10.7) is a function of ω). Hint: Use a Taylor series

expansion of φ̂(ω) as a function of the estimated parameters {σ̂2, âi, b̂j} (see, e.g.,
Appendix B).

Exercise 3.13: Filtering Interpretation of Numerator Estimators in AR-
MA Estimation

An alternative method for estimating the MA part of an ARMA PSD is as
follows. Assume we have estimated the AR coefficients (e.g., from equation (3.7.2)
or (3.7.4)). We filter y(t) by Â(z) to form f(t):

f(t) = y(t) +

n∑

i=1

âiy(t− i), t = n+ 1, . . . , N.

Then estimate the ARMA PSD as

φ̂(ω) =

∑m
k=−m r̂f (k)e

−iωk

|Â(ω)|2

where r̂f (k) are the standard ACS estimates for f(t). Show that the above estimator
is quite similar to (3.7.8) and (3.7.9) for large N .

Exercise 3.14: An Alternative Expression for ARMA Power Spectral
Density

Consider an ARMA(n,m) process. Show that

φ(z) = σ2B(z)B∗(1/z∗)

A(z)A∗(1/z∗)

can be written as

φ(z) =
C(z)

A(z)
+
C∗(1/z∗)

A∗(1/z∗)
(3.10.8)
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where

C(z) =

max(m,n)
∑

k=0

ckz
−k

Show that the polynomial C(z) satisfying (3.10.8) is unique, and find an expression
for ck in terms of {ai} and {r(k)}.

Equation (3.10.8) motivates an alternative estimation procedure to that in
equations (3.7.8) and (3.7.9) for ARMA spectral estimation. In the alternative
approach, we first estimate the AR coefficients {âi}ni=1 using, e.g., equation (3.7.2).
We then estimate the ck coefficients using the formula found in this exercise, and
finally insert the estimates âk and ĉk into the right–hand side of (3.10.8) to obtain
a spectral estimate. Prove that this alternative estimator is equivalent to that in
(3.7.8)–(3.7.9) under certain conditions, and find conditions on {âk} so that they are
equivalent. Also, compare (3.7.9) and (3.10.8) for ARMA(n,m) spectral estimation
when m < n.

Exercise 3.15: Padé Approximation
A minimum phase (or causally invertible) ARMA(n,m) model B(z)/A(z) can

be equivalently represented as an AR(∞) model 1/C(z). The approximation of a
ratio of polynomials by a polynomial of higher order was considered by Padé in
the late 1800s. One possible application of the Padé approximation is to obtain an
ARMA spectral model by first estimating the coefficients of a high–order AR model,
then solving for a (low–order) ARMA model from the estimated AR coefficients.
In this exercise we investigate the model relationships and some consequences of
truncating the AR model polynomial coefficients.

Define:

A(z) = 1 + a1z
−1 + · · · + anz

−n

B(z) = 1 + b1z
−1 + · · · + bmz

−m

C(z) = 1 + c1z
−1 + c2z

−2 + · · ·

(a) Show that

ck =







1, k = 0

ak −∑m
i=1 bick−i, 1 ≤ k ≤ n

−∑m
i=1 bick−i, k > n

where we assume any polynomial coefficient is equal to zero outside its defined
range.

(b) Using the equations above, derive a procedure for computing the ai and bj
parameters from a given set of {ck}m+n

k=0 parameters. Assume m and n are
known.

(c) The above equations give an exact representation using an infinite–order AR
polynomial. In the Padé method, an approximation to B(z)/A(z) = 1/C(z)
is obtained by truncating (setting to zero) the ck coefficients for k > m+ n.
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Suppose a stable minimum phase ARMA(n,m) filter is approximated by an
AR(m + n) filter using the Padé approximation. Give an example to show
that the resulting AR approximation is not necessarily stable.

(d) Suppose a stable AR(m+n) filter is approximated by a ratio Bm(z)/An(z) as
in part (b). Give an example to show that the resulting ARMA approximation
is not necessarily stable.

Exercise 3.16: (Non)Uniqueness of Fully Parameterized ARMA Equa-
tions

The shaping filter (or transfer function) of the ARMA equation (3.8.1) is given
by the following matrix fraction:

H(z) = A−1(z)B(z), (ny × ny) (3.10.9)

where z is a dummy variable, and

A(z) = I +A1z
−1 + · · · +Apz

−p

B(z) = I +B1z
−1 + · · · +Bpz

−p

(if the AR and MA orders, n and m, are different, then p above is equal to
max(m,n)). Assume that A(z) and B(z) are “fully parameterized” in the sense
that all elements of the matrix coefficients {Ai, Bj} are unknown.

The matrix fraction description (MFD) (3.10.9) of the ARMA shaping filter
is unique if and only if there exist no matrix polynomials Ã(z) and B̃(z) of degree
p and no matrix polynomial L(z) 6= I such that

Ã(z) = L(z)A(z) B̃(z) = L(z)B(z) (3.10.10)

This can be verified by making use of (3.10.9); see, e.g., [Kailath 1980].
Show that the above uniqueness condition is satisfied for the fully parameter-

ized MFD if and only if

rank[Ap Bp] = ny (3.10.11)

Comment on the character of this condition: is it restrictive or not?

COMPUTER EXERCISES

Tools for AR, MA, and ARMA Spectral Estimation:
The text web site www.prenhall.com/stoica contains the following Matlab

functions for use in computing AR, MA, and ARMA spectral estimates and selecting
the model order. For the first four functions, y is the input data vector, n is the
desired AR order, and m is the desired MA order (if applicable). The outputs are a,

the vector [â1, . . . , ân]
T of estimated AR parameters, b, the vector [b̂1, . . . , b̂m]T of

MA parameters (if applicable), and sig2, the noise variance estimate σ̂2. Variable
definitions specific to a particular functions are given below.
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• [a,sig2]=yulewalker(y,n)

The Yule–Walker AR method given by equation (3.4.2).

• [a,sig2]=lsar(y,n)

The covariance Least Squares AR method given by equation (3.4.12).

• [a,gamma]=mywarma(y,n,m,M)

The modified Yule–Walker based ARMA spectral estimate given by equation
(3.7.9), where the AR coefficients are estimated from the overdetermined set
of equations (3.7.4) with W = I. Here, M is the number of Yule-Walker
equations used in (3.7.4) and gamma is the vector [γ̂0, . . . , γ̂m]T .

• [a,b,sig2]=lsarma(y,n,m,K)

The two–stage Least Squares ARMA method given in Section 3.7.2; K is the
number of AR parameters to estimate in Step 1 of that algorithm.

• order=armaorder(mo,sig2,N,nu)

Computes the AIC, AICc, GIC, and BIC model order selections for general
parameter estimation problems (see Appendix C for details on the derivations
of these methods). Here, mo is a vector of possible model orders, sig2 is the
vector of estimated residual variances corresponding to the model orders in
mo, N is the length of the observed data vector, and nu is a parameter in the
GIC method. The output 4-element vector order contains the model orders
selected using AIC, AICc, GIC, and BIC, respectively.

Exercise C3.17: Comparison of AR, ARMA and Periodogram Methods
for ARMA Signals

In this exercise we examine the properties of parametric methods for PSD
estimation. We will use two ARMA signals, one broadband and one narrowband,
to illustrate the performance of these parametric methods.

Broadband ARMA Process: Generate realizations of the broadband ARMA
process

y(t) =
B1(z)

A1(z)
e(t)

with σ2 = 1 and

A1(z) = 1 − 1.3817z−1 + 1.5632z−2 − 0.8843z−3 + 0.4096z−4

B1(z) = 1 + 0.3544z−1 + 0.3508z−2 + 0.1736z−3 + 0.2401z−4

Choose the number of samples as N = 256.

(a) Estimate the PSD of the realizations by using the four AR and ARMA esti-
mators described above. Use AR(4), AR(8), ARMA(4,4), and ARMA(8,8);
for the MYW algorithm, use both M = n and M = 2n; for the LS AR(MA)
algorithms, use K = 2n. Illustrate the performance by plotting ten overlaid
estimates of the PSD. Also, plot the true PSD on the same diagram.
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In addition, plot pole or pole–zero estimates for the various methods. (For
the MYW method, the zeroes can be found by spectral factorization of the
numerator; comment on the difficulties you encounter, if any.)

(b) Compare the two AR algorithms. How are they different in performance?

(c) Compare the two ARMA algorithms. How does M impact performance of
the MYW algorithm? How do the accuracies of the respective pole and zero
estimates compare?

(d) Use an ARMA(4,4) model for the LS ARMA algorithm, and estimate the PSD
of the realizations for K = 4, 8, 12, and 16. How does K impact performance
of the algorithm?

(e) Compare the lower–order estimates with the higher–order estimates. In what
way(s) does increasing the model order improve or degrade estimation perfor-
mance?

(f) Compare the AR to the ARMA estimates. How does the AR(8) model perform
with respect to the ARMA(4,4) model and the ARMA(8,8) model?

(g) Compare your results with those using the periodogram method on the same
process (from Exercise C2.21 in Chapter 2). Comment on the difference be-
tween the methods with respect to variance, bias, and any other relevant
properties of the estimators you notice.

Narrowband ARMA Process: Generate realizations of the narrowband ARMA
process

y(t) =
B2(z)

A2(z)
e(t)

with σ2 = 1 and

A2(z) = 1 − 1.6408z−1 + 2.2044z−2 − 1.4808z−3 + 0.8145z−4

B2(z) = 1 + 1.5857z−1 + 0.9604z−2

(a) Repeat the experiments and comparisons in the broadband example for the
narrowband process; this time, use the following model orders: AR(4), AR(8),
AR(12), AR(16), ARMA(4,2), ARMA(8,4), and ARMA(12,6).

(b) Study qualitatively how the algorithm performances differ for narrowband
and broadband data. Comment separately on performance near the spectral
peaks and near the spectral valleys.

Exercise C3.18: AR and ARMA Estimators for Line Spectral Estimation
The ARMA methods can also be used to estimate line spectra (estimation

of line spectra by other methods is the topic of Chapter 4). In this application,
AR(MA) techniques are often said to provide super–resolution capabilities because
they are able to resolve sinusoids too closely spaced in frequency to be resolved by
periodogram–based methods.

We again consider the four AR and ARMA estimators described above.
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(a) Generate realizations of the signal

y(t) = 10 sin(0.24πt+ ϕ1) + 5 sin(0.26πt+ ϕ2) + e(t), t = 1, . . . , N

where e(t) is (real) white Gaussian noise with variance σ2, and where ϕ1, ϕ2

are independent random variables each uniformly distributed on [0, 2π]. From
the results in Chapter 4, we find the spectrum of y(t) to be

φ(ω) = 50π [δ(ω − 0.24π) + δ(ω + 0.24π)]

+12.5π [δ(ω − 0.26π) + δ(ω + 0.26π)] + σ2

(b) Compute the “true” AR polynomial (using the true ACS sequence; see equa-
tion (4.1.6)) using the Yule–Walker equations for both AR(4), AR(12), AR-
MA(4,4) and ARMA(12,12) models when σ2 = 1. This experiment corre-
sponds to estimates obtained as N → ∞. Plot 1/|A(ω)|2 for each case, and
find the roots of A(z). Which method(s) are able to resolve the two sinusoids?

(c) Consider now N = 64, and set σ2 = 0; this corresponds to the finite data
length but infinite SNR case. Compute estimated AR polynomials using the
four spectral estimators and the AR and ARMA model orders described above;
for the MYW technique consider both M = n and M = 2n, and for the LS
ARMA technique use both K = n and K = 2n. Plot 1/|A(ω)|2, overlaid, for
50 different Monte–Carlo simulations (using different values of ϕ1 and ϕ2 for
each). Also plot the zeroes of A(z), overlaid, for these 50 simulations. Which
method(s) are reliably able to resolve the sinusoids? Explain why. Note that
as σ2 → 0, y(t) corresponds to a (limiting) AR(4) process. How does the
choice of M or K in the ARMA methods affect resolution or accuracy of the
frequency estimates?

(d) Obtain spectral estimates (σ̂2|B̂(ω)|2/|Â(ω)|2 for the ARMA estimators and
σ̂2/|Â(ω)|2 for the AR estimators) for the four methods when N = 64 and
σ2 = 1. Plot ten overlaid spectral estimates and overlaid polynomial zeroes of
the Â(z) estimates. Experiment with different AR and ARMA model orders
to see if the true frequencies are estimated more accurately; note also the
appearance and severity of “spurious” sinusoids in the estimates for higher
model orders. Which method(s) give reliable “super–resolution” estimation of
the sinusoids? How does the model order influence the resolution properties?
Which method appears to have the best resolution?

You may want to experiment further by changing the SNR and the relative
amplitudes of the sinusoids to gain a better understanding of the relative
differences between the methods. Also, experiment with different model orders
and parameters K and M to understand their impact on estimation accuracy.

(e) Compare the estimation results with periodogram–based estimates obtained
from the same signals. Discuss differences in resolution, bias, and variance of
the techniques.

Exercise C3.19: Model Order Selection for AR and ARMA Processes
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In this exercise we examine four methods for model order selection in AR
and ARMA spectral estimation. We will experiment with both broadband and
narrowband processes.

As discussed in Appendix C, several important model order selection rules
have the following general form (see (C.8.1)–(C.8.2)):

−2 ln pn(y, θ̂
n) + η(n,N)n (3.10.12)

with different penalty coefficients η(n,N) for the different methods:

AIC : η(n,N) = 2

AICc : η(n,N) = 2
N

N − n− 1

GIC : η(n,N) = ν (e.g., ν = 4)

BIC : η(n,N) = lnN

(3.10.13)

The term ln pn(y, θ̂
n) is the log-likelihood of the observed data vector y given the

maximum-likelihood (ML) estimate of the parameter vector θ for a model of order
n (where n is the total number of estimated real-valued parameters in the model);
for the case of AR, MA, and ARMA models, a large-sample approximation for
−2 ln pn(y, θ̂

n) that is commonly used for order selection (see, e.g., [Ljung 1987;
Söderström and Stoica 1989]) is given by:

−2 ln pn(y, θ̂
n) ' Nσ̂2

n + constant (3.10.14)

where σ̂2
n is the sample estimate of σ2 in (3.2.2) corresponding to the model of

order n. The selected order is the value of n that minimizes (3.10.12). The order
selection rules above, while derived for ML estimates of θ, can be used even with
approximate ML estimates of θ, albeit with some loss of performance.

Broadband AR Process: Generate 100 realizations of the broadband AR process

y(t) =
1

A1(z)
e(t)

with σ2 = 1 and

A1(z) = 1 − 1.3817z−1 + 1.5632z−2 − 0.8843z−3 + 0.4096z−4

Choose the number of samples as N = 128. For each realization:

(a) Estimate the model parameters using the LS AR estimator, and using AR
model orders from 1 to 12.

(b) Find the model orders that minimize the AIC, AICc, GIC (with ν = 4),
and BIC criteria (See Appendix C). Note that for an AR model of order m,
n = m+ 1.

(c) For each of the four order selection methods, plot a histogram of the selected
orders for the 100 realizations. Comment on their relative performance.
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Repeat the above experiment using N = 256 and N = 1024 samples. Discuss the
relative performance of the order selection methods as N increases.

Narrowband AR Process: Repeat the above experiment using the narrowband
AR process:

y(t) =
1

A2(z)
e(t)

with σ2 = 1 and

A2(z) = 1 − 1.6408z−1 + 2.2044z−2 − 1.4808z−3 + 0.8145z−4

Compare the narrowband AR and broadband AR order selection results, and dis-
cuss the relative order selection performance for these two AR processes.

Broadband ARMA Process: Repeat the broadband AR experiment using the
broadband ARMA process

y(t) =
B1(z)

A1(z)
e(t)

with σ2 = 1 and

A1(z) = 1 − 1.3817z−1 + 1.5632z−2 − 0.8843z−3 + 0.4096z−4

B1(z) = 1 + 0.3544z−1 + 0.3508z−2 + 0.1736z−3 + 0.2401z−4

For the broadband ARMA process, use N = 256 and N = 1024 data samples. For
each value of N , find ARMA(m,m) models (so n = 2m+ 1 in equation (3.10.12))
for m = 1, . . . , 12. Use the two-stage LS ARMA method with K = 4m to estimate
parameters.

Narrowband ARMA Process: Repeat the broadband ARMA experiment using
the narrowband ARMA process:

y(t) =
B2(z)

A2(z)
e(t)

with σ2 = 1 and

A2(z) = 1 − 1.6408z−1 + 2.2044z−2 − 1.4808z−3 + 0.8145z−4

B2(z) = 1 + 1.1100z−1 + 0.4706z−2

Find ARMA(2m,m) models for m = 1, . . . , 6 (so n = 3m+1 in equation (3.10.12))
using the two-stage LS ARMA method with K = 8m. Compare the narrowband
ARMA and broadband ARMA order selection results, and discuss the relative order
selection performance for these two ARMA processes.

Exercise C3.20: AR and ARMA Estimators applied to Measured Data
Consider the data sets in the files sunspotdata.mat and lynxdata.mat.

These files can be obtained from the text web site www.prenhall.com/stoica.
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Apply your favorite AR and ARMA estimator(s) (for the lynx data, use both the
original data and the logarithmically transformed data as in Exercise C2.23) to
estimate the spectral content of these data. You will also need to determine ap-
propriate model orders m and n (see, e.g., Exercise C3.19). As in Exercise C2.23,
try to answer the following questions: Are there sinusoidal components (or peri-
odic structure) in the data? If so, how many components and at what frequencies?
Discuss the relative strengths and weaknesses of parametric and nonparametric es-
timators for understanding the spectral content of these data. In particular, discuss
how a combination of the two techniques can be used to estimate the spectral and
periodic structure of the data.
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C H A P T E R 4

Parametric Methods for Line
Spectra

4.1 INTRODUCTION

In several applications, particularly in communications, radar, sonar, geophysical
seismology and so forth, the signals dealt with can be well described by the following
sinusoidal model:

y(t) = x(t) + e(t) ; x(t) =

n∑

k=1

αke
i(ωkt+ϕk) (4.1.1)

where x(t) denotes the noise–free complex–valued sinusoidal signal; {αk}, {ωk},
{ϕk} are its amplitudes, (angular) frequencies and initial phases, respectively; and
e(t) is an additive observation noise. The complex–valued form (4.1.1), of course, is
not encountered in practice as it stands; practical signals are real valued. However,
as already mentioned in Chapter 1, in many applications both the in–phase and
quadrature components of the studied signal are available. (See Chapter 6 for more
details on this aspect.) In the case of a (real–valued) sinusoidal signal, this means
that both the sine and the corresponding cosine components are available. These
two components may be processed by arranging them in a two–dimensional vector
signal or a complex–valued signal of the form of (4.1.1). Since the complex–valued
description (4.1.1) of the in–phase and quadrature components of a sinusoidal signal
is the most convenient one from a mathematical standpoint, we focus on it in this
chapter.

The noise {e(t)} in (4.1.1) is usually assumed to be (complex–valued) circular
white noise as defined in (2.4.19). We also make the white noise assumption in
this chapter. We may argue in the following way that the white noise assumption
is not particularly restrictive. Let the continuous–time counterpart of the noise in
(4.1.1) be correlated, but assume that the “correlation time” of the continuous–
time noise is less than half of the shortest period of the sine wave components
in the continuous–time counterpart of x(t) in (4.1.1). If this mild condition is
satisfied, then choosing the sampling period larger than the noise correlation time
(yet smaller than half the shortest sinusoidal signal period, to avoid aliasing) results
in a white discrete–time noise sequence {e(t)}. If the correlation condition above is
not satisfied, but we know the shape of the noise spectrum, we can filter y(t) by a
linear whitening filter which makes the noise component at the filter output white;
the sinusoidal components remain sinusoidal with the same frequencies, and with
amplitudes and phases altered in a known way.

144



“sm2”
2004/2/22
page 145

i

i

i

i

i

i

i

i

Section 4.1 Introduction 145

If the noise process is not white and has unknown spectral shape, then accu-
rate frequency estimates can still be found if we estimate the sinusoids using the
nonlinear least squares (NLS) method in Section 4.3 (see [Stoica and Nehorai

1989b], for example). Indeed, the properties of the NLS estimates in the colored
and unknown noise case are quite similar to those for the white noise case, only
with the sinusoidal signal amplitudes “adjusted” to give corresponding local SNRs
— the signal–to–noise power ratio at each frequency ωk. This amplitude adjust-
ment is the same as that realized by the whitening filter approach. It is important
to note that these comments only apply if the NLS method is used. The other
estimation methods in this chapter (e.g., the subspace–based methods) depend on
the assumption that the noise is white, and may be adversely affected if the noise
is not white (or is not prewhitened).

Concerning the signal in (4.1.1), we assume that ωk ∈ [−π, π] and that αk > 0.
We need to specify the sign of {αk}; otherwise we are left with a phase ambigu-
ity. More precisely, without the condition αk > 0 in (4.1.1), both {αk, ωk, ϕk}
and {−αk, ωk, ϕk + π} give the same signal {x(t)}, so the parameterization is not
unique. As to the initial phases {ϕk} in (4.1.1), one could assume that they are
fixed (nonrandom) constants, which would result in {x(t)} being a deterministic
signal. In most applications, however, {ϕk} are nuisance parameters and it is more
convenient to assume that they are random variables. Note that if we try to mimic
the conditions of a previous experiment as much as possible, we will usually be un-
able to ensure the same initial phases of the sine waves in the observed sinusoidal
signal (this will be particularly true for received signals). Since there is usually no
reason to believe that a specific set of initial phases is more likely than another
one, or that two different initial phases are interrelated, we make the following
assumption:

The initial phases {ϕk} are independent random variables uni-
formly distributed on [−π, π]

(4.1.2)

The covariance function and the PSD of the noisy sinusoidal signal {y(t)} can
be calculated in a straightforward manner under the assumptions made above. By
using (4.1.2), we get

E
{
eiϕpe−iϕj

}
= 1 for p = j

and for p 6= j

E
{
eiϕpe−iϕj

}
= E

{
eiϕp

}
E
{
e−iϕj

}

=

[
1

2π

∫ π

−π
eiϕdϕ

] [
1

2π

∫ π

−π
e−iϕdϕ

]

= 0

Thus,
E
{
eiϕpe−iϕj

}
= δp,j (4.1.3)

Let
xp(t) = αpe

i(ωpt+ϕp) (4.1.4)

denote the pth sine wave in (4.1.1). It follows from (4.1.3) that

E
{
xp(t)x

∗
j (t− k)

}
= α2

pe
iωpkδp,j (4.1.5)
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which, in turn, gives

r(k) = E {y(t)y∗(t− k)} =

n∑

p=1

α2
pe
iωpk + σ2δk,0 (4.1.6)

and the derivation of the covariance function of y(t) is completed. The PSD of y(t)
is given by the DTFT of {r(k)} in (4.1.6), which is

φ(ω) = 2π

n∑

p=1

α2
pδ(ω − ωp) + σ2

(4.1.7)

where δ(ω−ωp) is the Dirac impulse (or Dirac delta “function”) which, by definition,
has the property that

∫ π

−π
F (ω)δ(ω − ωp)dω = F (ωp) (4.1.8)

for any function F (ω) that is continuous at ωp. The expression (4.1.7) for φ(ω) may
be verified by inserting it in the inverse transform formula (1.3.8) and checking that
the result is the covariance function. Doing so, we obtain

1

2π

∫ π

−π
[2π

n∑

p=1

α2
pδ(ω − ωp) + σ2]eiωkdω =

n∑

p=1

α2
pe
iωpk + σ2δk,o = r(k) (4.1.9)

which is the desired result.
The PSD (4.1.7) is depicted in Figure 4.1. It consists of a “floor” of constant

level equal to the noise power σ2, along with n vertical lines (or impulses) located
at the sinusoidal frequencies {ωk} and having zero support but nonzero areas equal
to 2π times the sine wave powers {α2

k}. Owing to its appearance, as exhibited in
Figure 4.1, φ(ω) in (4.1.7) is called a line or discrete spectrum.

It is evident from the previous discussion that a spectral analysis based on the
parametric PSD model (4.1.7) reduces to the problem of estimating the parameters
of the signal in (4.1.1). In most applications, such as those listed at the beginning of
this chapter, the parameters of major interest are the locations of the spectral lines,
namely the sinusoidal frequencies. In the following sections, we present a number of
methods for spectral line analysis. We focus on the problem of frequency estimation
meaning determination of {ωk}nk=1 from a set of observations {y(t)}Nt=1. Once the
frequencies have been determined, estimation of the other signal parameters (or
PSD parameters) becomes a simple linear regression problem. More precisely, for
given {ωk} the observations y(t) can be written as a linear regression function whose
coefficients are equal to the remaining unknowns {αkeiϕk , βk}:

y(t) =

n∑

k=1

βke
iωkt + e(t) (4.1.10)
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σ2

(2πα1
2)

(2πα2
2)

(2πα3
2)

−π π
ω

φ(ω)

ω1 ω2 ω3

Figure 4.1. The PSD of a complex sinusoidal signal in additive white noise.

If desired, {βk} (and hence {αk}, {ϕk}) in (4.1.10) can be obtained by a least
squares method (as in equation (4.3.8) below). Alternatively, one may determine
the signal powers {α2

k} — for given {ωk} — from the sample version of (4.1.6):

r̂(k) =

n∑

p=1

α2
pe
iωpk + residuals for k ≥ 1 (4.1.11)

where the residuals arise from finite–sample estimation of r(k); this is, once more,
a linear regression with {α2

p} as unknown coefficients. The solution to either linear
regression problem is straightforward and is discussed in Section A.8 of Appendix A.

The methods for frequency estimation that will be described in the follow-
ing sections are sometimes called high–resolution (or, even, super–resolution) tech-
niques. This is due to their ability to resolve spectral lines separated in frequency
f = ω/2π by less than 1/N cycles per sampling interval, which is the resolution
limit for the classical periodogram–based methods. All of the high–resolution meth-
ods to be discussed in the following provide consistent estimates of {ωk} under the
assumptions we made. Their consistency will surface in the following discussion
in an obvious manner and hence we do not need to pay special attention to this
aspect. Nor do we discuss in detail other statistical properties of the frequency
estimates obtained by these high–resolution methods, though in Appendix B we
review the Cramér–Rao bound and the best accuracy that can be achieved by such
methods. For derivations and discussions of the statistical properties not addressed
in this text, we refer the interested reader to [Stoica, Söderström, and Ti

1989; Stoica and Söderström 1991; Stoica, Moses, Friedlander, and

Söderström 1989; Stoica and Nehorai 1989b]. Let us briefly summarize the
conclusions of these analyses: All the high–resolution methods presented in the
following provide very accurate frequency estimates, with only small differences in
their statistical performances. Furthermore, the computational burdens associated
with these methods are rather similar. Hence, selecting one of the high–resolution
methods for frequency estimation is essentially a “matter of taste” even though we
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will identify some advantages of one of these methods, named ESPRIT, over the
others.

We should point out that the comparison in the previous paragraph between
the high–resolution methods and the periodogram–based techniques is unfair in the
sense that periodogram–based methods do not assume any knowledge about the
data, whereas high–resolution methods exploit an exact description of the stud-
ied signal. Owing to the additional information assumed, a parametric method
should be expected to offer better resolution than the nonparametric method of the
periodogram. On the other hand, when no two spectral lines in the spectrum are
separated by less than 1/N , the unmodified periodogram turns out to be an excellent
frequency estimator which may outperform any of the high–resolution methods (as
we shall see). One may ask why the unmodified periodogram is preferred over the
many windowed or smoothed periodogram techniques to which we paid so much
attention in Chapter 2. The explanation actually follows from the discussion in that
chapter. The unmodified periodogram can be viewed as a Blackman–Tukey “win-
dowed” estimator with a rectangular window of maximum length equal to 2N + 1.
Of all window sequences, this is exactly the one which has the narrowest main lobe
and hence the one which affords the maximum spectral resolution, a desirable prop-
erty for high-resolution spectral line scenarios. It should be noted, however, that if
the sinusoidal components in the signal are not too closely spaced in frequency, but
their amplitudes differ significantly from one another, then a mildly windowed peri-
odogram (to avoid leakage) may perform better than the unwindowed periodogram
(in the unwindowed periodogram, the weaker sinusoids may be obscured by the
leakage from the stronger ones, and hence they may not be visible in a plot of the
estimated spectrum).

In order to simplify the discussion in this chapter, we assume that the number
of sinusoidal components, n, in (4.1.1) is known. When n is unknown, which may
well be the case in many applications, it can be determined from the available data
as described for example in [Fuchs 1988; Kay 1988; Marple 1987; Proakis,

Rader, Ling, and Nikias 1992; Söderström and Stoica 1989] and in Ap-
pendix C.

4.2 MODELS OF SINUSOIDAL SIGNALS IN NOISE

The frequency estimation methods presented in this chapter rely on three different
models for the noisy sinusoidal signal (4.1.1). This section introduces the three
models of (4.1.1).

4.2.1 Nonlinear Regression Model

The nonlinear regression model is given by (4.1.1). Note that {ωk} enter in a
nonlinear fashion in (4.1.1), hence the name “nonlinear regression” given to this
type of model for {y(t)}. The other two models for {y(t)}, to be discussed in
the following, are derived from (4.1.1); they are descriptions of the data that are
not as complete as (4.1.1). However, they preserve the information required to
determine the frequencies {ωk} which, as already stated, are the parameters of
major interest. Hence, in some sense, these two models are more appropriate for
frequency estimation since they do not include some of the nuisance parameters
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which appear in (4.1.1).

4.2.2 ARMA Model

It can be readily verified that

(1 − eiωkz−1)xk(t) ≡ 0 (4.2.1)

where z−1 denotes the unit delay (or shift) operator introduced in Chapter 1. Hence,
(1 − eiωkz−1) is an annihilating filter for the kth component in x(t). By using this
simple observation, we obtain the following homogeneous AR equation for {x(t)}

A(z)x(t) = 0 (4.2.2)

and the following ARMA model for the noisy data {y(t)}:

A(z)y(t) = A(z)e(t)

A(z) =

n∏

k=1

(1 − eiωkz−1)
(4.2.3)

It may be a useful exercise to derive equation (4.2.2) in a different way. The PSD
of x(t) consists of n spectral lines located at {ωk}nk=1. It should then be clear, in
view of the relation (1.4.9) governing the transfer of a PSD through a linear system,
that any filter which has zeroes at frequencies {ωk} is an annihilating filter for x(t).
The polynomial A(z) in (4.2.3) is the simplest kind of such an annihilating filter.
This polynomial bears complete information about {ωk} and hence the problem of
estimating the frequencies can be reduced to that of determining A(z).

We remark that the ARMA model (4.2.3) has a very special form (a reason
for which it is sometimes called a “degenerate” ARMA). All its poles and zeroes are
located exactly on the unit circle. Furthermore, its AR and MA parts are identical.
It might be tempting to cancel the common poles and zeroes in (4.2.3). However,
such an operation leads to the wrong conclusion that y(t) = e(t) and, therefore,
should be invalid. Let us explain briefly why cancelation in (4.2.3) is not allowed.
The ARMA equation description of a signal y(t) is asymptotically equivalent to the
associated transfer function description (in the sense that both give the same signal
sequence, for t → ∞) if and only if the poles are situated strictly inside the unit
circle. If there are poles on the unit circle, then the equivalence between these two
descriptions ceases. In particular, the solution of an ARMA equation with poles
on the unit circle strongly depends on the initial conditions, whereas the transfer
function description does not include a dependence on initial values.

4.2.3 Covariance Matrix Model

A notation that will often be used in the following is:

a(ω) , [1 e−iω . . . e−i(m−1)ω]T (m× 1)

A = [a(ω1) . . . a(ωn)] (m× n)
(4.2.4)
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In (4.2.4), m is a positive integer which is not yet specified. Note that the matrix A
introduced above is a Vandermonde matrix which enjoys the following rank property
(see Result R24 in Appendix A):

rank(A) = n if m ≥ n and ωk 6= ωp for k 6= p (4.2.5)

By making use of the previous notation, along with (4.1.1) and (4.1.4), we can write

ỹ(t) ,








y(t)
y(t− 1)

...
y(t−m+ 1)








= Ax̃(t) + ẽ(t)

x̃(t) = [x1(t) . . . xn(t)]
T

ẽ(t) = [e(t) . . . e(t−m+ 1)]T

(4.2.6)

The following expression for the covariance matrix of ỹ(t) can be readily derived
from (4.1.5) and (4.2.6)

R , E {ỹ(t)ỹ∗(t)} = APA∗ + σ2I ; P =






α2
1 0

. . .

0 α2
n




 (4.2.7)

The above equation constitutes the covariance matrix model of the data. As we will
show later, the eigenstructure of R contains complete information on the frequencies
{ωk}, and this is exactly where the usefulness of (4.2.7) lies.

From equations (4.2.6) and (4.1.5), we also derive for later use the following
result:

Γ , E












y(t− L− 1)
...

y(t− L−M)




 [y∗(t) . . . y∗(t− L)]







= E
{
AM x̃(t− L− 1)x̃∗(t)A∗

L+1

}

= AMPL+1A
∗
L+1 (L,M ≥ 1)

(4.2.8)

where AK stands for A in (4.2.4) with m = K, and

PK =






α2
1e

−iω1K 0
. . .

0 α2
ne

−iωnK






As we explain in detail later, the null space of the matrix Γ (with L,M ≥ n)
gives complete information on the frequencies {ωk}.
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4.3 NONLINEAR LEAST SQUARES METHOD

An intuitively appealing approach to spectral line analysis, based on the nonlinear
regression model (4.1.1), consists of determining the unknown parameters as the
minimizers of the following criterion:

f(ω, α, ϕ) =

N∑

t=1

∣
∣
∣
∣
∣
y(t) −

n∑

k=1

αke
i(ωkt+ϕk)

∣
∣
∣
∣
∣

2

(4.3.1)

where ω is the vector of frequencies ωk, and similarly for α and ϕ. The sinusoidal
model determined as above has the smallest “sum of squares” distance to the ob-
served data {y(t)}Nt=1. Since f is a nonlinear function of its arguments {ω, ϕ, α},
the method which obtains parameter estimates by minimizing (4.3.1) is called the
nonlinear least squares (NLS) method. When the (white) noise e(t) is Gaussian
distributed, the minimization of (4.3.1) can also be interpreted as the method of
maximum likelihood (see Appendices B and C); in that case, minimization of (4.3.1)
can be shown to provide the parameter values which are most likely to “explain” the
observed data sequence (see [Söderström and Stoica 1989; Kay 1988; Marple

1987]).
The criterion in (4.3.1) depends on both {αk} and {ϕk} as well as on {ωk}.

However, it can be concentrated with respect to the nuisance parameters {αk, ϕk},
as explained next. By making use of the following notation,

βk = αke
iϕk (4.3.2)

β = [β1 . . . βn]
T (4.3.3)

Y = [y(1) . . . y(N)]T (4.3.4)

B =






eiω1 . . . eiωn

...
...

eiNω1 . . . eiNωn




 (4.3.5)

we can write the function f in (4.3.1) as

f = (Y −Bβ)∗(Y −Bβ) (4.3.6)

The Vandermonde matrix B in (4.3.5) (which resembles the matrix A defined in
(4.2.4)) has full column rank equal to n under the weak condition that N ≥ n;
in this case, (B∗B)−1 exists. By using this observation, we can put (4.3.6) in the
more convenient form:

f = [β − (B∗B)−1B∗Y ]∗[B∗B][β − (B∗B)−1B∗Y ]

+ Y ∗Y − Y ∗B(B∗B)−1B∗Y (4.3.7)

For any choice of ω = [ω1, . . . , ωn]
T in B (which is such that ωk 6= ωp for k 6= p),

we can choose β to make the first term of f zero; thus, we see that the vectors β
and ω which minimize f are given by

ω̂ = arg maxω[Y ∗B(B∗B)−1B∗Y ]

β̂ = (B∗B)−1B∗Y |ω=ω̂

(4.3.8)
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It can be shown that, as N tends to infinity, ω̂ obtained as above converges to
ω (i.e., ω̂ is a consistent estimate) and, in addition, the estimation errors {ω̂k−ωk}
have the following (asymptotic) covariance matrix:

Cov(ω̂) =
6σ2

N3






1/α2
1 0

. . .

0 1/α2
n




 (4.3.9)

(see [Stoica and Nehorai 1989a; Stoica, Moses, Friedlander, and Sö-

derström 1989]). In the case of Gaussian noise, the matrix in (4.3.9) can also
be shown to equal the Cramér–Rao limit matrix which gives a lower bound on
the covariance matrix of any unbiased estimator of ω (see Appendix B). Hence,
under the Gaussian hypothesis the NLS method provides the most accurate (i.e.,
minimum variance) frequency estimates in a fairly general class of estimators. As a
matter of fact, the variance of {ω̂k} (as given by (4.3.9)) may take quite small values
for reasonably large sample lengths N and signal–to–noise ratios SNRk = α2

k/σ
2.

For example, for N = 300 and SNRk = 30dB it follows from (4.3.9) that we may
expect frequency estimation errors on the order of 10−5, which is comparable with
the roundoff errors in a 32–bit fixed–point processor.

The NLS method has another advantage that sets it apart from the subspace-
based approaches that are discussed in the remainder of the chapter. The NLS
method does not critically depend on the assumption that the noise process is
white. If the noise process is not white, the NLS still gives consistent frequency esti-
mates. In fact, the asymptotic covariance of the frequency estimates is diagonal and
var(ω̂k) = 6/(N3SNRk), where SNRk = α2

k/φn(ωk) (here φn(ω) is the noise PSD) is
the “local” signal-to-noise ratio of the sinusoid at frequency ωk (see [Stoica and

Nehorai 1989b], for example). Interestingly enough, the NLS method remains
the most accurate method (if the data length is large) even in those cases where
the (Gaussian) noise is colored [Stoica and Nehorai 1989b]. This fact spurred
a renewed interest in the NLS approach and in reliable algorithms for performing
the minimization required in (4.3.1) (see, e.g., [Hwang and Chen 1993; Ying,

Potter, and Moses 1994; Li and Stoica 1996b; Umesh and Tufts 1996]
and Complement 4.9.5).

Unfortunately, the good statistical performance associated with the NLS meth-
od of frequency estimation is difficult to achieve, for the following reason. The func-
tion (4.3.8) has a complicated multimodal shape with a very sharp global maximum
corresponding to ω̂ [Stoica, Moses, Friedlander, and Söderström 1989].
Hence, finding ω̂ by a search algorithm requires very accurate initialization. Initial-
ization procedures that provide fairly accurate approximations of the maximizer of
(4.3.8) have been proposed in [Kumaresan, Scharf, and Shaw 1986], [Bresler

and Macovski 1986], [Ziskind and Wax 1988]. However, there is no available
method which is guaranteed to provide frequency estimates within the attraction
domain of the global maximum ω̂ of (4.3.8). As a consequence, a search algorithm
may well fail to converge to ω̂, or may even diverge.

The kind of difficulties indicated above, that must be faced when using the
NLS method in applications, limits the practical interest in this approach to fre-
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quency estimation. There are, however, some instances when the NLS approach
may be turned into a practical frequency estimation method. Consider, first, the
case of a single sine wave (n = 1). A straightforward calculation shows that, in
such a case, the first equation in (4.3.8) can be rewritten in the following form:

ω̂ = arg max
ω

φ̂p(ω) (4.3.10)

where φ̂p(ω) is the periodogram (see (2.2.1))

φ̂p(ω) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iωt

∣
∣
∣
∣
∣

2

(4.3.11)

Hence, the NLS estimate of the frequency of a single sine wave buried in observation
noise is precisely given by the highest peak of the unmodified periodogram.

Note that the above result is only approximately true (for N � 1) in the
case of real–valued sinusoidal signals, a fact which lends additional support to the
claim made in Chapter 1 that the analysis of the case of real–valued signals faces
additional complications not encountered in the complex–valued case. Each real–
valued sinusoid can be written as a sum of two complex exponentials, and the
treatment of the real case with n = 1 is similar to that of the complex case with
n > 1 presented below.

Next, consider the case of multiple sine waves (n > 1). The key condition that
makes it possible to treat this case in a manner similar to the one above, is that
the minimum frequency separation between the sine waves in the studied signal is
larger than the periodogram’s resolution limit:

∆ω = inf
k 6=p

|ωk − ωp| > 2π/N (4.3.12)

Since the estimation errors {ω̂k−ωk} from the NLS estimates are of order O(1/N3/2)
(because cov(ω̂) = O(1/N3); see (4.3.9)), equation (4.3.12) implies a similar in-
equality for the NLS frequency estimates {ω̂k}: ∆ω̂ > 2π/N . It should then be
possible to resolve all n sine waves in the noisy signal and to obtain reasonable
approximations {ω̃k} to {ω̂k} by evaluating the function in (4.3.8) at the points of
a grid corresponding to the sampling of each frequency variable as in the FFT:

ωk =
2π

N
j j = 0, . . . , N − 1 (k = 1, . . . , n) (4.3.13)

Of course, a direct application of such a grid method for the approximate maxi-
mization of (4.3.8) would be computationally burdensome for large values of n or
N . However, it can be greatly simplified as described in the following.

The p, k element of the matrix B∗B occurring in (4.3.8), when evaluated at
the points of the grid (4.3.13), is given by

[B∗B]p,k = N for p = k (4.3.14)
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and

[B∗B]p,k =

N∑

t=1

ei(ωk−ωp)t = ei(ωk−ωp) e
iN(ωk−ωp) − 1

ei(ωk−ωp) − 1

= 0 for p 6= k (4.3.15)

which implies that the function to be minimized in (4.3.8) has, in such a case, the
following form:

n∑

k=1

1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iωkt

∣
∣
∣
∣
∣

2

(4.3.16)

The previous additive decomposition in n functions of ω1, . . . , ωn (respectively)
leads to the conclusion that {ω̃k} (which, by definition, maximize (4.3.16) at the
points of the grid (4.3.13)) are given by the n largest peaks of the periodogram. To
show this, let us write the function in (4.3.16) as

g(ω1, . . . , ωn) =

n∑

k=1

φ̂p(ωk)

where φ̂p(ω) is once again the periodogram. Observe that

∂g(ω1, . . . , ωn)

∂ωk
= φ̂′

p(ωk)

and
∂2g(ω1, . . . , ωn)

∂ωk∂ωj
= φ̂′′

p(ωk)δk,j

Hence, the maximum points of (4.3.16) satisfy

φ̂′
p(ωk) = 0 and φ̂′′

p(ωk) < 0 for k = 1, . . . , n

It follows that the set of maximizers of (4.3.16) is given by all possible combinations
of n elements from the periodogram’s peak locations. Now, recall the assumption
made that {ωk}, and hence their estimates {ω̂k}, are distinct. Under this assump-
tion the highest maximum of g(ω1, . . . , ωn) is given by the locations of the n largest

peaks of φ̂p(ω), which is the desired result.
The above findings are summarized as:

Under the condition (4.3.12), the unmodified periodogram re-
solves all the n sine waves present in the noisy signal. Further-
more, the locations {ω̃k} of the n largest peaks in the periodogram
provide O(1/N) approximations to the NLS frequency estimates
{ω̂k}. In the case of n = 1, we have ω̃1 = ω̂1 exactly.

(4.3.17)

The fact that the differences {ω̃k − ω̂k} are O(1/N) means, of course, that
the computationally convenient estimates {ω̃k} (derived from the periodogram)
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will generally have an inflated variance compared to {ω̂k}. However, {ω̃k} can at
least be used as initial values in a numerical implementation of the NLS estimator.
In any case, the above discussion indicates that, under (4.3.12), the periodogram
performs quite well as a frequency estimator (which actually is the task for which
it was introduced by Schuster nearly a century ago!).

In the following sections, we present several “high–resolution” methods for
frequency estimation, which exploit the covariance matrix models. More precisely,
all of these methods derive frequency estimates by exploiting the properties of the
eigendecomposition of data covariance matrices and, in particular, the subspaces as-
sociated with those matrices. For this reason, these methods are sometimes referred
to by the generic name of subspace methods. However, in spite of their common
subspace theme, the methods are quite different, and we will treat them in separate
sections below. The main features of these methods can be summarized as follows:
(i) Their statistical performance is close to the ultimate performance corresponding
to the NLS method (and given by the Cramér–Rao lower bound, (4.3.9)); (ii) Unlike
the NLS method, these methods are not based on multidimensional search proce-
dures; and (iii) They do not depend on a “resolution condition”, such as (4.3.12),
which means that they may generally have a lower resolution threshold than that
of the periodogram. The chief drawback of these methods, as compared with the
NLS method, is that their performance significantly degrades if the measurement
noise in (4.1.1) cannot be assumed to be white.

4.4 HIGH–ORDER YULE–WALKER METHOD

The high–order Yule–Walker (HOYW) method of frequency estimation can be de-
rived from the ARMA model of the sinusoidal data, (4.2.3), similarly to its coun-
terpart in the rational PSD case (see Section 3.7 and [Cadzow 1982; Stoica,

Söderström, and Ti 1989; Stoica, Moses, Söderström, and Li 1991]).
Actually, the HOYW method is based on an ARMA model of an order L higher
than the minimal order n, for a reason that will be explained shortly.

If the polynomial A(z) in (4.2.3) is multiplied by any other polynomial Ā(z),
say of degree equal to L− n, then we obtain a higher–order ARMA representation
of our sinusoidal data, given by

y(t) + b1y(t− 1) + . . .+ bLy(t− L) = e(t) + b1e(t− 1) + . . .+ bLe(t− L) (4.4.1)

or

B(z)y(t) = B(z)e(t)

where

B(z) = 1 +

L∑

k=1

bkz
−k , A(z)Ā(z) (4.4.2)

Equation (4.4.1) can be rewritten in the following more condensed form (with ob-
vious notation):

[y(t) y(t− 1) . . . y(t− L)]

[
1
b

]

= e(t) + . . .+ bLe(t− L) (4.4.3)
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Premultiplying (4.4.3) by [y∗(t−L−1) . . . y∗(t−L−M)]T and taking the expectation
leads to

Γc
[

1
b

]

= 0 (4.4.4)

where the matrix Γ is defined in (4.2.8) and M is a positive integer which is yet to
be specified. In order to obtain (4.4.4) as indicated above, we made use of the fact
that E {y∗(t− k)e(t)} = 0 for k > 0.

The similarity of (4.4.4) with the Yule–Walker system of equations encoun-
tered in Chapter 3 (see equation (3.7.1)) is more readily seen if (4.4.4) is rewritten
in the following more detailed form:






r(L) . . . r(1)
...

...
r(L+M − 1) . . . r(M)




 b = −






r(L+ 1)
...

r(L+M)




 (4.4.5)

Owing to this analogy, the set of equations (4.4.5) associated with the noisy sinu-
soidal signal {y(t)} is said to form a HOYW system.

The HOYW matrix equation (4.4.4) can also be obtained directly from (4.2.8).
For any L ≥ n and any polynomial Ā(z) (used in the defining equation, (4.4.2), for
b), the elements of the vector

ATL+1

[
1
b

]

(4.4.6)

are equal to zero. Indeed, the kth row of (4.4.6) is

[1 e−iωk . . . e−iLωk ]

[
1
b

]

= 1 +

L∑

p=1

bpe
−iωkp

= A(ωk)Ā(ωk) = 0, k = 1, . . . , n (4.4.7)

(since A(ωk) = 0, cf. (4.2.3)). It follows from (4.2.8) and (4.4.7) that the vector
[

1
b

]

lies in the null space of Γc (see Definition D2 in Appendix A),

Γc
[

1
b

]

= 0

which is the desired result, (4.4.4).
The HOYW system of equations derived above can be used for frequency

estimation in the following way. By replacing the unavailable theoretical covariances
{r(k)} in (4.4.5) by the sample covariances {r̂(k)}, we obtain






r̂(L) . . . r̂(1)
...

...
r̂(L+M − 1) . . . r̂(M)




 b̂ ' −






r̂(L+ 1)
...

r̂(L+M)




 (4.4.8)

Owing to the estimation errors in {r̂(k)} the matrix equation (4.4.8) cannot hold

exactly in the general case, for any vector b̂, which is indicated above by the use of
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the “approximate equality” symbol '. We can solve (4.4.8) for b̂ in a sense that is
discussed in detail below, then form the polynomial

1 +

L∑

k=1

b̂kz
−k (4.4.9)

and finally (in view of (4.2.3) and (4.4.2)) obtain frequency estimates {ω̂k} as the
angular positions of the n roots of (4.4.9) that are located nearest the unit circle.

It may be expected that increasing the values of M and L results in improved
frequency estimates. Indeed, by increasing M and L we use higher–lag covariances
in (4.4.8), which may bear “additional information” on the data at hand. Increasing
M and L also has a second, more subtle, effect that is explained next.

Let Ω denote the M × L covariance matrix in (4.4.5) and, similarly, let Ω̂
denote the sample covariance matrix in (4.4.8). It can be seen from (4.2.8) that

rank(Ω) = n for M,L ≥ n (4.4.10)

On the other hand, the matrix Ω̂ has full rank (almost surely)

rank(Ω̂) = min(M,L) (4.4.11)

owing to the random errors in {r̂(k)}. However, for reasonably large values of N
the matrix Ω̂ is close to the rank–n matrix Ω since the sample covariances {r̂(k)}
converge to {r(k)} as N increases (this is shown in Complement 4.9.1). Hence,
we may expect the linear system (4.4.8) to be ill–conditioned from a numerical
standpoint (see the discussion in Section A.8.1 in Appendix A). In fact, there is

compelling empirical evidence that any LS procedure which determines b̂ directly
from (4.4.8) has very poor accuracy. In order to overcome the previously described
difficulty we can make use of the a priori rank information (4.4.10). However, some
preparations are required before we shall be able to do so. Let

Ω̂ = UΣV ∗ , [ U1
︸︷︷︸

n

U2
︸︷︷︸

M−n

]

[
Σ1 0
0 Σ2

] [
V ∗

1

V ∗
2

] }
n

}
L−n (4.4.12)

denote the singular value decomposition (SVD) of the matrix Ω̂ (see Section A.4
in Appendix A, and [Söderström and Stoica 1989; Van Huffel and Van-

dewalle 1991] for general discussions on the SVD). In (4.4.12), U is an M ×M
unitary matrix, V is an L×L unitary matrix and Σ is an M ×L diagonal matrix.
As Ω̂ is close to a rank–n matrix, Σ2 in (4.4.12) should be close to zero, which
implies that

Ω̂n , U1Σ1V
∗
1 (4.4.13)

should be a good approximation for Ω̂. In fact, it can be proven that Ω̂n above is
the best (in the Frobenius–norm sense) rank–n approximation of Ω̂ (see Result R18
in Appendix A). Hence, in accordance with the rank information (4.4.10), we can
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use Ω̂n in (4.4.8) in lieu of Ω̂. The so–obtained rank–truncated HOYW system of
equations:

Ω̂nb̂ ' −






r̂(L+ 1)
...

r̂(L+M)




 (4.4.14)

can be solved in a numerically sound way by using a simple LS procedure. It is
readily verified that

Ω̂†
n = V1Σ

−1
1 U∗

1 (4.4.15)

is the pseudoinverse of Ω̂n (see Definition D15 and Result R32). Hence, the LS
solution to (4.4.14) is given by

b̂ = −V1Σ
−1
1 U∗

1






r̂(L+ 1)
...

r̂(L+M)




 (4.4.16)

The additional bonus for using Ω̂n instead of Ω̂ in (4.4.8) is an improvement in
the statistical accuracy of the frequency estimates obtained from (4.4.16). This
improved accuracy is explained by the fact that Ω̂n should be closer to Ω than Ω̂ is;
the improved covariance matrix estimate Ω̂n obtained by exploitation of the rank
information (4.4.10), when used in the HOYW system of equations, should lead to
refined frequency estimates.

We remark that a total least squares (TLS) solution for b̂ can also be obtained
from (4.4.8) (see Definition D17 and Result R33 in Appendix A). A TLS solution
makes sense because we have errors in both Ω̂ and the right–hand–side vector in
equation (4.4.8). In fact the TLS–based estimate of b is often slightly better than
the estimate discussed above, which is obtained as the LS solution to the rank–
truncated system of linear equations in (4.4.14).

We next return to the selection of L and M . As M and L increase, the in-
formation brought into the estimation problem under study by the rank condition
(4.4.10) is more and more important, and hence the corresponding increase of ac-
curacy is more and more pronounced. (For instance, the information that a 10×10
noisy matrix has rank one in the noise–free case leads to more relations between
the matrix elements, and hence to more “noise cleaning”, than if the matrix were
2×2.) In fact, for M = n or L = n the rank condition is inactive as Ω̂n = Ω̂ in such
a case. The previous discussion gives another explanation as to why the accuracy
of the frequency estimates obtained from (4.4.16) may be expected to increase with
increasing M and L.

The box below summarizes the HOYW frequency estimation method. It should
be noted that the operation in Step 3 of the HOYW method is implicitly based
on the assumption that the estimated “signal roots” (i.e., the roots of A(z) in
(4.4.2)) are always closer to the unit circle than the estimated “noise roots” (i.e.,
the roots of Ā(z) in (4.4.2)). It can be shown that as N → ∞, all roots of Ā(z)
are strictly inside the unit circle (see, e.g., Complement 6.5.1 and [Kumaresan

and Tufts 1983]). While this property cannot be guaranteed in finite samples,
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there is empirical evidence that it holds most often. In those rare cases where it
fails to hold, the HOYW method produces spurious (or false) frequency estimates.
The risk of producing spurious estimates is the price paid for the improved accuracy
obtained by increasing L (note that for L = n there is no “noise root”, and hence no
spurious estimate can occur in such a case). The risk for false frequency estimation
is a problem that is common to all methods which estimate the frequencies from the
roots of a polynomial of degree larger than n, such as the MUSIC and Min–Norm
methods to be discussed in the next two sections.

The HOYW Frequency Estimation Method

Step 1. Compute the sample covariances {r̂(k)}L+M
k=1 . We may set L ' M and

select the values of these integers so that L + M is a fraction of the
sample length (such as N/3). Note that if L + M is set to a value
which is too close to N , then the higher–lag covariances required in
(4.4.8) cannot be estimated in a reliable way.

Step 2. Compute the SVD of Ω̂, (4.4.12), and determine b̂ with (4.4.16).

Step 3. Isolate the n roots of the polynomial (4.4.9) that are closest to the unit
circle, and obtain the frequency estimates as the angular positions of
these roots.

4.5 PISARENKO AND MUSIC METHODS

The MUltiple SIgnal Classification (or MUltiple SIgnal Characterization) (MUSIC)
method [Schmidt 1979; Bienvenu 1979] and Pisarenko’s method [Pisarenko

1973] (which is a special case of MUSIC, as explained below) are derived from
the covariance model (4.2.7) with m > n. Let λ1 ≥ λ2 ≥ . . . ≥ λm denote the
eigenvalues of R in (4.2.7), arranged in nonincreasing order, and let {s1, . . . , sn} be
the orthonormal eigenvectors associated with {λ1, . . . , λn}, and {g1, . . . , gm−n} a
set of orthonormal eigenvectors corresponding to {λn+1, . . . , λm} (see Appendix A).
Since

rank(APA∗) = n (4.5.1)

it follows that APA∗ has n strictly positive eigenvalues, the remaining (m − n)
eigenvalues all being equal to zero. Combining this observation with the fact that
(see Result R5 in Appendix A)

λk = λ̃k + σ2 (k = 1, . . . ,m) (4.5.2)

where {λ̃k}mk=1 are the eigenvalues of APA∗ (arranged in nonincreasing order),
leads to the following result:

{
λk > σ2 for k = 1, . . . , n
λk = σ2 for k = n+ 1, . . . ,m

(4.5.3)

The set of eigenvalues of R can hence be split into two subsets. Next, we show that
the eigenvectors associated with each of these subsets, as introduced above, possess
some interesting properties that can be used for frequency estimation.



“sm2”
2004/2/22
page 160

i

i

i

i

i

i

i

i

160 Chapter 4 Parametric Methods for Line Spectra

Let

S = [s1, . . . , sn] (m× n), G = [g1, . . . , gm−n] (m× (m− n)) (4.5.4)

From (4.2.7) and (4.5.3), we get at once:

RG = G






λn+1 0
. . .

0 λm




 = σ2G = APA∗G+ σ2G. (4.5.5)

The first equality in (4.5.5) follows from the definition of G and {λk}mk=n+1, the
second equality follows from (4.5.3), and the third from (4.2.7). The last equality
in equation (4.5.5) implies that APA∗G = 0, or (as the matrix AP has full column
rank)

A∗G = 0 (4.5.6)

In other words, the columns {gk} of G belong to the null space of A∗, a fact which
is denoted by gk ∈ N (A∗). Since rank(A) = n, the dimension of N (A∗) is equal to
m − n which is also the dimension of the range space of G, R(G). It follows from
this observation and (4.5.6) that

R(G) = N (A∗) (4.5.7)

In words (4.5.7) says that the vectors {gk} span both R(G) and N (A∗). Now, since
by definition

S∗G = 0 (4.5.8)

we also have R(G) = N (S∗); hence, N (S∗) = N (A∗). Since R(S) and R(A) are
the orthogonal complements to N (S∗) and N (A∗), it follows that

R(S) = R(A) (4.5.9)

We can also derive the equality (4.5.9) directly from (4.2.7). Set

Λ
◦

=






λ1 − σ2 0
. . .

0 λn − σ2




 (4.5.10)

From

RS = S






λ1 0
. . .

0 λn




 = APA∗S + σ2S (4.5.11)

we obtain
S = A

(

PA∗SΛ
◦ −1

)

(4.5.12)
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which shows that R(S) ⊂ R(A). However, R(S) and R(A) have the same dimen-
sion (equal to n); hence, (4.5.9) follows. Owing to (4.5.9) and (4.5.8), the subspaces
R(S) and R(G) are sometimes called the signal subspace and noise subspace, re-
spectively.

The following key result is obtained from (4.5.6).

The true frequency values {ωk}nk=1 are the only solutions of the
equation

a∗(ω)GG∗a(ω) = 0 for any m > n.
(4.5.13)

The fact that {ωk} satisfy the above equation follows from (4.5.6). It only
remains to prove that {ωk}nk=1 are the only solutions to (4.5.13). Let ω̃ denote
another possible solution, with ω̃ 6= ωk (k = 1, . . . , n). In (4.5.13), GG∗ is the or-
thogonal projector onto R(G) (see Section A.4). Hence, (4.5.13) implies that a(ω̃) is
orthogonal to R(G), which means that a(ω̃) ∈ N (G∗). However, the Vandermonde
vector a(ω̃) is linearly independent of {a(ωk)}nk=1. Since n+1 linearly independent
vectors cannot belong to an n–dimensional subspace, which is N (G∗) in the present
case, we conclude that no other solution ω̃ to (4.5.13) can exist; with this, the proof
is finished.

The MUSIC algorithm uses the previous result to derive frequency estimates
in the following steps.

Step 1. Compute the sample covariance matrix

R̂ =
1

N

N∑

t=m

ỹ(t)ỹ∗(t) (4.5.14)

and its eigendecomposition. Let Ŝ and Ĝ denote the matrices defined
similarly to S and G, but made from the eigenvectors {ŝ1, . . . , ŝn} and
{ĝ1, . . . , ĝm−n} of R̂.

Step 2a. (Spectral MUSIC) [Schmidt 1979; Bienvenu 1979]. Determine fre-
quency estimates as the locations of the n highest peaks of the function

1

a∗(ω)ĜĜ∗a(ω)
, ω ∈ [−π, π] (4.5.15)

(Sometimes (4.5.15) is called a “pseudospectrum” since it indicates the
presence of sinusoidal components in the studied signal, but it is not a
true PSD. This fact may explain the attribute “spectral” attached to
this variant of MUSIC.)

OR:

Step 2b. (Root MUSIC) [Barabell 1983]. Determine frequency estimates as
the angular positions of the n (pairs of reciprocal) roots of the equation

aT (z−1)ĜĜ∗a(z) = 0 (4.5.16)
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which are located nearest the unit circle. In (4.5.16), a(z) stands for
the vector a(ω), (4.2.4), with eiω replaced by z, so

a(z) = [1, z−1, . . . , z−(m−1)]T

For m = n+1 (which is the minimum possible value) the MUSIC algorithm reduces
to the Pisarenko method, which was the earliest proposal for an eigenanalysis–based
(or subspace–based) method of frequency estimation [Pisarenko 1973].

The Pisarenko method is MUSIC with m = n+ 1 (4.5.17)

In the Pisarenko method, the estimated frequencies are determined from (4.5.16).
For m = n + 1 this 2(m − 1)–degree equation can be reduced to the following
equation of degree m− 1 = n:

aT (z−1)ĝ1 = 0 (4.5.18)

The Pisarenko frequency estimates are obtained as the angular positions of the
roots of (4.5.18). The Pisarenko method is the simplest version of MUSIC from
a computational standpoint. In addition, unlike MUSIC with m > n + 1, the
Pisarenko procedure does not have the problem of separating the “signal roots”
from the “noise roots” (see the discussion on this point at the end of Section 4.4).
However, it can be shown that the accuracy of the MUSIC frequency estimates in-
creases significantly with increasing m. Hence, the price paid for the computational
simplicity of the Pisarenko method may be a relatively poor statistical accuracy.

Regarding the selection of a value for m, this parameter may be chosen as
large as possible, but not too close toN , in order to still allow a reliable estimation of
the covariance matrix (for example, as in (4.5.14)). In some applications, the largest
possible value that may be selected for m may also be limited by computational
complexity considerations.

Whenever the tradeoff between statistical accuracy and computational com-
plexity is an important issue, the following simple ideas may be valuable.

The finite–sample statistical accuracy of MUSIC frequency estimates may be
improved by modifying the covariance estimator (4.5.14). For instance, R̂ is not
Toeplitz whereas the true covariance matrix R is. We may correct this situation by
replacing the elements in each diagonal of R̂ with their average. The so–corrected
sample covariance matrix can be shown to be the best (in the Frobenius–norm sense)
Toeplitz approximation of R̂. Another modification of R̂, with the same purpose
of improving the finite–sample statistical accuracy, is described in Section 4.8.

The computational complexity of MUSIC, for a given m, may be reduced in
various ways. Quite often, m is such that m − n > n. Then, the computational
burdens associated with both Spectral and Root MUSIC may be reduced by using
I − ŜŜ∗ in (4.5.15) or (4.5.16) in lieu of ĜĜ∗. (Note that ŜŜ∗ + ĜĜ∗ = I by the
very definition of the eigenvector matrices.) The computational burden of Root
MUSIC may be further reduced as explained in the following. The polynomial in
(4.5.16) is a self–reciprocal (or symmetric) one: its roots appear in reciprocal pairs
(ρeiϕ, 1

ρe
iϕ). On the unit circle z = eiω, (4.5.16) is nonnegative and hence may be



“sm2”
2004/2/22
page 163

i

i

i

i

i

i

i

i

Section 4.5 Pisarenko and MUSIC Methods 163

interpreted as a PSD. Owing to the properties mentioned above, (4.5.16) can be
factored as

aT (z−1)ĜĜ∗a(z) = α(z)α∗(1/z∗) (4.5.19)

where α(z) is a polynomial of degree (m−1) with all its zeroes located within or on
the unit circle. We may then determine the frequency estimates from the n roots of
α(z) that are closest to the unit circle. Since there are efficient numerical procedures
for spectral factorization, determining α(z) as in (4.5.19) and then computing its
zeroes is usually computationally more efficient than finding the (reciprocal) roots
of the 2(m− 1)–degree polynomial (4.5.16).

Finally, we address the issue of spurious frequency estimates. As implied by
the result (4.5.13), forN → ∞ there is no risk of obtaining false frequency estimates.
However, in finite samples such a risk always exists. Usually, this risk is quite small
but it may become a real problem ifm takes on large values. The key result on which
the standard MUSIC algorithm, (4.5.15), is based can be used to derive a modified
MUSIC which does not suffer from the spurious estimate problem. In the following,
we only explain the basic ideas leading to the modified MUSIC method without
going into details of its implementation (for such details, the interested reader may
consult [Stoica and Sharman 1990]). Let {ck}nk=1 denote the coefficients of the
polynomial A(z) defined in (4.2.3):

A(z) = 1 + c1z
−1 + . . .+ cnz

−n =

n∏

k=1

(1 − eiωkz−1) (4.5.20)

Introduce the following matrix made from {ck}:

C∗ =






1 c1 . . . cn 0
. . .

. . .
. . .

0 1 c1 . . . cn




 , (m− n) ×m (4.5.21)

It is readily verified that

C∗A = 0, (m− n) × n (4.5.22)

where A is defined in (4.2.4). Combining (4.5.9) and (4.5.22) gives

C∗S = 0, (m− n) × n (4.5.23)

which is the key property here. The matrix equation (4.5.23) can be rewritten in
the following form

φc = µ (4.5.24)

where the (m − n)n × n matrix φ and the (m − n)n × 1 vector µ are entirely
determined from the elements of S, and where

c = [c1 . . . cn]
T (4.5.25)

By replacing the elements of S in φ and µ by the corresponding entries of Ŝ, we
obtain the sample version of (4.5.24)

φ̂ĉ ' µ̂ (4.5.26)
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from which an estimate ĉ of c may be obtained by an LS or TLS algorithm; see
Section A.8 for details. The frequency estimates can then be derived from the roots
of the estimated polynomial (4.5.20) corresponding to ĉ. Since this polynomial has
a (minimal) degree equal to n, there is no risk for false frequency estimation.

4.6 MIN–NORM METHOD

MUSIC uses (m−n) linearly independent vectors in R(Ĝ) to obtain the frequency
estimates. Since any vector in R(Ĝ) is (asymptotically) orthogonal to {a(ωk)}nk=1

(cf. (4.5.7)), we may think of using only one such vector for frequency estima-
tion. By doing so, we may achieve some computational saving, hopefully without
sacrificing too much accuracy.

The Min–Norm method proceeds to estimate the frequencies along these lines
[Kumaresan and Tufts 1983]. Let

[
1
ĝ

]

=
the vector in R(Ĝ), with first element equal to one,
that has minimum Euclidean norm.

(4.6.1)

Then, the Min–Norm frequency estimates are determined as

(Spectral Min–Norm). The locations of the n highest peaks in the
pseudospectrum

1
∣
∣
∣
∣
a∗(ω)

[
1
ĝ

]∣
∣
∣
∣

2 (4.6.2)

or, alternatively,

(Root Min–Norm). The angular positions of the n roots of the
polynomial

aT (z−1)

[
1
ĝ

]

that are located nearest the unit circle.

(4.6.3)

It remains to determine the vector in (4.6.1) and, in particular, to show that
its first element can always be normalized to one. We will later comment on the
reason behind the specific selection (4.6.1) of a vector in R(Ĝ). In the following,
the Euclidean norm of a vector is denoted by ‖ · ‖.

Partition the matrix Ŝ as

Ŝ =

[
α∗

S̄

]
} 1
} m− 1

(4.6.4)

As

[
1
ĝ

]

∈ R(Ĝ), it must satisfy the equation

Ŝ∗
[

1
ĝ

]

= 0 (4.6.5)



“sm2”
2004/2/22
page 165

i

i

i

i

i

i

i

i

Section 4.6 Min–Norm Method 165

which, using (4.6.4), can be rewritten as

S̄∗ĝ = −α (4.6.6)

The minimum–norm solution to (4.6.6) is given by (see Result R31 in Appendix A):

ĝ = −S̄(S̄∗S̄)−1α (4.6.7)

assuming that the inverse exists. Noting that

I = Ŝ∗Ŝ = αα∗ + S̄∗S̄ (4.6.8)

and also that one eigenvalue of I − αα∗ is equal to 1 − ‖α‖2 and the remaining
(n − 1) eigenvalues of I − αα∗ are equal to 1, it follows that the inverse in (4.6.7)
exists if and only if

‖α‖2 6= 1 (4.6.9)

If the above condition is not satisfied, there will be no vector of the form of (4.6.1)
in R(Ĝ). We postpone the study of (4.6.9) until we obtain a final–form expression
for ĝ.

Under the condition (4.6.9), a simple calculation shows that

(S̄∗S̄)−1α = (I − αα∗)−1α = α/(1 − ‖α‖2) (4.6.10)

Inserting (4.6.10) in (4.6.7) gives

ĝ = −S̄α/(1 − ‖α‖2) (4.6.11)

which expresses ĝ as a function of the elements of Ŝ.
We can also obtain ĝ as a function of the entries in Ĝ. To do so, partition Ĝ

as

Ĝ =

[
β∗

Ḡ

]

(4.6.12)

Since ŜŜ∗ = I − ĜĜ∗ by the definition of the matrices Ŝ and Ĝ, it follows that
[

‖α‖2 (S̄α)∗

S̄α S̄S̄∗

]

=

[
1 − ‖β‖2 −(Ḡβ)∗

−Ḡβ I − ḠḠ∗

]

(4.6.13)

Comparing the blocks in (4.6.13) makes it possible to express ‖α‖2 and S̄α as
functions of Ḡ and β, which leads to the following equivalent expression for ĝ:

ĝ = Ḡβ/‖β‖2 (4.6.14)

If m − n > n, then it is computationally more advantageous to obtain ĝ from
(4.6.11); otherwise, (4.6.14) should be used.

Next, we return to the condition (4.6.9) that is implicitly assumed to hold
in the previous derivations. As already mentioned, this condition is equivalent to
rank(S̄∗S̄) = n which, in turn, holds if and only if

rank(S̄) = n (4.6.15)
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Now, it follows from (4.5.9) that any block of S made from more than n consec-
utive rows should have rank equal to n. Hence, (4.6.15) must hold at least for N
sufficiently large. With this observation, the derivation of the Min–Norm frequency
estimator is complete.

The statistical accuracy of the Min–Norm method is similar to that corre-
sponding to MUSIC. Hence, Min–Norm achieves MUSIC’s performance at a re-
duced computational cost. It should be noted that the selection (4.6.1) of the
vector in R(Ĝ), used in the Min–Norm algorithm, is critical in obtaining frequency
estimates with satisfactory statistical accuracy. Other choices of vectors in R(Ĝ)
may give rather poor accuracy. In addition, there is empirical evidence that the
use of the minimum–norm vector in R(Ĝ), as in (4.6.1), may decrease the risk of
spurious frequency estimates compared with other vectors in R(Ĝ) or even with
MUSIC (see Complement 6.5.1 for details on this aspect).

4.7 ESPRIT METHOD

Let
A1 = [Im−1 0]A (m− 1) × n (4.7.1)

and
A2 = [0 Im−1]A (m− 1) × n (4.7.2)

where Im−1 is the identity matrix of dimension (m − 1) × (m − 1) and [Im−1 0]
and [0 Im−1] are (m− 1) ×m. It is readily verified that

A2 = A1D (4.7.3)

where

D =






e−iω1 0
. . .

0 e−iωn




 (4.7.4)

Since D is a unitary matrix, the transformation in (4.7.3) is a rotation. ES-
PRIT, i.e., Estimation of Signal Parameters by Rotational Invariance Techniques
([Paulraj, Roy, and Kailath 1986; Roy and Kailath 1989]; see also [Kung,

Arun, and Rao 1983]), relies on the rotational transformation (4.7.3) as we detail
below.

Similarly to (4.7.1) and (4.7.2), define

S1 = [Im−1 0]S (4.7.5)

S2 = [0 Im−1]S (4.7.6)

From (4.5.12), we have that
S = AC (4.7.7)

where C is the n× n nonsingular matrix given by

C = PA∗SΛ
◦ −1 (4.7.8)

(Observe that both S and A in (4.7.7) have full column rank, and hence C must
be nonsingular; see Result R2 in Appendix A). The above explicit expression for C
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actually has no relevance to the present discussion. It is only (4.7.7), and the fact
that C is nonsingular, that counts.

By using (4.7.1)–(4.7.3) and (4.7.7), we can write

S2 = A2C = A1DC = S1C
−1DC = S1φ (4.7.9)

where

φ , C−1DC (4.7.10)

Owing to the Vandermonde structure of A, the matrices A1 and A2 have full column
rank (equal to n). In view of (4.7.7), S1 and S2 must also have full column rank.
It then follows from (4.7.9) that the matrix φ is uniquely given by

φ = (S∗
1S1)

−1S∗
1S2 (4.7.11)

This formula expresses φ as a function of some quantities which can be estimated
from the available sample. The importance of being able to estimate φ stems from
the fact that φ and D have the same eigenvalues. (This can be seen from the
equation (4.7.10), which is a similarity transformation relating φ and D, along
with Result R6 in Appendix A.)

ESPRIT uses the previous observations to determine frequency estimates as
described next.

ESPRIT estimates the frequencies {ωk}nk=1 as − arg(ν̂k), where
{ν̂k}nk=1 are the eigenvalues of the following (consistent) estimate
of the matrix φ:

φ̂ = (Ŝ∗
1 Ŝ1)

−1Ŝ∗
1 Ŝ2

(4.7.12)

It should be noted that the above estimate of φ is implicitly obtained by
solving the following linear system of equations:

Ŝ1φ̂ ' Ŝ2 (4.7.13)

by an LS method. It has been empirically observed that better finite–sample accu-
racy may be achieved if (4.7.13) is solved for φ̂ by a Total LS method (see Section A.8
and [Van Huffel and Vandewalle 1991] for discussions on the TLS approach).

The statistical accuracy of ESPRIT is similar to that of the previously de-
scribed methods: HOYW, MUSIC and Min–Norm. In fact, in most cases, ESPRIT
may provide slightly more accurate frequency estimates than the other methods
mentioned above; and this at similar computational cost. In addition, unlike these
other methods, ESPRIT has no problem with separating the “signal roots” from
the “noise roots”, as can be seen from (4.7.12). Note that this property is shared
by the modified MUSIC method (discussed in Section 4.5); however, in many cases
ESPRIT outperforms modified MUSIC in terms of statistical accuracy. All these
considerations recommend ESPRIT as the first choice in a frequency estimation
application.
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4.8 FORWARD–BACKWARD APPROACH

The previously described eigenanalysis–based methods (MUSIC, Min–Norm and
ESPRIT) derive their frequency estimates from the eigenvectors of the sample co-
variance matrix R̂, (4.5.14), which is restated here for easy reference:

R̂ =
1

N

N∑

t=m






y(t)
...

y(t−m+ 1)




 [y∗(t) . . . y∗(t−m+ 1)] (4.8.1)

The R̂ above is recognized to be the matrix that appears in the least squares (LS)
estimation of the coefficients {αk} of an mth–order forward linear predictor of
y∗(t+ 1):

ŷ∗(t+ 1) = α1y
∗(t) + . . .+ αmy

∗(t−m+ 1) (4.8.2)

For this reason, the methods which obtain frequency estimates from R̂ are named
forward (F) approaches.

Extensive numerical experience with the aforementioned methods has shown
that the corresponding frequency estimation accuracy can be enhanced by using
the following modified sample covariance matrix, in lieu of R̂,

R̃ =
1

2
(R̂+ JR̂TJ) (4.8.3)

where

J =





0 1
. .

.

1 0



 (4.8.4)

is the so–called “exchange” (or “reversal”) matrix. The second term in (4.8.3) has
the following detailed form:

JR̂TJ =
1

N

N∑

t=m






y∗(t−m+ 1)
...

y∗(t)




 [y(t−m+ 1) . . . y(t)] (4.8.5)

The matrix (4.8.5) is the one that appears in the LS estimate of the coefficients of
an mth–order backward linear predictor of y(t−m):

ŷ(t−m) = µ1y(t−m+ 1) + . . .+ µmy(t) (4.8.6)

This observation, along with the previous remark made about R̂, suggests the
name of forward–backward (FB) approaches for methods that determine frequency
estimates from R̃ in (4.8.3).

The (i, j) element of R̃ is given by:

R̃i,j =
1

2N

N∑

t=m

[y(t− i)y∗(t− j) + y∗(t−m+ 1 + i)y(t−m+ 1 + j)]

, T1 + T2 (i, j = 0, . . . ,m− 1) (4.8.7)
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Assume that i ≤ j (the other case i ≥ j can be similarly treated). Let r̂(j − i)
denote the usual sample covariance:

r̂(j − i) =
1

N

N∑

t=(j−i)+1

y(t)y∗(t− (j − i)) (4.8.8)

A straightforward calculation shows that the two terms T1 and T2 in (4.8.7) can be
written as

T1 =
1

2N

N−i∑

p=m−i
y(p)y∗(p− (j − i)) =

1

2
r̂(j − i) + O(1/N) (4.8.9)

and

T2 =
1

2N

N−m+j+1
∑

p=j+1

y(p)y∗(p− (j − i)) =
1

2
r̂(j − i) + O(1/N) (4.8.10)

where O(1/N) denotes a term that tends to zero as 1/N when N increases (it is
here assumed that m � N). It follows from (4.8.7)–(4.8.10) that, for large N , the
difference between R̃i,j or R̂i,j and the sample covariance lag r̂(j − i) is “small”.

Hence, the frequency estimation methods based on R̂ or R̃ (or on [r̂(j − i)]) may
be expected to have similar performances in large samples.

In summary, it follows from the previous discussion that the empirically ob-
served performance superiority of the forward–backward approach over the forward–
only approach should only be manifest in samples with relatively small lengths. As
such, this superiority cannot be easily established by theoretical means. Let us
then argue heuristically.

First, note that the transformation J(.)TJ is such that the following equalities
hold:

(R̂)i,j = (JR̂J)m−i,m−j = (JR̂TJ)m−j,m−i (4.8.11)

and
(R̂)m−j,m−i = (JR̂TJ)i,j (4.8.12)

This implies that the (i, j) and (m− j,m− i) elements of R̃ are both given by

R̃i,j = R̃m−j,m−i =
1

2
(R̂i,j + R̂m−j,m−i) (4.8.13)

Equations (4.8.11)–(4.8.12) imply that R̃ is invariant to the transformation J(.)TJ :

JR̃TJ = R̃ (4.8.14)

Such a matrix is said to be persymmetric (also called centrosymmetric). In order
to see the reason for this name, note that R̃ is Hermitian (symmetric in the real–
valued case) with respect to its main diagonal; in addition, R̃ is symmetric about
its main antidiagonal. Indeed, the equal elements R̃i,j and R̃m−j,m−i of R̃ belong
to the same diagonal as i − j = (m − j) − (m − i). They are also symmetrically
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placed with respect to the main antidiagonal; R̃i,j lies on antidiagonal (i + j),

R̃m−j,m−i on the [2m − (j + i)]th one, and the main antidiagonal is the mth one
(and m = [(i+ j) + 2m− (i+ j)]/2).

The theoretical (and unknown) covariance matrix R is Toeplitz and hence
persymmetric. Since R̃ is persymmetric like R, whereas R̂ is not, we may expect
R̃ to be a better estimate of R than R̂. In turn, this means that the frequency
estimates derived from R̃ are likely to be more accurate than those obtained from
R̂.

The impact of enforcing the persymmetric property can be seen by examining,
say, the (1, 1) and (m,m) elements of R̂ and R̃. Both the (1,1) and (m,m) elements
of R̂ are estimates of r(0); however, the (1,1) element does not use the first (m− 1)
lag products |y(1)|2, . . . , |y(m− 1)|2, and the (m,m) element does not use the last
(m−1) lag products |y(N −m+2)|2, . . . , |y(N)|2. If N � m, the omission of these
lag products is negligible; for small N , however, this omission may be significant.
On the other hand, all lag products of y(t) are used to form the (1, 1) and (m,m)
elements of R̃, and in general the (i, j) element of R̃ uses more lag products of y(t)
than the corresponding element of R̂. For more details on the FB approach, we refer
the reader to, e.g., [Rao and Hari 1993; Pillai 1989]; see also Complement 6.5.8.

Finally, the reader might wonder why we do not replace R̂ by a Toeplitz
estimate, obtained for example by averaging the elements along each diagonal of R̂.
This Toeplitz estimate would at first seem to be a better approximation of R than
either R̂ or R̃. The reason why we do not “Toeplitz–ize” R̂ or R̃ is that for finite
N , and infinite signal–to–noise ratio (σ2 → 0), the use of either R̂ or R̃ gives exact
frequency estimates, whereas the Toeplitz–averaged approximation of R does not.
As σ2 → 0, both R̂ and R̃ have rank n, but the Toeplitz–averaged approximation
of R has full rank in general.

4.9 COMPLEMENTS

4.9.1 Mean Square Convergence of Sample Covariances for Line Spectral Processes

In this complement we prove that

lim
N→∞

r̂(k) = r(k) (in a mean square sense) (4.9.1)

(that is, limN→∞E
{
|r̂(k) − r(k)|2

}
= 0 ). The above result has already been

referred to in Section 4.4, in the discussion on the rank properties of Ω̂ and Ω. It is
also the basic result from which the consistency of all covariance–based frequency
estimators discussed in this chapter can be readily concluded. Note that a signal
{y(t)} satisfying (4.9.1) is said to be second–order ergodic (see [Söderström and

Stoica 1989; Brockwell and Davis 1991] for a more detailed discussion of the
ergodicity property).
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A straightforward calculation gives

r̂(k) =
1

N

N∑

t=k+1

[x(t) + e(t)][x∗(t− k) + e∗(t− k)]

=
1

N

N∑

t=k+1

[x(t)x∗(t− k) + x(t)e∗(t− k) + e(t)x∗(t− k)

+e(t)e∗(t− k)] , T1 + T2 + T3 + T4 (4.9.2)

The limit of T1 is found as follows. First note that:

lim
N→∞

E
{
|T1 − rx(k)|2

}
= lim

N→∞

{

1

N2

N∑

t=k+1

N∑

s=k+1

E {x(t)x∗(t− k)x∗(s)x(s− k)}

−
(

2

N

N∑

t=k+1

|rx(k)|2
)

+ |rx(k)|2
}

= lim
N→∞

{

1

N2

N∑

t=k+1

N∑

s=k+1

E {x(t)x∗(t− k)x∗(s)x(s− k)}
}

−|rx(k)|2

Now,

E {x(t)x∗(t− k)x∗(s)x(s− k)} =

n∑

p=1

n∑

j=1

n∑

l=1

n∑

m=1

apajalame
i(ωp−ωj)tei(ωm−ωl)s

·ei(ωj−ωm)kE
{
eiϕpe−iϕjeiϕme−iϕl

}

=

n∑

p=1

n∑

j=1

n∑

l=1

n∑

m=1

apajalame
i(ωp−ωj)tei(ωm−ωl)s

·ei(ωj−ωm)k (δp,jδm,l + δp,lδm,j − δp,jδm,lδp,m)

where the last equality follows from the assumed independence of the initial phases
{ϕk}. Combining the results of the above two calculations yields:

lim
N→∞

E
{
|T1 − rx(k)|2

}
= lim

N→∞

1

N2

N∑

t=k+1

N∑

s=k+1

{
n∑

p=1

n∑

m=1

a2
pa

2
me

i(ωp−ωm)k

+

n∑

p=1

n∑

m=1

a2
pa

2
me

i(ωp−ωm)(t−s) −
n∑

p=1

a4
p

}

− |rx(k)|2

=

n∑

p=1

n∑

m=1
m6=p

a2
pa

2
m lim
N→∞

1

N2

N∑

τ=−N
(N − |τ |)ei(ωp−ωm)τ

= 0 (4.9.3)

It follows that T1 converges to r(k) (in the mean square sense) as N tends to infinity.
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The limits of T2 and T3 are equal to zero, as shown below for T2; the proof for
T3 is similar. Using the fact that {x(t)} and {e(t)} are by assumption independent
random signals, we get

E
{
|T2|2

}
=

1

N2

N∑

t=k+1

N∑

s=k+1

E {x(t)e∗(t− k)x∗(s)e(s− k)}

=
σ2

N2

N∑

t=k+1

N∑

s=k+1

E {x(t)x∗(s)} δt,s

=
σ2

N2

N∑

t=k+1

E
{
|x(t)|2

}
=

(N − k)σ2

N2
E
{
|x(t)|2

}
(4.9.4)

which tends to zero, as N → ∞. Hence, T2 (and, similarly, T3) converges to zero
in the mean square sense.

The last term, T4, in (4.9.2) converges to σ2δk,0 by the “law of large numbers”
(see [Söderström and Stoica 1989; Brockwell and Davis 1991]). In fact,
it is readily verified, at least under the Gaussian hypothesis, that

E
{
|T4 − σ2δk,0|2

}
=

1

N2

N∑

t=k+1

N∑

s=k+1

E {e(t)e∗(t− k)e∗(s)e(s− k)}

−σ2δk,0

{

1

N

N∑

t=k+1

E {e(t)e∗(t− k) + e∗(t)e(t− k)}
}

+σ4δk,0

=
1

N2

N∑

t=k+1

N∑

s=k+1

[σ4δk,0 + σ4δt,s]

−2σ4δk,0
1

N

N∑

t=k+1

(δk,0) + σ4δk,0

→ σ4δk,0 − 2σ4δk,0 + σ4δk,0 = 0 (4.9.5)

Hence, T4 converges to σ2δk,0 in the mean square sense if e(t) is Gaussian. It can
be shown using the law of large numbers that T4 → σ2δk,0 in the mean square sense
even if e(t) is non–Gaussian, as long as the fourth–order moment of e(t) is finite.

Next, observe that since, for example, E{|T2|2} and E{|T3|2} converge to
zero, then E{T2T

∗
3 } also converges to zero (as N → ∞); this is so because

|E {T2T
∗
3 } | ≤

[
E
{
|T2|2

}
E
{
|T3|2

}]1/2

With this observation, the proof of (4.9.1) is complete.

4.9.2 The Carathéodory Parameterization of a Covariance Matrix

The covariance matrix model in (4.2.7) is more general than it might appear at
first sight. We show that for any given covariance matrix R = {r(i − j)}mi,j=1,
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there exist n ≤ m, σ2 and {ωk, αk}nk=1 such that R can be written as in (4.2.7).
Equation (4.2.7), associated with an arbitrary given covariance matrix R, is named
the Carathéodory parameterization of R.

Let σ2 denote the minimum eigenvalue of R. As σ2 is not necessarily unique,
let n̄ denote its multiplicity and set n = m− n̄. Define

Γ = R− σ2I

The matrix Γ is positive semidefinite and Toeplitz and, hence, must be the covari-
ance matrix associated with a stationary signal, say y(t):

Γ = E












y(t)
...

y(t−m+ 1)




 [y∗(t) . . . y∗(t−m+ 1)]







By definition,
rank(Γ) = n (4.9.6)

which implies that there must exist a linear combination between {y(t), . . . , y(t−n)}
for all t. Moreover, both y(t) and y(t−n) must appear with nonzero coefficients in
that linear combination (otherwise either {y(t) . . . y(t−n+1)} or {y(t−1) . . . y(t−
n)} would be linearly related, and rank(Γ) would be less than n, which would
contradict (4.9.6)). Hence y(t) obeys the following homogeneous AR equation:

B(z)y(t) = 0 (4.9.7)

where z−1 is the unit delay operator, and

B(z) = 1 + b1z
−1 + · · · + bnz

−n

with bn 6= 0. Let φ(ω) denote the PSD of y(t). Then we have the following
equivalences:

B(z)y(t) = 0 ⇐⇒
∫ π

−π
|B(ω)|2 φ(ω) dω = 0

⇐⇒ |B(ω)|2 φ(ω) = 0

⇐⇒ {If φ(ω) > 0 then B(ω) = 0}
⇐⇒ {φ(ω) > 0 for at most n values of ω}

Furthermore,

{y(t), . . . y(t− n+ 1) are linearly independent}
⇐⇒

{
E
{
|g0y(t) + . . .+ gn−1y(t− n+ 1)|2

}
> 0 for every [g0 . . . gn−1]

T 6= 0
}

⇐⇒
{∫ π

−π |G(ω)|2 φ(ω) dω > 0 for every G(z) =
∑n−1
k=0 gkz

−k 6= 0
}

⇐⇒ {φ(ω) > 0 for at least n distinct values of ω}

It follows from the two results above that φ(ω) > 0 for exactly n distinct values of
ω. Furthermore, the values of ω for which φ(ω) > 0 are given by the n roots of the
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equation B(ω) = 0. A signal y(t) with such a PSD consists of a sum of n sinusoidal
components with an m×m covariance matrix given by

Γ = APA∗ (4.9.8)

(cf. (4.2.7)). In (4.9.8), the frequencies {ωk}nk=1 are defined as indicated above, and
can be found from Γ using any of the subspace–based frequency estimation methods
in this chapter. Once {ωk} are available, {α2

i } can be determined from Γ. (Show
that.) By combining the additive decomposition R = Γ+σ2I and (4.9.8) we obtain
(4.2.7). With this observation, the derivation of the Carathéodory parameterization
is complete.

It is interesting to note that the sinusoids–in–noise signal which “realizes”
a given covariance sequence {r(0), . . . , r(m)} (as described above) also provides a
positive definite extension of that sequence. More precisely, the covariance lags
{r(m + 1), r(m + 2), . . .} derived from the sinusoidal signal equation, when ap-
pended to {r(0), . . . , r(m)}, provide a positive definite covariance sequence of in-
finite length. The AR covariance realization is the other well–known method for
obtaining a positive definite extension of a given covariance sequence of finite length
(see Complement 3.9.2).

4.9.3 Using the Unwindowed Periodogram for Sine Wave Detection in White Noise

As shown in Section 4.3, the unwindowed periodogram is an accurate frequency es-
timation method whenever the minimum frequency separation is larger than 1/N .
A simple intuitive explanation as to why the unwindowed periodogram is a better
frequency estimator than the windowed periodogram(s) is as follows. The principal
effect of a window is to remove the tails of the sample covariance sequence from
the periodogram formula; while this is appropriate for signals whose covariance
sequence “rapidly” goes to zero, it is inappropriate for sinusoidal signals whose
covariance sequence never dies out (for sinusoidal signals, the use of a window is
expected to introduce a significant bias in the estimated spectrum). Note, however,
that if the data contains sinusoidal components with significantly different ampli-
tudes, then it may be advisable to use a (mildly) windowed periodogram. This
will induce bias in the frequency estimates, but, on the other hand, will reduce the
leakage and hence make it possible to detect the low–amplitude components.

When using the (unwindowed) periodogram for frequency estimation, an im-
portant problem is to infer whether any of the many peaks of the erratic peri-
odogram plot can really be associated with the existence of a sinusoidal component
in the data. In order to be more precise, consider the following two hypotheses.

H0: the data consists of (complex circular Gaussian) white noise only (with un-
known variance σ2).

H1: the data consists of a sum of sinusoidal components and noise.

Deciding between H0 and H1 constitutes the so–called (signal) detection prob-
lem. A solution to the detection problem can be obtained as follows. From the cal-
culations leading to the result (2.4.21) one can see that the normalized periodogram
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values in (4.9.15) are independent random variables (under H0). It remains to de-
rive their distribution. Let

εr(ω) =

√
2

σ
√
N

N∑

t=1

Re[e(t)e−iωt]

εi(ω) =

√
2

σ
√
N

N∑

t=1

Im[e(t)e−iωt]

With this notation and under the null hypothesis H0,

2φ̂p(ω)/σ2 = ε2r(ω) + ε2i (ω) (4.9.9)

For any two complex scalars z1 and z2 we have

Re(z1) Im(z2) =
z1 + z∗

1

2

z2 − z∗
2

2i
=

1

2
Im (z1z2 + z∗

1z2) (4.9.10)

and, similarly,

Re(z1) Re(z2) =
1

2
Re(z1z2 + z∗

1z2) (4.9.11)

Im(z1) Im(z2) =
1

2
Re(−z1z2 + z∗

1z2) (4.9.12)

By making use of (4.9.10)–(4.9.12), we can write

E {εr(ω)εi(ω)} =
1

σ2N
Im

{
N∑

t=1

N∑

s=1

E
{

e(t)e(s)e−iω(t+s) + e∗(t)e(s)eiω(t−s)
}
}

= Im{1} = 0

E
{
ε2r(ω)

}
=

1

σ2N
Re

{
N∑

t=1

N∑

s=1

E
{

e(t)e(s)e−iω(t+s) + e∗(t)e(s)eiω(t−s)
}
}

= Re{1} = 1 (4.9.13)

E
{
ε2i (ω)

}
=

1

σ2N
Re

{
N∑

t=1

N∑

s=1

E
{

−e(t)e(s)e−iω(t+s) + e∗(t)e(s)eiω(t−s)
}
}

= Re{1} = 1 (4.9.14)

In addition, note that the random variables εr(ω) and εi(ω) are zero–mean Gaussian
distributed because they are linear transformations of the Gaussian white noise
sequence. Then, it follows that under H0

The random variables

{2φ̂p(ωk)/σ
2}Nk=1,

with mink 6=j |ωk − ωj | ≥ 2π/N , are asymptotically independent
and χ2 distributed with 2 degrees of freedom.

(4.9.15)
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(See, e.g., [Priestley 1981] and [Söderström and Stoica 1989] for the defini-
tion and properties of the χ2 distribution.) It is worth noting that if {ωk} are equal
to the Fourier frequencies {2πk/N}N−1

k=0 , then the previous distributional result is
exactly valid (i.e., it holds in samples of finite length; see, for example, equation
(2.4.26)). However, this observation is not as important as it might seem at first
sight, since σ2 in (4.9.15) is unknown. When the noise power in (4.9.15) is replaced
by a consistent estimate σ̂2, the so–obtained normalized periodogram values

{2φ̂p(ωk)/σ̂
2} (4.9.16)

are χ2(2) distributed only asymptotically (for N � 1). A consistent estimate of σ2

can be obtained as follows. From (4.9.9), (4.9.13), and (4.9.14) we have that under
H0

E
{

φ̂p(ωk)
}

= σ2 for k = 1, 2, . . . , N

Since {φ̂p(ωk)}Nk=1 are independent random variables, a consistent estimate of σ2

is given by

σ̂2 =
1

N

N∑

k=1

φ̂p (ωk)

Inserting this expression for σ̂2 into (4.9.16) leads to the following “test statistic”:

µk =
2Nφ̂p(ωk)
N∑

k=1

φ̂p(ωk)

In accordance with the (asymptotic) χ2 distribution of {µk}, we have (for any given
c ≥ 0; see, e.g., [Priestley 1981]):

Pr(µk ≤ c) =

∫ c

0

1

2
e−x/2 dx = 1 − e−c/2. (4.9.17)

Let

µ = max
k

[µk]

Using (4.9.17) and the fact that {µk} are independent random variables, gives (for
any c ≥ 0):

Pr(µ > c) = 1 − Pr(µ ≤ c)

= 1 − Pr(µk ≤ c for all k)

= 1 − (1 − e−c/2)N (under H0)
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This result can be used to set a bound on µ that, under H0, holds with a (high)
preassigned probability 1 − α (say). More precisely, let α be given (e.g., α = 0.05)
and solve for c from the equation

(1 − e−c/2)N = 1 − α

Then

• If µ ≤ c, accept H0 with an unknown risk. (That risk
depends on the signal–to–noise ratio (SNR). The lower the
SNR, the larger the risk of accepting H0 when it does not
hold.)

• If µ > c, reject H0 with a risk equal to α.

It should be noted that whenever H0 is rejected by the above test, what we
can really infer is that the periodogram peak in question is significant enough to
make the existence of a sinusoidal component in the studied data highly probable.
However, the previous test does not tell us the number of sinusoidal components
in the data. In order to determine that number, the test should be continued by
looking at the second highest peak in the periodogram. For a test of the significance
of the second highest value of the periodogram, and so on, we refer to [Priestley

1981].

Finally, we note that in addition to the test presented in this complement,
there are several other tests to decide between the hypotheses H0 and H1 above;
see [Priestley 1997] for a review.

4.9.4 NLS Frequency Estimation for a Sinusoidal Signal with Time-Varying Amplitude

Consider the sinusoidal data model in (4.1.1) for the case of a single component
(n = 1) but with a time-varying amplitude:

y(t) = α(t)ei(ωt+ϕ) + e(t), t = 1, . . . , N (4.9.18)

where α(t) ∈ R is an arbitrary unknown envelope modulating the sinusoidal signal.
The NLS estimates of α(t), ω, and ϕ are obtained by minimizing the following
criterion:

f =

N∑

t=1

∣
∣
∣y(t) − α(t)ei(ωt+ϕ)

∣
∣
∣

2

(cf. (4.3.1)). In this complement we show that the above seemingly complicated
minimization problem has in fact a simple solution. We also discuss briefly an FFT-
based algorithm for computing that solution. The reader interested in more details
on the topic of this complement can consult [Besson and Stoica 1999; Stoica,

Besson, and Gershman 2001] and references therein.



“sm2”
2004/2/22
page 178

i

i

i

i

i

i

i

i

178 Chapter 4 Parametric Methods for Line Spectra

A straightforward calculation shows that:

f =

N∑

t=1

{
∣
∣y(t)

∣
∣
2

+
[

α(t) − Re
(

e−i(ωt+ϕ)y(t)
)]2

−
[

Re
(

e−i(ωt+ϕ)y(t)
)]2
}

(4.9.19)
The minimization of (4.9.19) with respect to α(t) is immediate:

α̂(t) = Re
(

e−i(ω̂t+ϕ̂)y(t)
)

(4.9.20)

where the NLS estimates ω̂ and ϕ̂ are yet to be determined. Inserting (4.9.20) into
(4.9.19) shows that the NLS estimates of ϕ and ω are obtained by maximizing the
function

g = 2

N∑

t=1

[

Re
(

e−i(ωt+ϕ)y(t)
)]2

where the factor 2 has been introduced for the sake of convenience. For any complex
number c we have

[Re(c)]
2

=
1

4
(c+ c∗)2 =

1

2

[
|c|2 + Re

(
c2
)]

It follows that

g =

N∑

t=1

{

|y(t)|2 + Re
[

e−2i(ωt+ϕ)y2(t)
]}

= constant +

∣
∣
∣
∣
∣

N∑

t=1

y2(t)e−i2ωt

∣
∣
∣
∣
∣
· cos

[

arg

(
N∑

t=1

y2(t)e−i2ωt
)

− 2ϕ

]

(4.9.21)

Clearly the maximizing ϕ is given by

ϕ̂ =
1

2
arg

(
N∑

t=1

y2(t)e−i2ω̂t
)

with the NLS estimate of ω given by

ω̂ = arg max
ω

∣
∣
∣
∣
∣

N∑

t=1

y2(t)e−i2ωt

∣
∣
∣
∣
∣

(4.9.22)

It is important to note that the maximization in (4.9.22) should be conducted
over [0, π] instead of over [0, 2π]; indeed, the function in (4.9.22) is periodic with a
period equal to π. The restriction of ω to [0, π] is not a peculiar feature of the NLS
approach, but rather it is a consequence of the generality of the problem considered
in this complement. This is easily seen by making the substitution ω → ω + π in
(4.9.18), which yields

y(t) = α̃(t)ei(ωt+ϕ) + e(t), t = 1, . . . , N
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where α̃(t) = (−1)tα(t) is another valid (i.e., real-valued) envelope. This simple
calculation confirms the fact that ω is uniquely identifiable only in the interval
[0, π]. In applications, the frequency can be made to belong to [0, π] by using a
sufficiently small sampling period.

The above estimate of ω should be contrasted with the NLS estimate of ω in
the constant-amplitude case (see (4.3.11), (4.3.17)):

ω̂ = arg max
ω

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iωt

∣
∣
∣
∣
∣

(for α(t) = constant) (4.9.23)

There is a striking similarity between (4.9.22) and (4.9.23); the only difference
between these equations is the squaring of the terms in (4.9.22). As a consequence,
we can apply the FFT to the squared data sequence {y2(t)} to obtain the ω̂ in
(4.9.22).

The reader may wonder if there is an intuitive reason for the occurrence of the
squared data in (4.9.22). A possible way to explain this occurrence goes as follows.
Assume that α(t) has zero average value. Hence the DFT of {α(t)}, denoted A(ω̄),
takes on small values (theoretically zero) at ω̄ = 0. As the DFT of α(t)eiωt is
A(ω̄−ω), it follows that the modulus of this DFT has a valley instead of a peak at
ω̄ = ω, and hence the standard periodogram (see (4.9.23)) should not be used to
determine ω. On the other hand, α2(t) always has a nonzero average value (or DC
component), and hence the modulus of the DFT of α2(t)ei2ωt will typically have
a peak at ω̄ = 2ω. This observation provides an heuristic reason for the squaring
operation in (4.9.22).

4.9.5 Monotonically Descending Techniques for Function Minimization

As explained in Section 4.3, minimizing the NLS criterion with respect to the
unknown frequencies is a rather difficult task owing to the existence of possibly
many local minima and the sharpness of the global minimum. In this complement1

we will discuss a number of methods that can be used to solve such a minimization
problem. Our discussion is quite general and applies to many other functions, not
to just the NLS criterion that is used as an illustrating example in what follows.

We will denote the function to be minimized by f(θ), where θ is a vector.
Sometimes we will write this function as f(x, y) where [xT , yT ]T = θ. The al-
gorithms for minimizing f(θ) discussed in this complement are iterative. We let
θi denote the value taken by θ at the ith iteration (and similarly for x and y).
The common feature of the algorithms included in this complement is that they all
monotonically decrease the function at each iteration:

f(θi+1) ≤ f(θi) for i = 0, 1, 2, . . . (4.9.24)

Hereafter θ0 denotes the initial value (or estimate) of θ used by the minimization
algorithm in question. Clearly (4.9.24) is an appealing property which in effect is the

1Based on “Cyclic minimizers, majorization techniques, and the expectation-maximization
algorithm: A refresher,” by P. Stoica and Y. Selén, IEEE Signal Processing Magazine, 21(1),
January, 2004, pp. 112–114.
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main reason for the interest in the algorithms discussed here. However, we should
note that usually (4.9.24) can only guarantee the convergence to a local minimum
of f(θ). The goodness of the initial estimate θ0 will often determine whether the
algorithm will converge to the global minimum. In fact, for some of the algorithms
discussed below not even the convergence to a local minimum is guaranteed. For
example, the EM algorithm (discussed later in this complement) can converge to
saddle points or local maxima (see, e.g., [McLachlan and Krishnan 1997]).
However, such a behavior is rare in applications, provided that some regularity
conditions are satisfied.

Cyclic Minimizer

To describe the main idea of this type of algorithm in its simplest form, let us
partition θ into two subvectors:

θ =

[
x
y

]

Then the generic iteration of a cyclic algorithm for minimizing f(x, y) will have
the following form:

y0 = given

For i = 1, 2, . . . compute:

xi = arg min
x
f(x, yi−1)

yi = arg min
y
f(xi, y)

(4.9.25)

Note that (4.9.25) alternates (or cycles) between the minimization of f(x, y) with
respect to x for given y and the minimization of f(x, y) with respect to y for given
x, and hence the name of “cyclic” given to this type of algorithm. An obvious
modification of (4.9.25) allows us to start with x0, if so desired. It is readily
verified that the cyclic minimizer (4.9.25) possesses the property (4.9.24):

f(xi, yi) ≤ f(xi, yi−1) ≤ f(xi−1, yi−1)

where the first inequality follows from the definition of yi and the second from the
definition of xi.

The partitioning of θ into subvectors is usually done in such a way that the
minimization operations in (4.9.25) (or at least one of them) are “easy” (in any
case, easier than the minimization of f jointly with respect to x and y). Quite
often, to achieve this desired property we need to partition θ in more than two
subvectors. The extension of (4.9.25) to such a case is straightforward and will not
be discussed here. However, there is one point about this extension that we would
like to make briefly: whenever θ is partitioned into three or more subvectors we
can choose the way in which the various minimization subproblems are iterated.
For instance, if θ = [xT , yT , zT ]T then we may iterate the minimization steps with
respect to x and with respect to y a number of times (with z being fixed), before
re-determining z, and so forth.
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With reference to the NLS problem in Section 4.3, we can apply the above
ideas to the following natural partitioning of the parameter vector:

θ =








γ1

γ2

...
γn







, γk =





ωk
ϕk
αk



 (4.9.26)

The main virtue of this partitioning of θ is that the problem of minimizing the NLS
criterion with respect to γk, for given {γj} (j = 1, . . . , n; j 6= k), can be solved via
the FFT (see (4.3.10), (4.3.11)). Furthermore, the cyclic minimizer corresponding
to (4.9.26) can be simply initialized with γ2 = · · · = γn = 0, in which case γ1

minimizing the NLS criterion is obtained from the highest peak of the periodogram
(which should give a reasonably accurate estimate of γ1), and so on.

An elaborated cyclic algorithm, called RELAX, for the minimization of the
NLS criterion based on the above ideas (see (4.9.26)), was proposed in [Li and

Stoica 1996b]. Note that cyclic minimizers are sometimes called relaxation al-
gorithms, which provides a motivation for the name given to the algorithm in [Li

and Stoica 1996b].

Majorization Technique

The main idea of this type of iterative technique for minimizing a given function
f(θ) is quite simple (see, e.g., [Heiser 1995] and the references therein). Assume
that, at the ith iteration, we can find a function gi(θ) (the subindex i indicates the
dependence of this function on θi) which possesses the following three properties:

gi(θ
i) = f(θi) (4.9.27)

gi(θ) ≥ f(θ) (4.9.28)

and

the minimization of gi(θ) with respect to θ is “easy” (or, in any
case, easier than the minimization of f(θ)).

(4.9.29)

Owing to (4.9.28), gi(θ) is called a majorizing function for f(θ) at the ith iteration.
In the majorization technique, the parameter vector at iteration (i+ 1) is obtained
from the minimization of gi(θ):

θi+1 = arg min
θ
gi(θ) (4.9.30)

The key property (4.9.24) is satisfied for (4.9.30), since

f(θi) = gi(θ
i) ≥ gi(θ

i+1) ≥ f(θi+1) (4.9.31)

The first inequality in (4.9.31) follows from the definition of θi+1 in (4.9.30), and
the second inequality from (4.9.28).
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Note that any parameter vector θi+1 which gives a smaller value of gi(θ) than
gi(θ

i) will satisfy (4.9.31). Consequently, whenever the minimum point of gi(θ) (see
(4.9.30)) cannot be derived in closed-form we can think of determining θi+1, for
example, by performing a few iterations with a gradient-based algorithm initialized
at θi and using a line search (to guarantee that gi(θ

i+1) ≤ gi(θ
i)). We should note

that a similar observation could be made on the cyclic minimizer in (4.9.25) when
the minimization of either f(x, yi−1) or f(xi, y) cannot be done in closed-form.
The modification of either (4.9.30) or (4.9.25) in this way usually simplifies the
computational effort of each iteration, but may slow down the convergence speed of
the algorithm by increasing the number of iterations needed to achieve convergence.

An interesting question regarding the two algorithms discussed so far is whether
we could obtain the cyclic minimizer by using the majorization principle on a cer-
tain majorizing function. In general it appears difficult or impossible to do so; nor
can the majorization technique be obtained as a special case of a cyclic minimizer.
Hence, these two iterative minimization techniques appear to have “independent
lives”.

To draw more parallels between the cyclic minimizer and the majorization
technique, we remark on the fact that in the former the user has to choose the
partitioning of θ that makes the minimization in, e.g., (4.9.25) “easy”, whereas in
the latter a function gi(θ) has to be found that is not only “easy” to minimize but
also possesses the essential property (4.9.28). Fortunately for the majorization ap-
proach, finding such functions gi(θ) is not as hard as it may at first seem. Below we
will develop a method for constructing a function gi(θ) possessing the desired prop-
erties (4.9.27) and (4.9.28) for a general class of functions f(θ) (including the NLS
criterion) that are commonly encountered in parameter estimation applications.

EM Algorithm

The NLS criterion (see (4.3.1)),

f(θ) =

N∑

t=1

∣
∣
∣
∣
∣
y(t) −

n∑

k=1

αke
i(ωkt+ϕk)

∣
∣
∣
∣
∣

2

(4.9.32)

where θ is defined in (4.9.26), is obtained from the data equation (4.1.1) in which
the noise {e(t)} is assumed to be circular and white with mean zero and variance
σ2. Let us also assume that {e(t)} is Gaussian distributed. Then, the probability
density function of the data vector y = [y(1), . . . , y(N)]T , for given θ, is

p(y, θ) =
1

(πσ2)N
e− f(θ)

σ2 (4.9.33)

where f(θ) is as defined in (4.9.32) above. The method of maximum likelihood (ML)
obtains an estimate of θ by maximizing (4.9.33) (see (B.1.7) in Appendix B) or,
equivalently, by minimizing the so-called negative log-likelihood function:

− ln p(y, θ) = constant +N lnσ2 +
f(θ)

σ2
(4.9.34)

Minimizing (4.9.34) with respect to θ is equivalent to minimizing (4.9.32),
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which shows that the NLS method is identical to the ML method under the as-
sumption that {e(t)} is Gaussian white noise.

The ML is without a doubt the most widely studied method of parameter
estimation. In what follows we assume that this is the method used for parameter
estimation, and hence that the function we want to minimize with respect to θ is
the negative log-likelihood:

f(θ) = − ln p(y, θ) (4.9.35)

Our main goal in this subsection is to show how to construct a majorizing func-
tion for the estimation criterion in (4.9.35) and how the use of the corresponding
majorization technique leads to the expectation-maximization (EM) algorithm in-
troduced in [Dempster, Laird, and Rubin 1977] (see also [McLachlan and

Krishnan 1997] and [Moon 1996] for more recent and detailed accounts on the
EM algorithm).

A notation that will be frequently used below concerns the expectation with
respect to the distribution of a certain random vector, let us say z, which we
will denote by Ez{·}. When the distribution concerned is conditioned on another
random vector, let us say y, we will use the notation Ez|y{·}. If we also want to
stress the dependence of the distribution (with respect to which the expectation is
taken) on a certain parameter vector θ, then we write Ez|y,θ{·}.

The main result which we will use in the following is Jensen’s inequality. It
asserts that for any concave function h(x), where x is a random vector, the following
inequality holds:

E {h(x)} ≤ h (E {x}) (4.9.36)

The proof of (4.9.36) is simple. Let d(x) denote the plane tangent to h(x) at the
point E{x}. Then

E{h(x)} ≤ E{d(x)} = d(E{x}) = h(E{x}) (4.9.37)

which proves (4.9.36). The inequality in (4.9.37) follows from the concavity of h(x),
the first equality follows from the fact that d(x) is a linear function of x, and the
second equality from the fact that d(x) is tangent (and hence equal) to h(x) at the
point E{x}.

Remark: We note in passing that, despite its simplicity, Jensen’s inequality is a
powerful analysis tool. As a simple illustration of this fact, consider a scalar random
variable x with a discrete probability distribution:

Pr{x = xk} = pk, k = 1, . . . ,M

Then, using (4.9.36) and the fact that the logarithm is a concave function we obtain
(assuming xk > 0)

E{ln(x)} =

M∑

k=1

pk ln(xk) ≤ ln [E{x}] = ln

[
M∑

k=1

pkxk

]
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or, equivalently,

M∑

k=1

pkxk ≥
M∏

k=1

xpk

k (for xk > 0 and

M∑

k=1

pk = 1) (4.9.38)

For pk = 1/M , (4.9.38) reduces to the well-known inequality between the arithmetic
and geometric means:

1

M

M∑

k=1

xk ≥
(

M∏

k=1

xk

)1/M

which is so easily obtained in the present framework. �

After these preparations, we turn our attention to the main question of finding
a majorizing function for (4.9.35). Let z be a random vector whose probability
density function conditioned on y is completely determined by θ, and let

gi(θ) = f(θi) − Ez|y,θi

{

ln

[
p(y, z, θ)

p(y, z, θi)

]}

(4.9.39)

Clearly gi(θ) satisfies:

gi(θ
i) = f(θi) (4.9.40)

Furthermore, it follows from Jensen’s inequality (4.9.36), the concavity of the func-
tion ln(·), and Bayes’ rule for conditional probabilities that:

gi(θ) ≥ f(θi) − ln

[

Ez|y,θi

{
p(y, z, θ)

p(y, z, θi)

}]

= f(θi) − ln

[

Ez|y,θi

{
p(y, z, θ)

p(z|y, θi)p(y, θi)

}]

= f(θi) − ln

[
1

p(y, θi)

∫

p(y, z, θ) dz

︸ ︷︷ ︸

p(y,θ)

]

= f(θi) + ln

[
p(y, θ)

p(y, θi)

]

= f(θi) +
[
f(θ) − f(θi)

]
= f(θ) (4.9.41)

which shows that the function gi(θ) in (4.9.39) also satisfies the key majorization
condition (4.9.28). Usually, z is called the unobserved data (to distinguish it from
the observed data vector y), and the combination (z, y) is called the complete data
while y is called the incomplete data.

It follows from (4.9.40) and (4.9.41), along with the discussion in the previ-
ous subsection about the majorization approach, that the following algorithm will
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monotonically reduce the negative log-likelihood function at each iteration:

The Expectation-Maximization (EM) Algorithm

θ0 = given

For i = 0, 1, 2, . . .:

Expectation step: Evaluate Ez|y,θi{ln p(y, z, θ)} , gi(θ)

Maximization step: Compute θi+1 = arg max
θ
gi(θ)

(4.9.42)

This is the EM algorithm in a nutshell.
An important aspect of the EM algorithm, which must be considered in every

application, is the choice of the unobserved data vector z. This choice should be done
such that the maximization step of (4.9.42) is “easy” or, in any case, much easier
than the maximization of the likelihood function. In general, doing so is not an easy
task. In addition, the evaluation of the conditional expectation in (4.9.42) may also
be rather challenging. Somewhat paradoxically, these difficulties associated with
the EM algorithm may have been a cause for its considerable popularity. Indeed,
the detailed derivation of the EM algorithm for a particular application is a more
challenging research problem (and hence more appealing to many researchers) than,
for instance, the derivation of a cyclic minimizer (which also possesses the key
property (4.9.24) of the EM algorithm).

4.9.6 Frequency-selective ESPRIT-based Method

In several applications of spectral analysis, the user is interested only in the com-
ponents lying in a small frequency band of the spectrum. A frequency-selective
method deals precisely with this kind of spectral analysis: it estimates the param-
eters of only those sinusoidal components in the data which lie in a pre-specified
band of the spectrum with as little interference as possible from the out-of-band
components and in a computationally efficient way. To be more specific, let us
consider the sinusoidal data model in (4.1.1):

y(t) =

n̄∑

k=1

βke
iωkt + e(t); βk = αke

iϕk , t = 0, . . . , N − 1 (4.9.43)

In some applications, (see,e.g., [McKelvey and Viberg 2001; Stoica, Sand-

gren, Selén, Vanhamme, and Van Huffel 2003] and the references therein)
it would be computationally too intensive to estimate the parameters of all com-
ponents in (4.9.43). For instance, this is the case when n̄ takes on values close to
N or when n̄ � N but we have many sets of data to process. In such applications,
because of computational and other reasons (see points (i) and (ii) below for de-
tails), we focus on only those components of (4.9.43) that are of direct interest to
us. Let us assume that the components of interest lie in a pre-specified frequency
band comprised by the following Fourier frequencies:

{
2π

N
k1,

2π

N
k2, . . . ,

2π

N
kM

}

(4.9.44)
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where {k1, . . . , kM} are M given (typically consecutive) integers. We assume that
the number of components of (4.9.43) lying in (4.9.44), which we denote by

n ≤ n̄ (4.9.45)

is given. If n is a priori unknown then it could be estimated from the data by the
methods described in Appendix C.

Our problem is to estimate the parameters of the n components of (4.9.43)
that lie in the frequency band in (4.9.44). Furthermore, we want to find a solution
to this frequency-selective estimation problem that has the following properties:

(i) It is computationally efficient. In particular, the computational complexity
of such a solution should be comparable with that of a standard ESPRIT
method for a sinusoidal model with n components.

(ii) It is statistically accurate. To be more specific about this aspect we will split
the discussion in two parts. From a theoretical standpoint, estimating n < n̄
components of (4.9.43) (in the presence of the remaining components and
noise) cannot produce more accurate estimates than estimating all n̄ com-
ponents. However, for a good frequency-selective method the degradation
of theoretical statistical accuracy should not be significant. On the other
hand, from a practical standpoint, a sound frequency-selective method may
give better performance than a non-frequency-selective counterpart that deals
with all n̄ components of (4.9.43). This is so because some components of
(4.9.43) that do not belong to (4.9.44) may not be well-described by a si-
nusoidal model; consequently, treating such components as interference and
eliminating them from the model may improve the estimation accuracy of the
components of interest.

In this complement, following [McKelvey and Viberg 2001] and [Stoica,

Sandgren, Selén, Vanhamme, and Van Huffel 2003], we present a frequency-
selective ESPRIT-based (FRES-ESPRIT) method that possesses the above two
desirable features. The following notation will be frequently used in the following:

wk = ei
2π
N k k = 0, 1, . . . , N − 1 (4.9.46)

uk = [wk, . . . , w
m
k ]T (4.9.47)

vk = [1, wk, . . . , w
N−1
k ]T (4.9.48)

y = [y(0), . . . , y(N − 1)]T (4.9.49)

Yk = v∗
ky k = 0, 1, . . . , N − 1 (4.9.50)

e = [e(0), . . . , e(N − 1)]T (4.9.51)

Ek = v∗
ke k = 0, 1, . . . , N − 1 (4.9.52)

a(ωk) =
[
eiωk , . . . , eimωk

]T
(4.9.53)

b(ωk) =
[

1, eiωk , . . . , ei(N−1)ωk

]T

(4.9.54)

Hereafter, m is a user parameter whose choice will be discussed later on. Note that
{Yk} is the FFT of the data.
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First, we show that the following key equation involving the FFT sequence
{Yk} holds true:

ukYk = [a(ω1), . . . , a(ωn̄)]






β1v
∗
kb(ω1)
...

βn̄v
∗
kb(ωn̄)




+ Γuk + ukEk (4.9.55)

where Γ is an m × m matrix defined in equation (4.9.61) below (as will become
clear shortly, the definition of Γ has no importance for what follows, and hence it
is not repeated here).

To prove (4.9.55), we first write the data vector y as

y =

n̄∑

`=1

β`b(ω`) + e (4.9.56)

Next, we note that (for p = 1, . . . ,m):

wpk [v∗
kb(ω)] =

N−1∑

t=0

ei(ω− 2π
N k)tei

2π
N kp

= eiωp
N−1∑

t=0

ei(ω− 2π
N k)(t−p)

= eiωp [v∗
kb(ω)] + eiωp

[
p−1
∑

t=0

eiω(t−p)e−i 2π
N k(t−p)

−
N+p−1
∑

t=N

eiω(t−p)e−i 2π
N k(t−p)

]

= eiωp [v∗
kb(ω)] + eiωp

p
∑

`=1

[

e−iω`ei
2π
N k` − eiω(N−`)ei

2π
N k`

]

= eiωp [v∗
kb(ω)] +

p
∑

`=1

eiω(p−`) (1 − eiωN
)
w`k (4.9.57)

Let (for p = 1, . . . ,m):

γ∗
p(ω) =

(
1 − eiωN

) [

eiω(p−1), eiω(p−2), . . . , eiω, 1, 0, . . . , 0
]

(1 ×m) (4.9.58)

Using (4.9.58) we can rewrite (4.9.57) in the following more compact form (for
p = 1, . . . ,m):

wpk [v∗
kb(ω)] = eiωp [v∗

kb(ω)] + γ∗
p(ω)uk (4.9.59)

or, equivalently,

uk [v∗
kb(ω)] = a(ω) [v∗

kb(ω)] +






γ∗
1 (ω)
...

γ∗
m(ω)




uk (4.9.60)
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From (4.9.56) and (4.9.60) it follows that

ukYk =

n̄∑

`=1

β`uk [v∗
kb(ω`)] + ukEk

= [a(ω1), . . . , a(ωn̄)]






β1v
∗
kb(ω1)
...

βn̄v
∗
kb(ωn̄)




+







n̄∑

`=1

β`






γ∗
1 (ω`)

...
γ∗
m(ω`)












uk + ukEk

(4.9.61)

which proves (4.9.55).
In the following we let {ωk}nk=1 denote the frequencies of interest, i.e., those

frequencies of (4.9.43) that lie in (4.9.44). To separate the terms in (4.9.55) cor-
responding to the components of interest from those associated with the nuisance
components, we use the notation

A = [a(ω1), . . . , a(ωn)] (4.9.62)

xk =






β1v
∗
kb(ω1)
...

βnv
∗
kb(ωn)




 (4.9.63)

for the components of interest, and similarly Ã and x̃k for the other components.
Finally, to write the equation (4.9.55) for k = k1, . . . , kM in a compact matrix form
we need the following additional notation:

Y = [uk1Yk1 , . . . , ukM
YkM

] , (m×M) (4.9.64)

E = [uk1Ek1 , . . . , ukM
EkM

] , (m×M) (4.9.65)

U = [uk1 , . . . , ukM
] , (m×M) (4.9.66)

X = [xk1 , . . . , xkM
] , (n×M) (4.9.67)

and similarly for X̃. Using this notation, we can write (4.9.55) (for k = k1, . . . , kM )
as follows:

Y = AX + ΓU + ÃX̃ + E (4.9.68)

Next we assume that

M ≥ n+m (4.9.69)

which can be satisfied by choosing the user parameter m appropriately. Under
(4.9.69) (in fact only M ≥ m is required for this part), the orthogonal projection
matrix onto the null space of U is given by (see Appendix A):

Π⊥
U = I − U∗ (UU∗)−1

U (4.9.70)

We will eliminate the second term in (4.9.68) by post-multiplying (4.9.68) with Π⊥
U

(see below). However, before doing so we make the following observations about
the third and fourth terms in (4.9.68):



“sm2”
2004/2/22
page 189

i

i

i

i

i

i

i

i

Section 4.9 Complements 189

(a) The elements of the noise term E in (4.9.68) are much smaller than the ele-
ments of AX. In effect, it can be shown that Ek = O

(
N1/2

)
(stochastically),

whereas the order of the elements of X is typically O (N).

(b) Assuming that the out-of-band components are not much stronger than the
components of interest, and that the frequencies of the former are not too
close to the interval of interest in (4.9.44), the elements of X̃ are also much
smaller than the elements of X.

(c) To understand what happens in the case that the assumption made in (b)
above does not hold, let us consider a generic out-of-band component (ω, β).
The part of y corresponding to this component can be written as βb(ω).
Hence, the corresponding part in ukYk is given by βuk [v∗

kb(ω)] and, conse-
quently, the part of Y due to this generic component is

βU






v∗
k1
b(ω) 0

. . .

0 v∗
kM
b(ω)




 (4.9.71)

Even if ω is relatively close to the band of interest, (4.9.44), we may expect
that v∗

kb(ω) does not vary significantly for k ∈ [k1, kM ] (in other words, the
“spectral tail” of the out-of-band component may well have a small dynamic
range in the interval of interest). As a consequence, the matrix in (4.9.71)
will be approximately proportional to U and hence it will be attenuated via
the post-multiplication of it by Π⊥

U (see below). A similar argument shows
that the noise term in (4.9.68) is also attenuated by post-multiplying (4.9.68)
with Π⊥

U .

It follows from the above discussion and (4.9.68) that

YΠ⊥
U ' AXΠ⊥

U (4.9.72)

This equation resembles equation (4.7.7) on which the standard ESPRIT method
is based, provided that

rank
(
XΠ⊥

U

)
= n (4.9.73)

(similarly to rank(C) = n for (4.7.7)). In the following we prove that (4.9.73) holds
under (4.9.69) and the regularity condition that eiNωk 6= 1 (for k = 1, . . . , n).

To prove (4.9.73) we first note that rank
(
Π⊥
U

)
= M −m, which implies that

M ≥ m+ n (i.e., (4.9.69)) is a necessary condition for (4.9.73) to hold.
Next we show that (4.9.73) is equivalent to

rank

([
X
U

])

= m+ n (4.9.74)

To verify this equivalence let us decompose X additively as follows:

X = XΠU +XΠ⊥
U = XU∗ (UU∗)−1

U +XV ∗V (4.9.75)
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where the M × (M − m) matrix V ∗ comprises a unitary basis of N (U); hence,
UV ∗ = 0 and V V ∗ = I. Now, the matrix in (4.9.74) has the same rank as

[

I −XU∗ (UU∗)−1

0 I

] [
X
U

]

=

[
XV ∗V
U

]

(4.9.76)

(we used (4.9.75) to obtain (4.9.76)), which, in turn, has the same rank as

[
XV ∗V
U

]
[
V ∗V X∗ U∗] =

[
XV ∗V X∗ 0

0 UU∗

]

(4.9.77)

However, rank(UU∗) = m. Hence, (4.9.74) holds if and only if

rank(XV ∗V X∗) = n

As

rank(XV ∗V X∗) = rank(XΠ⊥
UX

∗) = rank(XΠ⊥
U )

the equivalence between (4.9.73) and (4.9.74) is proven.

It follows from the equivalence shown above and the definition of X and U
that we want to prove that

rank














v∗
k1
b(ω1) · · · v∗

kM
b(ω1)

...
...

v∗
k1
b(ωn) · · · v∗

kM
b(ωn)

uk1 · · · ukM








︸ ︷︷ ︸

(n+m)×M







= n+m (4.9.78)

As

v∗
kb(ω) =

N−1∑

t=0

ei(ω− 2π
N k)t =

1 − eiN(ω− 2π
N k)

1 − ei(ω− 2π
N k)

=
1 − eiNω

wk − eiω
wk

we can rewrite the matrix in (4.9.78) as follows:














1 − eiNω1

. . . 0
1 − eiNωn

1

0
. . .

1




























wk1

wk1
−eiω1

· · · wkM

wkM
−eiω1

...
...

wk1

wk1
−eiωn · · · wkM

wkM
−eiωn

wk1 · · · wkM

...
...

wmk1 · · · wmkM















(4.9.79)

Because, by assumption, 1 − eiNωk 6= 0 (for k = 1, . . . , n), it follows that
(4.9.78) holds if and only if the second matrix in (4.9.79) has full row rank (under
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(4.9.69)), which holds true if and only if we cannot find some numbers {ρk}m+n
k=1

(not all zero) such that

ρ1z

z − eiω1
+ · · · +

ρnz

z − eiωn
+ ρn+1z + · · · + ρn+mz

m

= z

(
ρ1

z − eiω1
+ · · · +

ρn
z − eiωn

+ ρn+1 + · · · + ρn+mz
m−1

)

(4.9.80)

is equal to zero at z = wk1 , . . . , z = wkM
. However, (4.9.80) can only have m+n−

1 < M zeroes of the above form. With this observation, the proof of (4.9.73) is
concluded.

To make use of (4.9.72) and (4.9.73) in an ESPRIT-like approach we also
assume that

m ≥ n (4.9.81)

(which is an easily satisfied condition). Then, it follows from (4.9.72) and (4.9.73)
that the effective rank of the “data” matrix YΠ⊥

U is n, and that

Ŝ ' AĈ (4.9.82)

where Ĉ is an n× n nonsingular transformation matrix, and

Ŝ = the m×n matrix whose columns are the left singular vectors
of YΠ⊥

U associated with the n largest singular values.
(4.9.83)

Equation (4.9.82) is very similar to (4.7.7), and hence it can be used in an ESPRIT-
like approach to estimate the frequencies {ωk}nk=1. Following the frequency estima-
tion step, the amplitudes {βk}nk=1 can be estimated, for instance, as described in
[McKelvey and Viberg 2001; Stoica, Sandgren, Selén, Vanhamme, and

Van Huffel 2003].
An implementation detail that we would like to address, at least briefly, is the

choice of m. We recommend choosing m as the integer part of M/2:

m = bM/2c (4.9.84)

provided that bM/2c ∈ [n,M − n] to satisfy the assumptions in (4.9.69) and
(4.9.81). To motivate the above choice of m we refer to the matrix equation (4.9.72)
that lies at the basis of the proposed estimation approach. Previous experience
with ESPRIT, MUSIC and other similar approaches has shown that their accuracy
increases as the number of independent equations in (4.9.72) (and its counterparts)
increases. The matrix YΠ⊥

U in (4.9.72) is m ×M and its rank is generically equal
to

min{rank(Y ), rank(Π⊥
U )} = min(m,M −m) (4.9.85)
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Evidently the above rank determines the aforementioned number of linearly inde-
pendent equations in (4.9.72). Hence, for enhanced estimation accuracy we should
maximize (4.9.85) with respect to m: the solution is clearly given by (4.9.84).

To end this complement we show that, interestingly, the proposed FRES-
ESPRIT method with M = N is equivalent to the standard ESPRIT method. For
M = N we have that

[b1, . . . , bN ] ,








w1 · · · wN
w2

1 · · · w2
N

...
...

wN1 · · · wNN








=

[
U

Ū
︸︷︷︸

N

] } m
} N −m

(4.9.86)

where U is as defined before (with M = N) and Ū is defined via (4.9.86). Note
that:

UU∗ = NI; Ū Ū∗ = NI; UŪ∗ = 0; U∗U + Ū∗Ū = NI (4.9.87)

Hence

Π⊥
U = I − 1

N
U∗U =

1

N
Ū∗Ū (4.9.88)

Also, note that (for p = 1, . . . ,m):

wpkYk =

N−1∑

t=0

y(t)e−i 2π
N k(t−p)

=

p−1
∑

t=0

y(t)wp−tk +

N−1∑

t=p

y(t)wN+p−t
k

= [y(p− 1), . . . , y(0), 0, . . . , 0]






wk
...
wmk




+ [0, . . . , 0, y(N − 1), . . . , y(p)]






wk
...
wNk






, µ∗
puk + ψ∗

pbk (4.9.89)

where uk and bk are as defined before (see (4.9.47) and (4.9.86)). Consequently,
for M = N , the “data” matrix YΠ⊥

U used in the FRES–ESPRIT method can be
written as (cf. (4.9.86)–(4.9.89)):

[u1Y1, . . . , uNYN ] Π⊥
U =












µ∗
1
...
µ∗
m




 [u1, . . . , uN ] +






ψ∗
1
...
ψ∗
m




 [b1, . . . , bN ]







Ū∗Ū · 1

N

=












µ∗
1
...
µ∗
m




U +






ψ∗
1
...
ψ∗
m






[
U
Ū

]







Ū∗Ū · 1

N

=






ψ∗
1
...
ψ∗
m






[
0
Ū

]

=








y(N −m) · · · y(1)
y(N −m+ 1) · · · y(2)

...
...

y(N − 1) · · · y(m)







Ū (4.9.90)
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It follows from (4.9.90) that the n principal (or dominant) left singular vectors of
YΠ⊥

U are equal to the n principal eigenvectors of the following matrix (obtained by
post-multiplying the right-hand side of (4.9.90) with its conjugate transpose and
using the fact that Ū Ū∗ = NI from (4.9.87)):






y(N −m) · · · y(1)
...

...
y(N − 1) · · · y(m)











y∗(N −m) · · · y∗(N − 1)
...

...
y∗(1) · · · y∗(m)






=

N−m∑

t=1






y(t)
...

y(t+m− 1)




 [y∗(t), . . . , y∗(t+m− 1)] (4.9.91)

which is precisely the type of sample covariance matrix used in the standard ES-
PRIT method (compare with (4.5.14); the difference between (4.9.91) and (4.5.14)
is due to some notational changes made in this complement, such as in the definition
of the matrix A).

4.9.7 A Useful Result for Two-Dimensional (2D) Sinusoidal Signals

For a noise-free 1D sinusoidal signal,

y(t) =

n∑

k=1

βke
iωkt, t = 0, 1, 2, . . . (4.9.92)

a data vector of length m can be written as








y(0)
y(1)

...
y(m− 1)








=








1 · · · 1
eiω1 · · · eiωn

...
...

ei(m−1)ω1 · · · ei(m−1)ωn













β1

...
βn




 , Aβ (4.9.93)

The matrix A introduced above is the complex conjugate of the one in (4.2.4). In
this complement we prefer to work with the type of A matrix in (4.9.93), to simplify
the notation, but note that the following discussion applies without change to the
complex conjugate of the above A as well (or, to its extension to 2D sinusoidal
signals).

Let {ck}nk=1 be uniquely defined via the equation:

1 + c1z + · · · + cnz
n =

n∏

k=1

(
1 − ze−iωk

)
(4.9.94)

Then, it can be readily checked (see (4.5.21)) that the matrix

C∗ =






1 c1 · · · cn 0
. . .

. . .
. . .

0 1 c1 · · · cn




 , (m− n) ×m (4.9.95)
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satisfies

C∗A = 0 (4.9.96)

(to verify (4.9.96) it is enough to observe from (4.9.94) that 1 + c1e
iωk + · · · +

cne
inωk = 0 for k = 1, . . . , n). Furthermore, as rank(C) = m−n and dim[N (A∗)] =

m− n too, it follows from (4.9.96) that

C is a basis for the null space of A∗, N (A∗) (4.9.97)

The matrix C plays an important role in the derivation and analysis of several
frequency estimators, see, e.g., Section 4.5, [Bresler and Macovski 1986], and
[Stoica and Sharman 1990].

In this complement we will extend the result (4.9.97) to 2D sinusoidal signals.
The derivation of a result similar to (4.9.97) for such signals is a rather more difficult
problem than in the 1D case. The solution that we will present was introduced
in [Clark and Scharf 1994] (see also [Clark, Eldén, and Stoica 1997]).
Using the extended result we can derive parameter estimation methods for 2D
sinusoidal signals in much the same manner as for 1D signals (see the cited papers
and Section 4.5).

A noise-free 2D sinusoidal signal is described by the equation (compare with
(4.9.92)):

y(t, t̄) =

n∑

k=1

βke
iωkteiω̄k t̄, t, t̄ = 0, 1, 2, . . . (4.9.98)

Let

γk = eiωk , λk = eiω̄k (4.9.99)

Using this notation allows us to write (4.9.98) in a more compact form,

y(t, t̄) =

n∑

k=1

βkγ
t
kλ

t̄
k (4.9.100)

Moreover, equation (4.9.100) (unlike (4.9.98)) also covers the case of damped (2D)
sinusoidal signals, for which

γk = eµk+iωk , λk = eµ̄k+iω̄k (4.9.101)

with {µk, µ̄k} being the damping parameters (µk, µ̄k ≤ 0).
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The following notation will be frequently used in this complement:

g∗
t =

[
γt1 . . . γtn

]
(4.9.102)

Γ =






γ1 0
. . .

0 γn




 (4.9.103)

Λ =






λ1 0
. . .

0 λn




 (4.9.104)

β =
[
β1 . . . βn

]T
(4.9.105)

AL =








1 . . . 1
λ1 . . . λn
...

...

λL−1
1 . . . λL−1

n








for L ≥ n (4.9.106)

Using (4.9.102), (4.9.104), and (4.9.105) we can write:

y(t, t̄) = g∗
tΛ

t̄β (4.9.107)

Hence, similarly to (4.9.93), we can write the mm̄ × 1 data vector obtained from
(4.9.98) for t = 0, . . . ,m− 1 and t̄ = 0, . . . , m̄− 1 as:




















y(0, 0)
...

y(0, m̄− 1)
. . . . . . . . . . . . . . . .

...
. . . . . . . . . . . . . . . .
y(m− 1, 0)

...
y(m− 1, m̄− 1)




















=




















g∗
0Λ0

...
g∗
0Λm̄−1

. . . . . . . . . . .
...

. . . . . . . . . . .
g∗
m−1Λ

0

...
g∗
m−1Λ

m̄−1




















β , Aβ (4.9.108)

The matrix A defined above, i.e.,

A =




















g∗
0Λ0

...
g∗
0Λm̄−1

. . . . . . . . . . .
...

. . . . . . . . . . .
g∗
m−1Λ

0

...
g∗
m−1Λ

m̄−1




















, (mm̄× n) (4.9.109)



“sm2”
2004/2/22
page 196

i

i

i

i

i

i

i

i

196 Chapter 4 Parametric Methods for Line Spectra

plays the same role for 2D sinusoidal signals as the matrix A in (4.9.93) for 1D
signals. Therefore, it is the null space of (4.9.109) that we want to characterize.
More precisely, we want to find a linearly parameterized basis for the null space of
the matrix A∗ in (4.9.109), similar to the basis C for A∗ in (4.9.93) (see (4.9.97)).

Note that using (4.9.103) we can also write y(t, t̄) as:

y(t, t̄) =
[
λt̄1 . . . λt̄n

]
Γtβ (4.9.110)

This means that A can also be written as follows:

A =










Am̄Γ0

. . . . . . . . .
...

. . . . . . . . .
Am̄Γm−1










(4.9.111)

Similarly to (4.9.94), let us define the parameters {ck}nk=1 uniquely via the equation

1 + c1z + · · · + cnz
n =

n∏

k=1

(

1 − z

λk

)

(4.9.112)

Note that there is a one-to-one mapping between {ck} and {λk} (λk 6= 0). In
particular, we can obtain {λk} uniquely from {ck} (see [Stoica and Sharman

1990] for more details on this aspect in the case of {λk = eiωk}). Consequently, we
can see the introduction of {ck} as a new parameterization of the problem, which
replaces the parameterization via {λk}. Using {ck} we build the following matrix,
similarly to (4.9.95), assuming m̄ > n:

C∗ =






1 c1 · · · cn 0
. . .

. . .
. . .

0 1 c1 · · · cn




 , (m̄− n) × m̄ (4.9.113)

and note that (cf. (4.9.96))
C∗Am̄ = 0 (4.9.114)

It follows from (4.9.111) and (4.9.114) that






C∗ 0
. . .

0 C∗






︸ ︷︷ ︸

[m(m̄−n)]×mm̄

A = 0 (4.9.115)

Hence, we have found (mm̄−mn) vectors of the sought basis for N (A∗). It remains
to find (m − 1)n additional (linearly independent) vectors of this basis (note that
dim[N (A∗)] = mm̄−n). To find the remaining vectors we need an approach which
is rather different from that used so far.
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Let us assume that

λk 6= λp for k 6= p (4.9.116)

and let the vector
b∗ = [b1, . . . , bn]

be defined via the linear (interpolation) equation

b∗An = [γ1, . . . , γn] (4.9.117)

(with An as defined in (4.9.106)). Under (4.9.116) and for given {λk} there exists
a one-to-one map between {bk} and {γk}, and hence we can view the use of {bk}
as a reparameterization of the problem (note that if (4.9.116) does not hold, i.e.,
λk = λp, then, for identifiability reasons, we must have γk 6= γp, and therefore no
vector b that satisfies (4.9.117) can exist). From (4.9.117) we obtain easily

b∗AnΓ
t = [γ1, . . . , γn] Γ

t = g∗
t+1

and hence (see also (4.9.109) and (4.9.111))

b∗






g∗
tΛ

0

...
g∗
tΛ

n−1




 = b∗AnΓ

t = g∗
t+1Λ

0 (4.9.118)

Next, we assume that
m̄ ≥ 2n− 1 (4.9.119)

which is a weak condition (typically we have m, m̄ � n). Under (4.9.119) we can
write (making use of (4.9.118)):






b∗ 0
. . .

0 b∗






︸ ︷︷ ︸

B∗






g∗
tΛ

0

...
g∗
tΛ

m̄−1




−






g∗
t+1Λ

0

...
g∗
t+1Λ

n−1




 = 0 (4.9.120)

where

B∗ =






b1 b2 . . . bn 0 . . . 0
. . .

. . .
. . .

...
0 b1 b2 . . . bn 0




 (n× m̄)

Note that, indeed, we need m̄ ≥ 2n− 1 to be able to write (4.9.120) (if m̄ > 2n− 1
then the rightmost m̄−2n−1 columns of B∗ are zeroes). Combining (4.9.115) and
(4.9.120) yields the following matrix whose rows lie in the left null space of A:










D I
D I 0

. . .
. . .

0 D I
C∗
















m
block rows

(4.9.121)
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where

D =

[
C∗

B∗

]

=













1 c1 · · · cn 0
. . .

. . .
. . .

0 1 c1 · · · cn
b1 b2 . . . bn 0

. . .
. . .

. . .

0 b1 b2 . . . bn


















m̄− n






n

(m̄× m̄)

I =













0 · · · 0
...

...
0 · · · 0

−1 0 . . . 0
. . .

. . .
...

0 −1 0 . . . 0


















m̄− n






n

(m̄× m̄)

The matrix in (4.9.121) is of dimension [(m− 1)m̄+(m̄−n)]×mm̄, that is (mm̄−
n) × mm̄, and its rank is equal to mm̄ − n (i.e., it has full row rank, as cn 6= 0).
Consequently, the rows of (4.9.121) form a linearly parameterized basis for the null
space of A. We remind the reader that, under (4.9.116), there is a one-to-one map
between {λk, γk} and the basis parameters {ck, bk} (see (4.9.112) and (4.9.117)).
Hence, we can think of estimating {ck, bk} in lieu of {λk, γk}, at least in a first stage,
and when doing so the linear dependence of (4.9.121) on the unknown parameters
comes in quite handy. As a simple example of such an estimation method based on
(4.9.121), note that the modified MUSIC procedure outlined in Section 4.5 can be
easily extended to the case of 2D signals making use of (4.9.121).

Compared with the basis matrix for the 1D case (see (4.9.95)), the null space
basis (4.9.121) in the 2D case is apparently much more complicated. In addition,
the above 2D basis result depends on the condition (4.9.116); if (4.9.116) is even
approximately violated (i.e., if there exist λk and λp with k 6= p such that λk ' λp)
then the mapping {γk} ↔ {bk} may become ill-conditioned, which may result in a
deterioration of the estimation accuracy.

Finally, we remark on the fact that for damped sinusoids, the parameterization
via {bk} and {ck} is parsimonious. However, for undamped sinusoidal signals the
parameterization via {ωk, ω̄k} contains 2n real-valued unknowns, whereas the one
based on {bk, ck} has 4n unknowns, or 3n unknowns if a certain conjugate symmetry
property of {bk} is exploited (see, e.g., [Stoica and Sharman 1990]); hence in
such a case the use of {bk} and, in particular, {ck} leads to an overparameterized
problem, which may also result in a (slight) accuracy degradation. The previous
criticism of the result (4.9.121) is, however, minor and in fact (4.9.121) is the only
known basis for N (A∗).

4.10 EXERCISES

Exercise 4.1: Speed Measurement by a Doppler Radar as a Frequency
Determination Problem
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Assume that a radar system transmits a sinusoidal signal towards an object.
For the sake of simplicity, further assume that the object moves along a trajectory
parallel to the wave propagation direction, at a constant velocity v. Let αeiωt denote
the signal emitted by the radar. Show that the backscattered signal, measured by
the radar system after reflection off the object, is given by:

s(t) = βei(ω−ωD)t + e(t) (4.10.1)

where e(t) is measurement noise, ωD is the so–called Doppler frequency,

ωD , 2ωv/c

and
β = µαe−2iωr/c

Here c denotes the speed of wave propagation, r is the object range, and µ is an
attenuation coefficient.

Conclude from (4.10.1) that the problem of speed measurement can be reduced
to one of frequency determination. The latter problem can be solved by using the
methods of this chapter.

Exercise 4.2: ACS of Sinusoids with Random Amplitudes or Nonuniform
Phases

In some applications, it is not reasonable to assume that the amplitudes of
the sinusoidal terms are fixed or that their phases are uniformly distributed. Ex-
amples are fast fading in mobile telecommunications (where the amplitudes vary)
or sinusoids that have been tracked, so that their phase is random, near zero, but
not uniformly distributed. We derive the ACS for such cases.

Let x(t) = αei(ω0t+ϕ), where α and ϕ are statistically independent random
variables and ω0 is a constant. Assume that α has mean ᾱ and variance σ2

α.

(a) If ϕ is uniformly distributed on [−π, π], find E {x(t)} and rx(k). Show also
that if α is constant, the expression for rx(k) reduces to equation (4.1.5).

(b) If ϕ is not uniformly distributed on [−π, π], express E {x(t)} in terms of the
probability density function p(ϕ). Find sufficient conditions on p(ϕ) such that
x(t) is zero mean, find rx(k) in this case, and give an example of such a p(ϕ).

Exercise 4.3: A Nonergodic Sinusoidal Signal
As shown in Complement 4.9.1, the signal

x(t) = αei(ωt+ϕ)

with α and ω being nonrandom constants and ϕ being uniformly distributed on
[0, 2π], is second–order ergodic in the sense that the mean and covariances deter-
mined from an (infinitely long) temporal realization of the signal coincide with the
mean and covariances obtained from an ensemble of (infinitely many) realizations.
In the present exercise, assume that α and ω are independent random variables,
with ω being uniformly distributed on [0, 2π]; the initial–phase variable ϕ may be
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arbitrarily distributed (in particular it can be nonrandom). Show that in such a
case,

E {x(t)x∗(t− k)} =

{
E
{
α2
}

for k = 0
0 for k 6= 0

(4.10.2)

Also, show that the covariances obtained by “temporal averaging” differ from those
given, and hence deduce that the signal is not ergodic. Comment on the behavior of
such a signal over the ensemble of realizations and in each realization, respectively.

Exercise 4.4: AR Model–Based Frequency Estimation
Consider the following noisy sinusoidal signal:

y(t) = x(t) + e(t)

where x(t) = αei(ω0t+ϕ) (with α > 0 and ϕ uniformly distributed on [0, 2π]),
and where e(t) is white noise with zero mean and unit variance. An AR model of
order n ≥ 1 is fitted to {y(t)} using the Yule–Walker or LS method. Assuming
the limiting case of an infinitely long data sample, the AR coefficients are given
by the solution to (3.4.4). Show that the PSD, corresponding to the AR model
determined from (3.4.4), has a global peak at ω = ω0. Conclude that AR modeling
can be used in this case to determine the sinusoidal frequency, in spite of the fact
that {y(t)} does not satisfy an AR equation of finite order (in the case of multiple
sinusoids, the AR frequency estimates are biased). Regarding the estimation of the
signal power, however, show that the height of the global peak of the AR spectrum
does not directly provide an “estimate” of α2.

Exercise 4.5: An ARMA Model–Based Derivation of the Pisarenko Met-
hod

Let R denote the covariance matrix (4.2.7) with m = n+ 1, and let g be the
eigenvector of R associated with its minimum eigenvalue. The Pisarenko method
determines the signal frequencies by exploiting the fact that

a∗(ω)g = 0 for ω = ωk, k = 1, . . . , n (4.10.3)

(cf. (4.5.13) and (4.5.17)). Derive the property (4.10.3) directly from the ARMA
model equation (4.2.3).

Exercise 4.6: Frequency Estimation when Some Frequencies are Known

Assume that y(t) is known to have p sinusoidal components at known frequen-
cies {ω̃k}pk=1 (but with unknown amplitudes and phases), and n−p other sinusoidal
components whose frequencies are unknown. Develop a modification of the HOYW
method to estimate the unknown frequencies from measurements {y(t)}Nt=1, without
estimating the known frequencies.

Exercise 4.7: A Combined HOYW-ESPRIT Method for the MA Noise
Case

The HOYW method, presented in Section 4.4 for the white noise case, is
based on the matrix Γ in (4.2.8). Let us assume that the noise sequence {e(t)} in
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(4.1.1) is known to be an MA process of order m, and that m is given. A simple
way to handle such a colored noise in the HOYW method consists of modifying the
expression (4.2.8) of Γ as follows:

Γ̃ = E












y(t− L− 1 −m)
...

y(t− L−M −m)




 [y∗(t), . . . , y∗(t− L)]







(4.10.4)

Derive an expression for Γ̃ similar to the one for Γ in (4.2.8). Furthermore, make
use of that expression in an ESPRIT-like method to estimate the frequencies {ωk},
instead of using it in an HOYW-like method (see Section 4.4). Discuss the advan-
tage of the so-obtained HOYW-ESPRIT method over the HOYW method based
on Γ̃. Assuming that the noise is white (i.e., m = 0) and hence that ESPRIT is
directly applicable, would you prefer using HOYW-ESPRIT (with m = 0) in lieu
of ESPRIT? Why or why not?

Exercise 4.8: Chebyshev Inequality and the Convergence of Sample Co-
variances

Let x be a random variable with finite mean µ and variance σ2. Show that,
for any positive constant c, the so–called Chebyshev inequality holds:

Pr(|x− µ| ≥ cσ) ≤ 1/c2 (4.10.5)

Use (4.10.5) to show that if a sample covariance lag r̂N (estimated from N data
samples) converges to the true value r in the mean square sense, i.e.,

lim
N→∞

E
{
|r̂N − r|2

}
= 0 (4.10.6)

then r̂N also converges to r in probability:

lim
N→∞

Pr(|r̂N − r| 6= 0) = 0 (4.10.7)

For sinusoidal signals, the mean square convergence of {r̂N (k)} to {r(k)}, as N →
∞, has been proven in Complement 4.9.1. (In this exercise, we omit the argument k
in r̂N (k) and r(k), for notational simplicity.) Additionally, discuss the use of (4.10.5)
to set bounds (which hold with a specified probability) on an arbitrary random
variable with given mean and variance. Comment on the conservatism of the bounds
obtained from (4.10.5) by comparing them with the bounds corresponding to a
Gaussian random variable.

Exercise 4.9: More about the Forward–Backward Approach
The sample covariance matrix in (4.8.3), used by the forward–backward ap-

proach, is often a better estimate of the theoretical covariance matrix than R̂ is (as
argued in Section 4.8). Another advantage of (4.8.3) is that the forward–backward
sample covariance is always numerically better conditioned than the usual (forward–
only) sample covariance matrix R̂. To explain this statement, let R be a Hermitian
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matrix (not necessarily a Toeplitz one, as the R in (4.2.7)). The “condition number”
of R is defined as

cond(R) = λmax(R)/λmin(R)

where λmax(R) and λmin(R) are the maximum and minimum eigenvalues of R,
respectively. The numerical errors that affect many algebraic operations on R,
such as inversion, eigendecomposition and so on, are essentially proportional to
cond(R). Hence, the smaller cond(R) the better. (See Appendix A for details on
this aspect.)

Next, let U be a unitary matrix (the J in (4.8.3) is a special case of such a
matrix). Observe that the forward–backward covariance in equation (4.8.3) is of
the form R+ U∗RTU . Prove that

cond(R) ≥ cond(R+ U∗RTU) (4.10.8)

for any unitary matrix U . We note that the result (4.10.8) applies to any Hermitian
matrix R and unitary matrix U , and thus is valid in more general cases than the
forward–backward approach in Section 4.8, in which R is Toeplitz and U = J .

Exercise 4.10: ESPRIT and Min–Norm Under the Same Umbrella

ESPRIT and Min–Norm methods are seemingly quite different from one an-
other, and hence it might seem unlikely that there is any strong relationship between
them. It is the goal of this exercise to show that in fact ESPRIT and Min–Norm are
quite related to each other. We will see that ESPRIT and Min–Norm are members
of a well-defined class of frequency estimates.

Consider the equation

Ŝ∗
2 Ψ̂ = Ŝ∗

1 (4.10.9)

where Ŝ1 and Ŝ2 are as defined in Section 4.7. The (m− 1) × (m− 1) matrix Ψ̂ in
(4.10.9) is the unknown. First show that the asymptotic counterpart of (4.10.9),

S∗
2Ψ = S∗

1 (4.10.10)

has the property that any of its solutions Ψ has n eigenvalues equal to {e−iωk}nk=1.

This property, along with the fact that there is an infinite number of matrices Ψ̂
satisfying (4.10.9) (see Section A.8 in Appendix A), imply that (4.10.9) generates
a class of frequency estimators with an infinite number of members.

As a second task, show that ESPRIT and Min–Norm belong to this class
of estimators. In other words, prove that there is a solution of (4.10.9) whose
nonzero eigenvalues have exactly the same arguments as the eigenvalues of the
ESPRIT matrix φ̂ in (4.7.12), and also that there is another solution of (4.10.9)
whose eigenvalues are equal to the roots of the Min–Norm polynomial in (4.6.3).
For more details on the topic of this exercise, see [Hua and Sarkar 1990].

Exercise 4.11: Yet Another Relationship between ESPRIT and Min–
Norm
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Let the vector [ρ̂T , 1]T be defined similarly to the Min–Norm vector [1, ĝT ]T

(see (4.6.1)), with the only difference that we now constrain the last element to be
equal to one. Hence, ρ̂ is the minimum-norm solution to (see (4.6.5)):

Ŝ∗
[
ρ̂
1

]

= 0

Use the Min–Norm vector ρ̂ to build the following matrix

φ̃ = Ŝ∗
[

0
Im−1

−ρ̂∗

]

Ŝ (n× n)

Prove the somewhat curious fact that φ̃ above is equal to the ESPRIT matrix, φ̂,
in (4.7.12).

COMPUTER EXERCISES

Tools for Frequency Estimation:

The text web site www.prenhall.com/stoica contains the following Matlab

functions for use in computing frequency estimates and estimating the number of
sinusoidal terms. In the first four functions, y is the data vector and n is the desired
number of frequency estimates. The remaining variables are described below.

• w=hoyw(y,n,L,M)

The HOYW estimator given in the box on page 159; L and M are the matrix
dimensions as in (4.4.8).

• w=music(y,n,m)

The Root MUSIC estimator given by (4.5.12); m is the dimension of a(ω).
This function also implements the Pisarenko method by setting m = n+ 1.

• w=minnorm(y,n,m)

The Root Min–Norm estimator given by (4.6.3); m is the dimension of a(ω).

• w=esprit(y,n,m)

The ESPRIT estimator given by (4.7.12); m is the size of the square matrix
R̂ there, and S1 and S2 are chosen as in equations (4.7.5) and (4.7.6).

• order=sinorder(mvec,sig2,N,nu)

Computes the AIC, AICc, GIC, and BIC model order selections for sinusoidal
parameter estimation problems (see Appendix C for details on the derivations
of these methods). Here, mvec is a vector of candidate sinusoidal model
orders, sig2 is the vector of estimated residual variances corresponding to
the model orders in mvec, N is the length of the observed data vector, and
nu is a parameter in the GIC method. The 4-element output vector order

contains the selected model orders obtained from AIC, AICc, GIC, and BIC,
respectively.
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Exercise C4.12: Resolution Properties of Subspace Methods for Estima-
tion of Line Spectra

In this exercise we test and compare the resolution properties of four subspace
methods, Min–Norm, MUSIC, ESPRIT, and HOYW.

Generate realizations of the sinusoidal signal

y(t) = 10 sin(0.24πt+ ϕ1) + 5 sin(0.26πt+ ϕ2) + e(t), t = 1, . . . , N

where N = 64, e(t) is Gaussian white noise with variance σ2, and where ϕ1, ϕ2 are
independent random variables each uniformly distributed on [−π, π].

Generate 50 Monte–Carlo realizations of y(t), and present the results from
these experiments. The results of frequency estimation can be presented compar-
ing the sample means and variances of the frequency estimates from the various
estimators.

(a) Find the exact ACS for y(t). Compute the “true” frequency estimates from
the four methods, for n = 4 and various choices of the order m ≥ 5 (and
corresponding choices of M and L for HOYW). Which method(s) are able to
resolve the two sinusoids, and for what values of m (or M and L)?

(b) Consider now N = 64, and set σ2 = 0; this corresponds to the finite data
length but infinite SNR case. Compute frequency estimates for the four tech-
niques again using n = 4 and various choices ofm, M and L. Which method(s)
are reliably able to resolve the sinusoids? Explain why.

(c) Obtain frequency estimates from the four methods when N = 64 and σ2 = 1.
Use n = 4, and experiment with different choices of m, M and L to see the
effect on estimation accuracy (e.g., try m = 5, 8, and 12 for MUSIC, Min–
Norm and ESPRIT, and try L = M = 4, 8, and 12 for HOYW). Which
method(s) give reliable “super–resolution” estimation of the sinusoids? Is it
possible to resolve the two sinusoids in the signal? Discuss how the choices of
m, M and L influence the resolution properties. Which method appears to
have the best resolution?

You may want to experiment further by changing the SNR and the relative
amplitudes of the sinusoids to gain a better understanding of the differences
between the methods.

(d) Compare the estimation results with the AR and ARMA results obtained in
Exercise C3.18 in Chapter 3. What are the major differences between the
techniques? Which method(s) do you prefer for this problem?

Exercise C4.13: Model Order Selection for Sinusoidal Signals

In this exercise we examine four methods for model order selection for sinu-
soidal signals. As discussed in Appendix C, several important model order selection
rules have the following general form (see (C.8.1)–(C.8.2)):

−2 ln pn(y, θ̂
n) + η(r,N)r (4.10.11)
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with different penalty coefficients η(r,N) for the different methods:

AIC : η(r,N) = 2

AICc : η(r,N) = 2
N

N − r − 1

GIC : η(r,N) = ν (e.g., ν = 4)

BIC : η(r,N) = lnN

(4.10.12)

Here, N is the length of the observed data vector y and for sinusoidal signals r is
given by (see Appendix C):

r = 3n+ 1 for AIC, AICc, and GIC

r = 5n+ 1 for BIC

where n is the number of sinusoids in the model. The term ln pn(y, θ̂
n) is the

log-likelihood of the observed data vector y given the maximum-likelihood (ML)
estimate of the parameter vector θ for a model order of n; it is given by (cf. (C.2.7)–
(C.2.8) in Appendix C):

−2 ln pn(y, θ̂
n) = Nσ̂2

n + constant (4.10.13)

where

σ̂2
n =

1

N

N∑

t=1

∣
∣
∣
∣
∣
y(t) −

n∑

k=1

α̂ke
i(ω̂kt+ϕ̂k)

∣
∣
∣
∣
∣

2

(4.10.14)

The selected model order is the value of n that minimizes (4.10.11). The order
selection rules above, while derived for ML estimates of θ, can be used even with
approximate ML estimates of θ, albeit with some loss of performance.

Well-Separated Sinusoids:

(a) Generate 100 realizations of

y(t) = 10 sin[2πf0t+ ϕ1] + 5 sin[2π(f0 + ∆f)t+ ϕ2] + e(t), t = 1, . . . , N

for f0 = 0.24, ∆f = 3/N , and N = 128. Here, e(t) is real-valued white
noise with variance σ2. For each realization, generate ϕ1 and ϕ2 as random
variables uniformly distributed on [0, 2π].

(b) Set σ2 = 10. For each realization, estimate the frequencies of n = 1, . . . , 10
real-valued sinusoidal components using ESPRIT, and estimate the ampli-
tudes and phases using the second equation in (4.3.8) where ω̂ is the vector
of ESPRIT frequency estimates. Note that you will need to use two complex
exponentials to model each real-valued sinusoid, so the number of frequencies
to estimate with ESPRIT will be 2, 4, . . . , 20; however, the frequency esti-
mates will be in symmetric pairs. Use m = 40 as the covariance matrix size
in ESPRIT.

(c) Find the model orders that minimize AIC, AICc, GIC (with ν = 4), and BIC.
For each of the four order selection methods, plot a histogram of the selected
orders for the 100 realizations. Comment on their relative performance.
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(d) Repeat the above experiment using σ2 = 1 and σ2 = 0.1, and comment on
the performance of the order selection methods as a function of SNR.

Closely-Spaced Sinusoids:
Generate 100 realizations of y(t) as above, but this time using ∆f = 0.5/N . Repeat
the experiments above. In addition, compare the relative performance of the order
selection methods for well-separated versus closely-spaced sinusoidal signals.

Exercise C4.14: Line Spectral Methods applied to Measured Data
Apply the Min–Norm, MUSIC, ESPRIT, and HOYW frequency estimators

to the data in the files sunspotdata.mat and lynxdata.mat (use both the original
lynx data and the logarithmically transformed data as in Exercise C2.23). These
files can be obtained from the text web site www.prenhall.com/stoica. Try to
answer the following questions:

(a) Is the sinusoidal model appropriate for the data sets under study?

(b) Suggest how to choose the number of sinusoids in the model (see Exer-
cise C4.13).

(c) What periodicities can you find in the two data sets?

Compare the results you obtain here to the AR(MA) and nonparametric spectral
estimation results you obtained in Exercises C2.23 and C3.20.
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C H A P T E R 5

Filter Bank Methods

5.1 INTRODUCTION

The problem of estimating the PSD function φ(ω) of a signal from a finite num-
ber of observations N is ill posed from a statistical standpoint, unless we make
some appropriate assumptions on φ(ω). More precisely, without any assumption
on the PSD we are required to estimate an infinite number of independent values
{φ(ω)}πω=−π from a finite number of samples. Evidently, we cannot do that in a
consistent manner. In order to overcome this problem, we can either

Parameterize {φ(ω)} by means of a finite–dimensional model (5.1.1)

or

Smooth the set {φ(ω)}πω=−π by assuming that φ(ω) is constant
(or nearly constant) over the band [ω − βπ, ω + βπ], for some
given β � 1.

(5.1.2)

The approach based on (5.1.1) leads to the parametric spectral methods of
Chapters 3 and 4, for which the estimation of {φ(ω)} is reduced to the problem
of estimating a number of parameters that is usually much smaller than the data
length N .

The other approach to PSD estimation, (5.1.2), leads to the methods to be
described in this chapter. The nonparametric methods of Chapter 2 are also (im-
plicitly) based on (5.1.2), as shown in Section 5.2. The approach (5.1.2) should, of
course, be used for PSD estimation when we do not have enough information about
the studied signal to be able to describe it (and its PSD) by a simple model (such
as the ARMA equation in Chapter 3 or the equation of superimposed sinusoidal
signals in Chapter 4). On one hand, this implies that the methods derived from
(5.1.2) can be used in cases where those based on (5.1.1) cannot.1 On the other
hand, we should expect to pay some price in using (5.1.2) over (5.1.1). Under the
assumption in (5.1.2), φ(ω) is described by 2π/2πβ = 1/β values. In order to esti-
mate these values from the available data in a consistent manner, we must require

1This statement should be interpreted with some care. One can certainly use, for instance,
an ARMA spectral model even if one does not know that the studied signal is really an ARMA
signal. However, in such a case one does not only have to estimate the model parameters but
must also face the rather difficult task of determining the structure of the parametric model used
(for example, the orders of the ARMA model). The nonparametric approach to PSD estimation
does not require any structure determination step.

207
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that 1/β < N or

Nβ > 1 (5.1.3)

As β increases, the achievable statistical accuracy of the estimates of {φ(ω)} should
increase (because the number of PSD values estimated from the given N data sam-
ples decreases) but the resolution decreases (because φ(ω) is assumed to be constant
on a larger interval). This tradeoff between statistical variability and resolution is
the price paid for the generality of the methods derived from (5.1.2). We already
met this tradeoff in our discussion of the periodogram–based methods in Chapter
2. Note from (5.1.3) that the resolution threshold β of the methods based on (5.1.2)
can be lowered down to 1/N only if we are going to accept a significant statistical
variability for our spectral estimates (because for β = 1/N we will have to estimate
N spectral values from the available N data samples). The parametric (or model–
based) approach embodied in (5.1.1) describes the PSD by a number of parameters
that is often much smaller than N , and yet it may achieve better resolution (i.e., a
resolution threshold less than 1/N) compared to the approach derived from (5.1.2).

When taking the approach (5.1.2) to PSD estimation, we are basically fol-
lowing the “definition” (1.1.1) of the spectral estimation problem, which we restate
here (in abbreviated form) for easy reference:

From a finite–length data sequence, estimate how the power is
distributed over narrow spectral bands.

(5.1.4)

There is an implicit assumption in (5.1.4) that the power is (nearly) constant over
“narrow spectral bands”, which is a restatement of (5.1.2).

The most natural implementation of the approach to spectral estimation re-
sulting from (5.1.2) and (5.1.4) is depicted in Figure 5.1. The bandpass filter in
this figure, which sweeps through the frequency interval of interest, can be viewed
as a bank of (bandpass) filters. This observation motivates the name of filter bank
approach given to the PSD estimation scheme sketched in Figure 5.1. Depending on
the bandpass filter chosen, we may obtain various filter bank methods of spectral
estimation. Even for a given bandpass filter, we may implement the scheme of Fig-
ure 5.1 in different ways, which leads to an even richer class of methods. Examples
of bandpass filters that can be used in the scheme of Figure 5.1, as well as specific
ways in which they may be implemented, are given in the remainder of this chapter.
First, however, we discuss a few more aspects regarding the scheme in Figure 5.1.

As a mathematical motivation of the filter bank approach (FBA) to spectral
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Figure 5.1. The filter bank approach to PSD estimation.

estimation, we prove the following result.

Assume that:

(i) φ(ω) is (nearly) constant over the filter passband;

(ii) The filter gain is (nearly) one over the passband and
(nearly) zero outside the passband; and

(iii) The power of the filtered signal is consistently estimated.

Then:

The PSD estimate, φ̂FB(ω), obtained with the filter bank
approach, is a good approximation of φ(ω).

(5.1.5)

Let H(ω) denote the transfer function of the bandpass filter, and let 2πβ
denote its bandwidth. Then by using the formula (1.4.9) and the assumptions (iii),
(ii) and (i) (in that order), we can write

φ̂FB(ω) ' 1

2πβ

∫ π

−π
|H(ψ)|2φ(ψ) dψ

' 1

2πβ

∫ ω+βπ

ω−βπ
φ(ψ) dψ ' 1

2πβ
2πβφ(ω) = φ(ω) (5.1.6)

where ω denotes the center frequency of the bandpass filter. This is the result which
we set out to prove.

If all three assumptions in (5.1.5) could be satisfied, then the FBA methods
would produce spectral estimates with high resolution and low statistical variability.
Unfortunately, these assumptions contain conflicting requirements that cannot be
met simultaneously. In high–resolution applications, assumption (i) can be satisfied
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if we use a filter with a very sharp passband. According to the time–bandwidth
product result (2.6.5), such a filter has a very long impulse response. This implies
that we may be able to get only a few samples of the filtered signal (sometimes only
one sample, see Section 5.2!). Hence, assumption (iii) cannot be met. In order to
satisfy (iii), we need to average many samples of the filtered signal and, therefore,
should consider a bandpass filter with a relatively short impulse response and hence
a not too narrow passband. Assumption (i) may then be violated or, in other words,
the resolution may be sacrificed.

The above discussion has brought once more to light the compromise between
resolution and statistical variability and the fact that the resolution is limited by
the sample length. These are the critical issues for any PSD estimation method
based on the approach (5.1.2), such as those of Chapter 2 and the ones discussed
in the following sections. The previous two issues will always surface within the
nonparametric approach to spectral estimation, in many different ways depending
on the specific method at hand.

5.2 FILTER BANK INTERPRETATION OF THE PERIODOGRAM

The value of the basic periodogram estimator (2.2.1) at a given frequency, say ω̃,
can be expressed as

φ̂p(ω̃) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iω̃t

∣
∣
∣
∣
∣

2

=
1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)eiω̃(N−t)

∣
∣
∣
∣
∣

2

=
1

β

∣
∣
∣
∣
∣

N−1∑

k=0

hky(N − k)

∣
∣
∣
∣
∣

2

(5.2.1)

where β = 1/N and

hk =
1

N
eiω̃k k = 0, . . . , N − 1 (5.2.2)

The truncated convolution sum that appears in (5.2.1) can be written as the usual
convolution sum associated with a linear causal system, if the weighting sequence
in (5.2.2) is padded with zeroes:

yF (N) =

∞∑

k=0

hky(N − k) (5.2.3)

with

hk =

{
eiω̃k/N for k = 0, . . . , N − 1

0 otherwise
(5.2.4)

The transfer function (or the frequency response) of the linear filter corresponding
to {hk} in (5.2.4) is readily evaluated:

H(ω) =

∞∑

k=0

hke
−iωk =

1

N

N−1∑

k=0

ei(ω̃−ω)k =
1

N

eiN(ω̃−ω) − 1

ei(ω̃−ω) − 1
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which gives

H(ω) =
1

N

sin[N(ω̃ − ω)/2]

sin[(ω̃ − ω)/2]
ei(N−1)(ω̃−ω)/2 (5.2.5)

Figure 5.2 shows |H(ω)| as a function of ∆ω = ω̃ − ω, for N = 50. It
can be seen that H(ω) in (5.2.5) is the transfer function of a bandpass filter with
center frequency equal to ω̃. The 3dB bandwidth of this filter can be shown to
be approximately 2π/N radians per sampling interval, or 1/N cycles per sampling
interval. In fact, by comparing (5.2.5) to (2.4.17) we see that H(ω) resembles the
DTFT of the rectangular window, the only differences being the phase term (due to
the time offset) and the window lengths ((2N − 1) in (2.4.17) versus N in (5.2.5)).

−3 −2 −1 0 1 2 3
−40

−35

−30

−25

−20

−15

−10

−5

0

dB

ANGULAR FREQUENCY

Figure 5.2. The magnitude of the frequency response of the bandpass filter H(ω)
in (5.2.5), associated with the periodogram (N = 50), plotted as a function of
(ω̃ − ω).

Thus, we have proven the following filter bank interpretation of the basic pe-
riodogram.

The periodogram φ̂p(ω) can be exactly obtained by the FBA in
Figure 5.1, where the bandpass filter’s frequency response is given
by (5.2.5), its bandwidth is 1/N cycles per sampling interval, and
the power calculation is done from a single sample of the filtered
signal.

(5.2.6)

This interpretation of φ̂p(ω) highlights a conclusion that is reached, in a different
way, in Chapter 2: the unmodified periodogram sacrifices statistical accuracy for
resolution. Indeed, φ̂p(ω) uses a bandpass filter with the smallest bandwidth af-
forded by a time aperture of length N . In this way, it achieves a good resolution
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Figure 5.3. The relationship between the PSDs of the original signal y(t) and the
demodulated signal ỹ(t).

(see assumption (i) in (5.1.5)). The consequence of doing so is that only one (fil-
tered) data sample is obtained for the power calculation stage, which explains the

erratic fluctuations of φ̂p(ω) (owing to violation of assumption (iii) in (5.1.5)).
As explained in Chapter 2, the modified periodogram methods (Bartlett, Welch

and Daniell) reduce the variance of the periodogram at the expense of increasing
the bias (or, equivalently, worsening the resolution). The FBA interpretation of
these modified methods provides an interesting explanation of their behavior. In
the filter bank context, the basic idea behind all of these modified periodograms is to
improve the power calculation stage which is done so poorly within the unmodified
periodogram.

The Bartlett and Welch methods split the available sample in several stretches
which are separately (bandpass) filtered. In principle, the larger the number of
stretches, the more samples are averaged in the power calculation stage and the
smaller the variance of the estimated PSD, but the worse the resolution (owing to
the inability to design an appropriately narrow bandpass filter for a small–aperture
stretch).

The Daniell method, on the other hand, does not split the sample of observa-
tions but processes it as a whole. This method improves the “power calculation”
in a different way. For each value of φ(ω) to be estimated, a number of different
bandpass filters are employed, each with center frequency near ω. Each bandpass
filter yields only one sample of the filtered signal, but as there are several band-
pass filters we may get enough information for the power calculation stage. As the
number of filters used increases, the variance of the estimated PSD decreases but
the resolution becomes worse (since φ(ω) is implicitly assumed to be constant over
a wider and wider frequency interval centered on the current ω and approximately
equal to the union of the filters’ passbands).

5.3 REFINED FILTER BANK METHOD

The bandpass filter used in the periodogram is nothing but one of many possible
choices. Since the periodogram was not designed as a filter bank method, we may
wonder whether we could not find other better choices of the bandpass filter. In
this section, we present a refined filter bank (RFB) approach to spectral estimation.
Such an approach was introduced in [Thomson 1982] and was further developed
in [Mullis and Scharf 1991] (more recent references on this approach include
[Bronez 1992; Onn and Steinhardt 1993; Riedel and Sidorenko 1995]).

For the discussion that follows, it is convenient to use a baseband filter in the
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filter bank approach of Figure 5.1, in lieu of the bandpass filter. Let HBF(ω) denote
the frequency response of the bandpass filter with center frequency ω̃ (say), and let
the baseband filter be defined by:

H(ω) = HBF(ω + ω̃) (5.3.1)

(the center frequency of H(ω) is equal to zero). If the input to the FBA scheme is
also modified in the following way,

y(t) −→ ỹ(t) = e−iω̃ty(t) (5.3.2)

then, according to the complex (de)modulation formula (1.4.11), the output of
the scheme is left unchanged by the translation in (5.3.1) of the passband down to
baseband. In order to help interpret the transformations above, we depict in Figure
5.3 the type of PSD translation implied by the demodulation process in (5.3.2). It
is clearly seen from this figure that the problem of isolating the band around ω̃ by
bandpass filtering becomes one of baseband filtering. The modified FBA scheme is
shown in Figure 5.4. The baseband filter design problem is the subject of the next
subsection.

5.3.1 Slepian Baseband Filters

In the following, we address the problem of designing a finite impulse response
(FIR) baseband filter which passes the baseband

[−βπ, βπ] (5.3.3)

as undistorted as possible, and which attenuates the frequencies outside baseband
as much as possible. Let

h = [h0 . . . hN−1]
∗ (5.3.4)

denote the impulse response of such a filter, and let

H(ω) =

N−1∑

k=0

hke
−iωk = h∗a(ω)

ssss t suwvxwyz {�| }8| ~!| ���w����4� ����� �E���E�E�-| � ���
� �'� ���� � � ���E� � � | ���
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Figure 5.4. The modified filter bank approach to PSD estimation.
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(where a(ω) = [1 e−iω . . . e−i(N−1)ω]T ) be the corresponding frequency response.
The two design objectives can be turned into mathematical specifications in the
following way. Let the input to the filter be white noise of unit variance. Then the
power of the output is:

1

2π

∫ π

−π
|H(ω)|2dω =

N−1∑

k=0

N−1∑

p=0

hkh
∗
p

[
1

2π

∫ π

−π
eiω(p−k)dω

]

=

N−1∑

k=0

N−1∑

p=0

hkh
∗
pδk,p = h∗h (5.3.5)

We note in passing that equation (5.3.5) above can be recognized as the Parseval’s
theorem (1.2.6). The part of the total power, (5.3.5), that lies in the baseband is
given by

1

2π

∫ βπ

−βπ
|H(ω)|2dω = h∗

{

1

2π

∫ βπ

−βπ
a(ω)a∗(ω)dω

}

h , h∗Γh (5.3.6)

The k, p element of the N ×N matrix Γ defined in (5.3.6) is given by

Γk,p =
1

2π

∫ βπ

−βπ
e−i(k−p)ωdω =

sin[(k − p)βπ]

(k − p)π
(5.3.7)

which, using the sinc function, can be written as

Γk,p = βsinc[(k − p)βπ] , γ|k−p| (5.3.8)

Note that the matrix Γ is symmetric and Toeplitz. Also, note that this matrix has
already been encountered in the window design example in Section 2.6.3. In fact,
as we will shortly see, the window design strategy in that example is quite similar
to the baseband filter design method employed here.

Since the filter h must be such that the power of the filtered signal in the
baseband is as large as possible relative to the total power, we are led to the
following optimization problem:

max
h

h∗Γh subject to h∗h = 1 (5.3.9)

The solution to the problem above is given in Result R13 in Appendix A: the maxi-
mizing h is equal to the eigenvector of Γ corresponding to its maximum eigenvalue.
Hence, we have proven the following result.

The impulse response h of the “most selective” baseband filter
(according to the design objectives in (5.3.9)) is given by the
dominant eigenvector of Γ, and is called the first Slepian sequence.

(5.3.10)
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The matrix Γ played a key role in the foregoing derivation. In what follows,
we look in more detail at the eigenstructure of Γ. In particular, we provide an
intuitive explanation as to why the first dominant eigenvector of Γ behaves like a
baseband filter. We also show that, depending on the relation between β and N ,
the next dominant eigenvectors of Γ might also be used as baseband filters. Our
discussion of these aspects will be partly heuristic. Note that the eigenvectors of Γ
are called the Slepian sequences [Slepian 1964] (as already indicated in (5.3.10)).
We denote these eigenvectors by {sk}Nk=1.

Remark: The Slepian sequences should not be computed by the eigendecomposition
of Γ. Numerically more efficient and reliable ways for computing these sequences
exist (see, e.g., [Slepian 1964]), for instance as solutions to some differential equa-
tions or as eigenvectors of certain tridiagonal matrices. �

The theoretical eigenanalysis of Γ is a difficult problem in the case of finite
N . (Of course, the eigenvectors and eigenvalues of Γ may always be computed, for
given β and N ; here we are interested in establishing theoretical expressions for Γ’s
eigenelements.) For N sufficiently large, however, “reasonable approximations” to
the eigenelements of Γ can be derived. Let a(ω) be defined as before:

a(ω) = [1 e−iω . . . e−i(N−1)ω]T (5.3.11)

Assume that β is chosen larger than 1/N , and define

K = Nβ ≥ 1 (5.3.12)

(To simplify the discussion, K and N are assumed to be even integers in what
follows.) With these preparations and assuming thatN is large, we can approximate
the integral in (5.3.6) and write Γ as

Γ ' 1

2π

K/2−1
∑

p=−K/2
a

(
2π

N
p

)

a∗
(

2π

N
p

)
2π

N

=
1

N

K/2−1
∑

p=−K/2
a

(
2π

N
p

)

a∗
(

2π

N
p

)

, Γ0 (5.3.13)

The vectors {a( 2π
N p)/

√
N}

N
2

p=− N
2 +1

, part of which appears in (5.3.13), can be readily

shown to form an orthonormal set:

1

N
a∗
(

2π

N
p

)

a

(
2π

N
s

)

=
1

N

N−1∑

k=0

ei
2π
N (p−s)k

=







1

N

ei2π(p−s) − 1

ei
2π
N (p−s) − 1

= 0, s 6= p

1, s = p

(5.3.14)
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The eigenvectors of the matrix on the right hand side of equation (5.3.13), Γ0, are

therefore given by {a
(

2π
N p
)
/
√
N}N/2p=−N/2+1, with eigenvalues of 1 (with multiplicity

K) and 0 (with multiplicity N −K). The eigenvectors corresponding to the eigen-

values equal to one are {a
(

2π
N p
)
/
√
N}K/2p=−K/2+1. By paralleling the calculations

in (5.2.3)–(5.2.5), it is not hard to show that each of these dominant eigenvectors
of Γ0 is the impulse response of a narrow bandpass filter with bandwidth equal to
about 1/N and center frequency 2π

N p; the set of these filters therefore covers the
interval [−βπ, βπ].

Now, the elements of Γ approach those of Γ0 as N increases; more precisely,
|[Γ]i,j − [Γ0]i,j | = O(1/N) for sufficiently large N . However, this does not mean
that ‖Γ − Γ0‖ → 0, as N → ∞, for any reasonable matrix norm, because Γ and
Γ0 are (N ×N) matrices. Consequently, the eigenelements of Γ do not necessarily
converge to the eigenelements of Γ0 as N → ∞. However, based on the previous
analysis, we can at least expect that the eigenelements of Γ are not “too different”
from those of Γ0. This observation of the theoretical analysis, backed up with
empirical evidence from the computation of the eigenelements of Γ in specific cases,
leads us to conclude the following.

The matrix Γ has K eigenvalues close to one and (N −K) eigen-
values close to zero, provided N is large enough, where K is given
by the “time–bandwidth” product (5.3.12). The dominant eigen-
vectors corresponding to the K largest eigenvalues form a set of
orthogonal impulse responses of K bandpass filters that approx-
imately cover the baseband [−βπ, βπ].

(5.3.15)

As we argue in the next subsections, in some situations (specified there) we
may want to use the whole set of K Slepian baseband filters, not only the dominant
Slepian filter in this set.

5.3.2 RFB Method for High–Resolution Spectral Analysis

Assume that the spectral analysis problem dealt with is one in which it is impor-
tant to achieve the maximum resolution afforded by the approach at hand (such
a problem appears, for instance, in the case of PSD’s with closely spaced peaks).
Then we set

β = 1/N ⇐⇒ K = 1 (5.3.16)

(Note that we cannot set β to a value less than 1/N since that choice would lead to
K < 1, which is meaningless; the fact that we must choose β ≥ 1/N is one of the
many facets of the 1/N–resolution limit of the nonparametric spectral estimation.)

Since K = 1, we can only use the first Slepian sequence as a bandpass filter

h = s1 (5.3.17)

The way in which the RFB scheme based on (5.3.17) works is described in the
following.
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First, note from (5.3.5), (5.3.9) and (5.3.16) that

1 = h∗h =
1

2π

∫ π

−π
|H(ω)|2dω ' 1

2π

∫ βπ

−βπ
|H(ω)|2dω

' β|H(0)|2 =
1

N
|H(0)|2 (5.3.18)

Hence, under the (idealizing) assumption that H(ω) is different from zero only in
the baseband where it takes a constant value, we have

|H(0)|2 ' N (5.3.19)

Next, consider the sample at the filter’s output obtained by the convolution of the
whole input sequence {ỹ(t)}Nt=1 with the filter impulse response {hk}:

x ,

N−1∑

k=0

hkỹ(N − k) =

N∑

t=1

hN−tỹ(t) (5.3.20)

The power of x should be approximately equal to the PSD value φ(ω̃), which is
confirmed by the following calculation:

E
{
|x|2
}

=
1

2π

∫ π

−π
|H(ω)|2φỹ(ω)dω

' N

2π

∫ βπ

−βπ
φỹ(ω)dω =

N

2π

∫ βπ

−βπ
φy(ω + ω̃)dω

' N

2π
φy(ω̃) × 2πβ = Nβφy(ω̃) = φy(ω̃) (5.3.21)

The second “equality” above follows from the properties ofH(ω) (see, also, (5.3.19)),
the third from the complex demodulation formula (1.4.11), and the fourth from the
assumption that φy(ω) is nearly constant over the passband considered.

In view of (5.3.21), the PSD estimation problem reduces to estimating the
power of the filtered signal. Since only one sample, x, of that signal is available,
the obvious estimate for the signal power is |x|2. This leads to the following estimate
of φ(ω):

φ̂(ω) =

∣
∣
∣
∣
∣

N∑

t=1

hN−ty(t)e
−iωt

∣
∣
∣
∣
∣

2

(5.3.22)

where {hk} is given by the first Slepian sequence (see (5.3.17)). The reason we did
not divide (5.3.22) by the filter bandwidth is that |H(0)|2 ' N by (5.3.19), which
differs from assumption (ii) in (5.1.5).

The spectral estimate (5.3.22) is recognized to be a windowed periodogram
with temporal window {hN−k}. For large values of N , it follows from the analysis
in the previous section that h can be expected to be reasonably close to the vector
[1 . . . 1]T /

√
N . When inserting the latter vector in (5.3.22), we get the unwindowed
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periodogram. Hence, we reach the conclusion that for N large enough, the RFB
estimate (5.3.22) will behave not too differently from the unmodified periodogram
(which is quite natural in view of the fact that we wanted a high–resolution spectral
estimator, and the basic periodogram is known to be such an estimator).

Remark: We warn the reader, once again, that the above discussion is heuristic.
As explained before (see the discussion related to (5.3.15)), as N increases {hk}
may be expected to be “reasonably close” but not necessarily converge to 1/

√
N .

In addition, even if {hk} in (5.3.22) converges to 1/
√
N as N → ∞, the function

in (5.3.22) may not converge to φ̂p(ω) if the convergence rate of {hk} is too slow

(note that the number of {hk} in (5.3.22) is equal to N). Hence φ̂(ω) in (5.3.22)

and the periodogram φ̂p(ω) may differ from one another even for large values of N .
�

In any case, even though the two estimators φ̂(ω) in (5.3.22) and φ̂p(ω) gen-
erally give different PSD values, they both base the power calculation stage of the
FBA scheme on only a single sample. Hence, similarly to φ̂p(ω), the RFB estimate
(5.3.22) is expected to exhibit erratic fluctuations. The next subsection discusses
a way in which the variance of the RFB spectral estimate can be reduced, at the
expense of reducing the resolution of this estimate.

5.3.3 RFB Method for Statistically Stable Spectral Analysis

The FBA interpretation of the modified periodogram methods, as explained in Sec-
tion 5.2, highlighted two approaches to reduce the statistical variability of the spec-
tral estimate (5.3.22). The first approach consists of splitting the available sample
{y(t)}Nt=1 into a number of subsequences, computing (5.3.22) for each stretch, and
then averaging the so–obtained values. The problem with this way of proceeding is
that the values taken by (5.3.22) for different subsequences are not guaranteed to
be statistically independent. In fact, if the subsequences overlap then those values
may be strongly correlated. The consequence of this fact is that one can never be
sure of the “exact” reduction of variance that is achieved by averaging, in a given
situation.

The second approach to reduce the variance consists of using several bandpass
filters, in lieu of only one, which operate on the whole data sample [Thomson

1982]. This approach aims at producing statistically independent samples for the
power calculation stage. When this is achieved the variance is reduced K times,
where K is the number of samples averaged (which equals the number of bandpass
filters used).

In the following, we focus on this second approach which appears particularly
suitable for the RFB method. We set β to some value larger than 1/N , which gives
(cf. (5.3.12))

K = Nβ > 1 (5.3.23)

The larger β (i.e., the lower the resolution), the larger K and hence the larger the
reduction in variance that can be achieved. By using the result (5.3.15), we define
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K baseband filters as

hp = [hp,0 . . . hp,N−1]
∗ = sp, (p = 1, . . . ,K) (5.3.24)

Here hp denotes the impulse response vector of the pth filter, and sp is the pth domi-
nant Slepian sequence. Note that sp is real–valued (see Result R12 in Appendix A),
and thus so is hp. According to the discussion leading to (5.3.15), the set of filters
(5.3.24) covers the baseband [−βπ, βπ], with each of these filters passing (roughly
speaking) (1/K)th of this baseband. Let xp be defined similarly to x in (5.3.20),
but now for the pth filter:

xp =

N−1∑

k=0

hp,kỹ(N − k) =

N∑

t=1

hp,N−tỹ(t) (5.3.25)

The calculation (5.3.21) applies to {xp} in exactly the same way, and hence

E
{
|xp|2

}
' φy(ω̃), p = 1, . . . ,K (5.3.26)

In addition, a straightforward calculation gives

E {xpx∗
k} = E

{[
N−1∑

t=0

hp,tỹ(N − t)

][
N−1∑

s=0

h∗
k,sỹ

∗(N − s)

]}

=

N−1∑

t=0

N−1∑

s=0

hp,th
∗
k,srỹ(s− t)

=
1

2π

∫ π

−π

N−1∑

t=0

N−1∑

s=0

hp,th
∗
k,sφỹ(ω)ei(s−t)ωdω

=
1

2π

∫ π

−π
Hp(ω)H∗

k(ω)φỹ(ω)dω

' φỹ(0)h∗
p

[

1

2π

∫ βπ

−βπ
a(ω)a∗(ω)dω

]

hk

= φy(ω̃)h∗
pΓhk = 0 for k 6= p (5.3.27)

Thus, the random variables xp and xk (for p 6= k) are approximately uncorrelated
under the assumptions made. This implies, at least under the assumption that the
{xk} are Gaussian, that |xp|2 and |xk|2 are statistically independent (for p 6= k).

According to the calculations above, {|xp|2}Kp=1 can approximately be consid-
ered to be independent random variables all with the same mean φy(ω̃). Then, we

can estimate φy(ω̃) by the following average of {|xp|2}: 1
K

∑K
p=1 |xp|2, or

φ̂(ω) =
1

K

K∑

p=1

∣
∣
∣
∣
∣

N∑

t=1

hp,N−ty(t)e
−iωt

∣
∣
∣
∣
∣

2

(5.3.28)
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We may suspect that the random variables {|xp|2} have not only the same mean,
but also the same variance (this can, in fact, be readily shown under the Gaussian
hypothesis). Whenever this is true, the variance of the average in (5.3.28) isK times
smaller than the variance of each of the variables averaged. The above findings are
summarized in the following.

If the resolution threshold β is increased K times from β = 1/N
(the lowest value) to β = K/N , then the variance of the RFB
estimate in (5.3.22) may be reduced by a factor K by construct-
ing the spectral estimate as in (5.3.28), where the pth baseband
filter’s impulse response {hp,t}N−1

t=0 is given by the pth dominant
Slepian sequence (p = 1, . . . ,K).

(5.3.29)

The RFB spectral estimator (5.3.28) can be given two interpretations. First,
arguments similar with those following equation (5.3.22) suggest that for large N
the RFB estimate (5.3.28) behaves similarly to the Daniell method of periodogram
averaging. For small or medium–sized values of N , the RFB and Daniell methods
behave differently. In such a case, we can relate (5.3.28) to the class of multiwindow
spectral estimators [Thomson 1982]. Indeed, the RFB estimate (5.3.28) can be in-
terpreted as the average of K windowed periodograms, where the pth periodogram
is computed from the raw data sequence {y(t)} windowed with the pth dominant
Slepian sequence. Note that since the Slepian sequences are given by the eigenvec-
tors of the real Toeplitz matrix Γ, they must be either symmetric: hp,N−t = hp,t−1;
or skew–symmetric: hp,N−t = −hp,t−1 (see Result R25 in Appendix A). This means
that (5.3.28) can alternatively be written as

φ̂(ω) =
1

K

K∑

p=1

∣
∣
∣
∣
∣

N∑

t=1

hp,t−1y(t)e
−iωt

∣
∣
∣
∣
∣

2

(5.3.30)

This form of the RFB estimate makes its interpretation as a multiwindow spectrum
estimator more direct.

For a second interpretation of the RFB estimate (5.3.28), consider the follow-
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ing (Daniell–type) spectrally smoothed periodogram estimator of φ(ω̃):

φ̂(ω̃) =
1

2πβ

∫ ω̃+βπ

ω̃−βπ
φ̂p(ω)dω =

1

2πβ

∫ βπ

−βπ
φ̂p(ω + ω̃)dω

=
1

2πβ

∫ βπ

−βπ

1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−i(ω+ω̃)t

∣
∣
∣
∣
∣

2

dω

=
1

2πK

∫ βπ

−βπ

N∑

t=1

N∑

s=1

ỹ(t)ỹ∗(s)e−iωteiωsdω

=
1

K
[ỹ∗(1) . . . ỹ∗(N)]

·







1

2π

∫ βπ

−βπ








1
eiω

...
ei(N−1)ω








[1 e−iω . . . e−i(N−1)ω]dω












ỹ(1)
...

ỹ(N)






=
1

K
[ỹ∗(1) . . . ỹ∗(N)]Γ






ỹ(1)
...

ỹ(N)




 (5.3.31)

where we made use of the fact that Γ is real–valued. It follows from the result
(5.3.15) that Γ can be approximated by the rank–K matrix:

Γ '
K∑

p=1

sps
T
p =

K∑

p=1

hph
T
p (5.3.32)

Inserting (5.3.32) into (5.3.31) and using the fact that the Slepian sequences sp = hp
are real–valued leads to the following PSD estimator:

φ̂(ω̃) ' 1

K

K∑

p=1

∣
∣
∣
∣
∣

N∑

t=1

hp,t−1ỹ(t)

∣
∣
∣
∣
∣

2

(5.3.33)

which is precisely the RFB estimator (5.3.30). Hence, the RFB estimate of the
PSD can also be interpreted as a reduced–rank smoothed periodogram.

We might think of using the full–rank smoothed periodogram (5.3.31) as an
estimator for PSD, in lieu of the reduced–rank smoothed periodogram (5.3.33)
which coincides with the RFB estimate. However, from a theoretical standpoint
we have no strong reason to do so. Moreover, from a practical standpoint we have
clear reasons against such an idea. We can explain this briefly as follows. The
K dominant eigenvectors of Γ can be precomputed with satisfactory numerical ac-
curacy. Then, evaluation of (5.3.33) can be done by using an FFT algorithm in
approximately 1

2KN log2N = 1
2βN

2 log2N flops. On the other hand, a direct
evaluation of (5.3.31) would require N2 flops for each value of ω, which leads to a
prohibitively large total computational burden. A computationally efficient evalu-
ation of (5.3.31) would require some factorization of Γ to be performed, such as the
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eigendecomposition of Γ. However, Γ is an extremely ill–conditioned matrix (recall
that N −K = N(1−β) of its eigenvalues are close to zero), which means that such
a complete factorization cannot easily be performed with satisfactory numerical
accuracy. In any case even if we were able to precompute the eigendecomposition
of Γ, evaluation of (5.3.31) would require 1

2N
2 log2N flops, which is still larger by

a factor of 1/β than what is required for (5.3.33).

5.4 CAPON METHOD

The periodogram was previously shown to be a filter bank approach which uses
a bandpass filter whose impulse response vector is given by the standard Fourier
transform vector (i.e., [1, e−iω̃, . . . , e−i(N−1)ω̃]T ). In the periodogram approach
there is no attempt to purposely design the bandpass filter to achieve some desired
characteristics (see, however, Section 5.5). The RFB method, on the other hand,
uses a bandpass filter specifically designed to be “as selective as possible” for a
white noise input (see (5.3.5) and the discussion preceding it). The RFB’s filter
is still data independent in the sense that it does not adapt to the processed data
in any way. Presumably, it might be valuable to take the data properties into
consideration when designing the bandpass filter. In other words, the filter should
be designed to be “as selective as possible” (according to a criterion to be specified)
not for a fictitious white noise input, but for the input consisting of the studied
data themselves. This is the basic idea behind the Capon method, which is an FBA
procedure based on a data–dependent bandpass filter [Capon 1969; Lacoss 1971].

5.4.1 Derivation of the Capon Method

The Capon method (CM), in contrast to the RFB estimator (5.3.28), uses only one
bandpass filter for computing one estimated spectrum value. This suggests that if
the CM is to provide statistically stable spectral estimates, then it should make use
of the other approach which affords this: splitting the raw sample into subsequences
and averaging the results obtained from each subsequence. Indeed, as we shall see
the Capon method is essentially based on this second approach.

Consider a filter with a finite impulse response of length m, denoted by

h = [h0 h1 . . . hm]∗ (5.4.1)

where m is a positive integer that is unspecified for the moment. The output of the
filter at time t, when the input is the raw data sequence {y(t)}, is given by

yF (t) =

m∑

k=0

hky(t− k)

= h∗








y(t)
y(t− 1)

...
y(t−m)








(5.4.2)

Let R denote the covariance matrix of the data vector in (5.4.2). Then the power
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of the filter output can be written as:

E
{
|yF (t)|2

}
= h∗Rh (5.4.3)

where, according to the definition above,

R = E












y(t)
...

y(t−m)




 [y∗(t) . . . y∗(t−m)]







(5.4.4)

The response of the filter (5.4.2) to a sinusoidal component of frequency ω (say) is
determined by the filter’s frequency response:

H(ω) =

m∑

k=0

hke
−iωk = h∗a(ω) (5.4.5)

where
a(ω) = [1 e−iω . . . e−imω]T (5.4.6)

If we want to make the filter as selective as possible for a frequency band around
the current value ω, then we may think of minimizing the total power in (5.4.3)
subject to the constraint that the filter passes the frequency ω undistorted. This
idea leads to the following optimization problem:

min
h
h∗Rh subject to h∗a(ω) = 1 (5.4.7)

The solution to (5.4.7) is given in Result R35 in Appendix A:

h = R−1a(ω)/a∗(ω)R−1a(ω) (5.4.8)

Inserting (5.4.8) into (5.4.3) gives

E
{
|yF (t)|2

}
= 1/a∗(ω)R−1a(ω) (5.4.9)

This is the power of y(t) in a passband centered on ω. Then, assuming that the
(idealized) conditions (i) and (ii) in (5.1.5) hold, we can approximately determine
the value of the PSD of y(t) at the passband’s center frequency as

φ(ω) ' E
{
|yF (t)|2

}

β
=

1

βa∗(ω)R−1a(ω)
(5.4.10)

where β denotes the frequency bandwidth of the filter given by (5.4.8). The division
by β, as above, is sometimes omitted in the literature, but it is required to complete
the FBA scheme in Figure 5.1. Note that since the bandpass filter (5.4.8) is data
dependent, its bandwidth β is not necessarily data independent, nor is it necessarily
frequency independent. Hence, the division by β in (5.4.10) may not represent a
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simple scaling of E
{
|yF (t)|2

}
, but it may change the shape of this quantity as a

function of ω.
There are various possibilities for determining the bandwidth β, depending

on the degree of precision we are aiming for. The simplest possibility is to set

β = 1/(m+ 1) (5.4.11)

This choice is motivated by the time–bandwidth product result (2.6.5), which says
that for a filter whose temporal aperture is equal to (m+1), the bandwidth should
roughly be given by 1/(m+ 1). By inserting (5.4.11) in (5.4.10), we obtain

φ(ω) ' (m+ 1)

a∗(ω)R−1a(ω)
(5.4.12)

Note that if y(t) is white noise of variance σ2, (5.4.12) takes the correct value:
φ(ω) = σ2. In the general case, however, (5.4.11) gives only a rough indication of
the filter’s bandwidth, as the time–bandwidth product result does not apply exactly
to the present situation (see the conditions under which (2.6.5) has been derived).

An often more exact expression for β can be obtained as follows [Lagunas,

Santamaria, Gasull, and Moreno 1986]. The (equivalent) bandwidth of a
bandpass filter can be defined as the support of the rectangle centered on ω (the
filter’s center frequency) that concentrates the whole energy in the filter’s frequency
response. According to this definition, β can be assumed to satisfy:

∫ π

−π
|H(ψ)|2dψ = |H(ω)|22πβ (5.4.13)

Since in the present case H(ω) = 1 (see (5.4.7)), we obtain from (5.4.13):

β =
1

2π

∫ π

−π
|h∗a(ψ)|2dψ = h∗

[
1

2π

∫ π

−π
a(ψ)a∗(ψ)dψ

]

h (5.4.14)

The (k, p) element of the central matrix in the above quadratic form is given by

1

2π

∫ π

−π
e−iψ(k−p)dψ = δk,p (5.4.15)

With this observation and (5.4.8), (5.4.14) leads to

β = h∗h =
a∗(ω)R−2a(ω)

[a∗(ω)R−1a(ω)]2
(5.4.16)

Note that this expression of the bandwidth is both data and frequency dependent
(as was alluded to previously). Inserting (5.4.16) in (5.4.10) gives

φ(ω) ' a∗(ω)R−1a(ω)

a∗(ω)R−2a(ω)
(5.4.17)

Remark: The expression for β in (5.4.16) is based on the assumption that most
of the area under the curve of |H(ψ)|2 = |h∗a(ψ)|2 (for ψ ∈ [−π, π]) is located
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around the center frequency ω. This assumption is often true, but not always true.
For instance, consider a data sequence {y(t)} consisting of a number of sinusoidal
components with frequencies {ωk} in noise with small power. Then the Capon filter
(5.4.8) with center frequency ω will likely place nulls at {ψ = ωk} to annihilate
the strong sinusoidal components in the data, but will pay little attention to the
weak noise component. The consequence is that |H(ψ)|2 will be nearly zero at
{ψ = ωk}, and one at ψ = ω (by (5.4.7)), but may take rather large values at
other frequencies (see, for example, the numerical examples in [Li and Stoica

1996a], which demonstrate this behavior of the Capon filter). In such a case, the
formula (5.4.16) may significantly overestimate the “true” bandwidth, and hence
the spectral formula (5.4.17) may significantly underestimate the PSD φ(ω). �

In the derivations above, the true data covariance matrix R has been assumed
available. In order to turn the previous PSD formulas into practical spectral esti-
mation algorithms, we must replace R in these formulas by a sample estimate, for
instance by

R̂ =
1

N −m

N∑

t=m+1






y(t)
...

y(t−m)




 [y∗(t) . . . y∗(t−m)] (5.4.18)

Doing so, we obtain the following two spectral estimators corresponding to (5.4.12)
and (5.4.17), respectively:

CM–Version 1: φ̂(ω) =
m+ 1

a∗(ω)R̂−1a(ω)
(5.4.19)

CM–Version 2: φ̂(ω) =
a∗(ω)R̂−1a(ω)

a∗(ω)R̂−2a(ω)
(5.4.20)

There is an implicit assumption in both (5.4.19) and (5.4.20) that R̂−1 exists. This
assumption sets a limit on the maximum value that can be chosen for m:

m < N/2 (5.4.21)

(Observe that rank(R̂) ≤ N −m, which is less than dim(R̂) = m + 1 if (5.4.21) is
violated.) The inequality (5.4.21) is important since it sets a limit on the resolution
achievable by the Capon method. Indeed, since the Capon method is based on
a bandpass filter with impulse response’s aperture equal to m, we may expect its
resolution threshold to be on the order of 1/m > 2/N (with the inequality following
from (5.4.21)).

As m is decreased, we can expect the resolution of Capon method to become
worse (cf. the previous discussion). On the other hand, the accuracy with which R̂
is determined increases with decreasing m (since more outer products are averaged
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in (5.4.18)). The main consequence of the increased accuracy of R̂ is to statistically
stabilize the spectral estimate (5.4.19) or (5.4.20). Hence, the choice of m should
be done with the ubiquitous tradeoff between resolution and statistical accuracy in
mind. It is interesting to note that for the Capon method both the filter design and
power calculation stages are data dependent. The accuracy of both these stages
may worsen if m is chosen too large. In applications, the maximum value that
can be chosen for m might also be limited from considerations of computational
complexity.

Empirical studies have shown that the ability of the Capon method to resolve
fine details of a PSD, such as closely spaced peaks, is superior to the corresponding
performance of the periodogram–based methods. This superiority may be attributed
to the higher statistical stability of Capon method, as explained next. Form smaller
than N/2 (see (5.4.21)), we may expect the Capon method to possess worse res-
olution but better statistical accuracy compared with the unwindowed or “mildly
windowed” periodogram method. It should be stressed that the notion of “reso-
lution” refers to the ability of the theoretically averaged spectral estimate E{φ̂(ω)}
to resolve fine details in the true PSD φ(ω). This resolution is roughly inversely
proportional to the window’s length or the bandpass filter impulse response’s aper-
ture. The “resolving power” corresponding to the estimate φ̂(ω) is more difficult
to quantify, but — of course — it is what interests the most. It should be clear
that the resolving power of φ̂(ω) depends not only on the bias of this estimate (i.e.,

on E{φ̂(ω)}), but also on its variance. A spectral estimator with low bias–based
resolution but high statistical accuracy may be better able to resolve finer details in
a studied PSD than can a high resolution/low accuracy estimator. Since the pe-
riodogram may achieve better bias–based resolution than the Capon method, the
higher (empirically observed) “resolving power” of the latter should be due to a
better statistical accuracy (i.e., a lower variance).

In the context of the previous discussion, it is interesting to note that the
Blackman–Tukey periodogram with a Bartlett window of length 2m + 1, which is
given by (see (2.5.1)):

φ̂BT(ω) =

m∑

k=−m

(m+ 1 − |k|)
m+ 1

r̂(k)e−iωk

can be written in a form that bears some resemblance with the form (5.4.19) of the
CM–Version 1 estimator. A straightforward calculation gives

φ̂BT(ω) =

m∑

t=0

m∑

s=0

r̂(t− s)e−iω(t−s)/(m+ 1) (5.4.22)

=
1

m+ 1
a∗(ω)R̂a(ω) (5.4.23)

where a(ω) is as defined in (5.4.6), and R̂ is the Hermitian Toeplitz sample covari-
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ance matrix

R̂ =









r̂(0) r̂(1) . . . r̂(m)

r̂∗(1) r̂(0)
. . .

...
...

. . .
. . . r̂(1)

r̂∗(m) . . . r̂∗(1) r̂(0)









Comparing the above expression for φ̂BT(ω) with (5.4.19), it is seen that the CM–
Version 1 can be obtained from Blackman–Tukey estimator by replacing R̂ in the
Blackman–Tukey estimator with R̂−1, and then inverting the so–obtained quadratic
form. Below we provide a brief explanation as to why this replacement and inversion
make sense. That is, if we ignore for a moment the technically sound filter bank
derivation of the Capon method, then why should the above way of obtaining
CM–Version 1 from the Blackman–Tukey method provide a reasonable spectral
estimator? We begin by noting that (cf. Section 1.3.2):

lim
m→∞

E







1

m+ 1

∣
∣
∣
∣
∣

m∑

t=0

y(t)e−iωt

∣
∣
∣
∣
∣

2





= φ(ω)

However, a simple calculation shows that

E







1

m+ 1

∣
∣
∣
∣
∣

m∑

t=0

y(t)e−iωt

∣
∣
∣
∣
∣

2





=

1

m+ 1

m∑

t=0

m∑

s=0

r(t−s)e−iωteiωs =
1

m+ 1
a∗(ω)Ra(ω)

Hence,

lim
m→∞

1

m+ 1
a∗(ω)Ra(ω) = φ(ω) (5.4.24)

Similarly, one can show that

lim
m→∞

1

m+ 1
a∗(ω)R−1a(ω) = φ−1(ω) (5.4.25)

(see, e.g., [Hannan and Wahlberg 1989]). Comparing (5.4.24) with (5.4.25) pro-
vides the explanation we were looking for. Observe that the CM–Version 1 estimator
is a finite–sample approximation to equation (5.4.25), whereas the Blackman–Tukey
estimator is a finite–sample approximation to equation (5.4.24).

The Capon method has also been compared with the AR method of spectral
estimation (see Section 3.2). It has been empirically observed that the CM–Version
1 possesses less variance but worse resolution than the AR spectral estimator. This
may be explained by making use of the relationship that exists between the CM–
Version 1 and AR spectral estimators; see the next subsection (and also [Burg

1972]). The CM–Version 2 spectral estimator is less well studied and hence its
properties are not so well understood. In the following subsection, we also relate
the CM–Version 2 to the AR spectral estimator. In the case of CM–Version 2, the
relationship is more involved, hence leaving less room for intuitive explanations.
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5.4.2 Relationship between Capon and AR Methods

The AR method of spectral estimation has been described in Chapter 3. In the
following we consider the covariance matrix estimate in (5.4.18). The AR method
corresponding to this sample covariance matrix is the LS method discussed in Sec-
tion 3.4.2. Let us denote the matrix R̂ in (5.4.18) by R̂m+1 and its principal
lower–right k × k block by R̂k (k = 1, . . . ,m+ 1), as shown below:

R̂ =

k 1m+ 1

m+ 1

1

k

R̂1

R̂k

R̂m+1

(5.4.26)
With this notation, the coefficient vector θk and the residual power σ2

k of the kth–
order AR model fitted to the data {y(t)} are obtained as the solutions to the
following matrix equation (refer to (3.4.6)):

R̂k+1

[
1

θ̂ck

]

=

[
σ̂2
k

0

]

(5.4.27)

(the complex conjugate in (5.4.27) appears owing to the fact that R̂k above is equal
to the complex conjugate of the sample covariance matrix used in Chapter 3). The
nested structure of (5.4.26) along with the defining equation (5.4.27) imply:

R̂m+1











1 0 . . . 0 0

1
...

...
. . . 0

1 0

θ̂cm θ̂cm−1 θ̂c1 1











=









σ̂2
m x . . . x

0 σ̂2
m−1

. . .
...

...
. . .

. . . x
0 · · · 0 σ̂2

0









(5.4.28)
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where “x” stands for undetermined elements. Let

Ĥ =











1 0 . . . 0 0

1
...

...
. . . 0

1 0

θ̂cm θ̂cm−1 θ̂c1 1











(5.4.29)

It follows from (5.4.28) that

Ĥ∗R̂m+1Ĥ =









σ̂2
m x . . . x

σ̂2
m−1

. . .
...

0
. . . x

σ̂2
0









(5.4.30)

(where, once more, x denotes undetermined elements). Since Ĥ∗R̂m+1Ĥ is a Her-
mitian matrix, the elements designated by “x” in (5.4.30) must be equal to zero.
Hence, we have proven the following result which is essential in establishing a rela-
tion between the AR and Capon methods of spectral estimation (this result extends
the one in Exercise 3.7 to the non–Toeplitz covariance case).

The parameters {θ̂k, σ̂2
k} of the AR models of orders k =

1, 2, . . . ,m determine the following factorization of the inverse
(sample) covariance matrix:

R̂−1
m+1 = ĤΣ̂−1Ĥ∗ ; Σ̂ =








σ̂2
m 0

σ̂2
m−1

. . .

0 σ̂2
0








(5.4.31)

Let

Âk(ω) = [1 e−iω . . . e−ikω]

[
1

θ̂k

]

(5.4.32)

denote the polynomial corresponding to the kth–order AR model, and let

φ̂AR
k (ω) =

σ̂2
k

|Âk(ω)|2
(5.4.33)

denote its associated PSD (see Chapter 3). It is readily verified that

a∗(ω)Ĥ = [1 eiω . . . eimω]











1 0 . . . 0 0

1
...

...
. . . 0

1 0

θ̂cm θ̂cm−1 θ̂c1 1











= [Â∗
m(ω), eiωÂ∗

m−1(ω), . . . , eimωÂ∗
0(ω)] (5.4.34)
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It follows from (5.4.31) and (5.4.34) that the quadratic form in the denominator of
the CM–Version 1 spectral estimator can be written as

a∗(ω)R̂−1a(ω) = a∗(ω)ĤΣ̂−1Ĥ∗a(ω)

=

m∑

k=0

|Âk(ω)|2/σ̂2
k =

m∑

k=0

1/φ̂AR
k (ω) (5.4.35)

which leads at once to the following result:

φ̂CM–1(ω) =
1

1

m+ 1

m∑

k=0

1/φ̂AR
k (ω)

(5.4.36)

This is the desired relation between the CM–Version 1 and the AR spectral esti-
mates. This relation says that the inverse of the CM–Version 1 spectral estimator
can be obtained by averaging the inverse estimated AR spectra of orders from 0 to
m. In view of the averaging operation in (5.4.36), it is not difficult to understand
why the CM–Version 1 possesses less statistical variability than the AR estimator.
Moreover, the fact that the CM–Version 1 has also been found to have worse res-
olution and bias properties than the AR spectral estimate should be due to the
presence of low–order AR models in (5.4.36).

Next, consider the CM–Version 2. The previous analysis of CM–Version 1
already provides a relation between the numerator in the spectral estimate corre-
sponding to CM–Version 2, (5.4.20), and the AR spectra. In order to obtain a
similar expression for the denominator in (5.4.20), some preparations are required.
The (sample) covariance matrix R̂ can be used to define m+ 1 AR models of order
m, depending on which coefficient of the AR equation

â0y(t) + â1y(t− 1) + . . .+ âmy(t−m) = residuals (5.4.37)

we choose to set to one. The AR model {θ̂m, σ̂2
m} used in the previous analysis

corresponds to setting â0 = 1 in (5.4.37). However, in principle, any other AR
coefficient in (5.4.37) may be normalized to one. The mth–order LS AR model
obtained by setting âk = 1 in (5.4.37) is denoted by {µ̂k = coefficient vector and
γ̂k = residual variance}, and is given by the solution to the following linear system
of equations (compare with (5.4.27)):

R̂m+1µ̂
c
k = γ̂kuk (5.4.38)

where the (k + 1)st component of µ̂k is equal to one (k = 0, . . . ,m), and where uk
stands for the (k + 1)st column of the (m+ 1) × (m+ 1) identity matrix:

uk = [0 . . . 0
︸ ︷︷ ︸

k

1 0 . . . 0
︸ ︷︷ ︸

m−k

]T (5.4.39)

Evidently, [1 θ̂Tm]T = µ̂0 and σ̂2
m = γ̂0.
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Similarly to (5.4.32) and (5.4.33), the (estimated) PSD corresponding to the
kth mth–order AR model given by (5.4.38) is obtained as

φ̂
AR(m)
k (ω) =

γ̂k
|a∗(ω)µ̂ck|2

(5.4.40)

It is shown in the following calculation that the denominator in (5.4.20) can be
expressed as a (weighted) average of the AR spectra in (5.4.40):

m∑

k=0

1

γ̂kφ̂
AR(m)
k (ω)

=

m∑

k=0

|a∗(ω)µ̂ck|2
γ̂2
k

= a∗(ω)

[
m∑

k=0

µ̂ckµ̂
T
k

γ̂2
k

]

a(ω)

= a∗(ω)R̂−1

[
m∑

k=0

uku
∗
k

]

R̂−1a(ω) = a∗(ω)R̂−2a(ω)

(5.4.41)

Combining (5.4.35) and (5.4.41) gives

φ̂CM–2 (ω) =

∑m
k=0 1/φ̂AR

k (ω)
∑m
k=0 1/γ̂kφ̂

AR(m)
k (ω)

(5.4.42)

The above relation appears to be more involved, and hence more difficult to in-
terpret, than the similar relation (5.4.36) corresponding to CM–Version 1. Nev-
ertheless, since (5.4.42) is still obtained by averaging various AR spectra, we may
expect that the CM–Version 2 estimator, like the CM–Version 1 estimator, is more
statistically stable but has poorer resolution than the AR spectral estimator.

5.5 FILTER BANK REINTERPRETATION OF THE PERIODOGRAM

As we saw in Section 5.2, the basic periodogram spectral estimator can be in-
terpreted as an FBA method with a preimposed bandpass filter (whose impulse
response is equal to the Fourier transform vector). In contrast, RFB and Capon
are FBA methods based on designed bandpass filters. The filter used in the RFB
method is data independent, whereas it is a function of the data covariances in the
Capon method. The use of a data–dependent bandpass filter, such as in the Capon
method, is intuitively appealing but it also leads to the following drawback: since
we need to consistently estimate the filter impulse response, the temporal aperture
of the filter should be chosen (much) smaller than the sample length, which sets a
rather hard limit on the achievable spectral resolution. In addition, it appears that
any other filter design methodology, except the one originally suggested by Capon,
will most likely lead to a problem (such as an eigenanalysis) that should be solved
for each value of the center frequency; which — of course — would be a rather
prohibitive computational task. With these difficulties of the data–dependent de-
sign in mind, we may content ourselves with a “well–designed” data–independent
filter. The purpose of this section is to show that the basic periodogram and the
Daniell method can be interpreted as FBA methods based on well–designed data–
independent filters, similar to the RFB method. As we will see, the bandpass filters
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used by the aforementioned periodogram methods are obtained by combining the
design procedures employed in the RFB and Capon methods.

The following result is required (see R35 in Appendix A for a proof). Let R,
H, A and C be matrices of dimensions (m ×m), (m ×K), (m × n) and (K × n),
respectively. Assume that R is positive definite and A has full column rank equal
to n (hence, m ≥ n). Then the solution to the following quadratic optimization
problem with linear constraints:

min
H

(H∗RH) subject to H∗A = C

is given by
H = R−1A(A∗R−1A)−1C∗ (5.5.1)

We can now proceed to derive our “new” FBA–based spectral estimation
method (as we will see below, it turns out that this method is not really new!). We
would like this method to possess a facility for compromising between the bias and
variance of the estimated PSD. As explained in the previous sections of this chapter,
there are two main ways of doing this within the FBA: we either (i) use a bandpass
filter with temporal aperture less than N , obtain the allowed number of samples
of the filtered signal and then calculate the power from these samples; or (ii) use
a set of K bandpass filters with length–N impulse responses, that cover a band
centered on the current frequency value, obtain one sample of the filtered signals
for each filter in the set and calculate the power by averaging these K samples. As
argued in Section 5.3, approach (ii) may be more effective than (i) in reducing the
variance of the estimated PSD, while keeping the bias low. In the sequel, we follow
approach (ii).

Let β ≥ 1/N be the prespecified (desired) resolution and let K be defined
by equation (5.3.12): K = βN . According to the time–bandwidth product result,
a bandpass filter with a length–N impulse response may be expected to have a
bandwidth on the order of 1/N (but not less). Hence, we can cover the preimposed
passband

[ω̃ − βπ, ω̃ + βπ] (5.5.2)

(here ω̃ stands for the current frequency value) by using 2πβ/(2π/N) = K filters,
which pass essentially nonoverlapping 1/N–length frequency bands in the interval
(5.5.2). The requirement that the filters’ passbands are (nearly) nonoverlapping is a
key condition for variance reduction. In order to see this, let xp denote the sample
obtained at the output of the pth filter:

xp =

N−1∑

k=0

hp,ky(N − k) =

N∑

t=1

hp,N−ty(t) (5.5.3)

Here {hp,k}N−1
k=0 is the pth filter’s impulse response. The associated frequency re-

sponse is denoted by Hp(ω). Note that in the present case we consider bandpass
filters operating on the raw data, in lieu of baseband filters operating on demod-
ulated data (as in RFB). Assume that the center–frequency gain of each filter is
normalized so that

Hp(ω̃) = 1, p = 1, . . . ,K (5.5.4)
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Then, we can write

E
{
|xp|2

}
=

1

2π

∫ π

−π
|Hp(ω)|2φ(ω)dω

' 1

2π

∫ ω̃+π/N

ω̃−π/N
φ(ω)dω ' 2π/N

2π
φ(ω̃) =

1

N
φ(ω̃) (5.5.5)

The second “equality” in (5.5.5) follows from (5.5.4) and the assumed bandpass
characteristics of Hp(ω), and the third equality results from the assumption that
φ(ω) is approximately constant over the passband. (Note that the angular frequency
passband ofHp(ω) is 2π/N , as explained before.) In view of (5.5.5), we can estimate
φ(ω̃) by averaging over the squared magnitudes of the filtered samples {xp}Kp=1. By
doing so, we may achieve a reduction in variance by a factor K, provided {xp} are
statistically independent (see Section 5.3 for details). Under the assumption that
the filters {Hp(ω)} pass essentially nonoverlapping frequency bands, we readily get
(compare (5.3.27)):

E {xpx∗
k} =

1

2π

∫ π

−π
Hp(ω)H∗

k(ω)φ(ω)dω ' 0 (5.5.6)

which implies that the random variables {|xp|2} are independent at least under the
Gaussian hypothesis. Without the previous assumption on {Hp(ω)}, the filtered
samples {xp} may be strongly correlated and, therefore, a reduction in variance by
a factor K cannot be guaranteed.

The conclusion from the previous (more or less heuristic) discussion is sum-
marized in the following.

If the passbands of the filters used to cover the prespecified inter-
val (5.5.2) do not overlap, then by using all filters’ output samples
— as contrasted to using the output sample of only one filter —
we achieve a reduction in the variance of the estimated PSD by
a factor equal to the number of filters. The maximum number of
such filters that can be found is given by K = βN .

(5.5.7)

By using the insights provided by the above discussion, as summarized in
(5.5.7), we can now approach the bandpass filters design problem. We sample the
frequency axis as in the FFT (as almost any practical implementation of a spectral
estimation method does):

ω̃s =
2π

N
s s = 0, . . . , N − 1 (5.5.8)

The frequency samples that fall within the passband (5.5.2) are readily seen to be
the following:

2π

N
(s+ p) p = −K/2, . . . , 0, . . . ,K/2 − 1 (5.5.9)

(to simplify the discussion we assume that K is an even integer). Let

H = [h1 . . . hK ] (N ×K) (5.5.10)
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denote the matrix whose pth column is equal to the impulse response vector cor-
responding to the pth bandpass filter. We assume that the input to the filters is
white noise (as in RFB) and design the filters so as to minimize the output power
under the constraint that each filter passes undistorted one (and only one) of the
frequencies in (5.5.9) (as in Capon). These design objectives lead to the following
optimization problem:

min
H

(H∗H) subject to H∗A = I

where A =
[
a
(

2π
N

(
s− K

2

))
, . . . , a

(
2π
N

(
s+ K

2 − 1
))] (5.5.11)

and where a(ω) = [1 e−iω . . . e−i(N−1)ω]T . Note that the constraint in (5.5.11)
guarantees that each frequency in the passband (5.5.9) is passed undistorted by
one filter in the set, and it is annihilated by all the other (K − 1) filters. In
particular, observe that (5.5.11) implies (5.5.4).

The solution to (5.5.11) follows at once from the result (5.5.1): the minimizing
H matrix is given by

H = A(A∗A)−1 (5.5.12)

However, the columns in A are orthogonal

A∗A = NI

(see (4.3.15)); therefore, (5.5.12) simplifies to

H =
1

N
A (5.5.13)

which is the solution of the filter design problem previously formulated.
By using (5.5.13) in (5.5.3), we get

|xp|2 =
1

N2

∣
∣
∣
∣
∣

N∑

t=1

ei(N−t) 2π
N (s+p)y(t)

∣
∣
∣
∣
∣

2

=
1

N2

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−i 2π
N (s+p)t

∣
∣
∣
∣
∣

2

=
1

N
φ̂p

(
2π

N
(s+ p)

)

p = −K/2, . . . ,K/2 − 1 (5.5.14)

where the dependence of |xp|2 on s (and hence on ω̃s) is omitted to simplify the

notation, and where φ̂p(ω) is the standard periodogram. Finally, (5.5.14) along
with (5.5.5) lead to the following FBA spectral estimator:

φ̂

(
2π

N
s

)

=
1

K

K/2−1
∑

p=−K/2
N |xp|2 =

1

K

s+K/2−1
∑

l=s−K/2
φ̂p

(
2π

N
l

)

(5.5.15)
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which coincides with the Daniell periodogram estimator (2.7.16). Furthermore, for
K = 1 (i.e., β = 1/N , which is the choice suitable for “high–resolution” applica-
tions), (5.5.15) reduces to the unmodified periodogram. Recall also that the RFB
method in Section 5.3, for large data lengths, is expected to have similar per-
formance to the Daniell method for K > 1 and to the basic periodogram for
K = 1. Hence, in the family of nonparametric spectral estimation methods the
periodograms “are doing well”.

5.6 COMPLEMENTS

5.6.1 Another Relationship between the Capon and AR Methods

The relationship between the AR and Capon spectra established in Section 5.4.2
involves all AR spectral models of orders 0 through m. Another interesting rela-
tionship, which involves the AR spectrum of order m alone, is presented in this
complement.

Let θ̂ = [â0 â1 . . . âm]T (with â0 = 1) denote the vector of the coefficients of
the mth–order AR model fitted to the data sample covariances, and let σ̂2 denote
the corresponding residual variance (see Chapter 3 and (5.4.27)). Then the mth–
order AR spectrum is given by:

φ̂AR(ω) =
σ̂2

|a∗(ω)θ̂c|2
=

σ̂2

|∑m
k=0 âke−iωk|2 (5.6.1)

By a simple calculation, φ̂AR(ω) above can be rewritten in the following form:

φ̂AR(ω) =
σ̂2

∑m
s=−m ρ̂(s)eiωs

(5.6.2)

where

ρ̂(s) =

m−s∑

k=0

âkâ
∗
k+s = ρ̂∗(−s), s = 0, . . . ,m. (5.6.3)

To show this, note that

∣
∣
∣
∣
∣

m∑

k=0

âke
−iωk

∣
∣
∣
∣
∣

2

=

m∑

k=0

m∑

p=0

âkâ
∗
pe

−iω(k−p) =

m∑

k=0

k∑

s=k−m
âkâ

∗
k−se

−iωs

=

m∑

k=0

m∑

s=−m
âkâ

∗
k−se

−iωs =

m∑

s=−m

m∑

k=0

âkâ
∗
k+se

iωs

=

m∑

s=−m

(
m−s∑

k=0

âkâ
∗
k+s

)

eiωs

and (5.6.2)–(5.6.3) immediately follows.



“sm2”
2004/2/22
page 236

i

i

i

i

i

i

i

i

236 Chapter 5 Filter Bank Methods

Next, assume that the (sample) covariance matrix R̂ is Toeplitz. (We note in
passing that this is a minor restriction for the temporal spectral estimation problem
of this chapter, but it may be quite a restrictive assumption for the spatial problem
of the next chapter.) Then the Capon spectrum in equation (5.4.19) (with the
factor m+ 1 omitted, for convenience) can be written as:

φ̂CM (ω) =
σ̂2

∑m
s=−m µ̂(s)eiωs

(5.6.4)

where

µ̂(s) =

m−s∑

k=0

(m+ 1 − 2k − s)âkâ
∗
k+s = µ̂∗(−s), s = 0, . . . ,m (5.6.5)

To prove (5.6.4) we make use of the Gohberg–Semencul (GS) formula derived in
Complement 3.9.4, which is repeated here for convenience:

σ̂2R̂−1 =









1 · · · · · · 0

â∗
1

. . .
...

...
. . .

. . .
...

â∗
m · · · â∗

1 1

















1 â1 · · · âm
...

. . .
. . .

...
...

. . . â1

0 · · · · · · 1









−









0 · · · · · · 0

âm
. . .

...
...

. . .
. . .

...
â1 · · · âm 0

















0 â∗
m · · · â∗

1
...

. . .
. . .

...
...

. . . â∗
m

0 · · · · · · 0









(The above formula is in fact the complex conjugate of the GS formula in Com-
plement 3.9.4 because the matrix R̂ above is the complex conjugate of the one
considered in Chapter 3).

For the sake of convenience, let âk = 0 for k /∈ [0, m]. By making use of this
convention, and of the GS formula, we obtain:

f(ω) , σ̂2a∗(ω)R̂−1a(ω)

=

m∑

p=0







∣
∣
∣
∣
∣

m∑

k=0

âk−p e
−iωk

∣
∣
∣
∣
∣

2

−
∣
∣
∣
∣
∣

m∑

k=0

â∗
m+1−k+pe

−iωk

∣
∣
∣
∣
∣

2






=

m∑

p=0

m∑

k=0

m∑

`=0

(âk−pâ
∗
`−p − â∗

m+1+p−kâm+1−`+p)e
iω(`−k)

=

m∑

`=0

m∑

p=0

∑̀

s=`−m
(â`−s−pâ

∗
`−p − â∗

m+1−`+s+pâm+1+p−`)e
iωs (5.6.6)
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where the last equality has been obtained by the substitution s = ` − k. Next,
make the substitution j = `− p in (5.6.6) to obtain:

f(ω) =

m∑

`=0

∑̀

j=`−m

∑̀

s=`−m
(âj−sâ

∗
j − âm+1−j â

∗
m+1+s−j)e

iωs (5.6.7)

Since âj−s = 0 and â∗
m+1+s−j = 0 for s > j, we can extend the summation over

s in (5.6.7) up to s = m. Furthermore, the summand in (5.6.7) is zero for j < 0,
and hence we can truncate the summation over j to the interval [0, `]. These two
observations yield:

f(ω) =

m∑

`=0

∑̀

j=0

m∑

s=`−m
(âj−sâ

∗
j − âm+1−j â

∗
m+1+s−j)e

iωs (5.6.8)

Next, decompose f(ω) additively as follows:

f(ω) = T1(ω) + T2(ω)

where

T1(ω) =

m∑

`=0

∑̀

j=0

m∑

s=0

(âj−sâ
∗
j − âm+1−j â

∗
m+1+s−j)e

iωs

T2(ω) =

m∑

`=0

∑̀

j=0

−1∑

s=`−m
(âj−sâ

∗
j − âm+1−j â

∗
m+1+s−j)e

iωs

(The term in T2 corresponding to ` = m is zero.) Let

µ̂(s) ,

m∑

`=0

∑̀

j=0

(âj−sâ
∗
j − âm+1−j â

∗
m+1+s−j) (5.6.9)

By using this notation, we can write T1(ω) as

T1(ω) =

m∑

s=0

µ̂(s)eiωs

Since f(ω) is real–valued for any ω ∈ [−π, π], we must also have

T2(ω) =

−m∑

s=−1

µ̂∗(−s)eiωs

As the summand in (5.6.9) does not depend on `, we readily obtain

µ̂(s) =

m∑

j=0

(m+ 1 − j) (âj−sâ
∗
j − âm+1−j â

∗
m+1+s−j)

=

m−s∑

k=0

(m+ 1 − k − s) âkâ
∗
k+s −

m∑

k=1

kâkâ
∗
k+s

=

m−s∑

k=0

(m+ 1 − 2k − s)âkâ
∗
k+s
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which coincides with (5.6.5). Thus, the proof of (5.6.4) is concluded.

Remark: The reader may wonder what happens with the formulas derived above
if the AR model parameters are calculated by using the same sample covariance
matrix as in the Capon estimator. In such a case, the parameters {âk} in (5.6.1) and
in the GS formula above should be replaced by {â∗

k} (see (5.4.27)). Consequently
both (5.6.2)–(5.6.3) and (5.6.4)–(5.6.5) continue to hold but with {âk} replaced by
{â∗
k} (and {â∗

k} replaced by {âk}, of course). �

By comparing (5.6.2) and (5.6.4) we see that the reciprocals of both φ̂AR(ω)

and φ̂CM (ω) have the form of a Blackman–Tukey spectral estimate associated with
the “covariance sequences” {ρ̂(s)} and {µ̂(s)}, respectively. The only difference

between φ̂AR(ω) and φ̂CM (ω) is that the sequence {µ̂(s)} corresponding to φ̂CM (ω)

is a “linearly tapered” version of the sequence {ρ̂(s)} corresponding to φ̂AR(ω).
Similar to the interpretation in Section 5.4.2, the previous observation can be used
to intuitively understand why the Capon spectral estimates are smoother and have
poorer resolution than the AR estimates of the same order. (For more details on
this aspect and other aspects related to the discussion in this complement, see
[Musicus 1985].)

We remark in passing that the name “covariance sequence” given, for exam-
ple, to {ρ̂(s)} is not coincidental: {ρ̂(s)} are so–called sample inverse covariances
associated with R̂ and they can be shown to possess a number of interesting and
useful properties (see, e.g., [Cleveland 1972; Bhansali 1980]).

The formula (5.6.4) can be used for the computation of φ̂CM (ω), as we now
show. Assuming that R̂ is already available, we can use the Levinson–Durbin algo-
rithm to compute {âk} and σ̂2, and then {µ̂(s)} in O(m2) flops. Then (5.6.4) can
be evaluated at M Fourier frequencies (say) by using the FFT. The resulting total
computational burden is on the order of O(m2 +M log2M) flops. For commonly
encountered values of m and M , this is about m times smaller than the burden
associated with the eigendecomposition–based computational procedure of Exer-
cise 5.5. Note, however, that the latter algorithm can be applied to a general R̂
matrix, whereas the one derived in this complement is limited to Toeplitz covari-
ance matrices. Finally, note that the extension of the results in this complement to
two–dimensional (2D) signals can be found in [Jakobsson, Marple, and Stoica

2000].

5.6.2 Multiwindow Interpretation of Daniell and Blackman–Tukey Periodograms

As stated in Exercise 5.1, the Bartlett and Welch periodograms can be cast into
the multiwindow framework of Section 5.3.3. In other words, they can be written
in the following form (see (5.7.1))

φ̂(ω) =
1

K

K∑

p=1

∣
∣
∣
∣
∣

N∑

t=1

wp,t y(t)e
−iωt

∣
∣
∣
∣
∣

2

(5.6.10)

for certain temporal (or data) windows {wp,t} (also called tapers). Here, K denotes
the number of windows used by the method in question.
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In this complement we show that the Daniell periodogram, as well as the
Blackman–Tukey periodogram with some commonly-used lag windows, can also
be interpreted as multiwindow methods. Unlike the approximate multiwindow
interpretation of a spectrally smoothed periodogram described in Section 5.3.3 (see
equations (5.3.31)–(5.3.33) there), the multiwindow interpretations presented in
this complement are exact. More details on the topic of this complement can
be found in [McCloud, Scharf, and Mullis 1999], where it is also shown
that the Blackman–Tukey periodogram with any “good” window can be cast in a
multiwindow framework, but only approximately.

We begin by writing (5.6.10) as a quadratic form in the data sequence. Let

z(ω) =






y(1)e−iω

...
y(N)e−iNω




 , (N × 1)

W =






w1,1 · · · w1,N

...
...

wK,1 · · · wK,N




 , (K ×N)

and let [x]p denote the pth element of a vector x. Using this notation we can rewrite
(5.6.10) in the desired form:

φ̂(ω) =
1

K

K∑

p=1

∣
∣[Wz(ω)]p

∣
∣
2

or

φ̂(ω) =
1

K
z∗(ω)W ∗Wz(ω) (5.6.11)

which is a quadratic form in z(ω). The rank of the matrix W ∗W is less than or
equal to K; typically, rank(W ∗W ) = K � N .

Next we turn our attention to the Daniell periodogram (see (2.7.16)):

φ̂D(ω) =
1

2J + 1

J∑

j=−J
φ̂p

(

ω + j
2π

N

)

(5.6.12)

where φ̂p(ω) is the standard periodogram given in (2.2.1):

φ̂p(ω) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iωt

∣
∣
∣
∣
∣

2

Letting

a∗
j =

[

e−i 2π
N j , e−i 2π

N (2j), . . . , e−i 2π
N (Nj)

]

(5.6.13)
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we can write

φ̂p

(

ω + j
2π

N

)

=
1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iωte−i 2π
N (jt)

∣
∣
∣
∣
∣

2

=
1

N

∣
∣a∗
jz(ω)

∣
∣
2

=
1

N
z∗(ω)aja

∗
jz(ω) (5.6.14)

which implies that

φ̂D(ω) =
1

N(2J + 1)
z∗(ω)W ∗

DWDz(ω) (5.6.15)

where

WD = [a−J , . . . , a0, . . . , aJ ]
∗
, (2J + 1) ×N (5.6.16)

This establishes the fact that the Daniell periodogram can be interpreted as a mul-
tiwindow method using K = 2J+1 tapers given by (5.6.16). Similarly to the tapers
used by the seemingly more elaborate RFB approach, the Daniell periodogram
tapers can also be motivated using a sound design methodology (see Section 5.5).

In the remaining part of this complement we consider the Blackman–Tukey
periodogram in (2.5.1) with a window of length M = N :

φ̂BT (ω) =

N−1∑

k=−(N−1)

w(k)r̂(k)e−iωk (5.6.17)

A commonly-used class of windows, including the Hanning and Hamming windows
in Table 2.1, is described by the equation:

w(k) = α+ β cos(∆k) =
(

α+ β
2 e
i∆k + β

2 e
−i∆k

)

(5.6.18)

for various parameters α, β, and ∆. Inserting (5.6.18) into (5.6.17) yields:

φ̂BT (ω) =

N−1∑

k=−(N−1)

(

α+ β
2 e
i∆k + β

2 e
−i∆k

)

r̂(k)e−iωk

= αφ̂p(ω) + β
2 φ̂p(ω − ∆) + β

2 φ̂p(ω + ∆) (5.6.19)

where φ̂p(ω) is the standard periodogram given by (2.2.1) or, equivalently, by
(2.2.2):

φ̂p(ω) =

N−1∑

k=−(N−1)

r̂(k)e−iωk

Comparing (5.6.19) with (5.6.12) (as well as (5.6.14)–(5.6.16)) allows us to rewrite

φ̂BT (ω) in the following form:

φ̂BT (ω) =
1

N
z∗(ω)W ∗

BTWBT z(ω) (5.6.20)
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where

WBT =

[√
β
2 a−∆,

√
αa0,

√
β
2 a∆

]∗
, (3 ×N) (5.6.21)

for α, β ≥ 0 and where a∆ is given by (similarly to aj in (5.6.13))

a∗
∆ =

[
e−i∆, . . . , e−i∆N ]

Hence, we conclude that the Blackman–Tukey periodogram with a Hamming or
Hanning window (or any other window having the form of (5.6.18)) can be inter-
preted as a multiwindow method using K = 3 tapers given by (5.6.21). Similarly,

φ̂BT (ω) using the Blackman window in Table 2.1 can be shown to be equivalent to
a multiwindow method with K = 7 tapers.

Interestingly, as a byproduct of the analysis in this complement, we note
from (5.6.19) that the Blackman–Tukey periodogram with a window of the form
in (5.6.18) can be very efficiently computed from the values of the standard peri-

odogram. Since the Blackman window has a form similar to (5.6.18), φ̂BT (ω) using
the Blackman window can be similarly implemented in an efficient way. This way
of computing φ̂BT (ω) is faster than the method outlined in Complement 2.8.2 for
a general lag window.

5.6.3 Capon Method for Exponentially Damped Sinusoidal Signals

The signals which are dealt with in some applications of spectral analysis, such as
in magnetic resonance spectroscopy, consist of a sum of exponentially damped sinu-
soidal components, (or damped sinusoids, for short), instead of the pure sinusoids
as in (4.1.1). Such signals are described by the equation

y(t) =

n∑

k=1

βke
(ρk+iωk)t + e(t), t = 1, . . . , N (5.6.22)

where βk and ωk are the amplitude and frequency of the kth component (as in
Chapter 4), and ρk < 0 is the so-called damping parameter. The (noise-free) signal
in (5.6.22) is nonstationary and hence it does not have a power spectral density.
However, it possesses an amplitude spectrum that is defined as follows:

|β(ρ, ω)| =

{

|βk|, for ω = ωk, ρ = ρk (k = 1, . . . , n)

0, elsewhere
(5.6.23)

Furthermore, because an exponentially damped sinusoid satisfies the finite energy
condition in (1.2.1), the (noise-free) signal in (5.6.22) also possesses an energy spec-
trum. Similarly to (5.6.23), we can define the energy spectrum of the damped
sinusoidal signal in (5.6.22) as a 2D function of (ρ, ω) that consists of n pulses at
{ρk, ωk}, where the height of the function at each of these points is equal to the
energy of the corresponding component. The energy of a generic component with
parameters (β, ρ, ω) is given by

N∑

t=1

∣
∣
∣βe(ρ+iω)t

∣
∣
∣

2

= |β|2e2ρ
N−1∑

t=0

e2ρt = |β|2e2ρ 1 − e2ρN

1 − e2ρ
(5.6.24)
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It follows from (5.6.24) and the above discussion that the energy spectrum can be
expressed as a function of the amplitude spectrum in (5.6.23) via the formula:

E(ρ, ω) = |β(ρ, ω)|2L(ρ) (5.6.25)

where

L(ρ) = e2ρ
1 − e2ρN

1 − e2ρ
(5.6.26)

The amplitude spectrum, and hence the energy spectrum, of the signal in (5.6.22)
can be estimated by using an extension of the Capon method that is introduced in
Section 5.4. To develop this extension, we consider the following data vector

ỹ(t) = [y(t), y(t+ 1), . . . , y(t+m)] (5.6.27)

in lieu of the data vector used in (5.4.2). First we explain why, in the case of
damped sinusoidal signals, the use of (5.6.27) is preferable to that of

[y(t), y(t− 1), . . . , y(t−m)]
T

(5.6.28)

(as is used in (5.4.2)). Let h denote the coefficient vector of the Capon FIR filter as
in (5.4.1). Then, the output of the filter using the data vector in (5.6.27) is given
by:

ỹF (t) = h∗ỹ(t) = h∗






y(t)
...

y(t+m)




 , t = 1, . . . , N −m (5.6.29)

Hence, when performing the filtering operation as in (5.6.29), we lose m samples
from the end of the data string. Because the SNR of those samples is typically
rather low (owing to the damping of the signal components), the data loss is not
significant. In contrast, the use of (5.4.2) leads to a loss of m data samples from the
beginning of the data string (since (5.4.2) can be computed for t = m+ 1, . . . , N),
where the SNR is higher. Hence, in the case of damped sinusoidal signals we should
indeed prefer (5.6.29) to (5.4.2).

Next, we derive Capon-like estimates of the amplitude and energy spectra of
(5.6.22). Let

R̂ =
1

N −m

N−m∑

t=1

ỹ(t)ỹ∗(t) (5.6.30)

denote the sample covariance matrix of the data vector in (5.6.27). Then the sample
variance of the filter output can be written as:

1

N −m

N−m∑

t=1

|ỹF (t)|2 = h∗R̂h (5.6.31)

By definition, the Capon filter minimizes (5.6.31) under the constraint that the filter
passes, without distortion, a generic damped sinusoid with parameters (β, ρ, ω).
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The filter output corresponding to such a generic component is given by

h∗








βe(ρ+iω)t

βe(ρ+iω)(t+1)

...
βe(ρ+iω)(t+m)








=







h∗








1
eρ+iω

...
e(ρ+iω)m














βe(ρ+iω)t (5.6.32)

Hence, the distortionless filtering constraint can be expressed as

h∗a(ρ, ω) = 1 (5.6.33)

where

a(ρ, ω) =
[

1, eρ+iω, . . . , e(ρ+iω)m
]T

(5.6.34)

The minimizer of the quadratic function in (5.6.31) under the linear constraint
(5.6.33) is given by the familiar formula (see (5.4.7)–(5.4.8)):

h(ρ, ω) =
R̂−1a(ρ, ω)

a∗(ρ, ω)R̂−1a(ρ, ω)
(5.6.35)

where we have stressed, via notation, the dependence of h on both ρ and ω.
The output of the filter in (5.6.35) due to a possible (generic) damped sinusoid

in the signal with parameters (β, ρ, ω), is given by (cf. (5.6.32) or (5.6.33)):

h∗(ρ, ω)ỹ(t) = βe(ρ+iω)t + eF (t), t = 1, . . . , N −m (5.6.36)

where eF (t) denotes the filter output due to noise and to any other signal com-
ponents. For given (ρ, ω), the least-squares estimate of β in (5.6.36) is (see, e.g.,
Result R32 in Appendix A):

β̂(ρ, ω) =

N−m∑

t=1

h∗(ρ, ω)ỹ(t)e(ρ−iω)t

N−m∑

t=1

e2ρt

(5.6.37)

Let L̃(ρ) be defined similarly to L(ρ) in (5.6.26), but with N replaced by N −m,
and let

Ỹ (ρ, ω) =
1

L̃(ρ)

N−m∑

t=1

ỹ(t)e(ρ−iω)t (5.6.38)

It follows from (5.6.37), along with (5.6.25), that Capon-like estimates of the am-
plitude spectrum and energy spectrum of the signal in (5.6.22) can be obtained,
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respectively, as:

∣
∣
∣β̂(ρ, ω)

∣
∣
∣ =

∣
∣
∣h∗(ρ, ω)Ỹ (ρ, ω)

∣
∣
∣ (5.6.39)

and

Ê(ρ, ω) =
∣
∣
∣β̂(ρ, ω)

∣
∣
∣

2

L(ρ) (5.6.40)

Remark: We could have estimated the amplitude, β, of a generic component with
parameters (β, ρ, ω) directly from the unfiltered data samples {y(t)}Nt=1. However,
the use of the Capon filtered data in (5.6.36) usually leads to enhanced perfor-
mance. The main reason for this performance gain lies in the fact that the SNR
corresponding to the generic component in the filtered data is typically much higher
than in the raw data, owing to the good rejection properties of the Capon filter.
This higher SNR leads to more accurate amplitude estimates, in spite of the loss of
m data samples in the filtering operation in (5.6.36). �

Finally, we note that the sample Capon energy or amplitude spectrum can be
used to estimate the signal parameters {βk, ρk, ωk} in a standard manner. Specif-

ically, we compute either |β̂(ρ, ω)| or Ê(ρ, ω) at the points of a fine grid covering
the region of interest in the two–dimensional (ρ, ω) plane, and obtain estimates of
(ρk, ωk) as the locations of the n largest spectral peaks; estimates of βk can then
be derived from (5.6.37) with (ρ, ω) replaced by the estimated values of (ρk, ωk).
There is empirical evidence that the use of Ê(ρ, ω) in general leads to (slightly)

more accurate signal parameter estimates than the use of |β̂(ρ, ω)| (see [Stoica

and Sundin 2001]). For more details on the topic of this complement, including
the computation of the two–dimensional spectra in (5.6.39) and (5.6.40), we refer
the reader to [Stoica and Sundin 2001].

5.6.4 Amplitude and Phase Estimation Method (APES)

The design idea behind the Capon filter is based on the following two principles,
as discussed in Section 5.4:

(a) the sinusoid with frequency ω (currently considered in the analysis) passes
through the filter in a distortionless manner; and

(b) any other frequencies in the data (corresponding, e.g., to other sinusoidal
components in the signal or to noise) are suppressed by the filter as much as
possible.

The output of the filter whose input is a sinusoid with frequency ω, {βeiωt}, is
given by (assuming forward filtering, as in (5.4.2)):

h∗








eiωt

eiω(t−1)

...
eiω(t−m)







β =







h∗








1
e−iω

...
e−iωm














βeiωt (5.6.41)
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For backward filtering, as used in Complement 5.6.3, a similar result can be derived.
It follows from (5.6.41) that the design objective in (a) above can be expressed
mathematically via the following linear constraint on h:

h∗a(ω) = 1 (5.6.42)

where

a(ω) =
[
1, e−iω, . . . , e−iωm]T (5.6.43)

(see (5.4.5)–(5.4.7)). Regarding the second design objective, its statement in (b)
above is sufficiently general to allow several different mathematical formulations.
The Capon method is based on the idea that the goal in (b) is achieved if the power
at the filter output is minimized (see (5.4.7)). In this complement, another way to
formulate (b) mathematically is described.

At a given frequency ω, let us choose h such that the filter output, {h∗ỹ(t)},
where

ỹ(t) = [y(t), y(t− 1), . . . , y(t−m)]
T

is as close as possible in a least-squares (LS) sense to a sinusoid with frequency ω
and constant amplitude β. Mathematically, we obtain both h and β, for a given ω,
by minimizing the LS criterion:

min
h,β

1

N −m

N∑

t=m+1

∣
∣h∗ỹ(t) − βeiωt

∣
∣
2

subject to h∗a(ω) = 1 (5.6.44)

Note that the estimation of the amplitude and phase (i.e., |β| and arg(β)) of the
sinusoid with frequency ω is an intrinsic part of the method based on (5.6.44). This
observation motives the name of Amplitude and Phase EStimation (APES) given
to the method described by (5.6.44).

Because (5.6.44) is a linearly constrained quadratic problem, we should be
able to find its solution in closed form. Let

g(ω) =
1

N −m

N∑

t=m+1

ỹ(t)e−iωt (5.6.45)

Then, a straightforward calculation shows that the criterion function in (5.6.44)
can be rewritten as:

1

N −m

N∑

t=m+1

∣
∣h∗ỹ(t) − βeiωt

∣
∣
2

= h∗R̂h− β∗h∗g(ω) − βg∗(ω)h+ |β|2

= |β − h∗g(ω)|2 + h∗R̂h− |h∗g(ω)|2

= |β − h∗g(ω)|2 + h∗[R̂− g(ω)g∗(ω)
]
h (5.6.46)
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where

R̂ =
1

N −m

N∑

t=m+1

ỹ(t)ỹ∗(t) (5.6.47)

(see (5.4.18)). The minimization of (5.6.46) with respect to β is immediate:

β(ω) = h∗g(ω) (5.6.48)

Inserting (5.6.48) into (5.6.46) yields the following problem whose solution will
determine the filter coefficient vector:

min
h
h∗Q̂(ω)h subject to h∗a(ω) = 1 (5.6.49)

where
Q̂(ω) = R̂− g(ω)g∗(ω) (5.6.50)

As (5.6.49) has the same form as the Capon filter design problem (see (5.4.7)), the
solution to (5.6.49) is readily derived (compare with (5.4.8)):

h(ω) =
Q̂−1(ω)a(ω)

a∗(ω)Q̂−1(ω)a(ω)
(5.6.51)

A direct implementation of (5.6.51) would require the inversion of the matrix
Q̂(ω) for each value of ω ∈ [0, 2π] considered. To avoid such an intensive compu-
tational task, we can use the matrix inversion lemma (Result R27 in Appendix A)
to express the inverse in (5.6.51) as follows:

Q̂−1(ω) =
[

R̂− g(ω)g∗(ω)
]−1

= R̂−1 +
R̂−1g(ω)g∗(ω)R̂−1

1 − g∗(ω)R̂−1g(ω)
(5.6.52)

Inserting (5.6.52) into (5.6.51) yields the following expression for the APES filter :

h(ω) =

[

1 − g∗(ω)R̂−1g(ω)
]

R̂−1a(ω) +
[

g∗(ω)R̂−1a(ω)
]

R̂−1g(ω)
[

1 − g∗(ω)R̂−1g(ω)
]

a∗(ω)R̂−1a(ω) +
∣
∣
∣a∗(ω)R̂−1g(ω)

∣
∣
∣

2 (5.6.53)

From (5.6.48) and (5.6.53) we obtain the following formula for the APES estimate
of the (complex) amplitude spectrum (see Complement 5.6.3 for a definition of the
amplitude spectrum):

β(ω) =
a∗(ω)R̂−1g(ω)

[

1 − g∗(ω)R̂−1g(ω)
]

a∗(ω)R̂−1a(ω) +
∣
∣
∣a∗(ω)R̂−1g(ω)

∣
∣
∣

2 (5.6.54)

Compared with the Capon estimate of the amplitude spectrum given by

β(ω) =
a∗(ω)R̂−1g(ω)

a∗(ω)R̂−1a(ω)
(5.6.55)
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we see that the APES estimate in (5.6.54) is more computationally involved, but
not by much.

Remark: Our discussion has focused on the estimation of the amplitude spectrum.
If the power spectrum is what we want to estimate, then we can use the APES
filter, (5.6.53), in the PSD estimation approach described in Section 5.4, or we can
simply take |β(ω)|2 (along with a possible scaling) as an estimate of the PSD. �

The above derivation of APES is adapted from [Stoica, Li, and Li 1999].
The original derivation of APES, provided in [Li and Stoica 1996a], was different:
it was based on an approximate maximum likelihood approach. We refer the reader
to [Li and Stoica 1996a] for the original derivation of APES as well as many
other details on this approach to spectral analysis.

We end this complement with a brief comparison of Capon and APES from
a performance standpoint. Extensive empirical and analytical studies of these two
methods (see, e.g., [Larsson, Li, and Stoica 2003] and its references) have
shown that Capon has a (slightly) higher resolution than APES and also that the
Capon estimates of the frequencies of a multicomponent sinusoidal signal in noise
are more accurate than the APES estimates. On the other hand, for a given set of
frequency estimates {ω̂k} in the vicinity of the true frequencies, the APES estimates
of the amplitudes {βk} are much more accurate than the Capon estimates; the
Capon estimates are always biased towards zero, sometimes significantly so. This
suggests that, at least for spectral line analysis, a better method than both Capon
and APES can be obtained by combining them in the following way:

• Estimate the frequencies {ωk} as the locations of the dominant peaks of the
Capon spectrum.

• Estimate the amplitudes {βk} using the APES formula (5.6.54) evaluated at
the frequency estimates obtained in the previous step.

The above combined Capon-APES (CAPES) method was introduced in [Jakobsson

and Stoica 2000].

5.6.5 Amplitude and Phase Estimation Method for Gapped Data (GAPES)

In some applications of spectral analysis the data sequence has gaps, owing to the
failure of a measuring device, or owing to the impossibility to perform measurements
for some periods of time (such as in astronomy). In this complement we will present
an extension of the Amplitude and Phase EStimation (APES) method, outlined in
Complement 5.6.4, to gapped-data sequences. Gapped-data sequences are evenly
sampled data strings that contain unknown samples which are usually, but not
always, clustered together in groups of reasonable size. We will use the acronym
GAPES to designate the extended approach.

Most of the available methods for the spectral analysis of gapped data perform
(either implicitly or explicitly) an interpolation of the missing data, followed by a
standard full-data spectral analysis. The data interpolation step is critical and it
cannot be completed without making (sometimes hidden) assumptions on the data
sequence. For example, one such assumption is that the data is bandlimited with a
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known cutoff frequency. Intuitively, these assumptions can be viewed as attempts
to add extra “information” to the spectral analysis problem, which might be able to
compensate for the lost information due to the missing data samples. The problem
with these assumptions, though, is that they are not generally easy to check in
applications, either a priori or a posteriori. The GAPES approach presented here
is based on the sole assumption that the spectral content of the missing data is
similar to that of the available data. This assumption is very natural, and one
could argue that it introduces no restriction at all.

We begin the derivation of GAPES by rewriting the APES least-squares fit-
ting criterion (see equation (5.6.44) in Complement 5.6.4) in a form that is more
convenient for the discussion here. Specifically, we use the notation h(ω) and β(ω)
to stress the dependence on ω of both the APES filter and the amplitude spec-
trum. Also, we note that in applications the frequency variable is usually sampled
as follows:

ωk =
2π

K
k, k = 1, . . . ,K (5.6.56)

where K is an integer (much) larger than N . Making use of the above notation
and (5.6.56) we rewrite the APES criterion as follows:

min

K∑

k=1

N∑

t=m+1

∣
∣h∗(ωk)ỹ(t) − β(ωk)e

iωkt
∣
∣
2

subject to h∗(ωk)a(ωk) = 1 for k = 1, . . . ,K

(5.6.57)

Evidently, the minimization of the criterion in (5.6.57) with respect to {h(ωk)} and
{β(ωk)} reduces to the minimization of the inner sum in (5.6.57) for each k. Hence,
in the full-data case the problem in (5.6.57) is equivalent to the standard APES
problem in equation (5.6.44) in Complement 5.6.4. However, in the gapped data
case the form of the APES criterion in (5.6.57) turns out to be more convenient
than that in (5.6.44), as we will see below.

To continue, we need some additional notation. Let

ya = the vector containing the available samples in {y(t)}Nt=1

yu = the vector containing the unavailable samples in {y(t)}Nt=1

The main idea behind the GAPES approach is to minimize (5.6.57) with respect
to both {h(ωk)} and {β(ωk)} as well as with respect to yu. Such a formulation of
the gapped-data problem is appealing, because it leads to:

(i) an analysis filter bank {h(ωk)} for which the filtered sequence is as close as
possible in a LS sense to the (possible) sinusoidal component in the data that
has frequency ωk, which is the main design goal in the filter bank approach
to spectral analysis; and

(ii) an estimate of the missing samples in yu whose spectral content mimics the
spectral content of the available data as much as possible in the LS sense of
(5.6.57).
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The criterion in (5.6.57) is a quartic function of the unknowns {h(ωk)},
{β(ωk)}, and yu. Consequently, in general, its minimization requires the use of
an iterative algorithm; that is, a closed-form solution is unlikely to exist. The
GAPES method uses a cyclic minimizer to minimize the criterion in (5.6.57) (see
Complement 4.9.5 for a general description of cyclic minimizers). A step-by-step
description of GAPES is as follows:

The GAPES Algorithm
Step 0. Obtain initial estimates of {h(ωk)} and {β(ωk)}.
Step 1. Use the most recent estimates of {h(ωk)} and {β(ωk)} to estimate yu
via the minimization of (5.6.57).
Step 2. Use the most recent estimate of yu to estimate {h(ωk)} and {β(ωk)}
via the minimization of (5.6.57).
Step 3. Check the convergence of the iteration, e.g., by checking whether the
relative change of the criterion between two consecutive iterations is smaller than
a pre-assigned value. If no, then go to Step 1. If yes, then we have a final am-
plitude spectrum estimate given by {β̂(ωk)}Kk=1. If desired, this estimate can be
transformed into a power spectrum estimate as explained in Complement 5.6.4.

To reduce the computational burden of the above algorithm we can run it
with a value of K that is not much larger than N (e.g., K ∈ [2N, 4N ]). After the
iterations are terminated, the final spectral estimate can be evaluated on a (much)
finer frequency grid, if desired.

A cyclic minimizer reduces the criterion function at each iteration (see the
discussion in Complement 4.9.5). Furthermore, in the present case this reduction is
strict because the solutions to the minimization problems with respect to yu and to
{h(ωk), β(ωk)} in Steps 1 and 2 are unique under weak conditions. Combining this
observation with the fact that the criterion in (5.6.57) is bounded from below by
zero, we can conclude that the GAPES algorithm converges to a minimum point of
(5.6.57). This minimum may be a local or global minimum, depending in part on the
quality of the initial estimates of {h(ωk), β(ωk)} used in Step 0. The initialization
step, as well as the remaining steps in the GAPES algorithm, are discussed in more
detail below.

Step 0. A simple way to obtain initial estimates of {h(ωk), β(ωk)} is to apply
APES to the full-data sequence with yu = 0. This way of initializing GAPES can
be interpreted as permuting Step 1 with Step 2 in the algorithm and initializing
the algorithm in Step 0 with yu = 0.

A more elaborate initialization scheme consists of using only the available data
samples to build the sample covariance matrix R̂ in (5.6.47) needed in APES. Pro-
vided that there are enough samples so that the resulting R̂ matrix is nonsingular,
this initialization scheme usually gives more accurate estimates of {h(ωk), β(ωk)}
than the ones obtained by setting yu = 0 (see [Stoica, Larsson, and Li 2000]
for details).

Step 1. We want to find the solution ŷu to the problem:

min
yu

K∑

k=1

N∑

t=m+1

∣
∣
∣ĥ∗(ωk)ỹ(t) − β̂(ωk)e

iωkt
∣
∣
∣

2

(5.6.58)
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where ỹ(t) = [y(t), y(t− 1), . . . , y(t−m)]
T
. We will show that the above minimiza-

tion problem is quadratic in yu (for given {ĥ(ωk)} and {β̂(ωk)}), and thus admits
a closed-form solution.

Let ĥ∗(ωk) = [h0,k, h1,k, . . . , hm,k] and define

Hk =






h0,k h1,k · · · hm,k 0
. . .

. . .
. . .

0 h0,k h1,k · · · hm,k




 , (N −m) ×N

µk = β̂(ωk)






eiωkN

...
eiωk(m+1)




 , (N −m) × 1

Using this notation we can write the quadratic criterion in (5.6.58) as

K∑

k=1

∥
∥
∥
∥
∥
∥
∥

Hk






y(N)
...

y(1)




− µk

∥
∥
∥
∥
∥
∥
∥

2

(5.6.59)

Next, we define the matrices Ak and Uk via the following equality:

Hk






y(N)
...

y(1)




 = Akya + Ukyu (5.6.60)

With this notation, the criterion in (5.6.59) becomes:

K∑

k=1

‖Ukyu − (µk −Akya)‖2
(5.6.61)

The minimizer of (5.6.61) with respect to yu is readily found to be (see Result R32
in Appendix A):

ŷu =

[
K∑

k=1

U∗
kUk

]−1 [ K∑

k=1

U∗
k (µk −Akya)

]

(5.6.62)

The inverse matrix above exists under weak conditions; for details, see [Stoica,

Larsson, and Li 2000].

Step 2. The solution to this step can be computed by applying the APES
algorithm in Complement 5.6.4 to the data sequence made from ya and ŷu.

The description of the GAPES algorithm in now complete. Numerical experi-
ence with this algorithm, reported in [Stoica, Larsson, and Li 2000], suggests
that GAPES has good performance, particularly for data consisting of a mixture
of sinusoidal signals superimposed in noise.
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5.6.6 Extensions of Filter Bank Approaches to Two–Dimensional Signals

The following filter bank approaches for one-dimensional (1D) signals were discussed
so far in this chapter and its complements:

• the periodogram,

• the refined filter bank method,

• the Capon method, and

• the APES method

In this complement we will explain briefly how the above nonparametric spectral
analysis methods can be extended to the case of two–dimensional (2D) signals. In
the process, we also provide new interpretations for some of these methods, which
are particularly useful when we want very simple (although somewhat heuristic)
derivations of the methods in question. We will in turn discuss the extension of
each of the methods listed above. Note that 2D spectral analysis finds applica-
tions in image processing, synthetic aperture radar imagery, and so forth. See
[Larsson, Li, and Stoica 2003] for a review that covers the 2D methods dis-
cussed in this complement, and their application to synthetic aperture radar. The
2D extension of some parametric methods for spectral line analysis is discussed in
Complement 4.9.7.

Periodogram

The 1D periodogram can be obtained by a least-squares (LS) fitting of the data
{y(t)} to a generic 1D sinusoidal sequence {βeiωt}:

min
β

N∑

t=1

∣
∣y(t) − βeiωt

∣
∣
2

(5.6.63)

The solution to (5.6.63) is readily found to be

β(ω) =
1

N

N∑

t=1

y(t)e−iωt (5.6.64)

The squared modulus of (5.6.64) (scaled by N ; see Section 5.2) gives the 1D peri-
odogram

1

N

∣
∣
∣
∣
∣

N∑

t=1

y(t)e−iωt

∣
∣
∣
∣
∣

2

(5.6.65)

In the 2D case, let {y(t, t̄ )} (for t = 1, . . . , N and t̄ = 1, . . . , N̄) denote the available
data matrix, and let {βei(ωt+ω̄t̄ )} denote a generic 2D sinusoid. The LS fit of the
data to the generic sinusoid, that is:

min
β

N∑

t=1

N̄∑

t̄=1

∣
∣
∣y(t, t̄ ) − βei(ωt+ω̄t̄ )

∣
∣
∣

2

⇐⇒ min
β

N∑

t=1

N̄∑

t̄=1

∣
∣
∣y(t, t̄ )e−i(ωt+ω̄t̄ ) − β

∣
∣
∣

2

(5.6.66)
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has the following solution:

β(ω, ω̄) =
1

NN̄

N∑

t=1

N̄∑

t̄=1

y(t, t̄ )e−i(ωt+ω̄t̄ ) (5.6.67)

Similarly to the 1D case, the scaled squared magnitude of (5.6.67) yields the 2D
periodogram

1

NN̄

∣
∣
∣
∣
∣
∣

N∑

t=1

N̄∑

t̄=1

y(t, t̄ )e−i(ωt+ω̄t̄ )

∣
∣
∣
∣
∣
∣

2

(5.6.68)

which can be efficiently computed by means of a 2D FFT algorithm as described
below.

The 2D FFT algorithm computes the 2D DTFT of a sequence {y(t, t̄ )} (for
t = 1, . . . , N ; t̄ = 1, . . . , N̄ ) on a grid of frequency values defined by

ωk =
2πk

N
, k = 0, . . . , N − 1

ω̄` =
2π`

N̄
, ` = 0, . . . , N̄ − 1

The 2D FFT algorithm achieves computational efficiency by making use of the 1D
FFT described in Section 2.3. Let

Y (k, `) =

N∑

t=1

N̄∑

t̄=1

y(t, t̄ )e
−i
(

2πk

N
t+ 2π`

N̄
t̄
)

=

N∑

t=1

e
−i 2πk

N
t
N̄∑

t̄=1

y(t, t̄ )e
−i 2π`

N̄
t̄

︸ ︷︷ ︸

,Vt(`)

(5.6.69)

=

N∑

t=1

Vt(`)e
−i 2πk

N
t

(5.6.70)

For each t = 1, . . . , N , the sequence {Vt(`)}N̄−1
`=0 defined in (5.6.69) can be efficiently

computed using a 1D FFT of length N̄ (cf. Section 2.3). In addition, for each
` = 0, . . . , N̄ − 1, the sum in (5.6.70) can be efficiently computed using a 1D FFT
of length N . If N is a power of two, an N -point 1D FFT requires N

2 log2N flops.
Thus, if N and N̄ are powers of two, then the number of operations needed to
compute {Y (k, `)} is

N
N̄

2
log2 N̄ + N̄

N

2
log2N =

NN̄

2
log2(NN̄) flops (5.6.71)

If N or N̄ is not a power of two, zero padding can be used.
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Refined Filter Bank (RFB) Method

Similarly to the 1D case (see (5.3.30) or (5.7.1)), the 2D RFB method can be
implemented as a multiwindowed periodogram (cf. (5.6.68)):

1

K

K∑

p=1

∣
∣
∣
∣
∣
∣

N∑

t=1

N̄∑

t̄=1

wp(t, t̄ ) y(t, t̄ ) e
−i(ωt+ω̄t̄ )

∣
∣
∣
∣
∣
∣

2

(5.6.72)

where {wp(t, t̄ )}Kp=1 are the 2D Slepian data windows (or tapers). The problem left
is to derive 2D extensions of the 1D Slepian tapers discussed in Section 5.3.1.

The frequency response of a 2D taper {w(t, t̄ )} is given by

N∑

t=1

N̄∑

t̄=1

w(t, t̄ )e−i(ωt+ω̄t̄ ) (5.6.73)

Let us define the matrices

W =






w(1, 1) · · · w(1, N̄)
...

...
w(N, 1) · · · w(N, N̄)






B =






e−i(ω+ω̄) · · · e−i(ω+ω̄N̄)

...
...

e−i(ωN+ω̄) · · · e−i(ωN+ω̄N̄)






and let vec(·) denote the vectorizaton operator which stacks the columns of its
matrix argument into a single vector. Also, let

a(ω) =






e−iω

...
e−iNω




 , ā(ω) =






e−iω̄

...

e−iN̄ω̄




 (5.6.74)

and let the symbol ⊗ denote the Kronecker matrix product; the Kronecker product
of two matrices, X of size m×n and Y of size m̄× n̄, is an mm̄×nn̄ matrix whose
(i, j) block of size m̄ × n̄ is given by Xij · Y , for i = 1, . . . ,m and j = 1, . . . , n,
where Xij denotes the (i, j)th element of X (see, e.g., [Horn and Johnson 1985]
for the properties of ⊗). Finally, let

w = vec(W )

=
[
w(1, 1), . . . , w(N, 1)| · · · |w(1, N̄), . . . , w(N, N̄)

]T
(5.6.75)

and

b(ω, ω̄) = vec(B)

=
[

e−i(ω+ω̄), . . . , e−i(ωN+ω̄)| · · · |e−i(ω+ω̄N̄), . . . , e−i(ωN+ω̄N̄)
]T

= ā(ω̄) ⊗ a(ω) (5.6.76)
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(the last equality in (5.6.76) follows from the definition of ⊗). Using (5.6.75) and
(5.6.76), we can write (5.6.73) as

w∗b(ω, ω̄) (5.6.77)

which is similar to the expression h∗a(ω) for the 1D frequency response in Sec-
tion 5.3.1. Hence, the analysis in Section 5.3.1 carries over to the 2D case, with the
only difference that now the matrix Γ is given by

Γ2D =
1

(2π)2

∫ βπ

−βπ

∫ β̄π

−β̄π
b(ω, ω̄)b∗(ω, ω̄)dω dω̄

=
1

(2π)2

∫ βπ

−βπ

∫ β̄π

−β̄π
[ā(ω̄)ā∗(ω̄)] ⊗ [a(ω)a∗(ω)] dω dω̄

where we have used the fact that (A⊗B)(C⊗D) = AC⊗BD for any conformable
matrices (see, e.g., [Horn and Johnson 1985]). Hence,

Γ2D = Γ̄1D ⊗ Γ1D (5.6.78)

where

Γ1D =
1

2π

∫ βπ

−βπ
a(ω)a∗(ω)dω, Γ̄1D =

1

2π

∫ β̄π

−β̄π
ā(ω̄)ā∗(ω̄)dω̄ (5.6.79)

The above Kronecker product expression of Γ2D implies that (see [Horn and

Johnson 1985]):

(a) The eigenvalues of Γ2D are equal to the products of the eigenvalues of Γ1D

and Γ̄1D.

(b) The eigenvectors of Γ2D are given by the Kronecker products of the eigenvec-
tors of Γ1D and Γ̄1D.

The conclusion is that the computation of 2D Slepian tapers can be reduced to the
computation of 1D Slepian tapers. We refer the reader to Section 5.3.1, and the
references cited there, for details on 1D Slepian taper computation.

Capon and APES Methods

In the 1D case we can obtain the Capon and APES methods by a weighted LS fit
of the data vectors {ỹ(t)}, where

ỹ(t) = [y(t), y(t− 1), . . . , y(t−m)]
T

(5.6.80)

to the vectors corresponding to a generic sinusoidal signal with frequency ω. Specif-
ically, consider the LS problem:

min
β

N∑

t=m+1

[
ỹ(t) − a(ω)βeiωt

]∗
W−1

[
ỹ(t) − a(ω)βeiωt

]
(5.6.81)
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where W−1 is a weighting matrix which is yet to be specified, and where

a(ω) =
[
1, e−iω, . . . , e−imω]T (5.6.82)

Note that the definition of a(ω) in (5.6.82) differs from that of a(ω) in (5.6.74).
The solution to (5.6.81) is given by

β(ω) =
a∗(ω)W−1g(ω)

a∗(ω)W−1a(ω)
(5.6.83)

where

g(ω) =
1

N −m

N∑

t=m+1

ỹ(t)e−iωt (5.6.84)

For

W = R̂ ,
1

N −m

N∑

t=m+1

ỹ(t)ỹ∗(t) (5.6.85)

the weighted LS estimate of the amplitude spectrum in (5.6.83) reduces to the
Capon method (see equation (5.6.55) in Complement 5.6.4), whereas for

W = R̂− g(ω)g∗(ω) , Q̂(ω) (5.6.86)

equation (5.6.83) gives the APES method (see equations (5.6.48), (5.6.49), and
(5.6.51) in Complement 5.6.4).

The extension of the above derivation to the 2D case is straightforward. By
analogy with the 1D data vector in (5.6.80), let

[
y(t− k, t̄− k̄)

]
=






y(t, t̄ ) · · · y(t, t̄− m̄ )
...

...
y(t−m, t̄ ) · · · y(t−m, t̄− m̄ )




 (5.6.87)

be the 2D data matrix, and let

ỹ(t, t̄ ) = vec
([
y(t− k, t̄− k̄)

])

=
[
y(t, t̄ ), . . . , y(t−m, t̄ )| · · · |y(t, t̄− m̄ ), . . . , y(t−m, t̄− m̄ )

]T
(5.6.88)

Our goal is to fit the data matrix in (5.6.87) to the matrix corresponding to a
generic 2D sinusoid with frequency pair (ω, ω̄), that is:

[

βei[ω(t−k)+ω̄(t̄−k̄ )]
]

= β






ei[ωt+ω̄t̄ ] · · · ei[ωt+ω̄(t̄−m̄ )]

...
...

ei[ω(t−m)+ω̄t̄ ] · · · ei[ω(t−m)+ω̄(t̄−m̄ )]




 (5.6.89)

Similarly to (5.6.88), let us vectorize (5.6.89):

vec
([

βei[ω(t−k)+ω̄(t̄−k̄ )]
])

= βei(ωt+ω̄t̄ ) vec
([

e−i(ωk+ω̄k̄ )
])

= βei(ωt+ω̄t̄ )ā(ω̄) ⊗ a(ω) (5.6.90)
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As in (5.6.76), let

b(ω, ω̄) = ā(ω̄) ⊗ a(ω), (m+ 1)(m̄+ 1) × 1 (5.6.91)

We deduce from (5.6.88)–(5.6.91) that the 2D counterpart of the 1D weighted LS
fitting problem in (5.6.81) is the following:

min
β

N∑

t=m+1

N̄∑

t̄=m̄+1

[

ỹ(t, t̄ ) − βei(ωt+ω̄t̄ )b(ω, ω̄)
]∗
W−1

·
[

ỹ(t, t̄ ) − βei(ωt+ω̄t̄ )b(ω, ω̄)
]

(5.6.92)

The solution to (5.6.92) is given by:

β(ω, ω̄) =
b∗(ω, ω̄)W−1g(ω, ω̄)

b∗(ω, ω̄)W−1b(ω, ω̄)
(5.6.93)

where

g(ω, ω̄) =
1

(N −m)(N̄ − m̄ )

N∑

t=m+1

N̄∑

t̄=m̄+1

ỹ(t, t̄ )e−i(ωt+ω̄t̄ ) (5.6.94)

The 2D Capon method is given by (5.6.93) with

W =
1

(N −m)(N̄ − m̄ )

N∑

t=m+1

N̄∑

t̄=m̄+1

ỹ(t, t̄ )ỹ∗(t, t̄ ) , R̂ (5.6.95)

whereas the 2D APES method is given by (5.6.93) with

W = R̂− g(ω, ω̄)g∗(ω, ω̄) , Q̂(ω, ω̄) (5.6.96)

Note that g(ω, ω̄) in (5.6.94) can be efficiently evaluated using a 2D FFT algo-
rithm. However, an efficient implementation of the 2D spectral estimate in (5.6.93)
is not so direct. A naive implementation may be rather time consuming owing to
the large dimensions of the vectors and matrices involved, as well as the need to
evaluate β(ω, ω̄) on a 2D frequency grid. We refer the reader to [Larsson, Li,

and Stoica 2003] and the references therein for a discussion of computationally
efficient implementations of 2D Capon and 2D APES spectral estimation methods.
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5.7 EXERCISES

Exercise 5.1: Multiwindow Interpretation of Bartlett and Welch Meth-
ods

Equation (5.3.30) allows us to interpret the RFB method as a multiwindow
(or multitaper) approach. Indeed, according to equation (5.3.30), we can write the
RFB spectral estimator as:

φ̂(ω) =
1

K

K∑

p=1

∣
∣
∣
∣
∣

N∑

t=1

wp,ty(t)e
−iωt

∣
∣
∣
∣
∣

2

(5.7.1)

where K is the number of data windows (or tapers), and where in the case of RFB
the wp,t are obtained from the pth dominant Slepian sequence (p = 1, . . . ,K).

Show that the Bartlett and Welch methods can also be cast into the previous
multiwindow framework. Make use of the multiwindow interpretation of these
methods to compare them with one another and with the RFB approach.

Exercise 5.2: An Alternative Statistically Stable RFB Estimate
In Section 5.3.3 we developed a statistically stable RFB spectral estimator

using a bank of narrow bandpass filters. In Section 5.4 we derived the Capon
method, which employs a shorter filter length than the RFB. In this exercise we
derive the RFB analog of the Capon approach and show its correspondence with
the Welch and Blackman–Tukey estimators.

As an alternative technique to the filter in (5.3.4), consider a passband filter
of shorter length:

h = [h0, . . . , hm]∗ (5.7.2)

for some m < N . The optimal h will be the first Slepian sequence in (5.3.10) found
using a Γ matrix of size m×m. In this case, the filtered output

yF (t) =

m∑

k=0

hkỹ(t− k) (5.7.3)

(with ỹ(t) = y(t)e−iωt) can be computed for t = m+ 1, . . . , N . The resulting RFB
spectral estimate is given by

φ̂(ω) =
1

N −m

N∑

t=m+1

|yF (t)|2 (5.7.4)

(a) Show that the estimator in (5.7.4) is an unbiased estimate of φ(ω), under the
standard assumptions considered in this chapter.

(b) Show that φ̂(ω) can be written as

φ̂(ω) =
1

m+ 1
h∗(ω)R̂ h(ω) (5.7.5)

where R̂ is an (m+1)× (m+1) Hermitian (but not Toeplitz) estimate of the
covariance matrix of y(t). Find the corresponding filter h(ω).
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(c) Compare (5.7.5) with the Blackman–Tukey estimate in equation (5.4.22). Dis-
cuss how the two compare when N is large.

(d) Interpret φ̂(ω) as a Welch–type estimator. What is the overlap parameter K
in the corresponding Welch method?

Exercise 5.3: Another Derivation of the Capon FIR Filter
The Capon FIR filter design problem can be restated as follows:

min
h

h∗Rh/|h∗a(ω)|2 (5.7.6)

Make use of the Cauchy–Schwartz inequality (Result R22 in Appendix A) to obtain
a simple proof of the fact that h given by (5.4.8) is a solution to the optimization
problem above.

Exercise 5.4: The Capon Filter is a Matched Filter
Compare the Capon filter design problem (5.4.7) with the following classical

matched filter design.

• Filter: A causal FIR filter with an (m + 1)–dimensional impulse response
vector denoted by h.

• Signal–in–noise model: y(t) = αeiωt + ε(t), which gives the following expres-
sion for the input vector to the filter:

z(t) = αa(ω)eiωt + e(t) (5.7.7)

where a(ω) is as defined in (5.4.6), αeiωt is a sinusoidal signal,

z(t) = [y(t), y(t− 1), . . . , y(t−m)]T

and e(t) is a possibly colored noise vector defined similarly to z(t). The signal
and noise terms above are assumed to be uncorrelated.

• Design goal: Maximize the signal–to–noise ratio in the filter’s output,

max
h

|h∗a(ω)|2/h∗Qh (5.7.8)

where Q is the noise covariance matrix.

Show that the Capon filter is identical to the matched filter which solves the above
design problem. The adjective “matched” attached to the above filter is motivated
by the fact that the filter impulse response vector h depends on, and hence is
“matched to”, the signal term in (5.7.7).

Exercise 5.5: Computation of the Capon Spectrum
The Capon spectral estimators are defined in equations (5.4.19) and (5.4.20).

The bulk of the computation of either estimator consists in the evaluation of an
expression of the form a∗(ω)Qa(ω), where Q is a given positive definite matrix, at
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a number of points on the frequency axis. Let these evaluation points be given by
{ωk = 2πk/M}M−1

k=0 for some sufficiently large M value (which we assume to be a
power of two). The direct evaluation of a∗(ωk)Qa(ωk), for k = 0, . . . ,M − 1, would
require O(Mm2) flops. Show that an evaluation based on the eigendecomposition
of Q and the use of FFT is usually much more efficient computationally.

Exercise 5.6: A Relationship between the Capon Method and MUSIC
(Pseudo)Spectra

Assume that the covariance matrix R, entering the Capon spectrum formula,
has the expression (4.2.7) in the frequency estimation application. Then, show that

lim
σ2→0

(σ2R−1) = I −A(A∗A)−1A∗ (5.7.9)

Conclude that the limiting (for N � 1) Capon and MUSIC (pseudo)spectra, asso-
ciated with the frequency estimation data, are close to one another, provided that
all signal–to–noise ratios are large enough.

Exercise 5.7: A Capon–like Implementation of MUSIC
The Capon and MUSIC (pseudo)spectra, as the data length N increases, are

given by the functions in equations (5.4.12) and (4.5.13), respectively. Recall that
the columns of the matrix G in (4.5.13) are equal to the (m − n) eigenvectors
corresponding to the smallest eigenvalues of the covariance matrix R in (5.4.12).

Consider the following Capon–like pseudospectrum:

gk(ω) = a∗(ω)R−ka(ω)λk (5.7.10)

where λ is the minimum eigenvalue of R; the covariance matrix R is assumed to
have the form (4.2.7) postulated by MUSIC. Show that, under this assumption,

lim
k→∞

gk(ω) = a∗(ω)GG∗a(ω) = (4.5.13) (5.7.11)

(where the convergence is uniform in ω). Explain why the convergence in (5.7.11)
may be slow in difficult scenarios, such as those with closely spaced frequencies,
and hence the use of (5.7.10) with a large k to approximate the MUSIC pseu-
dospectrum may be computationally inefficient. However, the use of (5.7.10) for
frequency estimation has a potential advantage over MUSIC that may outweigh its
computational inefficiency. Find and comment on that advantage.

Exercise 5.8: Capon Estimate of the Parameters of a Single Sine Wave
Assume that the data under study consists of a sinusoidal signal observed in

white noise. In such a case, the covariance matrix R is given by (cf. (4.2.7)):

R = α2a(ω0)a(ω0)
∗ + σ2I, (m×m)

where ω0 denotes the true frequency value. Show that the limiting (as N → ∞)
Capon spectrum (5.4.12) peaks at ω = ω0. Derive the height of the peak and show
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that it is not equal to α2 (as might have been expected) but is given by a function of
α2, m and σ2. Conclude that the Capon method can be used to obtain a consistent
estimate of the frequency of a single sinusoidal signal in white noise (but not of the
signal power).

We note that, for two or more sinusoidal signals, the Capon frequency esti-
mates are inconsistent. Hence the Capon frequency estimator behaves somewhat
similarly to the AR frequency estimation method in this respect; see Exercise 4.4.

Exercise 5.9: An Alternative Derivation of the Relationship between the
Capon and AR Methods

Make use of the equation (3.9.17) relating R−1
m+1 to R−1

m to obtain a simple
proof of the formula (5.4.36) relating the Capon and AR spectral estimators.

COMPUTER EXERCISES

Tools for Filter Bank Spectral Estimation:
The text web site www.prenhall.com/stoica contains the following Matlab

functions for use in computing filter bank spectral estimates.

• h=slepian(N,K,J)

Returns the first J Slepian sequences given N and K as defined in Section 5.3;
h is an N × J matrix whose ith column gives the ith Slepian sequence.

• phi=rfb(y,K,L)

The RFB spectral estimator. The vector y is the input data vector, L controls
the frequency sample spacing of the output, and the output vector phi= φ̂(ωk)
where ωk = 2πk

L . For K = 1, this function implements the high resolution
RFB method in equation (5.3.22), and for K > 1 it implements the statisti-
cally stable RFB method.

• phi=capon(y,m,L)

The CM Version–1 spectral estimator in equation (5.4.19); y, L, and phi are
as for the RFB spectral estimator, and m is the size of the square matrix R̂.

Exercise C5.10: Slepian Window Sequences
We consider the Slepian window sequences for both K = 1 (high resolution)

and K = 4 (lower resolution, higher statistical stability) and compare them with
classical window sequences.

(a) Evaluate and plot the first 8 Slepian window sequences and their Fourier
transforms for K = 1 and 4 and for N = 32, 64, and 128 (and perhaps other
values, too). Qualitatively describe the filter passbands of these first 8 Slepian
sequences for K = 1 and K = 4. Which act as lowpass filters and which act
as “other” types of filters?

(b) In this chapter we showed that for “large N” and K = 1, the first Slepian
sequence is “reasonably close to” the rectangular window; compare the first
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Slepian sequence and its Fourier transform for N = 32, 64, and 128 to the
rectangular window and its Fourier transform. How do they compare as a
function of N? Based on this comparison, how do you expect the high reso-
lution RFB PSD estimator to perform relative to the periodogram?

Exercise C5.11: Resolution of Refined Filter Bank Methods
We will compare the resolving power of the RFB spectral estimator with

K = 1 to that of the periodogram. To do so we look at the spectral estimates
of sequences which are made up of two sinusoids in noise, and where we vary the
frequency difference.

Generate the sequences

yα(t) = 10 sin(0.2 · 2πt) + 5 sin((0.2 + α/N)2πt)

for various values of α near 1. Compare the resolving ability of the RFB power
spectral estimate for K = 1 and of the periodogram for both N = 32 and N = 128.
Discuss your results in relation to the theoretical comparisons between the two
estimators. Do the results echo the theoretical predictions based on the analysis of
Slepian sequences?

Exercise C5.12: The Statistically Stable RFB Power Spectral Estimator
In this exercise we will compare the RFB power spectral estimator whenK = 4

to the Blackman–Tukey and Daniell estimators. We will use the narrowband and
broadband processes considered in Exercise C2.22.

Broadband ARMA Process:

(a) Generate 50 realizations of the broadband ARMA process in Exercise C2.22,
using N = 256. Estimate the spectrum using:

• The RFB method with K = 4.

• The Blackman–Tukey method with an appropriate window (such as the
Bartlett window) and window length M . Choose M to obtain similar
performance to the RFB method (you can select an appropriate value of
M off–line and verify it in your experiments).

• The Daniell method with Ñ = 8N and an appropriate choice of J .
Choose J to obtain similar performance to the RFB method (you can
select J off–line and verify it in your experiments).

(b) Evaluate the relative performance of the three estimators in terms of bias and
variance. Are the comparisons in agreement with the theoretical predictions?

Narrowband ARMA Process: Repeat parts (a) and (b) above using 50 real-
izations (with N = 256) of the narrowband ARMA process in Exercise C2.22.

Exercise C5.13: The Capon Method
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In this exercise we compare the Capon method to the RFB and AR methods.
Consider the sinusoidal data sequence in equation (2.9.20) from Exercise C2.19,
with N = 64.

(a) We first compare the data filters corresponding to a RFB method (in which the
filter is data independent) with the filter corresponding to the CM Version–1
method using both m = N/4 and m = N/2 − 1; we choose the Slepian RFB
method with K = 1 and K = 4 for this comparison. For two estimation
frequencies, ω = 0 and ω = 2π · 0.1, plot the frequency response of the five
filters (1 for K = 1 and 4 for K = 4) shown in the first block of Figure 5.1
for the two RFB methods, and also plot the response of the two Capon filters
(one for each value of m; see (5.4.5) and (5.4.8)). What are their characteristic
features in relation to the data? Based on these plots, discuss how data
dependence can improve spectral estimation performance.

(b) Compare the two Capon estimators with the RFB estimator for both K = 1
and K = 4. Generate 50 Monte–Carlo realizations of the data and overlay
plots of the 50 spectral estimates for each estimator. Discuss the similarities
and differences between the RFB and Capon estimators.

(c) Compare Capon and Least Squares AR spectral estimates, again by generating
50 Monte–Carlo realizations of the data and overlaying plots of the 50 spectral
estimates. Use m = 8, 16, and 30 for both the Capon method and the AR
model order. How do the two methods compare in terms of resolution and
variance? What are your main summarizing conclusions? Explain your results
in terms of the data characteristics.
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C H A P T E R 6

Spatial Methods

6.1 INTRODUCTION

In this chapter, we consider the problem of locating n radiating sources by using an
array of m passive sensors, as shown in Figure 6.1. The emitted energy from the
sources may for example be acoustic, electromagnetic, and so on, and the receiv-
ing sensors may be any transducers that convert the received energy to electrical
signals. Examples of sensors include electromagnetic antennas, hydrophones, and
seismometers. This type of problem finds applications in radar and sonar systems,
communications, astrophysics, biomedical research, seismology, underwater surveil-
lance (also called passive listening) and many other fields. This problem basically
consists of determining how the “energy” is distributed over space (which may be
air, water or the earth), with the source positions representing points in space with
high concentrations of energy. Hence, it can be named a spatial spectral estima-
tion problem. This name is also motivated by the fact that there are close ties
between the source location problem and the problem of temporal spectral estima-
tion treated in Chapters 1–5. In fact, as we will see, almost any of the methods
encountered in the previous chapters may be used to derive a solution for the source
location problem.

The emphasis in this chapter will be on developing a model for the output
signal of the receiving sensor array. When this model is derived, the source location
problem is turned into a parameter estimation problem that is quite similar to the
temporal–frequency finding application discussed in Chapter 4. Hence, as we shall
see, most of the methods developed for frequency estimation can be used to solve
the spatial problem of source location.

The sources in Figure 6.1 generate a wave field that travels through space and
is sampled, in both space and time, by the sensor array. By making analogy with
temporal sampling, we may expect that the spatial sampling done by the array
provides more and more information on the incoming waves as the array’s aperture
increases. The array’s aperture is the space occupied by the array, as measured
in units of signal wavelength. It is then no surprise that an array of sensors may
provide significantly enhanced location performance as compared to the use of a
single antenna (which was the system used in the early applications of the source
location problem.)

The development of the array model in the next section is based on a number
of simplifying assumptions. Some of these assumptions, which have a more general
character, are listed below. The sources are assumed to be situated in the far field
of the array. Furthermore, we assume that both the sources and the sensors in the
array are in the same plane and that the sources are point emitters. In addition,
it is assumed that the propagation medium is homogeneous (i.e., not dispersive) so

263
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Figure 6.1. The setup of the source location problem.

that the waves arriving at the array can be considered to be planar. Under these
assumptions, the only parameter that characterizes the source locations is the so–
called angle of arrival, or direction of arrival (DOA); the DOA will be formally
defined later on.

The above assumptions may be relaxed at the expense of significantly com-
plicating the array model. Note that in the general case of a near–field source
and a three–dimensional array, three parameters are required to define the position
of one source, for instance the azimuth, elevation and range. Nevertheless, if the
assumption of planar waves is maintained then we can treat the case of several un-
known parameters per source without complicating the model too much. However,
in order to keep the discussion as simple as possible, we will only consider the case
of one parameter per source.

In this chapter, it is also assumed that the number of sources n is known. The
selection of n, when it is unknown, is a problem of significant importance for many
applications, which is often referred to as the detection problem. For solutions
to the detection problem (which is analogous to the problem of order selection
in signal modeling), the reader is referred to [Wax and Kailath 1985; Fuchs

1988; Viberg, Ottersten, and Kailath 1991; Fuchs 1992] and Appendix C.

Finally, it is assumed that the sensors in the array can be modeled as linear
(time–invariant) systems; and that their transfer characteristics as well as their
locations are known. In short, we say that the array is assumed to be calibrated.
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6.2 ARRAY MODEL

We begin by considering the case of a single source. Once we establish a model
of the array for this case, the general model for the multiple source case is simply
obtained by the superposition principle.

Suppose that a single waveform impinges upon the array and let x(t) denote
the value of the signal waveform as measured at some reference point, at time t. The
“reference point” may be one of the sensors in the array, or any other point placed
near enough to the array so that the previously made assumption of planar wave
propagation holds true. The physical signals received by the array are continuous
time waveforms and hence t is a continuous variable here, unless otherwise stated.

Let τk denote the time needed for the wave to travel from the reference point
to sensor k (k = 1, . . . ,m). Then the output of sensor k can be written as

ȳk(t) = h̄k(t) ∗ x(t− τk) + ēk(t) (6.2.1)

where h̄k(t) is the impulse response of the kth sensor, “∗” denotes the convolu-
tion operation, and ēk(t) is an additive noise. The noise may enter in equation
(6.2.1) either as “thermal noise” generated by the sensor’s circuitry, as “random
background radiation” impinging on the array, or in other ways. In (6.2.1), h̄k(t)
is assumed known and the “input” signal x(t) as well as the delay τk are unknown.
The parameters characterizing the source location enter in (6.2.1) through {τk}.
Hence, the source location problem is basically one of time–delay estimation for the
unknown input case.

The model equation (6.2.1) can be simplified significantly if the signals are
assumed to be narrowband. In order to show how this can be done, a number of
preliminaries are required.

Let X(ω) denote the Fourier transform of the (continuous–time) signal x(t):

X(ω) =

∫ ∞

−∞
x(t)e−iωtdt (6.2.2)

(which is assumed to exist and be finite for all ω ∈ (−∞,∞)). The inverse trans-
form, which expresses x(t) as a linear functional of X(ω), is given by

x(t) =
1

2π

∫ ∞

−∞
X(ω)eiωtdω (6.2.3)

Similarly, we define the transfer function H̄k(ω) of the kth sensor as the Fourier
transform of h̄k(t). In addition, let Ȳk(ω) and Ēk(ω) denote the Fourier trans-
forms of the signal ȳk(t) and noise ēk(t) in (6.2.1). By using this notation and the
properties of the Fourier transform, Ȳk(ω) can be written as

Ȳk(ω) = H̄k(ω)X(ω)e−iωτk + Ēk(ω) (6.2.4)

For a general class of physical signals, such as carrier modulated signals encountered
in communications, the energy spectral density of x(t) has the form shown in Figure
6.2. There, ωc denotes the center (or carrier) frequency which is usually the center
of the frequency band occupied by the signal (hence its name). A signal having an
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Figure 6.2. The energy spectrum of a bandpass signal.

energy spectrum of the form depicted in Figure 6.2 is called a bandpass signal (by
direct analogy with the notion of bandpass filters).

For now, we assume that the received signal x(t) is bandpass. It is clear from
Figure 6.2 that the spectrum of such a signal is completely defined by the spec-
trum of a corresponding baseband (or lowpass) signal. The baseband spectrum, say
|S(ω)|2, corresponding to the one in Figure 6.2, is displayed in Figure 6.3. Let s(t)
denote the baseband signal associated with x(t). The process of obtaining x(t) from
s(t) is called modulation, whereas the inverse process is named demodulation. In
the following we make a number of comments on the modulation and demodulation
processes, which — while not being strictly relevant to the source location problem
— may be helpful in clarifying some claims in the text.

Ã ÄÆÅ ÇÉÈ�Ã Ê

ÇË

Ì

Í

Figure 6.3. The baseband spectrum that gives rise to the bandpass spectrum in
Figure 6.2.

6.2.1 The Modulation–Transmission–Demodulation Process

The physical signal x(t) is real–valued and hence its spectrum |X(ω)|2 should be
even (i.e., symmetric about ω = 0; see, for instance, Figure 6.2). On the other
hand, the spectrum of the demodulated signal s(t) may not be even (as indicated
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in Figure 6.3) and hence s(t) may be complex–valued. The way in which this
may happen is explained as follows. The transmitted signal is, of course, obtained
by modulating a real–valued signal. Hence, in the spectrum of the transmitted
signal the baseband spectrum is symmetric about ω = ωc. The characteristics of
the transmission channel (or the propagation medium), however, most often are
asymmetric about ω = ωc. This results in a received bandpass signal with an
associated baseband spectrum that is not even. Hence, the demodulated received
signal is complex–valued. This observation supports a claim made in Chapter 1
that complex–valued signals are not uncommon in spectral estimation problems.

The Modulation Process: If s(t) is multiplied by eiωct, then the Fourier trans-
form of s(t) is translated in frequency to the right by ωc (assumed to be positive),
as is verified by

∫ ∞

−∞
s(t)eiωcte−iωtdω =

∫ ∞

−∞
s(t)e−i(ω−ωc)tdω = S(ω − ωc) (6.2.5)

The above formula describes the essence of the so–called complex modulation pro-
cess. (An analogous formula for random discrete–time signals is given by equation
(1.4.11) in Chapter 1.) The output of the complex modulation process is always
complex–valued (hence the name of this form of modulation). If the modulated
signal is real–valued, as x(t) is, then it must have an even spectrum. In such a case
the translation of S(ω) to the right by ωc, as in (6.2.5), must be accompanied by a
translation to the left (also by ωc) of the folded and complex–conjugated baseband
spectrum. This process results in the following expression for X(ω):

X(ω) = S(ω − ωc) + S∗(−(ω + ωc) ) (6.2.6)

It is readily verified that in the time domain, the real modulation process leading
to (6.2.6) corresponds to taking the real part of the complex–modulated signal
s(t)eiωct:

x(t) =
1

2π

∫ ∞

−∞
[S(ω − ωc) + S∗(−ω − ωc)]e

iωtdω

=
1

2π

∫ ∞

−∞
S(ω − ωc)e

i(ω−ωc)teiωctdω

+

[
1

2π

∫ ∞

−∞
S(−ω − ωc)e

−i(ω+ωc)teiωctdω

]∗

= s(t)eiωct + [s(t)eiωct]∗

which gives

x(t) = 2Re[s(t)eiωct] (6.2.7)

or

x(t) = 2α(t) cos(ωct+ ϕ(t)) (6.2.8)
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where α(t) and ϕ(t) are the amplitude and phase of s(t), respectively:

s(t) = α(t)eiϕ(t)

If we let sI(t) and sQ(t) denote the real and imaginary parts of s(t), then we can
also write (6.2.7) as

x(t) = 2[sI(t) cos(ωct) − sQ(t) sin(ωct)] (6.2.9)

We note in passing the following terminology associated with the equivalent time–
domain representations (6.2.7)–(6.2.9) of a bandpass signal: s(t) is called the com-
plex envelope of x(t); and sI(t) and sQ(t) are said to be the in–phase and quadrature
components of x(t).

The Demodulation Process: A calculation similar to (6.2.5) shows that the
Fourier transform of x(t)e−iωct is given by

[S(ω) + S∗(−ω − 2ωc)]

which is simply X(ω) translated in frequency to the left by ωc. The baseband (or
lowpass) signal s(t) can then be obtained by filtering x(t)e−iωct with a baseband
(or lowpass) filter whose bandwidth is matched to that of S(ω). The hardware
implementation of the demodulation process is presented later on, in block form,
in Figure 6.4.

6.2.2 Derivation of the Model Equation

Given the background of the previous subsection, we return to equation (6.2.4)
describing the output of sensor k. Since x(t) is assumed to be a bandpass signal,
X(ω) is given by (6.2.6) which, when inserted in (6.2.4), leads to

Ȳk(ω) = H̄k(ω)[S(ω − ωc) + S∗(−ω − ωc)]e
−iωτk + Ēk(ω) (6.2.10)

Let ỹk(t) denote the demodulated signal:

ỹk(t) = ȳk(t)e
−iωct

It follows from (6.2.10) and the previous discussion on the demodulation process
that the Fourier transform of ỹk(t) is given by

Ỹk(ω) = H̄k(ω + ωc)[S(ω) + S∗(−ω − 2ωc)]e
−i(ω+ωc)τk

+Ēk(ω + ωc) (6.2.11)

When ỹk(t) is passed through a lowpass filter with bandwidth matched to S(ω),
in the filter output (say, yk(t)) the component in (6.2.11) centered at ω = −2ωc is
eliminated along with all the other frequency components that fall in the stopband
of the lowpass filter. Hence, we obtain:

Yk(ω) = Hk(ω + ωc)S(ω)e−i(ω+ωc)τk + Ek(ω + ωc) (6.2.12)



“sm2”
2004/2/22
page 269

i

i

i

i

i

i

i

i

Section 6.2 Array Model 269

whereHk(ω+ωc) and Ek(ω+ωc) denote the parts of H̄k(ω+ωc) and Ēk(ω+ωc) that
fall within the lowpass filter’s passband, Ω, and where the frequency ω is restricted
to Ω.

We now make the following key assumption.

The received signals are narrowband, so that |S(ω)| decreases
rapidly with increasing |ω|. (6.2.13)

Under the assumption above, (6.2.12) reduces (in an approximate way) to the
following equation:

Yk(ω) = Hk(ωc)S(ω)e−iωcτk + Ek(ω + ωc) for ω ∈ Ω (6.2.14)

Because Hk(ωc) must be different from zero, the sensor transfer function H̄k(ω)
should pass frequencies near ω = ωc (as expected, since ωc is the center frequency
of the received signal). Also note that we do not replace Ek(ω + ωc) in (6.2.14) by
Ek(ωc) since this term might not be (nearly) constant over the signal bandwidth
(for instance, this would be the case when the noise term in (6.2.12) contains a
narrowband interference with the same center frequency as the signal).

Remark: It is sometimes claimed that (6.2.12) can be reduced to (6.2.14) even if
the signals are broadband but the sensors in the array are narrowband with center
frequency ω = ωc. Under such an assumption, |Hk(ω+ωc)| goes quickly to zero as
|ω| increases and hence (6.2.12) becomes

Yk(ω) = Hk(ω + ωc)S(0)e−iωcτk + Ek(ω + ωc) (6.2.15)

which apparently is different from (6.2.14). In order to obtain (6.2.14) from (6.2.12)
under the previous conditions, we need to make some additional assumptions.
Hence, if we further assume that the sensor frequency response is flat over the
passband (so that Hk(ω + ωc) = Hk(ωc)) and that the signal spectrum varies over
the sensor passband (so that S(ω) differs quite a bit from S(0) over the passband
in question) then we can still obtain (6.2.14) from (6.2.12).

The model of the array is derived in a straightforward manner from equation
(6.2.14). The time–domain counterpart of (6.2.14) is the following:

yk(t) = Hk(ωc)e
−iωcτks(t) + ek(t) (6.2.16)

where yk(t) and ek(t) are the inverse Fourier transforms of the corresponding terms
in (6.2.14) (by a slight abuse of notation, ek(t) is associated with Ek(ω + ωc), not
Ek(ω)).

The hardware implementation required to obtain {yk(t)}, as defined above,
is indicated in Figure 6.4. Note that the scheme in Figure 6.4 generates samples
of the real and imaginary components of yk(t). These samples are paired in the
digital machine following the analog scheme of Figure 6.4 to obtain samples of the
complex–valued signal yk(t). (We stress once more that all physical analog signals
are real–valued.) Note that the continuous–time signal in (6.2.16) is bandlimited:
according to (6.2.14) (and the related discussion), Yk(ω) is approximately equal to
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zero for ω 6∈ Ω. Here Ω is the support of S(ω) (recall that the filter bandwidth is
matched to the signal bandwidth), and hence it is a narrow interval. Consequently
we can sample (6.2.16) with a rather low sampling frequency.

The sampled version of {yk(t)} is used by the “digital processing equipment”
for the purpose of DOA estimation. Of course, the digital form of {yk(t)} satisfies an
equation directly analogous to (6.2.16). In fact, to avoid a complication of notation
by the introduction of a new discrete–time variable, from here on we consider that
t in equation (6.2.16) takes discrete values

t = 1, 2, . . . , N (6.2.17)

(as usual, we choose the sampling period as the unit of the time axis). We remark
once again that the scheme in Figure 6.4 samples the baseband signal, which may
be done using lower sampling rates compared to those needed for the bandpass
signal (see also [Proakis, Rader, Ling, and Nikias 1992]).
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Figure 6.4. A simplified block diagram of the analog processing in a receiving
array element.

Next, we introduce the so–called array transfer vector (or direction vector):

a(θ) = [H1(ωc)e
−iωcτ1 . . . Hm(ωc)e

−iωcτm ]T (6.2.18)

Here, θ denotes the source’s direction of arrival which is the parameter of interest
in our problem. Note that since the transfer characteristics and positions of the
sensors in the array are assumed to be known, the vector in (6.2.18) is a function
of θ only, as indicated by notation (this fact will be illustrated shortly by means
of a particular form of array). By making use of (6.2.18), we can write equation
(6.2.16) as

y(t) = a(θ)s(t) + e(t) (6.2.19)

where

y(t) = [y1(t) . . . ym(t)]T

e(t) = [e1(t) . . . em(t)]T
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denote the array’s output vector and the additive noise vector, respectively. It
should be noted that θ enters in (6.2.18) not only through {τk} but also through
{Hk(ωc)}. In some cases, the sensors may be considered to be omnidirectional over
the DOA range of interest, and then {Hk(ωc)}mk=1 are independent of θ. Sometimes,
the sensors may also be assumed to be identical. Then by redefining the signal
(H(ωc)s(t) is redefined as s(t)) and selecting the first sensor as the reference point,
the expression (6.2.18) can be simplified to the following form:

a(θ) = [1 e−iωcτ2 . . . e−iωcτm ]T (6.2.20)

The extension of equation (6.2.19) to the case of multiple sources is straightfor-
ward. Since the sensors in the array were assumed to be linear elements, a direct
application of the superposition principle leads to the following model of the array.

y(t) = [a(θ1) . . . a(θn)]






s1(t)
...

sn(t)




+ e(t) , As(t) + e(t)

θk = the DOA of the kth source

sk(t) = the signal corresponding to the kth source

(6.2.21)

It is interesting to note that the above model equation mainly relies on the
narrowband assumption (6.2.13). The planar wave assumption made in the intro-
ductory part of this chapter has not been used so far. This assumption is to be used
when deriving the explicit dependence of {τk} as a function of θ, as is illustrated in
the following for an array with a special geometry.

Uniform Linear Array: Consider the array of m identical sensors uniformly
spaced on a line, depicted in Figure 6.5. Such an array is commonly referred to as
a uniform linear array (ULA). Let d denote the distance between two consecutive
sensors, and let θ denote the DOA of the signal illuminating the array, as measured
(counterclockwise) with respect to the normal to the line of sensors. Then, under
the planar wave hypothesis and the assumption that the first sensor in the array is
chosen as the reference point, we find that

τk = (k − 1)
d sin θ

c
for θ ∈ [−90◦, 90◦] (6.2.22)

where c is the propagation velocity of the impinging waveform (for example, the
speed of light in the case of electromagnetic waves). Inserting (6.2.22) into (6.2.20)
gives

a(θ) =
[

1, e−iωcd sin θ/c, . . . , e−i(m−1)ωcd sin θ/c
]T

(6.2.23)

The restriction of θ to lie in the interval [−90◦, 90◦] is a limitation of ULAs: two
sources at locations symmetric with respect to the array line yield identical sets
of delays {τk} and hence cannot be distinguished from one another. In practice
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this ambiguity of ULAs is eliminated by using sensors that only pass signals whose
DOAs are in [−90◦, 90◦].

Let λ denote the signal wavelength:

λ = c/fc, fc = ωc/2π (6.2.24)

(which is the distance traveled by the waveform in one period of the carrier). Define

fs = fc
d sin θ

c
=
d sin θ

λ
(6.2.25)

and

ωs = 2πfs = ωc
d sin θ

c
(6.2.26)
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Figure 6.5. The uniform linear array scenario.

With this notation, the transfer vector (6.2.23) can be rewritten as:

a(θ) = [1 e−iωs . . . e−i(m−1)ωs ]T (6.2.27)

This is a Vandermonde vector which is completely analogous with the vector made
from the uniform samples of the sinusoidal signal {e−iωst}. Let us explore this
analogy a bit further.

First, by the above analogy, ωs is called the spatial frequency.
Second, if we were to sample a continuous–time sinusoidal signal with fre-

quency ωc then, in order to avoid aliasing effects, the sampling frequency f0 should
satisfy (by the Shannon sampling theorem):

f0 ≥ 2fc (6.2.28)
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or, equivalently,

T0 ≤ Tc
2

(6.2.29)

where T0 is the sampling period and Tc is the period of the continuous-time si-
nusoidal signal. Now, in the ULA case considered in this example, we see from
(6.2.27) that the vector a(θ) is uniquely defined (i.e., there is no “spatial aliasing”)
if and only if ωs is constrained as follows:

|ωs| ≤ π (6.2.30)

However, (6.2.30) is equivalent to

|fs| ≤ 1
2 ⇐⇒ d| sin θ| ≤ λ

2 (6.2.31)

Note that the above condition on d depends on θ. In particular, for a broadside
source (i.e., a source with θ = 0◦), (6.2.31) imposes no constraint on d. However, in
general we have no knowledge about the DOA of the source signal. Consequently,
we would like (6.2.31) to hold for any θ, which leads to the following condition on
d:

d ≤ λ

2
(6.2.32)

Since we may think of the ULA as performing a uniform spatial sampling of the
wavefield, equation (6.2.32) simply says that the (spatial) sampling period d should
be smaller than half of the signal wavelength. By analogy with (6.2.29), this result
may be interpreted as a spatial Shannon sampling theorem.

Equipped with the array model (6.2.21) derived previously, we can reduce
the problem of DOA finding to that of estimating the parameters {θk} in (6.2.21).
As there is a direct analogy between (6.2.21) and the model (4.2.6) for sinusoidal
signals in noise, we may expect that most of the methods developed in Chapter
4 for (temporal) frequency estimation can also be used for DOA estimation. This
is shown to be the case in the following sections, which briefly review the most
important DOA finding methods.

6.3 NONPARAMETRIC METHODS

The methods to be described in this section do not make any assumption on the
covariance structure of the data. As such, they may be considered to be “nonpara-
metric”. On the other hand, they assume that the functional form of the array’s
transfer vector a(θ) is known. Can we then still categorize them as “nonparametric
methods”? The array performs a spatial sampling of the incoming wavefront, which
is analogous to the temporal sampling done by the tapped–delay line implemen-
tation of a (temporal) finite impulse response (FIR) filter, see Figure 6.6. Thus,
assuming that the form of a(θ) is available is no more restrictive than making the
same assumption for a(ω) in Figure 6.6a. In conclusion, the functional form of
a(θ) characterizes the array as a spatial sampling device, and assuming it is known
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(Temporal sampling)
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Figure 6.6. Analogy between temporal sampling and filtering and the correspond-
ing (spatial) operations performed by an array of sensors.
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should not be considered to be parametric (or model–based) information. As al-
ready mentioned, an array for which the functional form of a(θ) is know is said to
be calibrated.

Figure 6.6 also makes an analogy between temporal FIR filtering and spatial
filtering using an array of sensors. In what follows, we comment briefly on this
analogy since it is of interest for the nonparametric approach to DOA finding. In
the time series case, a FIR filter is defined by the relation

yF (t) =

m−1∑

k=0

hku(t− k) , h∗y(t) (6.3.1)

where {hk} are the filter weights, u(t) is the input to the filter and

h = [h0 . . . hm−1]
∗ (6.3.2)

y(t) = [u(t) . . . u(t−m+ 1)]T (6.3.3)

Similarly, we can use the spatial samples {yk(t)}mk=1 obtained with a sensor
array to define a spatial filter:

yF (t) = h∗y(t) (6.3.4)

A temporal filter can be made to enhance or attenuate some selected frequency
bands by appropriately choosing the vector h. More precisely, since the filter output
for a sinusoidal input u(t) is given by

yF (t) = [h∗a(ω)]u(t) (6.3.5)

(where a(ω) is as defined, for instance, in Figure 6.6), then by selecting h so that
h∗a(ω) is large (small) we can enhance (attenuate) the power of yF (t) at frequency
ω.

In direct analogy with (6.3.5), the (noise–free) spatially filtered output (as in
(6.3.4)) of an array illuminated by a narrowband wavefront with complex envelope
s(t) and DOA equal to θ is given by (cf. (6.2.19)):

yF (t) = [h∗a(θ)]s(t) (6.3.6)

This equation clearly shows that the spatial filter can be selected to enhance (at-
tenuate) the signals coming from a given direction θ, by making h∗a(θ) in (6.3.6)
large (small). This observation lies at the basis of the DOA finding methods to be
described in this section. All of these methods can be derived by using the filter
bank approach of Chapter 5. More specifically, assume that a filter h has been found
such that

(i) It passes undistorted the signals with a given DOA θ; and

(ii) It attenuates all the other DOAs different from θ as much
as possible.

(6.3.7)
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Then, the power of the spatially filtered signal in (6.3.4),

E
{
|yF (t)|2

}
= h∗Rh, R = E {y(t)y∗(t)} (6.3.8)

should give a good indication of the energy coming from direction θ. (Note that
θ enters in (6.3.8) via h.) Hence, h∗Rh should peak at the DOAs of the sources
located in the array’s viewing field when evaluated over the DOA range of interest.
This fact may be exploited for the purpose of DOA finding. Depending on the
specific way in which the (loose) design objectives in (6.3.7) are formulated, the
above approach can lead to different DOA estimation methods. In the following,
we present spatial extensions of the periodogram and Capon techniques. The RFB
method of Chapter 5 may also be extended to the spatial processing case, provided
the array’s geometry is such that the transfer vector a(θ + α) can be factored as

a(θ + α) = D(θ)a(α) (6.3.9)

where D is a unitary (possibly diagonal) matrix. Without such a property, the RFB
spatial filter should be computed, for each θ, by solving an m×m eigendecompo-
sition problem, which would be computationally prohibitive in most applications.
Since it is not a priori obvious that an arbitrary array satisfies (6.3.9), we do not
consider the RFB approach in what follows.1 Finally, we remark that a spatial filter
satisfying the design objectives in (6.3.7) can be viewed as forming a (reception)
beam in the direction θ, as pictorially indicated in Figure 6.7. Because of this inter-
pretation, the methods resulting from this approach to the DOA finding problem,
in particular the method of the next subsection, are called beamforming methods
[Van Veen and Buckley 1988; Johnson and Dudgeon 1992].

6.3.1 Beamforming

In view of (6.3.6), condition (i) of the filter design problem (6.3.7) can be formulated
as:

h∗a(θ) = 1 (6.3.10)

In what follows, we assume that the transfer vector a(θ) has been normalized so
that

a∗(θ)a(θ) = m (6.3.11)

Note that in the case of an array with identical sensors, the condition (6.3.11) is
automatically met (cf. (6.2.20)).

Regarding condition (ii) in (6.3.7), if y(t) in (6.3.8) were spatially white with
R = I, then we would obtain the following expression for the power of the filtered
signal:

E
{
|yF (t)|2

}
= h∗h (6.3.12)

which is different from zero for every θ (note that we cannot have h = 0, because
of condition (6.3.10)). This fact indicates that a spatially white signal in the ar-
ray output can be considered as impinging on the array with equal power from all

1Referring back to Chapter 5 may prove useful for understanding these comments on RFB and
for several other discussions in this section.
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Figure 6.7. The response magnitude |h∗a(θ)|, versus θ, of a spatial filter (or
beamformer). Here, h = a(θ0), where θ0 = 25◦ is the DOA of interest; the array is
a 10–element ULA with d = λ/2.

directions θ (in the same manner as a temporally white signal in the array out-
put contains equal power in all frequency bands). We deduce from this observation
that a natural mathematical formulation of condition (ii) would be to require that h
minimizes the power in (6.3.12). Hence, we are led to the following design problem:

min
h
h∗h subject to h∗a(θ) = 1 (6.3.13)

As (6.3.13) is a special case of the optimization problem (5.4.7) in Chapter 5, we
obtain the solution to (6.3.13) from (5.4.8) as:

h = a(θ)/a∗(θ)a(θ) (6.3.14)

By making use of (6.3.11), (6.3.14) reduces to

h = a(θ)/m (6.3.15)

which, when inserted in (6.3.8), gives

E
{
|yF (t)|2

}
= a∗(θ)Ra(θ)/m2 (6.3.16)

The theoretical covariance matrix R in (6.3.16) cannot be (exactly) determined
from the available finite sample {y(t)}Nt=1 and hence it must be replaced by some
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estimate, such as

R̂ =
1

N

N∑

t=1

y(t)y∗(t) (6.3.17)

By doing so and omitting the factor 1/m2 in (6.3.16), which has no influence on the
DOA estimates, we obtain the beamforming method which determines the DOAs
as summarized in the next box.

The beamforming DOA estimates are given by the locations of
the n highest peaks of the function

a∗(θ)R̂a(θ)

(6.3.18)

When the estimated spatial spectrum in (6.3.18) is compared to the expres-
sion derived in Section 5.4 for the Blackman–Tukey periodogram, it is seen that
beamforming is a direct (spatial) extension of the periodogram. In fact, the func-
tion in (6.3.18) may be thought of as being obtained by averaging the “spatial
periodograms”

|a∗(θ)y(t)|2 (6.3.19)

over the set of available “snapshots” (t = 1, . . . , N).
The connection established in the previous paragraph, between beamform-

ing and the (averaged) periodogram, suggests that the resolution properties of the
beamforming method are analogous to those of the periodogram method. In fact, by
an analysis similar to that in Chapters 2 and 5 it can be shown that the beamwidth2

of the spatial filter used by beamforming is approximately equal to the inverse of
the array’s aperture (as measured in signal wavelengths). This sets a limit on the
resolution achievable with beamforming, as indicated below (see Exercise 6.2):

Beamforming DOA resolution limit ' wavelength / array “length” (6.3.20)

Next, we note that as N increases, the sample spatial spectrum in (6.3.18)
converges (under mild conditions) to (6.3.16), uniformly in θ. Hence the beam-
forming estimates of the DOAs converge to the n maximum points of (6.3.16), as
N tends to infinity. If the array model (6.2.21) holds (it has not been used so far!),
the noise e(t) is spatially white and has the same power σ2 in all sensors, and if
there is only one source (with DOA denoted by θ0, for convenience), then R in
(6.3.16) is given by

R = a(θ0)a
∗(θ0)P + σ2I (6.3.21)

where P = E
{
|s(t)|2

}
denotes the signal power. Hence,

a∗(θ)Ra(θ) = |a∗(θ)a(θ0)|2P + a∗(θ)a(θ)σ2

≤ |a∗(θ)a(θ)||a∗(θ0)a(θ0)|P + σ2a∗(θ)a(θ)

= m(mP + σ2) (6.3.22)
2The beamwidth is the spatial counterpart of the temporal notion of bandwidth associated

with a bandpass filter.
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where the inequality follows from the Cauchy–Schwartz lemma (see Result R22 in
Appendix A) and the last equality from (6.3.11). The upper bound in (6.3.22) is
achieved for a(θ) = a(θ0) which, under mild conditions, implies θ = θ0. In conclu-
sion, the beamforming DOA estimate is consistent under the previous assumptions
(n = 1, etc.). In the general case of multiple sources, however, the DOA esti-
mates obtained with beamforming are inconsistent. The (asymptotic) bias of these
estimates may be significant if the sources are strongly correlated or closely spaced.

As explained above, beamforming is the spatial analog of the Blackman–Tukey
periodogram (with a certain covariance estimate) and the Bartlett periodogram
(if we interpret the m–dimensional snapshots in (6.3.19) as “subsamples” of the
available “sample” [yT (1), . . . , yT (N)]T ). Note, however, that the value of m in
the periodogram methods can be chosen by the user, whereas in the beamforming
method m is fixed. This difference might seem small at first, but it has a significant
impact on the consistency properties of beamforming. More precisely, it can be
shown that, for instance, the Bartlett periodogram estimates of temporal frequencies
are consistent under the model (4.2.7), provided that m increases without bound as
the number of samples N tends to infinity (e.g., we can set m = N , which yields
the unmodified periodogram).3 For beamforming, on the other hand, the value of
m (i.e., the number of array elements) is limited by physical considerations. This
prevents beamforming from providing consistent DOA estimates in the multiple
signal case. An additional difficulty is that in the spatial scenario the signals can be
correlated with one another, whereas they are always uncorrelated in the temporal
frequency estimation case. Explaining why this is so and completing a consistency
analysis of the beamforming DOA estimates is left as an exercise for the reader.

Now, if the model (6.2.21) holds, if the minimum DOA separation is larger
than the array beamwidth (which implies that m is sufficiently large), if the sig-
nals are uncorrelated, and if the noise is spatially white, then it is readily seen that
the multiple–source spectrum (6.3.16) decouples (approximately) in n single–source
spectra; this means that beamforming may provide reasonably accurate DOA esti-
mates in such a case. In fact, in this case beamforming can be shown to provide
an approximation to the nonlinear LS DOA estimation method discussed in Sec-
tion 6.4.1; see the remark in that section.

6.3.2 Capon Method

The derivation of the Capon method for array signal processing is entirely analogous
with the derivation of the Capon method for the time series data case developed in
Section 5.4 [Capon 1969; Lacoss 1971]. The Capon spatial filter design problem
is the following:

min
h
h∗Rh subject to h∗a(θ) = 1 (6.3.23)

3The unmodified periodogram in an inconsistent estimator for continuous PSDs (as shown in
Chapter 2). However, as asserted above, the plain periodogram estimates of discrete (or line)
PSDs are consistent. Showing this is left as an exercise to the reader. (Make use of the covariance
matrix model (4.2.7) with m → ∞, and the fact that the Fourier (or Vandermonde) vectors, at
different frequencies, become orthogonal to one another as their dimension increases.)
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Hence, objective (i) in the general design problem (6.3.7) is ensured by constraining
the filter exactly as in the beamforming approach (see (6.3.10)). Objective (ii) in
(6.3.7), however, is accomplished in a more sound way: by requiring the filter to
minimize the output power, when fed with the actual array data {y(t)}. Hence,
in the Capon approach, objective (ii) is formulated in a “data–dependent” way,
whereas it is formulated independently of the data in the beamforming method.
As a consequence, the goal of the Capon filter steered to a certain direction θ is
to attenuate any other signal that actually impinges on the array from a DOA 6=
θ, whereas the beamforming filter pays uniform attention to all other DOAs 6= θ,
even though there might be no incoming signal for many of those DOAs.

The solution to (6.3.23), as derived in Section 5.4, is given by

h =
R−1a(θ)

a∗(θ)R−1a(θ)
(6.3.24)

which, when inserted in the output power formula (6.3.8), leads to

E
{
|yF (t)|2

}
=

1

a∗(θ)R−1a(θ)
(6.3.25)

It only remains to replace R in (6.3.25) by a sample estimate, such as R̂ in (6.3.17),
to obtain the Capon DOA estimator.

The Capon DOA estimates are obtained as the locations of the
n largest peaks of the following function:

1

a∗(θ)R̂−1a(θ)

(6.3.26)

There is an implicit assumption in (6.3.26) that R̂−1 exists, but this can
be ensured under weak conditions (in particular, R̂−1 exists with probability 1 if
N ≥ m and if the noise term has a positive definite spatial covariance matrix).
Note that the “spatial spectrum” in (6.3.26) corresponds to the “CM–Version 1”
PSD in the time series case (see equation (5.4.12) in Section 5.4). A Capon spatial
spectrum similar to the “CM–Version 2” PSD formula (see (5.4.17)) might also be
derived, but it appears to be more complicated than the time series formula if the
array is not a ULA.

Capon DOA estimation has been empirically found to possess superior per-
formance as compared with beamforming. The common advantage of these two
nonparametric methods is that they do not assume anything about the statistical
properties of the data and, therefore, they can be used in situations where we lack
information about these properties. On the other hand, in the cases where such in-
formation is available, for example in the form of a covariance model of the data, a
nonparametric approach does not give the performance that one can achieve with a
parametric (model–based) approach. The parametric approach to DOA estimation
is the subject of the next section.
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6.4 PARAMETRIC METHODS

In this section, we postulate the array model (6.2.21). Furthermore, the noise e(t)
is assumed to be spatially white with components having identical variance:

E {e(t)e∗(t)} = σ2I (6.4.1)

In addition, the signal covariance matrix

P = E {s(t)s∗(t)} (6.4.2)

is assumed to be nonsingular (but not necessarily diagonal; hence the signals may be
(partially) correlated). When the signals are fully correlated, so that P is singular,
they are said to be coherent. Finally, we assume that the signals and the noise are
uncorrelated with one another.

Under the previous assumptions, the theoretical covariance matrix of the array
output vector is given by

R = E {y(t)y∗(t)} = APA∗ + σ2I (6.4.3)

There is a direct analogy between the array models above, (6.2.21) and (6.4.3),
and the corresponding models encountered in our discussion of the sinusoids–in–
noise case in Chapter 4. More specifically, the “nonlinear regression” model (6.2.21)
of the array is analogous to (4.2.6), and the array covariance model (6.4.3) is much
the same as (4.2.7). The consequence of these analogies is that all methods intro-
duced in Chapter 4 for frequency estimation can also be used for DOA estimation
without any essential modification. In the following, we briefly review these meth-
ods with a view of pointing out any differences from the frequency estimation
application. When the assumed array model is a good representation of reality, the
parametric DOA estimation methods reviewed in the sequel provide highly accu-
rate DOA estimates, even in adverse situations (such as low SNR scenarios). As
our main thrust in this text has been the understanding of the basic ideas behind
the presented spectral estimation methodologies, we do not dwell on the details of
the analysis required to establish the statistical properties of the DOA estimators
discussed in the following; see, however, Appendix B for a discussion on the Cramér–
Rao bound and the best accuracy achievable in DOA estimation problems. Such
analysis details are available in [Stoica and Nehorai 1989a; Stoica and Ne-

horai 1990; Stoica and Sharman 1990; Stoica and Nehorai 1991; Viberg

and Ottersten 1991; Rao and Hari 1993]. For reviews of many of the re-
cent advances in spatial spectral analysis, the reader can consult [Pillai 1989],
[Ottersten, Viberg, Stoica, and Nehorai 1993], and [Van Trees 2002].

6.4.1 Nonlinear Least Squares Method

This method determines the unknown DOAs as the minimizing elements of the
following function

f =
1

N

N∑

t=1

‖ y(t) −As(t) ‖2 (6.4.4)
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Minimization with respect to {s(t)} gives (see Result R32 in Appendix A)

s(t) = (A∗A)−1A∗y(t) t = 1, . . . , N (6.4.5)

By inserting (6.4.5) into (6.4.4), we get the following concentrated nonlinear least
squares (LS) criterion:

f =
1

N

N∑

t=1

‖ {I −A(A∗A)−1A∗}y(t) ‖2

=
1

N

N∑

t=1

y∗(t)[I −A(A∗A)−1A∗]y(t)

= tr{[I −A(A∗A)−1A∗]R̂} (6.4.6)

The second equality in (6.4.6) follows from the fact that the matrix I−A(A∗A)−1A∗

is idempotent (it is the orthogonal projector onto N (A∗)), and the third from the
properties of the trace operator (see Result R8 in Appendix A). It follows from
(6.4.6) that the nonlinear LS DOA estimates are given by

{θ̂k} = arg max
{θk}

tr[A(A∗A)−1A∗R̂] (6.4.7)

Remark: Similar to the frequency estimation case, it can be shown that beam-
forming provides an approximate solution to the previous nonlinear LS problem
whenever the DOAs are known to be well separated. To see this, let us assume that
we restrict the search for the maximizers of (6.4.7) to a set of well–separated DOAs
(according to the a priori information that the true DOAs belong to this set.) In
such a set, A∗A ' mI under weak conditions, and hence the function in (6.4.7) can
approximately be written as:

tr
[

A(A∗A)−1A∗R̂
]

' 1

m

n∑

k=1

a∗(θk)R̂a(θk)

Paralleling the discussion following equation (4.3.16) in Chapter 4 we can show that
the beamforming DOA estimates maximize the right–hand side of the above equa-
tion over the set under consideration. With this observation, the proof of the fact
that the computationally efficient beamforming method provides an approximate
solution to (6.4.7) in scenarios with well–separated DOAs is concluded.

One difference between (6.4.7) and the corresponding optimization problem in
the frequency estimation application (see (4.3.8) in Section 4.3) lies in the fact that
in the frequency estimation application only one “snapshot” of data is available, in
contrast to the N snapshots available in the DOA estimation application. Another,
more important difference is that for non–ULA cases the matrix A in (6.4.7) does
not have the Vandermonde structure of the corresponding matrix in (4.3.8). As a
consequence, several of the algorithms used to (approximately) solve the frequency
estimation problem (such as the one in [Kumaresan, Scharf, and Shaw 1986]
and [Bresler and Macovski 1986]) are no longer applicable to solving (6.4.7)
unless the array is a ULA.
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6.4.2 Yule–Walker Method

The matrix Γ, which lies at the basis of the Yule–Walker method (see Section 4.4),
can be constructed from any block of R in (6.4.3) that does not include diagonal
elements. To be more precise, partition the array model (6.2.21) into the following
two nonoverlapping parts:

y(t) =

[
ȳ(t)
ỹ(t)

]

=

[
Ā

Ã

]

s(t) +

[
ē(t)
ẽ(t)

]

(6.4.8)

Since ē(t) and ẽ(t) are uncorrelated (by assumption), we have

Γ , E {ȳ(t)ỹ∗(t)} = ĀP Ã∗ (6.4.9)

which is assumed to be of dimension M × L (with M + L = m). For

M > n, L > n (6.4.10)

(which cannot hold unless m > 2n), the rank of Γ is equal to n (under weak con-
ditions) and the (L − n)–dimensional null space of this matrix contains complete
information about the DOAs. To see this, let G be an L × (L − n) matrix whose
columns form a basis of N (Γ) (G can be obtained from the SVD of Γ; see Re-
sult R15 in Appendix A). Then we have ΓG = 0, which implies (using the fact that
rank(ĀP ) = n):

Ã∗G = 0

This observation can be used, in the manner of Sections 4.4 (YW) and 4.5 (MUSIC),
to estimate the DOAs from a sample estimate of Γ such as

Γ̂ =
1

N

N∑

t=1

ȳ(t)ỹ∗(t) (6.4.11)

Unlike all the other methods discussed in the following, the Yule–Walker method
does not impose the rather stringent condition (6.4.1). The Yule–Walker method
requires only that E {ē(t)ẽ∗(t)} = 0, which is a much weaker assumption. This
is a distinct advantage of the Yule–Walker method (see [Viberg, Stoica, and

Ottersten 1995] for details). Its relative drawback is that it can only be used
if m > 2n (all the other methods require only that m > n); in general, it has
been found to provide accurate DOA estimates only in those applications involving
large–aperture arrays.

Interestingly enough, whenever the condition (6.4.1) holds (i.e., the noise at
the array output is spatially white) we can use a modification of the above technique
that does not require that m > 2n [Fuchs 1996]. To see this, let

Γ̃ , E {y(t)ỹ∗(t)} = R

[
0
IL

]

(m× L)
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where ỹ(t) is as defined in (6.4.8); hence Γ̃ is made from the last L columns of R.
By making use of the expression (6.4.3) for R, we obtain

Γ̃ = APÃ∗ + σ2

[
0
IL

]

(6.4.12)

Because the noise terms in y(t) and ỹ(t) are correlated, the noise is still present in Γ̃
(as can be seen from (6.4.12)), and hence Γ̃ is not really a YW matrix. Nevertheless,
Γ̃ has a property similar to that of the YW matrix Γ above, as we now show.

First observe that

Γ̃∗Γ̃ = Ã(2σ2P + PA∗AP )Ã∗ + σ4I

The matrix 2σ2P + PA∗AP is readily shown to be nonsingular if and only if P
is nonsingular. As Γ̃∗Γ̃ has the same form as R in (6.4.3), we conclude that (for
m ≥ L > n) the L× (L− n) matrix G̃, whose columns are the eigenvectors of Γ̃∗Γ̃
that correspond to the multiple minimum eigenvalue of σ4, satisfies

Ã∗G̃ = 0 (6.4.13)

The columns of G̃ are also equal to the (L − n) right singular vectors of Γ̃ corre-
sponding to the multiple minimum singular value of σ2. For numerical precision
reasons G̃ should be computed from the singular vectors of Γ̃ rather than from the
eigenvectors of Γ̃∗Γ̃ (see Section A.8.2).

Because (6.4.13) has the same form as Ã∗G = 0, we can use (6.4.13) for
subspace–based DOA estimation in exactly the same way as we used Ã∗G = 0 (see
equation (4.5.6) and the discussion following it in Chapter 4). Note that for the
method based on Γ̃ to be usable, we require only that

m ≥ L > n (6.4.14)

instead of the more restrictive conditions {m − L > n, L > n} (see (6.4.10))
required in the YW method based on Γ. Observe that (6.4.14) can always be
satisfied if m > n, whereas (6.4.10) requires that m > 2n. Finally, note that Γ is
made from the first m−L rows of Γ̃, and hence Γ contains “less information” than
Γ̃; this provides a quick intuitive explanation why the method based on Γ requires
more sensors to be applicable than does the method based on Γ̃.

6.4.3 Pisarenko and MUSIC Methods

The MUSIC algorithm (with Pisarenko as a special case), developed in Section 4.5
for the frequency estimation application, can be used without modification for DOA
estimation [Bienvenu 1979; Schmidt 1979; Barabell 1983]. There are only
minor differences between the DOA and the frequency estimation applications of
MUSIC, as pointed out below.

First, in the spatial application we can choose between the Spectral and Root
MUSIC estimators only in the case of a ULA. For most of the other array geometries,
only Spectral MUSIC is applicable.

Second, the standard MUSIC algorithm (4.5.15) breaks down in the case of
coherent signals, as in that case the rank condition (4.5.1) no longer holds. (Such
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a situation cannot happen in the frequency estimation application, because P is
always (diagonal and) nonsingular there.) However, the modified MUSIC algorithm
(outlined at the end of Section 4.5) can be used when the signals are coherent pro-
vided that the array is uniform and linear. This is so because the property (4.5.23),
on which the modified MUSIC algorithm is based, continues to hold even if P is
singular (see Exercise 6.14).

6.4.4 Min–Norm Method

There is no essential difference between the use of the Min–Norm method for fre-
quency estimation and for DOA finding in the noncoherent case. As for MUSIC, in
the DOA estimation application the Min–Norm method should not be used in sce-
narios with coherent signals, and the Root Min–Norm algorithm can only be used
in the ULA case [Kumaresan and Tufts 1983]. In addition, the key property
that the true DOAs are asymptotically the unique solutions of the Min–Norm esti-
mation problem holds in the ULA case (see Complement 6.5.1) but not necessarily
for other array geometries.

6.4.5 ESPRIT Method

In the ULA case, ESPRIT can be used for DOA estimation exactly as it is for
frequency estimation (see Section 4.7). In the non–ULA case ESPRIT can be used
only in certain situations. More precisely, and unlike the other algorithms in this
section, ESPRIT can be used for DOA finding only if the array at hand contains
two identical subarrays which are displaced by a known displacement vector [Roy

and Kailath 1989; Stoica and Nehorai 1991]. Mathematically, this condition
can be formulated as follows. Let m̄ denote the number of sensors in the two twin
subarrays, and let A1 and A2 denote the sub–matrices of A corresponding to these
subarrays. Since the sensors in the array are arbitrarily numbered, there is no
restriction to assume that A1 is made from the first m̄ rows in A and A2 from the
last m̄:

A1 = [Im̄ 0]A (m̄× n) (6.4.15)

A2 = [0 Im̄]A (m̄× n) (6.4.16)

(here Im̄ denotes the m̄× m̄ identity matrix). Note that the two subarrays overlap
if m̄ > m/2; otherwise, they might not overlap. If the array is purposely built to
meet ESPRIT’s subarray condition, then normally m̄ = m/2 and the two subarrays
are nonoverlapping.

Mathematically, the ESPRIT requirement means that

A2 = A1D (6.4.17)

where

D =






e−iωcτ(θ1) 0
. . .

0 e−iωcτ(θn)




 (6.4.18)
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and where τ(θ) denotes the time needed by a wavefront impinging upon the array
from the direction θ to travel between (the “reference points” of) the two twin
subarrays. If the angle of arrival θ is measured with respect to the perpendicular
of the line between the subarrays’ center points, then a calculation similar to the
one that led to (6.2.22) shows that:

τ(θ) = d sin(θ)/c (6.4.19)

where d is the distance between the two subarrays. Hence, estimates of the DOAs
can readily be derived from estimates of the diagonal elements of D in (6.4.18).

Equations (6.4.17) and (6.4.18) are basically equivalent to (4.7.3) and (4.7.4)
in Section 4.7, and hence the ESPRIT DOA estimation method is analogous to the
ESPRIT frequency estimator.

The ESPRIT DOA estimation method, like the ESPRIT frequency estimator,
determines the DOA estimates by solving an n×n eigenvalue problem. There is no
search involved, in contrast to the previous methods; in addition, there is no problem
of separating the “signal DOAs” from the “noise DOAs”, once again in contrast
to the Yule–Walker, MUSIC and Min–Norm methods. However, unlike these other
methods, ESPRIT can only be used with the special array configuration described
earlier. In particular, this requirement limits the number of resolvable sources at
n < m̄ (as both A1 and A2 must have full column rank). Note that the two subarrays
do not need to be calibrated although they need to be identical, and ESPRIT may be
sensitive to differences between the two subarrays in the same way as Yule–Walker,
MUSIC, and Min–Norm are sensitive to imperfections in array calibration. Finally,
note that similar to the other DOA finding algorithms presented in this section
(with the exception of the NLS method), ESPRIT is not usable in the case of
coherent signals.

6.5 COMPLEMENTS

6.5.1 On the Minimum Norm Constraint

As explained in Section 6.4.4 the Root Min–Norm (temporal) frequency estimator,
introduced in Section 4.6, can without modification be used for DOA estimation
with a uniform linear array. Using the definitions and notation in Section 4.6, let
ĝ = [1 ĝ1 . . . ĝm−1]

T denote the vector in R(Ĝ) that has first element equal to one
and minimum Euclidean norm. Then, the Root Min–Norm DOA estimates are
obtained from the roots of the polynomial

ĝ(z) = 1 + ĝ1z
−1 + · · · + ĝm−1z

−(m−1) (6.5.1)

which are located nearest the unit circle. (See the description of Min–Norm in
Section 4.6.) As N increases, the polynomial in (6.5.1) approaches

g(z) = 1 + g1z
−1 + · · · + gm−1z

−(m−1) (6.5.2)

where g = [1 g1 . . . gm−1]
T is the minimum–norm vector in R(G). In this com-

plement we show that (6.5.2) has n zeroes at {e−iωk}nk=1 (the so–called “signal
zeroes”) and (m − n − 1) extraneous zeroes situated strictly inside the unit circle
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(the latter are normally called “noise zeroes”); here {ωk}nk=1 are either temporal
frequencies, or spatial frequencies as in (6.2.27).

Let g = [1, g1, . . . , gm−1]
T ∈ R(G). Then (4.2.4) and (4.5.6) imply that

a∗(ωk)








1
g1
...
gm−1








= 0 ⇐⇒

1 + g1e
iωk + · · · + gm−1e

i(m−1)ωk = 0 (for k = 1, . . . , n) (6.5.3)

Hence, any polynomial g(z) whose coefficient vector belongs to R(G) must have
zeroes at {e−iωk}nk=1, and thus it can be factored as:

g(z) = gs(z)gn(z) (6.5.4)

where

gs(z) =

n∏

k=1

(1 − e−iωkz−1)

The (m− n− 1)–degree polynomial gn(z) in (6.5.4) contains the noise zeroes, and
at this point is arbitrary. (As the coefficients of gn(z) vary, the vectors made from
the corresponding coefficients of g(z) span R(G).)

Next, assume that g satisfies the minimum norm constraint:

m−1∑

k=0

|gk|2 = min (g0 , 1) (6.5.5)

By using Parseval’s theorem (see (1.2.6)), we can rewrite (6.5.5) as follows:

1

2π

∫ π

−π
|g(ω)|2 dω = min ⇐⇒ 1

2π

∫ π

−π
|gn(ω)|2 |gs(ω)|2 dω = min

(where, by convention, g(ω) = g(z)
∣
∣
z=eiω ). Since gs(z) in (6.5.4) is fixed, the

minimization in (6.5.6) is over gn(z).
To proceed, some additional notation is required. Let

gn(z) = 1 + α1z
−1 + · · · + αm−n−1z

−(m−n−1)

and let y(t) be a signal whose PSD is equal to |gs(ω)|2; hence, y(t) is an nth–order
MA process. By making use of (1.3.9) and (1.4.9), along with the above notation,
we can write (6.5.6) in the following equivalent form:

min
{αk}

E
{
|y(t) + α1y(t− 1) + · · · + αm−n−1y(t−m+ n+ 1)|2

}
(6.5.7)

The minimizing coefficients {αk} are given by the solution to a Yule–Walker
system of equations similar to (3.4.6). (To show this, parallel the calculation lead-
ing to (3.4.8) and (3.4.12).) Since the covariance matrix, of any finite dimension,
associated with a moving average signal is positive definite, it follows that:
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• The coefficients {αk}, and hence {gk}, are uniquely determined by the mini-
mum norm constraint.

• The polynomial gn(z) whose coefficients are obtained from (6.5.7) has all its
zeroes strictly inside the unit circle (cf. Exercise 3.8).

which was to be proven.
Thus, the choice of ĝ in the Min–Norm algorithm makes it possible to separate

the signal zeroes from the noise zeroes, at least for data samples that are sufficiently
long. (For small or medium–sized samples, it might happen that noise zeroes get
closer to the unit circle than signal zeroes, which would lead to spurious frequency
or DOA estimates.)

As a final remark, note from (6.5.6) that there is little reason for gn(z) to
have zeroes in the sectors where the signal zeroes are present (since the integrand
in (6.5.6) is already quite small for ω values close to {ωk}nk=1). Hence, we can
expect the extraneous zeroes to be more–or–less uniformly distributed inside the
unit circle, in sectors which do not contain signal zeroes (see, e.g., [Kumaresan

1983]).
For more details on the topic of this complement, see [Tufts and Kumare-

san 1982; Kumaresan 1983].

6.5.2 NLS Direction-of-Arrival Estimation for a Constant-Modulus Signal

The NLS estimation of the DOA of a single signal impinging on an array of sensors
is obtained by minimizing the criterion (6.4.4) with n = 1,

N∑

t=1

‖y(t) − a(θ)s(t)‖2 (6.5.8)

with respect to {s(t)}Nt=1 and θ. The result is obtained from equation (6.4.7), which
for n = 1 reduces to:

θ̂ = arg max
θ
a∗(θ)R̂a(θ) = arg max

θ

N∑

t=1

|a∗(θ)y(t)|2 (6.5.9)

This, of course, is nothing but the beamforming DOA estimate for n = 1 (see
(6.3.18)). Hence, as expected (see the Remark following (6.4.7) and also (4.3.11)),
the NLS estimate of the DOA of an arbitrary signal coincides with the beamforming
estimate.

In this complement we will solve the NLS direction-of-arrival estimation prob-
lem in (6.5.8), under the assumption that {s(t)} is a constant-modulus signal :

s(t) = αeiφ(t) (6.5.10)

where α > 0 denotes the unknown signal amplitude and {φ(t)} is its unknown phase
sequence. We assume α > 0 to avoid a phase ambiguity in {φ(t)}. Signals of this
type are often encountered in communication applications with phase-modulated
waveforms.
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Inserting (6.5.10) in (6.5.8) yields the following criterion which is to be mini-
mized with respect to {φ(t)}Nt=1, α, and θ:

N∑

t=1

∥
∥
∥y(t) − αeiφ(t)a(θ)

∥
∥
∥

2

=

N∑

t=1

{

‖y(t)‖2
+ α2‖a(θ)‖2 − 2αRe

[

a∗(θ)y(t)e−iφ(t)
]}

(6.5.11)

It follows from (6.5.11) that the NLS estimate of {φ(t)}Nt=1 is given by the maximizer
of the function:

Re
[

a∗(θ)y(t)e−iφ(t)
]

= Re
[

|a∗(θ)y(t)| ei arg[a∗(θ)y(t)]e−iφ(t)
]

= |a∗(θ)y(t)| cos
[
arg
(
a∗(θ)y(t)

)
− φ(t)

]
(6.5.12)

which is easily seen to be

φ̂(t) = arg [a∗(θ)y(t)] , t = 1, . . . , N (6.5.13)

From (6.5.11)–(6.5.13), along with the assumption that ‖a(θ)‖ is constant (which
is also used to derive (6.5.9)), we can readily verify that the NLS estimate of θ for
the constant modulus signal case is given by:

θ̂ = arg max
θ

N∑

t=1

|a∗(θ)y(t)| (6.5.14)

Finally, the NLS estimate of α is obtained by minimizing (6.5.11) (with {φ(t)} and
θ replaced by (6.5.13) and (6.5.14), respectively):

α̂ =
1

N‖a(θ̂)‖2

N∑

t=1

∣
∣
∣a∗(θ̂)y(t)

∣
∣
∣ (6.5.15)

Remark: It follows easily from the above derivation that if α is known (which may
be the case when the emitted signal has a known amplitude that is not significantly
distorted during propagation), the NLS estimates of θ and {φ(t)} are still given by
(6.5.13) and (6.5.14). �

Interestingly, the only difference between the beamformer for an arbitrary sig-
nal, (6.5.9), and the beamformer for a constant-modulus signal, (6.5.14), is that the
“squaring operation” is missing in the latter. This difference is somewhat analogous
to the one pointed out in Complement 4.9.4, even though the models considered
there and in this complement are rather different from one another.

For more details on the subject of this complement, see [Stoica and Besson

2000] and its references.
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6.5.3 Capon Method: Further Insights and Derivations

The spatial filter (or beamformer) used in the beamforming method is data-inde-
pendent. In contrast, the Capon spatial filter is data-dependent, or data-adaptive;
see equation (6.3.24). It is this data-adaptivity that confers to the Capon method
better resolution and significantly reduced leakage compared with the beamforming
method.

An interesting fact about the Capon method for temporal or spatial spec-
tral analysis is that it can be derived in several ways. The standard derivation
is given in Section 6.3.2. This complement presents four additional derivations of
the Capon method, which are not as well-known as the standard derivation. Each
of the derivations presented here is based on an intuitively appealing design cri-
terion. Collectively, they provide further insights into the features and possible
interpretations of the Capon method.

APES-Like Derivation

Let θ denote a generic DOA, and consider equation (6.2.19):

y(t) = a(θ)s(t) + e(t) (6.5.16)

that describes the array output, y(t), as a sum of a possible signal component
impinging from the generic DOA θ and a term e(t) that includes noise and any
other signals with DOAs different from θ. Let σ2

s denote the power of the signal
s(t) in (6.5.16), which is the main parameter we want to estimate: σ2

s as a function
of θ provides an estimate of the spatial spectrum. Let us estimate the spatial filter
vector, h, as well as the signal power, σ2

s , by solving the following least squares
(LS) problem:

min
h,σ2

s

E
{
|h∗y(t) − s(t)|2

}

(6.5.17)

Of course, the signal s(t) in (6.5.17) is not known. However, as we show below,
(6.5.17) does not depend on s(t) but only on its power σ2

s , so the fact that s(t)
in (6.5.17) is unknown does not pose a problem. Also, note that the vector h in
(6.5.17) is not constrained, as it is in (6.3.24).

Assuming that s(t) in (6.5.16) is uncorrelated with the noise-plus-interference
term e(t), we obtain:

E {y(t)s∗(t)} = a(θ)σ2
s (6.5.18)

which implies that

E
{
|h∗y(t) − s(t)|2

}
= h∗Rh− h∗a(θ)σ2

s − a∗(θ)hσ2
s + σ2

s

=
[
h− σ2

sR
−1a(θ)

]∗
R
[
h− σ2

sR
−1a(θ)

]

+ σ2
s

[
1 − σ2

sa
∗(θ)R−1a(θ)

]
(6.5.19)

Omitting the trivial solution (h = 0, σ2
s = 0), the minimization of (6.5.19) with
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respect to h and σ2
s yields:

h =
R−1a(θ)

a∗(θ)R−1a(θ)
(6.5.20)

σ2
s =

1

a∗(θ)R−1a(θ)
(6.5.21)

which coincides with the Capon solution in (6.3.24) and (6.3.25). To obtain σ2
s in

(6.5.21) we used the fact that the criterion in (6.5.19) should be greater than or
equal to zero for any h and σ2

s .
The LS fitting criterion in (6.5.17) is reminiscent of the APES approach dis-

cussed in Complement 5.6.4. The use of APES for array processing is discussed in
Complement 6.5.6, under the assumption that {s(t)} is an unknown deterministic
sequence. Interestingly, using the APES design principle in the above manner, un-
der the assumption that the signal s(t) in (6.5.16) is stochastic, leads to the Capon
method.

Inverse-Covariance Fitting Derivation

The covariance matrix of the signal term a(θ)s(t) in (6.5.16) is given by

σ2
sa(θ)a

∗(θ) (6.5.22)

We can obtain the beamforming method (see Section 6.3.1) by fitting (6.5.22) to R
in a least squares sense:

min
σ2

s

∥
∥R− σ2

sa(θ)a
∗(θ)

∥
∥

2

= min
σ2

s

{
constant + σ4

s [a
∗(θ)a(θ)]2 − 2σ2

sa
∗(θ)Ra(θ)

}
(6.5.23)

As a∗(θ)a(θ) = m (by assumption; see (6.3.11)), it follows from (6.5.23) that the
minimizing σ2

s is given by:

σ2
s =

1

m2
a∗(θ)Ra(θ) (6.5.24)

which coincides with the beamforming estimate of the power coming from DOA θ
(see (6.3.16)).

To obtain the Capon method by following a similar idea to the one above, we
fit the pseudoinverse of (6.5.22) to the inverse of R:

min
σ2

s

∥
∥
∥R−1 −

[
σ2
sa(θ)a

∗(θ)
]†
∥
∥
∥

2

(6.5.25)

It is easily verified that the Moore–Penrose pseudoinverse of σ2
sa(θ)a

∗(θ) is given
by

[
σ2
sa(θ)a

∗(θ)
]†

=
1

σ2
s

a(θ)a∗(θ)

[a∗(θ)a(θ)]2
=

1

σ2
s

a(θ)a∗(θ)

m2
(6.5.26)
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This follows, for instance, from (A.8.8) and the fact that

σ2
sa(θ)a

∗(θ) =
[
σ2
s‖a(θ)‖2

]
[
a(θ)

‖a(θ)‖

] [
a(θ)

‖a(θ)‖

]∗
, σuv∗ (6.5.27)

is the singular value decomposition (SVD) of σ2
sa(θ)a

∗(θ). Inserting (6.5.26) into
(6.5.25) leads to the problem

min
σ2

s

∥
∥
∥
∥
R−1 − 1

σ2
s

a(θ)a∗(θ)

m2

∥
∥
∥
∥

2

(6.5.28)

whose solution, by analogy with (6.5.23)–(6.5.24), is given by the Capon estimate
of the signal power:

σ2
s =

1

a∗(θ)R−1a(θ)
(6.5.29)

It is worth noting that in the present covariance fitting-based derivation, the signal
power σ2

s is estimated directly without the need to first obtain an intermediate
spatial filter h. The remaining two derivations of the Capon method are of the
same type.

Weighted Covariance Fitting Derivation

The least squares criterion in (6.5.23), which yields the beamforming method, does
not take into account the fact that the sample estimates of the different elements
of the data covariance matrix do not have the same accuracy. It was shown, e.g., in
[Ottersten, Stoica, and Roy 1998] (and its references) that the following
weighted LS covariance fitting criterion takes the accuracies of the different elements
of the sample covariance matrix into account in an optimal manner :

min
σ2

s

∥
∥
∥R−1/2

[
R− σ2

sa(θ)a
∗(θ)

]
R−1/2

∥
∥
∥

2

(6.5.30)

Here, R−1/2 denotes the Hermitian square root of R−1. By a straightforward
calculation, we can rewrite the criterion in (6.5.30) in the following equivalent form:

∥
∥
∥I − σ2

sR
−1/2a(θ)a∗(θ)R−1/2

∥
∥
∥

2

= constant − 2σ2
sa

∗(θ)R−1a(θ) + σ4
s

[
a∗(θ)R−1a(θ)

]2
(6.5.31)

The minimization of (6.5.31) with respect to σ2
s yields:

σ2
s =

1

a∗(θ)R−1a(θ)

which coincides with the Capon solution in (6.3.26).
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Constrained Covariance Fitting Derivation

The final derivation of the Capon method that we will present is also based on
a covariance fitting criterion, but in a manner which is quite different from those
in the previous two derivations. Our goal here is still to obtain the signal power
by fitting σ2

sa(θ)a
∗(θ) to R, but now we explicitly impose the condition that the

residual covariance matrix, R−σ2
sa(θ)a

∗(θ), should be positive semidefinite, and we
“minimize” the approximation (or fitting) error by choosing the maximum possible
value of σ2

s for which this condition holds. Mathematically, σ2
s is the solution to

the following constrained covariance fitting problem:

max
σ2

s

σ2
s subject to R− σ2

sa(θ)a
∗(θ) ≥ 0 (6.5.32)

The solution to (6.5.32) can be obtained in the following way, which is a simplified
version of the original derivation in [Marzetta 1983]. Let R−1/2 again denote
the Hermitian square root of R−1. Then, the following equivalences can be readily
verified:

R− σ2
sa(θ)a

∗(θ) ≥ 0

⇐⇒ I − σ2
sR

−1/2a(θ)a∗(θ)R−1/2 ≥ 0

⇐⇒ 1 − σ2
sa

∗(θ)R−1a(θ) ≥ 0

⇐⇒ σ2
s ≤ 1

a∗(θ)R−1a(θ)
(6.5.33)

The third line in equation (6.5.33) follows from the fact that the eigenvalues of
the matrix I − σ2

sR
−1/2a(θ)a∗(θ)R−1/2 are equal to one minus the eigenvalues of

σ2
sR

−1/2a(θ)a∗(θ)R−1/2 (see Result R5 in Appendix A), and the latter eigenvalues
are given by σ2

sa
∗(θ)R−1a(θ) (which is the trace of the previous matrix) along with

(m − 1) zeroes. From (6.5.33) we can see that the Capon spectral estimate is the
solution to the problem (6.5.32) as well.

The equivalence between the formulation of the Capon method in (6.5.32)
and the standard formulation in Section 6.3.2 can also be shown as follows. The
constraint in (6.5.32) is equivalent to the requirement that

h∗ [R− σ2
sa(θ)a

∗(θ)
]
h ≥ 0 for any h ∈ Cm×1 (6.5.34)

which, in turn, is equivalent to

h∗ [R− σ2
sa(θ)a

∗(θ)
]
h ≥ 0

for any h such that h∗a(θ) = 1
(6.5.35)

Clearly, (6.5.34) implies (6.5.35). To also show that (6.5.35) implies (6.5.34), let h
be such that h∗a(θ) = α 6= 0; then h/α∗ satisfies (h/α∗)∗a(θ) = 1 and hence, by
the assumption that (6.5.35) holds,

1

|α|2h
∗ [R− σ2

sa(θ)a
∗(θ)

]
h ≥ 0
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which shows that (6.5.35) implies (6.5.34) for any h satisfying h∗a(θ) 6= 0. Now, if
h is such that h∗a(θ) = 0 then

h∗ [R− σ2
sa(θ)a

∗(θ)
]
h = h∗Rh ≥ 0

because R > 0 by assumption. This observation concludes the proof that (6.5.34)
is equivalent to (6.5.35).

Using the equivalence of (6.5.34) and (6.5.35), we can rewrite (6.5.34) as
follows

h∗Rh ≥ σ2
s for any h such that h∗a(θ) = 1 (6.5.36)

From (6.5.36) we can see that the solution to (6.5.32) is given by

σ2
s = min

h
h∗Rh subject to h∗a(θ) = 1

which coincides with the standard formulation of the Capon method in (6.3.24).
The formulation of the Capon method in (6.5.32) will be used in Comple-

ment 6.5.4 to extend the method to the case where the direction vector a(θ) is
imprecisely known.

6.5.4 Capon Method for Uncertain Direction Vectors

The Capon method has better resolution and much better interference rejection
capability (i.e., much lower leakage) than the beamforming method, provided that
the direction vector, a(θ), is accurately known. However, whenever the knowledge
of a(θ) is imprecise, the performance of the Capon method may become worse than
that of the beamforming method. To see why this is so, consider a scenario in which
the problem is to determine the power coming from a source with DOA assumed to
be equal to θ0. Let us assume that in actuality the true DOA of the source is θ0+∆.
For the Capon beamformer pointed toward θ0, the source of interest (located at
θ0 + ∆) will play the role of an interference and will be attenuated. Consequently,
the power of the signal of interest will be underestimated; the larger ∆ is, the
larger the underestimation error. Because steering vector errors are common in
applications, it follows that a robust version of the Capon method (i.e., one that is
as insensitive to steering vector errors as possible) would be highly desirable.

In this complement we will present an extension of the Capon method to the
case of uncertain direction vectors. Specifically, we will assume that the only knowl-
edge we have about a(θ) is that it belongs to the following uncertainty ellipsoid:

(a− ā)∗C−1(a− ā) ≤ 1 (6.5.37)

where the vector ā and the positive definite matrix C are given. Note that both
a and ā, as well as C, usually depend on θ; however, for the sake of notational
convenience, we drop the θ dependence of these variables.

In some applications there may be too little available information about the
errors in the steering vector to make a competent choice of the full matrix C in
(6.5.37). In such cases we may simply set C = εI, so that (6.5.37) becomes

‖a− ā‖2 ≤ ε (6.5.38)
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where ε is a positive number. Let a0 denote the true (and unknown) direction
vector, and let ε0 = ‖a0 − ā‖2 where, as before, ā is the assumed direction vector.
Ideally we should choose ε = ε0. However, it can be shown that the performance of
the robust Capon method remains almost unchanged when ε is varied in a relatively
large interval around ε0 (see [Stoica, Wang, and Li 2003], [Li, Stoica, and

Wang 2003]).

As already stated, our goal here is to obtain a robust Capon method that is
insensitive to errors in the direction (or steering) vector. We will do so by combining
the covariance fitting formulation in (6.5.32) for the standard Capon method with
the steering uncertainty set in (6.5.37). Hence, we aim to derive estimates of both
σ2
s and a by solving the following constrained covariance fitting problem:

max
a,σ2

s

σ2
s subject to: R− σ2

saa
∗ ≥ 0

(a− ā)∗C−1(a− ā) ≤ 1
(6.5.39)

To avoid the trivial solution (a → 0, σ2
s → ∞), we assume that a = 0 does not

belong to the uncertainty ellipsoid in (6.5.39), or equivalently that

ā∗C−1ā > 1 (6.5.40)

(which is a regularity condition).

Because both σ2
s and a are considered to be free parameters in the above fitting

problem, there is a scaling ambiguity in the signal covariance term in (6.5.39), in
the sense that both (σ2

s , a) and (σ2
s/µ, µ

1/2a) for any µ > 0 give the same covariance
term σ2

saa
∗. To eliminate this ambiguity we can use the knowledge that the true

steering vector satisfies the condition (see (6.3.11)):

a∗a = m (6.5.41)

However, the constraint in (6.5.41) is non-convex, which makes the combined prob-
lem (6.5.39) and (6.5.41) somewhat more difficult to solve than (6.5.39). On the
other hand, (6.5.39) (without (6.5.41)) can be quite efficiently solved, as we show
below. To take advantage of this fact, we can make use of (6.5.41) to eliminate the
scaling ambiguity in the following pragmatic way:

• Obtain the solution (σ̃2
s , ã) of (6.5.39).

• Obtain an estimate of a which satisfies (6.5.41) by scaling ã:

â =

√
m

‖ã‖ ã

and a corresponding estimate of σ2
s by scaling σ̃2

s such that the signal covari-
ance term is left unchanged, i.e., σ̃2

s ãã
∗ = σ̂2

s ââ
∗, which gives:

σ̂2
s = σ̃2

s

‖ã‖2

m
(6.5.42)
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To derive the solution (σ̃2
s , ã) of (6.5.39) we first note that, for any fixed a, the

maximizing σ2
s is given by

σ̃2
s =

1

a∗R−1a
(6.5.43)

(see equation (6.5.33) in Complement 6.5.3). This simple observation allows us to
eliminate σ2

s from (6.5.39) and hence reduce (6.5.39) to the following problem:

min
a
a∗R−1a subject to: (a− ā)∗C−1(a− ā) ≤ 1 (6.5.44)

Under the regularity condition in (6.5.40), the solution ã to (6.5.44) will occur on
the boundary of the constraint set, and therefore we can reformulate (6.5.44) as the
following quadratic problem with a quadratic equality constraint

min
a
a∗R−1a subject to: (a− ā)∗C−1(a− ā) = 1 (6.5.45)

This problem can be solved efficiently by using the Lagrange multiplier approach,
see [Li, Stoica, and Wang 2003]. In the remaining part of this complement we
derive the Lagrange multiplier solver in [Li, Stoica, and Wang 2003], but in a
more self-contained way.

To simplify the notation, consider (6.5.45) with C = εI as in (6.5.38):

min
a
a∗R−1a subject to: ‖a− ā‖2 = ε (6.5.46)

(the case of C 6= εI can be similarly treated). Define

x = a− ā (6.5.47)

and rewrite (6.5.46) using x in lieu of a:

min
x

[
x∗R−1x+ x∗R−1ā+ ā∗R−1x

]
subject to: ‖x‖2 = ε (6.5.48)

Owing to the constraint in (6.5.48), the x that solves (6.5.48) is also a solution to
the problem:

min
x

[
x∗(R−1 + λI)x+ x∗R−1ā+ ā∗R−1x

]
subject to: ‖x‖2 = ε (6.5.49)

where λ is an arbitrary constant. Let us consider a particular choice of λ, which is
a solution of the equation:

ā∗(I + λR)−2ā = ε (6.5.50)

and which is also such that
R−1 + λI > 0 (6.5.51)

Then, the unconstrained minimizer of the function in (6.5.49) is given by

x = −
(
R−1 + λI

)−1
R−1ā = − (I + λR)

−1
ā (6.5.52)

and it satisfies the constraint in (6.5.49) (cf. (6.5.50)). It follows that x in (6.5.52)
with λ given by (6.5.50) and (6.5.51) is the solution to (6.5.49) (and hence to
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(6.5.48)). Hence, what is left to explain is how to solve (6.5.50) under the condition
(6.5.51) in an efficient manner, which we do next.

Let
R = UΛU∗ (6.5.53)

denote the eigenvalue decomposition (EVD) of R, where U∗U = UU∗ = I and

Λ =






λ1 0
. . .

0 λm




 ; λ1 ≥ λ2 ≥ · · · ≥ λm (6.5.54)

Also, let
b = U∗ā (6.5.55)

Using (6.5.53)–(6.5.55) we can rewrite the left-hand side of equation (6.5.50) as:

g(λ) , ā∗ [I + λR]
−2
ā = ā∗ [U(I + λΛ)U∗]−2

ā

= b∗(I + λΛ)−2b =

m∑

k=1

|bk|2
(1 + λλk)2

(6.5.56)

where bk is the kth element of the vector b. Note that

m∑

k=1

|bk|2 = ‖b‖2 = ‖ā‖2 > ε (6.5.57)

(see (6.5.55) and (6.5.40)). It follows from (6.5.56) and (6.5.57) that λ can be a
solution of the equation g(λ) = ε only if

(1 + λλk)
2 > 1 (6.5.58)

for some value of k. At the same time, λ should be such that (see (6.5.51)):

R−1 + λI > 0 ⇐⇒ I + λR > 0

⇐⇒ 1 + λλk > 0 for k = 1, . . . ,m (6.5.59)

It follows from (6.5.58) and (6.5.59) that 1 + λλk > 1 for at least one value of k,
which implies that

λ > 0 (6.5.60)

This inequality sets a lower bound on the solution to (6.5.50). To refine this lower
bound, and also to obtain an upper bound, first observe that g(λ) is a monotonically
decreasing function of λ for λ > 0. Furthermore, for

λL =
‖ā‖ − √

ε

λ1
√
ε

(6.5.61)

we have that

g(λL) >
1

(1 + λLλ1)2
‖b‖2 =

ε

‖ā‖2
‖ā‖2 = ε (6.5.62)
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Similarly, for

λU =
‖ā‖ − √

ε

λm
√
ε

≥ λL (6.5.63)

we can verify that

g(λU ) <
1

(1 + λUλm)2
‖b‖2 = ε (6.5.64)

Summarizing the previous facts, it follows that equation (6.5.50) has a unique so-
lution for λ that satisfies (6.5.51), which belongs to the interval [λL, λU ] ⊂ (0,∞).
With this observation, the derivation of the robust version of the Capon method is
complete. The following is a step-by-step summary of the Robust Capon algorithm.

The Robust Capon Algorithm
Step 1. Compute the eigendecomposition R = UΛU∗ and set b = U∗ā.
Step 2. Solve the equation g(λ) = ε for λ using, e.g., a Newton method along
with the fact that there is a unique solution in the interval [λL, λU ].
Step 3. Compute (cf. (6.5.47), (6.5.52), (6.5.53)):

ã = ā− U(I + λΛ)−1b (6.5.65)

and, finally, compute the power estimate (see (6.5.42) and (6.5.43))

σ̂2
s =

ã∗ã

m ã∗UΛ−1U∗ã
(6.5.66)

where, from (6.5.65), U∗ã = b− (I + λΛ)−1b.

The bulk of the computation in the algorithm involves computing the EVD
of R, which requires O(m3) arithmetic operations. Hence, the computational com-
plexity of the above Robust Capon method is comparable to that of the standard
Capon method. We refer the reader to [Li, Stoica, and Wang 2003] and also
to [Stoica, Wang, and Li 2003] for further computational considerations and
insights, as well as many numerical examples illustrating the good performance of
the Robust Capon method, including its insensitivity to the choice of ε in (6.5.38)
or C in (6.5.37).

6.5.5 Capon Method with Noise Gain Constraint

As explained in Complement 6.5.4, the Capon method performs poorly as a power
estimator in the presence of steering vector errors (yet, it may perform fairly well as
a DOA estimator, provided that the SNR is reasonably large; see [Cox 1973; Li,

Stoica, and Wang 2003] and references therein). The same happens when
the number of snapshots, N , is relatively small, such as when N is equal to or
only slightly larger than the number of sensors, m. In fact, there is a close rela-
tionship between the cases of steering vector errors and small-sample errors, see
e.g. [Feldman and Griffiths 1994]. More precisely, the sampling estimation
errors of the covariance matrix can be viewed as steering vector errors in a cor-
responding theoretical covariance matrix, and vice versa. For example, consider a
uniform linear array and assume that the source signals are uncorrelated with one



“sm2”
2004/2/22
page 299

i

i

i

i

i

i

i

i

Section 6.5 Complements 299

another. In this case, the theoretical covariance matrix R of the array output is
Toeplitz. Assume that the sample covariance matrix R̂ is also Toeplitz. According
to the Carathéodory parameterization of Toeplitz matrices (see Complement 4.9.2),
we can view R̂ as being the theoretical covariance matrix associated with a ficti-
tious ULA on which uncorrelated signals impinge, but the powers and DOAs of the
latter signals are different from those of the actual signals. Hence, the small sample
estimation errors in R̂ can be viewed as being due to steering vector errors in a
corresponding theoretical covariance matrix.

The robust Capon method (RCM) presented in Complement 6.5.4 significantly
outperforms the standard Capon method (CM) in power estimation applications in
which the sample length is insufficient for accurate estimation of R, or in which the
steering vector is imprecisely known. The RCM was introduced in [Stoica, Wang,

and Li 2003; Li, Stoica, and Wang 2003]. An earlier approach, whose goal
is also to enhance the performance of CM in the presence of sampling estimation
errors or steering vector mismatch, is the so-called diagonal loading approach (see,
e.g., [Hudson 1981; Van Trees 2002] and references therein). The main idea
of diagonal loading is to replace R in the Capon formula for the spatial filter h,
(6.3.24), by the following matrix:

R+ λI (6.5.67)

where the diagonal loading factor λ > 0 is a user-selected parameter. The so-
obtained filter vector h is given by

h =
(R+ λI)−1a

a∗(R+ λI)−1a
(6.5.68)

The use of the diagonally-loaded matrix in (6.5.67) instead of R is the reason for
the name of the approach based on (6.5.68). The symbol R in this complement
refers to either a theoretical covariance matrix or a sample covariance matrix.

There have been several rules proposed in the literature for choosing the
parameter λ in (6.5.68). Most of these rules choose λ in a rather ad-hoc and
data-independent manner. As illustrated in [Li, Stoica, and Wang 2003] and
its references, a data-independent selection of the diagonal loading factor cannot
improve the performance for a reasonably large range of SNR values. Hence, a
data-dependent choice of λ is desired.

One commonly-used data-dependent rule selects the diagonal loading factor
λ > 0 that satisfies

‖h‖2 =
a∗(R+ λI)−2a

[a∗(R+ λI)−1a]
2 = c (6.5.69)

where the constant cmust be chosen by the user. Let us explain briefly why choosing
λ via (6.5.69) makes sense intuitively. Assume that the array output vector contains
a spatially white noise component whose covariance matrix is proportional to I
(see (6.4.1)). Then the power at the output of the spatial filter h due to the noise
component is ‖h‖2; for this reason ‖h‖2 is sometimes called the (white) noise gain of
h. In scenarios with a large number of (possibly closely-spaced) source signals, the
Capon spatial filter h in (6.3.24) may run out of “degrees of freedom” and hence
may not pay enough attention to the noise in the data (unless the SNR is very
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low). The result is a relatively high noise gain, ‖h‖2, which may well degrade the
accuracy of signal power estimation. To prevent this from happening, it makes sense
to limit ‖h‖2 as in (6.5.69). By doing so we are left with the problem of choosing
c. While the choice of c may be easier than the direct choice of λ in (6.5.68), it
is far from trivial, and in fact clear-cut rules for selecting c are hardly available.
In particular, a “too small” value of c may limit the noise gain unnecessarily, and
result in decreased resolution and increased leakage.

In this complement we will show that the spatial filter of the diagonally-loaded
Capon method in (6.5.68), (6.5.69) is the solution to the following design problem:

min
h
h∗Rh subject to: h∗a = 1 and ‖h‖2 ≤ c (6.5.70)

Because (6.5.70) is obtained by adding the noise gain constraint ‖h‖2 ≤ c to the
standard Capon problem in (6.3.23), we will call the method that follows from
(6.5.70) the constrained Capon method (CCM). While the fact that (6.5.68), (6.5.69)
is the solution to (6.5.70) is well known from the previous literature (see, e.g.,
[Hudson 1981]), we present a rigorous and thorough analysis of this solution. As
a byproduct, the following analysis also suggests some guidelines for choosing the
user parameter c in (6.5.69). Note that in general a, c, and h in (6.5.70) depend on
the DOA θ; to simplify notation we will omit the functional dependence on θ here.

It is interesting to observe that the RCM, described in Complement 6.5.4, can
also be cast into a diagonal loading framework. To see this, first note from (6.5.47)
and (6.5.52) that the steering vector estimate used in the RCM is given by:

a = ā− (I + λR)−1ā = (I + λR)−1 [(I + λR) − I] ā

=
(

1
λR

−1 + I
)−1

ā (6.5.71)

The RCM estimates the signal power by

1

a∗R−1a
(6.5.72)

with a as given in (6.5.71) above, and hence RCM does not directly use any spatial
filter. However, the power estimate in (6.5.72) is equal to h∗Rh, where

h =
R−1a

a∗R−1a
(6.5.73)

and hence (6.5.72) can be viewed as being obtained by the (implicit) use of the
spatial filter in (6.5.71), (6.5.73). Inserting (6.5.71) into (6.5.73) we obtain:

h =

(
R+ 1

λI
)−1

a

a∗ [(R+ 1
λI
)
R−1

(
R+ 1

λI
)]−1

a
(6.5.74)

which, except for the scalar in the denominator, has the form in (6.5.68) of the
spatial filter used by the diagonal loading approach. Note that the diagonal loading
factor, 1/λ, in (6.5.74) is data-dependent. Furthermore, the selection of λ in the
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RCM (see Complement 6.5.4 for details on this aspect) relies entirely on information
about the uncertainty set of the steering vector, as defined, for instance, by the
sphere with radius ε1/2 in (6.5.38). Such information is more readily available in
applications than is information which would help the user select the noise gain
constraint c in the CCM. Indeed, in many applications we should be able to make a
more competent guess about ε than about c (for all DOAs of interest in the analysis).
This appears to be a significant advantage of RCM over CCM, despite the fact that
both methods can be interpreted as data-dependent diagonal loading approaches.

Remark: The reader may have noted by now that the CCM problem in (6.5.70)
is similar to the combined RCM problem in (6.5.44), (6.5.41) discussed in Com-
plement 6.5.4. This observation has two consequences. First, it follows that the
combined RCM design problem in (6.5.44), (6.5.41) could be solved by an algorithm
similar to the one presented below for solving the CCM problem; indeed, this is
the case as shown in [Li, Stoica, and Wang 2004]. Second, the CCM problem
(6.5.70) and the combined RCM problem (6.5.44), (6.5.41) both have two con-
straints, and are more complicated than the RCM problem (6.5.44), which has only
one constraint. Hence, the CCM algorithm described below will be (slightly) more
involved computationally than the RCM algorithm outlined in Complement 6.5.4.

�

We begin the analysis of the CCM problem in (6.5.70) by deriving a feasible
range for the user parameter c. Let S denote the set of vectors h that satisfy both
constraints in (6.5.70):

S =
{
h
∣
∣ h∗a = 1 and ‖h‖2 ≤ c

}
(6.5.75)

By the Cauchy–Schwartz inequality (see Result R12 in Appendix A), we have that:

1 = |h∗a|2 ≤ ‖h‖2‖a‖2 ≤ cm =⇒ c ≥ 1

m
(6.5.76)

where we also used the fact that (by assumption; see (6.3.11))

‖a‖2 = m (6.5.77)

The inequality in (6.5.76) sets a lower bound on c; otherwise, S is empty. To obtain
an upper bound we can argue as follows. The vector h used in the CM has the
following norm:

‖hCM‖2 =
a∗R−2a

(a∗R−1a)
2 (6.5.78)

As the noise gain of the CM is typically too high, we should like to choose c so that

c <
a∗R−2a

(a∗R−1a)
2 (6.5.79)

Note that if c does not satisfy (6.5.79), then the CM spatial filter h satisfies both
constraints in (6.5.70) and hence it is the solution to the CCM problem. Combining
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(6.5.76) and (6.5.79) yields the following interval for c:

c ∈
[

1

m
,
a∗R−2a

(a∗R−1a)
2

]

(6.5.80)

Similarly to (6.5.53), let
R = UΛU∗ (6.5.81)

be the eigenvalue decomposition (EVD) of R, where U∗U = UU∗ = I and

Λ =






λ1 0
. . .

0 λm




 ; λ1 ≥ λ2 ≥ · · · ≥ λm (6.5.82)

As
a∗R−2a

[a∗R−1a]
2 ≤ ‖a‖2/λ2

m

[‖a‖2/λ1]
2 =

λ2
1

mλ2
m

(6.5.83)

it follows from (6.5.79) that c also satisfies:

mc <
λ2

1

λ2
m

(6.5.84)

The above inequality will be useful later on.
Next, let us define the function

g(h, λ, µ) = h∗Rh+ λ(‖h‖2 − c) + µ(−h∗a− a∗h+ 2) (6.5.85)

where µ ∈ R is arbitrary and where

λ > 0 (6.5.86)

Remark: We note in passing that λ and µ are the so-called Lagrange multipliers, and
g(h, λ, µ) is the so-called Lagrangian function associated with the CCM problem in
(6.5.70); however, to make the following derivation as self-contained as possible, we
will not explicitly use any result from Lagrange multiplier theory. �

Evidently, by the definition of g(h, λ, µ) we have that:

g(h, λ, µ) ≤ h∗Rh for any h ∈ S (6.5.87)

and for any µ ∈ R and λ > 0. The part of (6.5.85) that depends on h can be
written as

h∗(R+ λI)h− µh∗a− µa∗h

=
[
h− µ(R+ λI)−1a

]∗
(R+ λI)

[
h− µ(R+ λI)−1a

]

− µ2a∗(R+ λI)−1a (6.5.88)
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Hence, for fixed λ and µ, the unconstrained minimizer of g(h, λ, µ) with respect to
h is given by:

ĥ(λ, µ) = µ(R+ λI)−1a (6.5.89)

Let us choose µ such that (6.5.89) satisfies the first constraint in (6.5.70):

ĥ∗(λ, µ̂)a = 1 ⇐⇒ µ̂ =
1

a∗(R+ λI)−1a
(6.5.90)

(which is always possible, for λ > 0). Also, let us choose λ so that (6.5.89) also
satisfies the second constraint in (6.5.70) with equality, i.e.,

‖ĥ(λ̂, µ̂)‖2 = c ⇐⇒ a∗(R+ λ̂I)−2a
[

a∗(R+ λ̂I)−1a
]2 = c (6.5.91)

We will show shortly that the above equation has a unique solution λ̂ > 0 for any
c satisfying (6.5.80). Before doing so, we remark on the following important fact.
Inserting (6.5.90) into (6.5.89), we get the diagonally-loaded version of the Capon
method (see (6.5.68)):

ĥ(λ̂, µ̂) =
(R+ λ̂I)−1a

a∗(R+ λ̂I)−1a
(6.5.92)

As λ̂ satisfies (6.5.91), the above vector ĥ(λ̂, µ̂) lies on the boundary of S, and hence
(see also (6.5.87)):

g
(

ĥ(λ̂, µ̂), λ̂, µ̂
)

= ĥ∗(λ̂, µ̂)Rĥ(λ̂, µ̂) ≤ h∗Rh for any h ∈ S (6.5.93)

From (6.5.93) we conclude that (6.5.92) is the (unique) solution to the CCM prob-
lem.

It remains to show that, indeed, equation (6.5.91) has a unique solution λ̂ > 0

under (6.5.80), and also to provide a computationally convenient way of finding λ̂.

Towards that end, we use the EVD of R in (6.5.91) (with the hat on λ̂ omitted, for
notational simplicity) to rewrite (6.5.91) as follows:

f(λ) = c (6.5.94)

where

f(λ) =
a∗(R+ λI)−2a

[a∗(R+ λI)−1a]
2 =

[
m∑

k=1

|bk|2
(λk + λ)2

]

[
m∑

k=1

|bk|2
(λk + λ)

]2 (6.5.95)

and where bk is the kth element of the vector

b = U∗a (6.5.96)
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Differentiation of (6.5.95) with respect to λ yields:

f ′(λ) =






−2

[
m∑

k=1

|bk|2
(λk + λ)3

][
m∑

k=1

|bk|2
(λk + λ)

]2

+2

[
m∑

k=1

|bk|2
(λk + λ)2

][
m∑

k=1

|bk|2
(λk + λ)

][
m∑

k=1

|bk|2
(λk + λ)2

]






· 1
[
m∑

k=1

|bk|2
(λk + λ)

]4

= −2







[
m∑

k=1

|bk|2
(λk + λ)3

][
m∑

k=1

|bk|2
(λk + λ)

]

−
[

m∑

k=1

|bk|2
(λk + λ)2

]2






·

[
m∑

k=1

|bk|2
(λk + λ)

]

[
m∑

k=1

|bk|2
(λk + λ)

]4 (6.5.97)

Making use of the Cauchy–Schwartz inequality once again, we can show that

[
m∑

k=1

|bk|2
(λk + λ)2

]2

=

[
m∑

k=1

|bk|
(λk + λ)3/2

|bk|
(λk + λ)1/2

]2

<

[
m∑

k=1

|bk|2
(λk + λ)3

][
m∑

k=1

|bk|2
(λk + λ)

]

(6.5.98)

Hence,

f ′(λ) <0 for any λ > 0

(and λk 6= λp for at least one pair k 6= p)
(6.5.99)

which means that f(λ) is a monotonically strictly decreasing function for λ > 0.
Combining this observation with the fact that f(0) > c (see (6.5.79)) shows that
indeed the equation f(λ) = c in (6.5.91) has a unique solution for λ > 0.

For efficiently solving the equation f(λ) = c, an upper bound on λ would also
be useful. Such a bound can be obtained as follows. A simple calculation shows
that

c = f(λ) <

‖b‖2

(λm + λ)2

‖b‖4

(λ1 + λ)2

=
(λ1 + λ)2

m(λm + λ)2

=⇒ mc(λm + λ)2 < (λ1 + λ)2 (6.5.100)
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where we used the fact that ‖b‖2 = ‖a‖2 = m. From (6.5.100) we see that λ must
satisfy the inequality

λ <
λ1 − √

mcλm√
mc− 1

, λU (6.5.101)

Note that both the numerator and the denominator in (6.5.101) are positive; see
(6.5.76) and (6.5.84).

The derivation of the constrained Capon method is now complete. The fol-
lowing is a step-by-step summary of the CCM.

The Constrained Capon Algorithm
Step 1. Compute the eigendecomposition R = UΛU∗ and set b = U∗a.
Step 2. Solve the equation f(λ) = c for λ using, e.g., a Newton method along
with the fact that there is a unique solution which lies in the interval (0, λU ).
Step 3. Compute the (diagonally-loaded) spatial filter vector

h =
(R+ λI)−1a

a∗(R+ λI)−1a
=
U(Λ + λI)−1b

b∗(Λ + λI)−1b

where λ is found in Step 2, and estimate the signal power as h∗Rh.

To conclude this complement, we note that the above CCM algorithm is quite
similar to the RCM algorithm presented in Complement 6.5.4. The only differences
are that the equation for λ associated with the CCM is slightly more complicated,
and more importantly, that it is harder to select c needed in the CCM (for any
DOA of interest) than it is to select ε in the RCM. As we have shown, for CCM
one should choose c in the interval (6.5.80). Note that for c = 1/m we get λ → ∞
and h = a/m, which is the beamforming method. For c = a∗R−2a/(a∗R−1a)2 we
obtain λ = 0 and h = hCM, which is the standard Capon method. Values of c
between these two extremes should be chosen in an application-dependent manner.

6.5.6 Spatial Amplitude and Phase Estimation (APES)

As explained in Section 6.3.2, the Capon method estimates the spatial spectrum by
using a spatial filter that passes the signal impinging on the array from direction
θ in a distortionless manner, and at the same time attenuates signals with DOAs
different from θ as much as possible. The Capon method for temporal spectral
analysis is based on exactly the same idea (see Section 5.4), as is the temporal
APES method described in Complement 5.6.4. In this complement we will present
an extension of APES that can be used for spatial spectral analysis.

Let θ denote a generic DOA and consider the equation (6.2.19),

y(t) = a(θ)s(t) + e(t), t = 1, . . . , N (6.5.102)

that describes the array output, y(t), as a function of a signal, s(t), possibly im-
pinging on the array from a DOA equal to θ, and a term, e(t), that includes noise
along with any other signals whose DOAs are different from θ. We assume that the
array is uniform and linear, in which case a(θ) is given by

a(θ) =
[

1, e−iωs , . . . , e−i(m−1)ωs

]T

(6.5.103)



“sm2”
2004/2/22
page 306

i

i

i

i

i

i

i

i

306 Chapter 6 Spatial Methods

where m denotes the number of sensors in the array, and ωs = (ωcd sin θ)/c is the
spatial frequency (see (6.2.26) and (6.2.27)). As we will explain later, the spatial
extension of APES presented in this complement appears to perform well only in
the case of ULAs. While this is a limitation, it is not a serious one because there
are techniques which can be used to approximately transform the direction vector
of a general array into the direction vector of a fictitious ULA (see, e.g., [Doron,

Doron, and Weiss 1993]). Such a technique performs a relatively simple DOA-
independent linear transformation of the array output snapshots; the so-obtained
linearly transformed snapshots can then be used as the input to the spatial APES
method presented here. See [Abrahamsson, Jakobsson, and Stoica 2004] for
details on how to use the spatial APES approach of this complement for arrays that
are not uniform and linear.

Let σ2
s denote the power of the signal s(t) in (6.5.102), which is the main

parameter we want to estimate; note that the estimated signal power σ̂2
s , as a

function of θ, provides an estimate of the spatial spectrum. In this complement, we
assume that {s(t)}Nt=1 is an unknown deterministic sequence, and hence we define
σ2
s as

σ2
s = lim

N→∞

1

N

N∑

t=1

|s(t)|2 (6.5.104)

An important difference between equation (6.5.102) and its temporal counter-
part (see, e.g., equation (5.6.81) in Complement 5.6.6) is that in (6.5.102) the signal
s(t) is completely unknown, whereas in the temporal case we had s(t) = βeiωt and
only the amplitude is unknown. Because of this difference, the use of the APES
principle for spatial spectral estimation is somewhat different from its use for tem-
poral spectral estimation.

Remark: We remind the reader that {s(t)}Nt=1 is assumed to be an unknown de-
terministic sequence here. The case in which {s(t)} is assumed to be stochastic is
considered in Complement 6.5.3. Interestingly, application of the APES principle
in the stochastic signal case leads to the (standard) Capon method! �

Let m̄ < m be an integer, and define the following two vectors:

āk =
[

e−i(k−1)ωs , e−ikωs , . . . , e−i(k+m̄−2)ωs

]T

(m̄× 1) (6.5.105)

ȳk(t) = [yk(t), yk+1(t), . . . , yk+m̄−1(t)]
T

(m̄× 1) (6.5.106)

for k = 1, . . . , L, with

L = m− m̄+ 1 (6.5.107)

In (6.5.106), yk(t) denotes the kth element of y(t); also, we omit the dependence of
āk on θ to simplify notation. The choice of the user parameter m̄ will be discussed
later.

Owing to the assumed ULA structure, the direction subvectors {āk} satisfy
the following relations:

āk = e−i(k−1)ωs ā1, k = 2, . . . , L (6.5.108)
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Consequently, ȳk(t) can be written as (see (6.5.102)):

ȳk(t) = āks(t) + ēk(t) = e−i(k−1)ωs ā1s(t) + ēk(t) (6.5.109)

where ēk(t) is a noise vector defined similarly to ȳk(t). Let h denote the (m̄ × 1)
coefficient vector of a spatial filter that is applied to {ei(k−1)ωs ȳk(t)}Lk=1. Then it
follows from (6.5.109) that h passes the signal s(t) in each of these data sets in a
distortionless manner if and only if:

h∗ā1 = 1 (6.5.110)

Using the above observations along with the APES principle presented in Com-
plement 5.6.4, we can determine both the spatial filter h and an estimate of the
complex-valued sequence {s(t)}Nt=1 (we estimate both amplitude and phase — recall
that APES stands for Amplitude and Phase EStimation) by solving the following
linearly-constrained least squares (LS) problem:

min
h;{s(t)}

N∑

t=1

L∑

k=1

∣
∣
∣h∗ȳk(t)e

i(k−1)ωs − s(t)
∣
∣
∣

2

subject to: h∗ā1 = 1 (6.5.111)

The quadratic criterion in (6.5.111) expresses our desire to make the outputs of
the spatial filter, {h∗ȳk(t)ei(k−1)ωs}Lk=1, resemble a signal s(t) (that is indepen-
dent of k) as much as possible, in a least squares sense. Said another way, the
above LS criterion expresses our goal to make the filter h attenuate any signal in
{ȳk(t)ei(k−1)ωs}Lk=1, whose DOA is different from θ, as much as possible. The linear
constraint in (6.5.111) forces the spatial filter h to pass the signal s(t) undistorted.

To derive a solution to (6.5.111), let

g(t) =
1

L

L∑

k=1

ȳk(t)e
i(k−1)ωs (6.5.112)

and observe that

1

L

L∑

k=1

∣
∣
∣h∗ȳk(t)e

i(k−1)ωs − s(t)
∣
∣
∣

2

= |s(t)|2 + h∗
[

1

L

L∑

k=1

ȳk(t)ȳ
∗
k(t)

]

h− h∗g(t)s∗(t) − g∗(t)hs(t)

= h∗
[

1

L

L∑

k=1

ȳk(t)ȳ
∗
k(t)

]

h− h∗g(t)g∗(t)h+ |s(t) − h∗g(t)|2 (6.5.113)

Hence, the sequence {s(t)} that minimizes (6.5.111), for fixed h, is given by

ŝ(t) = h∗g(t) (6.5.114)

Inserting (6.5.114) into (6.5.111) (see also (6.5.113)) we obtain the reduced problem:

min
h
h∗Q̂h subject to: h∗ā1 = 1 (6.5.115)
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where
Q̂ = R̂− Ĝ

R̂ =
1

N

N∑

t=1

1

L

L∑

k=1

ȳk(t)ȳ
∗
k(t)

Ĝ =
1

N

N∑

t=1

g(t)g∗(t)

(6.5.116)

The solution to the quadratic problem with linear constraints in (6.5.115) can
be obtained by using Result R35 in Appendix A:

ĥ =
Q̂−1ā1

ā∗
1Q̂

−1ā1

(6.5.117)

Using (6.5.117) in (6.5.114) we can obtain an estimate of the signal sequence,
which may be of interest in some applications, as well as an estimate of the signal
power:

σ̂2
s =

1

N

N∑

t=1

|ŝ(t)|2 = ĥ∗Ĝĥ (6.5.118)

The above equation, as a function of DOA θ, provides an estimate of the spatial
spectrum.

The matrix Q̂ in (6.5.116) can be rewritten in the following form:

Q̂ =
1

N

N∑

t=1

1

L

L∑

k=1

[

ei(k−1)ωs ȳk(t) − g(t)
] [

ei(k−1)ωs ȳk(t) − g(t)
]∗

(6.5.119)

It follows from (6.5.119) that Q̂ is always positive semidefinite. For L = 1 (or,
equivalently, m̄ = m) we have Q̂ = 0 because g(t) = ȳ1(t) for t = 1, . . . , N . Thus,
for L = 1 (6.5.117) is not valid. This is expected: indeed, for L = 1 we can make
(6.5.111) equal to zero, for any h, by choosing ŝ(t) = h∗ȳ1(t); consequently, the
problem of minimizing (6.5.111) with respect to (h; {s(t)}Nt=1) is underdetermined
for L = 1, and hence an infinite number of solutions exist. To prevent this from
happening, we should choose L ≥ 2 (or, equivalently, m̄ ≤ m − 1). For L ≥ 2 the
(m̄ × m̄) matrix Q̂ is a sum of NL outer products; if NL ≥ m̄, which is a weak
condition, Q̂ is almost surely strictly positive definite and hence nonsingular.

From a performance point of view, it turns out that a good choice of m̄ is its
maximum possible value:

m̄ = m− 1 ⇐⇒ L = 2 (6.5.120)

A numerical study of performance, reported in [Gini and Lombardini 2002],
supports the above choice of m̄, and also suggests that the spatial APES method
may outperform the Capon method in both spatial spectrum estimation and DOA
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estimation applications. The APES spatial filter is, however, more difficult to
compute than is the Capon spatial filter, owing to the dependence of Q̂ in (6.5.117)
on the DOA.

In the remainder of this complement we will explain why the APES method
may be expected to outperform the Capon method. In doing so we assume that
m̄ = m−1 (and thus L = 2) as in (6.5.120). Intuitively, this choice of m̄ provides the
APES filter with the maximum possible number of degrees of freedom, and hence
it makes sense that it should lead to better resolution and interference rejection
capability than would smaller values of m̄. For L = 2 we have

g(t) =
1

2

[
ȳ1(t) + eiωs ȳ2(t)

]
(6.5.121)

and hence

Q̂ =
1

2N

N∑

t=1

{
1

4

[
ȳ1(t) − eiωs ȳ2(t)

] [
ȳ1(t) − eiωs ȳ2(t)

]∗

+
1

4

[
eiωs ȳ2(t) − ȳ1(t)

] [
eiωs ȳ2(t) − ȳ1(t)

]∗
}

=
1

4N

N∑

t=1

[
ȳ1(t) − eiωs ȳ2(t)

] [
ȳ1(t) − eiωs ȳ2(t)

]∗
(6.5.122)

It follows that the APES spatial filter is the solution to the problem (see (6.5.115))

min
h

N∑

t=1

∣
∣
∣h∗ [ȳ1(t) − eiωs ȳ2(t)

]
∣
∣
∣

2

subject to: h∗ā1 = 1 (6.5.123)

and that the APES signal estimate is given by (see (6.5.114))

ŝ(t) =
1

2
h∗ [ȳ1(t) + eiωs ȳ2(t)

]
(6.5.124)

On the other hand, the Capon spatial filter is obtained as the solution to the
problem

min
h

N∑

t=1

|h∗y(t)|2 subject to: h∗a = 1 (6.5.125)

and the Capon signal estimate is given by

ŝ(t) = h∗y(t) (6.5.126)

To explain the main differences between the APES and Capon approaches let us
assume that, in addition to the signal of interest (SOI) s(t) impinging on the array
from the DOA under consideration θ, there is an interference signal i(t) that im-
pinges on the array from another DOA, denoted θi. We consider the situation in
which only one interference signal is present to simplify the discussion, but the case
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of multiple interference signals can be similarly treated. The array output vector
in (6.5.102) and the subvectors in (6.5.109) become

y(t) = a(θ)s(t) + b(θi)i(t) + e(t) (6.5.127)

ȳ1(t) = ā1(θ)s(t) + b̄1(θi)i(t) + ē1(t) (6.5.128)

ȳ2(t) = ā2(θ)s(t) + b̄2(θi)i(t) + ē2(t) (6.5.129)

where the quantities b, b̄1, and b̄2 are defined similarly to a, ā1, and ā2. We have
shown the dependence of the various quantities on θ and θi in equations (6.5.127)–
(6.5.129), but will drop the DOA dependence in the remainder of the derivation to
simplify notation.

For the above scenario, the Capon method is known to have poor performance
in either of the following two situations:

(i) The SOI steering vector is imprecisely known, for example owing to pointing
or calibration errors.

(ii) The SOI is highly correlated or coherent with the interference, which happens
in multipath propagation or smart jamming scenarios.

To explain the difficulty of the Capon method in case (i), let us assume that the true
steering vector of the SOI is a0 6= a. Then, by design, the Capon filter will be such
that |h∗a0| ' 0 (where ' 0 denotes a “small” value). Therefore, the SOI, whose
steering vector is different from the assumed vector a, is treated as an interference
signal and is attenuated or cancelled. As a consequence, the power of the SOI
will be significantly underestimated, unless special measures are taken to make the
Capon method robust against steering vector errors (see Complements 6.5.4 and
6.5.5).

The performance degradation of the Capon method in case (ii) is also easy to
understand. Assume that the interference is coherent with the SOI and hence that
i(t) = ρs(t) for some nonzero constant ρ. Then (6.5.127) can be rewritten as

y(t) = (a+ ρb)s(t) + e(t) (6.5.130)

which shows that the SOI steering vector is given by (a+ρb) in lieu of the assumed
vector a. Consequently, the Capon filter will by design be such that |h∗(a+ρb)| ' 0,
and therefore the SOI will be attenuated or cancelled in the filter output h∗y(t), as
in case (i). In fact, case (ii) can be considered as an extreme example of case (i),
in which the SOI steering vector errors can be significant. Modifying the Capon
method to work well in the case of coherent multipath signals is thus a more difficult
problem than modifying it to be robust to small steering vector errors.

Next, let us consider the APES method in case (ii). From (6.5.128) and
(6.5.129), along with (6.5.108), we get

[
ȳ1(t) − eiωs ȳ2(t)

]

=
(
ā1 − eiωs ā2

)
s(t) +

(
b̄1 − eiωs b̄2

)
i(t) +

[
ē1(t) − eiωs ē2(t)

]

=
[

1 − ei(ωs−ωi)
]

b̄1i(t) +
[
ē1(t) − eiωs ē2(t)

]
(6.5.131)



“sm2”
2004/2/22
page 311

i

i

i

i

i

i

i

i

Section 6.5 Complements 311

and

1

2

[
ȳ1(t) + eiωs ȳ2(t)

]

=
1

2

(
ā1 + eiωs ā2

)
s(t) +

1

2

(
b̄1 + eiωs b̄2

)
i(t) +

1

2

[
ē1(t) + eiωs ē2(t)

]

= ā1s(t) +
1

2

[

1 + ei(ωs−ωi)
]

b̄1i(t) +
1

2

[
ē1(t) + eiωs ē2(t)

]
(6.5.132)

where ωi = (ωcd sin θi)/c denotes the spatial frequency of the interference. It follows
from (6.5.131) and the design criterion in (6.5.123) that the APES spatial filter will
be such that

|1 − ei(ωs−ωi)| · |h∗b̄1| ' 0 (6.5.133)

Hence, because the SOI is absent from the data vector in (6.5.131), the APES filter
is able to cancel the interference only, despite the fact that the interference and
the SOI are coherent. This interference rejection property of the APES filter (i.e.,
|h∗b̄1| ' 0) is precisely what is needed when estimating the SOI from the data in
(6.5.132).

To summarize, the APES method circumvents the problem in case (ii) by
implicitly eliminating the signal from the data that is used to derive the spatial
filter. However, if there is more than one coherent interference in the observed
data, then APES also breaks down similarly to the Capon method. The reason
is that the vector multiplying i(t) in (6.5.131) is no longer proportional to the
vector multiplying i(t) in (6.5.132), and hence a filter h that, by design, cancels
the interference i(t) in (6.5.131) is not guaranteed to have the desirable effect of
cancelling i(t) in (6.5.132); the details are left to the interested reader.

Remark: A similar argument to the one above explains why APES will not work
well for non-ULA array geometries, in spite of the fact that it can be extended to
such geometries in a relatively straightforward manner. Specifically, for non-ULA
geometries, the steering vectors of the interference terms in the data sets used to
obtain h and to estimate s(t), respectively, are not proportional to one another.
As a consequence, the design objective does not provide the APES filter with the
desired capability of attenuating the interference terms in the data that is used to
estimate {s(t)}. �

Next consider the APES method in case (i). To simplify the discussion, let us
assume that there are no calibration errors but only a pointing error, so that the
true spatial frequency of the SOI is ω0

s 6= ωs. Then equation (6.5.131) becomes

ȳ1(t) − eiωs ȳ2(t) =
[

1 − ei(ωs−ω0
s)
]

ā0
1s(t) +

[

1 − ei(ωs−ωi)
]

b̄1i(t)

+
[
ē1(t) − eiωs ē2(t)

] (6.5.134)

It follows that in case (i) the APES spatial filter tends to cancel the SOI as well,
in addition to cancelling the interference. However, the pointing errors are usually
quite small, and therefore the residual term of s(t) in (6.5.134) is small as well.
Hence, the SOI may well pass through the APES filter (i.e., |h∗ā0

1| may be reason-
ably close to |h∗ā1| = 1), because the filter uses most of its degrees of freedom to
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cancel the much stronger interference term in (6.5.134). As a consequence, APES
is less sensitive to steering vector errors than is the Capon method.

The above discussion also explains why APES can provide better power esti-
mates than the Capon method, even in “ideal” cases in which there are no multipath
signals that are coherent with the SOI and no steering vector errors, but the num-
ber of snapshots N is not very large. Indeed, as argued in Complement 6.5.5, the
finite-sample effects associated with practical values of N can be viewed as inducing
both correlation among the signals and steering vector errors, to which the APES
method is less sensitive than the Capon method as explained above.

We also note that the power of the elements of the noise vector in the data in
(6.5.131), that is used to derive the APES filter, is larger than the power of the noise
elements in the raw data y(t) that is used to compute the Capon filter. Somewhat
counterintuitively, this is another potential advantage of the APES method over
the Capon method. Indeed, the increased noise power in the data used by APES
has a regularizing effect on the APES filter, which keeps the filter noise gain down,
whereas the Capon filter is known to have a relatively large noise gain that can
have a detrimental effect on signal power estimation (see Complement 6.5.5).

On the downside, APES has been found to have a slightly lower resolution
than the Capon method (see, e.g., [Jakobsson and Stoica 2000]. Our previous
discussion also provides a simple explanation to this result: when the interference
and the SOI are closely-spaced (i.e., when ωs ' ωi), the first factor in (6.5.133)
becomes rather small, which may allow the second factor to increase somewhat.
This explains why the beamwidth of the APES spatial filter may be larger than
that of the Capon filter, and hence why APES may have a slightly lower resolution.

6.5.7 The CLEAN Algorithm

The CLEAN algorithm is a semi-parametric method that can be used for spatial
spectral estimation. As we will see, this algorithm can be introduced in a non-
parametric fashion (see [Högbom 1974]), yet its performance depends heavily on
an implicit parametric assumption about the structure of the spatial covariance
matrix; thus, CLEAN lies in between the class of nonparametric and parametric
approaches, and it can be called a semi-parametric approach.

There is a significant literature about CLEAN and its many applications in
diverse areas, including array signal processing, image processing, and astronomy
(see, e.g., [Cornwell and Bridle 1996] and its references). Our discussion of
CLEAN will focus on its application to spatial spectral analysis and DOA estima-
tion.

First, we present an intuitive motivation of CLEAN. Consider the beamform-
ing spatial spectral estimate in (6.3.18):

φ̂1(θ) = a∗(θ)R̂a(θ) (6.5.135)

where a(θ) and R̂ are defined as in Section 6.3.1. Let

θ̂1 = arg max
θ
φ̂1(θ) (6.5.136)

σ̂2
1 =

1

m2
φ̂1(θ̂1) (6.5.137)
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In words, σ̂2
1 is the scaled height of the highest peak of φ̂1(θ), and θ̂1 is its corre-

sponding DOA (see (6.3.16) and (6.3.18)). As we know, the beamforming method
suffers from resolution and leakage problems. However, the dominant peak of the
beamforming spectrum, φ̂1(θ), is likely to indicate that there is a source, or possibly

several closely-spaced sources, at or in the vicinity of θ̂1. The covariance matrix
of the part of the array output due to a source signal with DOA equal to θ̂1 and
power equal to σ̂2

1 is given by (see, e.g., (6.2.19)):

σ̂2
1a(θ̂1)a

∗(θ̂1) (6.5.138)

Consequently, the expected term in φ̂1(θ) due to (6.5.138) is

σ̂2
1

∣
∣
∣a∗(θ)a(θ̂1)

∣
∣
∣

2

(6.5.139)

We partly eliminate the term (6.5.139) from φ̂1(θ), and hence define a new spectrum

φ̂2(θ) = φ̂1(θ) − ρσ̂2
1

∣
∣
∣a∗(θ)a(θ̂1)

∣
∣
∣

2

(6.5.140)

where ρ is a user parameter that satisfies

ρ ∈ (0, 1] (6.5.141)

The reason for using a value of ρ < 1 in (6.5.140) can be explained as follows.

(a) The assumption that there is a source with parameters (σ̂2
1 , θ̂1) corresponding

to the maximum peak of the beamforming spectrum, which led to (6.5.140),
may not necessarily be true. For example, there may be several sources clus-
tered around θ̂1 that were not resolved by the beamforming method. Sub-
tracting only a (small) part of the beamforming response to a source signal

with parameters (σ̂2
1 , θ̂1) leaves “some power” at and around θ̂1. Hence, the

algorithm will likely return to this DOA region of the beamforming spectrum
in future iterations when it may have a better chance to resolve the power
around θ̂1 into its true constituent components.

(b) Even if there is indeed a single source at or close to θ̂1, the estimation of its
parameters may be affected by leakage from other sources; this leakage will be
particularly strong when the source signal in question is correlated with other
source signals. In such a case, (6.5.139) is a poor estimate of the contribution
of the source in question to the beamforming spectrum. By subtracting only
a part of (6.5.139) from φ̂1(θ), we give the algorithm a chance to improve

the parameter estimates of the source at or close to θ̂1 in future iterations,
similarly to what we said in (a) above.

(c) In both situations above, and possibly in other cases as well, in which (6.5.139)
is a poor approximation of the part of the beamforming spectrum that is due
to the source(s) at or around θ̂1, subtracting (6.5.139) from φ̂1(θ) fully (i.e.,
using ρ = 1) may yield a spatial spectrum that takes on negative values at some
DOAs (which it should not). Using ρ < 1 in (6.5.140) reduces the likelihood
that this undesirable event happens too early in the iterative process of the
CLEAN algorithm (see below).
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The calculation of φ̂2(θ), as in (6.5.140), completes the first iteration of

CLEAN. In the second iteration, we proceed similarly but using φ̂2(θ) instead of

φ̂1(θ). Hence, we let

θ̂2 = arg max
θ
φ̂2(θ) (6.5.142)

σ̂2
2 =

1

m2
φ̂2(θ̂2) (6.5.143)

and

φ̂3(θ) = φ̂2(θ) − ρσ̂2
2

∣
∣
∣a∗(θ)a(θ̂2)

∣
∣
∣

2

(6.5.144)

Continuing the iterations in the same manner as above yields the CLEAN algorithm,
a compact description of which is as follows:

The CLEAN Algorithm

Initialization: φ̂1(θ) = a∗(θ)R̂a(θ)

For k = 1, 2, . . . do:

θ̂k = arg max
θ
φ̂k(θ)

σ̂2
k =

1

m2
φ̂k(θ̂k)

φ̂k+1(θ) = φ̂k(θ) − ρσ̂2
k

∣
∣
∣a∗(θ)a(θ̂k)

∣
∣
∣

2

We continue the iterative process in the CLEAN algorithm until either we
complete a prespecified number of iterations or until φ̂k(θ) for some k has become
(too) negative at some DOAs (see, e.g., [Högbom 1974; Cornwell and Bridle

1996]).
Regarding the choice of ρ in the CLEAN algorithm, while there are no clear

guidelines about how this choice should be made to enhance the performance of the
CLEAN algorithm in a given application, ρ ∈ [0.1, 0.25] is usually recommended
(see, e.g., [Högbom 1974; Cornwell and Bridle 1996; Schwarz 1978b]). We
will make further comments on the choice of ρ later in this complement.

In the CLEAN literature, the beamforming spectral estimate φ̂1(θ) that forms
the starting point of CLEAN is called the “dirty” spectrum due to its mainlobe
smearing and sidelobe leakage problems. The discrete spatial spectral estimate
{ρσ̂2

k, θ̂k}k=1,2,... provided by the algorithm (or a suitably smoothed version of it) is
called the “clean” spectrum. The iterative process that yields the “clean” spectrum
is, then, called the CLEAN algorithm.

It is interesting to observe that the above derivation of CLEAN is not based
on a parametric model of the array output or of its covariance matrix, of the type
considered in (6.2.21) or (6.4.3). More precisely, we have not made any assumption
that there is a finite number of point source signals impinging on the array, nor
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that the noise is spatially white. However, we have used the assumption that the
covariance matrix due to a source signal has the form in (6.5.138), which cannot be
true unless the signals impinging on the array are uncorrelated with one another.
CLEAN is known to have poor performance if this parametric assumption does not
hold. Hence, CLEAN is a combined nonparametric-parametric approach, which we
call semi-parametric for short.

Next, we present a more formal derivation of the CLEAN algorithm. Consider
the following semi-parametric model of the array output covariance matrix

R = σ2
1a(θ1)a

∗(θ1) + σ2
2a(θ2)a

∗(θ2) + · · · (6.5.145)

As implied by the previous discussion, this is the covariance model assumed by
CLEAN. Let us fit (6.5.145) to the sample covariance matrix R̂ in a least squares
sense:

min
{σ2

k
,θk}

∥
∥
∥R̂− σ2

1a(θ1)a
∗(θ1) − σ2

2a(θ2)a
∗(θ2) − · · ·

∥
∥
∥

2

(6.5.146)

We will show that CLEAN is a sequential algorithm for approximately minimizing
the above LS covariance fitting criterion.

We begin by assuming that the initial estimates of σ2
2 , σ

2
3 , . . . are equal to zero

(in which case θ2, θ3, . . . are immaterial). Consequently, we obtain an estimate of
the pair (σ2

1 , θ1) by minimizing (6.5.146) with σ2
2 = σ2

3 = · · · = 0:

min
σ2
1 ,θ1

∥
∥
∥R̂− σ2

1a(θ1)a
∗(θ1)

∥
∥
∥

2

(6.5.147)

As shown in Complement 6.5.3, the solution to (6.5.147) is given by

θ̂1 = arg max
θ
φ̂1(θ); σ̂2

1 =
1

m2
φ̂1(θ̂1) (6.5.148)

where φ̂1(θ) is as defined previously. We reduce the above power estimate by using
ρσ̂2

1 in lieu of σ̂2
1 . The reasons for this reduction are discussed in points (a)–(c)

above; in particular, we would like the residual covariance matrix R̂−ρσ̂2
1a(θ̂1)a

∗(θ̂1)
to be positive definite. We will discuss this aspect in more detail after completing
the derivation of CLEAN.

Next, we obtain an estimate of the pair (σ2
2 , θ2) by minimizing (6.5.146) with

σ2
1 = ρσ̂2

1 , θ1 = θ̂1 and σ2
3 = σ2

4 = · · · = 0:

min
σ2
2 ,θ2

∥
∥
∥R̂− ρσ̂2

1a(θ̂1)a
∗(θ̂1) − σ2

2a(θ2)a
∗(θ2)

∥
∥
∥

2

(6.5.149)

The solution to (6.5.149) can be shown to be (similarly to solving (6.5.147)):

θ̂2 = arg max
θ
φ̂2(θ); σ̂2

2 =
1

m2
φ̂2(θ̂2) (6.5.150)

where

φ̂2(θ) = a∗(θ)
[

R̂− ρσ̂2
1a(θ̂1)a

∗(θ̂1)
]

a(θ)

= φ̂1(θ) − ρσ̂2
1

∣
∣
∣a∗(θ)a(θ̂1)

∣
∣
∣

2

(6.5.151)
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Observe that (6.5.148) and (6.5.150) coincide with (6.5.136)–(6.5.137) and (6.5.142)–
(6.5.143). Evidently, continuing the above iterative process, for which (6.5.148) and
(6.5.150) are the first two steps, leads to the CLEAN algorithm on page 314.

The above derivation of CLEAN sheds some light on the properties of this
algorithm. First, note that the LS covariance fitting criterion in (6.5.146) is de-
creased at each iteration of CLEAN. For instance, consider the first iteration. A
straightforward calculation shows that:

∥
∥
∥R̂− ρσ̂2

1a(θ̂1)a
∗(θ̂1)

∥
∥
∥

2

= ‖R̂‖2 − 2ρσ̂2
1a

∗(θ̂1)R̂a(θ̂1) +m2ρ2σ̂4
1

= ‖R̂‖2 − ρ(2 − ρ)m2σ̂4
1 (6.5.152)

Clearly, (6.5.152) is less than ‖R̂‖2 for any ρ ∈ (0, 2), and the maximum decrease
occurs for ρ = 1 (as expected). A similar calculation shows that the criterion
in (6.5.146) monotonically decreases as we continue the iterative process, for any
ρ ∈ (0, 2), and that at each iteration the maximum decrease occurs for ρ = 1. As
a consequence, we might think of choosing ρ = 1, but this is not advisable. The
reason is that our goal is not only to decrease the fitting criterion (6.5.146) as much
and as fast as possible, but also to ensure that the residual covariance matrices

R̂k+1 = R̂k − ρσ̂2
ka(θ̂k)a

∗(θ̂k); R̂1 = R̂ (6.5.153)

remain positive definite for k = 1, 2, . . .; otherwise, fitting σ2
k+1a(θk+1)a

∗(θk+1) to

R̂k+1 would make little statistical sense. By a calculation similar to that in equation
(6.5.33) of Complement 6.5.3, it can be shown that the condition R̂k+1 > 0 is
equivalent to

ρ <
1

σ̂2
ka

∗(θ̂k)R̂
−1
k a(θ̂k)

(6.5.154)

Note that the right-hand side of (6.5.154) is bounded above by one, because by the
Cauchy–Schwartz inequality:

σ̂2
ka

∗(θ̂k)R̂
−1
k a(θ̂k) =

1

m2

[

a∗(θ̂k)R̂ka(θ̂k)
] [

a∗(θ̂k)R̂
−1
k a(θ̂k)

]

=
1

m2

∥
∥
∥R̂

1/2
k a(θ̂k)

∥
∥
∥

2 ∥
∥
∥R̂

−1/2
k a(θ̂k)

∥
∥
∥

2

≥ 1

m2

∣
∣
∣a∗(θ̂k)R̂

1/2
k R̂

−1/2
k a(θ̂k)

∣
∣
∣

2

=
1

m2

∣
∣
∣a∗(θ̂k)a(θ̂k)

∣
∣
∣

2

= 1

Also note that, depending on the scenario under consideration, satisfaction of the
inequality in (6.5.154) for k = 1, 2, . . . may require choosing a value for ρ much less
than one. In summary, the above discussion has provided a a precise argument for
choosing ρ < 1 (or even ρ � 1) in the CLEAN algorithm.

The LS covariance fitting derivation of CLEAN also makes the semi-parametric
nature of CLEAN more transparent. Specifically, the discussion has shown that
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CLEAN fits the semi-parametric covariance model in (6.5.145) to the sample co-
variance matrix R̂.

Finally, note that although there is a significant literature on CLEAN, its sta-
tistical properties are not well understood; in fact, other than the preliminary study
of CLEAN reported in [Schwarz 1978b] there appear to be very few statistical
studies in the literature. The derivation of CLEAN based on the LS covariance
fitting criterion in (6.5.146) may also be useful to understand the statistical prop-
erties of CLEAN. However, we will not attempt to provide a statistical analysis of
CLEAN in this complement.

6.5.8 Unstructured and Persymmetric ML Estimates of the Covariance Matrix

Let {y(t)}t=1,2,... be a sequence of independent and identically distributed (i.i.d.)
m× 1 random vectors with mean zero and covariance matrix R. The array output
given by equation (6.2.21) is an example of such a sequence, under the assumption
that the signal s(t) and the noise e(t) in (6.2.21) are temporally white. Furthermore,
let y(t) be circularly Gaussian distributed (see Section B.3 in Appendix B), in which
case its probability density function is given by

p
(
y(t)

)
=

1

πm|R|e
−y∗(t)R−1y(t) (6.5.155)

Assume that N observations of {y(t)} are available:

{y(1), . . . , y(N)} (6.5.156)

Owing to the i.i.d. assumption made on the sequence {y(t)}t=1,2,... the probability
density function of the sample in (6.5.156) is given by:

p
(
y(1), . . . , y(N)

)
=

N∏

t=1

p
(
y(t)

)

=
1

πmN |R|N e
−
∑N

t=1
y∗(t)R−1y(t) (6.5.157)

The maximum likelihood (ML) estimate of the covariance matrix R, based on the
sample in (6.5.156), is given by the maximizer of the likelihood function in (6.5.157)
(see Section B.1 in Appendix B) or, equivalently, by the minimizer of the negative
log-likelihood function:

− ln p
(
y(1), . . . , y(N)

)
= mN ln(π) +N ln |R| +

N∑

t=1

y∗(t)R−1y(t) (6.5.158)

The part of (6.5.158) that depends on R is given by (after multiplying by 1
N )

ln |R| + 1

N

N∑

t=1

y∗(t)R−1y(t) = ln |R| + tr
(

R−1R̂
)

(6.5.159)

where

R̂ =
1

N

N∑

t=1

y(t)y∗(t) (m×m) (6.5.160)
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In this complement we discuss the minimization of (6.5.159) with respect to R,
which yields the ML estimate of R, under either of the following two assumptions:

A: R has no assumed structure

or

B: R is persymmetric

As explained in Section 4.8, R is persymmetric (or centrosymmetric) if and only if

JRTJ = R ⇐⇒ R =
1

2

(
R+ JRTJ

)
(6.5.161)

where J is the so-called reversal matrix defined in (4.8.4).

Remark: If y(t) is the output of an array that is uniform and linear and the source
signals are uncorrelated with one another, then the covariance matrix R is Toeplitz,
and hence persymmetric. �

We will show that the unstructured ML estimate of R, denoted R̂U,ML, is
given by the standard sample covariance matrix in (6.5.160),

R̂U,ML = R̂ (6.5.162)

whereas the persymmetric ML estimate of R, denoted R̂P,ML, is given by

R̂P,ML =
1

2

(

R̂+ JR̂TJ
)

(6.5.163)

To prove (6.5.162) we need to show that (see (6.5.159)):

ln |R| + tr
(

R−1R̂
)

≥ ln |R̂| +m for any R > 0 (6.5.164)

Let Ĉ be a square root of R̂ (see Definition D12 in Appendix A) and note that

tr
(

R−1R̂
)

= tr
(

R−1ĈĈ∗
)

= tr
(

Ĉ∗R−1Ĉ
)

(6.5.165)

Using (6.5.165) in (6.5.164) we obtain the following series of equivalences:

(6.5.164) ⇐⇒ tr
(

Ĉ∗R−1Ĉ
)

− ln
∣
∣
∣R−1R̂

∣
∣
∣ ≥ m

⇐⇒ tr
(

Ĉ∗R−1Ĉ
)

− ln
∣
∣
∣Ĉ∗R−1Ĉ

∣
∣
∣ ≥ m

⇐⇒
m∑

k=1

(λk − lnλk − 1) ≥ 0 (6.5.166)

where {λk} are the eigenvalues of the matrix Ĉ∗R−1Ĉ.
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Next we show, with reference to (6.5.166), that

f(λ) , λ− lnλ− 1 ≥ 0 for any λ > 0 (6.5.167)

To verify (6.5.167), observe that

f ′(λ) = 1 − 1

λ
; f ′′(λ) =

1

λ2

Hence, the function f(λ) in (6.5.167) has a unique minimum at λ = 1, and f(1) = 0;
this proves (6.5.167). With this observation, the proof of (6.5.166), and therefore
of (6.5.162), is complete.

The proof of (6.5.163) is even simpler. In view of (6.5.161), we have that

tr
(

R−1R̂
)

= tr
[(
JRTJ

)−1
R̂
]

= tr
(

R−TJR̂J
)

= tr
(

R−1JR̂TJ
)

(6.5.168)

Hence, the function to be minimized with respect to R (under the constraint
(6.5.161)) can be written as:

ln |R| + tr
[

R−1 · 1
2

(

R̂+ JR̂TJ
)]

(6.5.169)

As shown earlier in this complement, the unstructured minimizer of (6.5.169) is
given by

R =
1

2

(

R̂+ JR̂TJ
)

(6.5.170)

Because (6.5.170) satisfies the persymmetry constraint, by construction, it also
gives the constrained minimizer of the negative log-likelihood function, and hence
the proof of (6.5.163) is concluded as well.

The reader interested in more details on the topic of this complement, includ-
ing a comparison of the statistical estimation errors associated with R̂U,ML and

R̂P,ML, can consult [Jansson and Stoica 1999].

6.6 EXERCISES

Exercise 6.1: Source Localization using a Sensor in Motion
This exercise illustrates how the directions of arrival of planar waves can be

determined by using a single moving sensor. Conceptually this problem is related
to that of DOA estimation by sensor array methods. Indeed, we can think of a
sensor in motion as creating a synthetic aperture similar to the one corresponding
to a physical array of spatially distributed sensors.

Assume that the sensor has a linear motion with constant speed equal to
v. Also, assume that the sources are far field point emitters at fixed locations in
the same plane as the sensor. Let θk denote the kth DOA parameter (defined as
the angle between the direction of wave propagation and the normal to the sensor
trajectory). Finally, assume that the sources emit sinusoidal signals {αkeiωt}nk=1

with the same (center) frequency ω. These signals may be reflections of a probing
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sinusoidal signal from different point scatterers of a target, in which case it is not
restrictive to assume that they all have the same frequency.

Show that, under the previous assumptions and after elimination of the high–
frequency component corresponding to the frequency ω, the sensor output signal
can be written as

s(t) =

n∑

k=1

αke
iωD

k t + e(t) (6.6.1)

where e(t) is measurement noise, and where ωDk is the kth Doppler frequency defined
by:

ωDk = −v · ω
c

sin θk

with c denoting the velocity of signal propagation. Conclude from (6.6.1) that the
DOA estimation problem associated with the scenario under consideration can be
solved by using the estimation methods discussed in this chapter and in Chapter 4
(provided that the sensor speed v can be accurately determined).

Exercise 6.2: Beamforming Resolution for Uniform Linear Arrays
Consider a ULA comprising m sensors, with inter-element spacing equal to

d. Let λ denote the wavelength of the signals impinging on the array. According
to the discussion in Chapter 2, the spatial frequency resolution of the beamforming
used with the above ULA is given by

∆ωs =
2π

m
⇐⇒ ∆fs =

1

m
(6.6.2)

Make use of the previous observation to show that the DOA resolution of beam-
forming for signals coming from broadside is

∆θ ' sin−1(1/L) (6.6.3)

where L is the array’s length measured in wavelengths:

L =
(m− 1)d

λ
(6.6.4)

Explain how (6.6.3) approximately reduces to (6.3.20), for sufficiently large L.
Next, show that for signals impinging from an arbitrary direction angle θ, the

DOA resolution of beamforming is approximately:

∆θ ' 1

L| cos θ| (6.6.5)

Hence, for signals coming from nearly end–fire directions, the DOA resolution is
much worse than what is suggested in (6.3.20).

Exercise 6.3: Beamforming Resolution for Arbitrary Arrays
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The beampattern

W (θ) = |a∗(θ)a(θ0)|2, (some θ0)

has the same shape as a spectral window: it has a peak at θ = θ0, is symmetric about
that point, and the peak is narrow (for large enough values of m). Consequently
the beamwidth of the array with direction vector a(θ) can approximately be derived
by using the window bandwidth formula proven in Exercise 2.15:

∆θ ' 2
√

|W (θ0)/W ′′(θ0)| (6.6.6)

Now, the array’s beamwidth and the resolution of beamforming are closely related.
To see this, consider the case where the array output covariance matrix is given by
(6.4.3). Let n = 2, and assume that P = I (for simplicity of explanation). The
average beamforming spectral function is then given by:

a∗(θ)Ra(θ) = |a∗(θ)a(θ1)|2 + |a∗(θ)a(θ2)|2 +mσ2

which clearly shows that the sources with DOAs θ1 and θ2 are resolvable by beam-
forming if and only if |θ1 − θ2| is larger than the array’s beamwidth. Consequently,
we can approximately determine the beamforming resolution by using (6.6.6). Spe-
cialize equation (6.6.6) to a ULA and compare to the results obtained in Exer-
cise 6.2.

Exercise 6.4: Beamforming Resolution for L–Shaped Arrays
Consider an m–element array, with m odd, shaped as an “L” with element

spacing d. Thus, the array elements are located at points (0, 0), (0, d), . . . , (0, d(m−
1)/2) and (d, 0), . . . , (d(m−1)/2, 0). Using the results in Exercise 6.3, find the DOA
resolution of beamforming for signals coming from an angle θ. What is the mini-
mum and maximum resolution, and for what angles are these extremal resolutions
realized? Compare your results with the m–element ULA case in Exercise 6.2.

Exercise 6.5: Relationship between Beamwidth and Array Element Lo-
cations

Consider an m-element planar array with elements located at rk = [xk, yk]
T

for k = 1, . . . ,m. Assume that the array is centered at the origin, so
∑m
k=1 rk = 0.

Use equation (6.6.6) to show that the array beamwidth at direction θ0 is given by

∆θ '
√

2
λ

2π

1

D(θ0)
(6.6.7)

where D(θ0) is the root mean square distance of the array elements to the origin
in the direction orthogonal to θ0 (see Figure 6.8):

D(θ0) =

√
√
√
√

1

m

m∑

k=1

d2
k(θ0), dk(θ0) = xk sin θ0 − yk cos θ0
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As in Exercise 2.15, the beamwidth approximation in equation (6.6.7) slightly un-
derestimates the true beamwidth; a better approximation is given by:

∆θ ' 1.15
√

2
λ

2π

1

D(θ0)
(6.6.8)

DOA

rk

d
k x

y

r1

r2 θ0

Figure 6.8. Array element projected distances from the origin for DOA angle θ0
(see Exercise 6.5).

Exercise 6.6: Isotropic Arrays

An array whose beamwidth is the same for all directions is said to be isotropic.
Consider an m-element planar array with elements located at rk = [xk, yk]

T for
k = 1, . . . ,m and centered at the origin (

∑m
k=1 rk = 0) as in Exercise 6.5. Show

that the array beamwidth (as given by (6.6.7)) is the same for all DOAs if and only
if

RTR = cI2 (6.6.9)

where

R =








x1 y1
x2 y2
...

...
xm ym








and where c is a positive constant. (See [Baysal and Moses 2003] for additional
details and properties of isotropic arrays.)

Exercise 6.7: Grating Lobes

The results of Exercise 6.2 might suggest that an m–element ULA can have
very high resolution simply by using a large array element spacing d. However,
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there is an ambiguity associated with choosing d > λ/2; this drawback is sometimes
referred to as the problem of grating lobes. Identify this drawback, and discuss what
ambiguities exist as a function of d (refer to the discussion on ULAs in Section 6.2.2).

One potential remedy to this drawback is to use two ULAs: one with m1

elements and element spacing d1 = λ/2, and another with m2 elements and element
spacing d2. Discuss how to choose m1, m2, and d2 to both avoid ambiguities and
increase resolution over a conventional ULA with element spacing d = λ/2 and
m1+m2 elements. Consider as an example using a 10–element ULA with d2 = 3λ/2
for the second ULA; find m1 to resolve ambiguities in this array. Finally, discuss
any potential drawbacks of the two–array approach.

Exercise 6.8: Beamspace Processing
Consider an array comprising many sensors (m � 1). Such an array should be

able to resolve sources that are quite closely spaced (cf. (6.3.20) and the discussion
in Exercise 6.3). There is, however, a price to be paid for the high–resolution
performance achieved by using many sensors: the computational burden associated
with the elementspace processing (ESP) (i.e., the direct processing of the output of
all sensors) may be prohibitively high, and the involved circuitry (A–D converters,
etc.) may be quite expensive.

Let B∗ be an m̄×m matrix with m̄ < m, and consider the transformed output
vector B∗y(t). The latter vector satisfies the following equation (cf. (6.2.21)):

B∗y(t) = B∗As(t) +B∗e(t) (6.6.10)

The transformation matrix B∗ above can be interpreted as a beamformer or spatial
filter acting on y(t). Determination of the DOAs of the signals impinging on the
array using B∗y(t) is called beamspace processing (BSP). Since m̄ < m, BSP should
have a lower computational burden than ESP. The critical question is then how
to choose the beamformer B so as not to significantly degrade the performance
achievable by ESP.

Assume that a certain DOA sector is known to contain the source(s) of interest
(whose DOAs are designated by the generic variable θ0). By using this informa-
tion, design a matrix B∗ which passes the signals from direction θ0 approximately
undistorted. Choose B in such a way that the noise in beamspace, B∗e(t), is still
spatially white. For a given sector size, discuss the tradeoff between the computa-
tional burden associated with BSP and the distorting effect of the beamformer on
the desired signals. Finally, use the results of Exercise 6.3 to show that the reso-
lution of beamforming in elementspace and beamspace are nearly the same, under
the previous conditions.

Exercise 6.9: Beamspace Processing (cont’d)
In this exercise, for simplicity, we consider the Beamspace Processing (BSP)

equation (6.6.10) for the case of a single source (n = 1):

B∗y(t) = B∗a(θ)s(t) +B∗e(t) (6.6.11)

The Elementspace Processing (ESP) counterpart of (6.6.11) is (cf. (6.2.19))

y(t) = a(θ)s(t) + e(t) (6.6.12)
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Assume that ‖a(θ)‖2 = m (see (6.3.11)), and that the m̄×m matrix B∗ is unitary
(i.e., B∗B = I). Furthermore, assume that

a(θ) ∈ R(B) (6.6.13)

To satisfy (6.6.13) we need knowledge about a DOA sector that contains θ, which
is usually assumed to be available in BSP applications; note that the narrower this
sector, the smaller the value we can choose for m̄. As m̄ decreases, the implemen-
tation advantages of BSP compared with ESP become more significant. However,
the DOA estimation performance achievable by BSP might be expected to decrease
as m̄ decreases. As indicated in Exercise 6.8, this is not necessarily the case. In
the present exercise we lend further support to the fact that the estimation per-
formances of ESP and BSP can be quite similar to one another, provided that the
condition (6.6.13) is satisfied. To be specific, define the array SNR for (6.6.12) as

E
{
‖a(θ)s(t)‖2

}

E‖e(t)‖2
=

mP

mσ2
=

P

σ2
(6.6.14)

where P denotes the power of s(t). Show that the “array SNR” for the BPS
equation, (6.6.11), is m/m̄ times that in (6.6.14). Conclude that this increase
in the array SNR associated with BPS may well counterbalance the presumably
negative impact on DOA performance caused by the decrease from m to m̄ in the
number of observed output signals.

Exercise 6.10: Beamforming and MUSIC under the Same Umbrella
Define the scalars

Y ∗
t (θ) = a∗(θ)y(t), t = 1, . . . , N.

By using previous notation, we can write the beamforming spatial spectrum in
(6.3.18) as follows:

Y ∗(θ)WY (θ) (6.6.15)

where
W = (1/N)I (for beamforming)

and
Y (θ) = [Y1(θ) . . . YN (θ)]T

Show that the MUSIC spatial pseudospectrum

a∗(θ)ŜŜ∗a(θ) (6.6.16)

(see Sections 4.5 and 6.4.3) can also be put in the form (6.6.15), for a certain
“weighting matrix” W . The columns of the matrix Ŝ in (6.6.16) are the n principal
eigenvectors of the sample covariance matrix R̂ in (6.3.17).

Exercise 6.11: Subspace Fitting Interpretation of MUSIC
In words, the result (4.5.9) (on which MUSIC for both frequency and DOA

estimation is based) says that the direction vectors {a(θk)} belong to the subspace
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spanned by the columns of S. Therefore, we can think of estimating the DOAs
by choosing θ (a generic DOA variable) so that the distance between a(θ) and the
closest vector in the span of Ŝ is minimized:

min
β,θ

‖a(θ) − Ŝβ‖2 (6.6.17)

where ‖·‖ denotes the Euclidean vector norm. Note that the dummy vector variable
β in (6.6.17) is defined in such a way so that Ŝβ is closest to a(θ) in Euclidean norm.

Show that the DOA estimation method derived from the subspace fitting
criterion (6.6.17) is the same as MUSIC.

Exercise 6.12: Subspace Fitting Interpretation of MUSIC (cont’d.)
The result (4.5.9) can also be invoked to arrive at the following subspace

fitting criterion:
min
B,θ

‖A(θ) − ŜB‖2
F (6.6.18)

where ‖ · ‖F stands for the Frobenius matrix norm, and θ is now the vector of all
DOA parameters. This criterion seems to be a more general version of equation
(6.6.17) in Exercise 6.11. Show that the minimization of the multidimensional
subspace fitting criterion in (6.6.18), with respect to the DOA vector θ, still leads
to the one–dimensional MUSIC method. Hint: It will be useful to refer to the type
of result proven in equations (4.3.12)–(4.3.16) in Section 4.3.

Exercise 6.13: Subspace Fitting Interpretation of MUSIC (cont’d.)
The subspace fitting interpretations of the previous two exercises provide some

insights into the properties of the MUSIC estimator. Assume, for instance, that two
or more source signals are coherent. Make use of the subspace fitting interpretation
in Exercise 6.12 to show that MUSIC cannot be expected to yield meaningful results
in such a case. Follow the line of your argument explaining why MUSIC fails in the
case of coherent signals, to suggest a subspace fitting criterion that works in such
a case. Discuss the computational complexity of the method based on the latter
criterion.

Exercise 6.14: Modified MUSIC for Coherent Signals
Consider an m–element ULA. Assume that n signals impinge on the array

at angles {θk}nk=1, and also that some signals are coherent (so that the signal
covariance matrix P is singular). Derive a modified MUSIC DOA estimator for
this case, analogous to the modified MUSIC frequency estimator in Section 4.5,
and show that this method is capable of determining the n DOAs even in the
coherent signal case.

COMPUTER EXERCISES

Tools for Array Signal Processing:
The text web site www.prenhall.com/stoica contains the following Matlab

functions for use in DOA estimation.
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• Y=uladata(theta,P,N,sig2,m,d)

Generates an m × N data matrix Y = [y(1), . . . , y(N)] for a ULA with n

sources arriving at angles (in degrees from −90◦ to 90◦) given by the elements
of the n × 1 vector theta. The source signals are zero mean Gaussian with
covariance matrix P = E {s(t)s∗(t)}. The noise component is spatially white
Gaussian with covariance σ2I, where σ2 =sig2. The element spacing is equal
to d in wavelengths.

• phi=beamform(Y,L,d)

Implements the beamforming spatial spectral estimate in equation (6.3.18) for
an m–element ULA with sensor spacing d in wavelengths. The m×N matrix
Y is as defined above. The parameter L controls the DOA sampling, and phi

is the spatial spectral estimate phi= [φ̂(θ1), . . . , φ̂(θL)] where θk = −π
2 + πk

L .

• phi=capon_sp(Y,L,d)

Implements the Capon spatial spectral estimator in equation (6.3.26); the
input and output parameters are defined as those in beamform.

• theta=root_music_doa(Y,n,d)

Implements the Root MUSIC method in Section 4.5, adapted for spatial spec-
tral estimation using a ULA. The parameters Y and d are as in beamform, and
theta is the vector containing the n DOA estimates [θ̂1, . . . , θ̂n]

T .

• theta=esprit_doa(Y,n,d)

Implements the ESPRIT method for a ULA. The parameters Y and d are
as in beamform, and theta is the vector containing the n DOA estimates
[θ̂1, . . . , θ̂n]

T . The two subarrays for ESPRIT are made from the first m − 1
and last m− 1 elements of the array.

Exercise C6.15: Comparison of Spatial Spectral Estimators
Simulate the following scenario. Two signals with wavelength λ impinge on

an array of sensors from DOAs θ1 = 0◦ and a θ2 that will be varied. The sig-
nals are mutually uncorrelated complex Gaussian with unit power, so that P =
E {s(t)s∗(t)} = I. The array is a 10–element ULA with element spacing d = λ/2.
The measurements are corrupted by additive complex Gaussian white noise with
unit power. A total of N = 100 snapshots are collected.

(a) Let θ2 = 15◦. Compare the results of the beamforming, Capon, Root MUSIC,
and ESPRIT methods for this example. The results can be shown by plotting
the spatial spectrum estimates from beamforming and Capon for 50 Monte–
Carlo experiments; for Root MUSIC and ESPRIT, plot vertical lines of equal
height located at the DOA estimates from the 50 Monte–Carlo experiments.
How do the methods compare? Are the properties of the various estimators
analogous to the time series case for two sinusoids in noise?

(b) Repeat for θ2 = 7.5◦.
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Exercise C6.16: Performance of Spatial Spectral Estimators for Coherent
Source Signals

In this exercise we will see what happens when the source signals are fully
correlated (or coherent). Use the same parameters and estimation methods as in
Exercise C6.15 with θ2 = 15◦, but with

P =

(
1 1
1 1

)

Note that the sources are coherent as rank(P ) = 1.
Compare the results of the four methods for this case, again by plotting the

spatial spectrum and “DOA line spectrum” estimates (as in Exercise C6.15) for 50
Monte–Carlo experiments from each estimator. Which method appears to be the
best in this case?

Exercise C6.17: Spatial Spectral Estimators applied to Measured Data
Apply the four DOA estimators from Exercise C6.15 to the real data in the file

submarine.mat, which can be found at the text web site www.prenhall.com/stoica.
These data are underwater measurements collected by the Swedish Defense Agency
in the Baltic Sea. The 6–element array of hydrophones used in the experiment can
be assumed to be a ULA with inter-element spacing equal to 0.9m. The wavelength
of the signal is approximately 5.32m. Can you find the “submarine(s)”?
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A P P E N D I X A

Linear Algebra and Matrix
Analysis Tools

A.1 INTRODUCTION

In this appendix we provide a review of the linear algebra terms and matrix proper-
ties used in the text. For the sake of brevity we do not present proofs for all results
stated in the following, nor do we discuss related results which are not needed in
the previous chapters. For most of the results included, however, we do provide
proofs and motivation. The reader interested in finding out more about the topic
of this appendix can consult the books [Stewart 1973; Horn and Johnson

1985; Strang 1988; Horn and Johnson 1989; Golub and Van Loan 1989]
to which we also refer for the proofs omitted here.

A.2 RANGE SPACE, NULL SPACE, AND MATRIX RANK

Let A be an m × n matrix with possibly complex–valued elements, A ∈ Cm×n,
and let (·)T and (·)∗ denote the transpose and the conjugate transpose operators,
respectively.

Definition D1: The range space of A, also called the column space , is the
subspace spanned by (all linear combinations of) the columns of A:

R(A) = {α ∈ Cm×1|α = Aβ for β ∈ Cn×1} (A.2.1)

The range space of AT is usually called the row space of A, for obvious reasons.

Definition D2: The null space of A, also called kernel , is the following subspace:

N (A) = {β ∈ Cn×1|Aβ = 0} (A.2.2)

The previous definitions are all that we need to introduce the matrix rank and
its basic properties. We return to the range and null subspaces in Section A.4
where we discuss the singular value decomposition. In particular, we derive there
some convenient bases and useful projectors associated with the previous matrix
subspaces.

Definition D3: The following are equivalent definitions of the rank of A,

r , rank(A).

328
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(i) r is equal to the maximum number of linearly independent columns of A. The
latter number is by definition the dimension of the R(A); hence

r = dim R(A) (A.2.3)

(ii) r is equal to the maximum number of linearly independent rows of A,

r = dim R(AT ) = dim R(A∗) (A.2.4)

(iii) r is the dimension of the nonzero determinant of maximum size that can be
built from the elements of A.

The equivalence between the definitions (i) and (ii) above is an important
and pleasing result (without which one should have considered the row rank and
column rank of a matrix separately!).

Definition D4: A is said to be:

• Rank deficient whenever r < min(m,n).

• Full column rank if r = n ≤ m.

• Full row rank if r = m ≤ n

• Nonsingular whenever r = m = n.

Result R1: Premultiplication or postmultiplication of A by a nonsingular matrix
does not change the rank of A.

Proof: This fact directly follows from the definition of rank(A) because the afore-
mentioned multiplications do not change the number of linearly independent columns
(or rows) of A.

Result R2: Let A ∈ Cm×n and B ∈ Cn×p be two conformable matrices of rank rA
and rB , respectively. Then:

rank(AB) ≤ min(rA, rB) (A.2.5)

Proof: We can prove the previous assertion by using the definition of the rank once
again. Indeed, premultiplication of B by A cannot increase the number of linearly
independent columns of B, hence rank(AB) ≤ rB . Similarly, post–multiplication of
A by B cannot increase the number of linearly independent columns of AT , which
means that rank(AB) ≤ rA.
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Result R3: Let A ∈ Cm×m be given by

A =

N∑

k=1

xk y
∗
k

where xk, yk ∈ Cm×1. Then,

rank(A) ≤ min(m,N)

Proof: Since A can be rewritten as

A = [x1 . . . xN ]






y∗
1
...
y∗
N






the result follows from R2.

Result R4: Let A ∈ Cm×n with n ≤ m, let B ∈ Cn×p, and let

rank(A) = n (A.2.6)

Then
rank(AB) = rank(B) (A.2.7)

Proof: Assumption (A.2.6) implies that A contains a nonsingular n×n submatrix,
the post–multiplication of which by B gives a block of rank equal to rank(B)
(cf. R1). Hence,

rank(AB) ≥ rank(B)

However, by R2, rank(AB) ≤ rank(B) and hence (A.2.7) follows.

A.3 EIGENVALUE DECOMPOSITION

Definition D5: We say that the matrix A ∈ Cm×m is Hermitian if A∗ = A. In
the real–valued case, such an A is said to be symmetric.

Definition D6: A matrix U ∈ Cm×m is said to be unitary (orthogonal if U is
real–valued) whenever

U∗U = UU∗ = I

If U ∈ Cm×n, with m > n, is such that U∗U = I then we say that U is semiuni-

tary .

Next, we present a number of definitions and results pertaining to the matrix
eigenvalue decomposition (EVD), first for general matrices and then for Hermitian
ones.
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A.3.1 General Matrices

Definition D7: A scalar λ ∈ C and a (nonzero) vector x ∈ Cm×1 are an eigenvalue

and its associated eigenvector of a matrix A ∈ Cm×m if

Ax = λx (A.3.1)

In particular, an eigenvalue λ is a solution of the so–called characteristic equa-

tion of A:
|A− λI| = 0 (A.3.2)

and x is a vector in N (A− λI). The pair (λ, x) is called an eigenpair.

Observe that if {(λi, xi)}pi=1 are p eigenpairs of A (with p ≤ m) then we can
write the defining equations Axi = λxi (i = 1, . . . , p) in the following compact form:

AX = XΛ (A.3.3)

where
X = [x1 . . . xp]

and

Λ =






λ1 0
...

0 λp






Result R5: Let (λ, x) be an eigenpair of A ∈ Cm×m. If B = A+ αI, with α ∈ C,
then (λ+ α, x) is an eigenpair of B.

Proof: The result follows from the fact that

Ax = λx =⇒ (A+ αI)x = (λ+ α)x.

Result R6: The matrices A and B , Q−1AQ, where Q is any nonsingular ma-
trix, share the same eigenvalues. (B is said to be related to A by a similarity

transformation).

Proof: Indeed, the equation

|B − λI| = |Q−1(A− λI)Q| = |Q−1||A− λI||Q| = 0

is equivalent to |A− λI| = 0.

In general there is no simple relationship between the elements {Aij} of A and
its eigenvalues {λk}. However, the trace of A, which is the sum of the diagonal
elements of A, is related in a simple way to the eigenvalues, as described next.

Definition D8: The trace of a square matrix A ∈ Cm×m is defined as

tr(A) =

m∑

i=1

Aii (A.3.4)
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Result R7: If {λi}mi=1 are the eigenvalues of A ∈ Cm×m, then

tr(A) =

m∑

i=1

λi (A.3.5)

Proof: We can write

|λI −A| =

n∏

i=1

(λ− λi) (A.3.6)

The right hand side of (A.3.6) is a polynomial in λ whose λn−1 coefficient is
∑n
i=1 λi.

From the definition of the determinant (see, e.g., [Strang 1988]) we find that the
left hand side of (A.3.6) is a polynomial whose λn−1 coefficient is

∑n
i=1Aii = tr(A).

This proves the result.

Interestingly, while the matrix product is not commutative, the trace is in-
variant to commuting the factors in a matrix product, as shown next.

Result R8: Let A ∈ Cm×n and B ∈ Cn×m. Then:

tr(AB) = tr(BA) (A.3.7)

Proof: A straightforward calculation, based on the definition of tr(·) in (A.3.4),
shows that

tr(AB) =

m∑

i=1

n∑

j=1

AijBji

=

n∑

j=1

m∑

i=1

BjiAij =

n∑

j=1

[BA]jj = tr(BA)

We can also prove (A.3.7) by using Result R7. Along the way we will obtain
some other useful results. First we note the following.

Result R9: Let A,B ∈ Cm×m and let α ∈ C. Then

|AB| = |A| |B|
|αA| = αm|A|

Proof: The identities follow directly from the definition of the determinant; see,
e.g., [Strang 1988].

Next we prove the following results.
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Result R10: Let A ∈ Cm×n and B ∈ Cn×m. Then:

|I −AB| = |I −BA|. (A.3.8)

Proof: It is straightforward to verify that:
[
I A
0 I

] [
I −A

−B I

] [
I 0
B I

]

=

[
I −AB 0

0 I

]

(A.3.9)

and [
I 0
B I

] [
I −A

−B I

] [
I A
0 I

]

=

[
I 0
0 I −BA

]

(A.3.10)

Because the matrices in the left–hand sides of (A.3.9) and (A.3.10) have the same

determinant, equal to

∣
∣
∣
∣

I −A
−B I

∣
∣
∣
∣
, it follows that the right–hand sides must also

have the same determinant, which concludes the proof.

Result R11: Let A ∈ Cm×n and B ∈ Cn×m. The nonzero eigenvalues of AB and
of BA are identical.

Proof: Let λ 6= 0 be an eigenvalue of AB. Then,

0 = |AB − λI| = λm|AB/λ− I| = λm|BA/λ− I| = λm−n|BA− λI|
where the third equality follows from R10. Hence, λ is also an eigenvalue of BA.

We can now obtain R8 as a simple corollary of R11, by using the property
(A.3.5) of the trace operator.

A.3.2 Hermitian Matrices

An important property of the class of Hermitian matrices, which does not neces-
sarily hold for general matrices, is the following.

Result R12:

(i) All eigenvalues of A = A∗ ∈ Cm×m are real–valued.

(ii) The m eigenvectors of A = A∗ ∈ Cm×m form an orthonormal set. In other
words, the matrix whose columns are the eigenvectors of A is unitary .

It follows from (i) and (ii) and from (A.3.3) that for a Hermitian matrix we
can write:

AU = UΛ

where U∗U = UU∗ = I and the diagonal elements of Λ are real numbers. Equiva-
lently,

A = UΛU∗ (A.3.11)

which is the so–called eigenvalue decomposition (EVD) of A = A∗. The EVD of a
Hermitian matrix is a special case of the singular value decomposition of a general
matrix discussed in the next section.

The following is a useful result associated with Hermitian matrices.
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Result R13: Let A = A∗ ∈ Cm×m and let v ∈ Cm×1 (v 6= 0). Also, let the
eigenvalues of A be arranged in a nonincreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λm.

Then:

λm ≤ v∗Av

v∗v
≤ λ1 (A.3.12)

The ratio in (A.3.12) is called the Rayleigh quotient . As this ratio is invariant
to the multiplication of v by any complex number, we can rewrite (A.3.12) in the
form:

λm ≤ v∗Av ≤ λ1 for any v ∈ Cm×1 with v∗v = 1 (A.3.13)

The equalities in (A.3.13) are evidently achieved when v is equal to the eigen-
vector of A associated with λm and λ1, respectively.

Proof: Let the EVD of A be given by (A.3.11), and let

w = U∗v =






w1

...
wm






We need to prove that

λm ≤ w∗Λw =

m∑

k=1

λk|wk|2 ≤ λ1

for any w ∈ Cm×1 satisfying

w∗w =

m∑

k=1

|wk|2 = 1.

However, this is readily verified as follows:

λ1 −
m∑

k=1

λk|wk|2 =

m∑

k=1

(λ1 − λk)|wk|2 ≥ 0

and
m∑

k=1

λk|wk|2 − λm =

m∑

k=1

(λk − λm)|wk|2 ≥ 0

and the proof is concluded.

The following result is an extension of R13.

Result R14: Let V ∈ Cm×n, with m > n, be a semiunitary matrix (i.e., V ∗V = I),
and let A = A∗ ∈ Cm×m have its eigenvalues ordered as in R13. Then:

m∑

k=m−n+1

λk ≤ tr(V ∗AV ) ≤
n∑

k=1

λk (A.3.14)
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where the equalities are achieved, for instance, when the columns of V are the eigen-
vectors of A corresponding to (λm−n+1, . . . , λm) and, respectively, to (λ1, . . . , λn).
The ratio

tr(V ∗AV )

tr(V ∗V )
=

tr(V ∗AV )

n

is sometimes called the extended Rayleigh quotient .

Proof: Let
A = UΛU∗

(cf. (A.3.11)), and let

S = U∗V ,






s∗
1
...
s∗
m




 (m× n)

(hence s∗
k is the kth row of S). By making use of the above notation, we can write:

tr(V ∗AV ) = tr(V ∗UΛU∗V ) = tr(S∗ΛS) = tr(ΛSS∗) =

m∑

k=1

λkck (A.3.15)

where
ck , s∗

ksk, k = 1, . . .m (A.3.16)

Clearly,
ck ≥ 0, k = 1, . . . ,m (A.3.17)

and
m∑

k=1

ck = tr(SS∗) = tr(S∗S) = tr(V ∗UU∗V ) = tr(V ∗V ) = tr(I) = n (A.3.18)

Furthermore,
ck ≤ 1, k = 1, . . . ,m. (A.3.19)

To see this, let G ∈ Cm×(m−n) be such that the matrix [S G] is unitary; and let g∗
k

denote the kth row of G. Then, by construction,

[s∗
k g

∗
k]

[
sk
gk

]

= ck + g∗
kgk = 1 =⇒ ck = 1 − g∗

kgk ≤ 1

which is (A.3.19).
Finally, by combining (A.3.15) with (A.3.17)–(A.3.19) we can readily verify

that tr(V ∗AV ) satisfies (A.3.14), where the equalities are achieved for

c1 = · · · = cm−n = 0; cm−n+1 = · · · = cm = 1

and, respectively,

c1 = · · · = cn = 1; cn+1 = · · · = cm = 0

These conditions on {ck} are satisfied if, for example, S is equal to [0 I]T and [I 0]T ,
respectively. With this observation, the proof is concluded.

Result R13 is clearly a special case of Result R14. The only reason for consid-
ering R13 separately is that the simpler result R13 is more often used in the text
than R14.
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A.4 SINGULAR VALUE DECOMPOSITION AND PROJECTION OPERATORS

For any matrix A ∈ Cm×n there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n

and a diagonal matrix Σ ∈ Rm×n with nonnegative diagonal elements, such that

A = UΣV ∗ (A.4.1)

By appropriate permutation, the diagonal elements of Σ can be arranged in a
nonincreasing order:

σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n)

The factorization (A.4.1) is called the singular value decomposition (SVD) of A and
its existence is a significant result from both a theoretical and practical standpoint.
We reiterate that the matrices U , Σ, and V in (A.4.1) satisfy:

U∗U = UU∗ = I (m×m)
V ∗V = V V ∗ = I (n× n)

Σij =

{
σi ≥ 0

0
for i = j
for i 6= j

The following terminology is most commonly associated with the SVD:

• The left singular vectors of A are the columns of U . These singular vectors
are also the eigenvectors of the matrix AA∗.

• The right singular vectors of A are the columns of V . These vectors are also
the eigenvectors of the matrix A∗A.

• The singular values of A are the diagonal elements {σi} of Σ. Note that {σi}
are the square roots of the largest min(m,n) eigenvalues of AA∗ or A∗A.

• The singular triple of A is the triple (singular value, left singular vector, and
right singular vector) (σk, uk, vk), where uk (vk) is the kth column of U (V ).

If
rank(A) = r ≤ min(m,n)

then one can show that:
{

σk > 0, k = 1, . . . , r

σk = 0, k = r + 1, . . . ,min(m,n)

Hence, for a matrix of rank r the SVD can be written as:

A = [ U1
︸︷︷︸

r

U2
︸︷︷︸

m−r

]

[
Σ1 0
0 0

] [
V ∗

1

V ∗
2

] }
r

}
n−r

= U1Σ1V
∗
1 (A.4.2)

where Σ1 ∈ Rr×r is nonsingular. The factorization of A in (A.4.2) has a number
of important consequences.

Result R15: Consider the SVD of A ∈ Cm×n in (A.4.2), where r ≤ min(m,n).
Then:
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(i) U1 is an orthonormal basis of R(A)

(ii) U2 is an orthonormal basis of N (A∗)

(iii) V1 is an orthonormal basis of R(A∗)

(iv) V2 is an orthonormal basis of N (A).

Proof: We see that (iii) and (iv) follow from the properties (i) and (ii) applied to
A∗. To prove (i) and (ii), we need to show that:

R(A) = R(U1) (A.4.3)

and, respectively,
N (A∗) = R(U2) (A.4.4)

To show (A.4.3), note that

α ∈ R(A) ⇒ there exists β such that α = Aβ ⇒
⇒ α = U1(Σ1V

∗
1 β) = U1γ ⇒ α ∈ R(U1)

so R(A) ⊂ R(U1). Also,

α ∈ R(U1) ⇒ there exists β such that α = U1β

From (A.4.2), U1 = AV1Σ
−1
1 ; it follows that

α = A(V1Σ
−1
1 β) = Aρ ⇒ α ∈ R(A)

which shows R(U1) ⊂ R(A). Combining R(U1) ⊂ R(A) with R(A) ⊂ R(U1) gives
(A.4.3). Similarly,

α ∈ N (A∗) ⇒ A∗α = 0 ⇒ V1Σ1U
∗
1α = 0 ⇒ Σ−1

1 V ∗
1 V1Σ1U

∗
1α = 0 ⇒ U∗

1α = 0

Now, any vector α can be written as

α = [U1 U2]

[
γ
β

]

since [U1 U2] is nonsingular. However, 0 = U∗
1α = U∗

1U1γ + U∗
1U2β = γ, so γ = 0,

and thus α = U2β. Thus, N (A∗) ⊂ R(U2). Finally,

α ∈ R(U2) ⇒ there exists β such that α = U2β

Then
A∗α = V1Σ1U

∗
1U2β = 0 ⇒ α ∈ N (A∗)

which leads to (A.4.4).

The previous result, readily derived by using the SVD, has a number of in-
teresting corollaries which complement the discussion on range and null subspaces
in Section A.2.
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Result R16: For any A ∈ Cm×n the subspaces R(A) and N (A∗) are orthogonal to
each other and they together span Cm. Consequently, we say that N (A∗) is the
orthogonal complement of R(A) in Cm, and vice versa. In particular, we have:

dim N (A∗) = m− r (A.4.5)

dim N (A) = n− r (A.4.6)

(Recall that dim R(A) = dim R(A∗) = r.)

Proof: This result is a direct corollary of R15.

The SVD of a matrix also provides a convenient representation for the pro-
jectors onto the range and null spaces of A and A∗.

Definition D9: Let y ∈ Cm×1 be an arbitrary vector. By definition the orthogonal

projector onto R(A) is the matrix Π, which is such that (i) R(Π) = R(A) and
(ii) the Euclidean distance between y and Πy ∈ R(A) is minimum:

‖y − Πy‖2 = min over R(A)

Hereafter, ‖x‖2 = x∗x denotes the Euclidean vector norm .

Result R17: Let A ∈ Cm×n. The orthogonal projector onto R(A) is given by

Π = U1U
∗
1 (A.4.7)

whereas the orthogonal projector onto N (A∗) is

Π⊥ = I − U1U
∗
1 = U2U

∗
2 (A.4.8)

Proof: Let y ∈ Cm×1 be an arbitrary vector. As R(A) = R(U1), according to
R15, we can find the vector in R(A) that is of minimal distance from y by solving
the problem:

min
β

‖y − U1β‖2 (A.4.9)

Because

‖y − U1β‖2 = (β∗ − y∗U1)(β − U∗
1 y) + y∗(I − U1U

∗
1 )y

= ‖β − U∗
1 y‖2 + ‖U∗

2 y‖2

it readily follows that the solution to the minimization problem (A.4.9) is given by
β = U∗

1 y. Hence the vector U1U
∗
1 y is the orthogonal projection of y onto R(A) and

the minimum distance from y to R(A) is ‖U∗
2 y‖. This proves (A.4.7). Then (A.4.8)

follows immediately from (A.4.7) and the fact that N (A∗) = R(U2).

Note, for instance, that for the projection of y onto R(A) the error vector is
y − U1U

∗
1 y = U2U

∗
2 y, which is in R(U2) and is therefore orthogonal to R(A) by

R15. For this reason, Π is given the name “orthogonal projector” in D9 and R17.
As an aside, we remark that the orthogonal projectors in (A.4.7) and (A.4.8)

are idempotent matrices; see the next definition.
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Definition D10: The matrix A ∈ Cm×m is idempotent if

A2 = A (A.4.10)

Furthermore, observe by making use of R11 that the idempotent matrix in
(A.4.7), for example, has r eigenvalues equal to 1 and (m − r) eigenvalues equal
to zero. This is a general property of idempotent matrices: their eigenvalues are
either zero or one.

Finally we present a result that even alone would be enough to make the SVD
an essential matrix analysis tool.

Result R18: Let A ∈ Cm×n, with elements Aij . Let the SVD of A (with the
singular values arranged in a nonincreasing order) be given by:

A = [ U1
︸︷︷︸

p

U2
︸︷︷︸

m−p

]

[
Σ1 0
0 Σ2

] [
V ∗

1

V ∗
2

] }
p

}
n−p

(A.4.11)

where p ≤ min(m,n) is an integer. Let

‖A‖2 = tr(A∗A) =

m∑

i=1

n∑

j=1

|Aij |2 =

min(m,n)
∑

k=1

σ2
k (A.4.12)

denote the square of the so–called Frobenius norm . Then the best rank–p
approximant of A in the Frobenius norm metric, that is, the solution to

min
B

‖A−B‖2 subject to rank(B) = p , (A.4.13)

is given by
B0 = U1Σ1V

∗
1 (A.4.14)

Furthermore, B0 above is the unique solution to the approximation problem (A.4.13)
if and only if σp > σp+1.

Proof: It follows from R4 and (A.4.2) that we can parameterize B in (A.4.13) as:

B = CD∗ (A.4.15)

where C ∈ Cm×p and D ∈ Cn×p are full column rank matrices. The previous
parameterization of B is of course nonunique but, as we will see, this fact does
not introduce any problem. By making use of (A.4.15) we can rewrite the problem
(A.4.13) in the following form:

min
C,D

‖A− CD∗‖2 rank(C) = rank(D) = p (A.4.16)

The reparameterized problem is essentially constraint free. Indeed, the full column
rank condition that must be satisfied by C and D can be easily handled, see below.
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First, we minimize (A.4.16) with respect to D, for a given C. To that end,
observe that:

‖A− CD∗‖2 = tr{[D −A∗C(C∗C)−1](C∗C)[D∗ − (C∗C)−1C∗A]

+A∗[I − C(C∗C)−1C∗]A} (A.4.17)

By result (iii) in Definition D11 in the next section, the matrix [D−A∗C(C∗C)−1]·
(C∗C)[D∗ − (C∗C)−1C∗A] is positive semidefinite for any D. This observation
implies that (A.4.17) is minimized with respect to D for

D0 = A∗C(C∗C)−1 (A.4.18)

and the corresponding minimum value of (A.4.17) is given by

tr{A∗[I − C(C∗C)−1C∗]A} (A.4.19)

Next we minimize (A.4.19) with respect to C. Let S ∈ Cm×p denote an orthogonal
basis of R(C); that is, S∗S = I and

S = CΓ

for some nonsingular p× p matrix Γ. It is then straightforward to verify that

I − C(C∗C)−1C∗ = I − SS∗ (A.4.20)

By combining (A.4.19) and (A.4.20) we can restate the problem of minimizing
(A.4.19) with respect to C as:

max
S; S∗S=I

tr[S∗(AA∗)S] (A.4.21)

The solution to (A.4.21) follows from R14: the maximizing S is given by

S0 = U1

which yields
C0 = U1Γ

−1 (A.4.22)

It follows that:

B0 = C0D
∗
0 = C0(C

∗
0C0)

−1C∗
0A = S0S

∗
0A

= U1U
∗
1 (U1Σ1V

∗
1 + U2Σ2V

∗
2 )

= U1Σ1V
∗
1 .

Furthermore, we observe that the minimum value of the Frobenius distance in
(A.4.13) is given by

‖A−B0‖2 = ‖U2Σ2V
∗
2 ‖2 =

min(m,n)
∑

k=p+1

σ2
k

If σp > σp+1 then the best rank–p approximant B0 derived above is unique. Other-
wise it is not unique. Indeed, whenever σp = σp+1 we can obtain B0 by using either
the singular vectors associated with σp or those corresponding to σp+1, which will
generally lead to different solutions.
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A.5 POSITIVE (SEMI)DEFINITE MATRICES

Let A = A∗ ∈ Cm×m be a Hermitian matrix, and let {λk}mk=1 denote its eigenvalues.

Definition D11: We say that A is positive semidefinite (psd) or positive defi-

nite (pd) if any of the following equivalent conditions holds true.

(i) λk ≥ 0 (λk > 0 for pd) for k = 1, . . . ,m.

(ii) α∗Aα ≥ 0 (α∗Aα > 0 for pd) for any nonzero vector α ∈ Cm×1

(iii) There exists a matrix C such that

A = CC∗ (A.5.1)

(with rank(C) = m for pd)

(iv) |A(i1, . . . , ik)| ≥ 0 (> 0 for pd) for all k = 1, . . . ,m and all indices i1, . . . , ik ∈
[1,m], where A(i1, . . . , ik) is the submatrix formed from A by eliminating
the i1, . . . , ik rows and columns of A. (A(i1, . . . , ik) is called a principal

submatrix of A). The condition for A to be positive definite can be simplified
to requiring that |A(k + 1, . . . ,m)| > 0 (for k = 1, . . . ,m − 1) and |A| > 0.
(A(k + 1, . . . ,m) is called a leading submatrix of A).

The notation A > 0 (A ≥ 0) is commonly used to denote that A is pd (psd).

Of the previous defining conditions, (iv) is apparently more involved. The
necessity of (iv) can be proven as follows. Let α be a vector in Cm with zeroes at
the positions {i1, . . . , ik} and arbitrary elements elsewhere. Then, by using (ii) we
readily see that A ≥ 0 (> 0) implies A(i1, . . . , ik) ≥ 0 (> 0) which, in turn, implies
(iv) by making use of (i) and the fact that the determinant of a matrix equals the
product of its eigenvalues. The sufficiency of (iv) is shown in [Strang 1988].

The equivalence of the remaining conditions, (i), (ii), and (iii), is easily proven
by making use of the EVD of A: A = UΛU∗. To show that (i) ⇔ (ii), assume first
that (i) holds and let β = U∗α. Then:

α∗Aα = β∗Λβ =

m∑

k=1

λk|βk|2 ≥ 0 (A.5.2)

and hence, (ii) holds as well. Conversely, since U is invertible it follows from (A.5.2)
that (ii) can hold only if (i) holds; indeed, if (i) does not hold one can choose β to
make (A.5.2) negative; thus there exists an α = Uβ such that α∗Aα < 0, which
contradicts the assumption that (ii) holds. Hence (i) and (ii) are equivalent. To
show that (iii) ⇒ (ii), note that

α∗Aα = α∗CC∗α = ‖C∗α‖2 ≥ 0

and hence (ii) holds as well. Since (iii) ⇒ (ii) and (ii) ⇒ (i), we have (iii) ⇒ (i).
To show that (i) ⇒ (iii), we assume (i) and write

A = UΛU∗ = (UΛ1/2Λ1/2U∗) = (UΛ1/2U∗)(UΛ1/2U∗) , CC∗ (A.5.3)
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and hence (iii) is also satisfied. In (A.5.3), Λ1/2 is a diagonal matrix the diagonal

elements of which are equal to {λ1/2
k }. In other words, Λ1/2 is the “square root” of

Λ.
In a general context, the square root of a positive semidefinite matrix is defined

as follows.

Definition D12: Let A = A∗ be a positive semidefinite matrix. Then any matrix
C that satisfies

A = CC∗ (A.5.4)

is called a square root of A. Sometimes such a C is denoted by A1/2.

If C is a square root of A, then so is CB for any unitary matrix B, and hence
there are an infinite number of square roots of a given positive semidefinite matrix.
Two often–used particular choices for square roots are:

(i) Hermitian square root : C = C∗. In this case we can simply write (A.5.4)
as A = C2. Note that we have already obtained such a square root of A in
(A.5.3):

C = UΛ1/2U∗ (A.5.5)

If C is also constrained to be positive semidefinite (C ≥ 0) then the Hermitian
square root is unique.

(ii) Cholesky factor . If C is lower triangular with nonnegative diagonal elements,
then C is called the Cholesky factor of A. In computational exercises, the
triangular form of the square–root matrix is often preferred to other forms.
If A is positive definite, the Cholesky factor is unique.

We also note that equation (A.5.4) implies that A and C have the same rank
as well as the same range space. This follows easily, for example, by inserting the
SVD of C into (A.5.4).

Next we prove three specialized results on positive semidefinite matrices re-
quired in Section 2.5 and in Appendix B.

Result R19: Let A ∈ Cm×m and B ∈ Cm×m be positive semidefinite matri-
ces. Then the matrix A � B is also positive semidefinite, where � denotes the
Hadamard matrix product (also called elementwise multiplication: [A �
B]ij = AijBij ).

Proof: Because B is positive semidefinite it can be written as B = CC∗ for some
matrix C ∈ Cm×m. Let c∗k denote the kth row of C. Then,

[A�B]ij = AijBij = Aij c
∗
i cj

and hence, for any α ∈ Cm×1,

α∗(A�B)α =

m∑

i=1

m∑

j=1

α∗
iAijc

∗
i cjαj (A.5.6)
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By letting {cjk}mk=1 denote the elements of the vector cj , we can rewrite (A.5.6) as:

α∗(A�B)α =

m∑

k=1

m∑

i=1

m∑

j=1

α∗
i c

∗
ikAijαjcjk =

m∑

k=1

β∗
kAβk (A.5.7)

where
βk , [α1c1k · · ·αmcmk]T

As A is positive semidefinite by assumption, β∗
kAβk ≥ 0 for each k, and it follows

from (A.5.7) that A�B must be positive semidefinite as well.

Result R20: Let A ∈ Cm×m and B ∈ Cm×m be Hermitian matrices. Assume that
B is nonsingular and that the partitioned matrix

[
A I
I B

]

is positive semidefinite. Then the matrix (A−B−1) is also positive semidefinite,

A ≥ B−1

Proof: By Definition D11, part (ii),

[
α∗

1 α∗
2

]
[
A I
I B

] [
α1

α2

]

≥ 0 (A.5.8)

for any vectors α1, α2 ∈ Cm×1. Let

α2 = −B−1α1

Then (A.5.8) becomes:
α∗

1(A−B−1)α1 ≥ 0

As the above inequality must hold for any α1 ∈ Cm×1, the proof is concluded.

Result R21: Let C ∈ Cm×m be a (Hermitian) positive definite matrix depending
on a real–valued parameter α. Assume that C is a differentiable function of α.
Then

∂

∂α
[ln |C|] = tr

[

C−1 ∂C

∂α

]

Proof: Let {λi} ∈ R (i = 1, . . . ,m) denote the eigenvalues of C. Then

∂

∂α
[ln |C|] =

∂

∂α

[

ln

m∏

k=1

λk

]

=

m∑

k=1

∂

∂α
(lnλk)

=

m∑

k=1

1

λk

∂λk
∂α

= tr

[

Λ−1 ∂Λ

∂α

]
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where Λ = diag(λ1, . . . , λm). Let Q be a unitary matrix such that Q∗ΛQ = C
(which is the EVD of C). Since Q is unitary, Q∗Q = I, we obtain

∂Q∗

∂α
Q+Q∗ ∂Q

∂α
= 0

Thus, we get

tr

[

Λ−1 ∂Λ

∂α

]

= tr

[
(
Q∗Λ−1Q

)
(

Q∗ ∂Λ

∂α
Q

)]

= tr

[

C−1

(
∂

∂α
(Q∗ΛQ) − ∂Q∗

∂α
ΛQ−Q∗Λ

∂Q

∂α

)]

= tr

[

C−1 ∂C

∂α

]

− tr

[

Q∗Λ−1Q

(
∂Q∗

∂α
ΛQ+Q∗Λ

∂Q

∂α

)]

= tr

[

C−1 ∂C

∂α

]

− tr

[
∂Q∗

∂α
Q+Q∗ ∂Q

∂α

]

= tr

[

C−1 ∂C

∂α

]

which is the result stated.

Finally we make use of a simple property of positive semidefinite matrices to
prove the Cauchy–Schwartz inequality for vectors and for functions.

Result R22: (Cauchy–Schwartz inequality for vectors). Let x, y ∈ Cm×1. Then:

|x∗y|2 ≤ ‖x‖2 ‖y‖2 (A.5.9)

where | · | denotes the modulus of a possibly complex–valued number, and ‖ · ‖
denotes the Euclidean vector norm ( ‖x‖2 = x∗x). Equality in (A.5.9) is achieved
if and only if x is proportional to y.

Proof: The (2 × 2) matrix

[
‖x‖2 x∗y
y∗x ‖y‖2

]

=

[
x∗

y∗

]
[
x y

]
(A.5.10)

is clearly positive semidefinite (observe that condition (iii) in D11 is satisfied). It
follows from condition (iv) in D11 that the determinant of the above matrix must
be nonnegative:

‖x‖2 ‖y‖2 − |x∗y|2 ≥ 0

which gives (A.5.9). Equality in (A.5.9) holds if and only if the determinant of
(A.5.10) is equal to zero. The latter condition is equivalent to requiring that x is
proportional to y (cf. D3: the columns of the matrix [x y] will then be linearly
dependent).
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Result R23: (Cauchy–Schwartz inequality for functions). Let f(x) and g(x) be
two complex–valued functions defined for real–valued argument x. Then, assuming
that the integrals below exist,

∣
∣
∣
∣

∫

I

f(x)g∗(x)dx

∣
∣
∣
∣

2

≤
[∫

I

|f(x)|2dx
] [∫

I

|g(x)|2dx
]

where I ⊂ R is an integration interval. The inequality above becomes an equality
if and only if f(x) is proportional to g(x) on I.

Proof: The following matrix
∫

I

[
f(x)
g(x)

]

[f∗(x) g∗(x)] dx

is seen to be positive semidefinite (since the integrand is a positive semidefinite
matrix for every x ∈ I). Hence the stated result follows from the type of argument
used in the proof of Result R22.

A.6 MATRICES WITH SPECIAL STRUCTURE

In this section we consider several types of matrices with a special structure, for
which we prove some basic properties used in the text.

Definition D13: A matrix A ∈ Cm×n is called Vandermonde if it has the follow-
ing structure:

A =








1 · · · 1
z1 zn
...

...
zm−1
1 · · · zm−1

n








(A.6.1)

where zk ∈ C are usually assumed to be distinct.

Result R24: Consider the matrix A in (A.6.1) with zk 6= zp for k, p = 1, . . . , n and
k 6= p . Also let m ≥ n and assume that zk 6= 0 for all k. Then any n consecutive
rows of A are linearly independent.

Proof: To prove the assertion, it is sufficient to show that the following n × n
Vandermonde matrix is nonsingular:

Ā =








1 · · · 1
z1 zn
...

...
zn−1
1 · · · zn−1

n








Let β = [β0 · · ·βn−1]
∗ 6= 0. The equation β∗Ā = 0 is equivalent to

β0 + β1z + · · · + βn−1z
n−1 = 0 at z = zk (k = 1, . . . , n) (A.6.2)

However, (A.6.2) is impossible as a (n−1)-degree polynomial cannot have n zeroes.
Hence, Ā has full rank.
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Definition D14: A matrix A ∈ Cm×n is called:

• Toeplitz when Aij = Ai−j

• Hankel when Aij = Ai+j

Observe that a Toeplitz matrix has the same element along each diagonal,
whereas a Hankel matrix has identical elements on each of the antidiagonals.

Result R25: The eigenvectors of a symmetric Toeplitz matrix A ∈ Rm×m are
either symmetric or skew–symmetric. More precisely, if J denotes the exchange (or
reversal) matrix

J =





0 1
. .

.

1 0





and if x is an eigenvector of A, then either x = Jx or x = −Jx.

Proof: By the property (3.5.3) proven in Section 3.5, A satisfies

AJx = JAx

or equivalently
(JAJ)x = Ax

for any x ∈ Cm×1. Hence, we must have:

JAJ = A (A.6.3)

Let (λ, x) denote an eigenpair of A:

Ax = λx (A.6.4)

Combining (A.6.3) and (A.6.4) yields:

λJx = JAx = J(JAJ)x = A(Jx) (A.6.5)

Because the eigenvectors of a symmetric matrix are unique modulo multiplication
by a scalar, it follows from (A.6.5) that:

x = αJx for some α ∈ R

As x and hence Jx must have unit norm, α must satisfy α2 = 1 ⇒ α = ±1; thus,
either x = Jx (x is symmetric) or x = −Jx (x is skew–symmetric).

One can show that for m even, the number of symmetric eigenvectors is m/2,
as is the number of skew–symmetric eigenvectors; for odd m the number of sym-
metric eigenvectors is (m + 1)/2 and the number of skew–symmetric eigenvectors
is (m− 1)/2 (see [Cantoni and Butler 1976]).

For many additional results on Toeplitz matrices, the reader can consult
[Iohvidov 1982; Böttcher and Silbermann 1983].
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A.7 MATRIX INVERSION LEMMAS

The following formulas for the inverse of a partitioned matrix are used in the text.

Result R26: Let A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n and D ∈ Cn×m. Then,
provided that the matrix inverses appearing below exist,

[
A C
D B

]−1

=

[
I
0

]

A−1
[
I 0

]
+

[
−A−1C

I

]

(B −DA−1C)−1[−DA−1 I]

=

[
0
I

]

B−1
[

0 I
]
+

[
I

−B−1D

]

(A− CB−1D)−1[I − CB−1]

Proof: By direct verification.

By equating the top–left blocks in the above two equations we obtain the
so–called Matrix Inversion Lemma.

Result R27: (Matrix Inversion Lemma) Let A, B, C and D be as in R26. Then,
assuming that the matrix inverses appearing below exist,

(A− CB−1D)−1 = A−1 +A−1C(B −DA−1C)−1DA−1

A.8 SYSTEMS OF LINEAR EQUATIONS

Let A ∈ Cm×n, B ∈ Cm×p, and X ∈ Cn×p. A general system of linear equations
in X can be written as:

AX = B (A.8.1)

where A and B are given and X is the unknown matrix. The special case of (A.8.1)
corresponding to p = 1 (for which X and B are vectors) is perhaps the most
common one in applications. For the sake of generality, we consider the system
(A.8.1) with p ≥ 1. (The ESPRIT system of equations encountered in Section 4.7
is of the form of (A.8.1) with p > 1.) We say that (A.8.1) is exactly determined
whenever m = n, overdetermined if m > n and underdetermined if m < n. In the
following discussion, we first address the case where (A.8.1) has an exact solution
and then the case where (A.8.1) cannot be exactly satisfied.

A.8.1 Consistent Systems

Result R28: The linear system (A.8.1) is consistent , that is it admits an exact
solution X, if and only if R(B) ⊂ R(A) or equivalently

rank([A B]) = rank(A) (A.8.2)

Proof: The result is readily shown by using simple rank and range properties.
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Result R29: Let X0 be a particular solution to (A.8.1). Then the set of all

solutions to (A.8.1) is given by:

X = X0 + ∆ (A.8.3)

where ∆ ∈ Cn×p is any matrix whose columns are in N (A).

Proof: Obviously (A.8.3) satisfies (A.8.1). To show that no solution outside the
set (A.8.3) exists, let Ω ∈ Cn×p be a matrix whose columns do not all belong to
N (A). Then AΩ 6= 0 and

A(X0 + ∆ + Ω) = AΩ +B 6= B

and hence X0 + ∆ + Ω is not a solution to AX = B.

Result R30: The system of linear equations (A.8.1) has a unique solution if and
only if (A.8.2) holds and A has full column rank:

rank(A) = n ≤ m (A.8.4)

Proof: The assertion follows from R28 and R29.

Next let us assume that (A.8.1) is consistent but A does not satisfy (A.8.4)
(hence dim N (A) ≥ 1). Then, according to R29 there are an infinite set of solutions.
In what follows we obtain the unique solution X0, which has minimum norm.

Result R31: Consider a linear system that satisfies the consistency condition in
(A.8.2). Let A have rank r ≤ min (m,n), and let

A = [ U1
︸︷︷︸

r

U2
︸︷︷︸

m−r

]

[
Σ1 0
0 0

] [
V ∗

1

V ∗
2

] }
r

}
n−r

= U1Σ1V
∗
1

denote the SVD of A. (Here Σ1 is nonsingular, cf. the discussion in Section A.4).
Then:

X0 = V1Σ
−1
1 U∗

1B (A.8.5)

is the minimum Frobenius norm solution of (A.8.1) in the sense that

‖X0‖2 < ‖X‖2 (A.8.6)

for any other solution X 6= X0.

Proof: First we verify that X0 satisfies (A.8.1). We have

AX0 = U1U
∗
1B (A.8.7)

In (A.8.7) U1U
∗
1 is the orthogonal projector onto R(A) (cf. R17). Because B must

belong to R(A) (see R28), we conclude that U1U
∗
1B = B and hence that X0 is

indeed a solution.
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Next note that, according to R15,

N (A) = R(V2)

Consequently, the general solution (A.8.3) can be written as (cf. R29)

X = X0 + V2Q ; Q ∈ C(n−r)×p

from which we obtain:

‖X‖2 = tr[(X∗
0 +Q∗V ∗

2 )(X0 + V2Q)]

= ‖X0‖2 + ‖V2Q‖2 > ‖X0‖2 for X 6= X0

Definition D15: The matrix
A† , V1Σ

−1
1 U∗

1 (A.8.8)

in (A.8.5) is the so–called Moore–Penrose pseudoinverse (or generalized in-

verse) of A.

It can be shown that A† is the unique solution to the following set of equations:






AA†A = A
A†AA† = A†

A†A and AA† are Hermitian

Evidently whenever A is square and nonsingular we have A† = A−1, which partly
motivates the name of “generalized inverse” (or “pseudoinverse”) given to A† in
the general case.

The computation of a solution to (A.8.1), whenever one exists, is an important
issue which we address briefly in the following. We begin by noting that in the
general case there is of course no computer algorithm which can compute a solution
to (A.8.1) exactly (i.e., without any numerical errors). In effect, the best we can
hope for is to compute the exact solution to a slightly perturbed (fictitious) system
of linear equations:

(A+ ∆A)(X + ∆X) = B + ∆B (A.8.9)

where ∆A and ∆B are small perturbation terms, the magnitude of which depends
on the algorithm and the length of the computer word, and where ∆X is the solu-
tion perturbation induced. An algorithm which, when applied to (A.8.1), provides
a solution to (A.8.9) corresponding to perturbation terms (∆A,∆B) whose mag-
nitude is of the order afforded by the “machine epsilon” is said to be numerically
stable. Now, assuming that (A.8.1) has a unique solution (and hence that A satisfies
(A.8.4)), one can show that the perturbations in A and B in (A.8.9) are retrieved
in ∆X multiplied by a proportionality factor given by

cond(A) = σ1/σn (A.8.10)

where σ1 and σn are the largest and smallest singular values of A, respectively,
and where “cond” is short for “condition”. The system (A.8.1) is said to be well–
conditioned if the corresponding ratio (A.8.10) is “small” (that is, not much larger
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than one). The ratio in (A.8.10) is called the condition number of the matrix A
and is an important parameter of a given system of linear equations. Note from
the previous discussion that even a numerically stable algorithm (i.e., one that in-
duces quite small ∆A and ∆B) can yield an inaccurate solution X when applied
to an ill–conditioned system of linear equations (i.e., a system with a very large
cond(A)). For more details on the topic of this paragraph, including specific algo-
rithms for solving linear systems, we refer the reader to [Stewart 1973; Golub

and Van Loan 1989].

A.8.2 Inconsistent Systems

The systems of linear equations that appear in applications (such as those in the
text) are quite often perturbed versions of a “nominal system” and usually they
do not admit any exact solution. Such systems are said to be inconsistent, and
frequently they are overdetermined and have a matrix A that has full column rank:

rank(A) = n ≤ m (A.8.11)

In what follows, we present two approaches to obtain an approximate solution to
an inconsistent system of linear equations

AX ' B (A.8.12)

under the condition (A.8.11).

Definition D16: The least squares (LS) approximate solution to (A.8.12) is given
by the minimizer XLS of the following criterion:

‖AX −B‖2

Equivalently, XLS can be defined as follows. Obtain the minimal perturbation ∆B

that makes the system (A.8.12) consistent:

min ‖∆B‖2 subject to AX = B + ∆B (A.8.13)

Then derive XLS by solving the system in (A.8.13) corresponding to the optimal
perturbation ∆B .

The LS solution introduced above can be obtained in several ways. A simple
way is as follows.

Result R32: The LS solution to (A.8.12) is given by:

XLS = (A∗A)−1A∗B (A.8.14)

The inverse matrix in the above equation exists in view of (A.8.11).

Proof: The matrix B0 that makes the system consistent and which is of mini-
mal distance (in the Frobenius norm metric) from B is given by the orthogonal
projection of (the columns of) B onto R(A):

B0 = A(A∗A)−1A∗B (A.8.15)
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To motivate (A.8.15) by using only the results proven so far in this appendix, we
digress from the main proof and let U1 denote an orthogonal basis of R(A). Then
R17 implies that B0 = U1U

∗
1B. However, U1 and A span the same subspace and

hence they must be related to one another by a nonsingular linear transformation:
U1 = AQ ( |Q| 6= 0). It follows from this observation that U1U

∗
1 = AQQ∗A∗ and

also that Q∗A∗AQ = I, which lead to the following projector formula: U1U
∗
1 =

A(A∗A)−1A∗ (as used in (A.8.15)).
Next, we return to the proof of (A.8.14). The unique solution to

AX −B0 = A[X − (A∗A)−1A∗B]

is obviously (A.8.14) since dim N (A) = 0 by assumption.

The LS solution XLS can be computed by means of the SVD of the m × n
matrix A. The XLS can, however, be obtained in a computationally more efficient
way as briefly described below. Note that XLS should not be computed by directly
evaluating the formula in (A.8.14) as it stands. Briefly stated, the reason is as
follows. Recall from (A.8.10) that the condition number of A is given by:

cond(A) = σ1/σn (A.8.16)

(note that σn 6= 0 under (A.8.11)). When working directly on A, the numerical
errors made in the computation ofXLS can be shown to be proportional to (A.8.16).
However, in (A.8.14) one would need to invert the matrix A∗A whose condition
number is:

cond(A∗A) = σ2
1/σ

2
n = [cond(A)]2 (A.8.17)

Working with (A∗A) may hence induce much larger numerical errors during the
computation of XLS and is therefore not advisable. The algorithm sketched in
what follows derives XLS by operating on A directly.

For any matrix A satisfying (A.8.11) there exist a unitary matrix Q ∈ Cm×m

and nonsingular upper–triangular matrix R ∈ Cn×n such that

A = Q

[
R
0

]

, [ Q1
︸︷︷︸

n

Q2
︸︷︷︸

m−n

]

[
R
0

]

(A.8.18)

The previous factorization of A is called the QR decomposition (QRD). Inserting
(A.8.18) into (A.8.14) we obtain

XLS = R−1Q∗
1B

Hence, once the QRD of A has been performed, XLS can be conveniently obtained
as the solution of a triangular system of linear equations:

RXLS = Q∗
1B (A.8.19)

We note that the computation of the QRD is faster than that of the SVD (see, e.g.,
[Stewart 1973; Golub and Van Loan 1989]).

The previous definition and derivation of XLS make it clear that the LS
approach derives an approximate solution to (A.8.12) by implicitly assuming that
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only the right–hand side matrix B is perturbed. In applications quite frequently
both A and B can be considered to be perturbed versions of some nominal (and
unknown) matrices. In such cases we may think of determining an approximate
solution to (A.8.12) by explicitly recognizing the fact that neither A nor B are
perturbation free. An approach based on this idea is described next (see, e.g.,
[Van Huffel and Vandewalle 1991]).

Definition D17: The total least squares (TLS) approximate solution to (A.8.12)
is defined as follows. First derive the minimal perturbations ∆A and ∆B that make
the system consistent:

min ‖[∆A ∆B ]‖2 subject to (A+ ∆A)X = B + ∆B (A.8.20)

Then obtain XTLS by solving the system in (A.8.20) corresponding to the optimal
perturbations (∆A, ∆B).

A simple way to derive a more explicit formula for calculating the XTLS runs
as follows.

Result R33: Let

[A B] = [ Ũ1
︸︷︷︸

n

Ũ2
︸︷︷︸

m−n

]

[
Σ̃1 0

0 Σ̃2

] [
Ṽ ∗

1

Ṽ ∗
2

] }
n

}
p

(A.8.21)

denote the SVD of the matrix [A B]. Furthermore, partition Ṽ ∗
2 as

Ṽ ∗
2 = [ Ṽ ∗

21
︸︷︷︸

n

Ṽ ∗
22
︸︷︷︸

p

] (A.8.22)

Then
XTLS = −Ṽ21 Ṽ

−1
22 (A.8.23)

if Ṽ −1
22 exists.

Proof: The optimization problem with constraints in (A.8.20) can be restated in
the following way: Find the minimal perturbation [∆A ∆B ] and the corresponding
matrix X such that

{ [A B] + [∆A ∆B ] }
[

−X
I

]

= 0 (A.8.24)

Since rank

[
−X
I

]

= p it follows that [∆A ∆B ] should be such that dim N ( [A B]+

[∆A ∆B ] ) ≥ p or, equivalently,

rank( [A B] + [∆A ∆B ] ) ≤ n (A.8.25)

According to R18, the minimal perturbation matrix [∆A ∆B ] that achieves (A.8.25)
is given by

[∆A ∆B ] = −Ũ2Σ̃2Ṽ
∗
2 (A.8.26)



“sm2”
2004/2/22
page 353

i

i

i

i

i

i

i

i

Section A.9 Quadratic Minimization 353

Inserting (A.8.26) along with (A.8.21) into (A.8.24), we obtain the following matrix
equation in X:

Ũ1Σ̃1Ṽ
∗
1

[
−X
I

]

= 0

or, equivalently,

Ṽ ∗
1

[
−X
I

]

= 0 (A.8.27)

Equation (A.8.27) implies that X must satisfy

[
−X
I

]

= Ṽ2Q =

[
Ṽ21

Ṽ22

]

Q (A.8.28)

for some nonsingular normalizing matrix Q. The expression (A.8.23) for XTLS is
readily obtained from (A.8.28).

The TLS solution in (A.8.23) is unique if and only if the singular values {σ̃k}
of the matrix [A B] are such that σ̃n > σ̃n+1 (this follows from R18). When Ṽ22

is singular, the TLS solution does not exist; see [Van Huffel and Vandewalle

1991].
The computation of the XTLS requires the SVD of the m × (n + p) matrix

[A B]. The solution XTLS can be rewritten in a slightly different form. Let Ṽ11, Ṽ12

be defined via the following partition of Ṽ ∗
1

Ṽ ∗
1 = [ Ṽ11

︸︷︷︸

n

Ṽ12
︸︷︷︸

p

]

The orthogonality condition Ṽ ∗
1 Ṽ2 = 0 can be rewritten as

Ṽ11Ṽ21 + Ṽ12Ṽ22 = 0

which yields
XTLS = −Ṽ21Ṽ

−1
22 = Ṽ −1

11 Ṽ12 (A.8.29)

Since usually p is (much) smaller than n, the formula (A.8.23) for XTLS may often
be computationally more convenient than (A.8.29) (for example, in the common
case of p = 1, (A.8.23) does not require any matrix inversion whereas (A.8.29)
requires the calculation of an n× n matrix inverse).

A.9 QUADRATIC MINIMIZATION

Several problems in this text require the solution to quadratic minimization prob-
lems. In this section, we make use of matrix analysis techniques to derive two
results: one on unconstrained minimization, and the other on constrained mini-
mization.

Result R34: Let A be an (n× n) Hermitian positive definite matrix, let X and B
be (n ×m) matrices, and let C be an m ×m Hermitian matrix. Then the unique
solution to the minimization problem

min
X

F (X), F (X) = X∗AX +X∗B +B∗X + C (A.9.1)
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is given by
X0 = −A−1B, F (X0) = C −B∗A−1B (A.9.2)

Here, the matrix minimization means F (X0) ≤ F (X) for every X 6= X0; that is,
F (X) − F (X0) is a positive semidefinite matrix.

Proof: Let X = X0 + ∆, where ∆ is an arbitrary (n×m) complex matrix. Then

F (X) = (−A−1B + ∆)∗A(−A−1B + ∆) + (−A−1B + ∆)∗B

+B∗(−A−1B + ∆) + C

= ∆∗A∆ + F (X0) (A.9.3)

Since A is positive definite, ∆∗A∆ ≥ 0 for all nonzero ∆; thus, the minimum value
of F (X) is F (X0), and the result is proven.

We next present a result on linearly constrained quadratic minimization.

Result R35: Let A be an (n× n) Hermitian positive definite matrix, and let X ∈
Cn×m, B ∈ Cn×k, and C ∈ Cm×k. Assume that B has full column rank equal to
k (hence n ≥ k). Then the unique solution to the minimization problem

min
X

X∗AX subject to X∗B = C (A.9.4)

is given by
X0 = A−1B(B∗A−1B)−1C∗. (A.9.5)

Proof: First note that (B∗A−1B)−1 exists and that X∗
0B = C. Let X = X0 +∆,

where ∆ ∈ Cn×m satisfies ∆∗B = 0 (so that X also satisfies the constraint X∗B =
C). Then

X∗AX = X∗
0AX0 +X∗

0A∆ + ∆∗AX0 + ∆∗A∆ (A.9.6)

where the two middle terms are equal to zero:

∆∗AX0 = ∆∗B(B∗A−1B)−1C∗ = 0

Hence,
X∗AX −X∗

0AX0 = ∆∗A∆ ≥ 0 (A.9.7)

as A is positive definite. It follows from (A.9.7) that the minimizing X matrix is
given by X0.

A common special case of Result R35 is m = k = 1 (so X and B are both
vectors) and C = 1. Then

X0 =
A−1B

B∗A−1B
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Cramér–Rao Bound Tools

B.1 INTRODUCTION

In the text we have kept the discussion of statistical aspects at a minimum for con-
ciseness reasons. However, we have presented certain statistical tools and analyses
that we have found useful to the understanding of the spectral analysis material
discussed. In this appendix we introduce some basic facts on an important statis-
tical tool: the Cramér–Rao bound (abbreviated as CRB). We begin our discussion
by explaining the importance of the CRB for parametric spectral analysis.

Let φ(ω, θ) denote a parametric spectral model, depending on a real–valued

vector θ, and let φ(ω, θ̂) denote the spectral density estimated from N data samples.

Assume that the estimate θ̂ of θ is consistent such that the estimation error is
small for large values of N . Then, by making use of a Taylor series expansion
technique, we can approximately write the estimation error [φ(ω, θ̂) − φ(ω, θ)] as a

linear function of θ̂ − θ:

[φ(ω, θ̂) − φ(ω, θ)] ' ψT (ω, θ)(θ̂ − θ) (B.1.1)

where the symbol ' denotes an asymptotically (in N) valid approximation, and
ψ(ω, θ) is the gradient of φ(ω, θ) with respect to θ (evaluated at the true parameter
values):

ψ(ω, θ) =
∂φ(ω, θ)

∂θ
(B.1.2)

It follows from (B.1.1) that the mean squared error (MSE) of φ(ω, θ̂) is approxi-
mately given by

MSE[φ(ω, θ̂)] ' ψT (ω, θ)Pψ(ω, θ) (for N � 1) (B.1.3)

where
P = MSE[θ̂] = E

{

(θ̂ − θ)(θ̂ − θ)T
}

(B.1.4)

We see from (B.1.3) that the variance (or MSE) of the estimation errors in the
spectral domain are linearly related to the variance (or MSE) of the parameter

vector estimate θ̂, so that we can get an accurate spectral estimate only if we use an
accurate parameter estimator. We start from this simple observation, which reduces
the statistical analysis of φ(ω, θ̂) to the analysis of θ̂, to explain the importance of
the CRB for the performance study of spectral analysis. Toward that end, we
discuss several facts in the paragraphs that follow.

Assume that θ̂ is some unbiased estimate of θ (that is E{θ̂} = θ), and let P

denote the covariance matrix of θ̂ (cf. (B.1.4)):

P = E
{

(θ̂ − θ)(θ̂ − θ)T
}

(B.1.5)

355
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(Note that here we do not require that N be large). Then, under quite general
conditions, there is a matrix (which we denote by Pcr) such that

P ≥ Pcr (B.1.6)

in the sense that the difference (P − Pcr) is a positive semidefinite matrix. This
is basically the celebrated Cramér–Rao bound result [Cramér 1946; Rao 1945].
We will derive the inequality (B.1.6) along with an expression for the CRB in the
next section.

In view of (B.1.6) we may think of assessing the performance of a given es-
timation method by comparing its covariance matrix P with the CRB. Such a
comparison would make perfect sense whenever the CRB is achievable; that is,
whenever there exists an estimation method such that its P equals the CRB. Un-
fortunately, this is rarely the case for finite N . Additionally, biased estimators may
exist whose MSEs are smaller than the CRB under discussion (see, for example,
[Stoica and Moses 1990; Stoica and Ottersten 1996]). Hence, in the finite
sample case (particularly for small samples) comparing with the CRB does not
really make too much sense because:

(i) There might be no unbiased estimator that attains the CRB and, conse-
quently, a large difference (P −Pcr) may not necessarily mean bad accuracy;
and

(ii) The equality P = Pcr does not necessarily mean that we have achieved the
ultimate possible performance, as there might be biased estimators with lower
MSE than the CRB.

In the large sample case, on the other hand, the utility of the CRB result for the type
of parameter estimation problems addressed in the text is significant, as explained
next.

Let y ∈ RN×1 denote the sample of available observations. Any estimate θ̂ of
θ will be a function of y. We assume that both θ and y are real–valued. Working
with real θ and y vectors appears to be the most convenient way when discussing the
CRB theory, even when the original parameters and measurements are complex–
valued. (If the parameters and measurements are complex–valued, θ and y are
obtained by concatenating the real and imaginary parts of the complex parameter
and data vectors, respectively.) We also assume that the probability density of y,
which we denote by p(y, θ), is a differentiable function of θ. An important general
method for parameter estimation consists of maximizing p(y, θ) with respect to θ:

θ̂ = arg max
θ
p(y, θ) (B.1.7)

The p(y, θ) in (B.1.7) with y fixed and θ variable is called the likelihood function, and

θ̂ is called the maximum likelihood (ML) estimate of θ. Under regularity conditions

the ML estimate (MLE) is consistent (i.e., limN→∞ θ̂ = θ stochastically) and its
covariance matrix approaches the CRB as N increases:

P ' Pcr for a MLE with N � 1 (B.1.8)
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The aforementioned regularity conditions basically amount to requiring that the
number of free parameters does not increase with N , which is true for all but one
of the parametric spectral estimation problems discussed in the text. The array
processing problem of Chapter 6 does not satisfy the previous requirement when
the signal snapshots are assumed to be unknown deterministic variables; in such a
case the number of unknown parameters grows without bound as N increases, and
the equality in (B.1.8) does not hold, see [Stoica and Nehorai 1989a; Stoica

and Nehorai 1990] and also Section B.6.
In summary, then, in large samples the ML method attains the ultimate per-

formance corresponding to the CRB, under rather general conditions. Furthermore,
there are no other known practical methods that can provide consistent estimates
of θ with lower variance than the CRB1. Hence, the ML method can be said to be
asymptotically a statistically efficient practical estimation approach. The accuracy
achieved by any other estimation method can therefore be assessed by comparing
the (large sample) covariance matrix of that method with the CRB, which approxi-
mately equals the covariance matrix of the MLE in large samples (cf. (B.1.8)). This
performance comparison ability is one of the most important uses of the CRB.

With reference to the spectral estimation problem, it follows from (B.1.3) and
the previous observation that we can assess the performance of a given spectral
estimator by comparing its large sample MSE values with

ψT (ω, θ)[Pcr]ψ(ω, θ) (B.1.9)

The MSE values can be obtained by the Monte–Carlo simulation of a typical sce-
nario representative of the problem of interest, or by using analytical MSE formulas
whenever they are available. In the text we have emphasized the former, more prag-
matic way of determining the MSE of a given spectral estimator.

Remark: The CRB formula (B.1.9) for parametric (or model-based) spectral anal-
ysis holds in the case where the model order (i.e., the dimension of θ) is equal to
the “true order”. Of course, in any practical spectral analysis exercise using the
parametric approach we will have to estimate n, the model order, in addition to θ,
the (real-valued) model parameters. The need for order estimation is a distinctive
feature and an additional complication of parametric spectral analysis, as compared
with nonparametric spectral analysis.

There are several available rules for order selection (see Appendix C). For
most of these rules, the probability of underestimating the true order approaches
zero as N increases (if that is not the case, then the estimated spectrum may be
heavily biased). The probability of overestimating the true order, on the other
hand, may be nonzero even when N → ∞. Let n̂ denote the estimated order, n0

the true order, and pn = Pr(n̂ = n) for N → ∞. Assume that pn = 0 for n < n0

and that the CRB formula (B.1.9) holds for any n ≥ n0 (which is a relatively
mild restriction). Then it can be shown (see [Sando, Mitra, and Stoica 2002]

1Consistent estimation methods whose asymptotic variance is lower than the CRB, at certain
points in the parameter set, do exist! However, such methods (which are called “asymptoti-
cally statistically super–efficient”) have little practical relevance (they are mainly of a theoretical
interest); see, e.g., [Stoica and Ottersten 1996].
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and the references therein) that whenever n is estimated along with θ the formula
(B.1.9) should be replaced with its average over the distribution of order estimates:

nMAX∑

n=n0

pnψ
T
n (ω, θn)[Pcr,n]ψn(ω, θn) (B.1.10)

where we have emphasized by notation the dependence of ψ, θ, and Pcr on the
model order n, and where nMAX denotes the maximum order value considered
in the order selection rule. The set of probabilities {pn} associated with various
order estimation rules are tabulated, e.g., in [McQuarrie and Tsai 1998]. As
expected, it can be proven that the spectral CRB in (B.1.10) increases (for each ω)
with increasing nMAX (see [Sando, Mitra, and Stoica 2002]). This increase
of the spectral estimation error is the price paid for not knowing the true model
order. �

B.2 THE CRB FOR GENERAL DISTRIBUTIONS

Result R36: (Cramér–Rao Bound) Consider the likelihood function p(y, θ), intro-
duced in the previous section, and define

Pcr =

(

E

{[
∂ ln p(y, θ)

∂θ

] [
∂ ln p(y, θ)

∂θ

]T
})−1

(B.2.1)

where the inverse is assumed to exist. Then

P ≥ Pcr (B.2.2)

holds for any unbiased estimate of θ. Furthermore, the CRB matrix can alterna-
tively be expressed as:

Pcr = −
(

E

{
∂2 ln p(y, θ)

∂θ ∂θT

})−1

(B.2.3)

Proof: As p(y, θ) is a probability density function,

∫

p(y, θ)dy = 1 (B.2.4)

where the integration is over RN . The assumption that θ̂ is an unbiased estimate
implies

∫

θ̂p(y, θ)dy = θ (B.2.5)
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Differentiation of (B.2.4) and (B.2.5) with respect to θ yields, under regularity
conditions,

∫
∂p(y, θ)

∂θ
dy =

∫
∂ ln p(y, θ)

∂θ
p(y, θ)dy = E

{
∂ ln p(y, θ)

∂θ

}

= 0 (B.2.6)

and
∫

θ̂
∂p(y, θ)

∂θ
dy =

∫

θ̂
∂ ln p(y, θ)

∂θ
p(y, θ)dy = E

{

θ̂
∂ ln p(y, θ)

∂θ

}

= I (B.2.7)

It follows from (B.2.6) and (B.2.7) that

E

{

(θ̂ − θ)
∂ ln p(y, θ)

∂θ

}

= I (B.2.8)

Next note that the matrix

E










(θ̂ − θ)

∂ ln p(y, θ)

∂θ





[

(θ̂ − θ)T
(
∂ ln p(y, θ)

∂θ

)T ]





=

[
P I
I P−1

cr

]

(B.2.9)

is, by construction, positive semidefinite. (To obtain the equality in (B.2.9) we used
(B.2.8)). This observation implies (B.2.2) (see Result R20 in Appendix A).

Next we prove the equality in (B.2.3). Differentiation of (B.2.6) gives:

∫
∂2 ln p(y, θ)

∂θ ∂θT
p(y, θ)dy +

∫ [
∂ ln p(y, θ)

∂θ

] [
∂ ln p(y, θ)

∂θ

]T

p(y, θ)dy = 0

or, equivalently,

E

{[
∂ ln p(y, θ)

∂θ

] [
∂ ln p(y, θ)

∂θ

]T
}

= −E
{
∂2 ln p(y, θ)

∂θ ∂θT

}

which is precisely what we had to prove.

The matrix

J = E

{[
∂ ln p(y, θ)

∂θ

] [
∂ ln p(y, θ)

∂θ

]T
}

= −E
{
∂2 ln p(y, θ)

∂θ ∂θT

}

, (B.2.10)

the inverse of which appears in the CRB formula (B.2.1) (or (B.2.3)), is called the
(Fisher) information matrix [Fisher 1922].

B.3 THE CRB FOR GAUSSIAN DISTRIBUTIONS

The CRB matrix in (B.2.1) depends implicitly on the data properties via the prob-
ability density function p(y, θ). To obtain a more explicit expression for the CRB
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we should specify the data distribution. A particularly convenient CRB formula is
obtained if the data vector is assumed to be Gaussian distributed:

p(y, θ) =
1

(2π)N/2|C|1/2 e
−(y−µ)TC−1(y−µ)/2 (B.3.1)

where µ and C are, respectively, the mean and the covariance matrix of y (C is
assumed to be invertible). In the case of (B.3.1), the log–likelihood function that
appears in (B.2.1) is given by:

ln p(y, θ) = −N
2

ln 2π − 1

2
ln |C| − 1

2
(y − µ)TC−1(y − µ) (B.3.2)

Result R37: The CRB matrix corresponding to the Gaussian data distribution in
(B.3.1) is given (elementwise) by:

[P−1
cr ]ij =

1

2
tr
[
C−1C ′

iC
−1C ′

j

]
+
[
µ′T
i C

−1µ′
j

]
(B.3.3)

where C ′
i denotes the derivative of C with respect to the ith element of θ (and

similarly for µ′
i).

Proof: By using Result R21 and the notational convention for the first–order and
second–order derivatives, we obtain:

2[ln p(y, θ)]′′ij =
∂

∂θi

{
− tr

[
C−1C ′

j

]
+ 2µ′T

j C
−1(y − µ)

+(y − µ)TC−1C ′
jC

−1(y − µ)
}

= tr
[
C−1C ′

iC
−1C ′

j

]
− tr

[
C−1C ′′

ij

]

+2
{[
µ′T
j C

−1
]′
i
(y − µ) − µ′T

j C
−1µ′

i

}

−2µ′T
i C

−1C ′
jC

−1(y − µ)

+ tr
{
(y − µ)(y − µ)T

·
[
−C−1C ′

iC
−1C ′

jC
−1 + C−1C ′′

ijC
−1 − C−1C ′

jC
−1C ′

iC
−1
]}

Taking the expectation of both sides of the equation above yields:

2
[
P−1
cr

]

ij
= − tr

[
C−1C ′

iC
−1C ′

j

]
+ tr

[
C−1C ′′

ij

]
+ 2µ′T

i C
−1µ′

j

+ tr
[
C−1C ′

iC
−1C ′

j

]
− tr

[
C−1C ′′

ij

]
+ tr

[
C−1C ′

iC
−1C ′

j

]

= tr
[
C−1C ′

iC
−1C ′

j

]
+ 2µ′T

i C
−1µ′

j

which concludes the proof.

The CRB expression in (B.3.3) is sometimes referred to as the Slepian–Bangs
formula. (The second term in (B.3.3) is due to Slepian [Slepian 1954] and the
first to Bangs [Bangs 1971]).
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Next we specialize the CRB formula (B.3.3) to a particular type of Gaussian
distribution. Let N = 2N̄ (hence, N is assumed to be even). Partition the vector
y as

y =

[
y1
y2

]
}N̄
}N̄ (B.3.4)

Accordingly, partition µ and C as

µ =

[
µ1

µ2

]

(B.3.5)

and

C =

[
C11 C12

CT12 C22

]

(B.3.6)

The vector y is said to have a circular (or circularly symmetric) Gaussian distribu-
tion if

C11 = C22 (B.3.7)

CT12 = −C12 (B.3.8)

Let

y
4
= y1 + iy2 (B.3.9)

and

µµ = µ1 + iµ2 (B.3.10)

We also say that the complex–valued random vector y has a circular Gaussian distri-
bution whenever the conditions (B.3.7) and (B.3.8) are satisfied. It is a straightfor-
ward exercise to verify that the aforementioned conditions can be more compactly
written as:

E
{
(y − µµ)(y − µµ)T

}
= 0 (B.3.11)

The Fourier transform, as well as the complex demodulation operation (see Chapter
6), often lead to signals satisfying (B.3.11) (see, e.g., [Brillinger 1981]). Hence,
the circularity is a relatively frequent property of the Gaussian random signals
encountered in the spectral analysis problems discussed in this text.

Remark: If a random vector y satisfies the “circularity condition” (B.3.11) then it
is readily verified that y and yeiz have the same second–order properties for every
constant z in [−π, π]. Hence, the second–order properties of y do not change if its
generic element yk is replaced by any other value, yke

iz, on the circle with radius
|yk| (recall that z is nonrandom and it does not depend on k). This observation
provides a motivation for the name “circularly symmetric” given to such a random
vector y. �
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Let
Γ = E {(y − µµ)(y − µµ)∗} (B.3.12)

For circular Gaussian random vectors y (or y), the CRB formula (B.3.3) can be
rewritten in a compact form as a function of Γ and µµ. (Note that the dimensions
of Γ and µµ are half the dimensions of C and µ appearing in (B.3.3).) In order to
show how this can be done, we need some preparations.

Let
C̄ = C11 = C22 (B.3.13)

C̃ = CT12 = −C12 (B.3.14)

Hence,

C =

[
C̄ −C̃
C̃ C̄

]

(B.3.15)

and
Γ = 2(C̄ + iC̃) (B.3.16)

To any complex–valued matrix C = C̄ + iC̃ we associate a real–valued matrix C as
defined in (B.3.15), and vice versa. It is a simple exercise to verify that if

A = BC ⇐⇒ Ā+ iÃ = (B̄ + iB̃)(C̄ + iC̃) (B.3.17)

then the real–valued matrix associated with A is given by

A = BC ⇐⇒
[
Ā −Ã
Ã Ā

]

=

[
B̄ −B̃
B̃ B̄

] [
C̄ −C̃
C̃ C̄

]

(B.3.18)

In particular, it follows from (B.3.17) and (B.3.18) with A = I (and hence A = I)
that the matrices C−1 and C−1 form a real–complex pair as defined above.

We deduce from the results previously derived that the matrix in the first
term of (B.3.3),

D = C−1C ′
iC

−1C ′
j (B.3.19)

is associated with
D = C−1C′

iC−1C′
j = Γ−1Γ′

iΓ
−1Γ′

j (B.3.20)

Furthermore, we have
1

2
tr(D) = tr(D̄) = tr(D) (B.3.21)

The second equality above follows from the fact that C is Hermitian, and hence

tr(D∗) = tr(C′
jC−1C′

iC−1) = tr(C−1C′
iC−1C′

j) = tr(D)

which in turn implies that tr(D̃) = 0 and therefore that tr(D) = tr(D̄). Combining
(B.3.20) and (B.3.21) shows that the first term in (B.3.3) can be rewritten as:

tr(Γ−1Γ′
iΓ

−1Γ′
j) (B.3.22)

Next we consider the second term in (B.3.3). Let

x =

[
x1

x2

]

and z =

[
z1
z2

]
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be two arbitrary vectors partitioned similarly to µ, and let x = x1 + ix2 and
z = z1 + iz2. A straightforward calculation shows that:

xTAz = xT1 Āz1 + xT2 Āz2 + xT2 Ãz1 − xT1 Ãz2

= Re {x∗Az} (B.3.23)

Hence,

µ′T
i C

−1µ′
j = Re

{
µµ′∗
i C−1µµ′

j

}

= 2 Re
{
µµ′∗
i Γ−1µµ′

j

}
(B.3.24)

Insertion of (B.3.22) and (B.3.24) into (B.3.3) yields the following CRB formula
that holds in the case of circularly Gaussian distributed data vectors y (or y):

[P−1
cr ]ij = tr

[
Γ−1Γ′

iΓ
−1Γ′

j

]
+ 2 Re

[
µµ′∗
i Γ−1µµ′

j

]
(B.3.25)

The importance of the Gaussian CRB formulas lies not only in the fact that Gaus-
sian data are rather frequently encountered in applications, but also in a more
subtle aspect explained in what follows. Briefly stated, the second reason for the
importance of the CRB formulas derived in this section is that:

Under rather general conditions and (at least) in large samples,
the Gaussian CRB is the largest of all CRB matrices correspond-
ing to different congruous distributions of the data sample2.

(B.3.26)

To motivate the previous assertion, consider the ML estimate of θ derived under
the Gaussian data hypothesis, which we denote by θ̂G. According to the discus-
sion around equation (B.1.8), the large sample covariance matrix of θ̂ equals PGcr
(similar to θ̂G, we use an index G to denote the CRB matrix in the Gaussian hy-
pothesis case). Now, under rather general conditions, the large sample properties
of the Gaussian ML estimator are independent of the data distribution (see, e.g.,
[Söderström and Stoica 1989]). In other words, the large sample covariance

matrix of θ̂G is equal to PGcr for many other data distributions besides the Gaussian
one. This observation, along with the general CRB inequality, implies that:

PGcr ≥ Pcr (B.3.27)

where the right–hand side is the CRB matrix corresponding to the data distribution
at hand.

The inequality (B.3.27) (or, equivalently, the assertion (B.3.26)) shows that
a method whose covariance matrix is much larger than PGcr cannot be a good esti-
mation method. As a matter of fact, the “asymptotic properties” of most existing

2A meaningful comparison of the CRBs under two different data distributions requires that the
hypothesized distributional models do not contain conflicting assumptions. In particular, when
one of the two distributions is the Gaussian, the mean and covariance matrix should be the same
for both distributions.
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parameter estimation methods do not depend on the data distribution. This means
that PGcr is a lower bound for the covariance matrices of a large class of estimation
methods, regardless of the data distribution. On the other hand, the inequal-
ity (B.3.27) also shows that for non–Gaussian data it should be possible to beat
the Gaussian CRB (for instance by exploiting higher–order moments of the data,
beyond the first and second–order moments used in the Gaussian ML method).
However, general estimation methods with covariance matrices uniformly smaller
than PGcr are yet to be discovered. In summary, comparing against the PGcr makes
sense in most parameter estimation exercises.

In what follows, we briefly consider the application of the general Gaussian
CRB formulas derived above to the three main parameter estimation problems
treated in the text.

B.4 THE CRB FOR LINE SPECTRA

As explained in Chapter 4 the estimation of line spectra is basically a parameter
estimation problem. The corresponding parameter vector is

θ =
[
α1 . . . αn, ϕ1 . . . ϕn, ω1 . . . ωn, σ

2
]T

(B.4.1)

and the data vector is
y = [y(1) · · · y(N)]

T
(B.4.2)

or, in real–valued form,

y =
[

Re[y(1)] · · · Re[y(N)] Im[y(1)] · · · Im[y(N)]
]T

(B.4.3)

When {ϕk} are assumed to be random variables uniformly distributed on [0, 2π]
(whereas {αk} and {ωk} are deterministic constants), the distribution of y is not
Gaussian and hence neither of the CRB formulas of the previous section are usable.
To overcome this difficulty it is customary to consider the distribution of y condi-
tioned on {ϕk} (i.e., for {ϕk} fixed). This distribution is circular Gaussian, under
the assumption that the (white) noise is circularly Gaussian distributed, with the
following mean and covariance matrix:

µµ = E {y} =








1 · · · 1
eiω1 · · · eiωn

...
...

ei(N−1)ω1 · · · ei(N−1)ωn













α1e
iϕ1

...
αne

iϕn




 (B.4.4)

Γ = E {(y − µµ)(y − µµ)∗} = σ2I (B.4.5)

The differentiation of (B.4.4) and (B.4.5) with respect to the elements of the
parameter vector θ can be easily done (we leave the details of this differentiation
operation as an exercise to the reader). Hence, we can readily obtain all ingredients
required to evaluate the CRB matrix in equation (B.3.25). If the distribution
of y (or y) is Gaussian but not circular, we need additional parameters, besides
σ2, to characterize the matrix E

{
(y − µµ)(y − µµ)T

}
. Once these parameters are

introduced, the use of formula (B.3.3) to obtain the CRB is straightforward.
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In Section 4.3 we have given a simple formula for the block of the CRB matrix
corresponding to the frequency estimates {ω̂k}. That formula holds asymptotically,
as N increases. For finite values of N , it is a good approximation of the exact CRB
whenever the minimum frequency separation is larger than 1/N [Stoica, Moses,

Friedlander, and Söderström 1989]. In any case, the approximate (large
sample) CRB formula given in Section 4.3 is computationally much simpler to
implement than the exact CRB.

The computation and properties of the CRB for line spectral models are
discussed in great detail in [Ghogho and Swami 1999]. In particular, a modified
lower bound on the variance of any unbiased estimates of {αk} and {ωk} is derived
for the case in which {ϕk} are independent random variables uniformly distributed
on [0, 2π]. That bound, which was obtained using the so-called posterior CRB
introduced in [Van Trees 1968] (as indicated above, the standard CRB does not
apply to such a case), has an expression that is quite similar to the large-sample
CRB given in [Stoica, Moses, Friedlander, and Söderström 1989] (see
Section 4.3 for the large-sample CRB for {ω̂k}). The paper [Ghogho and Swami

1999] also discusses the derivation of the CRB in the case of non-Gaussian noise
distributions. The extension of the asymptotic CRB formula in Section 4.3 to the
case of colored noise can be found in [Stoica, Jakobsson, and Li 1997].

B.5 THE CRB FOR RATIONAL SPECTRA

For rational (or ARMA) spectra, the Cramér–Rao lower bound on the variance of
any consistently estimated spectrum is asymptotically (forN � 1) given by (B.1.9).
The CRB matrix for the parameter vector estimate, which appears in (B.1.9), can
be evaluated as outlined in what follows.

In the case of ARMA spectral models, the parameter vector consists of the
white noise power σ2 and the polynomial coefficients {ak, bk}. We arrange the
ARMA coefficients in the following real–valued vector:

θ = [Re(a1) · · · Re(an) Re(b1) · · · Re(bm) Im(a1) · · · Im(an) Im(b1) · · · Im(bm)]
T

The data vector is defined as in equations (B.4.2) or (B.4.3) and has zero mean
(µ = 0). The calculation of the covariance matrix of the data vector reduces to the
calculation of ARMA covariances:

r(k) = σ2E

{[
B(z)

A(z)
w(t)

] [
B(z)

A(z)
w(t− k)

]∗}

where the white noise sequence {w(t)} is normalized such that its variance is one.
Methods for computation of {rk} (for given values of σ2 and θ) were outlined in
Exercises C1.12 and 3.2. The method in Exercise C1.12 should perform reasonably
well as long as the zeroes of A(z) are not too close to the unit circle. If the zeroes
of A(z) are close to the unit circle, it is advisable to use the method in Exercise 3.2
or in [Kinkel, Perl, Scharf, and Stubberud 1979; Demeure and Mullis

1989].

The calculation of the derivatives of {r(k)} with respect to σ2 and the elements
of θ, which appear in the CRB formulas (B.3.3) or (B.3.25), can also be reduced to
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ARMA (cross)covariance computation. To see this, let α and γ be the real parts
of ap and bp, respectively. Then

∂r(k)

∂α
= −σ2E

{[
B(z)

A2(z)
w(t− p)

] [
B(z)

A(z)
w(t− k)

]∗

+

[
B(z)

A(z)
w(t)

] [
B(z)

A2(z)
w(t− k − p)

]∗}

and

∂r(k)

∂γ
= σ2E

{[
1

A(z)
w(t− p)

] [
B(z)

A(z)
w(t− k)

]∗

+

[
B(z)

A(z)
w(t)

] [
1

A(z)
w(t− k − p)

]∗}

The derivatives of r(k) with respect to the imaginary parts of ap and bp can be sim-
ilarly obtained. The differentiation of r(k) with respect to σ2 is immediate. Hence,
by making use of an algorithm for ARMA cross–covariance calculation (similar to
the ones for autocovariance calculation in Exercises C1.12 and 3.2) we can readily
obtain all the ingredients needed to evaluate the CRB matrix in equation (B.3.3)
or (B.3.25).

Similarly to the case of line spectra, for relatively large values of N (e.g.,
on the order of hundreds) the use of the exact CRB formula for rational spectra
may be computationally burdensome (owing to the need to multiply and invert
matrices of large dimensions). In such large–sample cases, we may want to use an
asymptotically valid approximation of the exact CRB such as the one developed in
[Söderström and Stoica 1989]. Below we present such an approximate (large
sample) CRB formula for ARMA parameter estimates.

Let

Λ = E

{[
Re[e(t)]
Im[e(t)]

]
[

Re[e(t)] Im[e(t)]
]
}

(B.5.1)

Typically the real and imaginary parts of the complex–valued white noise sequence
{e(t)} are assumed to be mutually uncorrelated and have the same variance σ2/2.
In such a case, we have Λ = (σ2/2)I. However, this assumption is not necessary
for the result discussed below to hold, and hence we do not impose it (in other
words, Λ in (B.5.1) is only constrained to be a positive definite matrix). We should
also remark that, for the sake of simplicity, we assumed the ARMA signal under
discussion is scalar. Nevertheless, the extension of the discussion that follows to
multivariate ARMA signals is immediate. Finally, note that for real–valued signals
the imaginary parts in (B.5.1) (and in equation (B.5.2)) should be omitted.

The real–valued white noise vector in (B.5.1) satisfies the following equation:







Re[e(t)]

Im[e(t)]







︸ ︷︷ ︸

ε(t)

=







Re

[
A(z)

B(z)

]

− Im

[
A(z)

B(z)

]

Im

[
A(z)

B(z)

]

Re

[
A(z)

B(z)

]







︸ ︷︷ ︸

H(z)







Re[y(t)]

Im[y(t)]







︸ ︷︷ ︸

v(t)

(B.5.2)
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where z−1 is to be treated as the unit delay operator (not as a complex variable). As
the coefficients of the polynomials A(z) and B(z) in H(z) above are the unknowns
in our estimation problem, we can rewrite (B.5.2) in the following form to stress
the dependence of ε(t) on θ:

ε(t, θ) = H(z, θ)v(t) (B.5.3)

Because the polynomials of the ARMA model are monic by assumption, we have:

H(z, θ)|z−1=0 = I (for any θ) (B.5.4)

This observation, along with the fact that ε(t) is white and the “whitening fil-
ter” H(z) is stable and causal (which follows from the fact that the complex–

valued (equivalent) counterpart of (B.5.2), e(t) = A(z)
B(z)y(t), is stable and causal)

implies that (B.5.3) is a standard prediction error model to which the CRB result
of [Söderström and Stoica 1989] applies.

Let

∆(t) =
∂εT (t, θ)

∂θ
(B.5.5)

(ε(t, θ) depends on θ via H(z, θ) only; see (B.5.2)). Then an asymptotically valid
expression for the CRB block corresponding to the parameters in θ is given by:

Pcr,θ =
(
E
{
∆(t)Λ−1∆T (t)

})−1
(B.5.6)

The calculation of the derivative matrix in (B.5.5) is straightforward. The eval-
uation of the statistical expectation in (B.5.6) can be reduced to ARMA cross–
covariance calculations. Since equation (B.5.6) does not require handling matrices
of large dimensions (on the order of N), its implementation is much simpler than
that of the exact CRB formula.

For some recent results on the CRB for rational spectral analysis, see [Ninness

2003].

B.6 THE CRB FOR SPATIAL SPECTRA

Consider the model (6.2.21) for the output sequence {y(t)}Nt=1 of an array that
receives the signals emitted by n narrowband point sources:

y(t) = As(t) + e(t)

A = [a(θ1), . . . , a(θn)]
(B.6.1)

The noise term, e(t), in (B.6.1) is assumed to be circularly Gaussian distributed
with mean zero and the following covariances:

E {e(t)e∗(τ)} = σ2Iδt,τ (B.6.2)

Regarding the signal vector, s(t), in the equation (B.6.1), we can assume that either:

Det: {s(t)} is a deterministic, unknown sequence
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or

Sto: {s(t)} is a random sequence which is circularly Gaussian dis-
tributed with mean zero and covariances

E {s(t)s∗(τ)} = Pδt,τ (B.6.3)

Hereafter, the acronyms Det and Sto are used to designate the case of deterministic
or stochastic signals, respectively. Note that making one of these two assumptions
on {s(t)} is similar to assuming in the line spectral analysis problem that the
initial phases {ϕk} are deterministic or random (see Section B.4). As we will see
shortly, both the CRB analysis and the resulting CRB formulas depend heavily
on which of the two assumptions we make on {s(t)}. The reader may already
wonder which assumption should then be used in a given application. This is not
a simple question, and we will be better prepared to answer it after deriving the
corresponding CRB formulas.

In Chapter 6 we used the symbol θ to denote the DOA vector. To conform
with the notation used in this appendix (and by a slight abuse of notation), we will
here let θ denote the entire parameter vector.

As explained in Chapter 6, the use of array processing for spatial spectral
analysis leads essentially to a parameter estimation problem. Under the Det as-
sumption the parameter vector to be estimated is given by:

θ =
[
θ1, . . . , θn ; s̄T (1), . . . , s̄T (N) ; . . . ; s̃T (1), . . . , s̃T (N) ; σ2

]T
(B.6.4)

whereas under the Sto assumption

θ =
[

θ1, . . . , θn ; P11, P̄12, P̃12, . . . , P̄1n, P̃1n, P22, P̄23, P̃23, . . . , Pnn, ; σ2
]T

(B.6.5)

Hereafter, s̄(t) and s̃(t) denote the real and imaginary parts of s(t), and Pij de-
notes the (i, j)th element of the matrix P . Furthermore, under both Det and Sto
assumptions the observed array output sample,

y(t) =
[
yT (1), . . . , yT (N)

]T
(B.6.6)

is circularly Gaussian distributed with the following mean µ and covariance Γ:

Under Det:

µ =






As(1)
...

As(N)




 , Γ =






σ2I 0
. . .

0 σ2I




 (B.6.7)

Under Sto:

µ = 0, Γ =






R 0
. . .

0 R




 (B.6.8)

where R is given by (see (6.4.3))

R = APA∗ + σ2I (B.6.9)
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The differentiation of either (B.6.7) or (B.6.8) with respect to the elements
of the parameter vector θ is straightforward. Using the so-obtained derivatives
of µ and Γ in the general CRB formula in (B.3.25) provides a simple means of
computing CRBDet and CRBSto for the entire parameter vector θ as defined in
(B.6.4) or (B.6.5).

Computing the CRB as described above may be sufficient for many applica-
tions. However, sometimes we may need more than just that. For example, we
may be interested in using the CRB for the design of array geometry or for getting
insights into the various features of a specific spatial spectral analysis scenario. In
such cases we may want to have a closed-form (or analytical) expression for the
CRB. More precisely, as the DOAs are usually the parameters of major interest,
we may often want a closed-form expression for CRB(DOA) (i.e., the block of the
CRB matrix that corresponds to the DOA parameters). Below we consider the
problem of obtaining such a closed-form CRB expression under both the Det and
Sto assumptions made above.

First, consider the Det assumption. Let us write the corresponding µ vector
in (B.6.7) as

µ = Gs (B.6.10)

where

G =






A 0
. . .

0 A




 , s =






s(1)
...

s(N)




 (B.6.11)

Then, a straightforward calculation yields:

∂µ

∂s̄T
= G,

∂µ

∂s̃T
= iG; (B.6.12)

and

∂µ

∂θk
=






∂A
∂θk

s(1)
...

∂A
∂θk

s(N)




 =






dksk(1)
...

dksk(N)




 , k = 1, . . . , n (B.6.13)

where sk(t) is the kth element of s(t) and

dk =
∂a(θ)

∂θ

∣
∣
∣
∣
θ=θk

(B.6.14)

Using the notation

∆ =






d1s1(1) · · · dnsn(1)
...

...
d1s1(N) · · · dnsn(N)




 , (N × n) (B.6.15)

we can then write:
dµ

d θT
=
[
∆, G, iG, 0

]
(B.6.16)
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which gives the following expression for the second term in the general CRB formula
in (B.3.25):

2 Re

{
dµ∗

dθ
Γ−1 dµ

dθT

}

=

[
J 0
0 0

]

(B.6.17)

where

J ,
2

σ2
Re











∆∗

G∗

−iG∗




[
∆ G iG

]






(B.6.18)

Furthermore, as Γ depends only on σ2 and as

dΓ

d σ2
=






I 0
. . .

0 I






we can easily verify that the matrix corresponding to the first term in the general
CRB formula, (B.3.25), is given by

tr
[
Γ−1Γ′

iΓ
−1Γ′

j

]
=

[
0 0
0 mN

σ4

]

, i, j = 1, 2, . . . (B.6.19)

Combining (B.6.17) and (B.6.19) yields the following CRB formula for the param-
eter vector θ in (B.6.4), under the Det assumption:

CRBDet =

[
J−1 0

0 σ4

mN

]

(B.6.20)

Hence, to obtain the CRB for the DOA subvector of θ we need to extract the
corresponding block of J−1. One convenient way of doing this is by suitably block-
diagonalizing the matrix J . To this end, let us introduce the matrix

B = (G∗G)−1G∗∆ (B.6.21)

Note that the inverse in (B.6.21) exists because A∗A is nonsingular by assumption.
Also, let

F =





I 0 0
−B̄ I 0

−B̃ 0 I



 (B.6.22)

where B̄ = Re{B} and B̃ = Im{B}. It can be verified that

[
∆ G iG

]
F =

[
(∆ −GB) G iG

]
=
[
Π⊥
G∆ G iG

]
(B.6.23)

where

Π⊥
G = I −G(G∗G)−1G∗

is the orthogonal projector onto the null space of G∗ (see Result R17 in Ap-
pendix A); in particular, observe that G∗Π⊥

G = 0. It follows from (B.6.18) and
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(B.6.23) that

FTJF =
2

σ2
Re






F ∗





∆∗

G∗

−iG∗




[
∆ G iG

]
F







=
2

σ2
Re











∆∗Π⊥
G

G∗

−iG∗




[
Π⊥
G∆ G iG

]







=
2

σ2
Re











∆∗Π⊥
G∆ 0 0

0 G∗G iG∗G
0 −iG∗G G∗G










(B.6.24)

and hence that the CRB matrix for the DOAs and the signal sequence is given by

J−1 = F
(
FTJF

)−1
FT

=
σ2

2





I 0 0
−B̄ I 0

−B̃ 0 I









[
Re(∆∗Π⊥

G∆)
]−1

0 0
0 x x
0 x x









I −B̄T −B̃T
0 I 0
0 0 I





=





σ2

2

[
Re(∆∗Π⊥

G∆)
]−1

x x
x x x
x x x



 (B.6.25)

where we used the symbol x to denote a block of no interest in the derivation. From
(B.6.4) and (B.6.25) we can immediately see that the CRB matrix for the DOAs is
given by:

CRBDet(DOA) =
σ2

2

[
Re(∆∗Π⊥

G∆)
]−1

(B.6.26)

It is possible to rewrite (B.6.26) in a more convenient form. To do so, we note
that

Π⊥
G =






I 0
. . .

0 I




−






ΠA 0
. . .

0 ΠA




 =






Π⊥
A 0

. . .

0 Π⊥
A




 (B.6.27)

and hence

[
∆∗Π⊥

G∆
]

kp
=

N∑

t=1

d∗
ks

∗
k(t)Π

⊥
Adpsp(t)

= N
[
d∗
kΠ

⊥
Adp

]

[

1

N

N∑

t=1

sp(t)s
∗
k(t)

]

= N
[
D∗Π⊥

AD
]

kp

[

P̂T
]

kp
(B.6.28)
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where

D =
[
d1 . . . dn

]
(B.6.29)

P̂ =
1

N

N∑

t=1

s(t)s∗(t) (B.6.30)

It follows from (B.6.28) that

∆∗Π⊥
G∆ = N

(
D∗Π⊥

AD
)

� P̂T (B.6.31)

where � denotes the Hadamard (or elementwise) matrix product (see the definition
in Result R19 in Appendix A). Inserting (B.6.31) in (B.6.26) yields the following
analytical expression for the CRB matrix associated with the DOA vector under the
Det assumption:

CRBDet(DOA) =
σ2

2N

{

Re
[(
D∗Π⊥

AD
)

� P̂T
]}−1

(B.6.32)

We refer the reader to [Stoica and Nehorai 1989a] for more details about
(B.6.32) and its possible uses in array processing. The presented derivation of
(B.6.32) has been adapted from [Stoica and Larsson 2001]. Note that (B.6.32)
can be directly applied to the temporal line spectral model in Section B.4 (see
equations (B.4.4) and (B.4.5) there) to obtain an analytical CRB formula for the
sinusoidal frequencies.

The derivation of an analytical expression for the CRB matrix associated with
the DOAs under the Sto assumption is more intricate, and we give only the final
formula here (see [Stoica, Larsson, and Gershman 2001] and its references for
a derivation):

CRBSto(DOA) =
σ2

2N

{
Re
[(
D∗Π⊥

AD
)

�
(
PA∗R−1AP )T

)]}−1 (B.6.33)

At this point we should emphasize the fact that the two CRBs discussed
above, CRBDet and CRBSto, correspond to two different models of the data vector
y (see (B.6.7) and (B.6.8)), and hence they are not directly comparable. On the
other hand, the CRBs for the DOA parameters can be compared with one another.
To make this comparison possible, let us introduce the assumption that the sample
covariance matrix P̂ in (B.6.30) converges to the P matrix in (B.6.3), as N → ∞.
Let CRBDet(DOA) denote the CRB matrix in (B.6.32) with P̂ replaced by P . Then,
the following interesting order relation holds true:

CRBSto(DOA) ≥ CRBDet(DOA) (B.6.34)

To prove (B.6.34) we need to show that (see (B.6.32) and (B.6.33)):

{
Re
[(
D∗Π⊥

AD
)

�
(
PA∗R−1AP )T

)]}−1 ≥
{
Re
[(
D∗Π⊥

AD
)

� PT
]}−1
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or, equivalently, that

Re
[(
D∗Π⊥

AD
)

�
(
P − PA∗R−1AP )T

)]
≥ 0 (B.6.35)

The real part of a positive semidefinite matrix is positive semidefinite itself, i.e.

H ≥ 0 =⇒ Re[H] ≥ 0 (B.6.36)

(indeed, for any real-valued vector h we have: h∗ Re[H]h = Re[h∗Hh] ≥ 0 for
H ≥ 0). Combining this observation with Result R19 in Appendix A shows that
to prove (B.6.35) it is sufficient to verify that:

P ≥ PA∗R−1AP (B.6.37)

or, equivalently,
I ≥ P 1/2A∗R−1AP 1/2 (B.6.38)

where P 1/2 denotes the Hermitian square root of P (see Definition D12 in Ap-
pendix A). Let

Z = AP 1/2

Then (B.6.38) can be rewritten as

I − Z∗ (ZZ∗ + σ2I
)−1

Z ≥ 0 (B.6.39)

To prove (B.6.39) we use the fact that the following matrix is evidently positive
semidefinite:

[
I Z∗

Z ZZ∗ + σ2I

]

=

[
I
Z

]
[
I Z∗]+

[
0 0
0 σ2I

]

≥ 0 (B.6.40)

and therefore

[

I −Z∗ (ZZ∗ + σ2I
)−1

0 I

] [
I Z∗

Z ZZ∗ + σ2I

] [
I 0

−
(
ZZ∗ + σ2I

)−1
Z I

]

=

[

I − Z∗ (ZZ∗ + σ2I
)−1

Z 0
0 ZZ∗ + σ2I

]

≥ 0 (B.6.41)

The inequality in (B.6.39) is a simple consequence of (B.6.41), and hence the proof
of (B.6.34) is concluded.

To understand (B.6.34) at an intuitive level we note that the ML method
for DOA estimation under the Sto assumption, MLSto, can be shown to achieve
CRBSto(DOA) (for sufficiently large values of N); see, e.g., [Stoica and Neho-

rai 1990] and [Ottersten, Viberg, Stoica, and Nehorai 1993]. This result
should in fact be no surprise because the general ML method of parameter esti-
mation is known to be asymptotically statistically efficient (i.e., it achieves the
CRB as N → ∞) under some regularity conditions which are satisfied in the Sto
assumption case. Specifically, the regularity conditions require that the number of
unknown parameters does not increase as N increases, which is indeed true for the
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Sto model (see (B.6.5)). Let CMLSto(DOA) denote the asymptotic covariance ma-
trix of the MLSto estimate of the DOA parameter vector. According to the above
discussion, we have that

CMLSto(DOA) = CRBSto(DOA) (B.6.42)

At the same time, under the Det assumption the MLSto can be viewed as some
method for DOA estimation, and hence its asymptotic covariance matrix must
satisfy the CRB inequality (corresponding to the Det assumption):

CMLSto(DOA) ≥ CRBDet(DOA) (B.6.43)

(Note that the asymptotic covariance matrix of MLSto can be shown to be the
same under either the Sto or Det assumption). The above equation along with
(B.6.42) provide a heuristic motivation for the relationship between CRBSto(DOA)
and CRBDet(DOA) in (B.6.34). Note that the inequality in (B.6.34) is in gen-
eral strict, but the relative difference between CRBSto(DOA) and CRBDet(DOA)
is usually fairly small (see, e.g., [Ottersten, Viberg, Stoica, and Nehorai

1993]).
A similar remark to the one in the previous paragraph can be made on the

ML method for DOA estimation under the Det assumption, which we abbreviate
as MLDet. Note that MLDet can be readily seen to coincide with the NLS method
discussed in Section 6.4.1. Under the Sto assumption, MLDet (i.e., the NLS method)
can be viewed as just some method for DOA estimation. Hence, its (asymptotic)
covariance matrix must be bounded below by the CRB corresponding to the Sto
assumption:

CMLDet(DOA) ≥ CRBSto(DOA) (B.6.44)

Similarly to MLSto, the asymptotic covariance matrix of MLDet can also be shown
to be the same under either the Sto or Det assumption. Hence, we can infer from
(B.6.34) and (B.6.44) that MLDet may not attain CRBDet(DOA) which is indeed the
case (as is shown in, e.g., [Stoica and Nehorai 1989a]). To understand why this
happens, note that the Det model contains (2N+1)n+1 real-valued parameters (see
(B.6.4)) which must be estimated from 2mN data samples. Hence, for large N , the
ratio between the number of unknown parameters and the available data samples
approaches a constant (equal to n/m), which violates one of the aforementioned
regularity conditions for the statistical efficiency of the ML method.

Remark: CRBDet(DOA) depends on the signal sequence {s(t)}Nt=1. However, nei-
ther CRBDet(DOA) nor the asymptotic covariance matrices of MLSto, MLDet, or in
fact many other DOA estimation methods depend on this sequence. We will use the
symbol C to denote the (asymptotic) covariance matrix of such a DOA estimation
method for which C is independent of the signal sequence.

From CRBDet(DOA) we can obtain a matrix, different from CRBDet(DOA),
which is independent of the signal sequence, in the following manner:

ACRBDet(DOA) = Ẽ {CRBDet(DOA)} (B.6.45)

where Ẽ is an averaging operator, and ACRBDet stands for Averaged CRBDet. For
example, Ẽ{·} in (B.6.45) can be a simple arithmetic averaging of CRBDet(DOA)



“sm2”
2004/2/22
page 375

i

i

i

i

i

i

i

i

Section B.6 The CRB for Spatial Spectra 375

over a set of signal sequences. Using the fact that Ẽ {C} = C (since C does not
depend on the sequence {s(t)}Nt=1), we can apply the operator Ẽ{·} to both sides
of the following CRB inequality:

C ≥ CRBDet(DOA) (B.6.46)

to obtain
C ≥ ACRBDet(DOA) (B.6.47)

(Note that the inequality in (B.6.46) and hence that in (B.6.47) hold at least for suf-
ficiently large values of N). It follows from (B.6.47) that ACRBDet(DOA) can also
be used as a lower bound on the DOA estimation error covariance. Furthermore,
it can be shown that ACRBDet(DOA) is tighter than CRBDet(DOA):

ACRBDet(DOA) ≥ CRBDet(DOA) (B.6.48)

To prove (B.6.48), we introduce the matrix:

X =
2N

σ2
Re
[

(D∗Π⊥
AD) � P̂T

]

(B.6.49)

Using this notation along with the fact that Ẽ{P̂} = P (which holds under mild
conditions), we can rewrite (B.6.48) as follows:

Ẽ
{
X−1

}
≥
[

Ẽ {X}
]−1

(B.6.50)

To prove (B.6.50), we note that the matrix

Ẽ

{[
X−1 I
I X

]}

= Ẽ

{[
X−1/2

X1/2

]
[
X−1/2 X1/2

]
}

(where X1/2 and X−1/2 denote the Hermitian square roots of X and X−1, re-
spectively) is clearly positive semidefinite, and therefore so must be the following
matrix:

[

I −
[

Ẽ {X}
]−1

0 I

] [
Ẽ
{
X−1

}
I

I Ẽ {X}

] [ I 0

−
[

Ẽ {X}
]−1

I

]

=

[

Ẽ
{
X−1

}
−
[

Ẽ {X}
]−1

0

0 Ẽ {X}

]

≥ 0

(B.6.51)

The matrix inequality in (B.6.50), which is somewhat similar to the scalar Jensen
inequality (see, e.g., Complement 4.9.5) readily follows from (B.6.51).

The inequality (B.6.48) looks appealing. On the other hand, ACRBDet(DOA)
should be less tight than CRBSto(DOA), in view of the results in (B.6.42) and
(B.6.47). Also, CRBSto(DOA) has a simpler analytical form. Hence, we may have
little reason to use ACRBDet(DOA) in lieu of CRBSto(DOA). Despite these draw-
backs of ACRBDet(DOA), we have included this discussion for the potential use-
fulness of the inequality in (B.6.50) and of the basic idea behind the introduction
of ACRBDet(DOA). �
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In the remainder of this section we rely on the previous results to compare
the Det and Sto model assumptions, to discuss the consequences of making these
assumptions, and to draw some conclusions.

First, consider the array output model in equation (B.6.1). To derive the ML
estimates of the unknown parameters in (B.6.1) we must make some assumptions
on the signal sequence {s(t)}. The MLSto method for DOA estimation (derived
under the Sto assumption) turns out to be more accurate than the MLDet method
(obtained under the Det assumption), under quite general conditions on {s(t)}.
However, the MLSto method is somewhat more complicated computationally than
the MLDet method; see, e.g., [Ottersten, Viberg, Stoica, and Nehorai 1993].

The previous discussion implies that the question as to which assumption
should be used (because “it is more likely to be true”) is in fact irrelevant in this
case. Indeed, we should see the two assumptions only as instruments for deriving
the two corresponding ML methods. Once we have completed the derivations, the
assumption issue is no longer important and we can simply choose the ML method
that we prefer, regardless of the nature of {s(t)}. The choice should be based on
the facts that (a) MLDet is computationally simpler than MLSto, and (b) MLSto is
statistically more accurate than MLDet under quite general conditions on {s(t)}.

Second, regarding the two CRB matrices that correspond to the Det and Sto
assumptions, respectively, we can argue as follows. Under the Sto assumption,
CRBSto(DOA) is the Cramér–Rao bound and hence the lower bound to use. Under
the Det assumption, while CRBSto(DOA) is no longer the true CRB, it is still a
tight lower bound on the asymptotic covariance matrix of any known DOA esti-
mation method. CRBDet(DOA) is also a lower bound, but it is not tight. Hence
CRBSto(DOA) should be the normal choice for a lower bound, regardless of the as-
sumption (Det or Sto) that the signal sequence is likely to satisfy. Note that, under
the Det assumption, MLSto can be seen as some DOA estimation method. There-
fore, in principle, a better DOA estimation method than MLSto may exist (where
by “better” we mean that the covariance matrix of such an estimation method
would be smaller than CRBSto(DOA)). However, no such DOA estimation method
appears to be available, in spite of a significant literature on the so-called problem
of “estimation in the presence of many nuisance parameters,” of which the DOA
estimation problem under the Det assumption is a special case.
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A P P E N D I X C

Model Order Selection Tools

C.1 INTRODUCTION

The parametric methods of spectral analysis (discussed in Chapters 3, 4, and 6)
require not only the estimation of a vector of real-valued parameters but also the
selection of one or several integer-valued parameters that are equally important for
the specification of the data model. Specifically, these integer-valued parameters
of the model are the ARMA model orders in Chapter 3, the number of sinusoidal
components in Chapter 4, and the number of source signals impinging on the array
in Chapter 6. In each of these cases, the integer-valued parameters determine the
dimension of the real-valued parameter vector of the data model. In what follows
we will use the following symbols:

y = the vector of available data (of size N)

θ = the (real-valued) parameter vector

n = the dimension of θ

For short, we will refer to n as the model order, even though sometimes n is not
really an order (see, e.g., the above examples). We assume that both y and θ are
real-valued:

y ∈ RN , θ ∈ Rn

Whenever we need to emphasize that the number of elements in θ is n, we will use
the notation θn. A method that estimates n from the data vector y will be called
an order selection rule. Note that the need for estimating a model order is typical
of the parametric approaches to spectral analysis. The nonparametric methods of
spectral analysis do not have such a requirement.

The discussion in the text on the parametric spectral methods has focused
on estimating the model parameter vector θ for a specific order n. In this general
appendix1 we explain how to estimate n as well. The literature on order selection
is as considerable as that on (real-valued) parameter estimation (see, e.g., [Choi

1992; Söderström and Stoica 1989; McQuarrie and Tsai 1998; Linhart

and Zucchini 1986; Burnham and Anderson 2002; Sakamoto, Ishiguro,

and Kitagawa 1986; Stoica, Eykhoff, Jannsen, and Söderström 1986]
and the many references therein). However, many order selection rules are tied
to specific parameter estimation methods and hence their applicability is rather
limited. Here we will concentrate on order selection rules that are associated with
the maximum likelihood method (MLM) of parameter estimation. As explained

1Based on “Model order selection: A review of the AIC, GIC, and BIC rules,” by P. Stoica
and Y. Selén, IEEE Signal Processing Magazine, 21(2), March 2004.
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briefly in Appendix B (see also below), the MLM is likely the most commonly used
parameter estimation method. Consequently, the order estimation rules that can
be used with the MLM are of quite a general interest. In the next section we review
briefly the ML method of parameter estimation and some of its main properties.

C.2 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Let
p(y, θ) = the probability density function (pdf) of the data vec-
tor y, which depends on the parameter vector θ; also called the
likelihood function.

The ML estimate of θ, which we denote by θ̂, is given by the maximizer of
p(y, θ) (see, e.g., [Anderson 1971; Brockwell and Davis 1991; Hannan and

Deistler 1988; Papoulis 1977; Porat 1994; Priestley 1981; Scharf 1991;
Therrien 1992; Söderström and Stoica 1989] and also Appendix B). Alter-
natively, as ln(·) is a monotonically increasing function,

θ̂ = arg max
θ

ln p(y, θ) (C.2.1)

Under the Gaussian data assumption, the MLM typically reduces to the nonlinear
least-squares (NLS) method of parameter estimation (particular forms of which are
discussed briefly in Chapter 3 and in more detail in Chapters 4 and 6). To illustrate
this fact, let us assume that the observation vector y can be written as:

y = µ(γ) + e (C.2.2)

where e is a (real-valued) Gaussian white noise vector with mean zero and covariance
matrix given by E

{
eeT
}

= σ2I, γ is an unknown parameter vector, and µ(γ) is a
deterministic function of γ. It follows readily from (C.2.2) that

p(y, θ) =
1

(2π)N/2(σ2)N/2
e− ‖y−µ(γ)‖2

2σ2 (C.2.3)

where

θ =

[
γ
σ2

]

(C.2.4)

Remark: Note that in this appendix we use the symbol θ for the whole parameter
vector, unlike in some previous discussions where we used θ to denote the signal
parameter vector (which is denoted by γ here). �

We deduce from (C.2.3) that

−2 ln p(y, θ) = N ln(2π) +N lnσ2 +
‖y − µ(γ)‖2

σ2
(C.2.5)
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A simple calculation based on (C.2.5) shows that the ML estimates of γ and σ2 are
given by:

γ̂ = arg min
γ

‖y − µ(γ)‖2 (C.2.6)

σ̂2 =
1

N
‖y − µ(γ̂)‖2 (C.2.7)

The corresponding value of the likelihood function is given by

−2 ln p(y, θ̂) = constant +N ln σ̂2 (C.2.8)

As can be seen from (C.2.6), in the present case the MLM indeed reduces to the
NLS. In particular, note that the NLS method for sinusoidal parameter estimation
discussed in Chapter 4 is precisely of the form of (C.2.6). If we let Ns denote the
number of observed complex-valued samples of the noisy sinusoidal signal, and nc
denote the number of sinusoidal components present in the signal, then:

N = 2Ns (C.2.9)

n = 3nc + 1 (C.2.10)

We will use the sinusoidal signal model of Chapter 4 as a vehicle for illustrating how
the various general order selection rules presented in what follows should be used
in a specific situation. These rules can also be used with the parametric spectral
analysis methods of Chapters 3 and 6. The task of deriving explicit forms of these
order selection rules for the aforementioned methods is left as an interesting exercise
to the reader (see, e.g., [McQuarrie and Tsai 1998; Brockwell and Davis

1991; Porat 1994]).

Next, we note that under regularity conditions the pdf of the ML estimate θ̂
converges, as N → ∞, to a Gaussian pdf with mean θ and covariance matrix equal
to the Cramér–Rao Bound (CRB) matrix (see Section B.2 for a discussion about

the CRB). Consequently, asymptotically in N , the pdf of θ̂ is given by:

p(θ̂) =
1

(2π)n/2|J−1|1/2 e
− 1

2 (θ̂−θ)T J(θ̂−θ) (C.2.11)

where (see (B.2.10))

J = −E
{
∂2 ln p(y, θ)

∂θ ∂θT

}

(C.2.12)

Remark: To simplify the notation, we use the symbol θ for both the true parameter
vector and the parameter vector viewed as an unknown variable (as we also did in
Appendix B). The exact meaning of θ should be clear from the context. �

The “regularity conditions” referred to above require that n is not a function
of N , and hence that the ratio between the number of unknown parameters and the
number of observations tends to zero as N → ∞. This is true for the parametric
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spectral analysis problems discussed in Chapters 3 and 4. However, the previous
condition does not hold for the parametric spectral analysis problem addressed in
Chapter 6. Indeed, in the latter case the number of parameters to be estimated
from the data is proportional to N , owing to the assumption that the signal se-
quence is completely unknown. To overcome this difficulty we can assume that
the signal vector is temporally white and Gaussian distributed, which leads to a
ML problem that satisfies the previously stated regularity condition (we refer the
interested reader to [Ottersten, Viberg, Stoica, and Nehorai 1993; Stoica

and Nehorai 1990; Van Trees 2002] for details on this ML approach to the
spatial spectral analysis problem of Chapter 6).

To close this section, we note that under mild conditions:

[

− 1

N

∂2 ln p(y, θ)

∂θ ∂θT
− 1

N
J

]

→ 0 as N → ∞ (C.2.13)

To motivate (C.2.13) for the fairly general data model in (C.2.2) we can argue as
follows. Let us rewrite the negative log-likelihood function associated with (C.2.2)
as (see (C.2.5)):

− ln p(y, θ) = constant +
N

2
ln(σ2) +

1

2σ2

N∑

t=1

[yt − µt(γ)]
2

(C.2.14)

where the subindex t denotes the t-th component. From (C.2.14) we obtain by a
simple calculation:

−∂ ln p(y, θ)

∂θ
=









− 1

σ2

N∑

t=1

[yt − µt(γ)]µ
′
t(γ)

N

2σ2
− 1

2σ4

N∑

t=1

[yt − µt(γ)]
2









(C.2.15)

where

µ′
t(γ) =

∂µt(γ)

∂γ
(C.2.16)

Differentiating (C.2.15) once again gives:

− ∂2 ln p(y, θ)

∂θ ∂θT

=









− 1

σ2

N∑

t=1

etµ
′′
t (γ) +

1

σ2

N∑

t=1

µ′
t(γ)µ

′T
t (γ)

1

σ4

N∑

t=1

etµ
′
t(γ)

1

σ4

N∑

t=1

etµ
′
t(γ) − N

2σ4
+

1

σ6

N∑

t=1

e2t









(C.2.17)

where et = yt − µt(γ) and

µ′′
t (γ) =

∂2µt(γ)

∂γ ∂γT
(C.2.18)
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Taking the expectation of (C.2.17) and dividing by N , we get:

1

N
J =







1

σ2

(

1

N

N∑

t=1

µ′
t(γ)µ

′T
t (γ)

)

0

0
1

2σ4







(C.2.19)

We assume that µ(γ) is such that the above matrix has a finite limit as N → ∞.
Under this assumption, and the previously-made assumption on e, we can also show
from (C.2.17) that

− 1

N

∂2 ln p(y, θ)

∂θ ∂θT

converges (as N → ∞) to the right side of (C.2.19), which concludes the motivation
of (C.2.13). Letting

Ĵ = −∂
2 ln p(y, θ)

∂θ ∂θT

∣
∣
∣
∣
θ=θ̂

(C.2.20)

we deduce from (C.2.13), (C.2.19), and the consistency of θ̂ that, for sufficiently
large values of N ,

1

N
Ĵ ' 1

N
J = O(1) (C.2.21)

Hereafter, ' denotes an asymptotic (approximate) equality, in which the higher-
order terms have been neglected, and O(1) denotes a term that tends to a constant
as N → ∞.

Interestingly enough, the assumption that the right side of (C.2.19) has a finite
limit, as N → ∞, holds for many problems, but not for the sinusoidal parameter
estimation problem of Chapter 4. In the latter case, (C.2.21) needs to be modified
as follows (see, e.g., Appendix B):

KN ĴKN ' KNJKN = O(1) (C.2.22)

where

KN =

[
1

N
3/2
s

Inc 0

0 1

N
1/2
s

I2nc+1

]

(C.2.23)

and where Ik denotes the k×k identity matrix; to write (C.2.23), we assumed that
the upper-left nc×nc block of J corresponds to the sinusoidal frequencies, but this
fact is not really important for the analysis in this appendix, as we will see below.

C.3 USEFUL MATHEMATICAL PRELIMINARIES AND OUTLOOK

In this section we discuss a number of mathematical tools that will be used in the
next sections to derive several important order selection rules. We will keep the
discussion at an informal level to make the material as accessible as possible. In
Section C.3.1 we will formulate the model order selection as a hypothesis testing
problem, with the main goal of showing that the maximum a posteriori (MAP)
approach leads to the optimal order selection rule (in a sense specified there). In
Section C.3.2 we discuss the Kullback-Leibler information criterion, which lies at
the basis of another approach that can be used to derive model order selection rules.
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C.3.1 Maximum A Posteriori (MAP) Selection Rule

Let Hn denote the hypothesis that the model order is n, and let n̄ denote a known
upper bound on n:

n ∈ [1, n̄] (C.3.1)

We assume that the hypotheses {Hn}n̄n=1 are mutually exclusive (i.e., only one of
them can hold true at a time). As an example, for a real-valued AR signal with
coefficients {ak} we can define Hn as follows:

Hn : an 6= 0 and an+1 = · · · = an̄ = 0 (C.3.2)

For a sinusoidal signal we can proceed similarly, after observing that for such a
signal the number of components nc is related to n as in (C.2.10), viz.

n = 3nc + 1 (C.3.3)

Hence, for a sinusoidal signal with amplitudes {αk} we can consider the following
hypotheses:

Hnc : αk 6= 0 for k = 1, . . . , nc, and αk = 0 for k = nc + 1, . . . , n̄c (C.3.4)

for nc ∈ [1, n̄c] (with the corresponding “model order” n being given by (C.3.3)).

Remark: The hypotheses {Hn} can be either nested or non-nested. We say that
H1 and H2 are nested whenever the model corresponding to H1 can be obtained
as a special case of that associated with H2. To give an example, the following
hypotheses

H1 : the signal is a first-order AR process

H2 : the signal is a second-order AR process

are nested, whereas the above H1 and

H3 : the signal consists of one sinusoid in noise

are non-nested. �

Let
pn(y|Hn) = the pdf of y under Hn (C.3.5)

Whenever we want to emphasize the possible dependence of the pdf in (C.3.5) on
the parameter vector of the model corresponding to Hn, we write:

pn(y, θ
n) , pn(y|Hn) (C.3.6)

Assuming that (C.3.5) is available, along with the a priori probability of Hn,
pn(Hn), we can write the conditional probability of Hn, given y, as:

pn(Hn|y) =
pn(y|Hn)pn(Hn)

p(y)
(C.3.7)
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The maximum a posteriori probability (MAP) rule selects the order n (or the
hypothesis Hn) that maximizes (C.3.7). As the denominator in (C.3.7) does not
depend on n, the MAP rule is given by:

max
n∈[1,n̄]

pn(y|Hn)pn(Hn) (C.3.8)

Most typically, the hypotheses {Hn} are a priori equiprobable, i.e.,

pn(Hn) =
1

n̄
, n = 1, . . . , n̄ (C.3.9)

in which case the MAP rule reduces to:

max
n∈[1,n̄]

pn(y|Hn) (C.3.10)

Next, we define the average (or total) probability of correct detection as

Pcd = Pr{[(decide H1) ∩ (H1 =true)] ∪ · · · ∪ [(decide Hn̄) ∩ (Hn̄ =true)]} (C.3.11)

The attribute “average” that has been attached to Pcd is motivated by the fact
that (C.3.11) gives the probability of correct detection “averaged” over all possible
hypotheses (as opposed, for example, to only considering the probability of correctly
detecting that the model order is 2 (let us say), which is Pr{decide H2|H2}).

Remark: Regarding the terminology, note that the determination of a real-valued
parameter from the available data is called “estimation,” whereas it is usually called
“detection” for an integer-valued parameter, such as a model order. �

In the following we prove that the MAP rule is optimal in the sense of max-
imizing Pcd. To do so, consider a generic rule for selecting n, or, equivalently, for
testing the hypotheses {Hn} against each other. Such a rule will implicitly or ex-
plicitly partition the observation space, RN , into n̄ sets {Sn}n̄n=1, which are such
that:

We decide Hn if and only if y ∈ Sn (C.3.12)

Making use of (C.3.12) along with the fact that the hypotheses {Hn} are mutually
exclusive, we can write Pcd in (C.3.11) as:

Pcd =

n̄∑

n=1

Pr{(decide Hn) ∩ (Hn =true)}

=

n̄∑

n=1

Pr{(decide Hn)|Hn} Pr{Hn}

=

n̄∑

n=1

∫

Sn

pn(y|Hn)pn(Hn) dy

=

∫

RN

[
n̄∑

n=1

In(y)pn(y|Hn)pn(Hn)

]

dy

(C.3.13)
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where In(y) is the so-called indicator function given by:

In(y) =

{

1, if y ∈ Sn

0, otherwise
(C.3.14)

Next, observe that for any given data vector, y, one and only one indicator function
can be equal to one (as the sets Sn do not overlap and their union is RN ). This
observation along with the expression (C.3.13) for Pcd imply that the MAP rule
in (C.3.8) maximizes Pcd, as stated. Note that the sets {Sn} corresponding to the
MAP rule are implicitly defined via (C.3.8); however, {Sn} are of no real interest in
the proof, as both they and the indicator functions are introduced only to simplify
the above proof. For more details on the topic of this subsection, we refer the reader
to [Scharf 1991; Van Trees 2002].

C.3.2 Kullback-Leibler Information

Let p0(y) denote the true pdf of the observed data vector y, and let p̂(y) denote the
pdf of a generic model of the data. The “discrepancy” between p0(y) and p̂(y) can
be measured using the Kullback-Leibler (KL) information or discrepancy function
(see [Kullback and Leibler 1951]):

D(p0, p̂) =

∫

p0(y) ln

[
p0(y)

p̂(y)

]

dy (C.3.15)

To simplify the notation, we omit the region of integration when it is the entire
space. Letting E0{·} denote the expectation with respect to the true pdf, p0(y), we
can rewrite (C.3.15) as:

D(p0, p̂) = E0

{

ln

[
p0(y)

p̂(y)

]}

= E0{ln p0(y)} − E0{ln p̂(y)} (C.3.16)

Next, we prove that (C.3.15) possesses some properties of a suitable discrepancy
function, viz.

D(p0, p̂) ≥ 0

D(p0, p̂) = 0 if and only if p0(y) = p̂(y)
(C.3.17)

To verify (C.3.17) we use the fact shown in Complement 6.5.8 that

− lnλ ≥ 1 − λ for any λ > 0 (C.3.18)

and

− lnλ = 1 − λ if and only if λ = 1 (C.3.19)

Hence, letting λ(y) = p̂(y)/p0(y), we have that:

D(p0, p̂) =

∫

p0(y) [− lnλ(y)] dy

≥
∫

p0(y) [1 − λ(y)] dy =

∫

p0(y)

[

1 − p̂(y)

p0(y)

]

dy = 0
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where the equality holds if and only if λ(y) ≡ 1, i.e. p̂(y) ≡ p0(y).

Remark: The inequality in (C.3.17) also follows from Jensen’s inequality (see equa-
tion (4.9.36) in Complement 4.9.5) and the concavity of the function ln(·):

D(p0, p̂) = −E0

{

ln

[
p̂(y)

p0(y)

]}

≥ − ln

[

E0

{
p̂(y)

p0(y)

}]

= − ln

[∫
p̂(y)

p0(y)
p0(y) dy

]

= − ln(1) = 0

�

The KL discrepancy function can be viewed as quantifying the “loss of in-
formation” induced by the use of p̂(y) in lieu of p0(y). For this reason, D(p0, p̂)
is sometimes called an information function, and the order selection rules derived
from it are called information criteria (see Sections C.4–C.6).

C.3.3 Outlook: Theoretical and Practical Perspectives

Neither the MAP rule nor the KL information can be directly used for order se-
lection because neither the pdfs of the data vector under the various hypotheses
nor the true data pdf are available in any of the parametric spectral analysis prob-
lems discussed in the text. A possible way of using the MAP approach for order
estimation consists of assuming an a priori pdf for the unknown parameter vector,
θn, and integrating θn out of pn(y, θ

n) to obtain pn(y|Hn). This Bayesian-type
approach will be discussed in Section C.7. Regarding the KL approach, a natural
way of using it for order selection consists of using an estimate, D̂(p0, p̂), in lieu of
the unavailable D(p0, p̂) (for a suitably chosen model pdf, p̂(y)), and determining
the model order by minimizing D̂(p0, p̂). This KL-based approach will be discussed
in Sections C.4–C.6.

The derivations of all model order selection rules in the sections that follow
rely on the assumption that one of the hypotheses {Hn} is true. As this assumption
is unlikely to hold in applications with real-life data, the reader may justifiably
wonder whether an order selection rule derived under such an assumption has any
practical value. To address this concern, we remark that good parameter estimation
methods (such as the MLM), derived under rather strict modeling assumptions,
perform quite well in applications where the assumptions made are rarely satisfied
exactly. Similarly, order selection rules based on sound theoretical principles (such
as the ML, KL, and MAP principles used in this text) are likely to perform well in
applications despite the fact that some of the assumptions made when deriving them
do not hold exactly. While the precise behavior of order selection rules (such as
those presented in the sections to follow) in various mismodeling scenarios is not well
understood, extensive simulation results (see, e.g., [McQuarrie and Tsai 1998;
Linhart and Zucchini 1986; Burnham and Anderson 2002]) lend support to
the above claim.
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C.4 DIRECT KULLBACK-LEIBLER (KL) APPROACH: NO-NAME RULE

The model-dependent part of the Kullback-Leibler (KL) information, (C.3.16), is
given by

−E0{ln p̂(y)} (C.4.1)

where p̂(y) is the pdf or likelihood of the model (to simplify the notation, we omit the
index n of p̂(y); we will reinstate the index n later on, when needed). Minimization
of (C.4.1) with respect to the model order is equivalent to maximization of the
function:

I(p0, p̂) , E0{ln p̂(y)} (C.4.2)

which is sometimes called the relative KL information. The ideal choice for p̂(y) in
(C.4.2) would be the model likelihood, pn(y|Hn) = pn(y, θ

n). However, the model
likelihood function is not available, and hence this choice is not possible. Instead,
we might think of using

p̂(y) = p(y, θ̂) (C.4.3)

in (C.4.2), which would give

I
(

p0, p(y, θ̂)
)

= E0

{

ln p(y, θ̂)
}

(C.4.4)

Because the true pdf of the data vector is unknown, we cannot evaluate the ex-
pectation in (C.4.4). Apparently, what we could easily do is to use the following

unbiased estimate of I
(

p0, p(y, θ̂)
)

, instead of (C.4.4) itself,

Î = ln p(y, θ̂) (C.4.5)

However, the order selection rule that maximizes (C.4.5) does not have satisfactory
properties. This is especially true for nested models, in the case of which the order
selection rule based on the maximization of (C.4.5) fails completely : indeed, for
nested models this rule will always choose the maximum possible order, n̄, owing
to the fact that ln pn(y, θ̂

n) monotonically increases with increasing n.
A better idea consists of approximating the unavailable log-pdf of the model,

ln pn(y, θ
n), by a second-order Taylor series expansion around θ̂n, and using the

so-obtained approximation to define ln p̂(y) in (C.4.2):

ln pn(y, θ
n) ' ln pn(y, θ̂

n) + (θn − θ̂n)T
[
∂ ln pn(y, θ

n)

∂θn

∣
∣
∣
∣
θn=θ̂n

]

+
1

2
(θn − θ̂n)T

[
∂2 ln pn(y, θ

n)

(∂θn) (∂θn)T

∣
∣
∣
∣
θn=θ̂n

]

(θn − θ̂n) , ln p̂n(y)

(C.4.6)

Because θ̂n is the maximizer of ln pn(y, θ
n), the second term in (C.4.6) is equal to

zero. Hence, we can write (see also (C.2.21)):

ln p̂n(y) ' ln pn(y, θ̂
n) − 1

2
(θn − θ̂n)TJ(θn − θ̂n) (C.4.7)

According to (C.2.11),

E0

{

(θn − θ̂n)TJ(θn − θ̂n)
}

= tr
[

JE0

{

(θn − θ̂n)(θn − θ̂n)T
}]

= tr[In] = n

(C.4.8)
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which means that, for the choice of p̂n(y) in (C.4.7), we have

I = E0

{

ln pn(y, θ̂
n) − n

2

}

(C.4.9)

An unbiased estimate of the above relative KL information is given by

ln pn(y, θ̂
n) − n

2
(C.4.10)

The corresponding order selection rule maximizes (C.4.10), or, equivalently, mini-
mizes

NN(n) = −2 ln pn(y, θ̂
n) + n (C.4.11)

with respect to model order n. This no-name (NN) rule can be shown to perform
better than that based on (C.4.5), but worse than the rules presented in the next
sections. Essentially, the problem with (C.4.11) is that it tends to overfit (i.e.,
to select model orders larger than the “true” order). To understand intuitively
how this happens, note that the first term in (C.4.11) decreases with increasing n
(for nested models), whereas the second term increases. Hence, the second term
in (C.4.11) penalizes overfitting ; however, it turns out that it does not penalize
quite enough. The rules presented in the following sections have a form similar
to (C.4.11), but with a larger penalty term, and they do have better properties
than (C.4.11). Despite this fact, we have chosen to present (C.4.11) briefly in this
section for two reasons: (i) the discussion here has revealed the failure of using

maxn ln pn(y, θ̂
n) as an order selection rule, and has shown that it is in effect quite

easy to obtain rules with better properties; and (ii) this section has laid groundwork
for the derivation of better order selection rules based on the KL approach in the
next two sections.

To close this section, we motivate the multiplication by -2 in going from
(C.4.10) to (C.4.11). The reason for preferring (C.4.11) to (C.4.10) is that for the
fairly common NLS model in (C.2.2) and the associated Gaussian likelihood in

(C.2.3), −2 ln pn(y, θ̂
n) takes on the following convenient form:

−2 ln pn(y, θ̂
n) = N ln σ̂2

n + constant (C.4.12)

(see (C.2.5)–(C.2.7)). Hence, in such a case we can replace −2 ln pn(y, θ̂
n) in

(C.4.11) by the scaled logarithm of the residual variance, N ln σ̂2
n. This remark

also applies to the order selection rules presented in the following sections, which
are written in a form similar to (C.4.11).

C.5 CROSS-VALIDATORY KL APPROACH: THE AIC RULE

As explained in the previous section, a possible approach to model order selection
consists of minimizing the KL discrepancy between the “true” pdf of the data and
the pdf (or likelihood) of the model, or equivalently maximizing the relative KL
information (see (C.4.2)):

I(p0, p̂) = E0{ln p̂(y)} (C.5.1)

When using this approach, the first (and, likely the main) hurdle that we have to
overcome is the choice of the model likelihood, p̂(y). As discussed in the previous
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section, we would ideally like to use the true pdf of the model as p̂(y) in (C.5.1),
i.e. p̂(y) = pn(y, θ

n), but this is not possible since pn(y, θ
n) is unknown. Hence, we

have to choose p̂(y) in a different way. This choice is important, as it eventually
determines the model order selection rule that we will obtain. The other issue we
should consider when using the approach based on (C.5.1) is that the expectation
in (C.5.1) cannot be evaluated because the true pdf of the data is unknown. Con-
sequently, we will have to use an estimate, Î, in lieu of the unavailable I(p0, p̂) in
(C.5.1).

Let x denote a fictitious data vector with the same size, N , and the same pdf
as y, but which is independent of y. Also, let θ̂x denote the ML estimate of the
model parameter vector that would be obtained from x if x were available (we omit

the superindex n of θ̂x as often as possible, to simplify notation). In this section
we will consider the following choice of the model’s pdf:

ln p̂(y) = Ex

{

ln p(y, θ̂x)
}

(C.5.2)

which, when inserted in (C.5.1), yields:

I = Ey

{

Ex

{

ln p(y, θ̂x)
}}

(C.5.3)

Hereafter, Ex{·} and Ey{·} denote the expectation with respect to the pdf of x
and y, respectively. The above choice of p̂(y), which was introduced in [Akaike

1974; Akaike 1978], has an interesting cross-validation interpretation: we use
the sample x for estimation and the independent sample y for validation of the
so-obtained model’s pdf. Note that the dependence of (C.5.3) on the fictitious
sample x is eliminated (as it should be, since x is unavailable) via the expectation
operation Ex{·}; see below for details.

An asymptotic second-order Taylor series expansion of ln p(y, θ̂x) around θ̂y,
similar to (C.4.6)–(C.4.7), yields:

ln p(y, θ̂x) ' ln p(y, θ̂y) + (θ̂x − θ̂y)
T

[

∂ ln p(y, θ)

∂θ

∣
∣
∣
∣
θ=θ̂y

]

+
1

2
(θ̂x − θ̂y)

T

[

∂2 ln p(y, θ)

∂θ ∂θT

∣
∣
∣
∣
θ=θ̂y

]

(θ̂x − θ̂y)

' ln p(y, θ̂y) − 1

2
(θ̂x − θ̂y)

TJy(θ̂x − θ̂y) (C.5.4)

where Jy is the J matrix, as defined in (C.2.20), associated with the data vector y.
Using the fact that x and y have the same pdf (which implies that Jy = Jx) along
with the fact that they are independent of each other, we can show that:

Ey

{

Ex

{

(θ̂x − θ̂y)
TJy(θ̂x − θ̂y)

}}

= Ey

{

Ex

{

tr

(

Jy

[

(θ̂x − θ) − (θ̂y − θ)
] [

(θ̂x − θ) − (θ̂y − θ)
]T
)}}

= tr
[
Jy
(
J−1
x + J−1

y

)]
= 2n (C.5.5)
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Inserting (C.5.5) in (C.5.4) yields the following asymptotic approximation of the
relative KL information in (C.5.3):

I ' Ey

{

ln pn(y, θ̂
n) − n

}

(C.5.6)

(where we have omitted the subindex y of θ̂ but reinstated the superindex n).
Evidently, (C.5.6) can be estimated in an unbiased manner by

ln pn(y, θ̂
n) − n (C.5.7)

Maximizing (C.5.7) with respect to n is equivalent to minimizing the following
function of n:

AIC = −2 ln pn(y, θ̂
n) + 2n (C.5.8)

where the acronym AIC stands for Akaike Information Criterion (the reasons for
multiplying (C.5.7) by -2 to get (C.5.8), and for the use of the word “information”
in the name given to (C.5.8) have been explained before, see the previous two
sections).

As an example, for the sinusoidal signal model with nc components (see Sec-
tion C.2), AIC takes on the following form (see (C.2.6)–(C.2.10)):

AIC = 2Ns ln σ̂2
nc

+ 2(3nc + 1) (C.5.9)

where Ns denotes the number of available complex-valued samples, {yc(t)}Ns
t=1, and

σ̂2
nc

=
1

Ns

Ns∑

t=1

∣
∣
∣
∣
∣
yc(t) −

nc∑

k=1

α̂ke
i(ω̂kt+ϕ̂k)

∣
∣
∣
∣
∣

2

(C.5.10)

Remark: AIC can also be obtained by using the following relative KL information
function, in lieu of (C.5.3),

I = Ey

{

Ex

{

ln p(x, θ̂y)
}}

(C.5.11)

Note that, in (C.5.11), x is used for validation and y for estimation. However, the
derivation of AIC from (C.5.11) is more complicated; such a derivation, which is
left as an exercise to the reader, will make use of two Taylor series expansions, and
the fact that Ex{ln p(x, θ)} = Ey{ln p(y, θ)}. �

The performance of AIC has been found to be satisfactory in many case studies
and applications to real-life data reported in the literature (see, e.g., [McQuarrie

and Tsai 1998; Linhart and Zucchini 1986; Burnham and Anderson 2002;
Sakamoto, Ishiguro, and Kitagawa 1986]). The performance of a model order
selection rule, such as AIC, can be measured in different ways, as explained in the
next two paragraphs.
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As a first possibility, we can consider a scenario in which the data generating
mechanism belongs to the class of models under test, and thus there is a true
order. In such a case, analytical or numerical studies can be used to determine
the probability with which the rule selects the true order. For AIC, it can be shown
that, under quite general conditions,

the probability of underfitting → 0 (C.5.12)

the probability of overfitting → constant > 0 (C.5.13)

as N → ∞ (see, e.g., [McQuarrie and Tsai 1998; Kashyap 1980]). We can see
from (C.5.13) that the behavior of AIC with respect to the probability of correct
detection is not entirely satisfactory. Interestingly, it is precisely this kind of be-
havior that appears to make AIC perform satisfactorily with respect to the other
possible type of performance measure, as explained below.

An alternative way of measuring the performance is to consider a more prac-
tical scenario in which the data generating mechanism is more complex than any of
the models under test, which is usually the case in practical applications. In such a
case we can use analytical or numerical studies to determine the performance of the
model picked by the rule as an approximation of the data generating mechanism:
for instance, we can consider the average distance between the estimated and true
spectral densities, or the average prediction error of the model. With respect to
such a performance measure, AIC performs well, partly because of its tendency to
select models with relatively large orders, which may be a good thing to do in a case
in which the data generating mechanism is more complex than the models used to
fit it.

The nonzero overfitting probability of AIC is due to the fact that the term
2n in (C.5.8) (that penalizes high-order models), while larger than the term n
that appears in the NN rule, is still too small. Extensive simulation studies (see,
e.g., [Bhansali and Downham 1977]) have empirically found that the following
Generalized Information Criterion (GIC):

GIC = −2 ln pn(y, θ̂
n) + νn (C.5.14)

may outperform AIC with respect to various performance measures if ν > 2. Specif-
ically, depending on the considered scenario as well as the value of N and the per-
formance measure, values of ν in the interval ν ∈ [2, 6] have been found to give the
best performance.

In the next section we show that GIC can be obtained as a natural theoretical
extension of AIC. Hence, the use of (C.5.14) with ν > 2 can be motivated on formal
grounds. However, the choice of a particular ν in GIC is a more difficult problem
that cannot be solved in the current KL framework (see the next section for details).
The different framework of Section C.7 appears to be necessary to arrive at a rule
having the form of (C.5.14) with a specific expression for ν.

We close this section with a brief discussion on another modification of the AIC
rule suggested in the literature (see, e.g., [Hurvich and Tsai 1993]). As explained
before, AIC is derived by maximizing an asymptotically unbiased estimate of the
relative KL information I in (C.5.3). Interestingly, for linear regression models
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(given by (C.2.2) where µ(γ) is a linear function of γ), the following corrected AIC
rule, AICc, can be shown to be an exactly unbiased estimate of I:

AICc = −2 ln pn(y, θ̂
n) +

2N

N − n− 1
n (C.5.15)

(see, e.g., [Hurvich and Tsai 1993; Cavanaugh 1997]). As N → ∞, AICc →
AIC (as expected). However, for finite values of N the penalty term of AICc is
larger than that of AIC. Consequently, in finite samples AICc has a smaller risk
of overfitting than AIC, and therefore we can say that AICc trades off a decrease
of the risk of overfitting (which is rather large for AIC) for an increase in the
risk of underfitting (which is quite small for AIC, and hence it can be slightly
increased without a significant deterioration of performance). With this fact in
mind, AICc can be used as an order selection rule for more general models than
just linear regressions, even though its motivation in the general case is pragmatic
rather than theoretical. For other finite-sample corrections of AIC we refer the
reader to [de Waele and Broersen 2003; Broersen 2000; Broersen 2002;
Seghouane, Bekara, and Fleury 2003].

C.6 GENERALIZED CROSS-VALIDATORY KL APPROACH: THE GIC RULE

In the cross-validatory approach of the previous section, the estimation sample x
has the same length as the validation sample y. In that approach, θ̂x (obtained

from x) is used to approximate the likelihood of the model via Ex{p(y, θ̂x)}. The
AIC rule so obtained has a nonzero probability of overfitting (even asymptotically).
Intuitively, the risk of overfitting will decrease if we let the length of the validation
sample be (much) larger than that of the estimation sample, i.e.

N , length(y) = ρ · length(x), ρ ≥ 1 (C.6.1)

Indeed, overfitting occurs when the model corresponding to θ̂x also fits the “noise”
in the sample x so that p(x, θ̂x) has a “much” larger value than the true pdf, p(x, θ).
Such a model may behave reasonably well on a short validation sample y, but not on
a long validation sample (in the latter case, p(y, θ̂x) will take on very small values).
The simple idea in (C.6.1) of letting the lengths of the validation and estimation
samples be different leads to a natural extension of AIC, as shown below.

A straightforward calculation shows that under (C.6.1) we have

Jy = ρJx (C.6.2)

(see, e.g., (C.2.19)). With this small difference, the calculations in the previous
section carry over to the present case and we obtain (see (C.5.4)–(C.5.5)):

I ' Ey

{

ln pn(y, θ̂y)
}

− 1

2
Ey

{

Ex

{

tr

(

Jy

[

(θ̂x − θ) − (θ̂y − θ)
] [

(θ̂x − θ) − (θ̂y − θ)
]T
)}}

= Ey

{

ln pn(y, θ̂y) − 1

2
tr
[
Jy
(
ρJ−1

y + J−1
y

)]
}

= Ey

{

ln pn(y, θ̂y) − 1 + ρ

2
n

}

(C.6.3)
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An unbiased estimate of the right side in (C.6.3) is given by:

ln p(y, θ̂y) − 1 + ρ

2
n (C.6.4)

The generalized information criterion (GIC) rule maximizes (C.6.4) or, equiva-
lently, minimizes

GIC = −2 ln pn(y, θ̂
n) + (1 + ρ)n (C.6.5)

As expected, (C.6.5) reduces to AIC for ρ = 1. Note also that, for a given y, the
order selected by (C.6.5) with ρ > 1 is always smaller than the order selected by
AIC (because the penalty term in (C.6.5) is larger than that in (C.5.8)); hence,
as predicted by the previous intuitive discussion, the risk of overfitting associated
with GIC is smaller than for AIC when ρ > 1.

On the negative side, there is no clear guideline for choosing ρ in (C.6.5).
The “optimal” value of ρ in the GIC rule has been empirically shown to depend
on the performance measure, the number of data samples, and the data generating
mechanism itself [McQuarrie and Tsai 1998; Bhansali and Downham 1977].
Consequently, ρ should be chosen as a function of all these factors, but there is no
clear rule as to how that should be done. The approach of the next section appears
to be more successful than the present approach in suggesting a specific choice for
ρ in (C.6.5). Indeed, as we will see, that approach leads to an order selection rule
of the GIC type but with a concrete expression for ρ as a function of N .

C.7 BAYESIAN APPROACH: THE BIC RULE

The order selection rule to be presented in this section can be obtained in two ways.
First, let us consider the KL framework of the previous sections. Therefore, our
goal is to maximize the relative KL information (see (C.5.1)):

I(p0, p̂) = E0{ln p̂(y)} (C.7.1)

The ideal choice of p̂(y) would be p̂(y) = pn(y, θ
n). However, this choice is not

possible since the likelihood of the model, pn(y, θ
n), is not available. Hence we

have to use a “surrogate likelihood” in lieu of pn(y, θ
n). Let us assume, as before,

that a fictitious sample x is used to make inferences about θ. The pdf of the
estimate, θ̂x, obtained from x can alternatively be viewed as an a priori pdf of
θ, and hence it will be denoted by p(θ) in what follows (once again, we omit the

superindex n of θ, θ̂, etc. to simplify the notation, whenever there is no risk for
confusion). Note that we do not constrain p(θ) to be Gaussian. We only assume
that:

p(θ) is flat around θ̂ (C.7.2)

where, as before, θ̂ denotes the ML estimate of the parameter vector obtained from
the available data sample, y. Furthermore, now we assume that the length of the
fictitious sample is a constant that does not depend on N , which implies that:

p(θ) is independent of N (C.7.3)
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As a consequence of assumption (C.7.3), the ratio between the lengths of the val-
idation sample and the (fictitious) estimation sample grows without bound as N
increases. According to the discussion in the previous section, this fact should lead
to an order selection rule with an asymptotically much larger penalty term than
that of AIC or GIC (with ρ =constant), and hence with a reduced risk of overfitting.

The scenario introduced above leads naturally to the following choice of sur-
rogate likelihood:

p̂(y) = Eθ {p(y, θ)} =

∫

p(y, θ)p(θ) dθ (C.7.4)

Remark: In the previous sections we used a surrogate likelihood given by (see
(C.5.2)):

ln p̂(y) = Ex

{

ln p(y, θ̂x)
}

(C.7.5)

However, we could have instead used a p̂(y) given by

p̂(y) = Eθ̂x

{

p(y, θ̂x)
}

(C.7.6)

The rule that would be obtained by using (C.7.6) can be shown to have the same
form as AIC and GIC, but with a (slightly) different penalty term. Note that the
choice of p̂(y) in (C.7.6) is similar to the choice in (C.7.4), with the difference that

for (C.7.6) the “a priori” pdf, p(θ̂x), depends on N . �

To obtain a simple asymptotic approximation of the integral in (C.7.4) we
make use of the asymptotic approximation of p(y, θ) given by (C.4.6)–(C.4.7):

p(y, θ) ' p(y, θ̂)e− 1
2 (θ̂−θ)T Ĵ(θ̂−θ) (C.7.7)

which holds for θ in the vicinity of θ̂. Inserting (C.7.7) in (C.7.4) and using the
assumption in (C.7.2) along with the fact that p(y, θ) is asymptotically much larger

at θ = θ̂ than at any θ 6= θ̂, we obtain:

p̂(y) ' p(y, θ̂)p(θ̂)

∫

e− 1
2 (θ̂−θ)T Ĵ(θ̂−θ) dθ

=
p(y, θ̂)p(θ̂)(2π)n/2

|Ĵ |1/2
∫

1

(2π)n/2|Ĵ−1|1/2
e− 1

2 (θ̂−θ)T Ĵ(θ̂−θ) dθ

︸ ︷︷ ︸

=1

=
p(y, θ̂)p(θ̂)(2π)n/2

|Ĵ |1/2
(C.7.8)

(see [Djurić 1998] and references therein for the exact conditions under which the
above approximation holds true). It follows from (C.7.1) and (C.7.8) that

Î = ln p(y, θ̂) + ln p(θ̂) +
n

2
ln 2π − 1

2
ln |Ĵ | (C.7.9)

is an asymptotically unbiased estimate of the relative KL information. Note, how-
ever, that (C.7.9) depends on the a priori pdf of θ, which has not been specified.
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To eliminate this dependence, we use the fact that |Ĵ | increases without bound as
N increases. Specifically, in most cases (but not in all; see below) we have that
(cf. (C.2.21)):

ln |Ĵ | = ln
∣
∣
∣N · 1

N Ĵ
∣
∣
∣ = n lnN + ln

∣
∣
∣

1
N Ĵ
∣
∣
∣ = n lnN + O(1) (C.7.10)

where we used the fact that |cJ | = cn|J | for a scalar c and an n × n matrix J .
Using (C.7.10) and the fact that p(θ) is independent of N (see (C.7.3)) yields the
following asymptotic approximation of the right side in (C.7.9):

Î ' ln pn(y, θ̂
n) − n

2
lnN (C.7.11)

The Bayesian information criterion (BIC) rule selects the order that maximizes
(C.7.11), or, equivalently, minimizes:

BIC = −2 ln pn(y, θ̂
n) + n lnN (C.7.12)

We remind the reader that (C.7.12) has been derived under the assumption that
(C.2.21) holds, which is not always true. As an example (see [Djurić 1998] for
more examples), consider once again the sinusoidal signal model with nc com-
ponents (as also considered in Section C.5), in the case of which we have that
(cf. (C.2.22)–(C.2.23)):

ln |Ĵ | = ln
∣
∣K−2

N

∣
∣+ ln

∣
∣
∣KN ĴKN

∣
∣
∣

= (2nc + 1) lnNs + 3nc lnNs + O(1)

= (5nc + 1) lnNs + O(1) (C.7.13)

Hence, in the case of sinusoidal signals, BIC takes on the form:

BIC = −2 ln pnc(y, θ̂
nc) + (5nc + 1) lnNs

= 2Ns ln σ̂2
nc

+ (5nc + 1) lnNs (C.7.14)

where σ̂2
nc

is as defined in (C.5.10), and Ns denotes the number of complex-valued
data samples.

The attribute Bayesian in the name of the rule in (C.7.12) or (C.7.14) is
motivated by the use of the a priori pdf, p(θ), in the rule derivation, which is
typical of a Bayesian approach. In fact, the BIC rule can be obtained using a full
Bayesian approach, as explained next.

To obtain the BIC rule in a Bayesian framework we assume that the parameter
vector θ is a random variable with a given a priori pdf denoted by p(θ). Owing to
this assumption on θ, we need to modify the previously used notation as follows:
p(y, θ) will now denote the joint pdf of y and θ, and p(y|θ) will denote the conditional
pdf of y given θ. Using this notation and Bayes’ rule we can write:

p(y|Hn) =

∫

pn(y, θ
n) dθn =

∫

pn(y|θn)pn(θn) dθn (C.7.15)
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The right side of (C.7.15) is identical to that of (C.7.4). It follows from this
observation and the analysis conducted in the first part of this section that, under
the assumptions (C.7.2) and (C.7.3) and asymptotically in N ,

ln p(y|Hn) ' ln pn(y, θ̂
n) − n

2
lnN = −1

2
BIC (C.7.16)

(see (C.7.12)). Hence, maximizing p(y|Hn) is asymptotically equivalent with min-
imizing BIC, independently of the prior p(θ) (as long as it satisfies (C.7.2) and
(C.7.3)). The rediscovery of BIC in the above Bayesian framework is important, as
it reveals the interesting fact that the BIC rule is asymptotically equivalent to the
optimal MAP rule (see Section C.3.1), and hence that the BIC rule can be expected
to maximize the total probability of correct detection, at least for sufficiently large
values of N .

The BIC rule has been proposed in [Schwarz 1978a; Kashyap 1982] among
others. In [Rissanen 1978; Rissanen 1982] the same type of rule has been ob-
tained by a different approach based on coding arguments and the minimum descrip-
tion length (MDL) principle. The fact that the BIC rule can be derived in several
different ways suggests that it may have a fundamental character. In particular,
it can be shown that, under the assumption that the data generating mechanism
belongs to the model class considered, the BIC rule is consistent ; that is,

For BIC: the probability of correct detection → 1 as N → ∞ (C.7.17)

(see, e.g., [Söderström and Stoica 1989; McQuarrie and Tsai 1998]). This
should be contrasted with the nonzero overfitting probability of AIC and GIC
(with ρ=constant), see (C.5.12)–(C.5.13). Note that the result in (C.7.17) is not
surprising in view of the asymptotic equivalence between the BIC rule and the
optimal MAP rule.

Finally, we note in passing that if we remove the condition in (C.7.3) that p(θ)

is independent of N , then the term ln p(θ̂) may no longer be eliminated from (C.7.9)
by letting N → ∞. Consequently, (C.7.9) would lead to a prior-dependent rule
which could be used to obtain any other rule described in this appendix by suitably
choosing the prior. While this line of argument can serve the theoretical purpose
of interpreting various order selection rules in a common Bayesian framework, it
appears to have little practical value, as it can hardly be used to derive new sound
order selection rules.

C.8 SUMMARY AND THE MULTIMODEL APPROACH

In the first part of this section we summarize the model order selection rules pre-
sented in the previous sections. Then we briefly discuss and motivate the multi-
model approach which, as the name suggests, is based on the idea of using more
than just one model for making inferences about the signal under study.

C.8.1 Summary

We begin with the observation that all the order selection rules discussed in this
appendix have a common form, i.e.:

−2 ln pn(y, θ̂
n) + η(n,N)n (C.8.1)
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but with different penalty coefficients η(n,N):

AIC : η(n,N) = 2

AICc : η(n,N) = 2
N

N − n− 1

GIC : η(n,N) = ν = ρ+ 1

BIC : η(n,N) = lnN

(C.8.2)

Before using any of these rules for order selection in a specific problem, we need to
carry out the following steps:

(i) Obtain an explicit expression for the term −2 ln pn(y, θ̂
n) in (C.8.1). This

requires the specification of the model structures to be tested as well as their
postulated likelihoods. An aspect that should receive some attention here
is the fact that the derivation of all previous rules assumed real-valued data
and parameters. Consequently, complex-valued data and parameters must
be converted to real-valued quantities in order to apply the results in this
appendix.

(ii) Count the number of unknown (real-valued) parameters in each model struc-
ture under consideration. This is easily done in the parametric spectral anal-
ysis problems in which we are interested.

(iii) Verify that the assumptions which have been made to derive the rules hold
true. Fortunately, most of the assumptions made are quite weak and hence
they will usually hold. Indeed, the models under test may be either nested or
non-nested, and they may even be only approximate descriptions of the data
generating mechanism. However, there are two particular assumptions, made
on the information matrix J , that do not always hold and hence they must
be checked. First, we assumed in all derivations that the inverse matrix, J−1,
exists, which is not always the case. Second, we made the assumption that
J is such that J/N = O(1). For some models this is not true; when it is not
true, a different normalization of J is required to make it tend to a constant
matrix as N → ∞ (this aspect is important for the BIC rule only).

We have used the sinusoidal signal model as an example throughout this appendix
to illustrate the steps above and the involved aspects.

Once the above aspects have been carefully considered, we can go on to use
one of the four rules in (C.8.1)–(C.8.2) for selecting the order in our estimation
problem. The question as to which rule should be used is not an easy one. In
general we can prefer AICc over AIC: indeed, there is empirical evidence that
AICc outperforms AIC in small samples (whereas in medium or large samples the
two rules are almost equivalent). We also tend to prefer BIC over AIC or AICc

on the grounds that BIC is an asymptotic approximation of the optimal MAP
rule. Regarding GIC, as mentioned in Sections C.5 and C.6, GIC with ν ∈ [2, 6]
(depending on the scenario under study) can outperform AIC and AICc. Hence, for
lack of a more precise guideline, we can think of using GIC with ν = 4, the value in
the middle of the above interval. In summary, then, a possible ranking of the four
rules discussed in this appendix is as follows (the first being considered the best):
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Figure C.1. Penalty coefficients of AIC, GIC with ν = 4 (ρ = 3), AICc (for
n = 5), and BIC, as functions of data length N .

• BIC

• GIC with ν = 4 (ρ = 3)

• AICc

• AIC

In Figure C.1 we show the penalty coefficients of the above rules, as functions
of N , to further illustrate the relationship between them.

C.8.2 The Multimodel Approach

We close this section with a brief discussion on a multimodel approach. Assume
that we have used our favorite information criterion, let us say XIC, and have
computed its values for the model orders under test:

XIC(n); n = 1, . . . , n̄ (C.8.3)

We can then pick the order that minimizes XIC(n) and hence end up using a single
model; this is the single model approach.

Alternatively, we can consider a multimodel approach. Specifically, let us pick
a M ∈ [1, n̄] (such as M = 3) and consider the model orders that give the M
smallest values of XIC(n), let us say n1, . . . , nM . From the derivations presented
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in the previous sections of this appendix, we can see that all information criteria
attempt to estimate twice the negative log-likelihood of the model:

−2 ln pn(y, θ
n) = −2 ln p(y|Hn) (C.8.4)

Hence, we can use
e− 1

2XIC(n) (C.8.5)

as an estimate of the likelihood of the model with order equal to n (to within a mul-
tiplicative constant). Consequently, instead of using just one model corresponding
to the order that minimizes XIC(n), we can think of considering a combined use
of the selected models (with orders n1, . . . , nM ) in which the contribution of each
model is proportional to its likelihood value, viz.:

e− 1
2XIC(nk)

∑M
j=1 e

− 1
2XIC(nj)

, k = 1, . . . ,M (C.8.6)

For more details on the multimodel approach, including guidelines for choosing
M , we refer the interested reader to [Burnham and Anderson 2002; Stoica,

Selén, and Li 2004].
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A P P E N D I X D

Answers to Selected Exercises

1.3(a): Z{h−k} = H(1/z); Z{gk} = H(z)H∗(1/z∗)

1.4(a):

φ(ω) =
σ2

(1 + a1e−iω)(1 + a∗
1e
iω)

[
1 + |b1|2 + b1e

−iω + b∗1e
iω
]

r(0) =
σ2

1 − |a1|2
{
|1 − b1a

∗
1|2 + |b1|2(1 − |a1|2)

}

r(k) =
σ2

1 − |a1|2
{(

1 − b1
a1

)

(1 − b∗1a1)

}

(−a1)
k, k ≥ 1

1.9(a): φy(ω) = σ2
1 |H1(ω)|2 + ρσ1σ2 [H1(ω)H∗

2 (ω) +H2(ω)H∗
1 (ω)] + σ2

2 |H2(ω)|2

2.3: An example is y(t) = {1, 1.1, 1}, whose unbiased ACS estimate is r̂(k) =

{1.07, 1.1, 1}, giving φ̂(ω) = 1.07 + 2.2 cos(ω) + 2 cos(2ω).

2.4(b): var{r̂(k)} = σ4α2(k)(N − k) [1 + δk,0]

2.9:

(a) E {Y (ωk)Y
∗(ωr)} =

σ2

N

N−1∑

t=0

ei(ωr−ωk)t =

{
σ2 k = r
0 k 6= r

(c) E
{

φ̂(ω)
}

= σ2 = φ(ω), so φ̂(ω) is an unbiased estimate.

3.2: Decompose the ARMA system as x(t) = 1
A(z)e(t) and y(t) = B(z)x(t).

Then {x(t)} is an AR(n) process. To find {rx(k)} from {σ2, a1 . . . an}, write the
Yule–Walker equations as:








1 0

a1
. . .

...
. . .

an . . . a1 1
















rx(0)
rx(1)

...
rx(n)








+









0 a1 . . . an
...

... 0
... an 0

...
0 0 . . . 0
















r∗
x(0)
r∗
x(1)
...

r∗
x(n)








=








σ2

0
...
0








or

A1rx +A2r
c
x =

[
σ2

0

]

which can be solved for {rx(m)}nm=0. Then find rx(k) for k > n from equation
(3.3.4) and rx(k) for k < 0 from r∗

x(−k). Finally,

ry(k) =

m∑

j=0

m∑

p=0

rx(k + p− j) bjb
∗
p

399
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3.4: σ2
b = E

{
|eb(t)|2

}
= [1 θTb ]Rn+1

[
1
θcb

]

= [1 θ∗
b ]R

c
n+1

[
1
θb

]

giving θb = θf and σ2
b = σ2

f .

3.5(a):

RT2m+1















cm
...
c1
1
d1

...
dm















=















0
...
0
σ2
s

0
...
0















3.14: c` =
∑n
i=0 air̃(` − i) for 0 ≤ ` ≤ p, where r̃(k) = r(k) for k ≥ 1 ,

r̃(0) = r(0)/2, and r̃(k) = 0 for k < 0.

3.15(b): First solve for b1, . . . , bm from








cn cn−1 · · · cn−m+1

cn+1 cn · · · cn−m+2

...
...

. . .
...

cn+m−1 cn+m−2 . . . cn















b1
b2
...
bm








= −








cn+1

cn+2

...
cn+m








Then a1, . . . , an can be obtained from ak = ck +
∑m
i=1 bick−i.

4.2:
(a) E {x(t)} = 0; rx(k) = (α2 + σ2

α)eiω0k

(b) Let p(ϕ) =
∑∞
k=−∞ cke

−ikϕ be the Fourier series of p(ϕ) for ϕ ∈ [−π, π]. Then

E {x(t)} = αeiω0t

2π c1. Thus, E {x(t)} = 0 if and only if either α = 0 or c1 = 0. In
this case, rx(k) is the same as in part (a).

5.8: The height of the peak of the (unnormalized) Capon spectrum is

1/a∗(ω)R−1a(ω)|ω=ω0 =
mα2 + σ2

m
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Ishii, R. and K. Furukawa (1986). “The uncertainty principle in discrete signals,” IEEE
Transactions on Circuits and Systems 33 (10), 1032–1034.

Jakobsson, A., L. Marple, and P. Stoica (2000). “Computationally efficient two-
dimensional Capon spectrum analysis,” IEEE Transactions on Signal Processing 48 (9),
2651–2661.

Jakobsson, A. and P. Stoica (2000). “Combining Capon and APES for estimation of
spectral lines,” Circuits, Systems, and Signal Processing 19, 159–169.

Janssen, P. and P. Stoica (1988). “On the expectation of the product of four matrix-
valued Gaussian random variables,” IEEE Transactions on Automatic Control AC–33 (9),
867–870.

Jansson, M. and P. Stoica (1999). “Forward-only and forward-backward sample covari-
ances — a comparative study,” Signal Processing 77 (3), 235–245.

Jenkins, G. M. and D. G. Watts (1968). Spectral Analysis and its Applications. San
Francisco, CA: Holden-Day.

Johnson, D. H. and D. E. Dudgeon (1992). Array Signal Processing — Concepts and
Methods. Englewood Cliffs, NJ: Prentice Hall.

Kailath, T. (1980). Linear Systems. Englewood Cliffs, NJ: Prentice Hall.

Kashyap, R. L. (1980). “Inconsistency of the AIC rule for estimating the order of autore-
gressive models,” IEEE Transactions on Automatic Control 25 (5), 996–998.



“sm2”
2004/2/22
page 406

i

i

i

i

i

i

i

i

406 BIBLIOGRAPHY

Kashyap, R. L. (1982). “Optimal choice of AR and MA parts in autoregressive moving
average models,” IEEE Transactions on Pattern Analysis and Machine Intelligence 4 (2),
99–104.

Kay, S. M. (1988). Modern Spectral Estimation, Theory and Application. Englewood
Cliffs, NJ: Prentice Hall.

Kesler, S. B. (Ed.) (1986). Modern Spectrum Analysis II. New York: IEEE Press.

Kinkel, J. F., J. Perl, L. Scharf, and A. Stubberud (1979). “A note on covariance–invariant
digital filter design and autoregressive–moving average spectral estimation,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing ASSP–27 (2), 200–202.

Koopmans, L. H. (1974). The Spectral Analysis of Time Series. New York: Academic
Press.

Kullback, S. and R. A. Leibler (1951). “On information and sufficiency,” Annals of Math-
ematical Statistics 22, 79–86.

Kumaresan, R. (1983). “On the zeroes of the linear prediction-error filter for deterministic
signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP–31 (1),
217–220.

Kumaresan, R., L. L. Scharf, and A. K. Shaw (1986). “An algortihm for pole-zero model-
ing and spectral analysis,” IEEE Transactions on Acoustics, Speech, and Signal Process-
ing ASSP–34 (6), 637–640.

Kumaresan, R. and D. W. Tufts (1983). “Estimating the angles of arrival of multiple plane
waves,” IEEE Transactions on Aerospace and Electronic Systems AES–19, 134–139.

Kung, S. Y., K. S. Arun, and D. V. B. Rao (1983). “State-space and singular-value
decomposition-based approximation methods for the harmonic retrieval problem,” J. Op-
tical Soc. Amer. 73, 1799–1811.

Lacoss, R. T. (1971). “Data adaptive spectral analysis methods,” Geophysics 36, 134–148.
(reprinted in [Childers 1978]).

Lagunas, M., M. Santamaria, A. Gasull, and A. Moreno (1986). “Maximum likelihood
filters in spectral estimation problems,” Signal Processing 10 (1), 7–18.

Larsson, E., J. Li, and P. Stoica (2003). “High-resolution nonparametric spectral analysis:
Theory and applications,” in Y. Hua, A. Gershman, and Q. Cheng (Eds.), High-Resolution
and Robust Signal Processing. New York: Marcel Dekker.

Lee, J. and D. C. Munson Jr. (1995). “Effectiveness of spatially-variant apodization,” in
Proceedings of the International Conference on Image Processing, Volume 1, pp. 147–150.

Levinson, N. (1947). “The Wiener RMS (root mean square) criterion in filter design and
prediction,” Journal of Math. and Physics 25, 261–278.

Li, J. and P. Stoica (1996a). “An adaptive filtering approach to spectral estimation and
SAR imaging,” IEEE Transactions on Signal Processing 44 (6), 1469–1484.

Li, J. and P. Stoica (1996b). “Efficient mixed-spectrum estimation with applications to
target feature extraction,” IEEE Transactions on Signal Processing 44 (2), 281–295.

Li, J., P. Stoica, and Z. Wang (2003). “On robust Capon beamforming and diagonal
loading,” IEEE Transactions on Signal Processing 51 (7), 1702–1715.



“sm2”
2004/2/22
page 407

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 407

Li, J., P. Stoica, and Z. Wang (2004). “Doubly constrained robust Capon beamformer,”
IEEE Transactions on Signal Processing 52.

Linhart, H. and W. Zucchini (1986). Model Selection. New York: Wiley.

Ljung, L. (1987). System Identification — Theory for the User. Englewood Cliffs, NJ:
Prentice Hall.

Markel, J. D. (1971). “FFT pruning,” IEEE Transactions on Audio and Electroacous-
tics AU–19 (4), 305–311.

Marple, L. (1987). Digital Spectral Analysis with Applications. Englewood Cliffs, NJ:
Prentice Hall.

Marzetta, T. L. (1983). “A new interpretation for Capon’s maximum likelihood method
of frequency-wavenumber spectrum estimation,” IEEE Transactions on Acoustics, Speech,
and Signal Processing ASSP–31 (2), 445–449.

Mayne, D. Q. and F. Firoozan (1982). “Linear identification of ARMA processes,” Auto-
matica 18, 461–466.

McCloud, M., L. Scharf, and C. Mullis (1999). “Lag-windowing and multiple-data-
windowing are roughly equivalent for smooth spectrum estimation,” IEEE Transactions
on Signal Processing 47 (3), 839–843.

McKelvey, T. and M. Viberg (2001). “A robust frequency domain subspace algorithm for
multi-component harmonic retrieval,” in Proceedings of the 35th Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, pp. 68–72.

McLachlan, G. J. and T. Krishnan (1997). The EM Algorithm and Extensions. New York:
Wiley.

McQuarrie, A. D. R. and C.-L. Tsai (1998). Regression and Time Series Model Selection.
Singapore: World Scientific Publishing.

Moon, T. K. (1996). “The expectation-maximization algorithm,” IEEE Signal Processing
Magazine 13, 47–60.

Moses, R. and A. A. Beex (1986). “A comparison of numerator estimators for ARMA
spectra,” IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP–34 (6),
1668–1671.
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Akaike information criterion, 387–391
corrected, 391
generalized, 390–392

all-pole signals, 90
amplitude and phase estimation (APES)

method, 244–247, 291
for gapped data, 247–250
for spatial spectra, 305–312
for two–dimensional signals, 254–256

amplitude spectrum, 241, 246
Capon estimates of, 242–244

angle of arrival, 264
aperture, 263
APES method, see amplitude and phase

estimation method
apodization, 59–64
AR process, see autoregressive process
AR spectral estimation, see autoregres-

sive spectral estimation
ARMA process, see autoregressive mov-

ing average process
array

aperture of, 263
beamforming resolution, 320
beamspace processing, 323
beamwidth, 278, 321
broadband signals in, 269
coherent signals in, 281, 325
isotropic, 322
L–shaped, 321
narrowband, 269, 271
planar, 263
uniform linear, 271–273

array model, 265–273
autocorrelation function, 117
autocorrelation method, 93
autocovariance sequence

computation using FFT, 55–56
computer generation of, 18
definition of, 5
estimates, 23
estimation variance, 72
extensions, 118–119, 174
for signals with unknown means, 71
for sinusoidal signals, 145, 146
generation from ARMA parameters,

130
mean square convergence of, 170
of ARMA processes, 88–89
properties, 5–6

autoregressive (AR) process
covariance structure, 88
definition of, 88
stability of, 133

autoregressive moving average (ARMA)
process

covariance structure, 88
definition of, 88
multivariate, 109–117
state–space equations, 109

autoregressive moving average spectral
estimation, 103–117

least squares method, 106–108
modified Yule–Walker method, 103–

106
multivariate, 113–117

autoregressive spectral estimation, 90–
94

autocorrelation method, 93
Burg method, 119–122
covariance method, 90, 93
least squares method, 91–94
postwindow method, 93
prewindow method, 93
Yule–Walker method, 90

backward prediction, 117, 131
bandpass signal, 266
bandwidth

approximate formula, 77
definition of, 67
equivalent, 40, 54, 69, 224

Bartlett method, 49–50
Bartlett window, 29, 42
baseband signal, 266
basis

linearly parameterized, 193–198
null space, 193–198

Bayesian information criterion, 392–395
beamforming, 276–279, 288–290
beamforming method, 294

and CLEAN, 312–317

420



“sm2”
2004/2/22
page 421

i

i

i

i

i

i

i

i

Index 421

beamspace processing, 323
beamwidth, 278, 321, 322
BIC rule, 392–395
Blackman window, 42
Blackman–Tukey method, 37–39

computation using FFT, 57–59
nonnegativeness property, 39

block–Hankel matrix, 113
broadband signal, 269
Burg method, 119–122

CAPES method, 247
Capon method, 222–231, 290–294

as a matched filter, 258
comparison with APES, 246–247
constrained, 298–305
derivation of, 222–227, 258
for damped sinusoids, 241–244
for DOA estimation, 279–280
for two–dimensional signals, 254–256
relationship to AR methods, 228–

231, 235–238
robust, 294–305
spectrum of, 258
stochastic signal, 290–291

Carathéodory parameterization, 299
carrier frequency, 265
Cauchy–Schwartz inequality, 258, 279, 301,

304, 316, 344–345
for functions, 345
for vectors, 344

centrosymmetric matrix, 169, 318
Chebyshev inequality, 201
Chebyshev window, 41
chi-squared distribution, 176
Cholesky factor, 128, 342
circular Gaussian distribution, 76, 317,

361, 367, 368
circular white noise, 32, 36
CLEAN algorithm, 312–317
coherency spectrum, 64–66
coherent signals, 281, 325
column space, 328
complex demodulation, 268
complex envelope, 268
complex modulation, 267
complex white noise, 32
concave function, 183
condition number, 202

and AR parameter estimation, 105
and forward–backward approach, 201

definition of, 349
confidence interval, 75
consistent estimator, 355
consistent linear equations, 347–350
constant-modulus signal, 288–289
constrained Capon method, 298–305
continuous spectra, 86
convergence

in probability, 201
mean square, 170, 172, 201
uniform, 259

corrected Akaike information criterion,
391

correlation coefficient, 13
correlogram method, 23–25
covariance

definition of, 5
matrix, 5

covariance fitting, 291–294, 315
using CLEAN, 315–317

covariance fitting criterion, 126
covariance function, see autocovariance

sequence
covariance matrix

diagonalization of, 133
eigenvalue decomposition of, 297, 302
persymmetric, 169, 318
properties of, 5

covariance method, 93
covariance sequence, see autocovariance

sequence
Cramér–Rao bound, 355–376, 379

for Gaussian distributions, 359–364
for general distributions, 358–359
for line spectra, 364–365
for rational spectra, 365–367
for spatial spectra, 367–376
for unknown model order, 357

cross covariance sequence, 18
cross–spectrum, 12, 18, 64
cyclic minimization, 180–181
cyclic minimizer, 249

damped sinusoidal signals, 193–198, 241–
244

Daniell method, 52–54
delay operator, 10
Delsarte–Genin Algorithm, 97–101
demodulation, 268
diagonal loading, 299–305
Dirac impulse, 146
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422 Index

direction of arrival, 264

direction of arrival estimation, 263–286

beamforming, 276–279

Capon method, 279–280

ESPRIT method, 285–286

Min–Norm method, 285

MUSIC method, 284

nonlinear least squares method, 281

nonparametric methods, 273–280

parametric methods, 281–286

Pisarenko method, 284

Yule–Walker method, 283

direction vector uncertainty, 294–305

Dirichlet kernel, 30

discrete Fourier transform (DFT), 25

linear transformation interpretation,
73

discrete signals, 2

discrete spectrum, 146

discrete–time Fourier transform (DTFT),
3

discrete–time system, 10

finite impulse response (FIR), 17

frequency response, 210

minimum phase, 88, 129

transfer function, 210

displacement operator, 123

displacement rank, 125

Doppler frequency, 320

Durbin’s method, 102, 108

efficiency, statistical, 357

eigenvalue, 331

of a matrix product, 333

eigenvalue decomposition, 297, 302, 330–
335

eigenvector, 331

EM algorithm, 179–185

energy spectral density, 3

Capon estimates of, 242–244

of damped sinusoids, 241

ergodic, 170

ESPRIT method

and min–norm, 202

combined with HOYW, 200

for DOA estimation, 285–286

for frequency estimation, 166–167

frequency selective, 185–193

statistical accuracy of, 167

estimate

consistent, 86, 135, 147, 152, 176,
260, 279, 355

statistically efficient, 357
unbiased, 355

Euclidean vector norm, 338
exchange matrix, 346
Expectation-Maximization algorithm, 179–

185
expected value, 5
exponentially damped sinusoids, 241–244
extended Rayleigh quotient, 335

far field, 263
fast Fourier transform (FFT), 26–27

for two–sided sequences, 19
pruning in, 28
radix–two, 26–27
two–dimensional, 252, 256
zero padding and, 27

Fejer kernel, 29
filter bank methods, 207–222

and periodogram, 210–211, 231–235
APES, 244–247, 291
for gapped data, 247–250
for two–dimensional signals, 253–254
refined, 212–222
spatial APES, 305–312

Fisher information matrix, 359
flatness, spectral, 132
forward prediction, 117, 130
forward–backward approach, 168–170
frequency, 2, 3, 8

angular, 3
conversion, 3
resolution, 31
scaling, 14
spatial, 272

frequency band, 185
frequency estimation, 146–170

ESPRIT method, 166–167
forward–backward approach, 168–170
frequency-selective ESPRIT, 185–193
FRES-ESPRIT, 185–193
high–order Yule–Walker method, 155–

159
Min–Norm method, 164–166
modified MUSIC method, 163
MUSIC method, 159–162
nonlinear least squares, 151–155
Pisarenko method, 162
spurious estimates, 163
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Index 423

two–dimensional, 193–198
frequency-selective method, 185–193
Frobenius norm, 339, 348, 350

GAPES method, 247–250
gapped data, 247–250
Gaussian distribution

circular, 361, 367, 368
Gaussian random variable

circular, 76
Cramér–Rao bound for, 359–364
moment property, 33

generalized Akaike information criterion,
390

generalized inverse, 349
Gohberg–Semencul formula, 122–125
grating lobes, 322

Hadamard matrix product, 342, 372
Hamming window, 42
Hankel matrix, 346

block, 113
Hanning window, 42
Heisenberg uncertainty principle, 67
Hermitian matrix, 330, 333–335
Hermitian square root, 342
hypothesis testing, 175

idempotent, 282, 339
impulse response, 19, 68, 210, 213, 214,

216, 265
in–phase component, 268
inconsistent linear equations, 350–353
information matrix, 359
interior point methods, 129
inverse covariances, 238

Jensen’s inequality, 183, 375

Kaiser window, 41, 42
kernel, 328
Kronecker delta, 4
Kronecker product, 253, 254
Kullback-Leibler information metric, 384–

385

Lagrange multiplier, 296–297, 302
leading submatrix, 341
least squares, 18, 104, 164, 290, 291, 307,

315
spectral approximation, 17
with quadratic constraints, 296

least squares method, 90–94, 228, 243,
245, 248, 251, 254, 256

least squares solution, 350

Levinson–Durbin algorithm, 96

split, 97–101

likelihood function, 182, 356, 358, 360,
378

line spectrum, 146

linear equations

consistent, 347–350

inconsistent, 350–353

least squares solution, 350

minimum norm solution, 348

systems of, 347–353

total least squares solution, 352

linear prediction, 91, 117, 119, 130–132

linear predictive modeling, 92

linearly parameterized basis, 193–198

lowpass signal, 266

MA covariance parameterization, 127

MA parameter estimation, 125–129

MA process, see moving average process

majorization, 181–182

majorizing function, 181

matrix

centrosymmetric, 169, 318

Cholesky factor, 342

condition, 202, 349

eigenvalue decomposition, 330–335

exchange, 346

fraction, 137

Frobenius norm, 339, 348, 350

Hankel, 346

idempotent, 282, 339

inversion lemma, 347

Moore–Penrose pseudoinverse, 349

orthogonal, 330

partition, 343, 347

persymmetric, 169, 318

positive (semi)definite, 341–345

QR decomposition, 351

rank, 328

rank deficient, 329

semiunitary, 330, 334

singular value decomposition, 113,
157, 336–340

square root, 318, 342

Toeplitz, 346

trace, 331, 332
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424 Index

unitary, 157, 166, 202, 330, 333, 336,
344, 351

Vandermonde, 345
matrix fraction description, 137
matrix inversion lemma, 246, 347
maximum a posteriori detection, 381–384
maximum likelihood estimate, 75, 151,

356, 363, 373, 377
of covariance matrix, 317–319

maximum likelihood estimation, 378–381
regularity conditions, 379

maximum likelihood method, 182
MDL principle, 395
mean square convergence, 170
mean squared error, 28
Min–norm

and ESPRIT, 202
Min–Norm method

and ESPRIT, 202
for DOA estimation, 285
for frequency estimation, 164–166
root, 164
spectral, 164

minimization
cyclic, 180–181
majorization, 181–182
quadratic, 353–354
relaxation algorithms, 181

minimum description length, 395
minimum norm constraint, 286–288
minimum norm solution, 348
minimum phase, 88, 129
missing data, 247–250
model order selection, 357–358, 377–398

AIC rule, 387–391
BIC rule, 392–395
corrected AIC rule, 391
generalized AIC rule, 391–392
generalized information criterion, 390
Kullback-Leibler metric, 384–385
maximum a posteriori, 381–384
MDL rule, 395
multimodel, 397

modified MUSIC method, 163, 193–198
modified Yule–Walker method, 103–106
modulation, 267
Moore–Penrose pseudoinverse, 291, 349
moving average noise, 200
moving average parameter estimation, 125–

129
moving average process

covariance structure, 88
definition of, 88
parameter estimation, 125–129
reflection coefficients of, 134

moving average spectral estimation, 101–
103, 125–129

multimodel order selection, 397
multiple signal classification, see MUSIC

method
multivariate systems, 109–117
MUSIC method

for DOA estimation, 284
modified, 163, 325
root, 161
spectral, 161
subspace fitting interpretation, 324

narrowband, 271
nilpotent matrix, 124
NLS method, see nonlinear least squares

method
noise

complex white, 32
noise gain, 299–301
nonlinear least squares method

for direction estimation, 281–282
for frequency estimation, 151–155

nonsingular, 329
normal equations, 90
null space, 160, 328
null space basis, 193–198

order selection, see model order selection
orthogonal complement, 338
orthogonal matrix, 330
orthogonal projection, 161, 188, 189, 338
overdetermined linear equations, 104, 347,

350–353

Padé approximation, 136
parameter estimation

maximum likelihood, 378–381
PARCOR coefficient, 96
Parseval’s theorem, 4, 126
partial autocorrelation sequence, 117
partial correlation coefficients, 96
partitioned matrix, 343, 347
periodogram

and frequency estimation, 153
bias analysis of, 28–32
definition of, 22
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FFT computation of, 25–27
for two–dimensional signals, 251–252
properties of, 28–36
variance analysis of, 32–36
windowed, 47

periodogram method, 22
periodogram–based methods

Bartlett, 49–50
Daniell, 52–54
refined, 48–54
Welch, 50–52

persymmetric matrix, 169, 318
Pisarenko method

ARMA model derivation of, 200
for DOA estimation, 284
for frequency estimation, 159, 162
relation to MUSIC, 162

planar wave, 264, 271
positive (semi)definite matrices, 341–345
postwindow method, 93
power spectral density

and linear systems, 11
continuous, 86
definition of, 6, 7
properties of, 8
rational, 87

prediction
backward, 117
forward, 130
linear, 91, 117, 119, 130–132, 367

prediction error, 91, 367
prewindow method, 93
principal submatrix, 341
probability density function, 68, 75, 356,

359
projection matrix, 188, 189
projection operator, 338

QR decomposition, 351
quadratic minimization, 353–354
quadratic program, 129
quadrature component, 268

random signals, 2
range space, 160, 328
rank, 189
rank deficient, 329
rank of a matrix, 328
rank of a matrix product, 329
rational spectra, 87
Rayleigh quotient, 334

extended, 335
rectangular window, 42
reflection coefficient, 96

properties of, 134
region of convergence, 87
RELAX algorithm, 181
relaxation algorithms, 181
resolution

and time–bandwidth product, 68
and window design, 40–41
and zero padding, 27
for filter bank methods, 208
for parametric methods, 155, 204
frequency, 31
limit, 31
of beamforming method, 278, 320
of Blackman–Tukey method, 38
of Capon method, 225, 230, 238
of common windows, 42
of Daniell method, 53
of periodogram, 22, 31
of periodogram–based methods, 83
spatial, 278, 320–323
super–resolution, 139, 140, 147

Riccati equation, 111
Rihaczek distribution, 15
robust Capon method, 299–305
root MUSIC

for DOA estimation, 284
for frequency estimation, 161

row space, 328

sample covariance, 23, 49, 55, 71–73, 75,
78

sample covariance matrix
ML estimates of, 317–319

sampling
Shannon sampling theorem, 8
spatial, 263, 272, 273
temporal, 3

semi-parametric estimation, 312
semidefinite quadratic program, 129
semiunitary matrix, 330, 334
Shannon sampling theorem

spatial, 273
temporal, 8

sidelobe, 31, 41, 42
signal modeling, 88
similarity transformation, 111, 167, 331
singular value decomposition (SVD), 113,

157, 292, 336–340
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426 Index

sinusoidal signals
amplitude estimation, 146
ARMA model, 149
covariance matrix model, 149
damped, 193–198, 241–244
frequency estimation, 146–170
models of, 144, 148–150
nonlinear regression model, 148
phase estimation, 146
two–dimensional, 251–256

skew–symmetric vector, 346
Slepian sequences, 215–216

two–dimensional, 253–254
smoothed periodogram, 221
smoothing filter, 131
spatial filter, 275, 278
spatial frequency, 272
spatial sampling, 273
spatial spectral estimation problem, 263
spectral analysis

high–resolution, 147
nonparametric, 2
parametric, 2
semi-parametric, 312
super–resolution, 147

spectral density
energy, 3
power, 4

spectral estimation
definition of, 1, 12

spectral factorization, 87, 126, 163
spectral flatness, 132
spectral line analysis, 146
spectral LS criterion, 126
spectral MUSIC

for DOA estimation, 284
for frequency estimation, 161

spectrum
coherency, 12–14
continuous, 86
cross, 18
discrete, 146
rational, 87

split Levinson algorithm, 97
square root of a matrix, 318, 342
stability

for AR models, 133
of AR estimates, 90
of Padé approximation, 136
of Yule–Walker estimates, 94, 133

state–space equations

for ARMA process, 109
minimality, 112
nonuniqueness of, 111

statistically efficient estimator, 357
steering vector uncertainty, 294–305
structure indices, 109
subarrays, 285
submatrix

leading, 341
principal, 341

subspace
and state–space representations, 109,

112–117
noise, 161
signal, 161

super–resolution, 139, 147
symmetric matrix, 330
symmetric vector, 346
synthetic aperture, 319
systems of linear equations, 347–353

taper, 47
Taylor series expansion, 355
time width

definition of, 67
equivalent, 40, 50, 54, 69

time–bandwidth product, 40–41, 66–71
time–frequency distributions, 15
Toeplitz matrix, 346
total least squares, 104, 158, 164, 167,

352
trace of a matrix, 331
trace of a matrix product, 332
transfer function, 10
two–dimensional sinusoidal signals, 193–

198
two–dimensional spectral analysis

APES method, 254–256
Capon method, 254–256
periodogram, 251–252
refined filter bank method, 253–254

two–sided sequences, 19

unbiased estimate, 355
uncertainty principle, 67
uniform linear array, 271–273

beamforming resolution, 320
spatial APES, 305–312

unitary matrix, 157, 166, 202, 330, 333,
336, 344, 351

Vandermonde matrix, 345
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vector
skew–symmetric, 346
symmetric, 346

vectorization, 253, 255

wave field, 263
planar, 264

Welch method, 50–52
white noise

complex, 32
real, 36

whitening filter, 144
Wiener–Hopf equation, 18
window function

Bartlett, 42
Chebyshev, 41
common, 41–42
data and frequency dependent, 59
design of, 39
Hamming, 42
Hanning, 42
Kaiser, 41
leakage, 31
main lobe, 30
rectangular, 42
resolution, 31
resolution–variance tradeoffs, 40–41
sidelobes, 31

Yule–Walker equations, 90
Yule–Walker method

for AR processes, 90
for DOA estimation, 283
for frequency estimation, 155–159
modified, 103–106
overdetermined, 104
stability property, 94

zero padding, 26–27
zeroes

extraneous, 286, 288
in ARMA model, 87, 108


