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Filter-Bank Methods

5.1 INTRODUCTION

The problem of estimating the PSD function φ(ω) of a signal from a finite number of observations
N is ill posed from a statistical standpoint, unless we make some appropriate assumptions on φ(ω).
More precisely, without any assumption on the PSD, we are required to estimate an infinite number
of independent values {φ(ω)}πω=−π from a finite number of samples. Evidently, we cannot do that
in a consistent manner. In order to overcome this problem, we can either

parameterize {φ(ω)} by means of a finite–dimensional model (5.1.1)

or

smooth the set {φ(ω)}πω=−π by assuming that φ(ω) is constant (or nearly
constant) over the band [ω − βπ, ω+ βπ ], for some given β � 1.

(5.1.2)

The approach based on (5.1.1) leads to the parametric spectral methods of Chapters 3 and 4,
for which the estimation of {φ(ω)} is reduced to the problem of estimating a number of parameters
that is usually much smaller than the data length N.

The other approach to PSD estimation, (5.1.2), leads to the methods to be described in this
chapter. The nonparametric methods of Chapter 2 are also (implicitly) based on (5.1.2), as is
shown in Section 5.2. The approach (5.1.2) should, of course, be used for PSD estimation when
we do not have enough information about the studied signal to be able to describe it (and its PSD)
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218 Chapter 5 Filter-Bank Methods

by a simple model (such as the ARMA equation in Chapter 3 or the equation of superimposed
sinusoidal signals in Chapter 4). On the one hand, this implies that the methods derived from
(5.1.2) can be used in cases where those based on (5.1.1) cannot.1 On the other hand, we should
expect to pay some price in using (5.1.2) over (5.1.1). Under the assumption in (5.1.2), φ(ω) is
described by 2π/2πβ = 1/β values. In order to estimate these values from the available data in
a consistent manner, we must require that 1/β < N or

Nβ > 1 (5.1.3)

As β increases, the achievable statistical accuracy of the estimates of {φ(ω)} should increase
(because the number of PSD values estimated from the given N data samples decreases) but the
resolution decreases (because φ(ω) is assumed to be constant on a larger interval). This tradeoff
between statistical variability and resolution is the price paid for the generality of the methods
derived from (5.1.2). We have already met this tradeoff in our discussion of the periodogram-based
methods in Chapter 2. Note, from (5.1.3), that the resolution threshold β of the methods based
on (5.1.2) can be lowered down to 1/N only if we are going to accept a significant statistical
variability for our spectral estimates (because for β = 1/N we will have to estimate N spectral
values from the available N data samples). The parametric (or model-based) approach embodied
in (5.1.1) describes the PSD by a number of parameters that is often much smaller than N ; yet,
it might achieve better resolution (i.e., a resolution threshold less than 1/N ) compared to the
approach derived from (5.1.2).

When taking the approach (5.1.2) to PSD estimation, we are basically following the “defini-
tion” (1.1.1) of the spectral estimation problem, which we restate here (in abbreviated form) for
easy reference:

From a finite-length data sequence, estimate how the power is distributed over
narrow spectral bands.

(5.1.4)

There is an implicit assumption in (5.1.4) that the power is (nearly) constant over “narrow spectral
bands,” which is a restatement of (5.1.2).

The most natural implementation of the approach to spectral estimation resulting from (5.1.2)
and (5.1.4) is depicted in Figure 5.1. The bandpass filter in this figure, which sweeps through
the frequency interval of interest, can be viewed as a bank of (bandpass) filters. This observation
motivates the name filter-bank approach given to the PSD estimation scheme sketched in Figure
5.1. Depending on the bandpass filter chosen, we obtain various filter-bank methods of spectral
estimation. Even for a given bandpass filter, we may implement the scheme of Figure 5.1 in
different ways, which leads to an even richer class of methods. Examples of bandpass filters
that can be used in the scheme of Figure 5.1, as well as specific ways in which they may be

1This statement should be interpreted with some care. One can certainly use, for instance, an ARMA spectral model
even if one does not know that the studied signal is really an ARMA signal. However, in such a case, one not only
needs to estimate the model parameters, but also must face the rather difficult task of determining the structure of the
parametric model used (for example, the orders of the ARMA model). The nonparametric approach to PSD estimation
does not require any structure-determination step.



Section 5.1 Introduction 219

Bandpass filter
with varying vc and

fixed bandwidth

Filtered
signal

1

Power in
the bandPower

calculation
Division by

filter bandwidth

H(v)

y(t)

vc

vc
v

v

f(vc)ˆ

fy(v)

�p p vc
v

�p p

fy(v)˜

Figure 5.1 The filter-bank approach to PSD estimation.

implemented, are given in the remainder of this chapter. First, however, we discuss a few more
aspects regarding the scheme in Figure 5.1.

As a mathematical motivation of the filter-bank approach (FBA) to spectral estimation, we
prove the following result:

Assume that

(i) φ(ω) is (nearly) constant over the filter passband;
(ii) the filter gain is (nearly) 1 over the passband and (nearly) zero outside

the passband; and
(iii) the power of the filtered signal is a consistent estimate of the true power.

Then

the PSD estimate, φ̂FB(ω), obtained with the filter-bank approach, is a
good approximation of φ(ω).

(5.1.5)

Let H (ω) denote the transfer function of the bandpass filter, and let 2πβ denote its bandwidth.
Then, by using the formula (1.4.9) and the assumptions (iii), (ii), and (i) (in that order), we can
write

φ̂FB(ω) � 1

2πβ

∫ π

−π
|H (ψ)|2φ(ψ) dψ

� 1

2πβ

∫ ω+βπ

ω−βπ
φ(ψ) dψ � 1

2πβ
2πβφ(ω) = φ(ω) (5.1.6)

where ω denotes the center frequency of the bandpass filter. This is the result that we set out to
prove.

If all three assumptions in (5.1.5) could be satisfied, then the FBA methods would produce
spectral estimates with high resolution and low statistical variability. Unfortunately, these



220 Chapter 5 Filter-Bank Methods

assumptions contain conflicting requirements that cannot be met simultaneously. In high-resolution
applications, assumption (i) can be satisfied if we use a filter with a very sharp passband.
According to the time-bandwidth product result (2.6.5), such a filter has a very long impulse
response. This implies that we might not be able to get more than a few samples of the filtered
signal (sometimes only one sample, see Section 5.2!). Hence, assumption (iii) cannot be met.
In order to satisfy (iii), we need to average many samples of the filtered signal and, therefore,
should consider a bandpass filter with a relatively short impulse response and, hence, a not too
narrow passband. Assumption (i) may then be violated or, in other words, the resolution might
be sacrificed.

The above discussion has brought once more to light the compromise between resolution and
statistical variability and the fact that the resolution is limited by the sample length. These are the
critical issues for any PSD estimation method based on the approach (5.1.2), such as those of
Chapter 2 and the ones discussed in the following sections. These two issues will always surface
within the nonparametric approach to spectral estimation—in many different ways, depending on
the specific method at hand.

5.2 FILTER-BANK INTERPRETATION OF THE PERIODOGRAM

The value of the basic periodogram estimator (2.2.1) at a given frequency, say ω̃, can be expressed
as

φ̂p(ω̃) = 1

N

∣∣∣∣∣
N∑

t=1

y(t)e−i ω̃ t

∣∣∣∣∣
2

= 1

N

∣∣∣∣∣
N∑

t=1

y(t)ei ω̃(N −t)

∣∣∣∣∣
2

= 1

β

∣∣∣∣∣
N −1∑
k=0

hk y(N − k)

∣∣∣∣∣
2

(5.2.1)

where β = 1/N and

hk = 1

N
ei ω̃k k = 0, . . . ,N − 1 (5.2.2)

The truncated convolution sum that appears in (5.2.1) can be written as the usual convolution
sum associated with a linear causal system, if the weighting sequence in (5.2.2) is padded with
zeroes:

yF (N ) =
∞∑

k=0

hk y(N − k) (5.2.3)

with

hk =
{

ei ω̃ k/N for k = 0, . . . ,N − 1
0 otherwise

(5.2.4)
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The transfer function (or the frequency response) of the linear filter corresponding to {hk } in
(5.2.4) is readily evaluated:

H (ω) =
∞∑

k=0

hk e−iω k = 1

N

N −1∑
k=0

ei (ω̃−ω)k = 1

N

eiN (ω̃−ω) − 1

ei (ω̃−ω) − 1

which gives

H (ω) = 1

N

sin[N (ω̃ − ω)/2]

sin[(ω̃ − ω)/2]
ei (N −1)(ω̃−ω)/2 (5.2.5)

Figure 5.2 shows |H (ω)| as a function of ω = ω̃ − ω, for N = 50. It can be seen that H (ω)
in (5.2.5) is the transfer function of a bandpass filter with center frequency equal to ω̃. The 3-dB
bandwidth of this filter can be shown to be approximately 2π/N radians per sampling interval,
or 1/N cycles per sampling interval. In fact, by comparing (5.2.5) to (2.4.17), we see that H (ω)
resembles the DTFT of the rectangular window, the only differences being the phase term (due
to the time offset) and the window lengths ((2N − 1) in (2.4.17) versus N in (5.2.5)).

Thus, we have proven the following filter-bank interpretation of the basic periodogram:

The periodogram φ̂p(ω) can be exactly obtained by the FBA in Figure 5.1,
where the bandpass filter’s frequency response is given by (5.2.5), its band-
width is 1/N cycles per sampling interval, and the power calculation is done
from a single sample of the filtered signal.

(5.2.6)
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Figure 5.2 The magnitude of the frequency response of the bandpass filter H(ω) in (5.2.5),
associated with the periodogram (N = 50), plotted as a function of (ω̃ − ω).
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This interpretation of φ̂p(ω) highlights a conclusion that is reached, in a different way, in
Chapter 2: the unmodified periodogram sacrifices statistical accuracy for resolution. Indeed, φ̂p(ω)

uses a bandpass filter with the smallest bandwidth afforded by a time aperture of length N.
In this way, it achieves a good resolution (see assumption (i) in (5.1.5)). The consequence of
doing so is that only one (filtered) data sample is obtained for the power-calculation stage,
which explains the erratic fluctuations of φ̂p(ω) (owing to violation of assumption (iii)
in (5.1.5)).

As explained in Chapter 2, the modified periodogram methods (Bartlett, Welch, and Daniell)
reduce the variance of the periodogram at the expense of increasing the bias (or, equivalently,
worsening the resolution). The FBA interpretation of these modified methods provides an inter-
esting explanation of their behavior. In the filter-bank context, the basic idea behind all of these
modified periodograms is to improve the power-calculation stage, which is done so poorly within
the unmodified periodogram.

The Bartlett and Welch methods split the available sample in several subsequences which
are separately (bandpass) filtered. In principle, the larger the number of subsequences, the more
samples are averaged in the power-calculation stage and the smaller the variance of the estimated
PSD, but the worse the resolution (owing to the inability to design an appropriately narrow
bandpass filter for a small-aperture subsequence).

The Daniell method, on the other hand, does not split the sample of observations but processes
it as a whole. This method improves the “power calculation” in a different way. For each value
of φ(ω) to be estimated, a number of different bandpass filters are employed, each with center
frequency near ω. Each bandpass filter yields only one sample of the filtered signal, but, there
being several bandpass filters, we might get enough information for the power-calculation stage.
As the number of filters used increases, the variance of the estimated PSD decreases but the
resolution becomes worse (since φ(ω) is implicitly assumed to be constant over a wider and
wider frequency interval centered on the current ω and approximately equal to the union of the
filters’ passbands).

5.3 REFINED FILTER-BANK METHOD

The bandpass filter used in the periodogram is only one of many possible choices. The peri-
odogram was not designed as a filter-bank method, so we might well wonder whether we
could find other, better choices of the bandpass filter. In this section, we present a refined filter
bank (RFB) approach to spectral estimation. Such an approach was introduced in [Thomson
1982] and was further developed in [Mullis and Scharf 1991]. More recent references on
this approach include [Bronez 1992; Onn and Steinhardt 1993; Riedel and Sidorenko
1995].

For the discussion that follows, it is convenient to use a baseband filter in the filter-bank
approach of Figure 5.1, in lieu of the bandpass filter. Let HBF(ω) denote the frequency response
of the bandpass filter with center frequency ω̃ (say), and let the baseband filter be defined by

H (ω) = HBF(ω + ω̃) (5.3.1)
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(the center frequency of H (ω) being equal to zero). If the input to the FBA scheme is also
modified such that

y(t) −→ ỹ(t) = e−i ω̃t y(t) (5.3.2)

then, according to the complex (de)modulation formula (1.4.11), the output of the scheme is left
unchanged by the translation in (5.3.1) of the passband down to baseband. In order to help interpret
the previous transformations, we depict in Figure 5.3 the type of PSD translation implied by the
demodulation process in (5.3.2). It is clearly seen from this figure that the problem of isolating
the band around ω̃ by bandpass filtering becomes one of baseband filtering. The modified FBA
scheme is shown in Figure 5.4. The baseband-filter design problem is the subject of the next
subsection.

5.3.1 Slepian Baseband Filters

In the following, we address the problem of designing a finite-impulse response (FIR) baseband
filter that passes the baseband

[−βπ, βπ ] (5.3.3)

as undistorted as possible and that attenuates the frequencies outside baseband as much as possible.
Let

h = [h0 . . . hN −1]∗ (5.3.4)

fy(v)

�p p0 ṽ

fy(v)˜

�p p0
v v

Demodulation

Figure 5.3 The relationship between the PSDs of the original signal y(t) and the demodulated
signal ỹ(t).
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Figure 5.4 The modified filter-bank approach to PSD estimation.
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denote the impulse response of such a filter, and let

H (ω) =
N −1∑
k=0

hk e−iωk = h∗a(ω)

(where a(ω) = [1 e−iω . . . e−i (N −1)ω]T ) be the corresponding frequency response. The two design
objectives can be turned into mathematical specifications in the following way: Let the input to
the filter be white noise of unit variance. Then the power of the output is

1

2π

∫ π

−π
|H (ω)|2dω =

N −1∑
k=0

N −1∑
p=0

hk h∗
p

[
1

2π

∫ π

−π
eiω(p−k)dω

]

=
N −1∑
k=0

N −1∑
p=0

hk h∗
p δk ,p = h∗h (5.3.5)

We note in passing that equation (5.3.5) can be recognized as Parseval’s theorem (1.2.6). The part
of the total power, (5.3.5), that lies in the baseband is given by

1

2π

∫ βπ

−βπ
|H (ω)|2dω = h∗

{
1

2π

∫ βπ

−βπ
a(ω)a∗(ω)dω

}
h � h∗�h (5.3.6)

The k , p element of the N × N matrix � defined in (5.3.6) is given by

�k ,p = 1

2π

∫ βπ

−βπ
e−i (k−p)ωdω = sin[(k − p)βπ ]

(k − p)π
(5.3.7)

which, with the use of the sinc function, can be written as

�k ,p = βsinc[(k − p)βπ ] � γ|k−p| (5.3.8)

Note that the matrix � is symmetric and Toeplitz. Also, note that this matrix has already been
encountered in the window design example in Section 2.6.3. In fact, as we will shortly see, the
window-design strategy in that example is quite similar to the baseband-filter design method
employed here.

Since the filter h must be such that the power of the filtered signal in the baseband is as large
as possible relative to the total power, we are led to the following optimization problem:

max
h

h∗�h subject to h∗h = 1 (5.3.9)
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The solution to the previous problem is given in Result R13 in Appendix A: the maximizing h is
equal to the eigenvector of � corresponding to its maximum eigenvalue. Hence, we have proven
the following result:

The impulse response h of the “most selective” baseband filter (according to
the design objectives in (5.3.9)) is given by the dominant eigenvector of �. (It
is called the first Slepian sequence.)

(5.3.10)

The matrix � played a key role in the foregoing derivation. In what follows, we look in more
detail at the eigenstructure of �. In particular, we provide an intuitive explanation of why the first
dominant eigenvector of � behaves like a baseband filter. We also show that, depending on the
relation between β and N, the next dominant eigenvectors of � might also be used as baseband
filters. Our discussion of these aspects will be partly heuristic. Note that the eigenvectors of �
are called the Slepian sequences [Slepian 1964] (as mentioned in (5.3.10)). We denote these
eigenvectors by {sk }N

k=1.

Remark: The Slepian sequences should not be computed by the eigendecomposition of �. Numer-
ically more efficient and reliable ways for computing these sequences exist (see, e.g., [Slepian
1964]), for instance, as solutions to some differential equations or as eigenvectors of certain
tridiagonal matrices. �

The theoretical eigenanalysis of � is a difficult problem in the case of finite N. (Of course,
the eigenvectors and eigenvalues of � can always be computed, for given β and N ; here we are
interested in establishing theoretical expressions for �’s eigenelements.) For N sufficiently large,
however, “reasonable approximations” to the eigenelements of � can be derived. Let a(ω) be
defined as before:

a(ω) = [1 e−iω . . . e−i (N −1)ω]T (5.3.11)

Assume that β is chosen larger than 1/N, and define

K = Nβ ≥ 1 (5.3.12)

(To simplify the discussion, K and N are assumed to be even integers in what follows.) With
these preparations, and assuming that N is large, we can approximate the integral in (5.3.6) and
write � as

� � 1

2π

K/2−1∑
p=−K/2

a

(
2π

N
p

)
a∗

(
2π

N
p

)
2π

N

= 1

N

K/2−1∑
p=−K/2

a

(
2π

N
p

)
a∗

(
2π

N
p

)
� �0 (5.3.13)
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The vectors {a( 2π
N p)/

√
N }

N
2

p=− N
2 +1

, part of which appear in (5.3.13), can readily be shown to

form an orthonormal set:

1

N
a∗

(
2π

N
p

)
a

(
2π

N
s

)
= 1

N

N −1∑
k=0

ei 2π
N (p−s)k

=




1

N

ei2π(p−s) − 1

ei 2π
N (p−s) − 1

= 0, s �= p

1, s = p

(5.3.14)

The eigenvectors of the matrix on the right-hand side of equation (5.3.13), �0, are there-
fore given by {a ( 2π

N p
)
/
√

N }N /2
p=−N /2+1, with eigenvalues of 1 (with multiplicity K ) and 0

(with multiplicity N − K ). The eigenvectors corresponding to the eigenvalues equal to one are
{a ( 2π

N p
)
/
√

N }K/2
p=−K/2+1. By paralleling the calculations in (5.2.3)–(5.2.5), it is not hard to show

that each of these dominant eigenvectors of �0 is the impulse response of a narrow bandpass filter
with bandwidth equal to about 1/N and center frequency 2π

N p; the set of these filters therefore
covers the interval [−βπ, βπ ].

Now, the elements of � approach those of �0 as N increases; more precisely, |[�]i ,j −
[�0]i ,j | = O(1/N ) for sufficiently large N. However, this does not mean that ‖� − �0‖ → 0, as
N → ∞, for any reasonable matrix norm, because � and �0 are (N × N ) matrices. Consequently,
the eigenelements of � do not necessarily converge to the eigenelements of �0 as N → ∞.
However, given the previous analysis, we can at least expect that the eigenelements of � are
not “too different” from those of �0. This observation of the theoretical analysis, backed up with
empirical evidence from the computation of the eigenelements of � in specific cases, leads us to
conclude the following:

The matrix � has K eigenvalues close to one and (N − K ) eigenvalues close to
zero, provided N is large enough, where K is given by the “time-bandwidth”
product (5.3.12). The dominant eigenvectors corresponding to the K largest
eigenvalues form a set of orthogonal impulse responses of K bandpass filters
that approximately cover the baseband [−βπ, βπ ].

(5.3.15)

As we argue in the next subsections, in some situations (specified there) we may want to use
the whole set of K Slepian baseband filters, not only the dominant Slepian filter in this set.

5.3.2 RFB Method for High-Resolution Spectral Analysis

Assume that the spectral analysis problem dealt with is one in which it is important to achieve
the maximum resolution afforded by the approach at hand (such a problem appears, for instance,
in the case of PSDs with closely spaced peaks). Then we set

β = 1/N ⇐⇒ K = 1 (5.3.16)
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(Note that we cannot set β to a value less than 1/N. That choice would lead to K < 1, which
is meaningless. The fact that we must choose β ≥ 1/N is one of the many facets of the 1/N -
resolution limit of the nonparametric spectral estimation.) Because K = 1, we cannot use more
than the first Slepian sequence as a bandpass filter:

h = s1 (5.3.17)

The way in which the RFB scheme based on (5.3.17) works is described next.
First, note from (5.3.5), (5.3.9), and (5.3.16) that

1 = h∗h = 1

2π

∫ π

−π
|H (ω)|2dω � 1

2π

∫ βπ

−βπ
|H (ω)|2dω

� β|H (0)|2 = 1

N
|H (0)|2 (5.3.18)

Hence, under the (idealizing) assumption that H (ω) is different from zero only in the baseband
where it takes a constant value, we have

|H (0)|2 � N (5.3.19)

Next, consider the sample at the filter’s output obtained by the convolution of the whole input
sequence {ỹ(t)}N

t=1 with the filter impulse response {hk }:

x �
N −1∑
k=0

hk ỹ(N − k) =
N∑

t=1

hN −t ỹ(t) (5.3.20)

The power of x should be approximately equal to the PSD value φ(ω̃), as is confirmed by the
following calculation:

E
{|x |2} = 1

2π

∫ π

−π
|H (ω)|2φỹ(ω)dω

� N

2π

∫ βπ

−βπ
φỹ(ω)dω = N

2π

∫ βπ

−βπ
φy(ω + ω̃)dω

� N

2π
φy(ω̃)× 2πβ = Nβφy(ω̃) = φy(ω̃) (5.3.21)

The second “equality” above follows from the properties of H (ω) (see, also, (5.3.19)), the third
from the complex demodulation formula (1.4.11), and the fourth from the assumption that φy(ω)

is nearly constant over the passband considered.
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In view of (5.3.21), the PSD estimation problem reduces to estimating the power of the
filtered signal. Since only one sample, x , of that signal is available, the obvious estimate for the
signal power is |x |2. This leads to the following estimate of φ(ω):

φ̂(ω) =
∣∣∣∣∣

N∑
t=1

hN −t y(t)e
−iωt

∣∣∣∣∣
2

(5.3.22)

Here {hk } is given by the first Slepian sequence (see (5.3.17)). The reason we did not divide
(5.3.22) by the filter bandwidth is that |H (0)|2 � N, by (5.3.19), which differs from assumption
(ii) in (5.1.5).

The spectral estimate (5.3.22) is recognized to be a windowed periodogram with temporal
window {hN −k }. For large values of N , it follows from the analysis in the previous section that
h can be expected to be reasonably close to the vector [1 . . . 1]T /

√
N. When inserting the latter

vector in (5.3.22), we get the unwindowed periodogram. Hence, we reach the conclusion that,
for N large enough, the RFB estimate (5.3.22) will behave not too differently from the unmodified
periodogram (as is quite natural, in view of the fact that we wanted a high-resolution spectral
estimator, and the basic periodogram is known to be such an estimator).

Remark: We warn the reader, once again, that the foregoing discussion is heuristic. As explained
before (see the discussion related to (5.3.15)), as N increases, {hk } may be expected to be “reason-
ably close” to but not necessarily to converge to 1/

√
N. In addition, even if {hk } in (5.3.22)

converges to 1/
√

N as N → ∞, the function in (5.3.22) might not converge to φ̂p(ω) if the
convergence rate of {hk } is too slow. (Note that the number of {hk } in (5.3.22) is equal to N.)
Hence, φ̂(ω) in (5.3.22) and the periodogram φ̂p(ω) could differ from one another even for large
values of N. �

In any case, even though the two estimators φ̂(ω) in (5.3.22) and φ̂p(ω) generally give
different PSD values, they both base the power-calculation stage of the FBA scheme on only a
single sample. Hence, similarly to φ̂p(ω), the RFB estimate (5.3.22) is expected to exhibit erratic
fluctuations. The next subsection discusses a way in which the variance of the RFB spectral
estimate can be reduced, at the expense of reducing the resolution of this estimate.

5.3.3 RFB Method for Statistically Stable Spectral Analysis

The FBA interpretation of the modified periodogram methods, as explained in Section 5.2, high-
lighted two approaches to reduce the statistical variability of the spectral estimate (5.3.22). The
first approach consists of splitting the available sample {y(t)}N

t=1 into a number of subsequences,
computing (5.3.22) for each subsequence, and then averaging the values so obtained. The problem
with this way of proceeding is that the values taken by (5.3.22) for different subsequences are not
guaranteed to be statistically independent. In fact, if the subsequences overlap, then those values
could be strongly correlated. The consequence of this fact is that one can never be sure of the
“exact” reduction of variance that is achieved by averaging, in a given situation.
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The second approach to reducing the variance consists of using several bandpass filters,
in lieu of only one, which operate on the whole data sample [Thomson 1982]. This approach
aims at producing statistically independent samples for the power-calculation stage. When this is
achieved, the variance is reduced K times, where K is the number of samples averaged (which
equals the number of bandpass filters used).

In the following, we focus on this second approach, which appears particularly suitable for
the RFB method. We set β to some value larger than 1/N, which gives (cf. (5.3.12))

K = Nβ > 1 (5.3.23)

The larger β is (i.e., the lower is the resolution), the larger is K, and hence the larger is the
reduction in variance that can be achieved. By using the result (5.3.15), we define K baseband
filters as

hp = [hp,0 . . . hp,N −1]∗ = sp, (p = 1, . . . ,K ) (5.3.24)

Here, hp denotes the impulse response vector of the pth filter and sp is the pth dominant Slepian
sequence. Note that sp is real valued (see Result R12 in Appendix A), and thus so is hp . According
to the discussion leading to (5.3.15), the set of filters (5.3.24) covers the baseband [−βπ, βπ ],
with each of these filters passing (roughly speaking) 1/K of this baseband. Let xp be defined
similarly to x in (5.3.20), but now, for the pth filter,

xp =
N −1∑
k=0

hp,k ỹ(N − k) =
N∑

t=1

hp,N −t ỹ(t) (5.3.25)

The calculation (5.3.21) applies to {xp} in exactly the same way; hence,

E
{|xp |2

} � φy(ω̃), p = 1, . . . ,K (5.3.26)

In addition, a straightforward calculation gives

E
{
xpx∗

k

} = E

{[
N −1∑
t=0

hp,t ỹ(N − t)

][
N −1∑
s=0

h∗
k ,s ỹ∗(N − s)

]}

=
N −1∑
t=0

N −1∑
s=0

hp,t h
∗
k ,s rỹ(s − t)

= 1

2π

∫ π

−π

N −1∑
t=0

N −1∑
s=0

hp,t h
∗
k ,sφỹ(ω)e

i (s−t)ωdω

= 1

2π

∫ π

−π
Hp(ω)H

∗
k (ω)φỹ(ω)dω
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� φỹ(0)h
∗
p

[
1

2π

∫ βπ

−βπ
a(ω)a∗(ω)dω

]
hk

= φy(ω̃)h
∗
p�hk = 0 for k �= p (5.3.27)

Thus, the random variables xp and xk (for p �= k ) are approximately uncorrelated under the
assumptions made. This implies, at least under the assumption that the {xk } are Gaussian, that
|xp |2 and |xk |2 are statistically independent (for p �= k ).

According to the previous calculations, {|xp |2}K
p=1 can approximately be considered to be

independent random variables all with the same mean φy(ω̃). Then we can estimate φy(ω̃) by the
following average of {|xp |2}: 1

K

∑K
p=1 |xp |2, or

φ̂(ω) = 1

K

K∑
p=1

∣∣∣∣∣
N∑

t=1

hp,N −t y(t)e
−iωt

∣∣∣∣∣
2

(5.3.28)

We may suspect that the random variables {|xp |2} have not only the same mean, but also the same
variance (this can, in fact, be readily shown under the Gaussian hypothesis). Whenever this is
true, the variance of the average in (5.3.28) is K times smaller than the variance of each of the
variables averaged. The above findings are summarized in the following:

If the resolution threshold β is increased K times from β = 1/N (the lowest
value) to β = K /N, then the variance of the RFB estimate in (5.3.22) may
be reduced by a factor K by constructing the spectral estimate as in (5.3.28),
where the pth baseband filter’s impulse response {hp,t }N −1

t=0 is given by the pth
dominant Slepian sequence (p = 1, . . . ,K ).

(5.3.29)

The RFB spectral estimator (5.3.28) can be given two interpretations. First, arguments similar
with those following equation (5.3.22) suggest that, for large N, the RFB estimate (5.3.28) behaves
similarly to the Daniell method of periodogram averaging. For small or medium-sized values of
N, the RFB and Daniell methods behave differently. In such a case, we can relate (5.3.28) to
the class of multiwindow spectral estimators [Thomson 1982]. Indeed, the RFB estimate (5.3.28)
can be interpreted as the average of K windowed periodograms, where the pth periodogram is
computed from the raw data sequence {y(t)} windowed with the pth dominant Slepian sequence.
Note that the Slepian sequences are given by the eigenvectors of the real Toeplitz matrix �, so
they must be either symmetric (hp,N −t = hp,t−1) or skew–symmetric (hp,N −t = −hp,t−1)—see
Result R25 in Appendix A. This means that (5.3.28) can be written alternatively, as

φ̂(ω) = 1

K

K∑
p=1

∣∣∣∣∣
N∑

t=1

hp,t−1y(t)e−iωt

∣∣∣∣∣
2

(5.3.30)
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This form of the RFB estimate makes its interpretation as a multiwindow spectrum estimator
more direct.

For a second interpretation of the RFB estimate (5.3.28), consider the (Daniell-type) spectrally
smoothed periodogram estimator

φ̂(ω̃) = 1

2πβ

∫ ω̃+βπ

ω̃−βπ
φ̂p(ω)dω = 1

2πβ

∫ βπ

−βπ
φ̂p(ω + ω̃)dω

= 1

2πβ

∫ βπ

−βπ

1

N

∣∣∣∣∣
N∑

t=1

y(t)e−i (ω+ω̃)t
∣∣∣∣∣
2

dω

= 1

2πK

∫ βπ

−βπ

N∑
t=1

N∑
s=1

ỹ(t)ỹ∗(s)e−iω t eiω s dω

= 1

K
[ỹ∗(1) . . . ỹ∗(N )]

·




1

2π

∫ βπ

−βπ




1
eiω

...

ei (N −1)ω


 [1 e−iω . . . e−i (N −1)ω] dω







ỹ(1)
...

ỹ(N )




= 1

K
[ỹ∗(1) . . . ỹ∗(N )]�




ỹ(1)
...

ỹ(N )


 (5.3.31)

where we made use of the fact that � is real valued. It follows from the result (5.3.15) that � can
be approximated by the rank -K matrix

� �
K∑

p=1

spsT
p =

K∑
p=1

hphT
p (5.3.32)

Inserting (5.3.32) into (5.3.31) and using the fact that the Slepian sequences sp = hp are real
valued leads to the PSD estimator

φ̂(ω̃) � 1

K

K∑
p=1

∣∣∣∣∣
N∑

t=1

hp,t−1ỹ(t)

∣∣∣∣∣
2

(5.3.33)

which is precisely the RFB estimator (5.3.30). Hence, the RFB estimate of the PSD can also be
interpreted as a reduced-rank smoothed periodogram.
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We might think of using the full-rank smoothed periodogram (5.3.31) as an estimator for
PSD, in lieu of the reduced-rank smoothed periodogram (5.3.33) that coincides with the RFB
estimate. However, from a theoretical standpoint, we have no strong reason to do so. Moreover,
from a practical standpoint, we have clear reasons against such an idea. We can explain this briefly
as follows: The K dominant eigenvectors of � can be precomputed with satisfactory numerical
accuracy. Then, evaluation of (5.3.33) can be done by using an FFT algorithm in approximately
1
2 KN log2 N = 1

2βN 2 log2 N flops. On the other hand, a direct evaluation of (5.3.31) would require
N 2 flops for each value of ω, which leads to a prohibitively large total computational burden.
A computationally efficient evaluation of (5.3.31) would require some factorization of � to be
performed, such as the eigendecomposition of �. However, � is an extremely ill-conditioned
matrix (recall that N − K = N (1 − β) of its eigenvalues are close to zero), which means that
such a complete factorization cannot easily be performed with satisfactory numerical accuracy. In
any case, even if we were able to precompute the eigendecomposition of �, evaluation of (5.3.31)
would require 1

2 N 2 log2 N flops, which is still larger by a factor of 1/β than what is required for
(5.3.33).

5.4 CAPON METHOD

The periodogram was previously shown to be a filter-bank approach that uses a bandpass
filter whose impulse response vector is given by the standard Fourier transform vector (i.e.,
[1, e−i ω̃, . . . , e−i (N −1)ω̃]T ). In the periodogram approach, there is no attempt to purposely design
the bandpass filter to achieve some desired characteristics (see, however, Section 5.5). The
RFB method, on the other hand, uses a bandpass filter specifically designed to be “as selec-
tive as possible” for a white-noise input . (See (5.3.5) and the discussion preceding it.) The
RFB’s filter is still data independent in the sense that it does not adapt to the processed
data in any way. Presumably, it might be valuable to take the data properties into consider-
ation when designing the bandpass filter. In other words, the filter should be designed to be
“as selective as possible” (according to a criterion to be specified), not for a fictitious white-
noise input, but for the input consisting of the studied data themselves. This is the basic idea
behind the Capon method, which is an FBA procedure based on a data-dependent bandpass filter
[Capon 1969; Lacoss 1971].

5.4.1 Derivation of the Capon Method

The Capon method (CM), in contrast to the RFB estimator (5.3.28), uses only one bandpass
filter for computing one estimated spectrum value. This suggests that, if the CM is to provide
statistically stable spectral estimates, then it should make use of the other approach which affords
this: splitting the raw sample into subsequences and averaging the results obtained from each
subsequence. Indeed, as we shall see, the Capon method is based essentially on this second
approach.

Consider a filter with a finite impulse response of length m , denoted by

h = [h0 h1 . . . hm ]∗ (5.4.1)
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where m is a positive integer that is unspecified for the moment. The output of the filter at time
t , when the input is the raw data sequence {y(t)}, is given by

yF (t) =
m∑

k=0

hk y(t − k)

= h∗




y(t)
y(t − 1)

...

y(t − m)


 (5.4.2)

Let R denote the covariance matrix of the data vector in (5.4.2). Then the power of the filter
output can be written as

E
{|yF (t)|2

} = h∗Rh (5.4.3)

where, according to the preceding definition,

R = E






y(t)
...

y(t − m)


 [y∗(t) . . . y∗(t − m)]


 (5.4.4)

The response of the filter (5.4.2) to a sinusoidal component of frequency ω (say) is determined
by the filter’s frequency response—that is,

H (ω) =
m∑

k=0

hk e−iω k = h∗a(ω) (5.4.5)

where
a(ω) = [1 e−iω . . . e−imω]T (5.4.6)

If we want to make the filter as selective as possible for a frequency band around the current
value ω, then we may think of minimizing the total power in (5.4.3), subject to the constraint that
the filter pass the frequency ω undistorted. This idea leads to the following optimization problem:

min
h

h∗Rh subject to h∗a(ω) = 1 (5.4.7)

The solution to (5.4.7) is given in Result R35 in Appendix A:

h = R−1a(ω)/a∗(ω)R−1a(ω) (5.4.8)
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Inserting (5.4.8) into (5.4.3) gives

E
{|yF (t)|2

} = 1/a∗(ω)R−1a(ω) (5.4.9)

This is the power of y(t) in a passband centered on ω. Then, assuming that the (idealized)
conditions (i) and (ii) in (5.1.5) hold, we can compute the value of the PSD of y(t) at the
passband’s center frequency as

φ(ω) � E
{|yF (t)|2

}
β

= 1

βa∗(ω)R−1a(ω)
(5.4.10)

where β denotes the frequency bandwidth of the filter given by (5.4.8). The division by β is
sometimes omitted in the literature, but it is required to complete the FBA scheme in Figure 5.1.
Note that, since the bandpass filter (5.4.8) is data dependent, its bandwidth β is not necessarily
data independent, nor is it necessarily frequency independent. Hence, the division by β in (5.4.10)
might fail to represent a simple scaling of E

{|yF (t)|2
}
; it could change the shape of this quantity

as a function of ω.
There are various possibilities for choosing the bandwidth β, depending on the degree of

precision we are aiming for. The simplest possibility is to set

β = 1/(m + 1) (5.4.11)

This choice is motivated by the time-bandwidth product result (2.6.5), which says that, for a
filter whose temporal aperture is equal to (m + 1), the bandwidth should be given roughly by
1/(m + 1). By inserting (5.4.11) in (5.4.10), we obtain

φ(ω) � (m + 1)

a∗(ω)R−1a(ω)
(5.4.12)

Note that, if y(t) is white noise of variance σ 2, (5.4.12) takes the correct value: φ(ω) = σ 2. In the
general case, however, (5.4.11) gives only a rough indication of the filter’s bandwidth, because the
time-bandwidth product result does not apply exactly to the present situation. (See the conditions
under which (2.6.5) was derived.)

An often more exact expression for β can be obtained as follows [Lagunas, Santamaria,
Gasull, and Moreno 1986]: The (equivalent) bandwidth of a bandpass filter can be defined
as the support of the rectangle centered on ω (the filter’s center frequency) that concentrates the
whole energy in the filter’s frequency response. According to this definition, β can be assumed
to satisfy ∫ π

−π
|H (ψ)|2dψ = |H (ω)|22πβ (5.4.13)

In the present case, H (ω) = 1 (see (5.4.7)), so we obtain from (5.4.13)

β = 1

2π

∫ π

−π
|h∗a(ψ)|2dψ = h∗

[
1

2π

∫ π

−π
a(ψ)a∗(ψ)dψ

]
h (5.4.14)
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The (k , p) element of the central matrix in the preceding quadratic form is given by

1

2π

∫ π

−π
e−iψ(k−p)dψ = δk ,p (5.4.15)

With this observation and (5.4.8), (5.4.14) leads to

β = h∗h = a∗(ω)R−2a(ω)

[a∗(ω)R−1a(ω)]2
(5.4.16)

Note that this expression of the bandwidth is both data and frequency dependent (as was alluded
to previously). Inserting (5.4.16) in (5.4.10) gives

φ(ω) � a∗(ω)R−1a(ω)

a∗(ω)R−2a(ω)
(5.4.17)

Remark: The expression for β in (5.4.16) is based on the assumption that most of the area under
the curve of |H (ψ)|2 = |h∗a(ψ)|2 (for ψ ∈ [−π, π ]) is located around the center frequency ω.
This assumption is true often, but not always. For instance, consider a data sequence {y(t)}
consisting of a number of sinusoidal components with frequencies {ωk } in noise with small
power. Then the Capon filter (5.4.8) with center frequency ω will likely place nulls at {ψ = ωk }
to annihilate the strong sinusoidal components in the data, but will pay little attention to the weak
noise component. The consequence is that |H (ψ)|2 will be nearly zero at {ψ = ωk }, and nearly
1 at ψ = ω (by (5.4.7)), but may take rather large values at other frequencies (see, for example,
the numerical examples in [Li and Stoica 1996a], which demonstrate this behavior of the Capon
filter). In such a case, the formula (5.4.16) could significantly overestimate the “true” bandwidth;
hence, the spectral formula (5.4.17) could significantly underestimate the PSD φ(ω). �

In the derivations above, the true data-covariance matrix R has been assumed available. In
order to turn the previous PSD formulas into practical spectral estimation algorithms, we must
replace R in these formulas by a sample estimate—for instance, by

R̂ = 1

N − m

N∑
t=m+1




y(t)
...

y(t − m)


 [y∗(t) . . . y∗(t − m)] (5.4.18)

Doing so, we obtain the following two spectral estimators corresponding to (5.4.12) and (5.4.17),
respectively:

CM-Version 1: φ̂(ω) = m + 1

a∗(ω)R̂−1a(ω)
(5.4.19)

CM-Version 2: φ̂(ω) = a∗(ω)R̂−1a(ω)

a∗(ω)R̂−2a(ω)
(5.4.20)
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There is an implicit assumption in both (5.4.19) and (5.4.20) that R̂−1 exists. This assumption
sets a limit on the maximum value that can be chosen for m:

m < N/2 (5.4.21)

(Observe that rank(R̂) ≤ N − m , which is less than dim(R̂) = m + 1 if (5.4.21), is violated.) The
inequality (5.4.21) is important, since it sets a limit on the resolution achievable by the Capon
method. Indeed, since the Capon method is based on a bandpass filter with impulse response’s
aperture equal to m , we may expect its resolution threshold to be on the order of 1/m > 2/N
(with the inequality following from (5.4.21)).

As m is decreased, we can expect the resolution of Capon method to become worse (cf. the
previous discussion). On the other hand, the accuracy with which R̂ is estimated increases with
decreasing m , because more outer products are averaged in (5.4.18). The main consequence of the
increased accuracy of R̂ is to statistically stabilize the spectral estimate (5.4.19) or (5.4.20). Hence,
the choice of m should be made with the ubiquitous tradeoff between resolution and statistical
accuracy in mind. It is interesting to note that, for the Capon method, both the filter-design and
the power-calculation stages are data dependent. The accuracy of both these stages could worsen
if m is chosen too large. In applications, the maximum value that can be chosen for m might also
be limited by considerations of computational complexity.

Empirical studies have shown that the ability of the Capon method to resolve fine details
of a PSD, such as closely spaced peaks, is superior to the corresponding performance of the
periodogram-based methods. This superiority may be attributed to the higher statistical stability
of Capon method, as explained next. For m smaller than N/2 (see (5.4.21)), we may expect
the Capon method to possess worse resolution but better statistical accuracy compared with the
unwindowed or “mildly windowed” periodogram method. It should be stressed that the notion
of “resolution” refers to the ability of the theoretically averaged spectral estimate E {φ̂(ω)} to
resolve fine details in the true PSD φ(ω). This resolution is roughly inversely proportional to
the window’s length or the bandpass-filter impulse-response’s aperture. The “resolving power”
corresponding to the estimate φ̂(ω) is more difficult to quantify, but—of course—it is what inter-
ests us the most. It should be clear that the resolving power of φ̂(ω) depends not only on the
bias of this estimate (i.e., on E {φ̂(ω)}), but also on its variance. A spectral estimator with low
bias-based resolution, but high statistical accuracy may be better able to resolve fine details in
a studied PSD than can a high resolution/low accuracy estimator. Since the periodogram may
achieve better bias-based resolution than the Capon method, the higher (empirically observed)
“resolving power” of the Capon method should be due to a better statistical accuracy (i.e., a
lower variance).

In the context of the previous discussion, it is interesting to note that the Blackman–Tukey
periodogram with a Bartlett window of length 2m + 1, which is given (see (2.5.1)) by

φ̂BT(ω) =
m∑

k=−m

(m + 1 − |k |)
m + 1

r̂(k)e−iω k
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can be written in a form that bears some resemblance to the form (5.4.19) of the CM-Version 1
estimator. A straightforward calculation gives

φ̂BT(ω) =
m∑

t=0

m∑
s=0

r̂(t − s)e−iω(t−s)/(m + 1) (5.4.22)

= 1

m + 1
a∗(ω)R̂a(ω) (5.4.23)

where a(ω) is as defined in (5.4.6), and R̂ is the Hermitian, Toeplitz sample covariance matrix

R̂ =




r̂(0) r̂(1) . . . r̂(m)

r̂∗(1) r̂(0)
. . .

...
...

. . .
. . . r̂(1)

r̂∗(m) . . . r̂∗(1) r̂(0)




Comparing the previous expression for φ̂BT(ω) with (5.4.19), it is seen that the CM-Version 1 can
be obtained from Blackman–Tukey estimator by replacing R̂ in the Blackman–Tukey estimator with
R̂−1 and then inverting the resultant quadratic form. Next, we provide a brief explanation of why
this replacement and inversion make sense. That is, if we ignore for a moment the technically
sound filter-bank derivation of the Capon method, then why should the preceding way of obtaining
CM-Version 1 from the Blackman–Tukey method provide a reasonable spectral estimator? We
begin by noting (cf. Section 1.3.2) that

lim
m→∞ E


 1

m + 1

∣∣∣∣∣
m∑

t=0

y(t)e−iω t

∣∣∣∣∣
2

 = φ(ω)

However, a simple calculation shows that

E


 1

m + 1

∣∣∣∣∣
m∑

t=0

y(t)e−iω t

∣∣∣∣∣
2

 = 1

m + 1

m∑
t=0

m∑
s=0

r(t − s)e−iω t eiω s = 1

m + 1
a∗(ω)Ra(ω)

Hence,

lim
m→∞

1

m + 1
a∗(ω)Ra(ω) = φ(ω) (5.4.24)

Similarly, one can show (see, e.g., [Hannan and Wahlberg 1989]) that

lim
m→∞

1

m + 1
a∗(ω)R−1a(ω) = φ−1(ω) (5.4.25)
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Comparing (5.4.24) with (5.4.25) provides the explanation we were looking for. Observe that
the CM-Version 1 estimator is a finite-sample approximation to equation (5.4.25), whereas the
Blackman–Tukey estimator is a finite-sample approximation to equation (5.4.24).

The Capon method has also been compared with the AR method of spectral estimation. (See
Section 3.2.) It has been empirically observed that the CM-Version 1 possesses less variance,
but worse resolution than the AR spectral estimator. This may be explained by making use of
the relationship that exists between the CM-Version 1 and AR spectral estimators; see the next
subsection (and also [Burg 1972]). The CM-Version 2 spectral estimator is less well studied;
hence, its properties are not as well understood. In the next subsection, we also relate the CM-
Version 2 to the AR spectral estimator. In the case of CM-Version 2, the relationship is more
involved and so leaves less room for intuitive explanations.

5.4.2 Relationship between Capon and AR Methods

The AR method of spectral estimation was described in Chapter 3. Subsequently, we consider the
covariance matrix estimate in (5.4.18). The AR method corresponding to this sample covariance
matrix is the LS method discussed in Section 3.4.2. Let us denote the matrix R̂ in (5.4.18) by
R̂m+1, and its principal lower right k × k block by R̂k (k = 1, . . . ,m + 1), as shown here:

1

1

k

k

Rm�1
ˆ

Rk
ˆ

R1
ˆ

R �ˆ

m � 1

m � 1

(5.4.26)

With this notation, the coefficient vector θk and the residual power σ 2
k of the k th-order AR model

fitted to the data {y(t)} are obtained as the solutions to the following matrix equation (refer to
(3.4.6)):

R̂k+1

[
1
θ̂ c

k

]
=

[
σ̂ 2

k
0

]
(5.4.27)
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(The complex conjugate in (5.4.27) appears because R̂k is equal to the complex conjugate of the
sample covariance matrix used in Chapter 3.) The nested structure of (5.4.26), along with the
defining equation (5.4.27), implies

R̂m+1




1 0 . . . 0 0

1
...
...

. . . 0
1 0

θ̂ c
m θ̂ c

m−1 θ̂ c
1 1


 =



σ̂ 2

m x . . . x

0 σ̂ 2
m−1

. . .
...

...
. . .

. . . x
0 · · · 0 σ̂ 2

0


 (5.4.28)

where “x” stands for undetermined elements. Let

Ĥ =




1 0 . . . 0 0

1
...
...

. . . 0
1 0

θ̂ c
m θ̂ c

m−1 θ̂ c
1 1


 (5.4.29)

It follows from (5.4.28) that

Ĥ∗R̂m+1Ĥ =



σ̂ 2

m x . . . x

σ̂ 2
m−1

. . .
...

0
. . . x

σ̂ 2
0


 (5.4.30)

(where, once more, x denotes undetermined elements). Ĥ∗R̂m+1Ĥ is a Hermitian matrix, so the
elements designated by “x” in (5.4.30) must be equal to zero. Hence, we have proven the following
result, which is essential in establishing a relation between the AR and Capon methods of spectral
estimation (and extends the one in Exercise 3.7 to the non-Toeplitz covariance case):

The parameters {θ̂k , σ̂
2
k } of the AR models of orders k = 1, 2, . . . ,m determine

the following factorization of the inverse (sample) covariance matrix:

R̂−1
m+1 = Ĥ�̂−1Ĥ∗ ; �̂ =



σ̂ 2

m 0
σ̂ 2

m−1
. . .

0 σ̂ 2
0




(5.4.31)
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Let

Âk (ω) = [1 e−iω . . . e−ikω]

[
1
θ̂k

]
(5.4.32)

denote the polynomial corresponding to the k th-order AR model, and let

φ̂AR
k (ω) = σ̂ 2

k

|Âk (ω)|2
(5.4.33)

denote its associated PSD (see Chapter 3). It is readily verified that

a∗(ω)Ĥ = [1 eiω . . . eimω]




1 0 . . . 0 0

1
...
...

. . . 0
1 0

θ̂ c
m θ̂ c

m−1 θ̂ c
1 1




= [Â∗
m(ω), eiωÂ∗

m−1(ω), . . . , eimωÂ∗
0(ω)] (5.4.34)

It follows from (5.4.31) and (5.4.34) that the quadratic form in the denominator of the CM–Version
1 spectral estimator can be written as

a∗(ω)R̂−1a(ω) = a∗(ω)Ĥ�̂−1Ĥ∗a(ω)

=
m∑

k=0

|Âk (ω)|2/σ̂ 2
k =

m∑
k=0

1/φ̂AR
k (ω) (5.4.35)

which leads at once to

φ̂CM–1(ω) = 1

1

m + 1

m∑
k=0

1/φ̂AR
k (ω)

(5.4.36)

which is the desired relation between the CM-Version 1 and the AR spectral estimates. This relation
says that the inverse of the CM-Version 1 spectral estimator can be obtained by averaging the
inverse estimated AR spectra of orders from 0 to m . In view of the averaging operation in (5.4.36),
it is not difficult to understand why the CM-Version 1 possesses less statistical variability than
the AR estimator. Moreover, the fact that the CM-Version 1 has also been found to have worse
resolution and bias properties than the AR spectral estimate should be due to the presence of
low-order AR models in (5.4.36).

Next, consider the CM-Version 2. The previous analysis of CM-Version 1 already provides a
relation between the numerator in the spectral estimate corresponding to CM-Version 2, (5.4.20),
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and the AR spectra. In order to obtain a similar expression for the denominator in (5.4.20), some
preparations are required. The (sample) covariance matrix R̂ can be used to define m + 1 AR
models of order m , depending on which coefficient of the AR equation

â0y(t)+ â1y(t − 1)+ . . .+ âm y(t − m) = residuals (5.4.37)

we choose to set to 1. The AR model {θ̂m , σ̂
2
m} used in the previous analysis corresponds to setting

â0 = 1 in (5.4.37). However, in principle, any other AR coefficient in (5.4.37) may be normalized
to one. The mth-order LS AR model obtained by setting âk = 1 in (5.4.37) is denoted by {µ̂k =
coefficient vector and γ̂k = residual variance} and is given by the solution to the linear system of
equations (compare with (5.4.27))

R̂m+1µ̂
c
k = γ̂k uk (5.4.38)

where the (k + 1)st component of µ̂k is equal to one (k = 0, . . . ,m) and where uk stands for the
(k + 1)st column of the (m + 1)× (m + 1) identity matrix:

uk = [0 . . . 0︸ ︷︷ ︸
k

1 0 . . . 0︸ ︷︷ ︸
m−k

]T (5.4.39)

Evidently, [1 θ̂T
m ]T = µ̂0 and σ̂ 2

m = γ̂0.
As with (5.4.32) and (5.4.33), the (estimated) PSD corresponding to the k th mth-order AR

model given by (5.4.38) is obtained as

φ̂
AR(m)
k (ω) = γ̂k

|a∗(ω)µ̂c
k |2

(5.4.40)

It is shown, in the following calculation, that the denominator in (5.4.20) can be expressed as a
(weighted) average of the AR spectra in (5.4.40):

m∑
k=0

1

γ̂k φ̂
AR(m)
k (ω)

=
m∑

k=0

|a∗(ω)µ̂c
k |2

γ̂ 2
k

= a∗(ω)

[
m∑

k=0

µ̂c
k µ̂

T
k

γ̂ 2
k

]
a(ω)

= a∗(ω)R̂−1

[
m∑

k=0

uk u∗
k

]
R̂−1a(ω) = a∗(ω)R̂−2a(ω)

(5.4.41)
Combining (5.4.35) and (5.4.41) gives

φ̂CM–2 (ω) =
∑m

k=0 1/φ̂AR
k (ω)∑m

k=0 1/γ̂k φ̂
AR(m)
k (ω)

(5.4.42)
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This relation appears to be more involved, and hence more difficult to interpret, than the similar
relation (5.4.36) corresponding to CM-Version 1. Nevertheless, (5.4.42) is still obtained by
averaging various AR spectra, so we may reasonably expect that the CM-Version 2 estimator,
like the CM-Version 1 estimator, is more statistically stable but has poorer resolution than the AR
spectral estimator.

5.5 FILTER-BANK REINTERPRETATION OF THE PERIODOGRAM

As we saw in Section 5.2, the basic periodogram spectral estimator can be interpreted as an
FBA method with a preimposed bandpass filter (whose impulse response is equal to the Fourier
transform vector). In contrast, RFB and Capon are FBA methods based on designed bandpass
filters. The filter used in the RFB method is data independent, whereas the filter is a function of
the data covariances in the Capon method. The use of a data-dependent bandpass filter, such as in
the Capon method, is intuitively appealing but it also leads to the following drawback: we need
to obtain a consistent estimate of the filter impulse response, so the temporal aperture of the filter
needs to be chosen (much) smaller than the sample length. This constraint sets a rather firm limit
on the achievable spectral resolution. In addition, it appears that any filter-design methodology
other than one originally suggested by Capon will most likely lead to a problem (such as an
eigenanalysis) that should be solved for each value of the center frequency; doing so would be
a rather prohibitive computational task. With these difficulties of the data-dependent design in
mind, we may content ourselves with a “well-designed” data-independent filter. The purpose of
this section is to show that the basic periodogram and the Daniell method can be interpreted as
FBA methods based on well-designed data-independent filters, similar to the RFB method. As we
will see, the bandpass filters used by the aforementioned periodogram methods are obtained by
combining the design procedures employed in the RFB and Capon methods.

The next result is required. (See R35 in Appendix A for a proof.) Let R, H, A, and C be
matrices of dimensions (m × m), (m × K ), (m × n), and (K × n), respectively. Assume that R
is positive definite and A has full column rank equal to n (and so m ≥ n). Then the solution to
the quadratic optimization problem with linear constraints,

min
H
(H ∗RH ) subject to H ∗A = C

is given by

H = R−1A(A∗R−1A)−1C ∗ (5.5.1)

We can now proceed to derive our “new” FBA-based spectral estimation method. (As we will
see shortly, it turns out that this method is not really new!) We would like this method to possess
a facility for compromising between the bias and variance of the estimated PSD. As explained in
the previous sections of this chapter, there are two main ways of doing this within the FBA: we
either (i) use a bandpass filter with temporal aperture less than N, obtain the allowed number of
samples of the filtered signal, and then calculate the power from these samples; or (ii) use a set
of K bandpass filters with length-N impulse responses that cover a band centered on the current
frequency value, obtain one sample of the filtered signals for each filter in the set, and calculate
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the power by averaging these K samples. As argued in Section 5.3, approach (ii) might be more
effective than (i) at reducing the variance of the estimated PSD while still keeping the bias low.
In the sequel, we follow approach (ii).

Let β ≥ 1/N be the prespecified (desired) resolution, and let K be defined by equation
(5.3.12): K = βN. According to the time-bandwidth product result, a bandpass filter with a length-
N impulse response may be expected to have a bandwidth on the order of 1/N (but not less).
Hence, we can cover the preimposed passband

[ω̃ − βπ, ω̃+ βπ ] (5.5.2)

(here, ω̃ stands for the current frequency value) by using 2πβ/(2π/N ) = K filters, which pass
essentially nonoverlapping 1/N -length frequency bands in the interval (5.5.2). The requirement
that the filters’ passbands be (nearly) nonoverlapping is a key condition for variance reduction. In
order to see this, let xp denote the sample obtained at the output of the pth filter:

xp =
N −1∑
k=0

hp,k y(N − k) =
N∑

t=1

hp,N −t y(t) (5.5.3)

Here, {hp,k }N −1
k=0 is the pth filter’s impulse response. The associated frequency response is denoted

by Hp(ω). Note that, in the present case, we consider bandpass filters operating on the raw
data in lieu of baseband filters operating on demodulated data (as in RFB). Assume that the
center-frequency gain of each filter is normalized so that

Hp(ω̃) = 1, p = 1, . . . ,K (5.5.4)

Then we can write

E
{|xp |2} = 1

2π

∫ π

−π
|Hp(ω)|2φ(ω)dω

� 1

2π

∫ ω̃+π/N

ω̃−π/N
φ(ω)dω � 2π/N

2π
φ(ω̃) = 1

N
φ(ω̃) (5.5.5)

The second “equality” in (5.5.5) follows from (5.5.4) and the assumed bandpass characteristics
of Hp(ω), and the third equality results from the assumption that φ(ω) is approximately constant
over the passband. (Note that the angular frequency passband of Hp(ω) is 2π/N, as explained
before.) In view of (5.5.5), we can estimate φ(ω̃) by averaging over the squared magnitudes of
the filtered samples {xp}K

p=1. By doing so, we can achieve a reduction in variance by a factor
K, provided that the {xp} are statistically independent. (See Section 5.3 for details.) Under the
assumption that the filters {Hp(ω)} pass essentially nonoverlapping frequency bands, we readily
get (compare (5.3.27))

E
{
xpx∗

k

} = 1

2π

∫ π

−π
Hp(ω)H

∗
k (ω)φ(ω)dω � 0 (5.5.6)
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which implies that the random variables {|xp |2} are independent, at least under the Gaussian
hypothesis. Without the previous assumption on {Hp(ω)}, the filtered samples {xp} could be
strongly correlated and, therefore, a reduction in variance by a factor K cannot be guaranteed.

The conclusion from the previous (more or less heuristic) discussion is summarized in the
following:

If the passbands of the filters used to cover the prespecified interval (5.5.2) do
not overlap, then, by using all filters’ output samples—as contrasted to using
the output sample of only one filter—we achieve a reduction in the variance
of the estimated PSD by a factor equal to the number of filters. The maximum
number of such filters that can be found is given by K = βN.

(5.5.7)

By using the insights provided by the previous discussion, as summarized in (5.5.7), we can
now approach the bandpass filter’s design problem. We sample the frequency axis as in the FFT
(as almost any practical implementation of a spectral estimation method does):

ω̃s = 2π

N
s s = 0, . . . ,N − 1 (5.5.8)

The frequency samples that fall within the passband (5.5.2) are readily seen to be the following:

2π

N
(s + p) p = −K /2, . . . , 0, . . . ,K /2 − 1 (5.5.9)

(To simplify the discussion, we assume that K is an even integer.) Let

H = [h1 . . . hK ] (N × K ) (5.5.10)

denote the matrix whose pth column is equal to the impulse-response vector corresponding to the
pth bandpass filter. We assume that the input to the filters is white noise (as in RFB) and design
the filters so as to minimize the output power under the constraint that each filter pass undistorted
one (and only one) of the frequencies in (5.5.9) (as in Capon). These design objectives lead to the
optimization problem

min
H
(H ∗H ) subject to H ∗A = I

where A = [
a
( 2π

N

(
s − K

2

))
, . . . , a

( 2π
N

(
s + K

2 − 1
))] (5.5.11)

and where a(ω) = [1 e−iω . . . e−i (N −1)ω]T . Note that the constraint in (5.5.11) guarantees that each
frequency in the passband (5.5.9) is passed undistorted by one filter in the set and is annihilated
by all the other (K − 1) filters. In particular, observe that (5.5.11) implies (5.5.4).
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The solution to (5.5.11) follows at once from the result (5.5.1): the minimizing H matrix is
given by

H = A(A∗A)−1 (5.5.12)

However, the columns in A are orthogonal

A∗A = NI

(see (4.3.15)); therefore, (5.5.12) simplifies to

H = 1

N
A (5.5.13)

which is the solution of the filter design problem previously formulated.
By using (5.5.13) in (5.5.3), we get

|xp |2 = 1

N 2

∣∣∣∣∣
N∑

t=1

ei (N −t) 2π
N (s+p)y(t)

∣∣∣∣∣
2

= 1

N 2

∣∣∣∣∣
N∑

t=1

y(t)e−i 2π
N (s+p)t

∣∣∣∣∣
2

= 1

N
φ̂p

(
2π

N
(s + p)

)
p = −K /2, . . . ,K /2 − 1 (5.5.14)

where the dependence of |xp |2 on s (and hence on ω̃s ) is omitted to simplify the notation and
where φ̂p(ω) is the standard periodogram. Finally, (5.5.14), along with (5.5.5), leads to the FBA
spectral estimator

φ̂

(
2π

N
s

)
= 1

K

K/2−1∑
p=−K/2

N |xp |2 = 1

K

s+K/2−1∑
l=s−K/2

φ̂p

(
2π

N
l

)
(5.5.15)

which coincides with the Daniell periodogram estimator (2.7.16). Furthermore, for K = 1 (i.e.,
β = 1/N, which is the choice suitable for “high-resolution” applications), (5.5.15) reduces to the
unmodified periodogram. Recall also that the RFB method in Section 5.3, for large data lengths,
is expected to have a performance similar to that of the Daniell method for K > 1 and to that
of the basic periodogram for K = 1. Hence, in the family of nonparametric spectral estimation
methods, the periodograms “are doing well.”
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5.6 COMPLEMENTS

5.6.1 Another Relationship between the Capon and AR Methods

The relationship between the AR and Capon spectra established in Section 5.4.2 involves all AR
spectral models of orders 0 through m . Another interesting relationship, which involves the AR
spectrum of order m alone, is presented in this complement.

Let θ̂ = [â0 â1 . . . âm ]T (with â0 = 1) denote the vector of the coefficients of the mth-order
AR model fitted to the data-sample covariances, and let σ̂ 2 denote the corresponding residual
variance. (See Chapter 3 and (5.4.27).) Then the mth-order AR spectrum is given by

φ̂AR(ω) = σ̂ 2

|a∗(ω)θ̂ c |2 = σ̂ 2

|∑m
k=0 âk e−iωk |2 (5.6.1)

By a simple calculation, φ̂AR(ω) can be rewritten as

φ̂AR(ω) = σ̂ 2∑m
s=−m ρ̂(s)eiωs

(5.6.2)

where

ρ̂(s) =
m−s∑
k=0

âk â∗
k+s = ρ̂∗(−s), s = 0, . . . ,m. (5.6.3)

To show this, note that

∣∣∣∣∣
m∑

k=0

âk e−iωk

∣∣∣∣∣
2

=
m∑

k=0

m∑
p=0

âk â∗
p e−iω(k−p) =

m∑
k=0

k∑
s=k−m

âk â∗
k−s e−iωs

=
m∑

k=0

m∑
s=−m

âk â∗
k−s e−iωs =

m∑
s=−m

m∑
k=0

âk â∗
k+s eiωs

=
m∑

s=−m

(
m−s∑
k=0

âk â∗
k+s

)
eiωs

and (5.6.2)–(5.6.3) immediately follow.
Next, assume that the (sample) covariance matrix R̂ is Toeplitz. (We note, in passing, that

this is a minor restriction for the temporal spectral estimation problem of this chapter, but it can
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be quite a restrictive assumption for the spatial problem of the next chapter.) Then the Capon
spectrum in equation (5.4.19) (with the factor m + 1 omitted, for convenience) can be written as

φ̂CM (ω) = σ̂ 2∑m
s=−m µ̂(s)eiωs

(5.6.4)

where

µ̂(s) =
m−s∑
k=0

(m + 1 − 2k − s)âk â∗
k+s = µ̂∗(−s), s = 0, . . . ,m (5.6.5)

To prove (5.6.4), we make use of the Gohberg–Semencul (GS) formula derived in Comple-
ment 3.9.4, which is repeated here for convenience:

σ̂ 2R̂−1 =




1 · · · · · · 0

â∗
1

. . .
...

...
. . .

. . .
...

â∗
m · · · â∗

1 1







1 â1 · · · âm
...
. . .

. . .
...

...
. . . â1

0 · · · · · · 1




−




0 · · · · · · 0

âm
. . .

...
...
. . .

. . .
...

â1 · · · âm 0







0 â∗
m · · · â∗

1
...
. . .

. . .
...

...
. . . â∗

m
0 · · · · · · 0




This formula is, in fact, the complex conjugate of the GS formula in Complement 3.9.4, because
the preceding matrix R̂ is the complex conjugate of the one considered in Chapter 3.

For the sake of convenience, let âk = 0 for k /∈ [0, m]. By making use of this convention
and of the GS formula, we obtain

f (ω) � σ̂ 2a∗(ω)R̂−1a(ω)

=
m∑

p=0



∣∣∣∣∣

m∑
k=0

âk−p e−iωk

∣∣∣∣∣
2

−
∣∣∣∣∣

m∑
k=0

â∗
m+1−k+pe−iωk

∣∣∣∣∣
2



=
m∑

p=0

m∑
k=0

m∑
�=0

(âk−p â∗
�−p − â∗

m+1+p−k âm+1−�+p)e
iω(�−k)

=
m∑
�=0

m∑
p=0

�∑
s=�−m

(â�−s−pâ∗
�−p − â∗

m+1−�+s+p âm+1+p−�)eiωs (5.6.6)
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where the last equality has been obtained by the substitution s = �− k . Next, make the substitution
j = �− p in (5.6.6) to get

f (ω) =
m∑
�=0

�∑
j=�−m

�∑
s=�−m

(âj−s â∗
j − âm+1−j â

∗
m+1+s−j )e

iωs (5.6.7)

Since âj−s = 0 and â∗
m+1+s−j = 0 for s > j , we can extend the summation over s in (5.6.7) up

to s = m . Furthermore, the summand in (5.6.7) is zero for j < 0; hence, we can truncate the
summation over j to the interval [0, �]. These two observations yield

f (ω) =
m∑
�=0

�∑
j=0

m∑
s=�−m

(âj−s â∗
j − âm+1−j â

∗
m+1+s−j )e

iωs (5.6.8)

Next, decompose f (ω) additively as

f (ω) = T1(ω)+ T2(ω)

where

T1(ω) =
m∑
�=0

�∑
j=0

m∑
s=0

(âj−s â∗
j − âm+1−j â

∗
m+1+s−j )e

iωs

T2(ω) =
m∑
�=0

�∑
j=0

−1∑
s=�−m

(âj−s â∗
j − âm+1−j â

∗
m+1+s−j )e

iωs

(The term in T2 corresponding to � = m is zero.) Let

µ̂(s) �
m∑
�=0

�∑
j=0

(âj−s â∗
j − âm+1−j â

∗
m+1+s−j ) (5.6.9)

By using this notation, we can write T1(ω) as

T1(ω) =
m∑

s=0

µ̂(s)eiωs

Since f (ω) is real valued for any ω ∈ [−π, π ], we must also have

T2(ω) =
−m∑

s=−1

µ̂∗(−s)eiωs
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As the summand in (5.6.9) does not depend on �, we readily obtain

µ̂(s) =
m∑

j=0

(m + 1 − j ) (âj−s â∗
j − âm+1−j â

∗
m+1+s−j )

=
m−s∑
k=0

(m + 1 − k − s) âk â∗
k+s −

m∑
k=1

k âk â∗
k+s

=
m−s∑
k=0

(m + 1 − 2k − s)âk â∗
k+s

which coincides with (5.6.5). Thus, the proof of (5.6.4) is concluded.

Remark: The reader might wonder what happens with the formulas just derived if the AR model
parameters are calculated by using the same sample covariance matrix as in the Capon estimator.
In such a case, the parameters {âk } in (5.6.1) and in the preceding GS formula should be replaced
by {â∗

k } (see (5.4.27)). Consequently, both (5.6.2)–(5.6.3) and (5.6.4)–(5.6.5) continue to hold, but
with {âk } replaced by {â∗

k } (and {â∗
k } replaced by {âk }). �

By comparing (5.6.2) and (5.6.4), we see that the reciprocals of both φ̂AR(ω) and φ̂CM (ω)

have the form of a Blackman–Tukey spectral estimate associated with the “covariance sequences”
{ρ̂(s)} and {µ̂(s)}, respectively. The only difference between φ̂AR(ω) and φ̂CM (ω) is that the
sequence {µ̂(s)} corresponding to φ̂CM (ω) is a “linearly tapered” version of the sequence {ρ̂(s)}
corresponding to φ̂AR(ω). Much as with the interpretation in Section 5.4.2, the previous obser-
vation can be used to understand intuitively why the Capon spectral estimates are smoother and
have poorer resolution than the AR estimates of the same order. (For more details on this aspect
and other aspects related to the discussion in this complement, see [Musicus 1985].)

We remark in passing that the name “covariance sequence” given, for example, to {ρ̂(s)},
is not coincidental: The {ρ̂(s)} are so-called sample inverse covariances associated with R̂, and
they can be shown to possess a number of interesting and useful properties. (See, for example,
[Cleveland 1972; Bhansali 1980].)

The formula (5.6.4) can be used for the computation of φ̂CM (ω), as we now show. Assuming
that R̂ is already available, we can use the Levinson–Durbin algorithm to compute {âk } and σ̂ 2

(and thus {µ̂(s)}) in O(m2) flops. Then (5.6.4) can be evaluated at M Fourier frequencies (say)
by using the FFT. The resulting total computational burden is on the order of O(m2 + M log2 M )

flops. For commonly encountered values of m and M, this is about m times smaller than the
burden associated with the eigendecomposition-based computational procedure of Exercise 5.5.
Note, however, that the latter algorithm can be applied to a general R̂ matrix, whereas the one
derived in this complement is limited to Toeplitz covariance matrices. Finally, note that the
extension of the results in this complement to two-dimensional (2D) signals can be found in
[Jakobsson, Marple, and Stoica 2000].
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5.6.2 Multiwindow Interpretation of Daniell and Blackman–Tukey
Periodograms

As stated in Exercise 5.1, the Bartlett and Welch periodograms can be cast into the multiwindow
framework of Section 5.3.3. In other words, they can be written in the following form (see (5.7.1)):

φ̂(ω) = 1

K

K∑
p=1

∣∣∣∣∣
N∑

t=1

wp,t y(t)e−iωt

∣∣∣∣∣
2

(5.6.10)

for certain temporal (or data) windows {wp,t } (also called tapers). Here, K denotes the number
of windows used by the method in question.

In this complement, we show that the Daniell periodogram and the Blackman–Tukey peri-
odogram (with some commonly used lag windows) can also be interpreted as multiwindow
methods. Unlike the approximate multiwindow interpretation of a spectrally smoothed peri-
odogram described in Section 5.3.3 (see equations (5.3.31)–(5.3.33) there), the multiwindow
interpretations presented in this complement are exact. More details on the topic of this comple-
ment can be found in [McCloud, Scharf, and Mullis 1999], where it is also shown that the
Blackman–Tukey periodogram with any “good” window can be cast in a multiwindow framework,
but only approximately.

We begin by writing (5.6.10) as a quadratic form in the data sequence. Let

z (ω) =




y(1)e−iω

...

y(N )e−iNω


 , (N × 1)

W =




w1,1 · · · w1,N
...

...

wK ,1 · · · wK ,N


 , (K × N )

and let [x ]p denote the pth element of a vector x . Using this notation, we can rewrite (5.6.10) in
the desired form

φ̂(ω) = 1

K

K∑
p=1

∣∣[Wz (ω)]p

∣∣2
or

φ̂(ω) = 1

K
z ∗(ω)W ∗Wz (ω) (5.6.11)

which is a quadratic form in z (ω). The rank of the matrix W ∗W is less than or equal to K ;
typically, rank(W ∗W ) = K � N.
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Next, we turn our attention to the Daniell periodogram (see (2.7.16))

φ̂D (ω) = 1

2J + 1

J∑
j=−J

φ̂p

(
ω + j

2π

N

)
(5.6.12)

where φ̂p(ω) is the standard periodogram given in (2.2.1):

φ̂p(ω) = 1

N

∣∣∣∣∣
N∑

t=1

y(t)e−iωt

∣∣∣∣∣
2

Letting

a∗
j =

[
e−i 2π

N j , e−i 2π
N (2j ), . . . , e−i 2π

N (Nj )
]

(5.6.13)

we can write

φ̂p

(
ω + j

2π

N

)
= 1

N

∣∣∣∣∣
N∑

t=1

y(t)e−iωt e−i 2π
N (jt)

∣∣∣∣∣
2

= 1

N

∣∣∣a∗
j z (ω)

∣∣∣2 = 1

N
z ∗(ω)aj a

∗
j z (ω) (5.6.14)

which implies that

φ̂D (ω) = 1

N (2J + 1)
z ∗(ω)W ∗

D WD z (ω) (5.6.15)

where

WD = [
a−J , . . . , a0, . . . , aJ

]∗
, (2J + 1)× N (5.6.16)

This establishes the fact that the Daniell periodogram can be interpreted as a multiwindow method
by using K = 2J + 1 tapers, given by (5.6.16). Like the tapers used by the seemingly more
elaborate RFB approach, the Daniell periodogram tapers can also be motivated by using a sound
design methodology. (See Section 5.5.)

In the remaining part of this complement, we consider the Blackman–Tukey periodogram in
(2.5.1) with a window of length M = N :

φ̂BT (ω) =
N −1∑

k=−(N −1)

w(k)r̂(k)e−iωk (5.6.17)
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A commonly used class of windows, including the Hanning and Hamming windows in Table 2.1,
is described by the equation

w(k) = α + β cos(k) =
(
α + β

2
eik + β

2
e−ik

)
(5.6.18)

for various parameters α, β, and . Inserting (5.6.18) into (5.6.17) yields

φ̂BT (ω) =
N −1∑

k=−(N −1)

(
α + β

2
eik + β

2
e−ik

)
r̂(k)e−iωk

= αφ̂p(ω)+ β

2
φ̂p(ω −)+ β

2
φ̂p(ω +) (5.6.19)

where φ̂p(ω) is the standard periodogram given by (2.2.1) or, equivalently, by (2.2.2):

φ̂p(ω) =
N −1∑

k=−(N −1)

r̂(k)e−iωk

Comparing (5.6.19) with (5.6.12) (and with (5.6.14)–(5.6.16)) allows us to write

φ̂BT (ω) = 1

N
z ∗(ω)W ∗

BT WBT z (ω) (5.6.20)

where

WBT =
[√

β

2
a−,

√
αa0,

√
β

2
a

]∗
, (3 × N ) (5.6.21)

for α, β ≥ 0 and where a is given by (similarly to aj in (5.6.13))

a∗
 = [

e−i, . . . , e−iN ]
Hence, we conclude that the Blackman–Tukey periodogram with a Hamming or Hanning window
(or any other window having the form of (5.6.18)) can be interpreted as a multiwindow method by
using K = 3 tapers given by (5.6.21). Similarly, φ̂BT (ω) using the Blackman window in Table 2.1
can be shown to be equivalent to a multiwindow method with K = 7 tapers.

Interestingly, as a by-product of the analysis in this complement, we note from (5.6.19) that
the Blackman–Tukey periodogram with a window of the form in (5.6.18) can be very efficiently
computed from the values of the standard periodogram. Because the Blackman window has a form
similar to (5.6.18), φ̂BT (ω) using the Blackman window can similarly be implemented in an effi-
cient way. This way of computing φ̂BT (ω) is faster than the method outlined in Complement 2.8.2
for a general lag window.
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5.6.3 Capon Method for Exponentially Damped Sinusoidal Signals

The signals that are dealt with in some applications of spectral analysis, such as in magnetic
resonance spectroscopy, consist of a sum of exponentially damped sinusoidal components (damped
sinusoids, for short), instead of the pure sinusoids as in (4.1.1). Such signals are described by the
equation

y(t) =
n∑

k=1

βk e(ρk +iωk )t + e(t), t = 1, . . . ,N (5.6.22)

where βk and ωk are the amplitude and frequency of the k th component (as in Chapter 4), and
ρk < 0 is the so-called damping parameter. The (noise-free) signal in (5.6.22) is nonstationary ;
hence, it does not have a power spectral density. However, it possesses an amplitude spectrum
that is defined as follows:

|β(ρ, ω)| =
{

|βk |, for ω = ωk , ρ = ρk (k = 1, . . . , n)

0, elsewhere
(5.6.23)

Furthermore, because an exponentially damped sinusoid satisfies the finite-energy condition in
(1.2.1), the (noise-free) signal in (5.6.22) also possesses an energy spectrum. As with (5.6.23),
we can define the energy spectrum of the damped sinusoidal signal in (5.6.22) as a 2D function
of (ρ, ω) that consists of n pulses at {ρk , ωk }, where the height of the function at each of these
points is equal to the energy of the corresponding component. The energy of a generic component
with parameters (β, ρ, ω) is given by

N∑
t=1

∣∣βe(ρ+iω)t
∣∣2 = |β|2e2ρ

N −1∑
t=0

e2ρt = |β|2e2ρ 1 − e2ρN

1 − e2ρ
(5.6.24)

It follows from (5.6.24) and the foregoing discussion that the energy spectrum can be expressed
as a function of the amplitude spectrum in (5.6.23), via the formula

E (ρ, ω) = |β(ρ, ω)|2L(ρ) (5.6.25)

where

L(ρ) = e2ρ 1 − e2ρN

1 − e2ρ
(5.6.26)

The amplitude spectrum, and hence the energy spectrum, of the signal in (5.6.22) can be estimated
by using an extension of the Capon method that is introduced in Section 5.4. To develop this
extension, we consider the data vector:

ỹ(t) = [
y(t), y(t + 1), . . . , y(t + m)

]T
(5.6.27)

(Alternatively, we could have used the data vector defined in (5.4.2).) Let h denote the coefficient
vector of the Capon FIR filter as in (5.4.1). Then, the output of the filter with the data vector in
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(5.6.27) is given by

ỹF (t) = h∗ỹ(t) = h∗




y(t)
...

y(t + m)


 , t = 1, . . . ,N − m (5.6.28)

To derive Capon-like estimates of the amplitude and energy spectra of (5.6.22), let

R̂ = 1

N − m

N −m∑
t=1

ỹ(t)ỹ∗(t) (5.6.29)

denote the sample covariance matrix of the data vector in (5.6.27). Then the sample variance of
the filter output can be written as

1

N − m

N −m∑
t=1

|ỹF (t)|2 = h∗R̂h (5.6.30)

By definition, the Capon filter minimizes (5.6.30) under the constraint that the filter pass, without
distortion, a generic damped sinusoid with parameters (β, ρ, ω). The filter output corresponding
to such a generic component is given by

h∗




βe(ρ+iω)t

βe(ρ+iω)(t+1)

...

βe(ρ+iω)(t+m)


 =


h∗




1
eρ+iω

...

e(ρ+iω)m




 βe(ρ+iω)t (5.6.31)

Hence, the distortionless filtering constraint can be expressed as

h∗a(ρ, ω) = 1 (5.6.32)

where

a(ρ, ω) = [
1, eρ+iω, . . . , e(ρ+iω)m]T (5.6.33)

The minimizer of the quadratic function in (5.6.30) under the linear constraint (5.6.32) is given
by the familiar formula (see (5.4.7)–(5.4.8))

h(ρ, ω) = R̂−1a(ρ, ω)

a∗(ρ, ω)R̂−1a(ρ, ω)
(5.6.34)

where we have stressed, via notation, the dependence of h on both ρ and ω.
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The output of the filter in (5.6.34), due to a possible (generic) damped sinusoid in the signal
with parameters (β, ρ, ω), is given (cf. (5.6.31) or (5.6.32)) by

h∗(ρ, ω)ỹ(t) = βe(ρ+iω)t + eF (t), t = 1, . . . ,N − m (5.6.35)

where eF (t) denotes the filter output due to noise and to any other signal components. For given
(ρ, ω), the least-squares estimate of β in (5.6.35) (see, e.g., Result R32 in Appendix A) is

β̂(ρ, ω) =

N −m∑
t=1

h∗(ρ, ω)ỹ(t)e(ρ−iω)t

N −m∑
t=1

e2ρt

(5.6.36)

Let L̃(ρ) be defined similarly to L(ρ) in (5.6.26), but with N replaced by N − m , and let

Ỹ (ρ, ω) = 1

L̃(ρ)

N −m∑
t=1

ỹ(t)e(ρ−iω)t (5.6.37)

It follows from (5.6.36), along with (5.6.25), that Capon-like estimates of the amplitude spectrum
and energy spectrum of the signal in (5.6.22) can be obtained, respectively, as

∣∣∣β̂(ρ, ω)∣∣∣ =
∣∣∣h∗(ρ, ω)Ỹ (ρ, ω)

∣∣∣ (5.6.38)

and as

Ê (ρ, ω) =
∣∣∣β̂(ρ, ω)∣∣∣2 L(ρ) (5.6.39)

Remark: We could have estimated the amplitude, β, of a generic component with param-
eters (β, ρ, ω) directly from the unfiltered data samples {y(t)}N

t=1. However, the use of the
Capon-filtered data in (5.6.35) usually leads to enhanced performance. The main reason for this
performance gain lies in the fact that the SNR corresponding to the generic component in the
filtered data is typically much higher than that in the raw data, owing to the good rejection prop-
erties of the Capon filter. This higher SNR leads to more accurate amplitude estimates, in spite
of the loss of m data samples in the filtering operation in (5.6.35). �

Finally, we note that the sample Capon energy or amplitude spectrum can be used to estimate
the signal parameters {βk , ρk , ωk } in a standard manner. Specifically, we compute either |β̂(ρ, ω)|
or Ê (ρ, ω) at the points of a fine grid covering the region of interest in the two-dimensional (ρ, ω)
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plane and obtain estimates of (ρk , ωk ) as the locations of the n largest spectral peaks; estimates
of βk can then be derived from (5.6.36), with (ρ, ω) replaced by the estimated values of (ρk , ωk ).
There is empirical evidence that the use of Ê (ρ, ω) in general leads to (slightly) more accurate
signal parameter estimates than does the use of |β̂(ρ, ω)|; see [Stoica and Sundin 2001]. For
more details on the topic of this complement, including the computation of the two-dimensional
spectra in (5.6.38) and (5.6.39), we refer the reader to [Stoica and Sundin 2001].

5.6.4 Amplitude and Phase Estimation Method (APES)

The design idea behind the Capon filter is based on the following two principles, as discussed in
Section 5.4:

(a) the sinusoid with frequency ω (currently considered in the analysis) passes through the
filter in as distortionless a manner as possible; and

(b) any other frequencies in the data (corresponding, e.g., to other sinusoidal components in
the signal or to noise) are suppressed by the filter as much as possible.

The output of the filter whose input is a sinusoid with frequency ω, {βeiωt }, is given (assuming
forward filtering, as in (5.4.2)) by

h∗




eiωt

eiω(t−1)

...

eiω(t−m)


β =


h∗




1
e−iω

...

e−iωm




 βeiωt (5.6.40)

For backward filtering, as used in Complement 5.6.3, a similar result can be derived. It follows
from (5.6.40) that the design objective in (a) can be expressed mathematically via the linear
constraint on h

h∗a(ω) = 1 (5.6.41)

where

a(ω) = [
1, e−iω, . . . , e−iωm]T

(5.6.42)

(See (5.4.5)–(5.4.7).) Regarding the second design objective, its statement in (b) is sufficiently
general to allow several different mathematical formulations. The Capon method is based on the
idea that the goal in (b) is achieved if the power at the filter output is minimized. (See (5.4.7).)
In this complement, another way to formulate (b) mathematically is described.

At a given frequency ω, let us choose h such that the filter output, {h∗ỹ(t)}, where

ỹ(t) = [
y(t), y(t − 1), . . . , y(t − m)

]T

is as close as possible in a least-squares (LS) sense to a sinusoid with frequency ω and constant
amplitude β. Mathematically, we obtain both h and β, for a given ω, by minimizing the LS
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criterion

min
h,β

1

N − m

N∑
t=m+1

∣∣h∗ỹ(t)− βeiωt
∣∣2 subject to h∗a(ω) = 1 (5.6.43)

Note that the estimation of the amplitude and phase (i.e., |β| and arg(β)) of the sinusoid with
frequency ω is an intrinsic part of the method based on (5.6.43). This observation motivates the
name Amplitude and Phase EStimation (APES) given to the method described by (5.6.43).

Because (5.6.43) is a linearly constrained quadratic problem, we should be able to find its
solution in closed form. Let

g(ω) = 1

N − m

N∑
t=m+1

ỹ(t)e−iωt (5.6.44)

Then a straightforward calculation shows that the criterion function in (5.6.43) can be rewritten as

1

N − m

N∑
t=m+1

∣∣h∗ỹ(t)− βeiωt
∣∣2

= h∗R̂h − β∗h∗g(ω)− βg∗(ω)h + |β|2

= ∣∣β − h∗g(ω)
∣∣2 + h∗R̂h − ∣∣h∗g(ω)

∣∣2
= ∣∣β − h∗g(ω)

∣∣2 + h∗[R̂ − g(ω)g∗(ω)
]
h (5.6.45)

where

R̂ = 1

N − m

N∑
t=m+1

ỹ(t)ỹ∗(t) (5.6.46)

(See (5.4.18).) The minimization of (5.6.45) with respect to β is immediate:

β(ω) = h∗g(ω) (5.6.47)

Inserting (5.6.47) into (5.6.45) yields the following problem, whose solution will determine the
filter coefficient vector:

min
h

h∗Q̂(ω)h subject to h∗a(ω) = 1 (5.6.48)

In this equation
Q̂(ω) = R̂ − g(ω)g∗(ω) (5.6.49)
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As (5.6.48) has the same form as the Capon filter-design problem (see (5.4.7)), the solution to
(5.6.48) is readily derived (compare (5.4.8)):

h(ω) = Q̂−1(ω)a(ω)

a∗(ω)Q̂−1(ω)a(ω)
(5.6.50)

A direct implementation of (5.6.50) would require the inversion of the matrix Q̂(ω) for each
value of ω ∈ [0, 2π ] considered. To avoid such an intensive computational task, we can use the
matrix inversion lemma (Result R27 in Appendix A) to express the inverse in (5.6.50) as follows:

Q̂−1(ω) =
[
R̂ − g(ω)g∗(ω)

]−1 = R̂−1 + R̂−1g(ω)g∗(ω)R̂−1

1 − g∗(ω)R̂−1g(ω)
(5.6.51)

Inserting (5.6.51) into (5.6.50) yields the following expression for the APES filter :

h(ω) =
[
1 − g∗(ω)R̂−1g(ω)

]
R̂−1a(ω)+

[
g∗(ω)R̂−1a(ω)

]
R̂−1g(ω)[

1 − g∗(ω)R̂−1g(ω)
]

a∗(ω)R̂−1a(ω)+
∣∣∣a∗(ω)R̂−1g(ω)

∣∣∣2 (5.6.52)

From (5.6.47) and (5.6.52), we obtain the following formula for the APES estimate of the (complex)
amplitude spectrum (see Complement 5.6.3 for a definition of the amplitude spectrum):

β(ω) = a∗(ω)R̂−1g(ω)[
1 − g∗(ω)R̂−1g(ω)

]
a∗(ω)R̂−1a(ω)+

∣∣∣a∗(ω)R̂−1g(ω)
∣∣∣2 (5.6.53)

Comparing this with the Capon estimate of the amplitude spectrum, given by

β(ω) = a∗(ω)R̂−1g(ω)

a∗(ω)R̂−1a(ω)
(5.6.54)

we see that the APES estimate in (5.6.53) is more involved computationally, but not by much.

Remark: Our discussion has focused on the estimation of the amplitude spectrum. If the power
spectrum is what we want to estimate, then we can use the APES filter, (5.6.52), in the PSD
estimation approach described in Section 5.4, or we can simply take |β(ω)|2 (along with a possible
scaling) as an estimate of the PSD. �

This derivation of APES is adapted from [Stoica, Li, and Li 1999]. The original derivation
of APES, provided in [Li and Stoica 1996a], was different: It was based on an approximate
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maximum likelihood approach. We refer the reader to [Li and Stoica 1996a] for the original
derivation of APES and for many other details on this approach to spectral analysis.

We end this complement with a brief comparison of Capon and APES from a performance
standpoint. Extensive empirical and analytical studies of these two methods (see, e.g., [Larsson,
Li, and Stoica 2003] and its references) have shown that Capon has a (slightly) higher resolution
than APES and also that the Capon estimates of the frequencies of a multicomponent sinusoidal
signal in noise are more accurate than the APES estimates. On the other hand, for a given
set of frequency estimates {ω̂k } in the vicinity of the true frequencies, the APES estimates of
the amplitudes {βk } are much more accurate than the Capon estimates; the Capon estimates are
always biased towards zero, sometimes significantly so. This suggests that, at least for line-spectral
analysis, a method better than either Capon or APES can be obtained by combining them in the
following way:

• Estimate the frequencies {ωk } as the locations of the dominant peaks of the Capon spectrum.
• Estimate the amplitudes {βk } by using the APES formula (5.6.53) evaluated at the frequency

estimates obtained in the previous step.

This combined Capon-APES (CAPES) method was introduced in [Jakobsson and Stoica 2000].

5.6.5 Amplitude and Phase Estimation Method for Gapped Data
(GAPES)

In some applications of spectral analysis, the data sequence has gaps; these gaps may be due to the
failure of a measuring device or due to the impossibility of performing measurements for some
periods of time (such as in astronomy). In this complement, we will present an extension of the
Amplitude and Phase EStimation (APES) method, outlined in Complement 5.6.4, to gapped-data
sequences. Gapped-data sequences are evenly sampled data strings that contain unknown samples
which are usually, but not always, clustered together in groups of reasonable size. We will use
the acronym GAPES to designate the extended approach.

Most of the available methods for the spectral analysis of gapped data perform (either implic-
itly or explicitly) an interpolation of the missing data, followed by a standard full-data spectral
analysis. The data interpolation step is critical, and it cannot be completed without making (some-
times hidden) assumptions on the data sequence. For example, one such assumption is that the
data is bandlimited with a known cutoff frequency. Intuitively, these assumptions can be viewed
as attempts to add extra “information” to the spectral analysis problem, which might be able to
compensate for the information lost due to the missing data samples. The problem with these
assumptions, though, is that they are not generally easy to check in applications, either a priori
or a posteriori. The GAPES approach presented here is based on the sole assumption that the
spectral content of the missing data is similar to that of the available data. This assumption is
very natural, and one could argue that it introduces no restriction at all.

We begin the derivation of GAPES by rewriting the APES least-squares fitting criterion (see
equation (5.6.43) in Complement 5.6.4) in a form that is more convenient for the discussion here.
Specifically, we use the notation h(ω) and β(ω) to stress the dependence on ω of both the APES
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filter and the amplitude spectrum. Also, we note that, in applications, the frequency variable is
usually sampled as

ωk = 2π

K
k , k = 1, . . . ,K (5.6.55)

where K is an integer (much) larger than N. Making use of the above notation and (5.6.55), we
rewrite the APES criterion as follows:

min
K∑

k=1

N∑
t=m+1

∣∣h∗(ωk )ỹ(t)− β(ωk )e
iωk t

∣∣2
subject to h∗(ωk )a(ωk ) = 1 for k = 1, . . . ,K

(5.6.56)

Evidently, the minimization of the criterion in (5.6.56) with respect to {h(ωk )} and {β(ωk )}
reduces to the minimization of the inner sum in (5.6.56) for each k . Hence, in the full-data
case, the problem in (5.6.56) is equivalent to the standard APES problem in equation (5.6.43) in
Complement 5.6.4. However, in the gapped-data case, the form of the APES criterion in (5.6.56)
turns out to be more convenient than that in (5.6.43), as we shall subsequently see.

To continue, we need some additional notation. Let

ya = the vector containing the available samples in {y(t)}N
t=1

yu = the vector containing the unavailable samples in {y(t)}N
t=1

The main idea behind the GAPES approach is to minimize (5.6.56) with respect to both {h(ωk )}
and {β(ωk )} as well as with respect to yu . Such a formulation of the gapped-data problem is
appealing, because it leads to

(i) an analysis filter bank {h(ωk )} for which the filtered sequence is as close as possible in a
LS sense to the (possible) sinusoidal component in the data that has frequency ωk , which
is the main design goal in the filter-bank approach to spectral analysis; and

(ii) an estimate of the missing samples in yu whose spectral content mimics the spectral
content of the available data as much as possible in the LS sense of (5.6.56).

The criterion in (5.6.56) is a quartic function of the unknowns {h(ωk )}, {β(ωk )}, and yu .
Consequently, in general, its minimization requires the use of an iterative algorithm; that is, a
closed-form solution is unlikely to exist. The GAPES method uses a cyclic minimizer to minimize
the criterion in (5.6.56). (See Complement 4.9.5 for a general description of cyclic minimizers.)
A step-by-step description of GAPES is given in the following box.

To reduce the computational burden of the GAPES algorithm, we can run it with a value of
K that is not much larger than N (e.g., K ∈ [2N , 4N ]). After the iterations are terminated, the
final spectral estimate can be evaluated on a (much) finer frequency grid, if desired.
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The GAPES Algorithm

Step 0. Obtain initial estimates of {h(ωk )} and {β(ωk )}.
Step 1. Use the most recent estimates of {h(ωk )} and {β(ωk )} to estimate yu via the

minimization of (5.6.56).
Step 2. Use the most recent estimate of yu to estimate {h(ωk )} and {β(ωk )} via the mini-

mization of (5.6.56).
Step 3. Check on the convergence of the iteration—for example, by checking whether

the relative change of the criterion between two consecutive iterations is smaller
than a preassigned value. If no, then go to Step 1. If yes, then we have a final
amplitude spectrum estimate given by {β̂(ωk )}K

k=1. If desired, this estimate can be
transformed into a power spectrum estimate, as explained in Complement 5.6.4.

A cyclic minimizer reduces the criterion function at each iteration, as discussed in Comple-
ment 4.9.5. Furthermore, in the present case, this reduction is strict, because the solutions to the
minimization problems with respect to yu and to {h(ωk ), β(ωk )} in Steps 1 and 2 are unique under
weak conditions. Combining this observation with the fact that the criterion in (5.6.56) is bounded
from below by zero, we can conclude that the GAPES algorithm converges to a minimum point
of (5.6.56). This minimum may be a local or global minimum, depending in part on the quality of
the initial estimates of {h(ωk ), β(ωk )} used in Step 0. This initialization step and the remaining
steps in the GAPES algorithm are discussed in more detail next.

Step 0. A simple way to obtain initial estimates of {h(ωk ), β(ωk )} is to apply APES to the
full-data sequence with yu = 0. This way of initializing GAPES can be interpreted as permuting
Step 1 with Step 2 in the algorithm and initializing the algorithm in Step 0 with yu = 0.

A more elaborate initialization scheme consists of using only the available data samples
to build the sample-covariance matrix R̂ in (5.6.46) needed in APES. Provided that there are
enough samples so that the resulting R̂ matrix is nonsingular, this initialization scheme usually
gives more accurate estimates of {h(ωk ), β(ωk )} than the ones obtained by setting yu = 0. (See
[Stoica, Larsson, and Li 2000] for details.)

Step 1. We want to find the solution ŷu to the problem

min
yu

K∑
k=1

N∑
t=m+1

∣∣∣ĥ∗(ωk )ỹ(t)− β̂(ωk )e
iωk t

∣∣∣2 (5.6.57)

where ỹ(t) = [
y(t), y(t − 1), . . . , y(t − m)

]T
. We will show that this minimization problem is

quadratic in yu (for given {ĥ(ωk )} and {β̂(ωk )}) and thus admits of a closed-form solution.
Let ĥ∗(ωk ) = [

h0,k , h1,k , . . . , hm,k
]
, and define

Hk =




h0,k h1,k · · · hm,k 0
. . .

. . .
. . .

0 h0,k h1,k · · · hm,k


 , (N − m)× N
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µk = β̂(ωk )




eiωk N

...

eiωk (m+1)


 , (N − m)× 1

Using this notation, we can write the quadratic criterion in (5.6.57) as

K∑
k=1

∥∥∥∥∥∥∥Hk




y(N )
...

y(1)


 − µk

∥∥∥∥∥∥∥
2

(5.6.58)

Next, we define the matrices Ak and Uk via the following equality:

Hk




y(N )
...

y(1)


 = Ak ya + Uk yu (5.6.59)

With this notation, the criterion in (5.6.58) becomes

K∑
k=1

‖Uk yu − (µk − Ak ya)‖2 (5.6.60)

The minimizer of (5.6.60) with respect to yu is readily found (see Result R32 in Appendix A)
to be

ŷu =
[

K∑
k=1

U ∗
k Uk

]−1 [ K∑
k=1

U ∗
k (µk − Ak ya)

]
(5.6.61)

The preceding inverse matrix exists under weak conditions; for details, see [Stoica, Larsson,
and Li 2000].

Step 2. The solution to this step can be computed by applying the APES algorithm in
Complement 5.6.4 to the data sequence made from ya and ŷu .

The description of the GAPES algorithm is now complete. Numerical experience with this
algorithm, reported in [Stoica, Larsson, and Li 2000], suggests that GAPES has good perfor-
mance, particularly for data consisting of a mixture of sinusoidal signals superimposed in noise.

5.6.6 Extensions of Filter-Bank Approaches to Two-Dimensional Signals

The following filter-bank approaches for one-dimensional (1D) signals have been discussed so
far in this chapter and its complements:

• the periodogram,
• the refined filter bank method,
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• the Capon method, and
• the APES method

In this complement, we will explain briefly how these nonparametric spectral analysis methods
can be extended to the case of two-dimensional (2D) signals. In the process, we also provide new
interpretations for some of these methods, which are particularly useful when we want very simple
(although somewhat heuristic) derivations of the methods in question. We will in turn discuss the
extension of each of the methods listed above. Note that 2D spectral analysis finds applications
in image processing, synthetic aperture radar imagery, etc. See [Larsson, Li, and Stoica 2003]
for a review that covers the 2D methods discussed in this complement and their application to
synthetic aperture radar. The 2D extensions of some parametric methods for line-spectral analysis
are discussed in Complement 4.9.7.

Periodogram

The 1D periodogram can be obtained by a least-squares (LS) fitting of the data {y(t)} to a generic
1D sinusoidal sequence {βeiωt }:

min
β

N∑
t=1

∣∣y(t)− βeiωt
∣∣2 (5.6.62)

The solution to (5.6.62) is readily found to be

β(ω) = 1

N

N∑
t=1

y(t)e−iωt (5.6.63)

The squared modulus of (5.6.63) (scaled by N ; see Section 5.2) gives the 1D periodogram

1

N

∣∣∣∣∣
N∑

t=1

y(t)e−iωt

∣∣∣∣∣
2

(5.6.64)

In the 2D case, let {y(t, t̄ )} (for t = 1, . . . ,N and t̄ = 1, . . . , N̄ ) denote the available data matrix,
and let {βei (ωt+ω̄t̄ )} denote a generic 2D sinusoid. The LS fit of the data to the generic sinusoid

min
β

N∑
t=1

N̄∑
t̄=1

∣∣∣y(t, t̄ )− βei (ωt+ω̄t̄ )
∣∣∣2 ⇐⇒ min

β

N∑
t=1

N̄∑
t̄=1

∣∣∣y(t, t̄ )e−i (ωt+ω̄t̄ ) − β

∣∣∣2 (5.6.65)

has the following solution:

β(ω, ω̄) = 1

N N̄

N∑
t=1

N̄∑
t̄=1

y(t, t̄ )e−i (ωt+ω̄t̄ ) (5.6.66)
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Much as in the 1D case, the scaled squared magnitude of (5.6.66) yields the 2D periodogram

1

N N̄

∣∣∣∣∣∣
N∑

t=1

N̄∑
t̄=1

y(t, t̄ )e−i (ωt+ω̄t̄ )

∣∣∣∣∣∣
2

(5.6.67)

which can be computed efficiently by means of a 2D FFT algorithm, as described next.
The 2D FFT algorithm computes the 2D DTFT of a sequence {y(t, t̄ )} (for t = 1, . . . ,N ;

t̄ = 1, . . . , N̄ ) on a grid of frequency values defined by

ωk = 2πk

N
, k = 0, . . . ,N − 1

ω̄� = 2π�

N̄
, � = 0, . . . , N̄ − 1

The 2D FFT algorithm achieves computational efficiency by making use of the 1D FFT described
in Section 2.3. Let

Y (k , �) =
N∑

t=1

N̄∑
t̄=1

y(t, t̄ )e
−i

(
2πk
N

t+ 2π�
N̄

t̄
)

=
N∑

t=1

e
−i 2πk

N
t

N̄∑
t̄=1

y(t, t̄ )e
−i 2π�

N̄
t̄

︸ ︷︷ ︸
�Vt (�)

(5.6.68)

=
N∑

t=1

Vt (�)e
−i 2πk

N
t

(5.6.69)

For each t = 1, . . . ,N , the sequence {Vt (�)}N̄ −1
�=0 defined in (5.6.68) can be efficiently computed

by using a 1D FFT of length N̄ (cf. Section 2.3). In addition, for each � = 0, . . . , N̄ − 1, the sum
in (5.6.69) can be efficiently computed by using a 1D FFT of length N . If N is a power of two, an
N -point 1D FFT requires N

2 log2 N flops. Thus, if N and N̄ are powers of two, then the number
of operations needed to compute {Y (k , �)} is

N
N̄

2
log2 N̄ + N̄

N

2
log2 N = N N̄

2
log2(N N̄ ) flops (5.6.70)

If N or N̄ is not a power of two, zero padding can be used.
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Refined Filter-Bank (RFB) Method

Similarly to the 1D case (see (5.3.30) or (5.7.1)), the 2D RFB method can be implemented as a
multiwindowed periodogram (cf. (5.6.67)):

1

K

K∑
p=1

∣∣∣∣∣∣
N∑

t=1

N̄∑
t̄=1

wp(t, t̄ ) y(t, t̄ ) e−i (ωt+ω̄t̄ )

∣∣∣∣∣∣
2

(5.6.71)

where {wp(t, t̄ )}K
p=1 are the 2D Slepian data windows (or tapers). The problem left is to derive

2D extensions of the 1D Slepian tapers, discussed in Section 5.3.1.
The frequency response of a 2D taper {w(t, t̄ )} is given by

N∑
t=1

N̄∑
t̄=1

w(t, t̄ )e−i (ωt+ω̄t̄ ) (5.6.72)

Let us define the matrices

W =




w(1, 1) · · · w(1, N̄ )
...

...

w(N , 1) · · · w(N , N̄ )




B =




e−i (ω+ω̄) · · · e−i (ω+ω̄N̄ )

...
...

e−i (ωN +ω̄) · · · e−i (ωN +ω̄N̄ )




and let vec(·) denote the vectorizaton operator that stacks the columns of its matrix argument into
a single vector. Also, let

a(ω) =




e−iω

...

e−iNω


 , ā(ω) =




e−i ω̄

...

e−i N̄ ω̄


 (5.6.73)

and let the symbol ⊗ denote the Kronecker matrix product. (The Kronecker product of two
matrices, X of size m × n and Y of size m̄ × n̄ , is an mm̄ × nn̄ matrix whose (i , j ) block of
size m̄ × n̄ is given by Xij · Y , for i = 1, . . . ,m and j = 1, . . . , n , where Xij denotes the (i , j )th
element of X ; see, e.g., [Horn and Johnson 1985] for the properties of ⊗.) Finally, let

w = vec(W )

= [
w(1, 1), . . . ,w(N , 1)| · · · |w(1, N̄ ), . . . ,w(N , N̄ )

]T
(5.6.74)
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and
b(ω, ω̄) = vec(B)

=
[
e−i (ω+ω̄), . . . , e−i (ωN +ω̄)| · · · |e−i (ω+ω̄N̄ ), . . . , e−i (ωN +ω̄N̄ )

]T

= ā(ω̄)⊗ a(ω) (5.6.75)

(The last equality in (5.6.75) follows from the definition of ⊗.) Using (5.6.74) and (5.6.75), we
can write (5.6.72) as

w∗b(ω, ω̄) (5.6.76)

which is similar to the expression h∗a(ω) for the 1D frequency response in Section 5.3.1. Hence,
the analysis in Section 5.3.1 carries over to the 2D case, with the only difference being that now
the matrix � is given by

�2D = 1

(2π)2

∫ βπ

−βπ

∫ β̄π

−β̄π
b(ω, ω̄)b∗(ω, ω̄)dω d ω̄

= 1

(2π)2

∫ βπ

−βπ

∫ β̄π

−β̄π

[
ā(ω̄)ā∗(ω̄)

] ⊗ [
a(ω)a∗(ω)

]
dω d ω̄

where we have used the fact that (A ⊗ B)(C ⊗ D) = AC ⊗ BD for any conformable matrices.
(See, for example, [Horn and Johnson 1985].) Hence,

�2D = �̄1D ⊗ �1D (5.6.77)

where

�1D = 1

2π

∫ βπ

−βπ
a(ω)a∗(ω)dω, �̄1D = 1

2π

∫ β̄π

−β̄π
ā(ω̄)ā∗(ω̄)d ω̄ (5.6.78)

The preceding Kronecker-product expression of �2D implies (see [Horn and Johnson 1985])
that

(a) the eigenvalues of �2D are equal to the products of the eigenvalues of �1D and �̄1D; and
(b) the eigenvectors of �2D are given by the Kronecker products of the eigenvectors of �1D

and �̄1D.

The conclusion is that the computation of 2D Slepian tapers can be reduced to the computation of
1D Slepian tapers. We refer the reader to Section 5.3.1 for details on computation of 1D Slepian
tapers.
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Capon and APES Methods

In the 1D case, we can obtain the Capon and APES methods by a weighted LS fit of the data
vectors {ỹ(t)}, where

ỹ(t) = [
y(t), y(t − 1), . . . , y(t − m)

]T
(5.6.79)

to the vectors corresponding to a generic sinusoidal signal with frequency ω. Specifically, consider
this LS problem:

min
β

N∑
t=m+1

[
ỹ(t)− a(ω)βeiωt]∗ W −1 [ỹ(t)− a(ω)βeiωt] (5.6.80)

where W −1 is a weighting matrix that is yet to be specified and where

a(ω) = [
1, e−iω, . . . , e−imω]T

(5.6.81)

Note that the definition of a(ω) in (5.6.81) differs from that of a(ω) in (5.6.73). The solution to
(5.6.80) is given by

β(ω) = a∗(ω)W −1g(ω)

a∗(ω)W −1a(ω)
(5.6.82)

where

g(ω) = 1

N − m

N∑
t=m+1

ỹ(t)e−iωt (5.6.83)

For

W = R̂ � 1

N − m

N∑
t=m+1

ỹ(t)ỹ∗(t) (5.6.84)

the weighted LS estimate of the amplitude spectrum in (5.6.82) reduces to the Capon method (see
equation (5.6.54) in Complement 5.6.4), whereas for

W = R̂ − g(ω)g∗(ω) � Q̂(ω) (5.6.85)

equation (5.6.82) gives the APES method. (See equations (5.6.47), (5.6.48), and (5.6.50) in
Complement 5.6.4.)

The extension of the above derivation to the 2D case is straightforward. By analogy with the
1D data vector in (5.6.79), let

[
y(t − k , t̄ − k̄)

] =




y(t, t̄ ) · · · y(t, t̄ − m̄ )
...

...

y(t − m, t̄ ) · · · y(t − m, t̄ − m̄ )


 (5.6.86)
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be the 2D data matrix, and let

ỹ(t, t̄ ) = vec
([

y(t − k , t̄ − k̄)
])

= [
y(t, t̄ ), . . . , y(t − m, t̄ )| · · · |y(t, t̄ − m̄ ), . . . , y(t − m, t̄ − m̄ )

]T
(5.6.87)

Our goal is to fit the data matrix in (5.6.86) to the matrix corresponding to a generic 2D sinusoid
with frequency pair (ω, ω̄)—that is,

[
βei [ω(t−k)+ω̄(t̄−k̄ )]

]
= β




ei [ωt+ω̄t̄ ] · · · ei [ωt+ω̄(t̄−m̄ )]

...
...

ei [ω(t−m)+ω̄t̄ ] · · · ei [ω(t−m)+ω̄(t̄−m̄ )]


 (5.6.88)

As with (5.6.87), let us vectorize (5.6.88):

vec
([
βei [ω(t−k)+ω̄(t̄−k̄ )]

])
= βei (ωt+ω̄t̄ ) vec

([
e−i (ωk+ω̄k̄ )

])
= βei (ωt+ω̄t̄ )ā(ω̄)⊗ a(ω) (5.6.89)

As in (5.6.75), let

b(ω, ω̄) = ā(ω̄)⊗ a(ω), (m + 1)(m̄ + 1)× 1 (5.6.90)

We deduce from (5.6.87)–(5.6.90) that the 2D counterpart of the 1D weighted-LS fitting problem
in (5.6.80) is the following:

min
β

N∑
t=m+1

N̄∑
t̄=m̄+1

[
ỹ(t, t̄ )− βei (ωt+ω̄t̄ )b(ω, ω̄)

]∗
W −1

·
[
ỹ(t, t̄ )− βei (ωt+ω̄t̄ )b(ω, ω̄)

] (5.6.91)

The solution to (5.6.91) is given by

β(ω, ω̄) = b∗(ω, ω̄)W −1g(ω, ω̄)

b∗(ω, ω̄)W −1b(ω, ω̄)
(5.6.92)

where

g(ω, ω̄) = 1

(N − m)(N̄ − m̄ )

N∑
t=m+1

N̄∑
t̄=m̄+1

ỹ(t, t̄ )e−i (ωt+ω̄t̄ ) (5.6.93)
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The 2D Capon method is given by (5.6.92) with

W = 1

(N − m)(N̄ − m̄ )

N∑
t=m+1

N̄∑
t̄=m̄+1

ỹ(t, t̄ )ỹ∗(t, t̄ ) � R̂ (5.6.94)

whereas the 2D APES method is given by (5.6.92) with

W = R̂ − g(ω, ω̄)g∗(ω, ω̄) � Q̂(ω, ω̄) (5.6.95)

Note that g(ω, ω̄) in (5.6.93) can be evaluated efficiently by use of a 2D FFT algorithm.
However, an efficient implementation of the 2D spectral estimate in (5.6.92) is not so direct. A
naive implementation could be rather time consuming, as a result of the large dimensions of the
vectors and matrices involved and of the need to evaluate β(ω, ω̄) on a 2D frequency grid. We
refer the reader to [Larsson, Li, and Stoica 2003] and the references therein for a discussion
of computationally efficient implementations of 2D Capon and 2D APES spectral estimation
methods.

5.7 EXERCISES

Exercise 5.1: Multiwindow Interpretation of Bartlett and Welch Methods
Equation (5.3.30) allows us to interpret the RFB method as a multiwindow (or multitaper)
approach. Indeed, according to equation (5.3.30), we can write the RFB spectral estimator as

φ̂(ω) = 1

K

K∑
p=1

∣∣∣∣∣
N∑

t=1

wp,t y(t)e
−iωt

∣∣∣∣∣
2

(5.7.1)

where K is the number of data windows (or tapers) and where, in the case of RFB, the wp,t are
obtained from the pth dominant Slepian sequence (p = 1, . . . ,K ).

Show that the Bartlett and Welch methods can also be cast into the preceding multiwindow
framework. Make use of the multiwindow interpretation of these methods to compare them with
one another and with the RFB approach.

Exercise 5.2: An Alternative Statistically Stable RFB Estimate
In Section 5.3.3, we developed a statistically stable RFB spectral estimator, using a bank of
narrow bandpass filters. In Section 5.4, we derived the Capon method, which employs a shorter
filter length than does the RFB. In this exercise, we derive the RFB analog of the Capon approach
and show its correspondence with the Welch and the Blackman–Tukey estimators.

Instead of the filter in (5.3.4), consider a passband filter of shorter length:

h = [h0, . . . , hm ]∗ (5.7.2)
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for some m < N . The optimal h will be the first Slepian sequence in (5.3.10) found by using a
� matrix of size m × m . In this case, the filtered output

yF (t) =
m∑

k=0

hk ỹ(t − k) (5.7.3)

(with ỹ(t) = y(t)e−iωt ) can be computed for t = m + 1, . . . ,N. The resulting RFB spectral esti-
mate is given by

φ̂(ω) = 1

N − m

N∑
t=m+1

|yF (t)|2 (5.7.4)

(a) Show that the estimator in (5.7.4) is an unbiased estimate of φ(ω), under the standard
assumptions considered in this chapter.

(b) Show that φ̂(ω) can be written as

φ̂(ω) = 1

m + 1
h∗(ω)R̂ h(ω) (5.7.5)

where R̂ is an (m + 1)× (m + 1) Hermitian (but not necessarily Toeplitz) estimate of the
covariance matrix of y(t). Find the corresponding filter h(ω).

(c) Compare (5.7.5) with the Blackman–Tukey estimate in equation (5.4.22). Discuss how the
two compare when N is large.

(d) Interpret φ̂(ω) as a Welch-type estimator. What is the overlap parameter K in the corre-
sponding Welch method?

Exercise 5.3: Another Derivation of the Capon FIR Filter
The Capon FIR-filter design problem can be restated as follows:

min
h

h∗Rh/|h∗a(ω)|2 (5.7.6)

Make use of the Cauchy–Schwartz inequality (Result R22 in Appendix A) to obtain a simple
proof of the fact that the h given by (5.4.8) is a solution to this optimization problem.

Exercise 5.4: The Capon Filter Is a Matched Filter
Compare the Capon filter-design problem (5.4.7) with the following classical matched filter design.

• Filter: A causal FIR filter with an (m + 1)-dimensional impulse-response vector, denoted
by h .

• Signal-in-noise model: y(t) = αeiωt + ε(t), which gives the following expression for the
input vector to the filter:

z (t) = αa(ω)eiωt + e(t) (5.7.7)
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where a(ω) is as defined in (5.4.6), αeiωt is a sinusoidal signal,

z (t) = [y(t), y(t − 1), . . . , y(t − m)]T

and e(t) is a possibly colored noise vector defined similarly to z (t). The preceding signal
and noise terms are assumed to be uncorrelated.

• Design goal: Maximize the signal-to-noise ratio at the filter’s output,

max
h

|h∗a(ω)|2/h∗Qh (5.7.8)

where Q is the noise-covariance matrix.

Show that the Capon filter is identical to the matched filter that solves this design problem. The
adjective “matched” attached to the preceding filter is motivated by the fact that the filter impulse
response vector h depends on, and hence is “matched to,” the signal term in (5.7.7).

Exercise 5.5: Computation of the Capon Spectrum
The Capon spectral estimators are defined in equations (5.4.19) and (5.4.20). The bulk of
the computation of either estimator consists in the evaluation of an expression of the form
a∗(ω)Qa(ω), where Q is a given positive definite matrix, at a number of points on the frequency
axis. Let these evaluation points be given by {ωk = 2πk/M }M −1

k=0 for some sufficiently large M
value (which we assume to be a power of two). The direct evaluation of a∗(ωk )Qa(ωk ), for
k = 0, . . . ,M − 1, would require O(Mm2) flops. Show that an evaluation based on the eigende-
composition of Q and the use of FFT is usually much more efficient computationally.

Exercise 5.6: A Relationship between the Capon Method and MUSIC (Pseudo)Spectra
Assume that the covariance matrix R, entering the Capon spectrum formula, has the expression
(4.2.7) in the frequency-estimation application. Then, show that

lim
σ 2→0

(σ 2R−1) = I − A(A∗A)−1A∗ (5.7.9)

Conclude that the limiting (for N � 1) Capon and MUSIC (pseudo)spectra, associated with the
frequency-estimation data, are close to one another, provided that all signal-to-noise ratios are
large enough.

Exercise 5.7: A Capon-Like Implementation of MUSIC
The Capon and MUSIC (pseudo)spectra, as the data length N increases, are given by the functions
in equations (5.4.12) and (4.5.13), respectively. Recall that the columns of the matrix G in (4.5.13)
are equal to the (m − n) eigenvectors corresponding to the smallest eigenvalues of the covariance
matrix R in (5.4.12).

Consider the Capon-like pseudospectrum

gk (ω) = a∗(ω)R−k a(ω)λk (5.7.10)
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where λ is the minimum eigenvalue of R; the covariance matrix R is assumed to have the form
(4.2.7) postulated by MUSIC. Show that, under this assumption,

lim
k→∞

gk (ω) = a∗(ω)GG∗a(ω) = (4.5.13) (5.7.11)

(where the convergence is uniform in ω). Explain why the convergence in (5.7.11) could be slow
in difficult scenarios, such as those with closely spaced frequencies, and hence that the use of
(5.7.10) with a large k to approximate the MUSIC pseudospectrum could be computationally
inefficient. However, the use of (5.7.10) for frequency estimation has a potential advantage over
MUSIC that might outweigh its computational inefficiency. Find and comment on that advantage.

Exercise 5.8: Capon Estimate of the Parameters of a Single Sine Wave
Assume that the data under study consists of a sinusoidal signal observed in white noise. In such
a case, the covariance matrix R is given (cf. (4.2.7)) by

R = α2a(ω0)a(ω0)
∗ + σ 2I , (m × m)

where ω0 denotes the true frequency value. Show that the limiting (as N → ∞) Capon spectrum
(5.4.12) peaks at ω = ω0. Derive the height of the peak and show that it is not equal to α2 (as
might have been expected), but is given by a function of α2, m , and σ 2. Conclude that the Capon
method can be used to obtain a consistent estimate of the frequency of a single sinusoidal signal
in white noise (but not of the signal power).

We note that, for two or more sinusoidal signals, the Capon frequency estimates are inconsis-
tent. Hence, the Capon frequency estimator behaves somewhat like the AR frequency estimation
method in this respect; see Exercise 4.4.

Exercise 5.9: An Alternative Derivation of the Relationship between the Capon
and AR Methods
Make use of equation (3.9.17), relating R−1

m+1, to R−1
m , to obtain a simple proof of the formula

(5.4.36) relating the Capon and AR spectral estimators.

COMPUTER EXERCISES

Tools for Filter-Bank Spectral Estimation:
The text website www.prenhall.com/stoica contains the following MATLAB functions
for use in computing filter-bank spectral estimates.

• h=slepian(N,K,J)
Returns the first J Slepian sequences, given N and K, as defined in Section 5.3; h is an
N × J matrix whose i th column gives the i th Slepian sequence.
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• phi=rfb(y,K,L)
The RFB spectral estimator. The vector y is the input data vector, L controls the frequency-
sample spacing of the output, and the output vector phi= φ̂(ωk ), where ωk = 2πk

L . For
K = 1, this function implements the high-resolution RFB method in equation (5.3.22); for
K > 1, it implements the statistically stable RFB method.

• phi=capon(y,m,L)
The CM Version-1 spectral estimator in equation (5.4.19); y, L, and phi are as for the RFB
spectral estimator, and m is the size of the square matrix R̂.

Exercise C5.10: Slepian Window Sequences
We consider the Slepian window sequences for both K = 1 (high resolution) and K = 4 (lower
resolution, higher statistical stability) and compare them with classical window sequences.

(a) Evaluate and plot the first 8 Slepian window sequences and their Fourier transforms for
K = 1 and 4 and for N = 32, 64, and 128 (and perhaps other values, too). Qualitatively
describe the filter passbands of these first 8 Slepian sequences for K = 1 and K = 4. Which
act as lowpass filters and which act as “other” types of filters?

(b) In this chapter, we showed that, for “large N ” and K = 1, the first Slepian sequence is
“reasonably close to” the rectangular window; compare the first Slepian sequence and
its Fourier transform for N = 32, 64, and 128 to the rectangular window and its Fourier
transform. How do they compare as a function of N ? In the light of this comparison,
how do you expect the high-resolution RFB PSD estimator to perform relative to the
periodogram?

Exercise C5.11: Resolution of Refined Filter-Bank Methods
We will compare the resolving power of the RFB spectral estimator with K = 1 to that of the
periodogram. To do so, we look at the spectral estimates of sequences that are made up of two
sinusoids in noise, where we vary the frequency difference.

Generate the sequences

yα(t) = 10 sin(0.2 · 2π t)+ 5 sin((0.2 + α/N )2π t)

for various values of α near 1. Compare the resolving ability of the RFB power spectral estimate
for K = 1 and of the periodogram for both N = 32 and N = 128. Discuss your results in relation
to the theoretical comparisons between the two estimators. Do the results echo the theoretical
predictions based on the analysis of Slepian sequences?

Exercise C5.12: The Statistically Stable RFB Power Spectral Estimator
In this exercise, we will compare the RFB power spectral estimator when K = 4 to the
Blackman–Tukey and Daniell estimators. We will use the narrowband and broadband processes
considered in Exercise C2.22.
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Broadband ARMA Process.

(a) Generate 50 realizations of the broadband ARMA process in Exercise C2.22, using N =
256. Estimate the spectrum by using
• The RFB method with K = 4.
• The Blackman–Tukey method with an appropriate window (such as the Bartlett window)

and window length M. Choose M to obtain performance similar that of the RFB method.
(You can select an appropriate value of M off-line and verify it in your experiments.)

• The Daniell method with Ñ = 8N and an appropriate choice of J. Choose J to obtain
performance similar to that of the RFB method. (You can select J off-line and verify it
in your experiments.)

(b) Evaluate the relative performance of the three estimators in terms of bias and variance.
Are the comparisons in agreement with the theoretical predictions?

Narrowband ARMA Process. Repeat parts (a) and (b) using 50 realizations (with N = 256)
of the narrowband ARMA process in Exercise C2.22.

Exercise C5.13: The Capon Method
In this exercise, we compare the Capon method to the RFB and AR methods. Consider the
sinusoidal data sequence in equation (2.9.20) from Exercise C2.19, with N = 64.

(a) We first compare the data filters corresponding to a RFB method (in which the filter is
data independent) with the filter corresponding to the CM Version-1 method, using both
m = N/4 and m = N/2 − 1; we choose the Slepian RFB method with K = 1 and K = 4
for this comparison. For two estimation frequencies, ω = 0 and ω = 2π · 0.1, plot the
frequency response of the five filters (1 for K = 1 and 4 for K = 4), shown in the first block
of Figure 5.1 for the two RFB methods, and also plot the response of the two Capon filters
(one for each value of m; see (5.4.5) and (5.4.8)). What are their characteristic features in
relation to the data? Using these plots, discuss how data dependence can improve spectral
estimation performance.

(b) Compare the two Capon estimators with the RFB estimator for both K = 1 and K = 4.
Generate 50 Monte Carlo realizations of the data, and overlay plots of the 50 spectral
estimates for each estimator. Discuss the similarities and differences between the RFB and
Capon estimators.

(c) Compare Capon and least-squares AR spectral estimates, again by generating 50 Monte
Carlo realizations of the data and overlaying plots of the 50 spectral estimates. Use m =
8, 16, and 30 for both the Capon method and the AR model order. How do the two
methods compare in terms of resolution and variance? What are your main summarizing
conclusions? Explain your results in terms of the data characteristics.


