
Appendix C

Model Order Selection Tools

C.1 INTRODUCTION

The parametric methods of spectral analysis (discussed in Chapters 3, 4, and 6) require not only
the estimation of a vector of real-valued parameters but also the selection of one or several integer-
valued parameters that are equally important for the specification of the data model. Specifically,
these integer-valued parameters of the model are the ARMA model orders (in Chapter 3), the
number of sinusoidal components (in Chapter 4), and the number of source signals impinging
on the array (in Chapter 6). In each of these cases, the integer-valued parameters determine the
dimension of the real-valued parameter vector of the data model. In what follows, we will use
the following symbols:

y = the vector of available data (of size N )

θ = the (real-valued) parameter vector

n = the dimension of θ

For short, we will refer to n as the model order, even though sometimes n is not really an order.
(See, for example, the preceding examples.) We assume that both y and θ are real valued:

y ∈ RN , θ ∈ Rn

Whenever we need to emphasize that the number of elements in θ is n , we will use the notation
θn . A method that estimates n from the data vector y will be called an order-selection rule. Note
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398 Appendix C Model Order Selection Tools

that the need for estimating a model order is typical of the parametric approaches to spectral
analysis. The nonparametric methods of spectral analysis do not have such a requirement.

The discussion in the text on the parametric spectral methods has focused on estimating the
model-parameter vector θ for a specific order n . In this general appendix (based on [Stoica and
Selén 2004b]) we explain how to estimate n as well. The literature on order selection is as
considerable as that on (real-valued) parameter estimation (see, e.g., [Choi 1992; Söderström
and Stoica 1989; McQuarrie and Tsai 1998; Linhart and Zucchini 1986; Burnham and
Anderson 2002; Sakamoto, Ishiguro, and Kitagawa 1986; Stoica, Eykhoff, Jannsen, and
Söderström 1986] and the many references therein). However, many order selection rules are
tied to specific parameter estimation methods; hence, their applicability is rather limited. Here we
will concentrate on order-selection rules that are associated with the maximum likelihood method
(MLM) of parameter estimation. As explained briefly in Appendix B (and in what follows here),
the MLM is likely the most commonly used parameter estimation method. Consequently, the
order estimation rules that can be used with the MLM are of quite a general interest. In the
next section, we review briefly the ML method of parameter estimation and some of its main
properties.

C.2 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Let

p(y, θ) = the probability density function (pdf) of the data vector y , which
depends on the parameter vector θ ; also called the likelihood function.

The ML estimate of θ , which we denote by θ̂ , is given by the maximizer of p(y, θ) (see,
for example, [Anderson 1971; Brockwell and Davis 1991; Hannan and Deistler 1988;
Papoulis 1977; Porat 1994; Priestley 1981; Scharf 1991; Therrien 1992; Söderström
and Stoica 1989] and Appendix B). Alternatively, because ln(·) is a monotonically increasing
function,

θ̂ = arg max
θ

ln p(y, θ) (C.2.1)

Under the Gaussian data assumption, the MLM typically reduces to the nonlinear least-squares
(NLS) method of parameter estimation (particular forms of which are discussed briefly in Chapter 3
and in more detail in Chapters 4 and 6). To illustrate this fact, let us assume that the observation
vector y can be written as

y = µ(γ ) + e (C.2.2)

where e is a (real-valued) Gaussian white-noise vector with mean zero and covariance matrix
given by E

{
eeT

} = σ 2I , γ is an unknown parameter vector, and µ(γ ) is a deterministic function
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of γ . It follows readily from (C.2.2) that

p(y, θ) = 1

(2π)N /2(σ 2)N /2
e

− ‖y−µ(γ )‖2

2σ2 (C.2.3)

where

θ =
[

γ

σ 2

]
(C.2.4)

Remark: Note that, in this appendix, we use the symbol θ for the whole parameter vector, unlike
in some previous discussions, where we used θ to denote the signal parameter vector (which is
denoted by γ here). �

We deduce from (C.2.3) that

−2 ln p(y, θ) = N ln(2π) + N ln σ 2 + ‖y − µ(γ )‖2

σ 2
(C.2.5)

A simple calculation based on (C.2.5) shows that the ML estimates of γ and σ 2 are given by

γ̂ = arg min
γ

‖y − µ(γ )‖2 (C.2.6)

σ̂ 2 = 1

N
‖y − µ(γ̂ )‖2 (C.2.7)

The corresponding value of the likelihood function is given by

−2 ln p(y, θ̂) = constant + N ln σ̂ 2 (C.2.8)

As can be seen from (C.2.6), in the present case the MLM indeed reduces to the NLS. In particular,
note that the NLS method for sinusoidal parameter estimation discussed in Chapter 4 is precisely
of the form of (C.2.6). If we let Ns denote the number of observed complex-valued samples of
the noisy sinusoidal signal and nc denote the number of sinusoidal components present in the
signal, then

N = 2Ns (C.2.9)

n = 3nc + 1 (C.2.10)

We will use the sinusoidal signal model of Chapter 4 as a vehicle for illustrating how the various
general order-selection rules presented in what follows should be used in a specific situation. These
rules can also be used with the parametric spectral analysis methods of Chapters 3 and 6. The task
of deriving explicit forms of these order selection rules for the aforementioned methods is left as
an interesting exercise to the reader (see, for example, [McQuarrie and Tsai 1998; Brockwell
and Davis 1991; Porat 1994]).
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Next, we note that, under regularity conditions, the pdf of the ML estimate θ̂ converges, as
N → ∞, to a Gaussian pdf with mean θ and covariance matrix equal to the Cramér–Rao bound
(CRB) matrix (see Section B.2 for a discussion about the CRB). Consequently, asymptotically in
N, the pdf of θ̂ is given by

p(θ̂ ) = 1

(2π)n/2|J −1|1/2
e− 1

2 (θ̂−θ)T J (θ̂−θ) (C.2.11)

where (see (B.2.10))

J = −E

{
∂2 ln p(y, θ)

∂θ ∂θT

}
(C.2.12)

Remark: To simplify the notation, we use the symbol θ for both the true parameter vector and
the parameter vector viewed as an unknown variable (as we also did in Appendix B). The exact
meaning of θ should be clear from the context. �

The “regularity conditions” referred to previously require that n not be a function of N and,
hence, that the ratio between the number of unknown parameters and the number of observations
tends to zero as N → ∞. This is true for the parametric spectral analysis problems discussed in
Chapters 3 and 4. However, the previous condition does not hold for the parametric spectral analysis
problem addressed in Chapter 6. Indeed, in the latter case, the number of parameters to be estimated
from the data is proportional to N, because the signal sequence is completely unknown. To overcome
this difficulty, we can assume that the signal vector is temporally white and Gaussian distributed,
which leads to a ML problem that satisfies the previously stated regularity condition. (We refer
the interested reader to [Ottersten, Viberg, Stoica, and Nehorai 1993; Stoica and Nehorai
1990; Van Trees 2002] for details on this ML approach to the spatial spectral analysis problem of
Chapter 6.)

To close this section, we note that, under mild conditions,[
− 1

N

∂2 ln p(y, θ)

∂θ ∂θT
− 1

N
J

]
→ 0 as N → ∞ (C.2.13)

To motivate (C.2.13) for the fairly general data model in (C.2.2), we can argue as follows: Let
us rewrite the negative log-likelihood function associated with (C.2.2) (see (C.2.5)) as

− ln p(y, θ) = constant + N

2
ln(σ 2) + 1

2σ 2

N∑
t=1

[
yt − µt (γ )

]2
(C.2.14)

where the subindex t denotes the t-th component. From (C.2.14), we obtain, by a simple calculation,

−∂ ln p(y, θ)

∂θ
=




− 1

σ 2

N∑
t=1

[
yt − µt (γ )

]
µ′

t (γ )

N

2σ 2
− 1

2σ 4

N∑
t=1

[
yt − µt (γ )

]2


 (C.2.15)
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where

µ′
t (γ ) = ∂µt (γ )

∂γ
(C.2.16)

Differentiating (C.2.15) once again gives

− ∂2 ln p(y, θ)

∂θ ∂θT

=




− 1

σ 2

N∑
t=1

etµ
′′
t (γ ) + 1

σ 2

N∑
t=1

µ′
t (γ )µ′T

t (γ )
1

σ 4

N∑
t=1

etµ
′
t (γ )

1

σ 4

N∑
t=1

etµ
′
t (γ ) − N

2σ 4
+ 1

σ 6

N∑
t=1

e2
t




(C.2.17)

where et = yt − µt (γ ) and

µ′′
t (γ ) = ∂2µt (γ )

∂γ ∂γ T
(C.2.18)

Taking the expectation of (C.2.17) and dividing by N, we get

1

N
J =




1

σ 2

(
1

N

N∑
t=1

µ′
t (γ )µ′T

t (γ )

)
0

0
1

2σ 4


 (C.2.19)

We assume that µ(γ ) is such that the previous matrix has a finite limit as N → ∞. Under this
assumption and the previously-made assumption on e, we can also show from (C.2.17) that

− 1

N

∂2 ln p(y, θ)

∂θ ∂θT

converges (as N → ∞) to the right side of (C.2.19), which concludes the motivation of (C.2.13).
Letting

Ĵ = −∂2 ln p(y, θ)

∂θ ∂θT

∣∣∣∣
θ=θ̂

(C.2.20)

we deduce from (C.2.13), (C.2.19), and the consistency of θ̂ that, for sufficiently large values of N,

1

N
Ĵ � 1

N
J = O(1) (C.2.21)
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Hereafter, � denotes an asymptotic (approximate) equality, in which the higher order terms have
been neglected, and O(1) denotes a term that tends to a constant as N → ∞.

Interestingly enough, the assumption that the right side of (C.2.19) has a finite limit, as
N → ∞, holds for many problems, but not for the sinusoidal parameter estimation problem of
Chapter 4. In the latter case, (C.2.21) needs to be modified to (see, e.g., Appendix B)

KN Ĵ KN � KN JKN = O(1) (C.2.22)

where

KN =




1

N 3/2
s

Inc 0

0
1

N 1/2
s

I2nc+1


 (C.2.23)

and where Ik denotes the k × k identity matrix; to write (C.2.23), we assumed that the upper left
nc × nc block of J corresponds to the sinusoidal frequencies, but this fact is not really important
for the analysis in this appendix, as we will see below.

C.3 USEFUL MATHEMATICAL PRELIMINARIES AND OUTLOOK

In this section, we discuss a number of mathematical tools that will be used in the next sections to
derive several important order-selection rules. We will keep the discussion at an informal level to
make the material as accessible as possible. In Section C.3.1, we will formulate the model order
selection as a hypothesis-testing problem, with the main goal of showing that the maximum a
posteriori (MAP) approach leads to the optimal order-selection rule (in a sense specified there).
In Section C.3.2, we discuss the Kullback–Leibler information criterion, which lies at the basis
of another approach that can be used to derive model order selection rules.

C.3.1 Maximum A Posteriori (MAP) Selection Rule

Let Hn denote the hypothesis that the model order is n , and let n̄ denote a known upper bound on n:

n ∈ [1, n̄] (C.3.1)

We assume that the hypotheses {Hn}n̄
n=1 are mutually exclusive (i.e., only one of them can hold

true at a time). As an example, for a real-valued AR signal with coefficients {ak }, we can define
Hn as follows:

Hn : an �= 0 and an+1 = · · · = an̄ = 0 (C.3.2)

For a sinusoidal signal we can proceed similarly, after observing that, for such a signal, the
number of components nc is related to n as in (C.2.10), viz.,

n = 3nc + 1 (C.3.3)
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Hence, for a sinusoidal signal with amplitudes {αk }, we can consider the following hypotheses:

Hnc : αk �= 0 for k = 1, . . . , nc, and αk = 0 for k = nc + 1, . . . , n̄c (C.3.4)

for nc ∈ [1, n̄c] (with the corresponding “model order” n being given by (C.3.3)).

Remark: The hypotheses {Hn} can be either nested or non-nested. We say that H1 and H2 are
nested whenever the model corresponding to H1 can be obtained as a special case of that associated
with H2. To give an example, the following hypotheses:

H1 : the signal is a first-order AR process

H2 : the signal is a second-order AR process

are nested, whereas the H1 and

H3 : the signal consists of one sinusoid in noise

are nonnested. �

Let

pn(y |Hn) = the pdf of y under Hn (C.3.5)

Whenever we want to emphasize the possible dependence of the pdf in (C.3.5) on the parameter
vector of the model corresponding to Hn , we write

pn(y, θn) � pn(y |Hn) (C.3.6)

Assuming that (C.3.5) is available, along with the a priori probability of Hn , pn(Hn), we can
write the conditional probability of Hn , given y , as

pn(Hn |y) = pn(y |Hn)pn(Hn)

p(y)
(C.3.7)

The maximum a posteriori probability (MAP) rule selects the order n (or the hypothesis Hn )
that maximizes (C.3.7). The denominator in (C.3.7) does not depend on n , so the MAP rule is
given by

max
n∈[1,n̄]

pn(y |Hn)pn(Hn) (C.3.8)

Most typically, the hypotheses {Hn} are a priori equiprobable —that is,

pn(Hn) = 1

n̄
, n = 1, . . . , n̄ (C.3.9)
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In such a case the MAP rule reduces to

max
n∈[1,n̄]

pn(y |Hn) (C.3.10)

Next, we define the average (or total) probability of correct detection as

Pcd = Pr{[(decide H1) ∩ (H1 =true)] ∪ · · · ∪ [(decide Hn̄) ∩ (Hn̄ =true)]} (C.3.11)

The attribute “average” that has been attached to Pcd is motivated by the fact that (C.3.11) gives the
probability of correct detection “averaged” over all possible hypotheses (as opposed, for example,
to only considering the probability of correctly detecting that the model order is 2 (let us say),
which is Pr{decide H2|H2}).

Remark: Regarding the terminology, note that the determination of a real-valued parameter
from the available data is called “estimation,” whereas it is usually called “detection” for an
integer-valued parameter, such as a model order. �

In the following, we prove that the MAP rule is optimal in the sense of maximizing Pcd . To
do so, consider a generic rule for selecting n , or, equivalently, for testing the hypotheses {Hn}
against each other. Such a rule will implicitly or explicitly partition the observation space, RN ,
into n̄ sets {Sn}n̄

n=1, which are such that

We decide Hn if and only if y ∈ Sn (C.3.12)

Making use of (C.3.12) along with the fact that the hypotheses {Hn} are mutually exclusive, we
can write Pcd in (C.3.11) as

Pcd =
n̄∑

n=1

Pr{(decide Hn) ∩ (Hn = true)}

=
n̄∑

n=1

Pr{(decide Hn)|Hn} Pr{Hn}

=
n̄∑

n=1

∫
Sn

pn(y |Hn)pn(Hn) dy

=
∫

RN

[
n̄∑

n=1

In(y)pn(y |Hn)pn(Hn)

]
dy (C.3.13)
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where In(y) is the so-called indicator function, given by

In(y) =
{

1, if y ∈ Sn

0, otherwise
(C.3.14)

Next, observe that, for any given data vector, y , one and only one indicator function can be equal
to 1 (because the sets Sn do not overlap, and their union is RN ). This observation, along with the
expression (C.3.13) for Pcd , implies that the MAP rule in (C.3.8) maximizes Pcd , as stated. Note
that the sets {Sn } corresponding to the MAP rule are implicitly defined via (C.3.8); however, {Sn}
are of no real interest in the proof, as both they and the indicator functions are introduced only
to simplify the above proof. For more details on the topic of this subsection, we refer the reader
to [Scharf 1991; Van Trees 1968].

C.3.2 Kullback–Leibler Information

Let p0(y) denote the true pdf of the observed data vector y , and let p̂(y) denote the pdf of a
generic model of the data. The “discrepancy” between p0(y) and p̂(y) can be measured by using
the Kullback–Leibler (KL) information or discrepancy function (see [Kullback and Leibler
1951]):

D(p0, p̂) =
∫

p0(y) ln

[
p0(y)

p̂(y)

]
dy (C.3.15)

To simplify the notation, we omit the region of integration when it is the entire space. Letting
E0{·} denote the expectation with respect to the true pdf, p0(y), we can rewrite (C.3.15) as

D(p0, p̂) = E0

{
ln

[
p0(y)

p̂(y)

]}
= E0{ln p0(y)} − E0

{
ln p̂(y)

}
(C.3.16)

Next, we prove that (C.3.15) possesses some properties of a suitable discrepancy function—namely,

D(p0, p̂) ≥ 0

D(p0, p̂) = 0 if and only if p0(y) = p̂(y)
(C.3.17)

To verify (C.3.17), we use the fact shown in Complement 6.5.8, that

− ln λ ≥ 1 − λ for any λ > 0 (C.3.18)

and

− ln λ = 1 − λ if and only if λ = 1 (C.3.19)
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Hence, letting λ(y) = p̂(y)/p0(y), we have that

D(p0, p̂) =
∫

p0(y)
[− ln λ(y)

]
dy

≥
∫

p0(y)
[
1 − λ(y)

]
dy =

∫
p0(y)

[
1 − p̂(y)

p0(y)

]
dy = 0

where the equality holds if and only if λ(y) ≡ 1, i.e. p̂(y) ≡ p0(y).

Remark: The inequality in (C.3.17) also follows from Jensen’s inequality (see equation (4.9.36)
in Complement 4.9.5) and from the concavity of the function ln(·):

D(p0, p̂) = −E0

{
ln

[
p̂(y)

p0(y)

]}

≥ − ln

[
E0

{
p̂(y)

p0(y)

}]

= − ln

[∫
p̂(y)

p0(y)
p0(y) dy

]
= − ln(1) = 0 �

The KL discrepancy function can be viewed as quantifying the “loss of information” induced
by the use of p̂(y) in lieu of p0(y). For this reason, D(p0, p̂) is sometimes called an informa-
tion function, and the order-selection rules derived from it are called information criteria (see
Sections C.4–C.6).

C.3.3 Outlook: Theoretical and Practical Perspectives

Neither the MAP rule nor the KL information can be used directly for order selection, because
neither the pdfs of the data vector under the various hypotheses nor the true data pdf are available
in any of the parametric spectral analysis problems discussed in the text. A possible way of using
the MAP approach for order estimation consists of assuming an a priori pdf for the unknown
parameter vector, θn , and integrating θn out of pn(y, θn) to obtain pn(y |Hn). This Bayesian-type
approach will be discussed in Section C.7. Regarding the KL approach, a natural way of using it
for order selection consists in using an estimate, D̂(p0, p̂), in lieu of the unavailable D(p0, p̂) (for
a suitably chosen model pdf, p̂(y)), and in determining the model order by minimizing D̂(p0, p̂).
This KL-based approach will be discussed in Sections C.4–C.6.

The derivations of all model order selection rules in the sections that follow rely on the
assumption that one of the hypotheses {Hn} is true. This assumption is unlikely to hold in appli-
cations with real-life data, so the reader will justifiably wonder whether an order-selection rule
derived under such an assumption has any practical value. To address this concern, we remark
that good parameter estimation methods (such as the MLM), derived under rather strict modeling
assumptions, perform quite well in applications where the assumptions made are rarely satisfied
exactly. Similarly, order-selection rules based on sound theoretical principles (such as the ML,
KL, and MAP principles used in this text) are likely to perform well in applications despite the fact
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that some of the assumptions made when deriving them do not hold exactly. The precise behavior
of order-selection rules (such as those presented in the sections to follow) in various mismodeling
scenarios is not well understood, but extensive simulation results (see, e.g., [McQuarrie and Tsai
1998; Linhart and Zucchini 1986; Burnham and Anderson 2002]) lend support to this claim.

C.4 DIRECT KULLBACK–LEIBLER (KL) APPROACH: NO-NAME RULE

The model-dependent part of the Kullback–Leibler (KL) information, (C.3.16), is given by

−E0
{
ln p̂(y)

}
(C.4.1)

where p̂(y) is the pdf or likelihood of the model (to simplify the notation, we omit the index n of
p̂(y); we will reinstate the index n later on, when needed). Minimization of (C.4.1) with respect
to the model order is equivalent to maximization of the function

I (p0, p̂) � E0
{
ln p̂(y)

}
(C.4.2)

which is sometimes called the relative KL information. The ideal choice for p̂(y) in (C.4.2)
would be the model likelihood, pn(y |Hn) = pn(y, θn). However, the model likelihood function is
not available, and hence this choice is not possible. Instead, we might think of using

p̂(y) = p(y, θ̂ ) (C.4.3)

in (C.4.2), which would give

I
(

p0, p(y, θ̂)
)

= E0

{
ln p(y, θ̂)

}
(C.4.4)

Because the true pdf of the data vector is unknown, we cannot evaluate the expectation in (C.4.4).

Apparently, what we could easily do is use the following unbiased estimate of I
(

p0, p(y, θ̂)
)

,
instead of (C.4.4) itself:

Î = ln p(y, θ̂) (C.4.5)

However, the order-selection rule that maximizes (C.4.5) does not have satisfactory properties.
This is especially true for nested models, in the case of which the order-selection rule based on the
maximization of (C.4.5) fails completely : indeed, for nested models, this rule will always choose
the maximum possible order, n̄ , because ln pn(y, θ̂n) increases monotonically with increasing n .

A better idea consists of approximating the unavailable log-pdf of the model, ln pn(y, θn), by
a second-order Taylor series expansion around θ̂n , and then using the approximation so obtained
to define ln p̂(y) in (C.4.2):

ln pn(y, θn) � ln pn(y, θ̂n) + (θn − θ̂n)T
[

∂ ln pn(y, θn)

∂θn

∣∣∣∣
θn=θ̂n

]

+ 1

2
(θn − θ̂n)T

[
∂2 ln pn(y, θn)

(∂θn) (∂θn)T

∣∣∣∣
θn=θ̂n

]
(θn − θ̂n) � ln p̂n(y)

(C.4.6)
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Because θ̂n is the maximizer of ln pn(y, θn), the second term in (C.4.6) is equal to zero. Hence,
we can write (see also (C.2.21))

ln p̂n(y) � ln pn(y, θ̂n) − 1

2
(θn − θ̂n)T J (θn − θ̂n) (C.4.7)

According to (C.2.11),

E0

{
(θn − θ̂n)T J (θn − θ̂n)

}
= tr

[
J E0

{
(θn − θ̂n)(θn − θ̂n)T

}]
= tr[In ] = n (C.4.8)

which means that, for the choice of p̂n(y) in (C.4.7), we have

I = E0

{
ln pn(y, θ̂n) − n

2

}
(C.4.9)

An unbiased estimate of the above relative KL information is given by

ln pn(y, θ̂n) − n

2
(C.4.10)

The corresponding order-selection rule maximizes (C.4.10), or, equivalently, minimizes

NN(n) = −2 ln pn(y, θ̂n) + n (C.4.11)

with respect to model order n . This no-name (NN) rule can be shown to perform better than that
based on (C.4.5), but worse than the rules presented in the next sections. Essentially, the problem
with (C.4.11) is that it tends to overfit (i.e., to select model orders larger than the “true” order).
To understand intuitively how this happens, note that the first term in (C.4.11) decreases with
increasing n (for nested models), whereas the second term increases. Hence, the second term in
(C.4.11) penalizes overfitting ; however, it turns out that it does not penalize quite enough. The
rules presented in the following sections have a form similar to (C.4.11), but with a larger penalty
term, and they do have better properties than (C.4.11). Despite this fact, we have chosen to present
(C.4.11) briefly in this section for two reasons: (i) the discussion here has revealed the failure of
using maxn ln pn(y, θ̂n) as an order-selection rule and has shown that it is in effect quite easy to
obtain rules with better properties; and (ii) this section has laid groundwork for the derivation of
better order-selection rules based on the KL approach in the next two sections.

To close this section, we motivate the multiplication by −2 in going from (C.4.10) to (C.4.11).
The reason for preferring (C.4.11) to (C.4.10) is that for the fairly common NLS model in
(C.2.2) and the associated Gaussian likelihood in (C.2.3), −2 ln pn(y, θ̂n) takes on the following
convenient form:

−2 ln pn(y, θ̂n) = N ln σ̂ 2
n + constant (C.4.12)

(See (C.2.5)–(C.2.7).) Hence, in such a case, we can replace −2 ln pn(y, θ̂n) in (C.4.11) by the
scaled logarithm of the residual variance, N ln σ̂ 2

n . This remark also applies to the order-selection
rules presented in the following sections, which are written in a form similar to (C.4.11).
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C.5 CROSS-VALIDATORY KL APPROACH: THE AIC RULE

As explained in the previous section, a possible approach to model order selection consists of
minimizing the KL discrepancy between the “true” pdf of the data and the pdf (or likelihood) of
the model, or, equivalently, of maximizing the relative KL information (see (C.4.2)):

I (p0, p̂) = E0
{
ln p̂(y)

}
(C.5.1)

When using this approach, the first (and, likely the main) hurdle that we have to overcome is
the choice of the model likelihood, p̂(y). As discussed in the previous section, we would ideally
like to use the true pdf of the model as p̂(y) in (C.5.1), i.e. p̂(y) = pn(y, θn), but this is not
possible; pn(y, θn) is unknown. Hence, we have to choose p̂(y) in a different way. This choice is
important; it eventually determines the model order selection rule that we will obtain. The other
issue we should consider when using the approach based on (C.5.1) is that the expectation in
(C.5.1) cannot be evaluated, because the true pdf of the data is unknown. Consequently, we will
have to use an estimate, Î , in lieu of the unavailable I (p0, p̂) in (C.5.1).

Let x denote a fictitious data vector having the same size, N , and the same pdf as y , but
such that x is independent of y . Also, let θ̂x denote the ML estimate of the model parameter
vector that would be obtained from x if x were available. (We omit the superindex n of θ̂x as
often as possible, to simplify notation.) In this section, we will consider the following choice of
the model’s pdf:

ln p̂(y) = Ex

{
ln p(y, θ̂x )

}
(C.5.2)

which, when inserted in (C.5.1), yields

I = Ey

{
Ex

{
ln p(y, θ̂x )

}}
(C.5.3)

Hereafter, Ex {·} and Ey {·} denote the expectation with respect to the pdf of x and y , respectively.
The above choice of p̂(y), which was introduced in [Akaike 1974; Akaike 1978], has an inter-
esting cross-validation interpretation: we use the sample x for estimation and the independent
sample y for validation of the estimated model’s pdf. Note that the dependence of (C.5.3) on the
fictitious sample x is eliminated (as it should be, because x is unavailable) via the expectation
operation Ex {·}; see below for details.

An asymptotic second-order Taylor series expansion of ln p(y, θ̂x ) around θ̂y , similar to
(C.4.6)–(C.4.7), yields

ln p(y, θ̂x ) � ln p(y, θ̂y) + (θ̂x − θ̂y )
T

[
∂ ln p(y, θ)

∂θ

∣∣∣∣
θ=θ̂y

]

+ 1

2
(θ̂x − θ̂y)

T

[
∂2 ln p(y, θ)

∂θ ∂θT

∣∣∣∣
θ=θ̂y

]
(θ̂x − θ̂y)

� ln p(y, θ̂y) − 1

2
(θ̂x − θ̂y )

T Jy(θ̂x − θ̂y) (C.5.4)
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where Jy is the J matrix, as defined in (C.2.20), associated with the data vector y . Using the fact
that x and y have the same pdf (which implies that Jy = Jx ), along with the fact that they are
independent of each other, we can show that

Ey

{
Ex

{
(θ̂x − θ̂y)

T Jy(θ̂x − θ̂y )
}}

= Ey

{
Ex

{
tr

(
Jy

[
(θ̂x − θ) − (θ̂y − θ)

] [
(θ̂x − θ) − (θ̂y − θ)

]T
)}}

= tr
[
Jy

(
J −1

x + J −1
y

)]
= 2n (C.5.5)

Inserting (C.5.5) in (C.5.4) yields the following asymptotic approximation of the relative KL
information in (C.5.3):

I � Ey

{
ln pn(y, θ̂n) − n

}
(C.5.6)

(where we have omitted the subindex y of θ̂ but reinstated the superindex n). Evidently, (C.5.6)
can be estimated in an unbiased manner by

ln pn(y, θ̂n) − n (C.5.7)

Maximizing (C.5.7) with respect to n is equivalent to minimizing the function of n

AIC = −2 ln pn(y, θ̂n) + 2n (C.5.8)

where the acronym AIC stands for Akaike Information Criterion (the reasons for multiplying
(C.5.7) by −2 to get (C.5.8), and for the use of the word “information” in the name given to
(C.5.8) have been explained before—see the previous two sections).

As an example, for the sinusoidal signal model with nc components (see Section C.2), AIC
takes on the form (see (C.2.6)–(C.2.10))

AIC = 2Ns ln σ̂ 2
nc

+ 2(3nc + 1) (C.5.9)

where Ns denotes the number of available complex-valued samples, {yc(t)}Ns
t=1, and

σ̂ 2
nc

= 1

Ns

Ns∑
t=1

∣∣∣∣∣yc(t) −
nc∑

k=1

α̂k ei (ω̂k t+ϕ̂k )

∣∣∣∣∣
2

(C.5.10)

Remark: AIC can also be obtained by using the following relative KL information function, in
lieu of (C.5.3):

I = Ey

{
Ex

{
ln p(x , θ̂y )

}}
(C.5.11)
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Note that, in (C.5.11), x is used for validation and y for estimation. However, the derivation of AIC
from (C.5.11) is more complicated; such a derivation, which is left as an exercise to the reader,
makes use of two Taylor series expansions and of the fact that Ex {ln p(x , θ)} = Ey {ln p(y, θ)}.�

The performance of AIC has been found to be satisfactory in many case studies and appli-
cations to real-life data reported in the literature (see, for example, [McQuarrie and Tsai
1998; Linhart and Zucchini 1986; Burnham and Anderson 2002; Sakamoto, Ishiguro,
and Kitagawa 1986]). The performance of a model order selection rule, such as AIC, can be
measured in different ways, as explained in the next two paragraphs.

As a first possibility, we can consider a scenario in which the data-generating mechanism
belongs to the class of models under test; thus, there is a true order. In such a case, analytical
or numerical studies can be used to determine the probability with which the rule selects the true
order. For AIC, it can be shown that, under quite general conditions,

the probability of underfitting → 0 (C.5.12)

the probability of overfitting → constant > 0 (C.5.13)

as N → ∞ (see, for example, [McQuarrie and Tsai 1998; Kashyap 1980]). We can see from
(C.5.13) that the behavior of AIC with respect to the probability of correct detection is not entirely
satisfactory. Interestingly, it is precisely this kind of behavior that appears to make AIC perform
satisfactorily with respect to the other possible type of performance measure, as explained below.

An alternative way of measuring the performance is to consider a more practical scenario,
in which the data-generating mechanism is more complex than any of the models under test, as
is usually the case in practical applications. In such a case, we can use analytical or numerical
studies to determine the performance of the model picked by the rule as an approximation of
the data-generating mechanism—for instance, we can consider the average distance between the
estimated and true spectral densities or the average prediction error of the model. With respect to
such a performance measure, AIC performs well, partly because of its tendency to select models
with relatively large orders which may be a good thing to do in a case in which the data generating
mechanism is more complex than the models used to fit it.

The nonzero overfitting probability of AIC is due to the fact that the term 2n in (C.5.8)
(which penalizes high-order models), while larger than the term n that appears in the NN rule,
is still too small. Extensive simulation studies (see, e.g., [Bhansali and Downham 1977]) have
found empirically that the following Generalized Information Criterion (GIC)

GIC = −2 ln pn(y, θ̂n) + νn (C.5.14)

can outperform AIC with respect to various performance measures if ν > 2. Specifically, depending
on the considered scenario as well as the value of N and the performance measure, values of ν in
the interval ν ∈ [2, 6] have been found to give the best performance.

In the next section, we show that GIC can be obtained as a natural theoretical extension
of AIC. Hence, the use of (C.5.14) with ν > 2 can be motivated on formal grounds. However,
the choice of a particular ν in GIC is a more difficult problem, as we will see in Section C.6,
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and cannot be solved in the current KL framework. The different framework of Section C.7
appears to be necessary to arrive at a rule having the form of (C.5.14) with a specific expression
for ν.

We close this section with a brief discussion on another modification of the AIC rule suggested
in the literature (see, for example, [Hurvich and Tsai 1993]). As explained before, AIC is derived
by maximizing an asymptotically unbiased estimate of the relative KL information I in (C.5.3).
Interestingly, for linear-regression models (given by (C.2.2) where µ(γ ) is a linear function of
γ ), the following corrected AIC rule, AICc, can be shown to be an exactly unbiased estimate
of I :

AICc = −2 ln pn(y, θ̂n) + 2N

N − n − 1
n (C.5.15)

(See, for example, [Hurvich and Tsai 1993; Cavanaugh 1997].) As N → ∞, AICc → AIC (as
expected). However, for finite values of N, the penalty term of AICc is larger than that of AIC.
Consequently, in finite samples, AICc has a smaller risk of overfitting than AIC, and therefore
we can say that AICc trades off a decrease of the risk of overfitting (which is rather large for
AIC) for an increase in the risk of underfitting (which is quite small for AIC and hence can be
slightly increased without a significant deterioration of performance). With this fact in mind, AICc

can be used as an order-selection rule for models more general than just linear regressions, even
though its motivation in the general case is pragmatic rather than theoretical. For other finite-
sample corrections of AIC, we refer the reader to [de Waele and Broersen 2003; Broersen
2000; Broersen 2002; Seghouane, Bekara, and Fleury 2003].

C.6 GENERALIZED CROSS-VALIDATORY KL APPROACH: THE GIC RULE

In the cross-validatory approach of the previous section, the estimation sample x has the same
length as the validation sample y . In that approach, θ̂x (obtained from x ) is used to approx-
imate the likelihood of the model via Ex {p(y, θ̂x )}. The AIC rule so obtained has a nonzero
probability of overfitting (even asymptotically). Intuitively, the risk of overfitting will decrease
if we let the length of the validation sample be (much) larger than that of the estimation
sample—that is,

N � length(y) = ρ · length(x), ρ ≥ 1 (C.6.1)

Indeed, overfitting occurs when the model corresponding to θ̂x also fits the “noise” in the sample
x , so that p(x , θ̂x ) has a “much” larger value than the true pdf, p(x , θ). Such a model could
behave reasonably well on a short validation sample y , but not on a long validation sample. (In
the latter case, p(y, θ̂x ) will take on very small values.) The simple idea in (C.6.1) of letting the
lengths of the validation and estimation samples be different leads to a natural extension of AIC,
as shown next.

A straightforward calculation shows that, under (C.6.1), we have

Jy = ρJx (C.6.2)
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(See, e.g., (C.2.19).) With this small difference, the calculations in the previous section carry over
to the present case, and we obtain (see (C.5.4)–(C.5.5))

I � Ey

{
ln pn(y, θ̂y)

}
− 1

2
Ey

{
Ex

{
tr

(
Jy

[
(θ̂x − θ) − (θ̂y − θ)

] [
(θ̂x − θ) − (θ̂y − θ)

]T
)}}

= Ey

{
ln pn(y, θ̂y) − 1

2
tr
[
Jy

(
ρJ −1

y + J −1
y

)]}

= Ey

{
ln pn(y, θ̂y) − 1 + ρ

2
n

}
(C.6.3)

An unbiased estimate of the right side in (C.6.3) is given by

ln p(y, θ̂y) − 1 + ρ

2
n (C.6.4)

The generalized information criterion (GIC) rule maximizes (C.6.4) or, equivalently, minimizes

GIC = −2 ln pn(y, θ̂n) + (1 + ρ)n (C.6.5)

As expected, (C.6.5) reduces to AIC for ρ = 1. Note also that, for a given y , the order selected
by (C.6.5) with ρ > 1 is always smaller than the order selected by AIC (because the penalty term
in (C.6.5) is larger than that in (C.5.8)); hence, as predicted by the previous intuitive discussion,
the risk of overfitting associated with GIC is smaller than for AIC when ρ > 1.

On the negative side, there is no clear guideline for choosing ρ in (C.6.5). The “optimal”
value of ρ in the GIC rule has been shown empirically to depend on the performance measure,
the number of data samples, and the data-generating mechanism itself [McQuarrie and Tsai
1998; Bhansali and Downham 1977]. Consequently, ρ should be chosen as a function of all
these factors, but there is no clear rule as to how that should be done. The approach of the next
section appears to be more successful than the present approach in suggesting a specific choice
for ρ in (C.6.5). Indeed, as we will see, that approach leads to an order-selection rule of the GIC
type but with a concrete expression for ρ as a function of N.

C.7 BAYESIAN APPROACH: THE BIC RULE

The order-selection rule to be presented in this section can be obtained in two ways. First, let
us consider the KL framework of the previous sections. Therefore, our goal is to maximize the
relative KL information (see (C.5.1)):

I (p0, p̂) = E0
{
ln p̂(y)

}
(C.7.1)
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The ideal choice of p̂(y) would be p̂(y) = pn(y, θn). However, this choice is not possible, because
the likelihood of the model, pn(y, θn), is not available. Hence, we have to use a “surrogate
likelihood” in lieu of pn(y, θn). Let us assume, as before, that a fictitious sample x is used to
make inferences about θ . The pdf of the estimate, θ̂x , obtained from x can alternatively be viewed
as an a priori pdf of θ ; hence, it will be denoted by p(θ) in what follows (once again, we omit
the superindex n of θ , θ̂ , etc. to simplify the notation, whenever there is no risk for confusion).
Note that we do not constrain p(θ) to be Gaussian. We only assume that

p(θ) is flat around θ̂ (C.7.2)

where, as before, θ̂ denotes the ML estimate of the parameter vector obtained from the available
data sample, y . Furthermore, now we assume that the length of the fictitious sample is a constant
that does not depend on N; hence,

p(θ) is independent of N (C.7.3)

As a consequence of assumption (C.7.3), the ratio between the lengths of the validation sample
and the (fictitious) estimation sample grows without bound as N increases. According to the
discussion in the previous section, this fact should lead to an order-selection rule having a penalty
term asymptotically much larger than that of AIC or GIC (with ρ = constant) and, hence, having
a reduced risk of overfitting.

The scenario just introduced leads naturally to the following choice of surrogate likelihood:

p̂(y) = Eθ {p(y, θ)} =
∫

p(y, θ)p(θ) dθ (C.7.4)

Remark: In the previous sections, we used a surrogate likelihood given (see (C.5.2)) by

ln p̂(y) = Ex

{
ln p(y, θ̂x )

}
(C.7.5)

However, we could have instead used a p̂(y) given by

p̂(y) = Eθ̂x

{
p(y, θ̂x )

}
(C.7.6)

The rule that would be obtained by using (C.7.6) can be shown to have the same form as AIC
and GIC, but with a (slightly) different penalty term. Note that the choice of p̂(y) in (C.7.6) is
similar to the choice in (C.7.4), with the difference that for (C.7.6) the “a priori” pdf, p(θ̂x ),
depends on N. �

To obtain a simple asymptotic approximation of the integral in (C.7.4), we make use of the
asymptotic approximation of p(y, θ) given by (C.4.6)–(C.4.7):

p(y, θ) � p(y, θ̂)e− 1
2 (θ̂−θ)T Ĵ (θ̂−θ) (C.7.7)
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This equation holds for θ in the vicinity of θ̂ . Inserting (C.7.7) in (C.7.4) and using the assumption
in (C.7.2), along with the fact that p(y, θ) is asymptotically much larger at θ = θ̂ than at any
θ �= θ̂ , we obtain

p̂(y) � p(y, θ̂)p(θ̂ )

∫
e− 1

2 (θ̂−θ)T Ĵ (θ̂−θ) dθ

= p(y, θ̂)p(θ̂ )(2π)n/2

|Ĵ |1/2

∫
1

(2π)n/2|Ĵ −1|1/2
e− 1

2 (θ̂−θ)T Ĵ (θ̂−θ) dθ︸ ︷︷ ︸
=1

= p(y, θ̂)p(θ̂ )(2π)n/2

|Ĵ |1/2
(C.7.8)

(See [Djurić 1998] and references therein for the exact conditions under which this approximation
holds true.) It follows from (C.7.1) and (C.7.8) that

Î = ln p(y, θ̂) + ln p(θ̂ ) + n

2
ln 2π − 1

2
ln |Ĵ | (C.7.9)

is an asymptotically unbiased estimate of the relative KL information. Note, however, that (C.7.9)
depends on the a priori pdf of θ , which has not been specified. To eliminate this dependence, we
use the fact that |Ĵ | increases without bound as N increases. Specifically, in most cases (but not
in all; see below) we have (cf. (C.2.21)) that

ln |Ĵ | = ln

∣∣∣∣N · 1

N
Ĵ

∣∣∣∣ = n ln N + ln

∣∣∣∣ 1

N
Ĵ

∣∣∣∣ = n ln N + O(1) (C.7.10)

where we used the fact that |cJ | = cn |J | for a scalar c and an n × n matrix J. Using (C.7.10) and
the fact that p(θ) is independent of N (see (C.7.3)) yields the following asymptotic approximation
of the right side in (C.7.9):

Î � ln pn(y, θ̂n) − n

2
ln N (C.7.11)

The Bayesian information criterion (BIC) rule selects the order that maximizes (C.7.11), or,
equivalently, minimizes

BIC = −2 ln pn(y, θ̂n) + n ln N (C.7.12)

We remind the reader that (C.7.12) has been derived under the assumption that (C.2.21) holds, but
this assumption is not always true. As an example (see [Djurić 1998] for more examples), consider
once again the sinusoidal signal model with nc components (as also considered in Section C.5),
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in the case of which we have (cf. (C.2.22)–(C.2.23)) that

ln |Ĵ | = ln
∣∣∣K −2

N

∣∣∣ + ln
∣∣∣KN Ĵ KN

∣∣∣
= (2nc + 1) ln Ns + 3nc ln Ns + O(1)

= (5nc + 1) ln Ns + O(1) (C.7.13)

Hence, in the case of sinusoidal signals, BIC takes on the form

BIC = −2 ln pnc (y, θ̂nc ) + (5nc + 1) ln Ns

= 2Ns ln σ̂ 2
nc

+ (5nc + 1) ln Ns (C.7.14)

where σ̂ 2
nc

is as defined in (C.5.10) and Ns denotes the number of complex-valued data samples.
The attribute Bayesian in the name of the rule in (C.7.12) or (C.7.14) is motivated by the

use of the a priori pdf, p(θ), in the rule derivation, a method typical of a Bayesian approach. In
fact, the BIC rule can be obtained by using a full Bayesian approach, as explained next.

To obtain the BIC rule in a Bayesian framework, we assume that the parameter vector θ is a
random variable with a given a priori pdf denoted by p(θ). Owing to this assumption on θ , we
need to modify the previously used notation as follows: p(y, θ) will now denote the joint pdf of
y and θ , and p(y |θ) will denote the conditional pdf of y given θ . Using this notation and Bayes’
rule, we can write

p(y |Hn) =
∫

pn(y, θn) dθn =
∫

pn(y |θn)pn(θn) dθn (C.7.15)

The right side of (C.7.15) is identical to that of (C.7.4). It follows from this observation and from
the analysis conducted in the first part of this section that, under the assumptions (C.7.2) and
(C.7.3), and asymptotically in N,

ln p(y |Hn) � ln pn(y, θ̂n) − n

2
ln N = −1

2
BIC (C.7.16)

Hence, maximizing p(y |Hn) is asymptotically equivalent to minimizing BIC, independently of
the prior p(θ) (as long as it satisfies (C.7.2) and (C.7.3)). The rediscovery of BIC in this Bayesian
framework is important: It reveals the interesting fact that the BIC rule is asymptotically equivalent
to the optimal MAP rule (see Section C.3.1) and, hence, that the BIC rule can be expected to
maximize the total probability of correct detection, at least for sufficiently large values of N .

The BIC rule has been proposed in [Schwarz 1978a; Kashyap 1982], among others. In
[Rissanen 1978; Rissanen 1982] the same type of rule has been obtained by a different approach,
one based on coding arguments and on the minimum description length (MDL) principle. The
fact that the BIC rule can be derived in several different ways suggests that it might have a
fundamental character. In particular, it can be shown that, under the assumption that the data-
generating mechanism belongs to the model class considered, the BIC rule is consistent —that is,

For BIC: the probability of correct detection → 1 as N → ∞ (C.7.17)
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(See, e.g., [Söderström and Stoica 1989; McQuarrie and Tsai 1998].) This should be
contrasted with the nonzero overfitting probability of AIC and GIC (with ρ = constant); see
(C.5.12)–(C.5.13). Note that the result in (C.7.17) is not surprising in view of the asymptotic
equivalence between the BIC rule and the optimal MAP rule.

Finally, we note in passing that, if we remove the condition in (C.7.3) that p(θ) be independent of
N, then the term ln p(θ̂ ) no longer may be eliminated from (C.7.9) by letting N → ∞. Consequently,
(C.7.9) would lead to a prior-dependent rule, which could be used to obtain any other rule described in
this appendix by suitably choosing the prior. This line of argument can serve the theoretical purpose
of interpreting various order-selection rules in a common Bayesian framework, but it appears to have
little practical value; in particular, it can hardly be used to derive sound new order-selection rules.

C.8 SUMMARY AND THE MULTIMODEL APPROACH

In the first part of this section, we summarize the model order selection rules presented in the
previous sections. Then we briefly discuss and motivate the multimodel approach which, as the
name suggests, is based on the idea of using more than just one model for making inferences
about the signal under study.

C.8.1 Summary

We begin with the observation that all the order-selection rules discussed in this appendix have
the common form

−2 ln pn(y, θ̂n) + η(n, N )n (C.8.1)

but different penalty coefficients η(n, N ):

AIC : η(n, N ) = 2

AICc : η(n, N ) = 2
N

N − n − 1
GIC : η(n, N ) = ν = ρ + 1
BIC : η(n, N ) = ln N

(C.8.2)

Before using any of these rules for order selection in a specific problem, we need to carry out the
following steps:

(i) Obtain an explicit expression for the term −2 ln pn(y, θ̂n) in (C.8.1). This requires the
specification both of the model structures to be tested and of their postulated likelihoods.
An aspect that should receive some attention here is the fact that the derivation of all
previous rules assumed real-valued data and parameters. Consequently, complex-valued
data and parameters must be converted to real-valued quantities in order to apply the
results in this appendix.

(ii) Count the number of unknown (real-valued) parameters in each model structure under
consideration. This is easily done in the parametric spectral analysis problems in which
we are interested.
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(iii) Verify that the assumptions that have been made to derive the rules hold true. Fortunately,
most of the assumptions made are quite weak; hence, they will usually hold. Indeed, the
models under test may be either nested or non-nested, and they may even be only approx-
imate descriptions of the data-generating mechanism. However, there are two particular
assumptions, made on the information matrix J, that do not always hold and hence must
be checked. First, we assumed in all derivations that the inverse matrix, J −1, exists; such
is not always the case. Second, we made the assumption that J is such that J/N = O(1).
For some models, this is not true; when it is not true, a different normalization of J is
required to make it tend to a constant matrix as N → ∞. (This aspect is important for
the BIC rule only.)

We have used the sinusoidal signal model as an example throughout this appendix to illustrate
these steps and the involved aspects.

Once these aspects have been carefully considered, we can go on to use one of the four rules
in (C.8.1)–(C.8.2) for selecting the order in our estimation problem. The question of which rule
should be used is not an easy one. In general, we can prefer AICc over AIC: indeed, there is
empirical evidence that AICc outperforms AIC in small samples (whereas in medium or large
samples the two rules are almost equivalent). We also tend to prefer BIC over AIC or AICc, on
the grounds that BIC is an asymptotic approximation of the optimal MAP rule. Regarding GIC, as
mentioned in Sections C.5 and C.6, GIC with ν ∈ [2, 6] (depending on the scenario under study)
can outperform AIC and AICc. Hence, for lack of a more precise guideline, we can think of using
GIC with ν = 4, the value in the middle of the above interval. To summarize, then, a possible
ranking of the four rules discussed in this appendix is as follows (the first being considered
the best):

• BIC
• GIC with ν = 4 (ρ = 3)
• AICc
• AIC

In Figure C.1, we show the penalty coefficients of the above rules, as functions of N, to
further illustrate the relationship between them.

C.8.2 The Multimodel Approach

We close this section with a brief discussion of a multimodel approach. Assume that we have
used our favorite information criterion—call it XIC—and have computed its values for the model
orders under test:

XIC(n); n = 1, . . . , n̄ (C.8.3)

We can then pick the order that minimizes XIC(n) and hence end up using a single model; this
is the single-model approach.

Alternatively, we can consider a multimodel approach. Specifically, let us pick a M ∈ [1, n̄]
(such as M = 3) and consider the model orders that give the M smallest values of XIC(n), let
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Figure C.1 Penalty coefficients of AIC, GIC with ν = 4 (ρ = 3), AICc (for n = 5), and BIC, as
functions of data length N.

us say n1, . . . , nM . From the derivations presented in the previous sections of this appendix, we
can see that all information criteria attempt to estimate twice the negative log-likelihood of the
model:

−2 ln pn(y, θn) = −2 ln p(y |Hn) (C.8.4)

Hence, we can use

e− 1
2 XIC(n) (C.8.5)

as an estimate of the likelihood of the model with order equal to n (to within a multiplicative
constant). Consequently, instead of using just one model corresponding to the order that mini-
mizes XIC(n), we can think of considering a combined use of the selected models (with orders
n1, . . . , nM ) in which the contribution of each model is proportional to its likelihood value:

e− 1
2 XIC(nk )∑M

j=1 e− 1
2 XIC(nj )

, k = 1, . . . , M (C.8.6)

For more details on the multimodel approach, including guidelines for choosing M , we refer the
interested reader to [Burnham and Anderson 2002; Stoica, Selén, and Li 2004].


