
Appendix A

Linear Algebra and Matrix
Analysis Tools

A.1 INTRODUCTION

In this appendix, we provide a review of the linear algebra terms and matrix properties used in
the text. For the sake of brevity, we do not present proofs for all results stated in this appendix,
nor do we discuss related results not needed in the chapters. For most of the results included,
however, we do provide proofs and motivation. The reader interested in finding out more about the
topic of this appendix can consult the books [Stewart 1973; Horn and Johnson 1985; Strang
1988; Horn and Johnson 1989; Golub and Van Loan 1989], to which we also refer for the
proofs omitted here.

A.2 RANGE SPACE, NULL SPACE, AND MATRIX RANK

Let A be an m × n matrix whose elements are complex valued in general, A ∈ Cm×n , and let (·)T

and (·)∗ denote the transpose and the conjugate transpose operator, respectively.

Definition D1: The range space of A, also called the column space, is the subspace spanned by
(all linear combinations of) the columns of A:

R(A) = {α ∈ Cm×1|α = Aβ for β ∈ Cn×1} (A.2.1)

The range space of AT is usually called the row space of A, for obvious reasons.
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Definition D2: The null space of A, also called the kernel, is the following subspace:

N (A) = {β ∈ Cn×1|Aβ = 0} (A.2.2)

The previous definitions are all that we need to introduce the matrix rank and its basic properties.
We return to the range and null subspaces in Section A.4, where we discuss the singular-value
decomposition. In particular, we derive some convenient bases and useful projectors associated
with the previous matrix subspaces.

Definition D3: The following are equivalent definitions of the rank of A, denoted by

r � rank(A)

(i) r is equal to the maximum number of linearly independent columns of A. The latter number
is by definition the dimension of the R(A); hence

r = dimR(A) (A.2.3)

(ii) r is equal to the maximum number of linearly independent rows of A,

r = dimR(AT ) = dimR(A∗) (A.2.4)

(iii) r is the dimension of the nonzero determinant of maximum size that can be built from the
elements of A.

The equivalence between the preceding Definitions (i) and (ii) is an important and pleasing
result (without which one should have had to consider the row rank and column rank of a matrix
separately!).

Definition D4: A is said to be

• Rank deficient whenever r < min(m, n).
• Full column rank if r = n ≤ m .
• Full row rank if r = m ≤ n .
• Nonsingular whenever r = m = n .

Result R1: Premultiplication or postmultiplication of A by a nonsingular matrix does not change
the rank of A.

Proof: This fact directly follows from the definition of rank(A), because the aforementioned
multiplications do not change the number of linearly independent columns (or rows) of A. �

Result R2: Let A ∈ Cm×n and B ∈ Cn×p be two conformable matrices of rank rA and rB , respec-
tively. Then

rank(AB) ≤ min(rA, rB ) (A.2.5)
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Proof: We can prove the previous assertion by using the definition of the rank once again. Indeed,
premultiplication of B by A cannot increase the number of linearly independent columns of B ,
hence rank(AB) ≤ rB . Similarly, postmultiplication of A by B cannot increase the number of
linearly independent columns of AT , which means that rank(AB) ≤ rA. �

Result R3: Let A ∈ Cm×m be given by

A =
N∑

k=1

xk y∗
k

where xk , yk ∈ Cm×1. Then,

rank(A) ≤ min(m, N )

Proof: A can be rewritten as

A = [x1 . . . xN ]




y∗
1
...

y∗
N




so the result follows from R2. �

Result R4: Let A ∈ Cm×n with n ≤ m , let B ∈ Cn×p , and let

rank(A) = n (A.2.6)

Then

rank(AB) = rank(B) (A.2.7)

Proof: Assumption (A.2.6) implies that A contains a nonsingular n × n submatrix, the postmul-
tiplication of which by B gives a block of rank equal to rank(B) (cf. R1). Hence,

rank(AB) ≥ rank(B)

However, by R2, rank(AB) ≤ rank(B); hence, (A.2.7) follows. �

A.3 EIGENVALUE DECOMPOSITION

Definition D5: We say that the matrix A ∈ Cm×m is Hermitian if A∗ = A. In the real-valued case,
such an A is said to be symmetric.
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Definition D6: A matrix U ∈ Cm×m is said to be unitary (orthogonal if U is real valued) when-
ever

U ∗U = UU ∗ = I

If U ∈ Cm×n , with m > n , is such that U ∗U = I , then we say that U is semiunitary.

Next, we present a number of definitions and results pertaining to the matrix eigenvalue
decomposition (EVD), first for general matrices and then for Hermitian ones.

A.3.1 General Matrices

Definition D7: A scalar λ ∈ C and a (nonzero) vector x ∈ Cm×1 are an eigenvalue and its asso-
ciated eigenvector of a matrix A ∈ Cm×m if

Ax = λx (A.3.1)

In particular, an eigenvalue λ is a solution of the so-called characteristic equation of A, namely,

|A − λI | = 0 (A.3.2)

(where |·| denotes determinant) and x is a vector in N (A − λI ). The pair (λ, x) is called an
eigenpair.

Observe that, if {(λi , xi )}p
i=1 are p eigenpairs of A (with p ≤ m), then we can write the

defining equations Axi = λxi (i = 1, . . . , p) in the compact form

AX = X
 (A.3.3)

where

X = [x1 . . . xp]

and


 =




λ1 0
...

0 λp




Result R5: Let (λ, x) be an eigenpair of A ∈ Cm×m . If B = A + αI , with α ∈ C, then (λ + α, x)

is an eigenpair of B .

Proof: The result follows from the fact that

Ax = λx �⇒ (A + αI )x = (λ + α)x . �
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Result R6: The matrices A and B � Q−1AQ , where Q is any nonsingular matrix, share the same
eigenvalues. (B is said to be related to A by a similarity transformation.)

Proof: Indeed, the equation

|B − λI | = |Q−1(A − λI )Q | = |Q−1||A − λI ||Q | = 0

is equivalent to |A − λI | = 0. �

In general, there is no simple relationship between the elements {Aij } of A and its eigenvalues
{λk }. However, the trace of A, which is the sum of the diagonal elements of A, is related in a
simple way to the eigenvalues, as described next.

Definition D8: The trace of a square matrix A ∈ Cm×m is defined as

tr(A) =
m∑

i=1

Aii (A.3.4)

Result R7: If {λi }m
i=1 are the eigenvalues of A ∈ Cm×m , then

tr(A) =
m∑

i=1

λi (A.3.5)

Proof: We can write

|λI − A| =
n∏

i=1

(λ − λi ) (A.3.6)

The right-hand side of (A.3.6) is a polynomial in λ whose λn−1 coefficient is
∑n

i=1 λi . From the
definition of the determinant (see, e.g., [Strang 1988]), we find that the left-hand side of (A.3.6)
is a polynomial whose λn−1 coefficient is

∑n
i=1 Aii = tr(A). This proves the result. �

Interestingly, although the matrix product is not commutative, the trace is invariant to
commuting the factors in a matrix product, as shown next.

Result R8: Let A ∈ Cm×n and B ∈ Cn×m . Then

tr(AB) = tr(BA) (A.3.7)
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Proof: A straightforward calculation, based on the definition of tr(·) in (A.3.4), shows that

tr(AB) =
m∑

i=1

n∑
j=1

Aij Bji

=
n∑

j=1

m∑
i=1

Bji Aij =
n∑

j=1

[BA]jj = tr(BA) �

We can also prove (A.3.7) by using Result R7. Along the way, we will obtain some other
useful results. First, we note the following:

Result R9: Let A, B ∈ Cm×m and let α ∈ C. Then

|AB | = |A| |B |
|αA| = αm |A|

Proof: The identities follow directly from the definition of the determinant; see, for example,
[Strang 1988]. �

Next we prove the following results:

Result R10: Let A ∈ Cm×n and B ∈ Cn×m . Then

|I − AB | = |I − BA|. (A.3.8)

Proof: It is straightforward to verify that[
I A
0 I

] [
I −A

−B I

] [
I 0
B I

]
=

[
I − AB 0

0 I

]
(A.3.9)

and [
I 0
B I

] [
I −A

−B I

] [
I A
0 I

]
=

[
I 0
0 I − BA

]
(A.3.10)

Because the matrices in the left-hand sides of (A.3.9) and (A.3.10) have the same determinant,

equal to
∣∣∣∣∣ I −A
−B I

∣∣∣∣∣, it follows that the right-hand sides must also have the same determinant,

which concludes the proof. �

Result R11: Let A ∈ Cm×n and B ∈ Cn×m . The nonzero eigenvalues of AB and of BA are
identical.
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Proof: Let λ �= 0 be an eigenvalue of AB . Then,

0 = |AB − λI | = λm |AB/λ − I | = λm |BA/λ − I | = λm−n |BA − λI |

where the third equality follows from R10. Hence, λ is also an eigenvalue of BA. �

We can now obtain R8 as a simple corollary of R11, by using the property (A.3.5) of the
trace operator.

A.3.2 Hermitian Matrices

An important property of the class of Hermitian matrices, which does not necessarily hold for
general matrices, is the following:

Result R12:

(i) All eigenvalues of A = A∗ ∈ Cm×m are real valued.
(ii) The m eigenvectors of A = A∗ ∈ Cm×m form an orthonormal set. In other words, the matrix

U , whose columns are the eigenvectors of A, is unitary.

It follows from (i) and (ii) and from (A.3.3) that, for a Hermitian matrix, we can write

AU = U 


where U ∗U = UU ∗ = I and the diagonal elements of 
 are real numbers. Equivalently,

A = U 
U ∗ (A.3.11)

which is the so-called eigenvalue decomposition (EVD) of A = A∗. The EVD of a Hermitian
matrix is a special case of the singular value decomposition of a general matrix, discussed in the
next section.

The following is a useful result associated with Hermitian matrices:

Result R13: Let A = A∗ ∈ Cm×m and let v ∈ Cm×1 (v �= 0). Also, let the eigenvalues of A be
arranged in a nonincreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λm

Then

λm ≤ v∗Av

v∗v
≤ λ1 (A.3.12)
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The ratio in (A.3.12) is called the Rayleigh quotient. Because this ratio is invariant under the
multiplication of v by any complex number, we can rewrite (A.3.12) in the form:

λm ≤ v∗Av ≤ λ1 for any v ∈ Cm×1 with v∗v = 1 (A.3.13)

The equalities in (A.3.13) are evidently achieved when v is equal to the eigenvector of A
associated with λm and λ1, respectively.

Proof: Let the EVD of A be given by (A.3.11), and let

w = U ∗v =




w1
...

wm




We need to prove that

λm ≤ w∗
w =
m∑

k=1

λk |wk |2 ≤ λ1

for any w ∈ Cm×1 satisfying

w∗w =
m∑

k=1

|wk |2 = 1.

However, this is readily verified, as

λ1 −
m∑

k=1

λk |wk |2 =
m∑

k=1

(λ1 − λk )|wk |2 ≥ 0

and

m∑
k=1

λk |wk |2 − λm =
m∑

k=1

(λk − λm)|wk |2 ≥ 0

and the proof is concluded. �

The following result is an extension of R13.

Result R14: Let V ∈ Cm×n , with m > n , be a semiunitary matrix (i.e., V ∗V = I ), and let A =
A∗ ∈ Cm×m have its eigenvalues ordered as in R13. Then

m∑
k=m−n+1

λk ≤ tr(V ∗AV ) ≤
n∑

k=1

λk (A.3.14)
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where the equalities are achieved, for instance, when the columns of V are the eigenvectors of A
corresponding to (λm−n+1, . . . , λm) and, respectively, to (λ1, . . . , λn). The ratio

tr(V ∗AV )

tr(V ∗V )
= tr(V ∗AV )

n

is sometimes called the extended Rayleigh quotient.

Proof: Let

A = U 
U ∗

(cf. (A.3.11)), and let

S = U ∗V �




s∗
1
...

s∗
m


 (m × n)

(hence, s∗
k is the k th row of S ). By making use of the preceding notation, we can write

tr(V ∗AV ) = tr(V ∗U 
U ∗V ) = tr(S ∗
S ) = tr(
SS ∗) =
m∑

k=1

λk ck (A.3.15)

where

ck � s∗
k sk , k = 1, . . . m (A.3.16)

Clearly,

ck ≥ 0, k = 1, . . . , m (A.3.17)

and

m∑
k=1

ck = tr(SS ∗) = tr(S ∗S ) = tr(V ∗UU ∗V ) = tr(V ∗V ) = tr(I ) = n (A.3.18)

Furthermore,

ck ≤ 1, k = 1, . . . , m. (A.3.19)

To see this, let G ∈ Cm×(m−n) be such that the matrix [S G] is unitary; and let g∗
k denote the k th

row of G . Then, by construction,

[s∗
k g∗

k ]

[
sk

gk

]
= ck + g∗

k gk = 1 �⇒ ck = 1 − g∗
k gk ≤ 1

which is (A.3.19).
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Finally, by combining (A.3.15) with (A.3.17)–(A.3.19), we can readily verify that tr(V ∗AV )

satisfies (A.3.14), where the equalities are achieved for

c1 = · · · = cm−n = 0; cm−n+1 = · · · = cm = 1

and, respectively,

c1 = · · · = cn = 1; cn+1 = · · · = cm = 0

These conditions on {ck } are satisfied if, for example, S is equal to [0 I ]T and [I 0]T , respectively.
With this observation, the proof is concluded. �

Result R13 is clearly a special case of Result R14. The only reason for considering R13
separately is that the simpler result R13 is used more often in the text than R14.

A.4 SINGULAR VALUE DECOMPOSITION AND PROJECTION OPERATORS

For any matrix A ∈ Cm×n , there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n and a diagonal
matrix  ∈ Rm×n with nonnegative diagonal elements, such that

A = U V ∗ (A.4.1)

By appropriate permutation, the diagonal elements of  can be arranged in a nonincreasing order:

σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n)

The factorization (A.4.1) is called the singular value decomposition (SVD) of A, and its existence
is a significant result both from a theoretical and from a practical standpoint. We reiterate that the
matrices U , , and V in (A.4.1) satisfy the equations

U ∗U = UU ∗ = I (m × m)

V ∗V = VV ∗ = I (n × n)

ij =
{

σi ≥ 0
0

for i = j
for i �= j

The following terminology is most commonly associated with the SVD:

• The left singular vectors of A are the columns of U . These singular vectors are also the
eigenvectors of the matrix AA∗.

• The right singular vectors of A are the columns of V . These vectors are also the eigenvectors
of the matrix A∗A.

• The singular values of A are the diagonal elements {σi } of . Note that {σi } are the square
roots of the largest min(m, n) eigenvalues of AA∗ or A∗A.
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• The singular triple of A is the following triple: (singular value, left singular vector, and right
singular vector; σk , uk , vk ), where uk (vk ) is the k th column of U (V ).

If

rank(A) = r ≤ min(m, n)

then one can show that {
σk > 0, k = 1, . . . , r

σk = 0, k = r + 1, . . . , min(m, n)

Hence, for a matrix of rank r , the SVD can be written as

A = [ U1︸︷︷︸
r

U2︸︷︷︸
m−r

]

[
1 0
0 0

] [
V ∗

1
V ∗

2

]}
r}
n−r

= U11V ∗
1 (A.4.2)

where 1 ∈ Rr×r is nonsingular. The factorization of A in (A.4.2) has a number of important
consequences.

Result R15: Consider the SVD of A ∈ Cm×n in (A.4.2), where r ≤ min(m, n). Then

(i) U1 is an orthonormal basis of R(A);
(ii) U2 is an orthonormal basis of N (A∗);

(iii) V1 is an orthonormal basis of R(A∗);
(iv) V2 is an orthonormal basis of N (A).

Proof: We see that (iii) and (iv) follow from the properties (i) and (ii) as applied to A∗. To prove
(i) and (ii), we need to show that

R(A) = R(U1) (A.4.3)

and, respectively,

N (A∗) = R(U2) (A.4.4)

To show (A.4.3), note that

α ∈ R(A) ⇒ there exists β such that α = Aβ ⇒
⇒ α = U1(1V ∗

1 β) = U1γ ⇒ α ∈ R(U1)

so R(A) ⊂ R(U1). Also,

α ∈ R(U1) ⇒ there exists β such that α = U1β
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From (A.4.2), U1 = AV1
−1
1 ; it follows that

α = A(V1
−1
1 β) = Aρ ⇒ α ∈ R(A)

which shows R(U1) ⊂ R(A). Combining R(U1) ⊂ R(A) with R(A) ⊂ R(U1) gives (A.4.3).
Similarly,

α ∈ N (A∗) ⇒ A∗α = 0 ⇒ V11U ∗
1 α = 0 ⇒ −1

1 V ∗
1 V11U ∗

1 α = 0 ⇒ U ∗
1 α = 0

Now, any vector α can be written as

α = [U1 U2]

[
γ

β

]

because [U1 U2] is nonsingular. However, 0 = U ∗
1 α = U ∗

1 U1γ + U ∗
1 U2β = γ , so γ = 0, and

thus α = U2β. Thus, N (A∗) ⊂ R(U2). Finally,

α ∈ R(U2) ⇒ there exists β such that α = U2β

Then

A∗α = V11U ∗
1 U2β = 0 ⇒ α ∈ N (A∗)

which leads to (A.4.4). �

This result, readily derived by using the SVD, has a number of interesting corollaries that
complement the discussion on range and null subspaces in Section A.2.

Result R16: For any A ∈ Cm×n , the subspaces R(A) and N (A∗) are orthogonal to each other,
and they together span Cm . Consequently, we say that N (A∗) is the orthogonal complement of
R(A) in Cm , and vice versa. In particular, we have

dimN (A∗) = m − r (A.4.5)

dimN (A) = n − r (A.4.6)

(Recall that dimR(A) = dimR(A∗) = r .)

Proof: This result is a direct corollary of R15. �

The SVD of a matrix also provides a convenient representation for the projectors onto the
range and null spaces of A and A∗.
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Definition D9: Let y ∈ Cm×1 be an arbitrary vector. By definition, the orthogonal projector onto
R(A) is the matrix �, which is such that (i) R(�) = R(A) and (ii) the Euclidean distance between
y and �y ∈ R(A) is minimum:

‖y − �y‖2 = min over R(A)

Hereafter, ‖x‖ = √
x∗x denotes the Euclidean vector norm.

Result R17: Let A ∈ Cm×n . The orthogonal projector onto R(A) is given by

� = U1U ∗
1 (A.4.7)

whereas the orthogonal projector onto N (A∗) is

�⊥ = I − U1U ∗
1 = U2U ∗

2 (A.4.8)

Proof: Let y ∈ Cm×1 be an arbitrary vector. As R(A) = R(U1), according to R15, we can find
the vector in R(A) that is of minimal distance from y by solving the problem

min
β

‖y − U1β‖2 (A.4.9)

Because

‖y − U1β‖2 = (β∗ − y∗U1)(β − U ∗
1 y) + y∗(I − U1U ∗

1 )y

= ‖β − U ∗
1 y‖2 + ‖U ∗

2 y‖2

it readily follows that the solution to the minimization problem (A.4.9) is given by β = U ∗
1 y .

Hence, the vector U1U ∗
1 y is the orthogonal projection of y onto R(A), and the minimum distance

from y to R(A) is ‖U ∗
2 y‖. This proves (A.4.7). Then (A.4.8) follows immediately from (A.4.7)

and the fact that N (A∗) = R(U2). �

Note, for instance, that, for the projection of y onto R(A), the error vector is y − U1U ∗
1 y =

U2U ∗
2 y , which is in R(U2) and therefore is orthogonal to R(A) by R15. For this reason, � is

given the name “orthogonal projector” in D9 and R17.
As an aside, we remark that the orthogonal projectors in (A.4.7) and (A.4.8) are idempotent

matrices ; see the next definition.

Definition D10: The matrix A ∈ Cm×m is idempotent if

A2 = A (A.4.10)

Furthermore, observe, by making use of R11, that the idempotent matrix in (A.4.7), for
example, has r eigenvalues equal to 1 and (m − r) eigenvalues equal to 0. This is a general
property of idempotent matrices: their eigenvalues are either 0 or 1.

Finally, we present a result that, even alone, would be enough to make the SVD an essential
matrix-analysis tool.
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Result R18: Let A ∈ Cm×n , with elements Aij . Let the SVD of A (with the singular values
arranged in a nonincreasing order) be given by

A = [ U1︸︷︷︸
p

U2︸︷︷︸
m−p

]

[
1 0
0 2

] [
V ∗

1
V ∗

2

]}
p}
n−p

(A.4.11)

where p ≤ min(m, n) is an integer. Let

‖A‖2 = tr(A∗A) =
m∑

i=1

n∑
j=1

|Aij |2 =
min(m,n)∑

k=1

σ 2
k (A.4.12)

denote the square of the so-called Frobenius norm. Then the best rank-p approximant of A in the
Frobenius-norm metric, that is, the solution to

min
B

‖A − B‖2 subject to rank(B) = p , (A.4.13)

is given by

B0 = U11V ∗
1 (A.4.14)

Furthermore, B0 is the unique solution to the approximation problem (A.4.13) if and only if
σp > σp+1.

Proof: It follows from R4 and (A.4.2) that we can parameterize B in (A.4.13) as

B = CD∗ (A.4.15)

where C ∈ Cm×p and D ∈ Cn×p are full-column-rank matrices. The previous parameterization
of B is of course nonunique, but, as we will see, this fact does not introduce any problem. By
making use of (A.4.15), we can rewrite the problem (A.4.13) in the following form:

min
C ,D

‖A − CD∗‖2 rank(C ) = rank(D) = p (A.4.16)

The reparameterized problem is essentially constraint free. Indeed, the full-column-rank condition
that must be satisfied by C and D can be easily handled.

First, we minimize (A.4.16) with respect to D , for a given C . To that end, observe that

‖A − CD∗‖2 = tr{[D − A∗C (C ∗C )−1](C ∗C )[D∗ − (C ∗C )−1C ∗A]

+ A∗[I − C (C ∗C )−1C ∗] A} (A.4.17)
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By result (iii) in Definition D11 in the next section, the matrix [D − A∗C (C ∗C )−1] · (C ∗C )[D∗ −
(C ∗C )−1C ∗A] is positive semidefinite for any D . This observation implies that (A.4.17) is mini-
mized with respect to D for

D0 = A∗C (C ∗C )−1 (A.4.18)

and that the corresponding minimum value of (A.4.17) is given by

tr{A∗[I − C (C ∗C )−1C ∗]A} (A.4.19)

Next, we minimize (A.4.19) with respect to C . Let S ∈ Cm×p denote an orthogonal basis of
R(C )—that is, S ∗S = I and

S = C �

for some nonsingular p × p matrix �. It is then straightforward to verify that

I − C (C ∗C )−1C ∗ = I − SS ∗ (A.4.20)

By combining (A.4.19) and (A.4.20), we can restate the problem of minimizing (A.4.19) with
respect to C as

max
S ; S ∗S=I

tr[S ∗(AA∗)S ] (A.4.21)

The solution to (A.4.21) follows from R14; the maximizing S is given by

S0 = U1

which yields

C0 = U1�
−1 (A.4.22)

It follows that

B0 = C0D∗
0 = C0(C

∗
0 C0)

−1C ∗
0 A = S0S ∗

0 A

= U1U ∗
1 (U11V ∗

1 + U22V ∗
2 )

= U11V ∗
1 .

Furthermore, we observe that the minimum value of the Frobenius distance in (A.4.13) is given
by

‖A − B0‖2 = ‖U22V ∗
2 ‖2 =

min(m,n)∑
k=p+1

σ 2
k

If σp > σp+1, then the best rank-p approximant B0 is unique; otherwise, it is not unique. Indeed,
whenever σp = σp+1, we can obtain B0 by using either the singular vectors associated with σp or
those corresponding to σp+1; each alternative choice generally leads to a different solution.

�
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A.5 POSITIVE (SEMI)DEFINITE MATRICES

Let A = A∗ ∈ Cm×m be a Hermitian matrix, and let {λk }m
k=1 denote its eigenvalues.

Definition D11: We say that A is positive semidefinite (psd) or positive definite (pd) if any of
the following equivalent conditions holds true:

(i) λk ≥ 0 (λk > 0 for pd) for k = 1, . . . , m .
(ii) α∗Aα ≥ 0 (α∗Aα > 0 for pd) for any nonzero vector α ∈ Cm×1

(iii) There exists a matrix C such that

A = CC ∗ (A.5.1)

(with rank(C ) = m for pd)
(iv) |A(i1, . . . , ik )| ≥ 0 (> 0 for pd) for all k = 1, . . . , m and all indices i1, . . . , ik ∈ [1, m], where

A(i1, . . . , ik ) is the submatrix formed from A by eliminating the i1, . . . , ik rows and columns
of A. (A(i1, . . . , ik ) is called a principal submatrix of A). The condition for A to be positive
definite can be simplified to requiring that |A(k + 1, . . . , m)| > 0 (for k = 1, . . . , m − 1)
and |A| > 0. (A(k + 1, . . . , m) is called a leading submatrix of A).

The notation A > 0 (A ≥ 0) is commonly used to denote that A is pd (psd).

Of the previous defining conditions, (iv) is apparently the most involved. The necessity of
(iv) can be proven as follows: Let α be a vector in Cm with zeroes at the positions {i1, . . . , ik }
and arbitrary elements elsewhere. Then, by using (ii), we readily see that A ≥ 0 (> 0) implies
A(i1, . . . , ik ) ≥ 0 (> 0), which, in turn, implies (iv) by making use of (i) and the fact that the
determinant of a matrix equals the product of its eigenvalues. The sufficiency of (iv) is shown in
[Strang 1988].

The equivalence of the remaining conditions, (i), (ii), and (iii), is easily proven by making
use of the EVD of A: A = U 
U ∗. To show that (i) ⇔ (ii), assume first that (i) holds and let
β = U ∗α. Then

α∗Aα = β∗
β =
m∑

k=1

λk |βk |2 ≥ 0 (A.5.2)

and hence, (ii) holds as well. Conversely, because U is invertible, it follows from (A.5.2) that
(ii) can hold, only if (i) holds; indeed, if (i) does not hold, one can choose β to make (A.5.2)
negative; thus there exists an α = U β such that α∗Aα < 0, which contradicts the assumption that
(ii) holds. Consequently, (i) and (ii) are equivalent. To show that (iii) ⇒ (ii), note that

α∗Aα = α∗CC ∗α = ‖C ∗α‖2 ≥ 0

and thus (ii) holds as well. Because (iii) ⇒ (ii) and (ii) ⇒ (i), we have (iii) ⇒ (i). To show that
(i) ⇒ (iii), we assume (i) and write

A = U 
U ∗ = (U 
1/2
1/2U ∗) = (U 
1/2U ∗)(U 
1/2U ∗) � CC ∗ (A.5.3)
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and thus (iii) is also satisfied. In (A.5.3), 
1/2 is a diagonal matrix whose diagonal elements are
equal to {λ1/2

k }. In other words, 
1/2 is the “square root” of 
.
In a general context, the square root of a positive semidefinite matrix is defined as follows:

Definition D12: Let A = A∗ be a positive semidefinite matrix. Then any matrix C that satisfies

A = CC ∗ (A.5.4)

is called a square root of A. Sometimes such a C is denoted by A1/2.

If C is a square root of A, then so is CB for any unitary matrix B ; hence, a given positive
semidefinite matrix has an infinite number of square roots. Two often-used particular choices for
square roots are

(i) Hermitian square root : C = C ∗. In this case, we can write (A.5.4) as A = C 2. Note that we
have already obtained such a square root of A in (A.5.3):

C = U 
1/2U ∗ (A.5.5)

If C is also constrained to be positive semidefinite (C ≥ 0) then the Hermitian square root
is unique.

(ii) Cholesky factor . If C is lower triangular with nonnegative diagonal elements, then C is called
the Cholesky factor of A. In computational exercises, the triangular form of the square-root
matrix is often preferred to other forms. If A is positive definite, the Cholesky factor is
unique.

We also note that equation (A.5.4) implies that A and C have the same rank and the same
range space. This follows easily, for example, from inserting the SVD of C into (A.5.4).

Next, we prove three specialized results on positive semidefinite matrices required in Sec-
tion 2.5 and in Appendix B.

Result R19: Let A ∈ Cm×m and B ∈ Cm×m be positive semidefinite matrices. Then the matrix
A � B is also positive semidefinite, where � denotes the Hadamard matrix product (also called
elementwise multiplication: [A � B]ij = Aij Bij ).

Proof: Because B is positive semidefinite, it can be written as B = CC ∗ for some matrix C ∈
Cm×m . Let c∗

k denote the k th row of C . Then,

[A � B]ij = Aij Bij = Aij c∗
i cj

and, hence, for any α ∈ Cm×1,

α∗(A � B)α =
m∑

i=1

m∑
j=1

α∗
i Aij c

∗
i cj αj (A.5.6)
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By letting {cjk }m
k=1 denote the elements of the vector cj , we can rewrite (A.5.6) as

α∗(A � B)α =
m∑

k=1

m∑
i=1

m∑
j=1

α∗
i c∗

ik Aij αj cjk =
m∑

k=1

β∗
k Aβk (A.5.7)

where

βk � [α1c1k · · ·αmcmk ]T

A is positive semidefinite by assumption, so β∗
k Aβk ≥ 0 for each k , and it follows from (A.5.7)

that A � B must be positive semidefinite as well. �

Result R20: Let A ∈ Cm×m and B ∈ Cm×m be Hermitian matrices. Assume that B is nonsingular
and that the partitioned matrix

[
A I
I B

]

is positive semidefinite. Then the matrix (A − B−1) is also positive semidefinite:

A ≥ B−1

Proof: By Definition D11, part (ii),

[
α∗

1 α∗
2

] [ A I
I B

] [
α1

α2

]
≥ 0 (A.5.8)

for any vectors α1, α2 ∈ Cm×1. Let

α2 = −B−1α1

Then (A.5.8) becomes

α∗
1(A − B−1)α1 ≥ 0

This inequality must hold for any α1 ∈ Cm×1, and so the proof is concluded. �

Result R21: Let C ∈ Cm×m be a (Hermitian) positive definite matrix depending on a real-valued
parameter α. Assume that C is a differentiable function of α. Then

∂

∂α
[ln |C |] = tr

[
C −1 ∂C

∂α

]
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Proof: Let {λi } ∈ R (i = 1, . . . , m) denote the eigenvalues of C . Then

∂

∂α
[ln |C |] = ∂

∂α

[
ln

m∏
k=1

λk

]
=

m∑
k=1

∂

∂α
(ln λk )

=
m∑

k=1

1

λk

∂λk

∂α

= tr

[

−1 ∂


∂α

]

where 
 = diag(λ1, . . . , λm ). Let Q be a unitary matrix such that Q∗
Q = C (which is the EVD
of C ). Since Q is unitary, Q∗Q = I , we obtain

∂Q∗

∂α
Q + Q∗ ∂Q

∂α
= 0

Thus, we get

tr

[

−1 ∂


∂α

]
= tr

[(
Q∗
−1Q

) (
Q∗ ∂


∂α
Q

)]

= tr

[
C −1

(
∂

∂α

(
Q∗
Q

)− ∂Q∗

∂α

Q − Q∗


∂Q

∂α

)]

= tr

[
C −1 ∂C

∂α

]
− tr

[
Q∗
−1Q

(
∂Q∗

∂α

Q + Q∗


∂Q

∂α

)]

= tr

[
C −1 ∂C

∂α

]
− tr

[
∂Q∗

∂α
Q + Q∗ ∂Q

∂α

]

= tr

[
C −1 ∂C

∂α

]

which is the result stated. �

Finally, we make use of a simple property of positive semidefinite matrices to prove the
Cauchy–Schwartz inequality for vectors and for functions.

Result R22 (Cauchy–Schwartz inequality for vectors): Let x , y ∈ Cm×1. Then

|x∗y |2 ≤ ‖x‖2 ‖y‖2 (A.5.9)

where | · | denotes the modulus of a possibly complex-valued number, and ‖ · ‖ denotes the
Euclidean vector norm ( ‖x‖2 = x∗x ). Equality in (A.5.9) is achieved if and only if x is propor-
tional to y .
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Proof: The (2 × 2) matrix [ ‖x‖2 x∗y
y∗x ‖y‖2

]
=
[

x∗
y∗

] [
x y

]
(A.5.10)

is positive semidefinite because condition (iii) in D11 is satisfied. It follows from condition (iv)
in D11 that the determinant of the preceding matrix must be nonnegative; in other words,

‖x‖2 ‖y‖2 − |x∗y |2 ≥ 0

which gives (A.5.9). Equality in (A.5.9) holds if and only if the determinant of (A.5.10) is equal
to zero. The latter condition is equivalent to requiring that x be proportional to y . (Cf. D3: The
columns of the matrix [x y] will then be linearly dependent.) �

Result R23 (Cauchy–Schwartz inequality for functions): Let f (x) and g(x) be two complex-
valued functions defined for a real-valued argument x . Then, assuming that the needed integrals
exist, ∣∣∣∣

∫
I

f (x)g∗(x)dx

∣∣∣∣2 ≤
[∫

I
|f (x)|2dx

][∫
I
|g(x)|2dx

]

where I ⊂ R is an integration interval. The inequality above becomes an equality if and only if
f (x) is proportional to g(x) on I .

Proof: The matrix ∫
I

[
f (x)

g(x)

] [
f ∗(x) g∗(x)

]
dx

is seen to be positive semidefinite (because the integrand is a positive semidefinite matrix for
every x ∈ I ). Hence, the stated result follows from the type of argument used in the proof of
Result R22. �

A.6 MATRICES WITH SPECIAL STRUCTURE

In this section, we consider several types of matrices with a special structure, for which we prove
some basic properties used in the text.

Definition D13: A matrix A ∈ Cm×n is called Vandermonde if it has the structure

A =




1 · · · 1
z1 zn
...

...

z m−1
1 · · · z m−1

n


 (A.6.1)

where zk ∈ C are usually assumed to be distinct.
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Result R24: Consider the matrix A in (A.6.1) with zk �= zp for k , p = 1, . . . , n and k �= p . Also
let m ≥ n and assume that zk �= 0 for all k . Then any n consecutive rows of A are linearly
independent.

Proof: To prove the assertion, it is sufficient to show that the following n × n Vandermonde
matrix is nonsingular:

Ā =




1 · · · 1
z1 zn
...

...

z n−1
1 · · · z n−1

n




Let β = [β0 · · ·βn−1]∗ �= 0. The equation β∗Ā = 0 is equivalent to

β0 + β1z + · · · + βn−1z n−1 = 0 at z = zk (k = 1, . . . , n) (A.6.2)

However, (A.6.2) is impossible; an (n − 1)-degree polynomial cannot have n zeroes. Hence, Ā
has full rank. �

Definition D14: A matrix A ∈ Cm×n is called

• Toeplitz when Aij is a function of i − j only.
• Hankel when Aij is a function of i + j only.

Observe that a Toeplitz matrix has the same element along each diagonal, whereas a Hankel
matrix has identical elements on each of the antidiagonals.

Result R25: The eigenvectors of a symmetric Toeplitz matrix A ∈ Rm×m are either symmetric
or skew symmetric. More precisely, if J denotes the exchange (or reversal) matrix

J =

 0 1

. .
.

1 0




and if x is an eigenvector of A, then either x = Jx or x = −Jx .

Proof: By the property (3.5.3) proven in Section 3.5, A satisfies

AJx = JAx

or, equivalently,

(JAJ )x = Ax

for any x ∈ Cm×1. Hence, we must have

JAJ = A (A.6.3)
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Let (λ, x) denote an eigenpair of A:

Ax = λx (A.6.4)

Combining (A.6.3) and (A.6.4) yields

λJx = JAx = J (JAJ )x = A(Jx) (A.6.5)

Because the eigenvectors of a symmetric matrix are unique modulo multiplication by a scalar, it
follows from (A.6.5) that

x = αJx for some α ∈ R

As x (and, hence, Jx ) must have unit norm, α must satisfy α2 = 1 ⇒ α = ±1; thus, either x = Jx
(x is symmetric) or x = −Jx (x is skew symmetric). �

One can show that, for m even, the number of symmetric eigenvectors is m/2, as is the
number of skew-symmetric eigenvectors; for m odd, the number of symmetric eigenvectors is
(m + 1)/2 and the number of skew-symmetric eigenvectors is (m − 1)/2. (See [Cantoni and
Butler 1976].)

For many additional results on Toeplitz matrices, the reader can consult [Iohvidov 1982;
Böttcher and Silbermann 1983].

A.7 MATRIX INVERSION LEMMAS

The following formulas for the inverse of a partitioned matrix are used in the text:

Result R26: Let A ∈ Cm×m , B ∈ Cn×n , C ∈ Cm×n and D ∈ Cn×m . Then, provided that the
appropriate matrix inverses exist,[

A C
D B

]−1

=
[

I
0

]
A−1 [ I 0

]+
[ −A−1C

I

]
(B − DA−1C )−1[−DA−1 I ]

=
[

0
I

]
B−1 [ 0 I

]+
[

I
−B−1D

]
(A − CB−1D)−1[I − CB−1]

Proof: By direct verification. �

By equating the top-left blocks in these two equations, we obtain the so-called Matrix Inver-
sion Lemma:

Result R27 Matrix Inversion Lemma: Let A, B , C , and D be as in R26. Then, assuming that the
matrix inverses exist,

(A − CB−1D)−1 = A−1 + A−1C (B − DA−1C )−1DA−1
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A.8 SYSTEMS OF LINEAR EQUATIONS

Let A ∈ Cm×n , B ∈ Cm×p , and X ∈ Cn×p . A general system of linear equations in X can be
written as

AX = B (A.8.1)

where A and B are given and X is the unknown matrix. The special case of (A.8.1) corresponding
to p = 1 (for which X and B are vectors) is perhaps the most common one in applications. For the
sake of generality, we consider the system (A.8.1) with p ≥ 1. (The ESPRIT system of equations
encountered in Section 4.7 is of the form of (A.8.1) with p > 1.) We say that (A.8.1) is exactly
determined whenever m = n , overdetermined if m > n and underdetermined if m < n . In the
following discussion, we first address the case where (A.8.1) has an exact solution and then the
cases where (A.8.1) cannot be exactly satisfied.

A.8.1 Consistent Systems

Result R28: The linear system (A.8.1) is consistent, that is it admits an exact solution X , if and
only if R(B) ⊂ R(A) or equivalently

rank([A B]) = rank(A) (A.8.2)

Proof: The result is readily shown by the use of rank and range properties. �

Result R29: Let X0 be a particular solution to (A.8.1). Then the set of all solutions to (A.8.1) is
given by

X = X0 + � (A.8.3)

where � ∈ Cn×p is any matrix whose columns are in N (A).

Proof: Obviously, (A.8.3) satisfies (A.8.1). To show that no solution outside the set (A.8.3) exists,
let � ∈ Cn×p be a matrix whose columns do not all belong to N (A). Then A� �= 0 and

A(X0 + � + �) = A� + B �= B

and hence, X0 + � + � is not a solution to AX = B . �

Result R30: The system of linear equations (A.8.1) has a unique solution if and only if (A.8.2)
holds and A has full column rank:

rank(A) = n ≤ m (A.8.4)

Proof: The assertion follows from R28 and R29. �
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Next, let us assume that (A.8.1) is consistent but A does not satisfy (A.8.4) (hence,
dimN (A) ≥ 1). Then, according to R29, there are infinitely many solutions. In what follows,
we obtain that (unique) solution X0 that has minimum norm.

Result R31: Consider a linear system that satisfies the consistency condition in (A.8.2). Let A
have rank r ≤ min (m, n), and let

A = [ U1︸︷︷︸
r

U2︸︷︷︸
m−r

]

[
1 0
0 0

] [
V ∗

1
V ∗

2

]}
r}
n−r

= U11V ∗
1

denote the SVD of A. (Here 1 is nonsingular, cf. the discussion in Section A.4). Then

X0 = V1
−1
1 U ∗

1 B (A.8.5)

is the minimum-Frobenius-norm solution of (A.8.1), in the sense that

‖X0‖2 < ‖X‖2 (A.8.6)

for any other solution X �= X0.

Proof: First, we verify that X0 satisfies (A.8.1). We have

AX0 = U1U ∗
1 B (A.8.7)

In (A.8.7), U1U ∗
1 is the orthogonal projector onto R(A) (cf. R17). Because B must belong to

R(A) (see R28), we conclude that U1U ∗
1 B = B and, hence, that X0 is indeed a solution.

Next, we note that, according to R15,

N (A) = R(V2)

Consequently, the general solution (A.8.3) can be written (cf. R29) as

X = X0 + V2Q ; Q ∈ C(n−r)×p

from which we obtain

‖X‖2 = tr[(X ∗
0 + Q∗V ∗

2 )(X0 + V2Q)]

= ‖X0‖2 + ‖V2Q‖2 > ‖X0‖2 for X �= X0 �

Definition D15: The matrix

A† � V1
−1
1 U ∗

1 (A.8.8)

in (A.8.5) is the so-called Moore–Penrose pseudoinverse (or generalized inverse) of A.
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It can be shown that A† is the unique solution to the following set of equations:


AA†A = A

A†AA† = A†

A†A and AA† are Hermitian

Evidently, whenever A is square and nonsingular, we have A† = A−1; this observation partly
motivates the name “generalized inverse” (or “pseudoinverse”) given to A† in the general case.

The computation of a solution to (A.8.1), whenever one exists, is an important issue, which
we address briefly in what follows. We begin by noting that, in the general case, there is no
computer algorithm that can compute a solution to (A.8.1) exactly (i.e., without any numerical
errors). In effect, the best we can hope for is to compute the exact solution to a slightly perturbed
(fictitious) system of linear equations, given by

(A + �A)(X + �X ) = B + �B (A.8.9)

where �A and �B are small perturbation terms, the magnitude of which depends on the algo-
rithm and the length of the computer word, and where �X is the solution perturbation induced.
An algorithm which, when applied to (A.8.1), provides a solution to (A.8.9) corresponding to
perturbation terms (�A, �B ) whose magnitude is of the order afforded by the “machine epsilon”
is said to be numerically stable. Now, assuming that (A.8.1) has a unique solution (and, hence,
that A satisfies (A.8.4)), one can show that the perturbations in A and B in (A.8.9) are retrieved
in �X multiplied by a proportionality factor given by

cond(A) = σ1/σn (A.8.10)

where σ1 and σn are the largest and smallest singular values of A, respectively, and where “cond”
is short for “condition.” The system (A.8.1) is said to be well conditioned if the corresponding
ratio (A.8.10) is “small” (that is, not much larger than 1). The ratio in (A.8.10) is called the
condition number of the matrix A and is an important parameter of a given system of linear
equations. Note, from the previous discussion, that even a numerically stable algorithm (i.e., one
that induces quite small �A and �B ) could yield an inaccurate solution X when applied to an
ill-conditioned system of linear equations (i.e., a system with a very large cond(A)). For more
details on the topic of this paragraph, including specific algorithms for solving linear systems, we
refer the reader to [Stewart 1973; Golub and Van Loan 1989].

A.8.2 Inconsistent Systems

The systems of linear equations that appear in applications (such as those in this book) are quite
often perturbed versions of a “nominal system,” and usually they do not admit any exact solution.
Such systems are said to be inconsistent, and frequently they are overdetermined and have a
matrix A that has full column rank:

rank(A) = n ≤ m (A.8.11)
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In what follows, we present two approaches to obtaining an approximate solution to an inconsistent
system of linear equations

AX � B (A.8.12)

under the condition (A.8.11).

Definition D16: The least squares (LS) approximate solution to (A.8.12) is given by the mini-
mizer XLS of the following criterion:

‖AX − B‖2

Equivalently, XLS can be defined as follows: Obtain the minimal perturbation �B that makes the
system (A.8.12) consistent—that is,

min ‖�B‖2 subject to AX = B + �B (A.8.13)

Then derive XLS by solving the system in (A.8.13) corresponding to the optimal perturbation �B .

The LS solution introduced above can be obtained in several ways. A simple way is as
follows:

Result R32: The LS solution to (A.8.12) is given by

XLS = (A∗A)−1A∗B (A.8.14)

The inverse matrix in this equation exists, in view of (A.8.11).

Proof: The matrix B0 that makes the system consistent and is of minimal distance (in the
Frobenius-norm metric) from B is given by the orthogonal projection of (the columns of) B
onto R(A):

B0 = A(A∗A)−1A∗B (A.8.15)

To motivate (A.8.15) by using only the results proven so far in this appendix, we digress from the
main proof and let U1 denote an orthogonal basis of R(A). Then R17 implies that B0 = U1U ∗

1 B .
However, U1 and A span the same subspace; hence, they must be related to one another by
a nonsingular linear transformation: U1 = AQ (|Q | �= 0). It follows from this observation that
U1U ∗

1 = AQQ∗A∗ and also that Q∗A∗AQ = I , which lead to the following projector formula:
U1U ∗

1 = A(A∗A)−1A∗ (as used in (A.8.15)).
Next, we return to the proof of (A.8.14). The unique solution to

AX − B0 = A[X − (A∗A)−1A∗B]

is obviously (A.8.14), because dimN (A) = 0 by assumption. �
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The LS solution XLS can be computed by means of the SVD of the m × n matrix A. The
XLS can, however, be obtained in a computationally more efficient way, as is briefly described
below. Note that XLS should not be computed by directly evaluating the formula in (A.8.14) as it
stands. Briefly stated, the reason is as follows: Recall, from (A.8.10), that the condition number
of A is given by

cond(A) = σ1/σn (A.8.16)

(Note that σn �= 0 under (A.8.11).) When working directly on A, we find that the numerical
errors made in the computation of XLS can be shown to be proportional to (A.8.16). However, in
(A.8.14), one would need to invert the matrix A∗A, whose condition number is

cond(A∗A) = σ 2
1 /σ 2

n = [cond(A)]2 (A.8.17)

Working with (A∗A) would therefore lead to much larger numerical errors during the computation
of XLS and is thus not advisable. The algorithm sketched in what follows derives XLS by operating
on A directly.

For any matrix A satisfying (A.8.11), there exist a unitary matrix Q ∈ Cm×m and nonsingular
upper triangular matrix R ∈ Cn×n such that

A = Q

[
R
0

]
� [ Q1︸︷︷︸

n

Q2︸︷︷︸
m−n

]

[
R
0

]
(A.8.18)

The previous factorization of A is called the QR decomposition (QRD). Inserting (A.8.18) into
(A.8.14), we obtain

XLS = R−1Q∗
1 B

Hence, once the QRD of A has been performed, XLS can be obtained conveniently, as the solution
of a triangular system of linear equations:

RXLS = Q∗
1 B (A.8.19)

We note that the computation of the QRD is faster than that of the SVD (see, for example,
[Stewart 1973; Golub and Van Loan 1989]).

The previous definition and derivation of XLS make it clear that the LS approach derives an
approximate solution to (A.8.12) by implicitly assuming that only the right-hand-side matrix, B , is
perturbed. In applications, quite frequently both A and B are perturbed versions of some nominal
(and unknown) matrices. In such cases, we may think of determining an approximate solution to
(A.8.12) by explicitly recognizing the fact that neither A nor B is perturbation free. An approach
based on this idea is described next (see, for example, [Van Huffel and Vandewalle 1991]).
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Definition D17: The total least squares (TLS) approximate solution to (A.8.12) is defined as
follows: First, derive the minimal perturbations �A and �B that make the system consistent—
that is,

min ‖[�A �B ]‖2 subject to (A + �A)X = B + �B (A.8.20)

Then, obtain XTLS by solving the system in (A.8.20) corresponding to the optimal perturbations
(�A, �B ).

A simple way to derive a more explicit formula for calculating the XTLS is as follows:

Result R33: Let

[A B] = [ Ũ1︸︷︷︸
n

Ũ2︸︷︷︸
m−n

]

[
̃1 0
0 ̃2

] [
Ṽ ∗

1
Ṽ ∗

2

]}
n}
p

(A.8.21)

denote the SVD of the matrix [A B]. Furthermore, partition Ṽ ∗
2 as

Ṽ ∗
2 = [ Ṽ ∗

21︸︷︷︸
n

Ṽ ∗
22︸︷︷︸
p

] (A.8.22)

Then

XTLS = −Ṽ21 Ṽ −1
22 (A.8.23)

if Ṽ −1
22 exists.

Proof: The optimization problem with constraints in (A.8.20) can be restated in the following
way: Find the minimal perturbation [�A �B ] and the corresponding matrix X such that

{ [A B] + [�A �B ] }
[ −X

I

]
= 0 (A.8.24)

Because rank
[ −X

I

]
= p, [�A �B ] should be such that dimN ( [A B] + [�A �B ] ) ≥ p or,

equivalently,

rank( [A B] + [�A �B ] ) ≤ n (A.8.25)

According to R18, the minimal-perturbation matrix [�A �B ] that achieves (A.8.25) is given by

[�A �B ] = −Ũ2̃2Ṽ ∗
2 (A.8.26)
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Inserting (A.8.26) along with (A.8.21) into (A.8.24), we obtain the following matrix equation
in X :

Ũ1̃1Ṽ ∗
1

[ −X
I

]
= 0

Equivalently we have

Ṽ ∗
1

[ −X
I

]
= 0 (A.8.27)

Equation (A.8.27) implies that X must satisfy

[ −X
I

]
= Ṽ2Q =

[
Ṽ21

Ṽ22

]
Q (A.8.28)

for some nonsingular normalizing matrix Q . The expression (A.8.23) for XTLS is readily obtained
from (A.8.28). �

The TLS solution in (A.8.23) is unique if and only if the singular values {σ̃k } of the matrix
[A B] are such that σ̃n > σ̃n+1 (this follows from R18). When Ṽ22 is singular, the TLS solution
does not exist; see [Van Huffel and Vandewalle 1991].

The computation of the XTLS requires the SVD of the m × (n + p) matrix [A B]. The solution
XTLS can be rewritten in a slightly different form. Let Ṽ11, Ṽ12 be defined via the following
partition of Ṽ ∗

1 :

Ṽ ∗
1 = [ Ṽ11︸︷︷︸

n

Ṽ12︸︷︷︸
p

]

The orthogonality condition Ṽ ∗
1 Ṽ2 = 0 can be rewritten as

Ṽ11Ṽ21 + Ṽ12Ṽ22 = 0

which yields

XTLS = −Ṽ21Ṽ −1
22 = Ṽ −1

11 Ṽ12 (A.8.29)

Because p is usually (much) smaller than n , the formula (A.8.23) for XTLS can often be more
efficient computationally than is (A.8.29). (For example, in the common case of p = 1, (A.8.23)
does not require a matrix inversion, whereas (A.8.29) requires the calculation of an n × n matrix
inverse.)
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A.9 QUADRATIC MINIMIZATION

Several problems in this text require the solution to quadratic minimization problems. In this
section, we make use of matrix-analysis techniques to derive two results: one on unconstrained
minimization, the other on constrained minimization.

Result R34: Let A be an (n × n) Hermitian positive definite matrix, let X and B be (n × m)

matrices, and let C be an m × m Hermitian matrix. Then the unique solution to the minimization
problem

min
X

F (X ), F (X ) = X ∗AX + X ∗B + B∗X + C (A.9.1)

is given by

X0 = −A−1B , F (X0) = C − B∗A−1B (A.9.2)

Here, the matrix minimization means F (X0) ≤ F (X ) for every X �= X0; that is, F (X ) − F (X0) is
a positive semidefinite matrix.

Proof: Let X = X0 + �, where � is an arbitrary (n × m) complex matrix. Then

F (X ) = (−A−1B + �)∗A(−A−1B + �) + (−A−1B + �)∗B

+B∗(−A−1B + �) + C

= �∗A� + F (X0) (A.9.3)

Now, A is positive definite, so �∗A� ≥ 0 for all nonzero �; thus, the minimum value of F (X )

is F (X0), and the result is proven. �

We next present a result on linearly constrained quadratic minimization.

Result R35: Let A be an (n × n) Hermitian positive definite matrix, and let X ∈ Cn×m , B ∈
Cn×k , and C ∈ Cm×k . Assume that B has full column rank equal to k (hence n ≥ k ). Then the
unique solution to the minimization problem

min
X

X ∗AX subject to X ∗B = C (A.9.4)

is given by

X0 = A−1B(B∗A−1B)−1C ∗ (A.9.5)

Proof: First, note that (B∗A−1B)−1 exists and that X ∗
0 B = C . Let X = X0 + �, where � ∈ Cn×m

satisfies �∗B = 0 (so that X also satisfies the constraint X ∗B = C ). Then

X ∗AX = X ∗
0 AX0 + X ∗

0 A� + �∗AX0 + �∗A� (A.9.6)
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where the two middle terms are equal to zero:

�∗AX0 = �∗B(B∗A−1B)−1C ∗ = 0

Hence,

X ∗AX − X ∗
0 AX0 = �∗A� ≥ 0 (A.9.7)

because A is positive definite. It follows from (A.9.7) that the minimizing X matrix is given
by X0. �

A common special case of Result R35 is m = k = 1 (so X and B are both vectors) and
C = 1. Then

X0 = A−1B

B∗A−1B


