
3
Parametric Methods for
Rational Spectra

3.1 INTRODUCTION

The principal difference between the spectral-estimation methods of Chapter 2 and those in this
chapter is that, in Chapter 2, we imposed no assumption on the studied signal (except stationarity).
The parametric or model-based methods of spectral estimation assume that the signal satisfies
a generating model with known functional form and then proceed by estimating the parameters
in the assumed model. The signal’s spectral characteristics of interest are then derived from the
estimated model. In those cases where the assumed model is a close approximation to the reality,
it is no wonder that the parametric methods provide more accurate spectral estimates than the
nonparametric techniques. The nonparametric approach to PSD estimation remains useful, though,
in applications where there is little or no information about the signal in question.

Our discussion of parametric methods for spectral estimation is divided into two parts. In
this chapter, we discuss parametric methods for rational spectra, which form a dense set in
the class of continuous spectra (see Section 3.2) [Anderson 1971; Wei 1990]; more precisely,
we discuss methods for estimating the parameters in rational spectral models. The parametric
methods of spectral analysis, unlike the nonparametric approaches, also require the selection of
the structure (or order) of the spectral model. A review of methods that can be used to solve
the structure-selection problem can be found in Appendix C. Furthermore, in Appendix B, we
discuss the Cramér–Rao bound and the best accuracy achievable in the rational class of spectral
models. However, we do not include detailed results on the statistical properties of the estimation
methods discussed in the following sections, because (i) such results are readily available in the
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Section 3.2 Signals with Rational Spectra 91

literature [Kay 1988; Priestley 1981; Söderström and Stoica 1989]; (ii) parametric methods
provide consistent spectral estimates and hence (for large sample sizes, at least) the issue of
statistical behavior is not so critical; and (iii) a detailed statistical analysis is beyond the scope of
an introductory course.

The second part of our discussion on parametric methods is contained in Chapter 4, where
we consider discrete spectra, such as those associated with sinusoidal signals embedded in white
noise. Mixed spectra (containing both continuous and discrete spectral components, such as in the
case of sinusoidal signals corrupted by colored noise) are not covered explicitly in this text, but
we remark that some methods in Chapter 4 can be extended to deal with such spectra as well.

3.2 SIGNALS WITH RATIONAL SPECTRA

A rational PSD is a rational function of e−iω (i.e., the ratio of two polynomials in e−iω),

φ(ω) =
∑m

k=−m γk e−iω k∑n
k=−n ρk e−iω k

(3.2.1)

where γ−k = γ ∗
k and ρ−k = ρ∗

k . The Weierstrass theorem from calculus asserts that any continuous
PSD can be approximated arbitrarily closely by a rational PSD of the form (3.2.1), provided the
degrees m and n in (3.2.1) are chosen sufficiently large; that is, the rational PSDs form a dense
set in the class of all continuous spectra. This observation partly motivates the significant interest
in the model (3.2.1) for φ(ω) among the researchers in the “spectral estimation community.”

It is not difficult to show that, since φ(ω) ≥ 0, the rational spectral density in (3.2.1) can be
factored as

φ(ω) =
∣∣∣∣B(ω)

A(ω)

∣∣∣∣2 σ 2 (3.2.2)

where σ 2 is a positive scalar and A(ω) and B(ω) are the polynomials:

A(ω) = 1 + a1e−iω + . . .+ ane−inω

B(ω) = 1 + b1e−iω + . . .+ bm e−imω (3.2.3)

The result (3.2.2) can similarly be expressed in the Z-domain. With the notation
φ(z ) = ∑m

k=−m γk z −k/
∑n

k=−n ρk z −k , we can factor φ(z ) as

φ(z ) = σ 2 B(z )B∗(1/z ∗)
A(z )A∗(1/z ∗)

(3.2.4)

where, for example,

A(z ) = 1 + a1z −1 + · · · + anz −n

A∗(1/z ∗) = [A(1/z ∗)]∗ = 1 + a∗
1 z + · · · + a∗

n z n
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Recall the notational convention in this text that we write, for example, A(z ) and A(ω) with the
implicit understanding that, when we convert from a function of z to a function of ω, we use the
substitution z = eiω.

We note that the zeroes and poles of φ(z ) are in symmetric pairs about the unit circle; if
zi = reiθ is a zero (pole) of φ(z ), then (1/z ∗

i ) = (1/r)eiθ is also a zero (pole) (see Exercise 1.3).
Under the assumption that φ(z ) has no pole with modulus equal to one, the region of convergence
of φ(z ) includes the unit circle z = eiω. The result that (3.2.1) can be written, as in (3.2.2) and
(3.2.4), is called the spectral factorization theorem. (See, for example, [Söderström and Stoica
1989; Kay 1988].)

The next point of interest is to compare (3.2.2) with (1.4.9). This comparison leads to the
following result:

The arbitrary rational PSD in (3.2.2) can be associated with a signal obtained
by filtering white noise of power σ 2 through the rational filter with transfer
function H (ω) = B(ω)/A(ω).

(3.2.5)

The filtering referred to in (3.2.5) can be written in the time domain as

y(t) = B(z )

A(z )
e(t) (3.2.6)

or, alternatively, as
A(z )y(t) = B(z )e(t) (3.2.7)

where y(t) is the filter output and

z−1 = the unit delay operator (z−k y(t) = y(t − k))
e(t) = white noise with variance σ 2

Hence, by means of the spectral factorization theorem, the parameterized model of φ(ω) is
turned into a model of the signal itself. The spectral estimation problem can then be reduced
to a problem of signal modeling. In the following sections, we present several methods for
estimating the parameters in the signal model (3.2.7) and in two of its special cases (m = 0, and
n = 0).

A signal y(t) satisfying the equation (3.2.6) is called an autoregressive moving average
(ARMA or ARMA(n,m)) signal. If B(z ) = 1 in (3.2.6) (i.e., m = 0 in (3.2.3)), then y(t) is an
autoregressive (AR or AR(n)) signal; and y(t) is a moving average (MA or MA(m)) signal if
n = 0. For easy reference, we summarize these naming conventions here:

ARMA : A(z )y(t) = B(z )e(t)

AR : A(z )y(t) = e(t)

MA : y(t) = B(z )e(t)

(3.2.8)
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By assumption, φ(ω) is finite for all ω values; as a result, A(z ) cannot have any zero exactly
on the unit circle. Furthermore, the poles and zeroes of φ(z ) are in reciprocal pairs, so it is
always possible to choose A(z ) to have all its zeroes strictly inside the unit disc. The corre-
sponding model (3.2.6) is then said to be stable. If we assume, for simplicity, that φ(ω) does
not vanish at any ω, then—similarly to the preceding—we can choose the polynomial B(z )
so that it has all its zeroes inside the unit (open) disc. The corresponding model (3.2.6) is
said to be of minimum phase. (See Exercise 3.1 for a motivation for the name “minimum
phase.”)

We remark that, in the previous paragraph, we actually provided a sketch of the proof of
the spectral factorization theorem. That discussion also showed that the spectral factorization
problem associated with a rational PSD has multiple solutions, with the stable and minimum-
phase ARMA model being only one of them. In the next sections, we will consider the problem
of estimating the parameters in this particular ARMA equation. When the final goal is the
estimation of φ(ω), focusing on the stable and minimum-phase ARMA model is no restriction.

3.3 COVARIANCE STRUCTURE OF ARMA PROCESSES

In this section, we derive an expression for the covariances of an ARMA process in terms of the
parameters {ai }n

i=1, {bi }m
i=1, and σ 2. The expression provides a convenient method for estimating

the ARMA parameters by replacing the true autocovariances with estimates obtained from data.
Nearly all ARMA spectral estimation methods exploit this covariance structure either explicitly
or implicitly; thus, it will be used widely in the remainder of the chapter.

Equation (3.2.7) can be written as

y(t)+
n∑

i=1

ai y(t − i ) =
m∑

j=0

bj e(t − j ), (b0 = 1) (3.3.1)

Multiplying (3.3.1) by y∗(t − k) and taking expectation yields

r(k)+
n∑

i=1

ai r(k − i ) =
m∑

j=0

bj E
{
e(t − j )y∗(t − k)

}
(3.3.2)

Since the filter H (z ) = B(z )/A(z ) is asymptotically stable and causal, we can write

H (z ) = B(z )/A(z ) =
∞∑

k=0

hk z −k , (h0 = 1)

which gives

y(t) = H (z )e(t) =
∞∑

k=0

hk e(t − k)
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Then the term E {e(t − j )y∗(t − k)} becomes

E
{
e(t − j )y∗(t − k)

} = E

{
e(t − j )

∞∑
s=0

h∗
s e∗(t − k − s)

}

= σ 2
∞∑

s=0

h∗
s δj ,k+s = σ 2h∗

j−k

where we use the convention that hk = 0 for k < 0. Thus, equation (3.3.2) becomes

r(k)+
n∑

i=1

ai r(k − i ) = σ 2
m∑

j=0

bj h
∗
j−k (3.3.3)

In general, hk is a nonlinear function of the {ai } and {bi } coefficients. However, hs = 0 for s < 0,
so equation (3.3.3) for k ≥ m + 1 reduces to

r(k)+
n∑

i=1

ai r(k − i ) = 0, for k > m (3.3.4)

Equation (3.3.4) is the basis for many estimators of the AR coefficients of AR(MA) processes,
as we will see.

3.4 AR SIGNALS

In the ARMA class, the autoregressive or all-pole signals constitute the type that is most frequently
used in applications. The AR equation can model spectra with narrow peaks by placing zeroes
of the A-polynomial in (3.2.2) (with B(ω) ≡ 1) close to the unit circle. This is an important
feature, because narrowband spectra are quite common in practice. In addition, the estimation of
parameters in AR signal models is a well-established topic; the estimates are found by solving a
system of linear equations, and the stability of the estimated AR polynomial can be guaranteed.

We consider two methods for AR spectral estimation. The first is based directly on the linear
relationship between the covariances and the AR parameters derived in equation (3.3.4); it is called
the Yule–Walker method. The second method is based on a least-squares solution of AR parameters
using the time-domain equation A(z )y(t) = e(t). This so-called “least-squares method” is closely
related to the problem of linear prediction, as we shall see.

3.4.1 Yule–Walker Method

In this section, we focus on a technique for estimating the AR parameters that is called the
Yule–Walker (YW) method [Yule 1927; Walker 1931]. For AR signals, m = 0 and B(z ) = 1.
Thus, equation (3.3.4) holds for k > 0. Also, we have from equation (3.3.3) that

r(0)+
n∑

i=1

ai r(−i ) = σ 2
0∑

j=0

bj h
∗
j = σ 2 (3.4.1)
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Combining (3.4.1) and (3.3.4) for k = 1, . . . , n gives the following system of linear equations:




r(0) r(−1) . . . r(−n)

r(1) r(0)
...

...
. . . r(−1)

r(n) . . . r(0)






1
a1
...

an


 =



σ 2

0
...

0


 (3.4.2)

These equations are called the Yule–Walker equations or normal equations; they form the basis
of many AR estimation methods. If {r(k)}n

k=0 were known, we could solve (3.4.2) for

θ = [a1, . . . , an ]T (3.4.3)

by using all but the first row of (3.4.2)




r(1)
...

r(n)


 +




r(0) · · · r(−n + 1)
...

. . .
...

r(n − 1) · · · r(0)






a1
...

an


 =




0
...

0


 (3.4.4)

or, with obvious definitions,

rn + Rnθ = 0 (3.4.5)

The solution is θ = −R−1
n rn . Once θ is found, σ 2 can be obtained from the first row of (3.4.2)

or, equivalently, from (3.4.1).
The Yule–Walker method for AR spectral estimation is based directly on (3.4.2). Given data

{y(t)}N
t=1, we first obtain sample covariances {r̂(k)}n

k=0 by using the standard biased ACS estimator
(2.2.4). We insert these ACS estimates in (3.4.2) and solve for θ̂ and σ̂ 2, as explained above in
the known-covariance case.

Note that the covariance matrix in (3.4.2) can be shown to be positive definite for any n , and
hence the solution to (3.4.2) is unique [Söderström and Stoica 1989]. When the covariances
are replaced by standard biased ACS estimates, the matrix can be shown to be positive definite
for any sample (not necessarily generated by an AR equation) that is not identically equal to zero;
see the remark in the next section for a proof.

To explicitly stress the dependence of θ and σ 2 on the order n , we can write (3.4.2) as

Rn+1

[
1
θn

]
=

[
σ 2

n
0

]
(3.4.6)

We will return to this equation in Section 3.5.
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3.4.2 Least-Squares Method

The Yule–Walker method for estimating the AR parameters is based on equation (3.4.2) with the
true covariance elements {r(k)} replaced by the sample covariances {r̂(k)}. In this section, we
derive another type of AR estimator, one based on a least-squares (LS) minimization criterion
using the time-domain relation A(z )y(t) = e(t). We develop the LS estimator by considering the
closely related problem of linear prediction . We then interpret the LS method as a Yule–Walker-
type method that uses a different estimate of Rn+1 in equation (3.4.6).

We first relate the Yule–Walker equations to the linear prediction problem. Let y(t) be an AR
process of order n . Then y(t) satisfies

e(t) = y(t)+
n∑

i=1

ai y(t − i ) = y(t)+ ϕT (t)θ (3.4.7)

� y(t)+ ŷ(t)

where ϕ(t) = [y(t − 1), . . . , y(t − n)]T . We interpret ŷ(t) as a linear prediction of y(t) from the
n previous samples y(t − 1), . . . , y(t − n), and we interpret e(t) as the corresponding prediction
error . See Complement 3.9.1 and also Exercises 3.3–3.5 for more discussion on this and other
related linear prediction problems. The vector θ that minimizes the prediction error variance
σ 2

n � E
{|e(t)|2} is the AR coefficient vector in (3.4.6), as we will show. From (3.4.7), we have

σ 2
n = E

{|e(t)|2} = E
{[

y∗(t)+ θ∗ϕc(t)
] [

y(t)+ ϕT (t)θ
]}

= r(0)+ r∗
n θ + θ∗rn + θ∗Rnθ (3.4.8)

where rn and Rn are defined in equations (3.4.4)–(3.4.5). The vector θ that minimizes (3.4.8) is
given (see Result R34 in Appendix A) by

θ = −R−1
n rn (3.4.9)

with corresponding minimum prediction error

σ 2
n = r(0)− r∗

n R−1
n rn (3.4.10)

Equations (3.4.9) and (3.4.10) are exactly the Yule–Walker equations in (3.4.5) and (3.4.1) (or,
equivalently, in (3.4.6)). Thus, we see that the Yule–Walker equations can be interpreted as the
solution to the problem of finding the best linear predictor of y(t) from its n most recent past
samples. For this reason, AR modeling is sometimes referred to as linear predictive modeling.

The least-squares AR estimation method is based on a finite-sample approximate solution of
the above minimization problem. Given a finite set of measurements {y(t)}N

t=1, we approximate
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the minimization of E
{|e(t)|2} by the finite-sample cost function

f (θ) =
N2∑

t=N1

|e(t)|2 =
N2∑

t=N1

∣∣∣∣∣y(t)+
n∑

i=1

ai y(t − i )

∣∣∣∣∣
2

=

∥∥∥∥∥∥∥∥∥




y(N1)

y(N1 + 1)
...

y(N2)


 +




y(N1 − 1) · · · y(N1 − n)
y(N1) · · · y(N1 + 1 − n)
...

...

y(N2 − 1) · · · y(N2 − n)


 θ

∥∥∥∥∥∥∥∥∥

2

� ‖y + Y θ‖2 (3.4.11)

where we assume y(t) = 0 for t < 1 and t > N. The vector θ that minimizes f (θ) is given (per
Result R32 in Appendix A) by

θ̂ = −(Y ∗Y )−1(Y ∗y) (3.4.12)

where, as seen from (3.4.11), the definitions of Y and y depend on the choice of (N1,N2)

considered. If N1 = 1 and N2 = N + n , we have

y =




y(1)

y(2)
...

y(n + 1)
y(n + 2)

...

y(N )
0
0
...

0




, Y =




0 0 . . . 0

y(1) 0
...

...
. . .

. . . 0
y(n) y(n − 1) · · · y(1)

y(n + 1) y(n) · · · y(2)
...

...

y(N − 1) y(N − 2) · · · y(N − n)
y(N ) y(N − 1) · · · y(N − n + 1)

0 y(N )
...

. . .
. . .

...

0 . . . 0 y(N )




(3.4.13)

Notice the Toeplitz structure of Y , and also notice that y matches this Toeplitz structure when it
is appended to the left of Y ; that is, [y |Y ] also shares this Toeplitz structure.

The two most common choices for N1 and N2 are the following:

• N1 = 1, N2 = N + n (considered previously). This choice yields the so-called autocorrela-
tion method.

• N1 = n + 1, N2 = N. This choice corresponds to removing the first n and last n rows of
Y and y in equation (3.4.13) and, hence, eliminates all the arbitrary zero values there. The
estimate (3.4.12) with this choice of (N1,N2) is often named the covariance method. We
refer to this method as the covariance LS method or the LS method .
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Other choices for N1 and N2 have also been suggested. For example, the prewindow method uses
N1 = 1 and N2 = N, and the postwindow method uses N1 = n + 1 and N2 = N.

The least-squares methods can be interpreted as approximate solutions to the Yule–Walker
equations in (3.4.4) by recognizing that Y ∗Y and Y ∗y are, to within a multiplicative constant,
finite-sample estimates of Rn and rn , respectively. In fact, it is easy to show that, for the autocor-
relation method, the elements of (Y ∗Y )/N and (Y ∗y)/N are exactly the biased ACS estimates
(2.2.4) used in the Yule–Walker AR estimate. Writing θ̂ in (3.4.12) as

θ̂ = −
[

1

N
(Y ∗Y )

]−1 [ 1

N
(Y ∗y)

]
we see the following as a consequence:

The autocorrelation method of least-squares AR estimation is equivalent to the
Yule–Walker method.

Remark: We can now prove a claim made in the previous subsection: that the matrix Y ∗Y
in (3.4.12), with Y given by (3.4.13), is positive definite for any sample {y(t)}N

t=1 that is not
identically equal to zero. To prove this claim, it is necessary and sufficient to show that rank(Y ) =
n . If y(1) �= 0, then clearly rank(Y ) = n . If y(1) = 0 and y(2) �= 0, then again we clearly have
rank(Y ) = n , and so on. �

For the LS estimator, (Y ∗Y )/(N − n) and (Y ∗y)/(N − n) are unbiased estimates of Rn

and rn in equations (3.4.4) and (3.4.5), and they do not use any measurement data outside the
available interval 1 ≤ t ≤ N. On the other hand, the matrix (Y ∗Y )/(N − n) is not Toeplitz, so
the Levinson–Durbin or Delsarte–Genin algorithms in the next section cannot be used (although
similar fast algorithms for the LS method have been developed; see, for example, [Marple 1987]).

As N increases, the difference between the covariance matrix estimates used by the
Yule–Walker and the LS methods diminishes. Consequently, for large samples (i.e., for N � 1),
the YW and LS estimates of the AR parameters nearly coincide.

For small or medium sample lengths, the Yule–Walker and covariance LS methods might
behave differently. First, the estimated AR model obtained via the Yule–Walker method is always
guaranteed to be stable (see, for example, [Stoica and Nehorai 1987] and Exercise 3.8), whereas
the estimated LS model could be unstable. For applications in which one is interested in the
AR model (and not just the AR spectral estimate), stability of the model is often an important
requirement. It may, therefore, be thought that the potential instability of the AR model provided
by the LS method is a significant drawback of this method. However, estimated LS models that are
unstable appear infrequently; moreover, when they do occur, there are simple means to “stabilize”
them (for instance, by reflecting the unstable poles inside the unit circle). Hence, to conclude this
point, the lack of guaranteed stability is a drawback of the LS method, when compared with the
Yule–Walker method, but often not a serious one.

Second, the LS method has been found to be more accurate than the Yule–Walker method , in
the sense that the estimated parameters of the former are on the average closer to the true values
than those of the latter [Marple 1987; Kay 1988]. Because the finite-sample statistical analysis
of these methods is underdeveloped, a theoretical explanation of this behavior is not possible at
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this time. Only heuristic explanations are available. One such explanation is that the assumption
that y(t) = 0 outside the interval 1 ≤ t ≤ N, and the corresponding zero elements in Y and y ,
result in bias in the Yule–Walker estimates of the AR parameters. When N is not much greater
than n , this bias can be significant.

3.5 ORDER-RECURSIVE SOLUTIONS TO THE YULE–WALKER EQUATIONS

In most applications, a priori information about the true order n is lacking, so AR models with
different orders have to be tested. Hence, the Yule–Walker system of equations, (3.4.6), has to be
solved for n = 1 up to n = nmax (some prespecified maximum order); see Appendix C. By using
a general solving method, this task requires O(n4

max) flops. This can be a significant computational
burden if nmax is large. This is, for example, the case in the applications dealing with narrowband
signals, where values of 50 or even 100 for nmax are not uncommon. In such applications, it can
be important to reduce the number of flops required to calculate {θn , σ

2
n } in (3.4.6). In order to

be able to do so, the special algebraic structure of (3.4.6) should be exploited, as explained next.
The matrix Rn+1 in the Yule–Walker system of equations is highly structured: it is Hermitian

and Toeplitz. The first algorithm that exploited this fact to compute {θn , σ
2
n }nmax

n=1 in n2
max flops was

the Levinson–Durbin algorithm (LDA) [Levinson 1947; Durbin 1960]. The number of flops
required by the LDA is on the order of nmax times smaller than that required by a general linear-
equation solver to compute (θnmax, σ

2
nmax

), and on the order of n2
max times smaller than that required

by a general linear-equation solver to compute {θn , σ
2
n }nmax

n=1 . The LDA is discussed in Section 3.5.1.
In Section 3.5.2, we present another algorithm, the Delsarte–Genin algorithm (DGA), also named
the split-Levinson algorithm, which, in the case of real-valued signals, is about two times faster
than the LDA [Delsarte and Genin 1986].

Both the LDA and DGA solve, recursively in the order n , equation (3.4.6). The only require-
ment is that the matrix there be positive definite, Hermitian, and Toeplitz. Thus, the algorithms
apply equally well to the Yule–Walker AR estimator (or, equivalently, the autocorrelation least-
squares AR method), in which the “true” ACS elements are replaced by estimates. Hence, to
cover both cases simultaneously, in what follows,

ρk is used to represent either r(k) or r̂(k). (3.5.1)

By using the preceding convention, we have

Rn+1 =



ρ0 ρ−1 . . . ρ−n

ρ1 ρ0
...

...
. . . ρ−1

ρn . . . ρ1 ρ0


 =



ρ0 ρ∗

1 . . . ρ∗
n

ρ1 ρ0
...

...
. . . ρ∗

1
ρn . . . ρ1 ρ0


 (3.5.2)

The following notational convention will also be used frequently in this section. For a vector
x = [x1 . . . xn ]T , we define

x̃ = [x∗
n . . . x

∗
1 ]T
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An important property of any Hermitian Toeplitz matrix R is that

y = Rx ⇒ ỹ = Rx̃ (3.5.3)

The result (3.5.3) follows from

ỹi = y∗
n−i+1 =

n∑
k=1

R∗
n−i+1,k x∗

k

=
n∑

k=1

ρ∗
n−i+1−k x∗

k =
n∑

p=1

ρ∗
p−i x

∗
n−p+1 =

n∑
p=1

Ri ,p x̃p

= (Rx̃)i

where Ri ,j denotes the (i , j )th element of the matrix R.

3.5.1 Levinson–Durbin Algorithm

The basic idea of the LDA is to solve (3.4.6) recursively in n , starting from the solution for n = 1
(which is easily found). By using (3.4.6) and the nested structure of the R matrix, we can write

Rn+2


 1
θn

0


 =


 Rn+1

ρ∗
n+1
r̃n

ρn+1 r̃∗
n ρ0




 1
θn

0


 =


 σ 2

n
0
αn


 (3.5.4)

where

rn = [ρ1 . . . ρn ]T (3.5.5)

αn = ρn+1 + r̃∗
n θn (3.5.6)

Equation (3.5.4) would be the counterpart of (3.4.6) when n is increased by one, if αn in (3.5.4)
could be nulled. To do so, let

kn+1 = −αn/σ
2
n (3.5.7)

It follows from (3.5.3) and (3.5.4) that

Rn+2




 1
θn

0


 + kn+1


 0
θ̃n

1




 =


 σ 2

n
0
αn


 + kn+1


 α∗

n
0
σ 2

n




=
[
σ 2

n + kn+1α
∗
n

0

]
(3.5.8)
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which has the same structure as

Rn+2

[
1
θn+1

]
=

[
σ 2

n+1
0

]
(3.5.9)

Comparing (3.5.8) with (3.5.9) and making use of the fact that the solution to (3.4.6) is unique
for any n , we reach the conclusion that

θn+1 =
[
θn

0

]
+ kn+1

[
θ̃n

1

]
(3.5.10)

and

σ 2
n+1 = σ 2

n

(
1 − |kn+1|2

)
(3.5.11)

constitute the solution to (3.4.6) for order (n + 1).
Equations (3.5.10) and (3.5.11) form the core of the LDA. The initialization of these recursive-

in-n equations is straightforward. The following box summarizes the LDA in a form that should
be convenient for machine coding. The LDA has many interesting properties and uses, for which
we refer to [Söderström and Stoica 1989; Marple 1987; Kay 1988]. The coefficients ki in
the LDA are often called the reflection coefficients ; −ki are also called the partial correlation
(PARCOR) coefficients. The motivation for the name “partial correlation coefficient” is developed
in Complement 3.9.1.

The Levinson–Durbin Algorithm

Initialization:

θ1 = −ρ1/ρ0 = k1 [1 flop]

σ 2
1 = ρ0 − |ρ1|2/ρ0 [1 flop]

For n = 1, . . . , nmax, do:

kn+1 = −ρn+1 + r̃∗
n θn

σ 2
n

[n + 1 flops]

σ 2
n+1 = σ 2

n (1 − |kn+1|2) [2 flops]

θn+1 =
[
θn

0

]
+ kn+1

[
θ̃n

1

]
[n flops]

It can be seen from the box that the LDA requires on the order of 2n flops to compute
{θn+1, σ

2
n+1} from {θn , σ

2
n }. Hence, a total of about n2

max flops is needed to compute all the
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solutions to the Yule–Walker system of equations, from n = 1 to n = nmax. This confirms the
claim that the LDA reduces the computational burden associated with a general solver by two
orders of magnitude.

3.5.2 Delsarte–Genin Algorithm

In the real data case (i.e., whenever y(t) is real valued), the Delsarte–Genin algorithm (DGA), or
the split-Levinson algorithm, exploits some further structure of the Yule–Walker problem (which
is not exploited by the LDA) to decrease even more the number of flops required to solve for
{θn , σ

2
n } [Delsarte and Genin 1986]. In the following, we present a derivation of the DGA that

is simpler than the original derivation. As already stated, we assume that the covariance elements
{ρk } in the Yule–Walker equations are real valued.

Let �n be defined by

Rn+1�n = βn




1
...

1


 (3.5.12)

where the scalar βn is unspecified for the moment. The matrix Rn+1 is positive definite, so the
(n + 1)-vector �n is uniquely defined by (3.5.12) (once βn is specified; as a matter of fact, note
that βn only has a scaling effect on the components of �n ). It follows from (3.5.12) and (3.5.3)
that �n is a “symmetric vector”: It satisfies

�n = �̃n (3.5.13)

The key idea of the DGA is to introduce such symmetric vectors into the computations involved
by the LDA; then only half of the elements of these vectors will need to be computed.

Next, note that, by using the nested structure of Rn+1 and the defining equation (3.5.12), we
can write

Rn+1

[
0

�n−1

]
=

[
ρ0 rT

n
rn Rn

] [
0

�n−1

]
=



γn−1

βn−1
...

βn−1


 (3.5.14)

where rn is defined in (3.5.5) and

γn−1 = rT
n �n−1 (3.5.15)

The systems of equations (3.5.12) and (3.5.14) can be combined linearly into a system having the
structure of (3.4.6). To do so, let

λn = βn/βn−1 (3.5.16)
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Then, from (3.5.12), (3.5.14) and (3.5.16), we get

Rn+1

{
�n − λn

[
0

�n−1

]}
=

[
βn − λnγn−1

0

]
(3.5.17)

It will be shown that βn can always be chosen so as to make the first element of �n equal to 1:

(�n )1 = 1 (3.5.18)

In such a case, (3.5.17) has exactly the same structure as (3.4.6) and, the solutions to these two
systems of equations being unique, we are led to the following relations:

[
1
θn

]
= �n − λn

[
0

�n−1

]
(3.5.19)

σ 2
n = βn − λnγn−1 (3.5.20)

Furthermore, (�n)1 = 1 and �n is a symmetric vector, so we must also have (�n )n+1 = 1. This
observation, along with (3.5.19) and the fact that kn is the last element of θn (see (3.5.10)), gives
the following expression for kn :

kn = 1 − λn (3.5.21)

The equations (3.5.19)–(3.5.21) express the LDA variables {θn , σ
2
n , kn} as functions of {�n } and

{βn}. It remains to derive recursive-in-n formulas for {�n } and {βn} and to prove that (3.5.18)
really holds. This is done next.

Let {βn} be defined recursively by the second-order difference equation

βn = 2βn−1 − αnβn−2 (3.5.22)

where

αn = (βn−1 − γn−1)/(βn−2 − γn−2) (3.5.23)

The initial values required to start the recursion (3.5.22) are β0 = ρ0 and β1 = ρ0 + ρ1. With this
definition of {βn}, we claim that the vectors {�n } (as defined in (3.5.12)) satisfy both (3.5.18)
and the following second-order recursion:

�n =
[
�n−1

0

]
+

[
0

�n−1

]
− αn


 0
�n−2

0


 (3.5.24)
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In order to prove the previous claim, we first apply the result (3.5.3) to (3.5.14) to get

Rn+1

[
�n−1

0

]
=



βn−1
...

βn−1

γn−1


 (3.5.25)

Next, we note that

Rn+1


 0
�n−2

0


 =


 ρ0 rT

n−1 ρn

rn−1 Rn−1 r̃n−1

ρn r̃T
n−1 ρ0




 0
�n−2

0


 =



γn−2

βn−2
...

βn−2

γn−2


 (3.5.26)

The right-hand sides of equations (3.5.14), (3.5.25), and (3.5.26) can be combined linearly, as
described next, to get the right-hand side of (3.5.12):



γn−1

βn−1
...

βn−1


 +



βn−1
...

βn−1

γn−1


 − αn



γn−2

βn−2
...

βn−2

γn−2


 = βn




1
...

1


 (3.5.27)

The equality in (3.5.27) follows from the defining equations of βn and αn . This observation,
in conjunction with (3.5.14), (3.5.25) and (3.5.26), gives the system of linear equations

Rn+1



[
�n−1

0

]
+

[
0

�n−1

]
− αn


 0
�n−2

0




 = βn




1
...

1


 (3.5.28)

which has exactly the structure of (3.5.12). Since the solutions to (3.5.12) and (3.5.28) are unique,
they must coincide; hence, (3.5.24) follows.

Next, turn to the condition (3.5.18). From (3.5.24), we see that (�n)1 = (�n−1)1. Hence,
in order to prove that (3.5.18) holds, it suffices to show that �1 = [1 1]T . The initial values
β0 = ρ0 and β1 = ρ0 + ρ1 (purposely chosen for the sequence {βn}), when inserted in (3.5.12),
give �0 = 1 and �1 = [1 1]T . With this observation, the proof of (3.5.18) and (3.5.24) is finished.

The DGA consists of the equations (3.5.16) and (3.5.19)–(3.5.24). These equations include
second-order recursions and appear to be more complicated than the first-order recursive equations
of the LDA. In reality, the symmetry of the �n vectors makes the DGA more efficient computa-
tionally than the LDA (as is shown next). The DGA equations are summarized in the next box
along with an approximate count of the number of flops required for implementation.
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The Delsarte–Genin Algorithm

DGA equations Operation count
no. of (×) no. of (+)

Initialization:
�0 = 1, β0 = ρ0, γ0 = ρ1 – –
�1 = [1 1]T , β1 = ρ0 + ρ1, γ1 = ρ1 + ρ2 – 2

For n = 2, . . . , nmax, do the following steps:

(a) αn = (βn−1 − γn−1)/(βn−2 − γn−2) 1 2
βn = 2βn−1 − αnβn−2 2 1

�n =
[
�n−1

0

]
+

[
0

�n−1

]
− αn


 0
�n−2

0


 ∼ n/2 ∼ n

γn = rT
n+1�n = (ρ1 + ρn+1)

+�n,2(ρ2 + ρn)+ . . . ∼ n/2 ∼ n

(b) λn = βn/βn−1 1 –
σ 2

n = βn − λnγn−1 1 1
kn = 1 − λn – 1

(c)

[
1
θn

]
= �n − λn

[
0

�n−1

]
∼ n/2 ∼ n

The DGA can be implemented in two principal modes, to suit the application at hand.

DGA—Mode 1. In most AR modeling exercises, we do not really need all {θn }nmax
n=1 . We do,

however, need {σ 2
1 , σ

2
2 , . . .} for the purpose of order selection (see Appendix C). Let the selected

order be denoted by nmax. Then the only θ vector to be computed is θnmax . We might also need
to compute the {kn} sequence, because this bears useful information about the stability of the AR
model. (See, for example, [Söderström and Stoica 1989; Kay 1988; Therrien 1992].)

In the modeling application we have outlined, we need to iterate only the groups (a) and
(b) of equations in the previous DGA summary. The matrix equation (c) is computed only for
n = nmax. This way of implementing the DGA requires the following number of multiplications
and additions:

no. of (×) � n2
max/2 no. of (+) � n2

max (3.5.29)

Recall that, for LDA, no. of (×) = no. of (+) � n2
max. Thus, the DGA is approximately twice

as fast as the LDA (on computers for which multiplication is much more time consuming than
addition). We also remark that, in some parameter-estimation applications, the equations in group
(b) of the DGA can also be left out, but doing so will speed up the implementation of the DGA
only slightly.
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DGA—Mode 2. In other applications, we need all {θn}nmax
n=1 . An example of such an appli-

cation is the Cholesky factorization of the inverse covariance matrix R−1
nmax

. (See, for example,
Exercise 3.7 and [Söderström and Stoica 1989].) In such a case, we need to iterate all equations
in the DGA and so need the following number of arithmetic operations:

no. of (×) � 0.75n2
max no. of (+) � 1.5n2

max (3.5.30)

This is still about 25% faster than the LDA (assuming, once again, that the computation time
required for multiplication dominates the time corresponding to an addition).

In closing this section, we note that the computational comparisons between the DGA and
the LDA neglected terms on the order O(nmax). This is acceptable if nmax is reasonably large
(say, nmax ≥ 10). If nmax is small, then these comparisons are no longer valid and, in fact, LDA
could be more efficient computationally than the DGA in such a case. In such low-dimensional
applications, the LDA is therefore to be preferred to the DGA. Also recall that the LDA is the
algorithm to use with complex-valued data; the DGA does not appear to have a computationally
efficient extension for complex-valued data.

3.6 MA SIGNALS

According to the definition in (3.2.8), an MA signal is obtained by filtering white noise with an all-
zero filter. This all-zero structure makes it impossible to use an MA equation to model a spectrum
with sharp peaks unless the MA order is chosen “sufficiently large.” This is to be contrasted
with the ability of the AR (or “all-pole”) equation to model narrowband spectra by using fairly
low model orders (per the discussion in the previous sections). The MA model provides a good
approximation for those spectra characterized by broad peaks and sharp nulls. Such spectra are
encountered less frequently in applications than are narrowband spectra, so there is a somewhat
limited engineering interest in using the MA signal model for spectral estimation. Another reason
for this limited interest is that the MA parameter-estimation problem is basically a nonlinear one
and is significantly more difficult to solve than the AR parameter-estimation problem. In any case,
the types of difficulties we must face in MA and ARMA estimation problems are quite similar;
hence, we almost always prefer to use the more general ARMA model in lieu of the MA one.
For these reasons, our discussion of MA spectral estimation will be brief.

One method for estimating an MA spectrum consists of two steps: (i) Estimate the MA
parameters {bk }m

k=1 and σ 2; and (ii) insert the estimated parameters from the first step in the MA
PSD formula (see (3.2.2)). The result is

φ̂(ω) = σ̂ 2|B̂(ω)|2 (3.6.1)

The difficulty with this approach lies in step (i), which is a nonlinear estimation problem.
Approximate linear solutions to this problem do, however, exist. One of these approximate proce-
dures, perhaps the method most used for MA parameter estimation, is based on a two-stage
least-squares methodology [Durbin 1959]. It is called Durbin’s method ; it will be described in
Section 3.7 in the more general context of ARMA parameter estimation.
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Another method to estimate an MA spectrum is based on the reparameterization of the PSD
in terms of the covariance sequence. We see from (3.2.8) that, for an MA of order m ,

r(k) = 0 for |k | > m (3.6.2)

This simple observation turns the definition of the PSD as a function of {r(k)} into a finite-
dimensional spectral model:

φ(ω) =
m∑

k=−m

r(k)e−iωk (3.6.3)

Hence, a simple estimator of MA PSD is obtained by inserting estimates of {r(k)}m
k=0 in

(3.6.3). If the standard sample covariances {r̂(k)} are used to estimate {r(k)}, then we obtain

φ̂(ω) =
m∑

k=−m

r̂(k)e−iωk (3.6.4)

This spectral estimate is of the form of the Blackman–Tukey estimator (2.5.1). More precisely,
(3.6.4) coincides with a Blackman–Tukey estimator using a rectangular window of length 2m + 1.
This is not unexpected. If we impose the zero-bias restriction on the nonparametric approach
to spectral estimation (to make the comparison with the parametric approach fair), then the
Blackman–Tukey estimator with a rectangular window of length 2m + 1 implicitly assumes that
the covariance lags outside the window interval are equal to zero. This is precisely the assumption
behind the MA signal model; see (3.6.2). Alternatively, if we make use of the assumption (3.6.2)
in a Blackman–Tukey estimator, then we definitely end up with (3.6.4), as, in such a case, this is
the spectral estimator in the Blackman–Tukey class with zero bias and “minimum” variance.

The analogy between the Blackman–Tukey and MA spectrum estimation methods makes it
simpler to understand a problem associated with the MA spectral estimator (3.6.4). The (implicit)
use of a rectangular window in (3.6.4) means that the spectral estimate so obtained is not neces-
sarily positive at all frequencies (see (2.5.5) and the discussion following that equation). Indeed,
it is often noted in applications that (3.6.4) produces PSD estimates that are negative at some
frequencies. In order to cure this deficiency of (3.6.4), we may use another lag window in lieu of
the rectangular one—one guaranteed to be positive semidefinite. This way of correcting φ̂(ω) in
(3.6.4) is, of course, reminiscent of the Blackman–Tukey approach. It should be noted, however,
that φ̂(ω), when thus corrected, is no longer an unbiased estimator of the PSD of an MA(m)
signal. (See, for example, [Moses and Beex 1986] for details on this aspect.)

3.7 ARMA SIGNALS

Spectra with both sharp peaks and deep nulls cannot be modeled by either AR or MA equations
of reasonably small orders. There are, of course, other instances of rational spectra that cannot
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be described exactly as AR or MA spectra. It is in these cases that the more general ARMA
model, also called the pole–zero model, is valuable. However, the great initial promise of ARMA
spectral estimation diminishes to some extent because there is yet no well-established algorithm,
from both theoretical and practical standpoints, for ARMA parameter estimation. The “theoret-
ically optimal ARMA estimators” are based on iterative procedures whose global convergence
is not guaranteed. The “practical ARMA estimators,” on the other hand, are computationally
simple and often quite reliable, but their statistical accuracy is in some cases poor. In the
following, we describe two ARMA spectral estimation algorithms that have been used in appli-
cations with a reasonable degree of success. See also [Byrnes, Georgiou, and Lindquist
2000; Byrnes, Georgiou, and Lindquist 2001] for some recent results on ARMA parameter
estimation.

3.7.1 Modified Yule–Walker Method

The modified Yule–Walker method is a two-stage procedure for estimating the ARMA spectral
density. In the first stage, we estimate the AR coefficients by using equation (3.3.4). In the
second stage, we use the AR coefficient and ACS estimates in equation (3.2.1) to estimate the γk

coefficients. We describe these two stages in this section.
Writing equation (3.3.4) for k = m + 1,m + 2, . . . ,m + M in a matrix form gives


r(m) r(m − 1) . . . r(m − n + 1)
r(m + 1) r(m) r(m − n + 2)

...
. . .

...

r(m + M − 1) . . . . . . r(m − n + M )






a1
...

an


 = −




r(m + 1)
r(m + 2)

...

r(m + M )


 (3.7.1)

If we set M = n in (3.7.1), we obtain a system of n equations in n unknowns. This constitutes
a generalization of the Yule–Walker system of equations that holds in the AR case. Hence,
these equations are said to form the modified Yule–Walker (MYW) system of equations [Gersh
1970; Kinkel, Perl, Scharf, and Stubberud 1979; Beex and Scharf 1981; Cadzow 1982].
Replacing the theoretical covariances {r(k)} by their sample estimates {r̂(k)} in these equations
leads to




r̂(m) . . . r̂(m − n + 1)
...

...

r̂(m + n − 1) . . . r̂(m)






â1
...

ân


 = −




r̂(m + 1)
...

r̂(m + n)


 (3.7.2)

This linear system can be solved for â1, . . . , ân , which are called the modified Yule–Walker esti-
mates of a1, . . . , an . The square matrix in (3.7.2) can be shown to be nonsingular under mild
conditions. There exist fast algorithms of the Levinson type for solving non-Hermitian Toeplitz
systems of equations of the form of (3.7.2); they require about twice the computation of the LDA
algorithm. See [Marple 1987; Kay 1988; Söderström and Stoica 1989].

The MYW AR estimate has reasonable accuracy if the zeroes of B(z ) in the ARMA model
are well inside the unit circle. However, (3.7.2) could give very inaccurate estimates in those
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cases where the poles and zeroes of the ARMA model description are closely spaced together at
positions near the unit circle. Such ARMA models, with nearly coinciding poles and zeroes of
modulus close to one, correspond to narrowband signals. The covariance sequence of narrowband
signals decays very slowly. Indeed, as we know, the more concentrated a signal is in frequency,
usually the more expanded it is in time, and vice versa. This means that there is “information” in
the higher lag covariances of the signal that can be exploited to improve the accuracy of the AR
coefficient estimates. We can exploit the additional information by choosing M > n in equation
(3.7.1) and solving the overdetermined system of equations so obtained. If we replace the true
covariances in (3.7.1) with M > n by finite-sample estimates, there will in general be no exact
solution. A natural idea to overcome this problem is to solve the resultant equation

R̂â � −r̂ (3.7.3)

in a least-squares (LS) or total-least-squares (TLS) sense (see Appendix A). Here, R̂ and r̂ repre-
sent the ACS matrix and vector in (3.7.1) with sample ACS estimates replacing the true ACS
there. For instance, the (weighted) least-squares solution to (3.7.3) is, mathematically, given by1

â = −(R̂∗W R̂)−1(R̂∗W r̂) (3.7.4)

where W is an M × M positive definite weighting matrix. The AR estimate derived from (3.7.3)
with M > n is called the overdetermined modified YW estimate [Beex and Scharf 1981; Cadzow
1982].

Some notes on the choice between (3.7.2) and (3.7.3), and on the selection of M, are in order.

• Choosing M > n does not always improve the accuracy of the previous AR coefficient
estimates. In fact, if the poles and zeroes are not close to the unit circle, choosing M > n
can make the accuracy worse. When the ACS decays slowly to zero, however, choosing
M > n generally improves the accuracy of â [Cadzow 1982; Stoica, Friedlander, and
Söderström 1987b]. A qualitative explanation for this phenomenon can be seen by thinking
of a finite-sample ACS estimate as being the sum of its “signal” component r(k) and a
“noise” component due to finite-sample estimation: r̂(k) = r(k)+ n(k). If the ACS decays
slowly to zero, the signal component is “large” compared to the noise component, even for
relatively large values of k , and including r̂(k) in the estimation of â improves accuracy. If
the noise component of r̂(k) dominates, including r̂(k) in the estimation of â could decrease
the accuracy of â .

• The statistical and numerical accuracies of the solution {âi } to (3.7.3) are quite interrelated.
In more exact but still loose terms, it can be shown that the statistical accuracy of {âi }
is poor (good) if the condition number of the matrix R̂ in (3.7.3) is large (small). (See
[Stoica, Friedlander, and Söderström 1987b; Söderström and Stoica 1989] and also
Appendix A.) This observation suggests that M should be selected so as to make the matrix
in (3.7.3) reasonably well conditioned. In order to make a connection between this rule of

1From a numerical viewpoint, equation (3.7.4) is not a particularly good way to solve (3.7.3). A more numerically
sound approach is to use the QR decomposition; see Section A.8.2 for details.
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thumb for selecting M and the previous explanation for the poor accuracy of (3.7.2) in the
case of narrowband signals, note that, for slowly decaying covariance sequences, the columns
of the matrix in (3.7.2) are nearly linearly dependent. Hence, the condition number of the
covariance matrix could be quite high in such a case, and we might need to increase M in
order to lower the condition number to a reasonable value.

• The weighting matrix W in (3.7.4) can also be chosen to improve the accuracy of the AR
coefficient estimates. A simple first choice is W = I , resulting in the regular (unweighted)
least squares estimate. Some accuracy improvement can be obtained by choosing W to be
diagonal with decreasing positive diagonal elements (to reflect the decreased confidence
in higher ACS lag estimates). In addition, optimal weighting matrices have been derived
(see [Stoica, Friedlander, and Söderström 1987a]); the optimal weight minimizes the
covariance of â (for large N ) over all choices of W. Unfortunately, the optimal weight
depends on the (unknown) ARMA parameters. Thus, to use optimally weighted methods, a
two-step “bootstrap” approach is used, in which a fixed W is first chosen and initial parameter
estimates are obtained; these initial estimates are used to form an optimal W, and a second
estimation gives the “optimal accuracy” AR coefficients. As a general rule, the performance
gain from using optimal weighting is relatively small compared to the computational overhead
required to compute the optimal weighting matrix. Most of the accuracy improvement can be
realized by choosing M > n and W = I for many problems. We refer the reader to [Stoica,
Friedlander, and Söderström 1987a; Cadzow 1982] for a discussion on the effect of W
on the accuracy of â and on optimal weighting matrices.

Once the AR estimates are obtained, we turn to the problem of estimating the MA part of
the ARMA spectrum. Let

γk = E
{
[B(z )e(t)][B(z )e(t − k)]∗

}
(3.7.5)

denote the covariances of the MA part. Since the PSD of this part of the ARMA signal model is
given by (see (3.6.1) and (3.6.3))

σ 2|B(ω)|2 =
m∑

k=−m

γk e−iωk (3.7.6)

it suffices to estimate {γk } in order to characterize the spectrum of the MA part. From (3.2.7) and
(3.7.5), we obtain

γk = E
{
[A(z )y(t)][A(z )y(t − k)]∗

}
=

n∑
j=0

n∑
p=0

aj a
∗
p E

{
y(t − j )y∗(t − k − p)

}

=
n∑

j=0

n∑
p=0

aj a
∗
p r(k + p − j ) (a0 � 1) (3.7.7)
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for k = 0, . . . ,m . Inserting the previously calculated estimates of {ak } and {rk } in (3.7.7) leads
to the following estimator of {γk }:

γ̂k =




n∑
j=0

n∑
p=0

âj â
∗
p r̂(k + p − j ), k = 0, . . . ,m (â0 � 1)

γ̂ ∗
−k , k = −1, . . . ,−m

(3.7.8)

Finally, the ARMA spectrum is estimated as follows:

φ̂(ω) =

m∑
k=−m

γ̂k e−iωk

|Â(ω)|2
(3.7.9)

The MA estimate used by the ARMA spectral estimator in (3.7.9) is of the type (3.6.4) encountered
in the MA context. Hence, the criticism of (3.6.4) in the previous section is still valid. In particular,
the numerator in (3.7.9) is not guaranteed to be positive for all ω values, so this approach could
lead to negative ARMA spectral estimates. See, for example, [Kinkel, Perl, Scharf, and
Stubberud 1979; Moses and Beex 1986].

Since (3.7.9) relies on the modified YW method of AR parameter estimation, we call (3.7.9)
the modified YW ARMA spectral estimator. Refined versions of this ARMA spectral estimator,
which improve the estimation accuracy if N is sufficiently large, were proposed in [Stoica and
Nehorai 1986; Stoica, Friedlander, and Söderström 1987a; Moses, Šimonytė, Stoica, and
Söderström 1994]. A related ARMA spectral estimation method is outlined in Exercise 3.14.

3.7.2 Two-Stage Least-Squares Method

If the noise sequence {e(t)} were known, then the problem of estimating the parameters in
the ARMA model (3.2.7) would have been a simple input–output system parameter estimation
problem, which could be solved by several methods, the simplest of which is the least-squares
(LS) method. In the LS method, we express equation (3.2.7) as

y(t)+ ϕT (t)θ = e(t) (3.7.10)

where

ϕT (t) = [y(t − 1), . . . , y(t − n)| − e(t − 1), . . . ,−e(t − m)]

θ = [a1, . . . , an |b1, . . . , bm ]T

Writing (3.7.10) in matrix form for t = L + 1, . . . ,N (for some L > max(m, n)) gives

z + Z θ = e (3.7.11)
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where

Z =




y(L) . . . y(L − n + 1) −e(L) . . . −e(L − m + 1)
y(L + 1) . . . y(L − n + 2) −e(L + 1) . . . −e(L − m + 2)

...
...

...
...

y(N − 1) . . . y(N − n) −e(N − 1) . . . −e(N − m)


 (3.7.12)

z = [y(L + 1), y(L + 2), . . . , y(N )]T (3.7.13)

e = [e(L + 1), e(L + 2), . . . , e(N )]T (3.7.14)

Assume we know Z ; then we could solve for θ in (3.7.11) by minimizing ‖e‖2. This leads
to a least-squares estimate similar to the AR LS estimate introduced in Section 3.4.2 (see also
Result R32 in Appendix A):

θ̂ = −(Z ∗Z )−1(Z ∗z ) (3.7.15)

Of course, the {e(t)} in Z are not known. However, they can be estimated as described next.
Since the ARMA model (3.2.7) is of minimum phase, by assumption, it can alternatively be

written as the infinite-order AR equation

(1 + α1z −1 + α2z −2 + . . .)y(t) = e(t) (3.7.16)

where the coefficients {αk } of 1 + α1z −1 + α2z −2 + · · · � A(z )/B(z ) converge to zero as k
increases. An idea to estimate {e(t)} is to first estimate the AR parameters {αk } in (3.7.16)
and next obtain {e(t)} by filtering {y(t)} as in (3.7.16). Of course, we cannot estimate an infinite
number of (independent) parameters from a finite number of samples. In practice, the AR equation
must be approximated by one of, say, order K . The parameters in the truncated AR model of y(t)
can be estimated by using either the YW or the LS procedure in Section 3.4.

This discussion leads to the two-stage LS algorithm summarized in the accompanying box.
The two-stage LS parameter estimator is also discussed, for example, in [Mayne and Firoozan
1982; Söderström and Stoica 1989]. The spectral estimate is guaranteed to be positive for
all frequencies, by construction. Owing to the practical requirement to truncate the AR model
(3.7.16), the two-stage LS estimate is biased. The bias can be made small by choosing K suffi-
ciently large; however, K should not be too large with respect to N, or the accuracy of θ̂ in
Step 2 will decrease. The difficult case for this method is apparently that of ARMA signals
with zeroes close to the unit circle. In such a case, it might be necessary to select a very large
value of K in order to keep the approximation (bias) errors in Step 1 at a reasonable level.
The computational burden of Step 1 could then become prohibitively large. It should be noted,
however, that the case of ARMA signals with zeroes near the unit circle is a difficult one for
all known ARMA estimation methods [Kay 1988; Marple 1987; Söderström and Stoica
1989].
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The Two-Stage Least-Squares ARMA Method

Step 1. Estimate the parameters {αk } in an AR(K ) model of y(t) by the YW or covariance
LS method. Let {α̂k }K

k=1 denote the estimated parameters.

Obtain an estimate of the noise sequence {e(t)} by

ê(t) = y(t)+
K∑

k=1

α̂k y(t − k) (3.7.17)

for t = K + 1, . . . ,N.

Step 2. Replace the e(t) in (3.7.12) by the ê(t) computed in Step 1. Obtain θ̂ from (3.7.15)
with L = K + m . Estimate

σ̂ 2 = 1

N − L
ẽ∗ẽ (3.7.18)

where ẽ = Z θ̂ + z is the LS error from (3.7.11).

Insert {θ̂ , σ̂ 2} into the PSD expression (3.2.2) to estimate the ARMA spectrum.

Finally, we remark that the two-stage LS algorithm may be modified to estimate the param-
eters in MA models, by simply skipping over the estimation of AR parameters in Step 2. This
approach was suggested for the first time in [Durbin 1959] and is often called Durbin’s method.

3.8 MULTIVARIATE ARMA SIGNALS

The multivariate analog of the ARMA signal in equation (3.2.7) is

A(z )y(t) = B(z )e(t) (3.8.1)

where y(t) and e(t) are ny × 1 vectors, and A(z ) and B(z ) are ny × ny matrix polynomials in
the unit delay operator. The task of estimating the matrix coefficients—{Ai ,Bj }—of the AR
and MA polynomials in (3.8.1) is much more complicated than in the scalar case, for at least
one reason: The representation of y(t) in (3.8.1), with all elements in {Ai ,Bj } assumed to be
unknown, could well be nonunique, even when the orders of A(z ) and B(z ) have been chosen
correctly. More precisely, assume that we are given the spectral density matrix of an ARMA signal
y(t) along with the (minimal) orders of the AR and MA polynomials in its ARMA equation.
If all elements of {Ai ,Bj } are considered to be unknown, then, unlike in the scalar case, the
previous information could be insufficient for determining the matrix coefficients {Ai ,Bj } uniquely.
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(See, for example, [Hannan and Deistler 1988] and also Exercise 3.16.) The lack of uniqueness
of the representation could lead to a numerically ill-conditioned parameter-estimation problem.
For instance, this would be the case with the multivariate analog of the modified Yule–Walker
method discussed in Section 3.7.1.

Apparently, the only possible cure for the aforementioned problem consists of using a canon-
ical parameterization for the AR and MA coefficients. Basically, this amounts to setting some
of the elements of {Ai ,Bj } to known values, such as 0 or 1, thereby reducing the number of
unknowns. The problem, however, is that, to know which elements should be set to 0 or 1 in a
specific case, we need to know ny indices (called “structure indices”), which are usually difficult to
obtain in practice [Kailath 1980; Hannan and Deistler 1988]. The difficulty in obtaining those
indices has hampered the use of canonical parameterizations in applications. For this reason, we
do not go into any of the details of the canonical forms for ARMA signals. The nonunique-
ness of the fully parameterized ARMA equation will, however, receive further attention in
Section 3.8.2.

Concerning the other approach to ARMA parameter estimation discussed in Section 3.7.2,
namely the two-stage least-squares method, it is worth noting that it can be extended to the
multivariate case in a straightforward manner. In particular, there is no need for using a canonical
parameterization in either step of the extended method. (See, for example, [Söderström and
Stoica 1989].) Working the details of the extension is left as an interesting exercise for the
reader. We stress that the two-stage LS approach is perhaps the only real competitor to the
subspace ARMA parameter-estimation method described in the next subsections.

3.8.1 ARMA State–Space Equations

The difference-equation representation in (3.8.1) can be transformed into the following state–space
representation, and vice versa (see, for example, [Aoki 1987; Kailath 1980]):

x(t + 1) = Ax(t)+ Be(t) (n × 1)
y(t) = Cx(t)+ e(t) (ny × 1)

(3.8.2)

Thereafter, x(t) is the state vector of dimension n; A, B , and C are matrices of appropriate
dimensions (with A having all eigenvalues inside the unit circle); and e(t) is white noise with
zero mean and with covariance matrix denoted by Q . We thus have

E {e(t)} = 0 (3.8.3)

E
{
e(t)e∗(s)

} = Qδt,s (3.8.4)

where Q is positive definite by assumption.
The transfer filter corresponding to (3.8.2), also called the ARMA shaping filter, is readily

seen to be

H (z ) = z −1C (I − Az−1)−1B + I (3.8.5)
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By paralleling the calculation leading to (1.4.9), it is then possible to show that the ARMA power
spectral density (PSD) matrix is given by

φ(ω) = H (ω)QH ∗(ω) (3.8.6)

The derivation of (3.8.6) is left as an exercise for the reader.
In the next subsections, we will introduce a methodology for estimating the matrices A, B ,

C , and Q of the state-space equation (3.8.2) and, hence, the ARMA power spectral density (via
(3.8.5) and (3.8.6)). In this subsection, we derive a number of results that lay the groundwork for
the discussion in the next subsections.

Let
Rk = E

{
y(t)y∗(t − k)

}
(3.8.7)

P = E
{
x(t)x∗(t)

}
(3.8.8)

Observe that, for k ≥ 1,

Rk = E
{
[Cx(t + k)+ e(t + k)][x∗(t)C ∗ + e∗(t)]

}
= CE

{
x(t + k)x∗(t)

}
C ∗ + CE

{
x(t + k)e∗(t)

}
(3.8.9)

From equation (3.8.2), we obtain (by induction)

x(t + k) = Ak x(t)+
k−1∑
�=0

Ak−�−1 Be(t + �) (3.8.10)

which implies that
E
{
x(t + k)x∗(t)

} = Ak P (3.8.11)

and
E
{
x(t + k)e∗(t)

} = Ak−1BQ (3.8.12)

Inserting (3.8.11) and (3.8.12) into (3.8.9) yields

Rk = CAk−1D (for k ≥ 1) (3.8.13)

where

D = APC∗ + BQ (3.8.14)

From the first equation in (3.8.2), we also readily obtain

P = APA∗ + BQB∗ (3.8.15)
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and, from the second equation,

R0 = CPC∗ + Q (3.8.16)

It follows from (3.8.14) and (3.8.16) that

B = (D − APC∗)Q−1 (3.8.17)

and, respectively,

Q = R0 − CPC∗ (3.8.18)

Finally, inserting (3.8.17) and (3.8.18) into (3.8.15) gives the following Riccati equation for P :

P = APA∗ + (D − APC∗)(R0 − CPC∗)−1(D − APC∗)∗ (3.8.19)

The results lead to a number of interesting observations.

The (Non)Uniqueness Issue. It is well known that a linear nonsingular transformation of the
state vector in (3.8.2) leaves the transfer-function matrix associated with (3.8.2) unchanged. To
be more precise, let the new state vector be given by

x̃(t) = Tx(t), (|T | �= 0) (3.8.20)

It can be verified that the state–space equations in x̃(t), corresponding to (3.8.2), are

x̃(t + 1) = Ãx̃(t)+ B̃e(t)
(3.8.21)

y(t) = C̃ x̃(t)+ e(t)

where
Ã = TAT −1; B̃ = TB; C̃ = CT −1 (3.8.22)

As {y(t)} and {e(t)} in (3.8.21) are the same as in (3.8.2), the transfer function H (z ) from
e(t) to y(t) must be the same for both (3.8.2) and (3.8.21). (Verifying this by direct calculation
is left to the reader.) The consequence is that there exists an infinite number of triples (A,B ,C )
(with all matrix elements assumed unknown) that lead to the same ARMA transfer function and,
hence, the same ARMA covariance sequence and PSD matrix. For the transfer-function matrix,
the nonuniqueness induced by the similarity transformation (3.8.22) is the only type possible (as
we know from the deterministic system theory, for example, [Kailath 1980]). For the covariance
sequence and the PSD, however, other types of nonuniqueness are also possible. See, for example,
[Faurre 1976] and [Söderström and Stoica 1989, Problem 6.3].

Most ARMA estimation methods require the use of a uniquely parameterized representation.
The previous discussion has clearly shown that letting all elements of A, B, C, and Q be unknown
does not lead to such a unique representation. The latter representation is obtained only if a
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canonical form is used. As already explained, the ARMA parameter estimation methods relying
on canonical parameterizations are impractical. The subspace-based estimation approach discussed
in the next subsection circumvents the canonical-parameterization requirement in an interesting
way: The nonuniqueness of the ARMA representation with A, B, C, and Q fully parameterized is
reduced to the nonuniqueness of a certain decomposition of covariance matrices; then by choosing
a specific decomposition, a triplet (A,B ,C ) is isolated and is determined in a numerically well-
posed manner.

The Minimality Issue. Let, for some integer-valued m ,

O =




C
CA
...

CAm−1


 (3.8.23)

and

C∗ = [D AD · · · Am−1D] (3.8.24)

The similarity between the above matrices and the observability and controllability matrices,
respectively, from the theory of deterministic state–space equations is evident. In fact, it follows
from the aforementioned theory and from (3.8.13) that the triplet (A,D,C ) is a minimal repre-
sentation (i.e., one with the minimum possible dimension n) of the covariance sequence {Rk } if
and only if. (See, for example, [Kailath 1980; Hannan and Deistler 1988].)

rank(O) = rank(C) = n (for m ≥ n) (3.8.25)

As was shown previously, the other matrices P, Q , and B of the state–space equation (3.8.2)
can be obtained from A, C, and D (see equations (3.8.19), (3.8.18), and (3.8.17), respectively). It
follows that the state–space equation (3.8.2) is a minimal representation of the ARMA covariance
sequence {Rk } if and only if the condition (3.8.25) is satisfied. In what follows, we assume that
the “minimality condition” (3.8.25) holds true.

3.8.2 Subspace Parameter Estimation—Theoretical Aspects

We begin by showing how A, C, and D can be obtained from a sequence of theoretical ARMA
covariances. Let

R =




R1 R2 · · · Rm

R2 R3 · · · Rm+1
...

...
...

Rm Rm+1 · · · R2m−1




= E






y(t)
...

y(t + m − 1)


 [y∗(t − 1) · · · y∗(t − m)]


 (3.8.26)
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denote the block-Hankel matrix of covariances. (The name given to (3.8.26) is due to its special
structure: the submatrices on its block antidiagonals are identical. Such a matrix is a block exten-
sion to the standard Hankel matrix; see Definition D14 in Appendix A.) According to (3.8.13),
we can factor R as follows:

R =




C
CA
...

CAm−1


 [D AD · · · Am−1 D] = OC∗ (3.8.27)

It follows from (3.8.25) and (3.8.27) (see Result R4 in Appendix A) that

rank(R) = n (for m ≥ n) (3.8.28)

Hence, n could, in principle, be obtained as the rank of R. To determine A, C, and D, let us
consider the singular value decomposition (SVD) of R (see Appendix A);

R = U�V ∗ (3.8.29)

where � is a nonsingular n × n diagonal matrix, and

U ∗U = V ∗V = I (n × n)

By comparing (3.8.27) and (3.8.29), we obtain

O = U�1/2T for some nonsingular transformation matrix T (3.8.30)

because the columns of both O and U�1/2 are bases of the range space of R. Henceforth,
�1/2 denotes a square root of � (that is, �1/2�1/2 = �). By inserting (3.8.30) in the equation
OC∗ = U�V ∗, we also obtain

C = V�1/2(T −1)∗ (3.8.31)

Next, observe that

OT −1 =




(CT −1)

(CT −1)(TAT −1)
...

(CT −1)(TAT −1)m−1


 (3.8.32)

and
TC∗ = [(TD) · · · (TAT −1)m−1(TD)] (3.8.33)

This implies that, by identifying O and C with the matrices made from all possible bases of the
range spaces of R and R∗, respectively, we obtain the set of similarity-equivalent triples (A,D,C ).
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Hence, picking up a certain basis yields a specific triple (A,D,C ) in the aforementioned set.
This is how the subspace approach to ARMA state–space parameter estimation circumvents the
nonuniqueness problem associated with a fully parameterized model.

In view of the previous discussion, we can, for instance, set T = I in (3.8.30) and (3.8.31)
and obtain C as the first ny rows of U�1/2 and D as the first ny columns of �1/2V ∗. Then, A
may be obtained as the solution to the linear system of equations

(Ū�1/2)A = U
¯
�1/2 (3.8.34)

where Ū and U
¯

are the matrices made from the first and, respectively, the last (m − 1) block
rows of U. Once A, C , and D have been found, P is obtained by solving the Riccati equation
(3.8.19), and then Q and B are derived from (3.8.18) and (3.8.17). Algorithms for solving the
Riccati equation are presented, for instance, in [van Overschee and de Moor 1996] and the
references therein.

A modification of the preceding procedure that does not change the solution obtained in
the theoretical case, but appears to have beneficial effects on the parameter estimates obtained
from finite samples, is as follows: Let us denote the two vectors appearing in (3.8.26) by the
symbols

f (t) = [yT (t) · · · yT (t + m − 1)]T (3.8.35)

and

p(t) = [yT (t − 1) · · · yT (t − m)]T (3.8.36)

Let
Rfp = E

{
f (t)p∗(t)

}
(3.8.37)

and let Rff and Rpp be similarly defined. Redefine the matrix in (3.8.26) as

R = R−1/2
ff RfpR−1/2

pp (3.8.38)

where R−1/2
ff and R−1/2

pp are the Hermitian square roots of R−1
ff and R−1

pp . (See Definition D12
in Appendix A.) A heuristic explanation of why the previous modification should lead to better
parameter estimates in finite samples is as follows: The matrix R in (3.8.26) is equal to Rfp , whereas
the R in (3.8.38) can be written as Rf̃ p̃ , where both f̃ (t) = R−1/2

ff f (t) and p̃(t) = R−1/2
pp p(t) have

unity covariance matrices. Owing to the latter property, the cross-covariance matrix Rf̃ p̃ and its
singular elements are usually estimated more accurately from finite samples than are Rfp and its
singular elements. This fact should eventually lead to better parameter estimates.

By making use of the factorization (3.8.27) of Rfp along with the formula (3.8.38) for the
matrix R, we can write

R = R−1/2
ff RfpR−1/2

pp = R−1/2
ff OC∗R−1/2

pp = U�V ∗ (3.8.39)
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where U�V ∗ is now the SVD of R in (3.8.38). Identifying R−1/2
ff O with U�1/2 and R−1/2

pp C with
V�1/2, we obtain

O = R1/2
ff U�1/2 (3.8.40)

C = R1/2
pp V�1/2 (3.8.41)

The matrices A, C, and D can be determined from these equations as previously described. Then
we can derive P, Q , and B, as has also been indicated before.

3.8.3 Subspace Parameter Estimation—Implementation Aspects

Let R̂fp be the sample estimate

R̂fp = 1

N

N −m+1∑
t=m+1

f (t)p∗(t) (3.8.42)

and let R̂ff etc. be similarly defined. Compute R̂ as

R̂ = R̂−1/2
ff R̂fp R̂−1/2

pp (3.8.43)

and its SVD. Estimate n as the “practical rank” of R̂, or

n̂ = p-rank(R̂) (3.8.44)

(i.e., the number of singular values of R̂ that are significantly larger than the remaining ones;
statistical tests for deciding whether a singular value of a given sample covariance matrix is
significantly different from zero are discussed in, for example, [Fuchs 1987]). Let Û, �̂, and
V̂ denote the matrices made from the n̂ principal singular elements of R̂, corresponding to the
matrices U, �, and V in (3.8.39). Take

Ĉ = the first ny rows of R̂1/2
ff Û �̂1/2

D̂ = the first ny columns of �̂1/2V̂ ∗R̂1/2
pp

(3.8.45)

Next, let

�̄ and �
¯

= the matrices made from the first and, respectively, last

(m − 1) block rows of R̂1/2
ff Û �̂1/2 (3.8.46)

Estimate A as

Â = the LS or TLS solution to �̄A � �
¯

(3.8.47)
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Finally, estimate P as

P̂ = the positive definite solution, if any, of the Riccati equation (3.8.19) with
A, C , D , and R0 replaced by their estimates

(3.8.48)

and estimate Q and B

Q̂ = R̂0 − Ĉ P̂ Ĉ ∗

B̂ = (D̂ − ÂP̂ Ĉ ∗)Q̂−1
(3.8.49)

In some cases, the procedure cannot be completed, because the Riccati equation has no positive
definite solution or even no solution at all. (In the case of a real-valued ARMA signal, for instance,
that equation could have no real-valued solution.) In such cases, we can estimate approximate P
as discussed next (only the estimation of P has to be modified; all the other parameter estimates
can be obtained as previously described).

A straightforward calculation making use of (3.8.11) and (3.8.12) yields

E
{
x(t)y∗(t − k)

} = Ak PC ∗ + Ak−1BQ

= Ak−1D (for k ≥ 1) (3.8.50)

Hence,
C∗ = E

{
x(t)p∗(t)

}
(3.8.51)

Let
ψ = C∗R−1

pp (3.8.52)

and define ε(t) via the equation
x(t) = ψp(t)+ ε(t) (3.8.53)

It is not difficult to verify that ε(t) is uncorrelated with p(t). Indeed,

E
{
ε(t)p∗(t)

} = E
{
[x(t)− ψp(t)]p∗(t)

} = C∗ − ψRpp = 0 (3.8.54)

This implies that the first term in (3.8.53) is the least-squares approximation of x(t) based on the
past signal values in p(t). (See, for example, [Söderström and Stoica 1989] and Appendix A.)
It follows from this observation that ψp(t) approaches x(t) as m increases. Hence,

ψRppψ
∗ = C∗R−1

pp C → P (as m → ∞) (3.8.55)

However, in view of (3.8.41),

C∗R−1
pp C = � (3.8.56)
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The conclusion is that, provided m is chosen large enough, we can approximate P as

P̃ = �̂, for m � 1 (3.8.57)

This is the alternative estimate of P , which can be used in lieu of (3.8.48) whenever the latter
estimation procedure fails. The estimate P̃ approaches the true value P as N tends to infinity,
provided m is also increased without bound at an appropriate rate. However, if (3.8.57) is used
with too small a value of m , the estimate of P so obtained might be heavily biased.

The reader interested in more aspects of the subspace approach to parameter estimation for
rational models should consult [Aoki 1987; van Overschee and de Moor 1996; Rao and Arun
1992; Viberg 1995] and the references therein.

3.9 COMPLEMENTS

3.9.1 The Partial Autocorrelation Sequence

The sequence {kj } computed in equation (3.5.7) of the LDA has an interesting statistical interpre-
tation, as explained next. The covariance lag ρj “measures” the degree of correlation between the
data samples y(t) and y(t − j ) (in the chapter ρj is equal to either r(j ) or r̂(j ); here ρj = r(j )).
The normalized covariance sequence {ρj /ρ0} is often called the autocorrelation function. Now,
y(t) and y(t − j ) are related to one another not only “directly,” but also through the intermediate
samples:

[y(t − 1) . . . y(t − j + 1)]T � ϕ(t)

Let εf (t) and εb(t − j ) denote the errors of the LS linear predictions of y(t) and y(t − j ), respec-
tively, based on ϕ(t) above; in particular, εf (t) and εb(t − j ) must then be uncorrelated with ϕ(t):
E
{
εf (t)ϕ∗(t)

} = E {εb(t − j )ϕ∗(t)} = 0. (Note that εf (t) and εb(t − j ) are termed forward and
backward prediction errors respectively; see also Exercises 3.3 and 3.4.) We show that

kj = − E
{
εf (t)ε∗

b (t − j )
}

[
E
{|εf (t)|2

}
E
{|εb(t − j )|2}]1/2 (3.9.1)

Hence, kj is the negative of the so-called partial correlation (PARCOR) coefficient of {y(t)},
which measures the “partial correlation” between y(t) and y(t − j ) after the correlation due to
the intermediate values y(t − 1), . . . , y(t − j + 1) has been eliminated.

Let
εf (t) = y(t)+ ϕT (t)θ (3.9.2)

where, similarly to (3.4.9),

θ = −{E {
ϕc(t)ϕT (t)

}}−1 E
{
ϕc(t) y(t)

}
� −R−1r
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It is readily verified (by making use of the previous definition for θ ) that

E
{
ϕc(t)εf (t)

} = 0

which shows that εf (t), as just defined, is indeed the error of the linear forward LS prediction of
y(t), based on ϕ(t).

Similarly, define the linear backward LS prediction error

εb(t − j ) = y(t − j )+ ϕT (t)α

where
α = −{E {

ϕc(t)ϕT (t)
}}−1E

{
ϕc(t)y(t − j )

} = −R−1r̃ = θ̃

The last equality just defined follows from (3.5.3). We thus have

E
{
ϕc(t)εb(t − j )

} = 0

as required.
Next, some simple calculations give

E
{|εf (t)|2

} = E
{
y∗(t)[y(t)+ ϕT (t)θ ]

}
= ρ0 + [ρ∗

1 . . . ρ
∗
j−1]θ = σ 2

j−1

E
{|εb(t − j )|2} = E

{
y∗(t − j )[y(t − j )+ ϕT (t)α]

}
= ρ0 + [ρj−1 . . . ρ1]θ̃ = σ 2

j−1

and
E
{
εf (t)ε

∗
b (t − j )

} = E
{
[y(t)+ ϕT (t)θ ]y∗(t − j )

}
= ρj + [ρj−1 . . . ρ1]θ = αj−1

(cf. (3.4.1) and (3.5.6)). By using the previous equations in (3.9.1), we obtain

kj = −αj−1/σ
2
j−1

which coincides with (3.5.7).

3.9.2 Some Properties of Covariance Extensions

Assume we are given a finite sequence {r(k)}m−1
k=−(m−1) with r(−k) = r∗(k) and such that Rm in

equation (3.4.6) is positive definite. We show that the finite sequence can be extended to an infinite
sequence that is a valid ACS. Moreover, there are an infinite number of possible covariance
extensions, and we derive an algorithm to construct these extensions. One such extension, in
which the reflection coefficients km , km+1, . . . are all zero (and thus the infinite ACS corresponds
to an AR process of order less than or equal to (m − 1)), gives the so-called Maximum Entropy
extension [Burg 1975].
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We begin by constructing the set of r(m) values for which Rm+1 > 0. Using the result of
Exercise 3.7, we have

|Rm+1| = σ 2
m |Rm | (3.9.3)

From the Levinson–Durbin algorithm,

σ 2
m = σ 2

m−1

[
1 − |km |2] = σ 2

m−1

[
1 − |r(m)+ r̃∗

m−1θm−1|2
σ 4

m−1

]
(3.9.4)

Combining (3.9.3) and (3.9.4) gives

|Rm+1| = |Rm | · σ 2
m−1

[
1 − |r(m)+ r̃∗

m−1θm−1|2
σ 4

m−1

]
(3.9.5)

which shows that |Rm+1| is quadratic in r(m). Since σ 2
m−1 > 0 and Rm is positive definite, it

follows that

|Rm+1| > 0 if and only if |r(m)+ r̃∗
m−1θm−1|2 < σ 4

m−1 (3.9.6)

This region is an open disk in the complex plane whose center is −r̃∗
m−1θm−1 and radius is σ 2

m−1.
Equation (3.9.6) leads to a construction of all possible covariance extensions. Note that, if

Rp > 0 and we choose r(p) inside the disk |r(p)+ r̃∗
p−1θp−1|2 < σ 4

p−1, then |Rp+1| > 0. This
implies σ 2

p > 0, and the admissible disk for r(p + 1) has nonzero radius, so there are an infinite
number of possible choices for r(p + 1) such that |Rp+2| > 0. Arguing inductively in this way for
p = m,m + 1, . . . shows that there are an infinite number of covariance extensions and provides
a construction for them.

If we choose r(p) = −r̃∗
p−1θp−1 for p = m,m + 1, . . . (i.e., r(p) is chosen to be at the center

of each disk in (3.9.6)), then, from (3.9.4), we see that the reflection coefficient kp = 0. Thus,
from the Levinson–Durbin algorithm (see equation (3.5.10)) we have

θp =
[
θp−1

0

]
(3.9.7)

and

σ 2
p = σ 2

p−1 (3.9.8)

Arguing inductively again, we find that kp = 0, θp =
[
θm−1

0

]
, and σ 2

p = σ 2
m−1 for p = m ,

m + 1, . . .. This extension, called the Maximum Entropy extension [Burg 1975], thus gives
an ACS sequence that corresponds to an AR process of order less than or equal to (m − 1).
The name maximum entropy arises because the spectrum so obtained has maximum entropy rate∫ π
−π lnφ(ω)dω under the Gaussian assumption [Burg 1975]; the entropy rate is closely related

to the numerator in the spectral-flatness measure introduced in Exercise 3.6.
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For some recent results on the covariance-extension problem and its variations, we refer to
[Byrnes, Georgiou, and Lindquist 2001] and the references therein.

3.9.3 The Burg Method for AR Parameter Estimation

The thesis [Burg 1975] developed a method for AR parameter estimation that is based on forward
and backward prediction errors and on direct estimation of the reflection coefficients in equation
(3.9.1). In this complement, we develop the Burg estimator and discuss some of its properties.

Assume we have data measurements {y(t)} for t = 1, 2, . . . ,N. Much as in Complement 3.9.1,
we define the forward and backward prediction errors for a pth-order model as

êf ,p(t) = y(t)+
p∑

i=1

âp,i y(t − i ), t = p + 1, . . . ,N (3.9.9)

êb,p(t) = y(t − p)+
p∑

i=1

â∗
p,i y(t − p + i ), t = p + 1, . . . ,N (3.9.10)

We have shifted the time index in the definition of eb(t) from that in equation (3.9.2) to reflect
that êb,p(t) is computed from data up to time t ; also, the fact that the coefficients in (3.9.10) are
given by {â∗

p,i } follows from Complement 3.9.1. We use hats to denote estimated quantities, and
we explicitly denote the order p in both the prediction error sequences and the AR coefficients.
The AR parameters are related to the reflection coefficient k̂p by (see (3.5.10))

âp,i =
{

âp−1,i + k̂p â∗
p−1,p−i , i = 1, . . . , p − 1

k̂p, i = p
(3.9.11)

Burg’s method considers the recursive-in-order estimation of k̂p given that the AR coefficients for
order p − 1 have been computed. In particular, Burg’s method finds k̂p to minimize the arithmetic
mean of the forward and backward prediction-error variance estimates, namely,

min
k̂p

1

2

[
ρ̂f (p)+ ρ̂b(p)

]
(3.9.12)

where

ρ̂f (p) = 1

N − p

N∑
t=p+1

∣∣êf ,p(t)
∣∣2

ρ̂b(p) = 1

N − p

N∑
t=p+1

∣∣êb,p(t)
∣∣2

and where {âp−1,i }p−1
i=1 are assumed to be known from the recursion at the previous order.
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The prediction errors satisfy the following recursive-in-order expressions:

êf ,p(t) = êf ,p−1(t)+ k̂p êb,p−1(t − 1) (3.9.13)

êb,p(t) = êb,p−1(t − 1)+ k̂∗
p êf ,p−1(t) (3.9.14)

Equation (3.9.13) follows directly from (3.9.9)–(3.9.11) as

êf ,p(t) = y(t)+
p−1∑
i=1

(
âp−1,i + k̂p â∗

p−1,p−i

)
y(t − i )+ k̂py(t − p)

=

y(t)+

p−1∑
i=1

âp−1,i y(t − i )


 + k̂p


y(t − p)+

p−1∑
i=1

â∗
p−1,i y(t − p + i )




= êf ,p−1(t)+ k̂p êb,p−1(t − 1)

Similarly,

êb,p(t) = y(t − p)+
p−1∑
i=1

[â∗
p−1,i + k̂∗

p âp−1,p−i ]y(t − p + i )+ k̂∗
p y(t)

= êb,p−1(t − 1)+ k̂∗
p êf ,p−1(t)

which shows (3.9.14).
We can use the previous expressions to develop a recursive-in-order algorithm for estimating

the AR coefficients. Note that the quantity to be minimized in (3.9.12) is quadratic in k̂p , because

1

2

[
ρ̂f (p)+ ρ̂b(p)

] = 1

2(N − p)

N∑
t=p+1

{∣∣∣êf ,p−1(t)+ k̂p êb,p−1(t − 1)
∣∣∣2

+
∣∣∣êb,p−1(t − 1)+ k̂∗

p êf ,p−1(t)
∣∣∣2}

= 1

2(N − p)

N∑
t=p+1

{[∣∣êf ,p−1(t)
∣∣2 + ∣∣êb,p−1(t − 1)

∣∣2] [1 + |k̂p |2
]

+ 2êf ,p−1(t)ê
∗
b,p−1(t − 1)k̂∗

p

+ 2ê∗
f ,p−1(t)êb,p−1(t − 1)k̂p

}
Using Result R34 in Appendix A, we find that the k̂p that minimizes the above quantity is given by

k̂p = −2
∑N

t=p+1 êf ,p−1(t)ê∗
b,p−1(t − 1)∑N

t=p+1

[∣∣êf ,p−1(t)
∣∣2 + ∣∣êb,p−1(t − 1)

∣∣2] (3.9.15)
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A recursive-in-order algorithm for estimating the AR parameters, called the Burg algorithm,
is as follows:

The Burg Algorithm

Step 0 Initialize êf ,0(t) = êb,0(t) = y(t).
Step 1 For p = 1, . . . , n ,

(a) Compute êf ,p−1(t) and êb,p−1(t) for t = p + 1, . . . ,N from (3.9.13) and
(3.9.14).

(b) Compute k̂p from (3.9.15).
(c) Compute âp,i for i = 1, . . . , p from (3.9.11).

Then θ̂ = [âp,1, . . . , âp,p]T is the vector of AR coefficient estimates.

Finally, we show that the resulting AR model is stable; this is accomplished by showing that
|k̂p | ≤ 1 for p = 1, . . . , n . (See Exercise 3.9.) To do so, we express k̂p as

k̂p = −2c∗d

c∗c + d∗d
(3.9.16)

where
c = [êb,p−1(p), . . . , êb,p−1(N − 1)]T

d = [êf ,p−1(p + 1), . . . , êf ,p−1(N )]
T

Then
0 ≤ ‖c − eiαd‖2 = c∗c + d∗d − 2 Re {eiαc∗d} for every α ∈ [−π, π ]

�⇒ 2 Re {eiαc∗d} ≤ c∗c + d∗d for every α ∈ [−π, π ]

�⇒ 2|c∗d | ≤ c∗c + d∗d �⇒ | k̂p | ≤ 1

The Burg algorithm is computationally simple, and it is amenable to both order-recursive and
time-recursive solutions. In addition, the Burg AR model estimate is guaranteed to be stable. On
the other hand, the Burg method is suboptimal, in that it estimates the n reflection coefficients by
decoupling an n-dimensional minimization problem into the n one-dimensional minimizations in
(3.9.12). This is in contrast to the LS AR method in Section 3.4.2, in which the AR coefficients
are found by an n-dimensional minimization. For large N, the two algorithms give very similar
performance; for short or medium data lengths, the Burg algorithm usually behaves somewhere
between the LS method and the Yule–Walker method.
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3.9.4 The Gohberg–Semencul Formula

The Hermitian Toeplitz matrix Rn+1 in (3.4.6) is highly structured. In particular, it is completely
defined by its first column (or row). As was shown in Section 3.5, exploitation of the special
algebraic structure of (3.4.6) makes it possible to solve this system of equations very efficiently.
In this complement, we show that the Toeplitz structure of Rn+1 may also be exploited to derive a
closed-form expression for the inverse of this matrix. This expression is what is usually called the
Gohberg–Semencul (GS) formula (or the Gohberg–Semencul–Heining formula, in recognition of
the contribution also made by Heining to its discovery) [Söderström and Stoica 1989; Iohvidov
1982; Böttcher and Silbermann 1983]. As will be seen, an interesting consequence of the GS
formula is the fact that, even if R−1

n+1 is not Toeplitz in general, it is still completely determined
by its first column. Observe from (3.4.6) that the first column of R−1

n+1 is given by [1 θ ]T /σ 2. In
what follows, we drop the subscript n of θ for notational convenience.

The derivation of the GS formula requires some preparations. First, note that the following
nested structures of Rn+1,

Rn+1 =
[
ρ0 r∗

n
rn Rn

]
=

[
Rn r̃n

r̃∗
n ρ0

]

along with (3.4.6) and the result (3.5.3), imply that

θ = −R−1
n rn , θ̃ = −R−1

n r̃n

σ 2
n = ρ0 − r∗

n R−1
n rn = ρ0 − r̃∗

n R−1
n r̃n

Next, make use of the above equations and a standard formula for the inverse of a partitioned
matrix (see Result R26 in Appendix A) to write

R−1
n+1 =

[
0 0
0 R−1

n

]
+

[
1
θ

]
[1 θ∗]/σ 2

n (3.9.17)

=
[

R−1
n 0
0 0

]
+

[
θ̃

1

]
[θ̃∗ 1]/σ 2

n (3.9.18)

Finally, introduce the (n + 1)× (n + 1) matrix

Z =




0 . . . 0

1
. . .

...

. . .

0 1 0


 =




0 . . . 0
...

In×n

0



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and observe that multiplication by Z of a vector or a matrix has the effects indicated here:

X Z X ZT

n � n

n � 1

0

n � 1

n � n

0

0

0

x Zx

Owing to these effects of the linear transformation by Z , this matrix is called a shift or
displacement operator.

We are now prepared to present a simple derivation of the GS formula. The basic idea of this
derivation is to eliminate R−1

n from the expressions for R−1
n+1 in (3.9.17) and (3.9.18) by making

use of the displacement properties of Z . Hence, using the expression (3.9.17) for R−1
n+1, and its

“dual” (3.9.18) for calculating ZR−1
n+1Z T, gives

R−1
n+1 − ZR−1

n+1Z T = 1

σ 2
n







1
a1
...

an


 [1 a∗

1 . . . a
∗
n ] −




0
a∗

n
...

a∗
1


 [0 an . . . a1]


 (3.9.19)

Premultiplying and postmultiplying (3.9.19) by Z and Z T, respectively, and then continuing to do
so with the resulting equations, we obtain

ZR−1
n+1Z T − Z 2R−1

n+1Z 2T =

1

σ 2
n







0
1
a1
...

an−1


 [0 1 a∗

1 . . . a
∗
n−1] −




0
0

a∗
n
...

a∗
2


 [0 0 an . . . a2]




(3.9.20)
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...

Z nR−1
n+1Z n T − 0 = 1

σ 2
n







0
...

0
1


 [0 . . . 0 1]


 (3.9.21)

In (3.9.21), use is made of the fact that Z is a nilpotent matrix of order n + 1, in the sense that

Z n+1 = 0

(which can be readily verified). Now, by simply summing up equations (3.9.19)–(3.9.21), we
derive the following expression for R−1

n+1:

R−1
n+1 = 1

σ 2
n







1 0

a1
. . .

...
. . .

. . .

an . . . a1 1







1 a∗
1 . . . a∗

n
. . .

. . .
...

. . . a∗
1

0 1




−




0 0

a∗
n
. . .

...
. . .

. . .

a∗
1 . . . a∗

n 0







0 an . . . a1

. . .
. . .

...

. . . an

0 0







(3.9.22)

This is the GS formula. Note from (3.9.22) that R−1
n+1 is, indeed, completely determined by its

first column, as claimed earlier.
The GS formula is inherently related to the Yule–Walker method of AR modeling, and this

is one of the reasons for including it in this book. The GS formula is also useful in studying
other spectral estimators, such as the Capon method, which is discussed in Chapter 5. The hope
that the curious reader who studies this part will become interested in the fascinating topic of
Toeplitz matrices and allied subjects is another reason for its inclusion. In particular, it is indeed
fascinating to be able to derive an analytical formula for the inverse of a given matrix, as has
been shown to be the case for Toeplitz matrices. The basic ideas of the previous derivation may
be extended to more general matrices. Let us explain this briefly. For a given matrix X , the rank
of X − ZXZ T is called the displacement rank of X under Z . As can be seen from (3.9.19), the
inverse of a Hermitian Toeplitz matrix has a displacement rank equal to two. Now, assume we
are given a (structured) matrix X for which we are able to find a nilpotent matrix Y such that
X −1 has a low displacement rank under Y ; the matrix Y does not need to have the previous form
of Z . Then, paralleling the calculations in (3.9.19)–(3.9.22), we might be able to derive a simple
“closed-form” expression for X −1. See [Friedlander, Morf, Kailath, and Ljung 1979] for
more details on the topic of this complement.
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3.9.5 MA Parameter Estimation in Polynomial Time

The parameter estimation of an AR process via the LS method leads to a quadratic minimization
problem that can be solved in closed form (see (3.4.11), (3.4.12)). On the other hand, for an MA
process, the LS criterion similar to (3.4.11), which is given by

N2∑
t=N1

∣∣∣∣ 1

B(z )
y(t)

∣∣∣∣2 (3.9.23)

is a highly nonlinear function of the MA parameters (and likewise for an ARMA process).
A simple MA spectral estimator, one that does not require solving a nonlinear minimization

problem, is given by equation (3.6.4) and is repeated here:

φ̂(ω) =
m̂∑

k=−m̂

r̂(k)e−iωk (3.9.24)

where m̂ is the assumed MA order and {r̂(k)} are the standard sample covariances. As explained
in Section 3.6, the main problem associated with (3.9.24) is the fact that φ̂(ω) is not guaranteed
to be positive for all ω ∈ [0, 2π ]. If the final goal of the signal processing exercise is spectral
analysis, then an occurrence of negative values φ̂(ω) < 0 (for some values of ω) is not acceptable,
as the true spectral density of course satisfies φ(ω) ≥ 0 for all ω ∈ [0, 2π ]. If the goal is MA
parameter estimation, then the problem induced by φ̂(ω) < 0 (for some values of ω) is even
more serious, because, in such a case, φ̂(ω) cannot be factored as in (3.6.1), and hence, no MA
parameter estimates can be obtained directly from φ̂(ω). In this complement, we will show how
to get around the problem of φ̂(ω) < 0 and, hence, how to obtain MA parameter estimates from
such an invalid MA spectral density estimate, using an indirect but computationally efficient
method. (See [Stoica, McKelvey, and Mari 2000; Dumitrescu, Tabus, and Stoica 2001].)
Note that obtaining MA parameter estimates from the φ̂(ω) in (3.9.24) is of interest not only for
MA estimation, but also as a step of some ARMA estimation methods. (See, for example, (3.7.9)
as well as Exercise 3.12.)

A sound way of tackling this problem of “factoring the unfactorable” is as follows: Let φ(ω)
denote the PSD of an MA process of order m; that is,

φ(ω) =
m∑

k=−m

r(k)e−iωk ≥ 0, ω ∈ [0, 2π ] (3.9.25)

We would like to find the φ(ω) in (3.9.25) that is closest to φ̂(ω) in (3.9.24), in the following LS
sense:

min
1

2π

∫ π

−π

[
φ̂(ω)− φ(ω)

]2
dω (3.9.26)
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The order m in (3.9.25) could be different from the order m̂ in (3.9.24). Without loss of
generality, we can assume that m ≤ m̂. Indeed, if m > m̂ , we can extend the sequence {r̂(k)}
with zeroes to make m ≤ m̂ . Once φ(ω) has been obtained by solving (3.9.26), we can factor
it by using any of a number of available spectral factorization algorithms (see, for example,
[Wilson 1969; Vostry 1975; Vostry 1976]) and, in this way, derive MA parameter estimates
{bk } satisfying

φ(ω) = σ 2|B(ω)|2 (3.9.27)

(See (3.6.1).) This step for obtaining {bk } and σ 2 from φ(ω) can be computed in O(m2) flops.
The problem that remains is to solve (3.9.26) for φ(ω) in a similar number of flops.

Now,

φ̂(ω)− φ(ω) =
m∑

k=−m

[
r̂(k)− r(k)

]
e−iωk +

∑
|k |>m

r̂(k)e−iωk

so it follows from Parseval’s theorem (see (1.2.6)) that the spectral LS criterion of (3.9.26) can
be rewritten as a covariance fitting criterion:

1

2π

∫ π

−π

[
φ̂(ω)− φ(ω)

]2
dω =

m∑
k=−m

∣∣r̂(k)− r(k)
∣∣2 +

∑
|k |>m

∣∣r̂(k)∣∣2
Consequently, the approximation problem (3.9.26) is equivalent to

min
{r(k)}

‖r̂ − r‖2
W subject to (3.9.25) (3.9.28)

where ‖x‖2
W = x∗Wx and

r̂ = [
r̂(0) . . . r̂(m)

]T

r = [
r(0) . . . r(m)

]T

W =




1 0
2
. . .

0 2




Next, we will describe a computationally efficient and reliable algorithm for solving problem
(3.9.28) (with a general W matrix) in a time that is a polynomial function of m (a more precise
flop count is given below). A possible way of tackling (3.9.28) would be to first write the covari-
ances {r(k)} as functions of the MA parameters (see (3.3.3)), which would guarantee that they
satisfy (3.9.25), and to then minimize the function in (3.9.28) with respect to the MA parameters.
However, the minimization problem so obtained would, much like (3.9.23), be nonlinear in the
MA parameters (more precisely, the criterion in (3.9.28) is quartic in {bk }), which is exactly the
type of problem we tried to avoid in the first place.
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As a preparation step for solving (3.9.28), we first derive a parameterization of the MA
covariance sequence {r(k)}, which will turn out to be more convenient than the parameterization
via {bk }. Let Jk denote the (m + 1)× (m + 1) matrix with ones on the (k + 1)st diagonal and
zeroes everywhere else:

Jk =

k+1︷ ︸︸ ︷


0 . . . 0 1 0
... 0

. . .

. . . 1
... 0 0

...

0 . . . . . . . . . 0



, (m + 1)× (m + 1)

(for k = 0, . . . ,m). Note that J0 = I . Then the following result holds:

Any MA covariance sequence {r(k)}m
k=0 can be written as r(k) = tr(Jk Q) for

k = 0, . . . ,m , where Q is an (m + 1)× (m + 1) positive semidefinite matrix.
(3.9.29)

To prove this result, let

a(ω) = [
1 eiω . . . eimω]T

and observe that

a(ω)a∗(ω) =




1 e−iω · · · e−imω

eiω 1
. . .

...
...

. . .
. . . e−iω

eimω · · · eiω 1


 =

m∑
k=−m

Jk e−ikω

where J−k = J T
k (for k ≥ 0). Hence, for the sequence parameterized as in (3.9.29), we have that

m∑
k=−m

r(k)e−ikω = tr

[
m∑

k=−m

Jk Qe−ikω

]

= tr
[
a(ω)a∗(ω)Q

] = a∗(ω)Qa(ω) ≥ 0, for ω ∈ [0, 2π ]

which implies that {r(k)} indeed is an MA(m) covariance sequence. To show that any MA(m)
covariance sequence can be parameterized as in (3.9.29), we make use of (3.3.3) to write
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(for k = 0, . . . ,m)

r(k) = σ 2
m∑

j=k

bj b
∗
j−k = σ 2 [ b∗

0 · · · b∗
m

]
Jk




b0
...

bm




= tr


Jk · σ 2




b0
...

bm


[

b∗
0 · · · b∗

m

] (3.9.30)

Evidently (3.9.30) has the form stated in (3.9.29) with

Q = σ 2




b0
...

bm


[

b∗
0 · · · b∗

m

]

With this observation, the proof of (3.9.29) is complete.
We can now turn our attention to the main problem, (3.9.28). We will describe an efficient

algorithm for solving (3.9.28) with a general weighting matrix W > 0 (as already stated.). For a
choice of W that usually yields more accurate MA parameter estimates than the simple diagonal
weighting in (3.9.28), we refer the reader to [Stoica, McKelvey, and Mari 2000]. Let

µ = C (r̂ − r)

where C is the Cholesky factor of W (i.e., C is an upper triangular matrix and W = C ∗C ). Also,
let α be a vector containing all the elements in the upper triangle of Q , including the diagonal:

α = [
Q1,1 Q1,2 . . . Q1,m+1 ; Q2,2 . . . Q2,m+1 ; . . . ; Qm+1,m+1

]T

Note that α defines Q ; that is, the elements of Q are either elements of α or complex conjugates
of elements of α. Making use of this notation and of (3.9.29), we can rewrite (3.9.28) in the
following form (for real-valued sequences):

min
ρ,µ,α

ρ subject to:

‖µ‖ ≤ ρ

Q ≥ 0


tr[Q]
tr
[ 1

2

(
J1 + J T

1

)
Q
]

...

tr
[ 1

2

(
Jm + J T

m

)
Q
]


 + C −1µ = r̂

(3.9.31)
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Note that, to obtain the equality constraint in (3.9.31), we used the fact that (in the real-valued
case; the complex-valued case can be treated similarly)

r(k) = tr(Jk Q) = tr(QT J T
k ) = tr(J T

k Q) = 1

2
tr
[
(Jk + J T

k )Q
]

The reason for this seemingly artificial trick is that we need the matrices multiplying Q in (3.9.31)
to be symmetric. In effect, the problem (3.9.31) has precisely the form of a semidefinite quadratic
program (SQP), which can be solved efficiently by means of interior-point methods (see [Sturm
1999] and also [Dumitrescu, Tabus, and Stoica 2001] and references therein). Specifically, it
can be shown that an interior-point method (such as the ones in [Sturm 1999]), when applied
to the SQP in (3.9.31), requires O(m4) flops per iteration; furthermore, the number of iterations
needed to achieve practical convergence of the method is typically quite small (and nearly inde-
pendent of m), for instance between 10 and 20 iterations. The overall conclusion, therefore, is that
(3.9.31), and hence the original problem (3.9.28), can be solved efficiently, in O(m4) flops. Once
the solution to (3.9.31) has been computed, we can obtain the corresponding MA covariances
either as r = r̂ − C −1µ or as r(k) = tr(Jk Q) for k = 0, . . . ,m . Numerical results obtained with
MA parameter estimation algorithm have been reported in [Dumitrescu, Tabus, and Stoica
2001]; see also [Stoica, McKelvey, and Mari 2000].

3.10 EXERCISES

Exercise 3.1: The Minimum Phase Property
As stated in the text, a polynomial A(z ) is said to be of minimum phase if all its zeroes are inside
the unit circle. In this exercise, we motivate the name minimum phase. Specifically, we will show
that, if A(z ) = 1 + a1z −1 + · · · + anz −n has real-valued coefficients and has all its zeroes inside
the unit circle, and if B(z ) is any other polynomial in z−1 with real-valued coefficients that
satisfies |B(ω)| = |A(ω)| and B(ω = 0) = A(ω = 0) (where B(ω) � B(z )|z=eiω ), then the phase
lag of B(ω), given by − arg B(ω), is greater than or equal to the phase lag of A(ω):

− arg B(ω) ≥ − arg A(ω)

Since we can factor A(z ) as

A(z ) =
n∏

k=1

(1 − αk z −1)

and arg A(ω) = ∑n
k=1 arg

(
1 − αk e−iω

)
, we begin by proving the minimum-phase property for

first-order polynomials. Let

C (z ) = 1 − αz −1, α � reiθ , r < 1

D(z ) = z −1 − α∗ = C (z )
z −1 − α∗

1 − αz −1
� C (z )E (z ) (3.10.1)
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(a) Show that the zero of D(z ) is outside the unit circle, and that |D(ω)| = |C (ω)|.
(b) Show that

− arg E (ω) = ω + 2 tan−1
[

r sin(ω − θ)

1 − r cos(ω − θ)

]

Also, show that this function is increasing.
(c) If α is real, conclude that − arg D(ω) ≥ − arg C (ω) for 0 ≤ ω ≤ π , which justifies the

name minimum phase for C (z ) in the first-order case.
(d) Generalize the first-order results proven in parts (a)–(c) to polynomials A(z ) and B(z ) of

arbitrary order; in this case, the αk either are real valued or occur in complex-conjugate
pairs.

Exercise 3.2: Generating the ACS from ARMA Parameters
In this chapter, we developed equations expressing the ARMA coefficients {σ 2, ai , bj } in terms of
the ACS {r(k)}∞k=−∞. Find the inverse map; that is, given σ 2, a1, . . . , an , b1 . . . , bm , find equations
to determine {r(k)}∞k=−∞.

Exercise 3.3: Relationship between AR Modeling and Forward Linear Prediction
Suppose we have a zero-mean stationary process {y(t)} (not necessarily AR) with ACS
{r(k)}∞k=−∞. We wish to predict y(t) by a linear combination of its n past values—that is,
the predicted value is given by

ŷf (t) =
n∑

k=1

(−ak )y(t − k)

We define the forward prediction error as

ef (t) = y(t)− ŷf (t) =
n∑

k=0

ak y(t − k)

with a0 = 1. Show that the vector θf = [a1 . . . an ]T of prediction coefficients that minimizes the
prediction-error variance σ 2

f � E {|ef (t)|2} is the solution to (3.4.2). Show also that σ 2
f = σ 2

n (i.e.,
that σ 2

n in (3.4.2) is the prediction-error variance).
Furthermore, show that, if {y(t)} is an AR(p) process with p ≤ n , then the prediction error

is white noise and that

kj = 0 for j > p

where kj is the j th reflection coefficient defined in (3.5.7). Show that, as a consequence, ap+1, . . .,
an = 0. Hint: The calculations performed in Section 3.4.2 and in Complement 3.9.2 will be useful
in solving this problem.
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Exercise 3.4: Relationship between AR Modeling and Backward Linear Prediction
Consider the signal {y(t)}, as in Exercise 3.3. This time, we will consider backward predic-
tion—that is, we will predict y(t) from its n immediate future values:

ŷb(t) =
n∑

k=1

(−bk )y(t + k)

This equation has corresponding backward prediction error eb(t) = y(t)− ŷb(t). Such backward
prediction is useful in applications where noncausal processing is permitted—for example, when
the data has been prerecorded and is stored in memory or on a tape and we want to make
inferences on samples that precede the observed ones. Find an expression similar to (3.4.2) for
the backward-prediction coefficient vector θb = [b1 . . . bn ]T. Find a relationship between the θb

and the corresponding forward-prediction coefficient vector θf . Relate the forward and backward
prediction-error variances.

Exercise 3.5: Prediction Filters and Smoothing Filters
The smoothing filter is a practically useful variation on the theme of linear prediction. A result
of Exercises 3.3 and 3.4 should be that, for the forward and backward prediction filters

A(z ) = 1 +
n∑

k=1

ak z −k and B(z ) = 1 +
n∑

k=1

bk z −k

the prediction coefficients satisfy ak = b∗
k and the prediction-error variances are equal.

Now consider the smoothing filter

es(t) =
m∑

k=1

ck y(t − k)+ y(t)+
m∑

k=1

dk y(t + k)

(a) Derive a system of linear equations, similar to the forward and backward linear-prediction
equations, that relate the smoothing filter coefficients, the smoothing prediction-error vari-
ance σ 2

s = E
{|es(t)|2

}
, and the ACS of y(t).

(b) For n = 2m , provide an example of a zero-mean stationary random process for which
the minimum smoothing prediction-error variance is greater than the minimum forward
prediction-error variance. Also provide a second example where the minimum smoothing
filter prediction-error variance is less than the corresponding minimum forward prediction-
error variance.

(c) Assume m = n , but now constrain the smoothing prediction coefficients to be complex-
conjugate symmetric: ck = d∗

k for k = 1, . . . ,m . In this case, the two prediction filters and
the smoothing filter have the same number of degrees of freedom. Prove that the minimum
smoothing prediction-error variance is less than or equal to the minimum (forward or back-
ward) prediction-error variance. Hint: Show that the unconstrained minimum smoothing
error variance solution (where we do not impose the constraint ck = d∗

k ) satisfies ck = d∗
k

anyway.
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Exercise 3.6: Relationship between Minimum Prediction Error and Spectral Flatness
Consider a random process {y(t)}, not necessarily an AR process, with ACS {r(k)} and PSD
φy(ω). We find an AR(n) model for y(t) by solving (3.4.6) for σ 2

n and θn . These parameters
generate an AR PSD model,

φAR(ω) = σ 2
n

|A(ω)|2

whose inverse Fourier transform we denote by {rAR(k)}∞k=−∞. In this exercise, we explore the
relationship between {r(k)} and {rAR(k)} and that between φy(ω) and φAR(ω).

(a) Verify that the AR model has the property that

rAR(k) = r(k), k = 0, . . . , n.

(b) We have seen, from Exercise 3.3, that the AR model minimizes the nth-order forward
prediction-error variance—that is, the variance of

e(t) = y(t)+ a1y(t − 1)+ . . .+ any(t − n)

For the special case that {y(t)} is AR of order n or less, we also know that {e(t)} is white
noise, so φe(ω) is flat. We will extend this last property by showing that, for general {y(t)},
φe(ω) is maximally flat in the sense that the AR model maximizes the spectral flatness
measure given by

fe = exp
[ 1

2π

∫ π
−π lnφe(ω)dω

]
1

2π

∫ π
−π φe(ω) dω

(3.10.2)

where

φe(ω) = |A(ω)|2 φy(ω) = σ 2
n
φy(ω)

φAR(ω)

Show that the measure fe has the following “desirable” properties of a spectral flatness
measure:

(i) fe is unchanged if φe(ω) is multiplied by a constant.
(ii) 0 ≤ fe ≤ 1.

(iii) fe = 1 if and only if φe(ω) = constant.

Hint: Use the fact that

1

2π

∫ π

−π
ln |A(ω)|2 dω = 0 (3.10.3)
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(This result can be proven by using the Cauchy integral formula). Show that (3.10.3)
implies

fe = fy
ry(0)

re(0)
(3.10.4)

and thus that minimizing re(0) maximizes fe .

Exercise 3.7: Diagonalization of the Covariance Matrix
Show that Rn+1 in equation (3.5.2) satisfies

L∗Rn+1L = D

where

L =




1 0 . . . 0 0

1
...
...

. . . 0
1 0

θn θn−1 θ1 1


 and D = diag [σ 2

n σ
2
n−1 . . . σ

2
0 ]

and where θk and σ 2
k are defined in (3.4.6). Use this property to show that

|Rn+1| =
n∏

k=0

σ 2
k

Exercise 3.8: Stability of Yule–Walker AR Models
Assume that the matrix Rn+1 in equation (3.4.6) is positive definite. (This can be achieved by
using the sample covariances in (2.2.4) to build Rn+1, as explained in Section 2.2.) Then show
that the AR model obtained from the Yule–Walker equations (3.4.6) is stable in the sense that the
polynomial A(z ) has all its zeroes strictly inside the unit circle. (Most of the available proofs for
this property are discussed in [Stoica and Nehorai 1987].)

Exercise 3.9: Three Equivalent Representations for AR Processes
In this chapter, we have considered three ways to parameterize an AR(n) process, but we have not
explicitly shown when they are equivalent. Show that, for a nondegenerate AR(n) process (i.e.,
one for which Rn+1 is positive definite), the following three parameterizations are equivalent:

(R) r(0), . . . , r(n) such that Rn+1 is positive definite.
(K) r(0), k1, . . . , kn such that r(0) > 0 and |ki | < 1 for i = 1, . . . , n .
(A) σ 2

n , a1, . . . , an such that σ 2
n > 0 and all the zeroes of A(z ) are inside the unit circle.

Find the mapping from each parameterization to the others. (Some of these have already been
derived in the text and in the previous exercises.)
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Exercise 3.10: An Alternative Proof of the Stability Property of Reflection Coefficients
Prove that the k̂p that minimizes (3.9.12) must be such that |k̂p | ≤ 1, without using the expression
(3.9.15) for k̂p . Hint: Write the criterion in (3.9.12) as

f (kp) = E

(∥∥∥∥
[

1 kp

k∗
p 1

]
z (t)

∥∥∥∥2
)

where

E (·) = 1

2(N − p)

N∑
t=p+1

(·)

z (t) = [
êf ,p−1(t) êb,p−1(t − 1)

]T

and show that if |kp | > 1 then f (kp) > f (1/k∗
p ).

Exercise 3.11: Recurrence Properties of the Reflection Coefficient Sequence for an MA
Model
For an AR process of order n , the reflection coefficients satisfy ki = 0 for i > n (see Exercise 3.3)
and the ACS satisfies the linear recurrence relationship A(z )r(k) = 0 for k > 0. Since an MA
process of order m has the property that r(i ) = 0 for i > m , we might wonder whether a recurrence
relationship holds for the reflection coefficients corresponding to a MA process. We will investigate
this “conjecture” for a simple case.

Consider an MA process of order 1 with parameter b1. Show that |Rn | satisfies the relationship

|Rn | = r(0)|Rn−1| − |r(1)|2|Rn−2|, n ≥ 2

Show that kn = (−r(1))n/|Rn | and that the reflection coefficient sequence satisfies the recurrence
relationship

1

kn
= − r(0)

r(1)

1

kn−1
− r∗(1)

r(1)

1

kn−2
(3.10.5)

with appropriate initial conditions (and state them). Show that the solution to (3.10.5) for
|b1| < 1 is

kn = (1 − |b1|2)(−b1)
n

1 − |b1|2n+2
(3.10.6)

This sequence decays exponentially to zero. When b1 = −1, show that kn = 1/n .
It has been shown that, for large n , B(z )kn � 0, where � 0 means that the residue is small

compared to the kn terms [Georgiou 1987]. This result holds even for MA processes of order
higher than 1. Unfortunately, the result is of little practical use as a means of estimating the bk

coefficients, because, for large n , the kn values are (very) small.



Section 3.10 Exercises 141

Exercise 3.12: Asymptotic Variance of the ARMA Spectral Estimator
Consider the ARMA spectral estimator (3.2.2) with any consistent estimate of σ 2 and {ai , bj }.
For simplicity, assume that the ARMA parameters are real; however, the result holds for complex
ARMA processes as well. Show that the asymptotic (for large data sets) variance of this spectral
estimator can be written in the form

E
{

[φ̂(ω)− φ(ω)]2
}

= C (ω)φ2(ω) (3.10.7)

where C (ω) = ϕT (ω)Pϕ(ω). Here, P is the covariance matrix of the estimate of the parameter
vector [σ 2, aT , bT ]T, and the vector ϕ(ω) has an expression that is to be found. Deduce that
(3.10.7) has the same form as the asymptotic variance of the periodogram spectral estimator but
with the essential difference that, in the ARMA-estimator case, C (ω) goes to zero as the number
of data samples processed increases (and that C (ω) in (3.10.7) is a function of ω). Hint: Use a
Taylor series expansion of φ̂(ω) as a function of the estimated parameters {σ̂ 2, âi , b̂j }. (See, for
example, equation (B.1.1) in Appendix B.)

Exercise 3.13: Filtering Interpretation of Numerator Estimators in ARMA Estimation
An alternative method for estimating the MA part of an ARMA PSD is as follows: Assume we
have estimated the AR coefficients (e.g., from equation (3.7.2) or (3.7.4)). We filter y(t) by Â(z )
to form f (t):

f (t) = y(t)+
n∑

i=1

âi y(t − i ), t = n + 1, . . . ,N.

Then estimate the ARMA PSD as

φ̂(ω) =
∑m

k=−m r̂f (k)e−iωk

|Â(ω)|2

where r̂f (k) are the standard ACS estimates for f (t). Show that this estimator is quite similar to
(3.7.8) and (3.7.9) for large N.

Exercise 3.14: An Alternative Expression for ARMA Power Spectral Density
Consider an ARMA(n,m) process. Show that

φ(z ) = σ 2 B(z )B∗(1/z ∗)
A(z )A∗(1/z ∗)

can be written as

φ(z ) = C (z )

A(z )
+ C ∗(1/z ∗)

A∗(1/z ∗)
(3.10.8)

where

C (z ) =
max(m,n)∑

k=0

ck z −k
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Show that the polynomial C (z ) satisfying (3.10.8) is unique, and find an expression for ck in
terms of {ai } and {r(k)}.

Equation (3.10.8) motivates an estimation procedure alternative to that in equations (3.7.8)
and (3.7.9) for ARMA spectral estimation. In the alternative approach, we first estimate the AR
coefficients {âi }n

i=1 (using, for example, equation (3.7.2)). We then estimate the ck coefficients,
using the formula found in this exercise, and finally we insert the estimates âk and ĉk into the
right-hand side of (3.10.8) to obtain a spectral estimate. Prove that this alternative estimator
is equivalent to that in (3.7.8)–(3.7.9) under certain conditions, and find conditions on {âk } so
that they are equivalent. Also, compare (3.7.9) and (3.10.8) for ARMA(n,m) spectral estimation
when m < n .

Exercise 3.15: Padé Approximation
A minimum-phase (or causally invertible) ARMA(n,m) model B(z )/A(z ) can be represented
equivalently as an AR(∞) model 1/C (z ). The approximation of a ratio of polynomials by a
polynomial of higher order was considered by Padé in the late 1800s. One possible application of
the Padé approximation is to obtain an ARMA spectral model by first estimating the coefficients
of a high-order AR model, then solving for a (low-order) ARMA model from the estimated AR
coefficients. In this exercise, we investigate the model relationships and some consequences of
truncating the AR model polynomial coefficients.

Define
A(z ) = 1 + a1z −1 + · · · + anz −n

B(z ) = 1 + b1z −1 + · · · + bm z −m

C (z ) = 1 + c1z −1 + c2z −2 + · · ·

(a) Show that

ck =




1, k = 0

ak − ∑m
i=1 bi ck−i , 1 ≤ k ≤ n

−∑m
i=1 bi ck−i , k > n

where we assume that any polynomial coefficient is equal to zero outside its defined range.
(b) Using the equations above, derive a procedure for computing the ai and bj parameters

from a given set of {ck }m+n
k=0 parameters. Assume m and n are known.

(c) These equations give an exact representation using an infinite-order AR polynomial. In the
Padé method, an approximation to B(z )/A(z ) = 1/C (z ) is obtained by truncating (setting
to zero) the ck coefficients for k > m + n .
Suppose a stable minimum-phase ARMA(n,m) filter is approximated by an AR(m + n)
filter by using the Padé approximation. Give an example to show that the resulting AR
approximation is not necessarily stable.

(d) Suppose a stable AR(m + n) filter is approximated by a ratio Bm(z )/An(z ), as in part (b).
Give an example to show that the resulting ARMA approximation is not necessarily
stable.
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Exercise 3.16: (Non)Uniqueness of Fully Parameterized ARMA Equations
The shaping filter (or transfer function) of the ARMA equation (3.8.1) is given by the matrix
fraction

H (z ) = A−1(z )B(z ), (ny × ny) (3.10.9)

where z is a dummy variable, and

A(z ) = I + A1z −1 + · · · + Apz −p

B(z ) = I + B1z −1 + · · · + Bpz −p

(If the AR and MA orders, n and m , are different, then p = max(m, n).) Assume that A(z ) and
B(z ) are “fully parameterized” in the sense that all elements of the matrix coefficients {Ai , Bj }
are unknown.

The matrix fraction description (MFD) (3.10.9) of the ARMA shaping filter is unique if and
only if there exist no matrix polynomials Ã(z ) and B̃(z ) of degree p and no matrix polynomial
L(z ) �= I such that

Ã(z ) = L(z )A(z ) B̃(z ) = L(z )B(z ) (3.10.10)

This can be verified by making use of (3.10.9). (See, for example, [Kailath 1980].)
Show that the above uniqueness condition is satisfied for the fully parameterized MFD if and

only if

rank[Ap Bp ] = ny (3.10.11)

Comment on the character of this condition: Is it restrictive or not?

COMPUTER EXERCISES

Tools for AR, MA, and ARMA Spectral Estimation:
The text website www.prenhall.com/stoica contains the following MATLAB functions
for use in computing AR, MA, and ARMA spectral estimates and selecting the model order.
For the first four functions, y is the input data vector, n is the desired AR order, and m is the
desired MA order (if applicable). The outputs are a, the vector [â1, . . . , ân ]T of estimated AR
parameters, b, the vector [b̂1, . . . , b̂m ]T of MA parameters (if applicable), and sig2, the noise
variance estimate σ̂ 2. Variable definitions specific to particular functions are given here:

• [a,sig2]=yulewalker(y,n)
The Yule–Walker AR method given by equation (3.4.2).

• [a,sig2]=lsar(y,n)
The covariance least-squares AR method given by equation (3.4.12).
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• [a,gamma]=mywarma(y,n,m,M)
The modified Yule–Walker-based ARMA spectral estimate given by equation (3.7.9), where
the AR coefficients are estimated from the overdetermined set of equations (3.7.4) with
W = I . Here, M is the number of Yule–Walker equations used in (3.7.4), and gamma is the
vector [γ̂0, . . . , γ̂m ]T .

• [a,b,sig2]=lsarma(y,n,m,K)
The two-stage least-squares ARMA method given in Section 3.7.2; K is the number of AR
parameters to estimate in Step 1 of that algorithm.

• order=armaorder(mo,sig2,N,nu)
Computes the AIC, AICc, GIC, and BIC model-order selections for general parameter-
estimation problems. See Appendix C for details on the derivations of these methods. Here,
mo is a vector of possible model orders, sig2 is the vector of estimated residual variances
corresponding to the model orders in mo, N is the length of the observed data vector, and nu
is a parameter in the GIC method. The output 4-element vector order contains the model
orders selected by using AIC, AICc, GIC, and BIC, respectively.

Exercise C3.17: Comparison of AR, ARMA, and Periodogram Methods for ARMA Signals
In this exercise, we examine the properties of parametric methods for PSD estimation. We will
use two ARMA signals, one broadband and one narrowband, to illustrate the performance of these
parametric methods.

Broadband ARMA Process. Generate realizations of the broadband ARMA process

y(t) = B1(z )

A1(z )
e(t)

with σ 2 = 1 and

A1(z ) = 1 − 1.3817z −1 + 1.5632z−2 − 0.8843z −3 + 0.4096z−4

B1(z ) = 1 + 0.3544z −1 + 0.3508z−2 + 0.1736z −3 + 0.2401z−4

Choose the number of samples as N = 256.

(a) Estimate the PSD of the realizations by using the four AR and ARMA estimators described
above. Use AR(4), AR(8), ARMA(4,4), and ARMA(8,8); for the MYW algorithm, use both
M = n and M = 2n; for the LS AR(MA) algorithms, use K = 2n . Illustrate the performance
by plotting ten overlaid estimates of the PSD. Also, plot the true PSD on the same diagram.

In addition, plot pole or pole–zero estimates for the various methods. (For the MYW
method, the zeroes can be found by spectral factorization of the numerator; comment on
the difficulties you encounter, if any.)

(b) Compare the two AR algorithms. How are they different in performance?
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(c) Compare the two ARMA algorithms. How does M affect performance of the MYW algo-
rithm? How do the accuracies of the respective pole and zero estimates compare?

(d) Use an ARMA(4,4) model for the LS ARMA algorithm, and estimate the PSD of the
realizations for K = 4, 8, 12, and 16. How does K affect performance of the algorithm?

(e) Compare the lower-order estimates with the higher order estimates. In what way(s) does
increasing the model order improve or degrade estimation performance?

(f) Compare the AR to the ARMA estimates. How does the AR(8) model perform with respect
to the ARMA(4,4) model and the ARMA(8,8) model?

(g) Compare your results with those from the periodogram method on the same process (from
Exercise C2.21 in Chapter 2). Comment on the difference between the methods with respect
to variance, bias, and any other relevant properties of the estimators you notice.

Narrowband ARMA Process. Generate realizations of the narrowband ARMA process

y(t) = B2(z )

A2(z )
e(t)

with σ 2 = 1 and

A2(z ) = 1 − 1.6408z−1 + 2.2044z −2 − 1.4808z −3 + 0.8145z −4

B2(z ) = 1 + 1.5857z−1 + 0.9604z −2

(a) Repeat the experiments and comparisons in the broadband example for the narrowband
process; this time, use the following model orders: AR(4), AR(8), AR(12), AR(16),
ARMA(4,2), ARMA(8,4), and ARMA(12,6).

(b) Study qualitatively how the algorithm performances differ for narrowband and broadband
data. Comment separately on performance near the spectral peaks and near the spectral
valleys.

Exercise C3.18: AR and ARMA Estimators for Line-Spectral Estimation
The ARMA methods can also be used to estimate line spectra. (Estimation of line spectra by
other methods is the topic of Chapter 4.) In this application, AR(MA) techniques are often said to
provide superresolution capabilities, because they are able to resolve sinusoids spaced too closely
in frequency to be resolved by periodogram-based methods.

We again consider the four AR and ARMA estimators described previously.

(a) Generate realizations of the signal

y(t) = 10 sin(0.24π t + ϕ1)+ 5 sin(0.26π t + ϕ2)+ e(t), t = 1, . . . ,N

where e(t) is (real) white Gaussian noise with variance σ 2 and where ϕ1, ϕ2 are independent
random variables each uniformly distributed on [0, 2π ]. From the results in Chapter 4, we
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find the spectrum of y(t) to be

φ(ω) = 50π [δ(ω − 0.24π)+ δ(ω + 0.24π)]

+ 12.5π [δ(ω − 0.26π)+ δ(ω + 0.26π)] + σ 2

(b) Compute the “true” AR polynomial (using the true ACS sequence; see equation (4.1.6)),
using the Yule–Walker equations for both AR(4), AR(12), ARMA(4,4) and ARMA(12,12)
models when σ 2 = 1. This experiment corresponds to estimates obtained as N → ∞. Plot
1/|A(ω)|2 for each case, and find the roots of A(z ). Which method(s) are able to resolve
the two sinusoids?

(c) Consider now N = 64, and set σ 2 = 0; this corresponds to the case of finite data length but
infinite SNR. Compute estimated AR polynomials, using the four spectral estimators and
the AR and ARMA model orders described above; for the MYW technique, consider both
M = n and M = 2n , and, for the LS ARMA technique, use both K = n and K = 2n . Plot
1/|A(ω)|2, overlaid, for 50 different Monte Carlo simulations (using different values of ϕ1

and ϕ2 for each). Also, plot the zeroes of A(z ), overlaid, for these 50 simulations. Which
method(s) are reliably able to resolve the sinusoids? Explain why. Note that as σ 2 → 0,
y(t) corresponds to a (limiting) AR(4) process. How does the choice of M or K in the
ARMA methods affect resolution or accuracy of the frequency estimates?

(d) Obtain spectral estimates (σ̂ 2|B̂(ω)|2/|Â(ω)|2 for the ARMA estimators, and σ̂ 2/|Â(ω)|2
for the AR estimators) for the four methods when N = 64 and σ 2 = 1. Plot ten overlaid
spectral estimates and overlaid polynomial zeroes of the Â(z ) estimates. Experiment with
different AR and ARMA model orders to see whether the true frequencies are estimated
more accurately; note also the appearance and severity of “spurious” sinusoids in the esti-
mates for higher model orders. Which method(s) give reliable “superresolution” estimation
of the sinusoids? How does the model order influence the resolution properties? Which
method appears to have the best resolution?

You might want to experiment further by changing the SNR and the relative ampli-
tudes of the sinusoids to gain a better understanding of the relative differences between
the methods. Also, experiment with different model orders and parameters K and M to
understand their impact on estimation accuracy.

(e) Compare the estimation results with periodogram-based estimates obtained from the same
signals. Discuss differences in resolution, bias, and variance of the techniques.

Exercise C3.19: Model Order Selection for AR and ARMA Processes
In this exercise, we examine four methods for model order selection in AR and ARMA spectral
estimation. We will experiment with both broadband and narrowband processes.

As discussed in Appendix C, several important model order selection rules have the general
form (see (C.8.1)–(C.8.2))

−2 ln pn(y, θ̂
n)+ η(n,N )n (3.10.12)
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with different penalty coefficients η(n,N ) for the different methods:

AIC : η(n,N ) = 2

AICc : η(n,N ) = 2
N

N − n − 1
GIC : η(n,N ) = ν (e.g., ν = 4)
BIC : η(n,N ) = ln N

(3.10.13)

The term ln pn(y, θ̂n) is the log-likelihood of the observed data vector y , given the maximum-
likelihood (ML) estimate of the parameter vector θ for a model of order n (where n is the
total number of estimated real-valued parameters in the model); for the case of AR, MA, and
ARMA models, a large-sample approximation for −2 ln pn(y, θ̂n) that is commonly used for order
selection (see, e.g., [Ljung 1987; Söderström and Stoica 1989]) is given by

−2 ln pn(y, θ̂
n) � N σ̂ 2

n + constant (3.10.14)

where σ̂ 2
n is the sample estimate of σ 2 in (3.2.2) corresponding to the model of order n . The

selected order is the value of n that minimizes (3.10.12). The order selection rules above, although
derived for ML estimates of θ , can be used even with approximate ML estimates of θ , albeit with
some loss of performance.

Broadband AR Process. Generate 100 realizations of the broadband AR process

y(t) = 1

A1(z )
e(t)

with σ 2 = 1 and

A1(z ) = 1 − 1.3817z−1 + 1.5632z −2 − 0.8843z −3 + 0.4096z −4

Choose the number of samples as N = 128. For each realization,

(a) Estimate the model parameters, using the LS AR estimator and using AR model orders
from 1 to 12.

(b) Find the model orders that minimize the AIC, AICc, GIC (with ν = 4), and BIC criteria.
(See Appendix C.) Note that, for an AR model of order m , n = m + 1.

(c) For each of the four order selection methods, plot a histogram of the selected orders for
the 100 realizations. Comment on their relative performance.

Repeat this experiment, using N = 256 and N = 1024 samples. Discuss the relative performance
of the order selection methods as N increases.
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Narrowband AR Process. Repeat the previous experiment, using the narrowband AR process

y(t) = 1

A2(z )
e(t)

with σ 2 = 1 and

A2(z ) = 1 − 1.6408z−1 + 2.2044z −2 − 1.4808z −3 + 0.8145z −4

Compare the narrowband AR and broadband AR order selection results and discuss the relative
order selection performance for these two AR processes.

Broadband ARMA Process. Repeat the broadband AR experiment by using the broadband
ARMA process

y(t) = B1(z )

A1(z )
e(t)

with σ 2 = 1 and

A1(z ) = 1 − 1.3817z−1 + 1.5632z −2 − 0.8843z −3 + 0.4096z −4

B1(z ) = 1 + 0.3544z−1 + 0.3508z −2 + 0.1736z −3 + 0.2401z −4

For the broadband ARMA process, use N = 256 and N = 1024 data samples. For each value of
N, find ARMA(m,m) models (so n = 2m + 1 in equation (3.10.12)) for m = 1, . . . , 12. Use the
two-stage LS ARMA method with K = 4m to estimate parameters.

Narrowband ARMA Process. Repeat the broadband ARMA experiment, but using the narrow-
band ARMA process

y(t) = B2(z )

A2(z )
e(t)

with σ 2 = 1 and

A2(z ) = 1 − 1.6408z−1 + 2.2044z −2 − 1.4808z −3 + 0.8145z −4

B2(z ) = 1 + 1.1100z−1 + 0.4706z −2

Find ARMA(2m,m) models for m = 1, . . . , 6 (so n = 3m + 1 in equation (3.10.12)), using the
two-stage LS ARMA method with K = 8m . Compare the narrowband ARMA and broadband
ARMA order selection results and discuss the relative order selection performance for these two
ARMA processes.
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Exercise C3.20: AR and ARMA Estimators Applied to Measured Data
Consider the data sets in the files sunspotdata.mat and lynxdata.mat. These files can
be obtained from the text website www.prenhall.com/stoica. Apply your favorite AR
and ARMA estimator(s) (for the lynx data, use both the original data and the logarithmically
transformed data, as in Exercise C2.23) to estimate the spectral content of these data. You will
also need to select appropriate model orders m and n; see, for example, Exercise C3.19. As
in Exercise C2.23, try to answer the following questions: Are there sinusoidal components (or
periodic structure) in the data? If so, how many components and at what frequencies? Discuss the
relative strengths and weaknesses of parametric and nonparametric estimators for understanding
the spectral content of these data. In particular, discuss how a combination of the two techniques
can be used to estimate the spectral and periodic structure of the data.


