
2
Nonparametric Methods

2.1 INTRODUCTION

The nonparametric methods of spectral estimation rely entirely on the definitions (1.3.7) and
(1.3.10) of PSD to provide spectral estimates. These methods constitute the “classical means” for
PSD estimation [Jenkins and Watts 1968]. The present chapter reviews the main nonparametric
methods, their properties, and the Fast Fourier Transform (FFT) algorithm for their implementa-
tion. A related discussion is to be found in Chapter 5, where the nonparametric approach to PSD
estimation is given a filter-bank interpretation.

We first introduce two common spectral estimators, the periodogram and the correlogram ,
derived directly from (1.3.10) and (1.3.7), respectively. These methods are then shown to be
equivalent under weak conditions. The periodogram and correlogram methods provide reasonably
high resolution for sufficiently long data lengths, but are poor spectral estimators, because their
variance is high and does not decrease with increasing data length. (In Chapter 5, we provide an
interpretation of the periodogram and correlogram methods as a power estimate based on a single
sample of a filtered version of the signal under study; it is thus not surprising that the periodogram
or correlogram variance is large.)

The high variance of the periodogram and correlogram methods motivates the develop-
ment of modified methods that have lower variance, at the cost of reduced resolution. Several
modified methods have been introduced, and we present some of the most popular ones. We
show them all to be, more or less, equivalent in their properties and performance for large data
lengths.
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2.2 PERIODOGRAM AND CORRELOGRAM METHODS

2.2.1 Periodogram

The periodogram method relies on the definition (1.3.10) of the PSD. Neglecting the expectation
and the limit operation in (1.3.10), which cannot be performed when the only available information
on the signal consists of the samples {y(t)}N

t=1, we get

φ̂p(ω) = 1

N

∣∣∣∣∣
N∑

t=1

y(t)e−iωt

∣∣∣∣∣
2

(Periodogram) (2.2.1)

One of the first uses of the periodogram spectral estimator, (2.2.1), has been in determining
possible “hidden periodicities” in time series, which may be seen as a motivation for the name
of this method [Schuster 1900].

2.2.2 Correlogram

The correlation-based definition (1.3.7) of the PSD leads to the correlogram spectral estimator
[Blackman and Tukey 1959]:

φ̂c(ω) =
N −1∑

k=−(N −1)

r̂(k)e−iωk (Correlogram) (2.2.2)

where r̂(k) denotes an estimate of the covariance lag r(k), obtained from the available sample
{y(1), . . . , y(N )}. When no assumption is made on the signal under study, except for the station-
arity assumption, there are two standard ways to obtain the sample covariances required in (2.2.2):

r̂(k) = 1

N − k

N∑
t=k+1

y(t)y∗(t − k), 0 ≤ k ≤ N − 1 (2.2.3)

and

r̂(k) = 1

N

N∑
t=k+1

y(t)y∗(t − k) 0 ≤ k ≤ N − 1 (2.2.4)

The sample covariances for negative lags are then constructed by using the property (1.3.3) of
the covariance function:

r̂(−k) = r̂∗(k), k = 0, . . . ,N − 1 (2.2.5)
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The estimator (2.2.3) is called the standard unbiased ACS estimate, and (2.2.4) is called the
standard biased ACS estimate. The biased ACS estimate is most commonly used, for the following
reasons:

• For most stationary signals, the covariance function decays rather rapidly, so that r(k) is
quite small for large lags k . Comparing the definitions (2.2.3) and (2.2.4), it can be seen that
r̂(k) in (2.2.4) will be small for large k (provided N is reasonably large), whereas r̂(k) in
(2.2.3) could take large and erratic values for large k , as it is obtained by averaging only a few
products in such a case (in particular, only one product for k = N − 1!). This observation
implies that (2.2.4) is likely to be a more accurate estimator of r(k) than (2.2.3) for medium
and large values of k (compared with N ). For small values of k , the two estimators in (2.2.3)
and (2.2.4) can be expected to behave in a similar manner.

• The sequence {r̂(k), k = 0,±1,±2, . . .} obtained with (2.2.4) is guaranteed to be positive
semidefinite (as it should, see equation (1.3.5) and the related discussion), but this is not
the case for (2.2.3). This fact is especially important for PSD estimation, since a sample
covariance sequence that is not positive definite, when inserted in (2.2.2), may lead to
negative spectral estimates, and this is undesirable in most applications.

When the sample covariances (2.2.4) are inserted in (2.2.2), it can be shown that the spectral
estimate so obtained is identical to (2.2.1). In other words, we have the following result:

φ̂c(ω), when evaluated by using the standard biased ACS estimates,
coincides with φ̂p(ω).

(2.2.6)

A simple proof of (2.2.6) runs as follows: Consider the signal

x(t) = 1√
N

N∑
k=1

y(k)e(t − k) (2.2.7)

where {y(k)} are considered to be fixed (nonrandom) constants and e(t) is a white noise of unit
variance: E {e(t)e∗(s)} = δt,s (= 1 if t = s ; and = 0 otherwise). Hence, x(t) is the output of a
filter with the following transfer function:

Y (ω) = 1√
N

N∑
k=1

y(k)e−iωk

Since the PSD of the input to the filter is given by φe(ω) = 1, it follows from (1.4.5) that

φx (ω) = |Y (ω)|2 = φ̂p(ω) (2.2.8)
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On the other hand, a straightforward calculation gives (for k ≥ 0)

rx (k) = E
{
x(t)x∗(t − k)

}
= 1

N

N∑
p=1

N∑
s=1

y(p)y∗(s)E
{
e(t − p)e∗(t − k − s)

}

= 1

N

N∑
p=1

N∑
s=1

y(p)y∗(s)δp,k+s = 1

N

N∑
p=k+1

y(p)y∗(p − k)

=
{

r̂(k) given by (2.2.4), k = 0, . . . ,N − 1

0, k ≥ N
(2.2.9)

Inserting (2.2.9) in the definition (1.3.7) of PSD yields the following alternative expression for
φx (ω):

φx (ω) =
N −1∑

k=−(N −1)

r̂(k)e−iωk = φ̂c(ω) (2.2.10)

Comparing (2.2.8) and (2.2.10) concludes the proof of the claim (2.2.6).
The equivalence of the periodogram and correlogram spectral estimators can be used to

derive their properties simultaneously. These two methods are shown in Section 2.4 to provide
poor estimates of the PSD. There are two reasons for this, and both can be explained intuitively
by using φ̂c(ω):

• The estimation errors in r̂(k) are on the order of 1/
√

N for large N (see Exercise 2.4), at
least for |k | not too close to N. Because φ̂c(ω) = φ̂p(ω) is a sum that involves (2N − 1)
such covariance estimates, the difference between the true and estimated spectra will be a
sum of “many small” errors. Hence, there is no guarantee that the total error will die out
as N increases. The spectrum estimation error is even larger than what is suggested by the
preceding discussion, because errors in {r̂(k)}, for |k | close to N, are typically of an order
larger than 1/

√
N. The consequence is that the variance of φ̂c(ω) does not go to zero as N

increases.
• In addition, if r(k) converges slowly to zero, then the periodogram estimates will be biased.

Indeed, for lags |k | � N, r̂(k) will be a poor estimate of r(k) since r̂(k) is the sum of only
a few lag products that are divided by N (see equation (2.2.4)). Thus, r̂(k) will be much
closer to zero than r(k) is; in fact, E

{
r̂(k)

} = [(N − |k |)/N ]r(k), and the bias is significant
for |k | � N if r(k) is not close to zero in this region. If r(k) decays rapidly to zero, the bias
will be small and will not contribute significantly to the total error in φ̂c(ω); however, the
nonzero variance just discussed will still be present.

Both the bias and the variance of the periodogram are discussed more quantitatively in Section 2.4.
Another intuitive explanation for the poor statistical accuracy of the periodogram and correl-

ogram methods is given in Chapter 5, where it is shown, roughly speaking, that these methods
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can be viewed as procedures attempting to estimate the variance of a data sequence from a single
sample.

In spite of their poor quality as spectral estimators, the periodogram and correlogram methods
form the basis for the improved nonparametric spectral estimation methods, to be discussed later
in this chapter. As such, computation of these two basic estimators is relevant to many other
nonparametric estimators derived from them. The next section addresses this computational task.

2.3 PERIODOGRAM COMPUTATION VIA FFT

In practice, it is not possible to evaluate φ̂p(ω) (or φ̂c(ω)) over a continuum of frequencies. Hence,
the frequency variable must be sampled for the purpose of computing φ̂p(ω). The following
frequency sampling scheme is most commonly used:

ω = 2π

N
k , k = 0, . . . ,N − 1 (2.3.1)

Define

W = e−i 2π
N (2.3.2)

Then, evaluation of φ̂p(ω) (or φ̂c(ω)) at the frequency samples in (2.3.1) basically reduces to the
computation of the following Discrete Fourier Transform (DFT):

Y (k) =
N∑

t=1

y(t)W (t−1)k , k = 0, . . . ,N − 1 (2.3.3)

A direct evaluation of (2.3.3) would require about N 2 complex multiplications and additions,
which might be a prohibitive burden for large values of N. Any procedure that computes (2.3.3)
in less than N 2 flops (1 flop = 1 complex multiplication plus 1 complex addition) is called a
Fast Fourier Transform (FFT) algorithm. In recent years, there has been significant interest in
developing more and more computationally efficient FFT algorithms. In the following, we review
one of the first FFT procedures—the so-called radix-2 FFT—which, while not being the most
computationally efficient of all, is easy to program in a computer and yet quite computationally
efficient [Cooley and Tukey 1965; Proakis, Rader, Ling, and Nikias 1992].

2.3.1 Radix-2 FFT

Assume that N is a power of 2:

N = 2m (2.3.4)
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If this is not the case, then we can resort to zero padding, as described in the next subsection. By
splitting the sum in (2.3.3) into two parts, we get

Y (k) =
N /2∑
t=1

y(t)W (t−1)k +
N∑

t=N /2+1

y(t)W (t−1)k

=
N /2∑
t=1

[y(t)+ y(t + N /2)W
Nk
2 ]W (t−1)k (2.3.5)

Next, note that

W
Nk
2 =

{
1, for even k

−1, for odd k
(2.3.6)

Using this simple observation in (2.3.5), we obtain

For k = 2p = 0, 2, . . .

Y (2p) =
N̄∑

t=1

[y(t)+ y(t + N̄ )]W̄ (t−1)p (2.3.7)

For k = 2p + 1 = 1, 3, . . .

Y (2p + 1) =
N̄∑

t=1

{[y(t)− y(t + N̄ )]W t }W̄ (t−1)p (2.3.8)

where N̄ = N/2 and W̄ = W 2 = e−i2π/N̄ .
These two equations are the core of the radix-2 FFT algorithm. Both of these equations

represent DFTs for sequences of length equal to N̄. Computation of the sequences transformed in
(2.3.7) and (2.3.8) requires roughly N̄ flops. Hence, the computation of an N -point transform has
been reduced to the evaluation of two N/2-point transforms plus a sequence computation requiring
about N/2 flops. This reduction process is continued until N̄ = 1 (which is made possible by
requiring N to be a power of 2).

In order to evaluate the number of flops required by a radix-2 FFT, let ck denote the compu-
tational cost (expressed in flops) of a 2k -point radix-2 FFT. According to the discussion in the
previous paragraph, ck satisfies the recursion

ck = 2k/2 + 2ck−1 = 2k−1 + 2ck−1 (2.3.9)
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with initial condition c1 = 1 (the number of flops required by a 1-point transform). By iterating
(2.3.9), we obtain the solution

ck = k2k−1 = 1

2
k2k (2.3.10)

from which it follows that cm = 1
2 m2m = 1

2 N log2 N ; thus

An N -point radix-2 FFT requires about 1
2 N log2 N flops. (2.3.11)

As a comparison, the number of complex operations required to carry out an N -point split-
radix FFT, which at present appears to be the most practical algorithm for general-purpose
computers when N is a power of 2, is about 1

3 N log2 N. (See [Proakis, Rader, Ling, and Nikias
1992].)

2.3.2 Zero Padding

In some applications, N is not a power of 2 and so the previously described radix-2 FFT algorithm
cannot be applied directly to the original data sequence. However, this is easily remedied; we may
increase the length of the given sequence by means of zero padding {y(1), . . . , y(N ), 0, 0, . . .}
until the length of the sequence so obtained is, say, L (which is generally chosen as a power of 2).

Zero padding is also useful when the frequency sampling (2.3.1) is considered to be too sparse
to provide a good representation of the continuous-frequency estimated spectrum, for example
φ̂p(ω). Applying the FFT algorithm to the data sequence padded with zeroes gives

φ̂p(ω) at frequencies ωk = 2πk

L
, 0 ≤ k ≤ L − 1

The finer sampling of φ̂(ω) can reveal details in the spectrum that were not visible without zero
padding.

Since the continuous-frequency spectral estimate, φ̂p(ω), is the same for both the original
data sequence and the sequence padded with zeroes, zero padding cannot of course improve the
spectral resolution of the periodogram methods. See [Oppenheim and Schafer 1989; Porat
1997] for further discussion.

In a zero-padded data sequence, the number of nonzero data points may be considerably
smaller than the total number of samples—that is, N � L. In such a case, a significant time
saving can be obtained by pruning the FFT algorithm by reducing or eliminating operations on
zeroes. (See, for example, [Markel 1971].) FFT pruning, along with a decimation in time, can
also be used to reduce the computation time when we want to evaluate the FFT only in a narrow
region of the frequency domain. (See [Markel 1971].)
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2.4 PROPERTIES OF THE PERIODOGRAM METHOD

The analysis of the statistical properties of φ̂p(ω) (or φ̂c(ω)) is important, in that it shows the poor
quality of the periodogram as an estimator of the PSD and, in addition, provides some insight
into how we can modify the periodogram so as to obtain better spectral estimators. We split the
analysis in two parts: bias analysis and variance analysis. (See also [Priestley 1981].)

The bias and variance of an estimator are two measures often used to characterize its perfor-
mance. A primary motivation is that the total squared error of the estimate is the sum of the
squared bias and the variance. To see this, let a denote any quantity to be estimated, and let â be
an estimate of a . Then the mean squared error (MSE) of the estimate is

MSE � E
{|â − a|2} = E

{∣∣â − E
{
â
}+ E

{
â
}− a

∣∣2}
= E

{∣∣â − E
{
â
}∣∣2}+ ∣∣E {â}− a

∣∣2
+2 Re

[(
E
{
â − E

{
â
}} )∗ (

E
{
â
}− a

) ]
= var{â} + ∣∣bias{â}∣∣2 (2.4.1)

By considering the bias and variance components of the MSE separately, we gain some additional
insight into the source of error and ways to reduce the error.

2.4.1 Bias Analysis of the Periodogram

By using the result (2.2.6), we obtain

E
{
φ̂p(ω)

}
= E

{
φ̂c(ω)

}
=

N −1∑
k=−(N −1)

E
{
r̂(k)

}
e−iωk (2.4.2)

For r̂(k) defined in (2.2.4),

E
{
r̂(k)

} =
(

1 − k

N

)
r(k), k ≥ 0 (2.4.3)

and

E
{
r̂(−k)

} = E
{
r̂∗(k)

} =
(

1 − k

N

)
r(−k), −k ≤ 0 (2.4.4)

Hence,

E
{
φ̂p(ω)

}
=

N −1∑
k=−(N −1)

(
1 − |k |

N

)
r(k)e−iωk (2.4.5)
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Define

wB (k) =

1 − |k |

N
, k = 0,±1, . . . ,±(N − 1)

0, otherwise
(2.4.6)

The preceding sequence is called the triangular window or the Bartlett window. By using wB (k),
we can write (2.4.5) as a DTFT:

E
{
φ̂p(ω)

}
=

∞∑
k=−∞

[wB (k)r(k)]e
−iωk (2.4.7)

The DTFT of the product of two sequences is equal to the convolution of their respective DTFTs.
Hence, (2.4.7) leads to

E
{
φ̂p(ω)

}
= 1

2π

∫ π

−π
φ(ψ)WB (ω − ψ)dψ (2.4.8)

where WB (ω) is the DTFT of the triangular window. For completeness, we include a direct proof
of (2.4.8). Inserting (1.3.8) in (2.4.7), we get

E
{
φ̂p(ω)

}
=

∞∑
k=−∞

wB (k)

[
1

2π

∫ π

−π
φ(ψ)eiψk dψ

]
e−iωk (2.4.9)

= 1

2π

∫ π

−π
φ(ψ)

[ ∞∑
k=−∞

wB (k)e
−ik(ω−ψ)

]
dψ (2.4.10)

= 1

2π

∫ π

−π
φ(ψ)WB (ω − ψ)dψ (2.4.11)

which is (2.4.8).
We can find an explicit expression for WB (ω) as follows:

WB (ω) =
N −1∑

k=−(N −1)

N − |k |
N

e−iωk (2.4.12)

= 1

N

N∑
t=1

N∑
s=1

e−iω(t−s) = 1

N

∣∣∣∣∣
N∑

t=1

eiωt

∣∣∣∣∣
2

(2.4.13)

= 1

N

∣∣∣∣eiωN − 1

eiω − 1

∣∣∣∣2 = 1

N

∣∣∣∣eiωN /2 − e−iωN /2

eiω/2 − e−iω/2

∣∣∣∣
2

(2.4.14)
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Figure 2.1 WB(ω)/WB(0), for N = 25.

or, in final form,

WB (ω) = 1

N

[
sin(ωN/2)

sin(ω/2)

]2

(2.4.15)

WB (ω) is sometimes referred to as the Fejer kernel. As an illustration, WB (ω) is displayed as a
function of ω, in Figure 2.1.

The convolution formula (2.4.8) is the key equation for understanding the behavior of the
mean estimated spectrum E {φ̂p(ω)}. In order to facilitate the interpretation of this equation,
the reader may think of it as representing a dynamical system with “input” φ(ω), “weighting
function” WB (ω), and “output” E {φ̂p(ω)}. Note that a similar equation would be obtained if the
covariance estimator (2.2.3) were used in φ̂c(ω), in lieu of (2.2.4). In that case, E {r̂(k)} = r(k),
so the corresponding W (ω) function that would appear in (2.4.8) is the DTFT of the rectangular
window

wR(k) =
{

1, k = 0,±1, . . . ,±(N − 1)

0, otherwise
(2.4.16)

A straightforward calculation gives

WR(ω) =
(N −1)∑

k=−(N −1)

e−iωk = 2 Re

[
eiNω − 1

eiω − 1

]
− 1

=
2 cos

[
(N −1)ω

2

]
sin
[

Nω
2

]
sin
[
ω
2

] − 1 = sin
[(

N − 1
2

)
ω
]

sin
[
ω
2

] (2.4.17)
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Figure 2.2 WR(ω)/WR(0), for N = 25.

which is displayed in Figure 2.2 (for N = 25; to facilitate comparison with WB (ω)). WR(ω) is
sometimes called the Dirichlet kernel.

As can be seen, there are no “essential” differences between WR(ω) and WB (ω). For concise-
ness, in the following we focus on the use of the triangular window.

Since we would like E {φ̂p(ω)} to be as close to φ(ω) as possible, it follows from (2.4.8) that
WB (ω) should be a close approximation to a Dirac impulse. The half-power (3 dB) width of the
main lobe of WB (ω) can be shown to be approximately 2π/N radians (see Exercise 2.15), so, in
frequency units (with f = ω/2π ),

main lobe width in frequency f � 1/N (2.4.18)

(Also, see the calculation of the time-bandwidth product for windows in the next section, which
supports (2.4.18).) It follows from (2.4.18) that WB (ω) is a poor approximation of a Dirac impulse
for small values of N. In addition, unlike the Dirac delta function, WB (ω) has a large number of
sidelobes. It follows that the bias of the periodogram spectral estimate can basically be divided
into two components. These two components correspond respectively to the nonzero main lobe
width and the nonzero sidelobe height of the window function WB (ω), as we explain next.

The principal effect of the main lobe of WB (ω) is to smear or smooth the estimated spectrum.
Assume, for instance, that φ(ω) has two peaks separated in frequency f by less than 1/N . Then
these two peaks appear as a single broader peak in E{φ̂p(ω)}, because (per (2.4.8)), the “response”
of the “system” corresponding to WB (ω) to the first peak does not die out before the “response”
to the second peak starts. This kind of effect of the main lobe on the estimated spectrum is called
smearing. Smearing prevents the periodogram-based methods from resolving details in the studied
spectrum that are separated in frequency by less than 1/N cycles per sampling interval. For this
reason, 1/N is called the spectral resolution limit of the periodogram method.
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Remark: The previous comments on resolution give us the occasion to stress that, in spite of the
fact that we have seen the PSD as a function of the angular frequency (ω), we generally refer to
the resolution in frequency (f ) in units of cycles per sampling interval. Of course, the “resolution
in angular frequency” is determined from the “resolution in frequency” by the simple relation
ω = 2π f . �

The principal effect of the sidelobes on the estimated spectrum consists of transferring power
from the frequency bands that concentrate most of the power in the signal to bands that contain
less or no power. This effect is called leakage. For instance, a dominant peak in φ(ω) could,
through convolution with the sidelobes of WB (ω), lead to an estimated spectrum that contains
power in frequency bands where φ(ω) is zero. Note that the smearing effect associated with the
main lobe can also be interpreted as a form of leakage from a local peak of φ(ω) to neighboring
frequency bands.

It follows from the previous discussion that smearing and leakage are particularly critical for
spectra with large amplitude ranges, such as peaky spectra. For smooth spectra, these effects are
less important. In particular, we see from (2.4.7) that, for white noise (which has a maximally
smooth spectrum), the periodogram is an unbiased spectral estimator: E {φ̂p(ω)} = φ(ω). (See
also Exercise 2.9.)

The bias of the periodogram estimator, even though it might be severe for spectra with large
dynamic ranges when the sample length is small, does not constitute the main limitation of this
spectral estimator. In fact, if the bias were the only problem, then increasing N (assuming this is
possible) would cause the bias in φ̂p(ω) to be eliminated. In order to see this, note from (2.4.5) that

lim
N →∞

E
{
φ̂p(ω)

}
= φ(ω)

Hence, the periodogram is an asymptotically unbiased spectral estimator. The main problem of
the periodogram method lies in its large variance, as is explained next.

2.4.2 Variance Analysis of the Periodogram

The finite-sample variance of φ̂p(ω) can be easily established only in some specific cases, such as
in the case of Gaussian white noise. The asymptotic variance of φ̂p(ω), however, can be derived
for more general signals. In the following, we present an asymptotic (for N � 1) analysis of the
variance of φ̂p(ω), since it turns out to be sufficient for showing the poor statistical accuracy of
the periodogram. (For a finite-sample analysis, see Exercise 2.13.)

Some preliminary discussion is required. A sequence {e(t)} is called complex (or circular)
white noise if it satisfies

E {e(t)e∗(s)} = σ 2δt,s

E {e(t)e(s)} = 0, for all t and s
(2.4.19)
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Note that σ 2 = E
{|e(t)|2} is the variance (or power) of e(t). Equation (2.4.19) can be rewritten as




E {Re[e(t)] Re[e(s)]} = σ 2

2 δt,s

E {Im[e(t)] Im[e(s)]} = σ 2

2 δt,s

E {Re[e(t)] Im[e(s)]} = 0

(2.4.20)

Hence, the real and imaginary parts of a complex/circular white noise are real-valued white-noise
sequences, of identical power equal to σ 2/2 and uncorrelated with one another. See Appendix B
for more details on circular random sequences.

In what follows, we shall also make use of the symbol O(1/N α), for some α > 0, to denote
a random variable that is such that the square root of its second-order moment goes to zero at
least as fast as 1/N α , as N tends to infinity.

First, we establish the asymptotic variance/covariance of φ̂p(ω) in the case of Gaussian
complex/circular white noise. The following result holds:

lim
N →∞

E
{

[φ̂p(ω1)− φ(ω1)][φ̂p(ω2)− φ(ω2)]
}

=
{
φ2(ω1), ω1 = ω2

0, ω1 �= ω2
(2.4.21)

Note that, for white noise, φ(ω) = σ 2 (for all ω). Since limN →∞ E {φ̂p(ω)} = φ(ω) (cf. the
analysis in the previous subsection), in order to prove (2.4.21) it suffices to show that

lim
N →∞

E
{
φ̂p(ω1)φ̂p(ω2)

}
= φ(ω1)φ(ω2)+ φ2(ω1)δω1,ω2 (2.4.22)

From (2.2.1), we obtain

E
{
φ̂p(ω1)φ̂p(ω2)

}
= 1

N 2

N∑
t=1

N∑
s=1

N∑
p=1

N∑
m=1

E
{
e(t)e∗(s)e(p)e∗(m)

}
·e−iω1(t−s)e−iω2(p−m)

(2.4.23)

For general random processes, the evaluation of the expectation in (2.4.23) is relatively compli-
cated. However, the following general result for Gaussian random variables can be used: If a , b,
c, and d are jointly Gaussian (complex or real) random variables, then

E {abcd} = E {ab} E {cd} + E {ac} E {bd} + E {ad} E {bc}
−2E {a} E {b} E {c} E {d} (2.4.24)
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For a proof of (2.4.24), see, for example, [Janssen and Stoica 1988] and references therein.
Thus, if the white noise e(t) is Gaussian as assumed, the fourth-order moment in (2.4.23) is found
to be

E
{
e(t)e∗(s)e(p)e∗(m)

} = [
E
{
e(t)e∗(s)

}] [
E
{
e(p)e∗(m)

}]
+ [

E {e(t)e(p)}] [E {e(s)e(m)}]∗

+ [
E
{
e(t)e∗(m)

}] [
E
{
e∗(s)e(p)

}]
= σ 4(δt,sδp,m + δt,mδs,p) (2.4.25)

Inserting (2.4.25) in (2.4.23) gives

E
{
φ̂p(ω1)φ̂p(ω2)

}
= σ 4 + σ 4

N 2

N∑
t=1

N∑
s=1

e−i (ω1−ω2)(t−s)

= σ 4 + σ 4

N 2

∣∣∣∣∣
N∑

t=1

ei (ω1−ω2)t

∣∣∣∣∣
2

= σ 4 + σ 4

N 2

{
sin[(ω1 − ω2)N /2]

sin[(ω1 − ω2)/2]

}2

(2.4.26)

The limit of the second term in (2.4.26) is σ 4 when ω1 = ω2 and zero otherwise, and (2.4.22)
follows at once.

Remark: Note that, in the previous case, it was indeed possible to derive the finite-sample
variance of φ̂p(ω). For colored noise, the preceding derivation becomes more difficult, and a
different approach (presented shortly) is needed. See Exercise 2.13 for yet another approach that
applies to general Gaussian signals. �

Next, we consider the case of a much more general signal obtained by linear filtering of the
Gaussian white-noise sequence {e(t)} examined earlier. This signal is given by

y(t) =
∞∑

k=1

hk e(t − k) (2.4.27)

and its PSD is given by

φy(ω) = |H (ω)|2φe(ω) (2.4.28)

(cf. (1.4.9)). Here, H (ω) = ∑∞
k=1 hk e−iωk . The intermediate result that follows, concerned with

signals of the foregoing type, appears to have an independent interest. (We will omit the index
“p” of φ̂p(ω) in order to simplify the notation.)
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For N � 1,

φ̂y (ω) = |H (ω)|2φ̂e(ω)+ O(1/
√

N ) (2.4.29)

Hence, the periodograms approximately satisfy an equation of the form of (2.4.28) that is satisfied
by the true PSDs.

In order to prove (2.4.29), first observe that

1√
N

N∑
t=1

y(t)e−iωt = 1√
N

N∑
t=1

∞∑
k=1

hk e(t − k)e−iω(t−k)e−iωk

= 1√
N

∞∑
k=1

hk e−iωk
N −k∑

p=1−k

e(p)e−iωp

= 1√
N

∞∑
k=1

hk e−iωk

·

 N∑

p=1

e(p)e−iωp +
0∑

p=1−k

e(p)e−iωp −
N∑

p=N −k+1

e(p)e−iωp




� H (ω)


 1√

N

N∑
p=1

e(p)e−iωp


+ ρ(ω) (2.4.30)

where

ρ(ω) = 1√
N

∞∑
k=1

hk e−iωk


 0∑

p=1−k

e(p)e−iωp −
N∑

p=N −k+1

e(p)e−iωp




� 1√
N

∞∑
k=1

hk e−iωkεk (ω) (2.4.31)

Next, note that

E
{
εk (ω)

} = 0,

E
{
εk (ω)εj (ω)

} = 0 for all k and j , and

E
{
εk (ω)ε

∗
j (ω)

} = 2σ 2 min(k , j )

which imply

E {ρ(ω)} = 0, E
{
ρ2(ω)

} = 0
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and

E
{|ρ(ω)|2} = 1

N

∣∣∣∣∣∣
∞∑

k=1

∞∑
j=1

hk e−iω k h∗
j eiω j E

{
εk (ω)ε

∗
j (ω)

}∣∣∣∣∣∣
= 2σ 2

N

∣∣∣∣∣∣
∞∑

k=1

hk e−iω k




k∑
j=1

h∗
j eiω j j +

∞∑
j=k+1

h∗
j eiω j k



∣∣∣∣∣∣

≤ 2σ 2

N

∞∑
k=1

|hk |



∞∑
j=1

|hj |j +
∞∑

j=1

|hj |k



= 4σ 2

N

( ∞∑
k=1

|hk |
) ∞∑

j=1

|hj |j



If
∑∞

k=1 k |hk | is finite (which is true, for example, if {hk } is exponentially stable; see [Söderström
and Stoica 1989]), we have

E
{|ρ(ω)|2} ≤ constant

N
(2.4.32)

Now, from (2.4.30), we obtain

φ̂y(ω) = |H (ω)|2φ̂e(ω)+ γ (ω) (2.4.33)

where

γ (ω) = H ∗(ω)E ∗(ω)ρ(ω)+ H (ω)E (ω)ρ∗(ω)+ ρ(ω)ρ∗(ω)

and where

E (ω) = 1√
N

N∑
t=1

e(t)e−iω t

Both E (ω) and ρ(ω) are linear combinations of Gaussian random variables, so they are also
Gaussian distributed. This means that the fourth-order moment formula (2.4.24) can be used to
obtain the second-order moment of γ (ω). By doing so, and also by using (2.4.32) and the fact
that, for example, (see (2.4.32)),

∣∣E {ρ(ω)E ∗(ω)
}∣∣ ≤ [

E
{|ρ(ω)|2}]1/2 [E {|E (ω)|2}]1/2

= constant√
N

·
[
E
{
|φ̂e(ω)|2

}]1/2 = constant√
N

we can verify that γ (ω) = O(1/
√

N ), and hence the proof of (2.4.29) is concluded.
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The main result of this section is derived by combining (2.4.21) and (2.4.29):

The asymptotic variance/covariance result (2.4.21) is also valid for a general
linear signal as defined in (2.4.27).

(2.4.34)

Remark: In the introduction to Chapter 1, we mentioned that the analysis of a complex-valued
signal is not always more general than the analysis of the corresponding real-valued signal; we
supported this claim by the example of a complex sine wave. Here, we have another instance
where the claim is valid. Much as in the complex sinusoidal signal case, the complex (or circular)
white noise does not specialize, in a direct manner, to real-valued white noise. Indeed, if we
would let e(t) in (2.4.19) be real valued, then the two equations in (2.4.19) would conflict with
each other (for t = s). The real-valued white noise random process is a stationary signal that
satisfies

E {e(t)e(s)} = σ 2δt,s (2.4.35)

If we try to carry out the proof of (2.4.21) under (2.4.35), then we find that the proof has to be
modified. This was expected: both φ(ω) and φ̂p(ω) are even functions in the real-valued case;
hence, (2.4.21) should be modified to include the case of both ω1 = ω2 and ω1 = −ω2. �

It follows from (2.4.34) that, for a fairly general class of signals, the periodogram values are
asymptotically (for N � 1) uncorrelated random variables whose means and standard deviations
are both equal to the corresponding true PSD values. Hence, the periodogram is an inconsistent
spectral estimator, which continues to fluctuate around the true PSD, with a nonzero variance,
even if the length of the processed sample increases without bound. Furthermore, the fact that the
periodogram values φ̂p(ω) are uncorrelated (for large N values) makes the periodogram exhibit an
erratic behavior (similar to that of a white-noise realization). These facts constitute the main limi-
tations of the periodogram approach to PSD estimation. In the next sections, we present several
modified periodogram-based methods that attempt to cure the aforementioned difficulties of the
basic periodogram approach. As we shall see, the “improved methods” decrease the variance of
the estimated spectrum at the expense of increasing its bias (and, hence, decreasing the average
resolution).

2.5 THE BLACKMAN–TUKEY METHOD

In this section, we develop the Blackman–Tukey method [Blackman and Tukey 1959] and
compare it to the periodogram. In later sections, we consider several other refined periodogram-
based methods that, like the Blackman–Tukey (BT) method, seek to reduce the statistical vari-
ability of the estimated spectrum; we will compare these methods with one another and with the
Blackman–Tukey method.



40 Chapter 2 Nonparametric Methods

2.5.1 The Blackman–Tukey Spectral Estimate

As we have seen, the main problem with the periodogram is the high statistical variability of
this spectral estimator, even for very large sample lengths. The poor statistical quality of the
periodogram PSD estimator has been intuitively explained as arising from both the poor accuracy
of r̂(k) in φ̂c(ω) for extreme lags (|k | � N ) and the large number of (even if small) covariance
estimation errors that are cumulatively summed up in φ̂c(ω). Both these effects may be reduced
by truncating the sum in the definition formula of φ̂c(ω), (2.2.2). Following this idea leads to the
Blackman–Tukey estimator, which is given by

φ̂BT (ω) =
M −1∑

k=−(M −1)

w(k)r̂(k)e−iωk (2.5.1)

where {w(k)} is an even function (i.e., w(−k) = w(k)), w(0) = 1, w(k) = 0 for |k | ≥ M , and
w(k) decays smoothly to zero with k , and where M < N . Since w(k) in (2.5.1) weights the lags
of the sample covariance sequence, it is called a lag window.

If w(k) in (2.5.1) is selected as the rectangular lag window, (i.e., w(k) = 1), then we simply
obtain a truncated version of φ̂c(ω). However, we may choose w(k) in many other ways, and this
flexibility may be employed to improve the accuracy of the Blackman–Tukey spectral estimator or
to emphasize some of its characteristics that are of particular interest in a given application. In the
next subsections, we address the principal issues that concern the problem of window selection.
However, before doing so, we rewrite (2.5.1) in an alternative form that will be used in several
places in the discussion that follows.

Let W (ω) denote the DTFT of w(k),

W (ω) =
∞∑

k=−∞
w(k)e−iωk =

M −1∑
k=−(M −1)

w(k)e−iωk (2.5.2)

Making use of the DTFT property that led to (2.4.8), we can then write

φ̂BT (ω) =
∞∑

k=−∞
w(k)r̂(k)e−iωk

= DTFT of the product of the sequences

{. . . , 0, 0,w(−(M − 1)), . . . ,w(M − 1), 0, 0, . . .} and

{. . . , 0, 0, r̂(−(N − 1)), . . . , r̂(N − 1), 0, 0, . . .}
= {DTFT(r̂(k))} ∗ {DTFT(w(k))}
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As DTFT{. . . , 0, 0, r̂(−(N − 1)), . . . , r̂(N − 1), 0, 0, . . .} = φ̂p(ω), we obtain

φ̂BT (ω) = φ̂p(ω) ∗ W (ω) = 1

2π

∫ π

−π
φ̂p(ψ)W (ω − ψ)dψ (2.5.3)

This equation is analogous to (2.4.8) and can be interpreted in the same way. Since, for most
windows in common use, W (ω) has a dominant, relatively narrow peak at ω = 0, it follows from
(2.5.3) that

The Blackman–Tukey spectral estimator (2.5.1) corresponds to a “locally”
weighted average of the periodogram.

(2.5.4)

Since the function W (ω) in (2.5.3) acts as a window (or weighting) in the frequency domain, it
is sometimes called a spectral window. As we shall see, several refined periodogram-based spectral
estimators discussed in what follows can be given an interpretation similar to that afforded by (2.5.3).

The form (2.5.3) in which the Blackman–Tukey spectral estimator has been cast is quite
appealing from an intuitive standpoint. The main problem with the periodogram lies in its large
variations about the true PSD. The weighted average in (2.5.3), in the neighborhood of the current
frequency point ω, should smooth the periodogram and hence eliminate its large fluctuations.

On the other hand, this smoothing by the spectral window W (ω) will also have the undesirable
effect of reducing the resolution. We may expect that the smaller the M , the larger the reduction
in variance and the lower the resolution. These qualitative arguments may be made exact by a
statistical analysis of φ̂BT (ω), similar to that in the previous section. In fact, it is clear from (2.5.3)
that the mean and variance of φ̂BT (ω) can be derived from those of φ̂p(ω). Roughly speaking,
the results that can be established by the analysis of φ̂BT (ω), based on (2.5.3), show that the
resolution of this spectral estimator is on the order of 1/M, whereas its variance is on the order
of M/N. The compromise between resolution and variance, which should be considered when
choosing the window’s length, is clearly seen from the preceding considerations. We will look
at the resolution-variance tradeoff in more detail in what follows. The next discussion addresses
some of the main issues that concern window design.

2.5.2 Nonnegativeness of the Blackman–Tukey Spectral Estimate

Since φ(ω) ≥ 0, it is natural to also require that φ̂BT (ω) ≥ 0. The lag window can be selected to
achieve this desirable property of the estimated spectrum. The following result holds true:

If the lag window {w(k)} is positive semidefinite (i.e., W (ω) ≥ 0), then the
windowed covariance sequence {w(k)r̂(k)} (with r̂(k) given by (2.2.4)) is
positive semidefinite, too; this result implies that φ̂BT (ω) ≥ 0 for all ω.

(2.5.5)
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In order to prove the previous result, first note that φ̂BT (ω) ≥ 0 if and only if the sequence
{. . . , 0, 0,w(−(M − 1))r̂(−(M − 1)), . . . ,w(M − 1)r̂(M − 1), 0, 0, . . .} is positive semidefinite
or, equivalently, the following Toeplitz matrix is positive semidefinite for all dimensions:




w(0)r̂(0) . . . w(M − 1)r̂(M − 1) 0
...

. . .

w(−M + 1)r̂(−M + 1)
. . . w(M − 1)r̂(M − 1)

. . .
..
.

0 w(−M + 1)r̂(−M + 1) . . . w(0)r̂(0)




=




w(0) . . . w(M − 1) 0
..
.

. . .

w(−M + 1)
. . . w(M − 1)

. . .
.
..

0 w(−M + 1) . . . w(0)




�




r̂(0) . . . r̂(M − 1) 0
..
.

. . .

r̂(−M + 1)
. . . r̂(M − 1)

. . .
.
..

0 r̂(−M + 1) . . . r̂(0)




The symbol � denotes the Hadamard matrix product (i.e., element-wise multiplication). By a result
in matrix theory, the Hadamard product of two positive semidefinite matrices is also a positive
semidefinite matrix. (See Result R19 in Appendix A.) Thus, the proof of (2.5.5) is concluded.

Another, perhaps simpler, proof of (2.5.5) makes use of (2.5.3) in the following way: Since
the sequence {w(k)} is real and symmetric about the point k = 0, its DTFT W (ω) is an even,
real-valued function. Furthermore, if {w(k)} is a positive semidefinite sequence, then W (ω) ≥ 0
for all ω values. (See Exercise 1.8.) By (2.5.3), W (ω) ≥ 0 immediately implies φ̂BT (ω) ≥ 0, as
φ̂p(ω) ≥ 0 by definition.

On one hand, it should be noted that some lag windows, such as the rectangular window, do
not satisfy the assumption made in (2.5.5); hence, their use could lead to estimated spectra that
take negative values. The Bartlett window, on the other hand, is positive semidefinite (as can be
seen from (2.4.15)).

2.6 WINDOW DESIGN CONSIDERATIONS

The properties of the Blackman–Tukey estimator (and of other refined periodogram methods
discussed in the next section) are related directly to the choice of the lag window. In this section,
we discuss several relevant properties of windows that are useful in selecting or designing a
window to use in a refined spectral estimation procedure.

2.6.1 Time-Bandwidth Product and Resolution-Variance Tradeoffs
in Window Design

Most windows are such that they take only nonnegative values in both time and frequency
domains (or, if they also take negative values, these are much smaller than the positive values of



Section 2.6 Window Design Considerations 43

the window). In addition, they peak at the origin in both domains. For this type of window, it is
possible to define an equivalent time width, Ne , and an equivalent bandwidth, βe , as follows:

Ne =
∑M −1

k=−(M −1) w(k)

w(0)
(2.6.1)

and

βe =
1

2π

∫ π
−π W (ω)dω

W (0)
(2.6.2)

From the definitions of direct and inverse DTFTs, we obtain

W (0) =
∞∑

k=−∞
w(k) =

M −1∑
k=−(M −1)

w(k) (2.6.3)

and

w(0) = 1

2π

∫ π

−π
W (ω)dω (2.6.4)

Using (2.6.3) and (2.6.4) in (2.6.1) and (2.6.2) gives the following result:

The (equivalent) time-bandwidth product equals unity:
Neβe = 1

(2.6.5)

As already indicated, the preceding result applies to window-like signals. Some extended
results of the time-bandwidth product type, which apply to more general classes of signals, are
presented in Complement 2.8.5.

It is clearly seen from (2.6.5) that a window cannot be both time limited and bandlimited.
The more slowly the window decays to zero in one domain, the more concentrated it is in the
other domain. The simple result (2.6.5) has several other interesting consequences, as explained
next.

The equivalent temporal extent (or aperture), Ne , of w(k) is essentially determined by the
window’s length. For example, for a rectangular window, we have Ne � 2M , whereas for a
triangular window, Ne � M. This observation, together with (2.6.5), implies that the equivalent
bandwidth βe is basically determined by the window’s length. More precisely, βe = O(1/M).
This fact lends support to a claim made previously that, for a window that concentrates most of
its energy in its main lobe, the width of that lobe should be on the order of 1/M. Since the main
lobe’s width sets a limit on the spectral resolution achievable (as explained in Section 2.4), the
preceding observation shows that the spectral resolution limit of a windowed method should be on
the order of 1/M. On the other hand, as explained in the previous section, the statistical variance
of such a method is essentially proportional to M/N. Hence, we reach the following conclusion:

The choice of window’s length should be based on a tradeoff between spectral
resolution and statistical variance.

(2.6.6)
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As a rule of thumb, we should choose M ≤ N /10 in order to reduce the standard deviation
of the estimated spectrum by at least a factor of three as compared with the periodogram.

Once M is determined, we cannot decrease simultaneously the energy in the main lobe (to
reduce smearing) and the energy in the sidelobes (to reduce leakage). This follows, for example,
from (2.6.4), which shows that the area of W (ω) is fixed once w(0) is fixed (such as w(0) = 1).
In other words, if we want to decrease the main lobe’s width then we should accept an increase
in the sidelobe energy and vice versa. In summary,

The selection of window’s shape should be based on a tradeoff between
smearing and leakage effects.

(2.6.7)

The tradeoff just mentioned is usually dictated by the specific application at hand. A number
of windows have been developed to address this tradeoff. In some sense, each of these windows
can be seen as a design at a specific point in the resolution–leakage tradeoff curve. We consider
several such windows in the next subsection.

2.6.2 Some Common Lag Windows

In this section, we list some of the most common lag windows and outline their relevant properties.
Our purpose is not to provide a detailed derivation or an exhaustive listing of such windows, but
rather to provide a quick reference of common windows. More detailed information on these
and other windows can be found in [Harris 1978; Kay 1988; Marple 1987; Oppenheim and
Schafer 1989; Priestley 1981; Porat 1997], where many of the closed-form windows have
been compiled. Table 2.1 lists some common windows along with some useful properties.

In addition to the fixed-window designs in Table 2.1, there are windows that contain a
design parameter that may be varied to trade between resolution and sidelobe leakage. Two such
common designs are the Chebyshev window and the Kaiser window. The Chebyshev window
has the property that the peak level of the sidelobe “ripples” is constant. Thus, unlike in most
other windows, the sidelobe level does not decrease as ω increases. The Kaiser window is
defined by

w(k) =
I0

(
γ
√

1 − [k/(M − 1)]2
)

I0(γ )
, −(M − 1) ≤ k ≤ M − 1 (2.6.8)

where I0(·) is the zeroth-order modified Bessel function of the first kind. The parameter γ
trades the main lobe width for the sidelobe leakage level; γ = 0 corresponds to a rectangular
window, and γ > 0 results in lower sidelobe leakage at the expense of a broader main lobe.
The approximate value of γ needed to achieve a peak sidelobe level of B dB below the peak
value is

γ �




0, B < 21

0.584(B − 21)0.4 + 0.0789(B − 21), 21 ≤ B ≤ 50

0.11(B − 8.7), B > 50
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Table 2.1 Some Common Windows and their Properties
These windows satisfy w(k) ≡ 0 for |k | ≥ M, and w(k) = w(−k); the defining equations are valid
for 0 ≤ k ≤ (M − 1).

Window Approx. Main Lobe Sidelobe
Name Defining Equation Width (radians) Level (dB)

Rectangular w(k) = 1 2π/M −13

Bartlett w(k) = M −k
M 4π/M −25

Hanning w(k) = 0.5 + 0.5 cos
(
πk
M

)
4π/M −31

Hamming w(k) = 0.54 + 0.46 cos
(
πk

M −1

)
4π/M −41

Blackman w(k) = 0.42 + 0.5 cos
(
πk

M −1

)
6π/M −57

+ 0.08 cos
(
πk

M −1

)

The Kaiser window is an approximation of the optimal window described in the next subsec-
tion. It is often chosen over the fixed-window designs because it has a lower sidelobe level when
γ is selected to give the same main lobe width as the corresponding fixed window (or narrower
main lobe width for a given sidelobe level). The optimal window of the next subsection improves
on the Kaiser design slightly.

Figure 2.3 shows plots of several windows with M = 26. The Kaiser window is shown
for γ = 1 and γ = 4, and the Chebyshev window is designed to have a −40 dB sidelobe
level. Figure 2.4 shows the corresponding normalized window transfer functions W (ω). Note
the constant sidelobe ripple level of the Chebyshev design.

We remark that, except for the Bartlett window, none of the windows we have introduced
(including the Chebyshev and Kaiser windows) has nonnegative Fourier transform. On the other
hand, it is straightforward to produce such a nonnegative definite window by convolving the
window with itself. Recall that the Bartlett window is the convolution of a rectangular window
with itself. We will make use of the convolution of windows with themselves in the next
two subsections, both for window design and for relating temporal windows to covariance lag
windows.

2.6.3 Window Design Example

Assume a situation where the observed signal consists of a weak desired signal and a strong
interference and where both the desired signal and the interference are narrowband signals that
are well separated in frequency. However, there is no a priori quantitative information available
on the frequency separation between the desired signal and the interference. It is required to
design a lag window for use in a Blackman–Tukey spectral estimation method, with the purpose
of detecting and locating in frequency the useful signal.

The main problem in the application just outlined lies in the fact that the (strong) interference
might completely mask the (weak) desired signal, through leakage. In order to get rid of this
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Figure 2.3 Some common window functions (shown for M = 26). The Kaiser window uses
γ = 1 and γ = 4, and the Chebyshev window is designed for a −40 dB sidelobe level.
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Figure 2.4 The DTFTs of the window functions in Figure 2.3.
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problem, the window design should compromise smearing for leakage. Note that the smearing
effect is not of main concern in this application, because the useful signal and the interference
are well separated in frequency. Hence, smearing will not affect our ability to detect the desired
signal although it will limit, to some degree, our ability to accurately locate in frequency the signal
in question.

We consider a window sequence whose DTFT W (ω) is constructed as the squared magnitude
of the DTFT of another sequence {v(k)}; in this way, we guarantee that the constructed window is
positive semidefinite. Mathematically, the previous design problem can be formulated as follows:
Consider a sequence {v(0), . . . , v(M − 1)}, and let

V (ω) =
M −1∑
k=0

v(k)e−iωk (2.6.9)

The DTFT V (ω) can be rewritten in the more compact form

V (ω) = v∗a(ω) (2.6.10)

where

v = [v(0) . . . v(M − 1)]∗ (2.6.11)

and

a(ω) = [1 e−iω . . . e−i (M −1)ω]T (2.6.12)

Define the spectral window as

W (ω) = |V (ω)|2 (2.6.13)

The corresponding lag window can be obtained from (2.6.13) as follows:

M −1∑
k=−(M −1)

w(k)e−iωk =
M −1∑
n=0

M −1∑
p=0

v(n)v∗(p)e−iω(n−p)

=
M −1∑
n=0

n−(M −1)∑
k=n

v(n)v∗(n − k)e−iωk

=
M −1∑

k=−(M −1)

[
M −1∑
n=0

v(n)v∗(n − k)

]
e−iωk (2.6.14)

This gives

w(k) =
M −1∑
n=0

v(n)v∗(n − k) (2.6.15)
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The last equality in (2.6.14), and hence the equality (2.6.15), are valid under the convention that
v(k) = 0 for k < 0 and k ≥ M.

As already mentioned, this method of constructing {w(k)} from the convolution of the
sequence {v(k)} with itself has the advantage that the lag window so obtained is always positive
semidefinite or, equivalently, the corresponding spectral window satisfies W (ω) ≥ 0 (as is easily
seen from (2.6.13)). Besides this, the design of {w(k)} can be reduced to the selection of {v(k)},
which may be more conveniently done, as explained next.

In the present application, the design objective is to reduce the leakage incurred by {w(k)}
as much as possible. This objective can be formulated as the problem of minimizing the relative
energy in the sidelobes of W (ω) or, equivalently, as the problem of maximizing the relative
energy in the main lobe of W (ω):

max
v

{∫ βπ
−βπ W (ω)dω∫ π
−π W (ω)dω

}
(2.6.16)

Here, β is a design parameter that quantifies how much smearing (or resolution) we can trade off
for leakage reduction. The larger the β is, the more leakage free is the optimal window derived
from (2.6.16), but also the more diminished is the spectral resolution associated with that window.

By writing the criterion in (2.6.16) in the form

1
2π

∫ βπ
−βπ |V (ω)|2dω

1
2π

∫ π
−π |V (ω)|2dω

=
v∗
[

1
2π

∫ βπ
−βπ a(ω)a∗(ω)dω

]
v

v∗v
(2.6.17)

(cf. (2.6.10) and Parseval’s theorem, (1.2.6)), the optimization problem (2.6.16) becomes

max
v

v∗�v
v∗v

(2.6.18)

where

� = 1

2π

∫ βπ

−βπ
a(ω)a∗(ω)dω � [γm−n ] (2.6.19)

and where

γm−n = 1

2π

∫ βπ

−βπ
e−i (m−n)ωdω = sin[(m − n)βπ ]

(m − n)π
(2.6.20)

(note that γ0 = β). By using the function

sinc(x) � sin x

x
, (sinc(0) = 1) (2.6.21)
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we can write (2.6.20) as

γm−n = βsinc[(m − n)βπ ] (2.6.22)

The solution to the problem (2.6.18) is well known: the maximizing v is given by the dominant
eigenvector of �, associated with the maximum eigenvalue of this matrix. (See Result R13 in
Appendix A.) To summarize,

The optimal lag window that minimizes the relative energy in the sidelobe
interval [−π,−βπ ] ∪ [βπ, π ] is given by (2.6.15), where v is the dominant
eigenvector of the matrix � defined in (2.6.19) and (2.6.22).

(2.6.23)

Regarding the choice of the design parameter β, it is clear that β should be larger than 1/M
in order to allow for a significant reduction of leakage. Otherwise, by selecting, for example,
β � 1/M , we weight the resolution issue too much in the design problem, with unfavorable
consequences for leakage reduction.

Finally, we remark that a problem quite similar to the previous problem, although derived
from different considerations, will be encountered in Chapter 5. (See also [Mullis and Scharf
1991].)

2.6.4 Temporal Windows and Lag Windows

As we have previously seen, the unwindowed periodogram coincides with the unwindowed
correlogram. The Blackman–Tukey estimator is a windowed correlogram obtained by using a
lag window. Similarly, we can define a windowed periodogram

φ̂W (ω) = 1

N

∣∣∣∣∣
N∑

t=1

v(t)y(t)e−iωt

∣∣∣∣∣
2

(2.6.24)

where the weighting sequence {v(t)} may be called a temporal window. A temporal window is
sometimes called a taper. Welch [Welch 1967] was one of the first researchers who consid-
ered windowed periodogram spectral estimators (see Section 2.7.2 for a description of Welch’s
method); hence, the subscript “W ” is attached to φ̂(ω) in (2.6.24). However, while the reason
for windowing the correlogram is clearly motivated, the reason for windowing the periodogram
is less obvious. In order to motivate (2.6.24), at least partially, write it as

φ̂W (ω) = 1

N

N∑
t=1

N∑
s=1

v(t)v∗(s)y(t)y∗(s)e−iω(t−s) (2.6.25)

Next, take expectation of both sides of (2.6.25), to obtain

E
{
φ̂W (ω)

}
= 1

N

N∑
t=1

N∑
s=1

v(t)v∗(s)r(t − s)e−iω(t−s) (2.6.26)
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Inserting

r(t − s) = 1

2π

∫ π

−π
φ(ω)eiω(t−s)dω (2.6.27)

in (2.6.26) gives

E
{
φ̂W (ω)

}
= 1

N 2π

∫ π

−π
φ(ψ)

[
N∑

t=1

N∑
s=1

v(t)v∗(s)e−i (ω−ψ)(t−s)

]
dψ

= 1

N 2π

∫ π

−π
φ(ψ)

∣∣∣∣∣
N∑

t=1

v(t)e−i (ω−ψ)t
∣∣∣∣∣
2

dψ (2.6.28)

Define

W (ω) = 1

N

∣∣∣∣∣
N∑

t=1

v(t)e−iωt

∣∣∣∣∣
2

(2.6.29)

By using this notation, we can write (2.6.28) as

E
{
φ̂W (ω)

}
= 1

2π

∫ π

−π
φ(ψ)W (ω − ψ)dψ (2.6.30)

As the equation (2.6.29) is similar to (2.6.13), the sequence whose DTFT is equal to W (ω)

immediately follows from (2.6.15):

w(k) = 1

N

N∑
n=1

v(n)v∗(n − k) (2.6.31)

Next, by comparing (2.6.30) and (2.5.3), we get the following result:

The windowed periodogram and the windowed correlogram have the same
average behavior, provided that the temporal and lag windows are related as
in (2.6.31).

(2.6.32)

Hence, E {φ̂W (ω)} = E {φ̂BT (ω)}, provided that the temporal and lag windows are matched
to one another. However, a similarly simple relationship between φ̂W (ω) and φ̂BT (ω) does not
seem to exist. This makes it somewhat difficult to motivate the windowed periodogram as defined
in (2.6.24). The Welch periodogram, though, does not weight all data samples as in (2.6.24) and
is a useful spectral estimator (as is shown in the next section).
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2.7 OTHER REFINED PERIODOGRAM METHODS

In Section 2.5, we introduced the Blackman–Tukey estimator as an alternative to the periodogram.
In this section, we present three other modified periodograms: the Bartlett, Welch, and Daniell
methods. Like the Blackman–Tukey method, they seek to reduce the variance of the periodogram
by smoothing or averaging the periodogram estimates in some way. We will relate these methods
to one another and to the Blackman–Tukey method.

2.7.1 Bartlett Method

The basic idea of the Bartlett method [Bartlett 1948; Bartlett 1950] is simple: to reduce
the large fluctuations of the periodogram, split up the available sample of N observations into
L = N/M subsamples of M observations each, and then average the periodograms obtained from
the subsamples for each value of ω. Mathematically, the Bartlett method can be described as
follows: Let

yj (t) = y((j − 1)M + t),
t = 1, . . . ,M
j = 1, . . . , L

(2.7.1)

denote the observations of the j th subsample, and let

φ̂j (ω) = 1

M

∣∣∣∣∣
M∑

t=1

yj (t)e
−iωt

∣∣∣∣∣
2

(2.7.2)

denote the corresponding periodogram. The Bartlett spectral estimate is then given by

φ̂B (ω) = 1

L

L∑
j=1

φ̂j (ω) (2.7.3)

Since the Bartlett method operates on data segments of length M, the resolution afforded should
be on the order of 1/M. Hence, the spectral resolution of the Bartlett method is reduced by a
factor L, compared with the resolution of the original periodogram method. In return for this
reduction in resolution, we can expect the Bartlett method to have a reduced variance. We show
below that the Bartlett method reduces the variance of the periodogram by the same factor L. The
compromise between resolution and variance when selecting M (or L) is thus evident.

An interesting way to look at the Bartlett method and its properties is by relating it to the
Blackman–Tukey method. As we know, φ̂j (ω) of (2.7.2) can be rewritten as

φ̂j (ω) =
M −1∑

k=−(M −1)

r̂j (k)e
−iωk (2.7.4)
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where {r̂j (k)} is the sample covariance sequence corresponding to the j th subsample. Inserting
(2.7.4) in (2.7.3) gives

φ̂B (ω) =
M −1∑

k=−(M −1)


 1

L

L∑
j=1

r̂j (k)


 e−iωk =

M −1∑
k=−(M −1)

r̂B (k)e
−iωk (2.7.5)

We see that φ̂B (ω) is similar in form to the Blackman–Tukey estimator that uses a rectangular
window. Here, r̂B (k) is an estimate of the ACS r(k). However, r̂B (k) in (2.7.5) does not make
efficient use of the available lag products y(t)y∗(t − k), especially for |k | near M − 1. (See
Exercise 2.14.) In fact, for k = M − 1, only about 1/M th of the available lag products are used
to form the ACS estimate in (2.7.5). We expect that the variance of r̂B (k) will be higher than
that of the corresponding r̂(k) lags used in the Blackman–Tukey estimate and, similarly, that the
variance of φ̂B (ω) will be higher than that of φ̂BT (ω). In addition, the Bartlett method uses a fixed
rectangular lag window and thus provides less flexibility in resolution–leakage tradeoff than does
the Blackman–Tukey method. For these reasons, we conclude the following:

The Bartlett estimate, as defined in (2.7.1)–(2.7.3), is similar in form to, but
typically has a slightly higher variance than, the Blackman–Tukey estimate
with a rectangular lag window of length M.

(2.7.6)

The reduction in resolution and the decrease of variance (both by a factor L = N /M ) for the
Bartlett estimate, as compared to the basic periodogram method, follow from (2.7.6) and from
the properties of the Blackman–Tukey spectral estimator given previously.

The main lobe of the rectangular window is narrower than that associated with most other lag
windows—this follows from the observation that the rectangular window clearly has the largest
equivalent time width and from the fact that the time-bandwidth product is constant; see (2.6.5).
Thus, it follows from (2.7.6) that, in the class of Blackman–Tukey estimates, the Bartlett estimator
can be expected to have the least smearing (and hence the best resolution), but the most significant
leakage.

2.7.2 Welch Method

The Welch method [Welch 1967] is obtained by refining the Bartlett method in two respects.
First, the data segments in the Welch method are allowed to overlap. Second, each data segment
is windowed prior to computation of the periodogram. To describe the Welch method in a math-
ematical form, let

yj (t) = y((j − 1)K + t),
t = 1, . . . ,M
j = 1, . . . , S

(2.7.7)

denote the j th data segment. In (2.7.7), (j − 1)K is the starting point for the j th sequence of
observations. If K = M , then the sequences do not overlap (but are contiguous), and we get the
sample splitting used by the Bartlett method (which leads to S = L = N/M data subsamples).
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However, the value recommended for K in the Welch method is K = M/2, in which case S �
2M/N data segments (with 50% overlap between successive segments) are obtained.

The windowed periodogram corresponding to yj (t) is computed as

φ̂j (ω) = 1

MP

∣∣∣∣∣
M∑

t=1

v(t)yj (t)e
−iωt

∣∣∣∣∣
2

(2.7.8)

where P denotes the “power” of the temporal window {v(t)}:

P = 1

M

M∑
t=1

|v(t)|2 (2.7.9)

The Welch estimate is found by averaging the windowed periodograms in (2.7.8):

φ̂W (ω) = 1

S

S∑
j=1

φ̂j (ω) (2.7.10)

The reasons for these modifications to the Bartlett method, which led to the Welch method,
are simple to explain. By allowing overlap between the data segments and hence getting more
periodograms to be averaged in (2.7.10), we hope to decrease the variance of the estimated PSD.
By introducing the window in the periodogram computation, we hope to get more control over
the bias/resolution properties of the estimated PSD (see Section 2.6.4). Additionally, the temporal
window may be used to give less weight to the data samples at the ends of each subsample, hence,
making the consecutive subsample sequences less correlated to one another, even though they are
overlapping. The principal effect of this “decorrelation” should be a more effective reduction of
variance via the averaging in (2.7.10).

The analysis that led to the results (2.6.30)–(2.6.32) can be modified to show that the use
of windowed periodograms in the Welch method, as contrasted to the unwindowed periodograms
in the Bartlett method, indeed offers more flexibility in controlling the bias properties of the
estimated spectrum. The variance of the Welch spectral estimator is more difficult to analyze
(except in some special cases). However, there is empirical evidence that the Welch method can
offer lower variance than the Bartlett method, but the difference in the variances corresponding
to the two methods is not dramatic.

We can relate the Welch estimator to the Blackman–Tukey spectral estimator by a straight-
forward calculation, as we did for the Bartlett method. By inserting (2.7.8) in (2.7.10), we obtain

φ̂W (ω) = 1

S

S∑
j=1

1

MP

M∑
t=1

M∑
k=1

v(t)v∗(k)yj (t)y
∗
j (k)e

−iω(t−k)

= 1

MP

M∑
t=1

M∑
k=1

v(t)v∗(k)


 1

S

S∑
j=1

yj (t)y
∗
j (k)




︸ ︷︷ ︸
�=r̃(t,k)

e−iω(t−k) (2.7.11)
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For large values of N and for K ≤ M/2, S turns out to be sufficiently large for r̃(t, k) to be
a reasonable estimate of the covariance r(t − k). We assume that r̃(t, k) depends only on the
difference (t − k), at least approximately:

r̃(t, k) � r̃(t − k) (2.7.12)

Using (2.7.12) in (2.7.11) gives

φ̂W (ω) � 1

MP

M∑
t=1

M∑
k=1

v(t)v∗(k)r̃(t − k)e−iω(t−k)

= 1

MP

M∑
t=1

t−M∑
τ=t−1

v(t)v∗(t − τ )r̃(τ )e−iωτ

=
M −1∑

τ=−(M −1)

[
1

MP

M∑
t=1

v(t)v∗(t − τ )

]
r̃(τ )e−iωτ (2.7.13)

By introducing

w(τ ) = 1

MP

M∑
t=1

v(t)v∗(t − τ ) (2.7.14)

(under the convention that v(k) = 0 for k < 1 and k > M ), we can write (2.7.13) as

φ̂W (ω) �
M −1∑

τ=−(M −1)

w(τ )r̃(τ )e−iωτ (2.7.15)

which is to be compared with the form of the Blackman–Tukey estimator. To summarize, the Welch
estimator has been shown to approximate a Blackman–Tukey-type estimator for the estimated
covariance sequence (2.7.12) (which may be expected to have finite-sample properties different
from those of r̂(k)).

The Welch estimator can be efficiently computed via the FFT and is one of the most frequently
used PSD estimation methods. Its previous interpretation is pleasing, even though approximate,
because the Blackman–Tukey form of spectral estimator is theoretically the most favored one.
This interpretation also shows that we may think of replacing the usual covariance estimates
{r̂(k)} in the Blackman–Tukey estimator by other sample covariances, with the purpose of either
reducing the computational burden or improving the statistical accuracy.

2.7.3 Daniell Method

As shown in (2.4.21), the periodogram values φ̂(ωk ) corresponding to different frequency values
ωk are (asymptotically) uncorrelated random variables. One may then think of reducing the large
variance of the basic periodogram estimator by averaging the periodogram over small intervals
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centered on the current frequency ω. This is the idea behind the Daniell method [Daniell 1946].
The practical form of the Daniell estimate, which can be implemented by means of the FFT, is

φ̂D (ωk ) = 1

2 J + 1

k+J∑
j=k−J

φ̂p(ωj ) (2.7.16)

where

ωk = 2π

Ñ
k , k = 0, . . . , Ñ − 1 (2.7.17)

and where Ñ is (much) larger than N to ensure a fine sampling of φ̂p(ω). The periodogram samples
needed in (2.7.16) can be obtained, for example, by using a radix-2 FFT algorithm applied to the
zero-padded data sequence, as described in Section 2.3. The parameter J in the Daniell method
should be chosen sufficiently small to guarantee that φ(ω) is nearly constant on the interval(s):[

ω − 2π

Ñ
J , ω + 2π

Ñ
J

]
(2.7.18)

Ñ can, in principle, be chosen as large as we want, so we can choose J to be fairly large without
violating the requirement that φ(ω) be nearly constant over the interval in (2.7.18). For the sake
of illustration, let us assume that we keep the ratio J/Ñ constant, but increase both J and Ñ
significantly. As J/Ñ is constant, the resolution/bias properties of the Daniell estimator should be
basically unaffected. On the other hand, the fact that the number of periodogram values averaged
in (2.7.16) increases with increased J might suggest that the variance decreases. However, we
know that this should not be possible, because the variance can be decreased only at the expense of
increasing the bias (and vice versa). Indeed, in the case under discussion, the periodogram values
averaged in (2.7.16) become more and more correlated as Ñ increases; hence, the variance of
φ̂D (ω) does not necessarily decrease with J if Ñ is larger than N. (See, for example, Exercise 2.13.)
We will return to the bias and variance properties of the Daniell method a bit later.

By introducing β = 2J /Ñ, one can write (2.7.18) in a form that is more convenient for the
discussion that follows, namely

[ω − πβ, ω + πβ] (2.7.19)

Equation (2.7.16) is a discrete approximation of the continuous version of the Daniell estimator,
which is given by

φ̂D (ω) = 1

2πβ

∫ ω+βπ

ω−βπ
φ̂p(ψ)dψ (2.7.20)

The larger the Ñ, the smaller the difference between the approximation (2.7.16) and the continuous
version (2.7.20) of the Daniell spectral estimator.
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It is intuitively clear from (2.7.20) that, as β increases, the resolution of the Daniell estimator
decreases (so the bias increases) and the variance decreases. In fact, if we introduce

M = 1/β (2.7.21)

(in an approximate sense, as 1/β is not necessarily an integer) then we may expect that the
resolution and the variance of the Daniell estimator are both decreased by a factor M, compared
with the basic periodogram method. In order to support this claim, we relate the Daniell estimator
to the Blackman–Tukey estimation technique. By comparing (2.7.20) and (2.5.3), we obtain the
following result:

The Daniell estimator is a particular case of the Blackman–Tukey class of
spectral estimators, one corresponding to a rectangular spectral window:

W (ω) =
{

1/β, ω ∈ [−βπ, βπ ]

0, otherwise

(2.7.22)

This observation, along with the time-bandwidth product result and the properties of the
Blackman–Tukey spectral estimator, lends support to the claim previously made for the Daniell
estimator. Note that the Daniell estimate of PSD is a nonnegative function by its very definition,
(2.7.20); such is not necessarily the case for several members of the Blackman–Tukey class of
PSD estimators.

The lag window corresponding to the W (ω) in (2.7.22) is readily evaluated as follows:

w(k) = 1

2π

∫ π

−π
W (ω)eiωk dω = 1

2πβ

∫ πβ

−πβ
eiωk dω

= sin(kπβ)

kπβ
= sinc(kπβ) (2.7.23)

Note that w(k) does not vanish as k increases; this effect leads to a subtle (but not essen-
tial) difference between the lag-windowed forms of the Daniell and Blackman–Tukey estima-
tors. Since the inverse DTFT of φ̂p(ω) is given by the sequence {. . . , 0, 0, r̂(−(N − 1)), . . . ,
r̂(N − 1), 0, 0, . . .}, it follows immediately from (2.7.20) that φ̂D (ω) can also be written as

φ̂D (ω) =
N −1∑

k=−(N −1)

w(k)r̂(k)e−iωk (2.7.24)

It is seen from (2.7.24) that, like the Blackman–Tukey estimator, φ̂D (ω) is a windowed version of
the correlogram but, unlike the Blackman–Tukey estimator, the sum in (2.7.24) is not truncated
to a value M < N. Hence, contrary to what might have been expected intuitively, the parameter
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M defined in (2.7.21) cannot be exactly interpreted as a “truncation point” for the lag-windowed
version of φ̂D (ω). However, the equivalent bandwidth of W (ω) is clearly equal to β:

βe = β

Thus, it follows that the equivalent time width of w(k) is

Ne = 1/βe = M

which shows that M plays essentially the same role here as the “truncation point” in the Blackman–
Tukey estimator (and, indeed, it can be verified that w(k) in (2.7.23) takes small values for
|k | > M ).

In closing this section and this chapter, we point out that the periodogram-based methods
for spectrum estimation are all variations on the same theme. These methods attempt to reduce
the variance of the basic periodogram estimator, at the expense of some reduction in resolution,
by various means: averaging periodograms derived from data subsamples (Bartlett and Welch
methods); averaging periodogram values locally around the frequency of interest (Daniell method);
and smoothing the periodogram (Blackman–Tukey method). The unifying theme of these methods
is seen in that they are essentially special forms of the Blackman–Tukey approach. In Chapter 5,
we will push the unifying theme one step further, by showing that the periodogram-based methods
can also be obtained as special cases of the filter-bank approach to spectrum estimation described
there. (See also [Mullis and Scharf 1991].)

Finally, it is interesting to note that, although the modifications of the periodogram described
in this chapter are indeed required when estimating a continuous PSD, the unmodified periodogram
can be shown to be a satisfactory estimator (actually, the best one in large samples) for discrete
(or line) spectra corresponding to sinusoidal signals. This is shown in Chapter 4.

2.8 COMPLEMENTS

2.8.1 Sample Covariance Computation via FFT

Computation of the sample covariances is a ubiquitous problem in spectral estimation and in
signal processing applications. In this complement, we make use of the DTFT-like formula (2.2.2),
relating the periodogram and the sample covariance sequence, to devise an FFT-based algorithm
for computation of the {r̂(k)}N −1

k=0 . We also compare the computational requirements of such an
algorithm with those corresponding to the evaluation of {r̂(k)} via the temporal averaging formula
(2.2.4), and we show that the former could be computationally more efficient than the latter if N
is larger than a certain value.

From (2.2.2) and (2.2.6), we have (omitting the subscript p of φ̂p(ω) for notational simplicity)

φ̂(ω) =
N −1∑

k=−N +1

r̂(k)e−iω k =
2N −1∑
p=1

r̂(p − N )e−iω(p−N )
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or, equivalently,

e−iω(N −1) φ̂(ω) =
2N −1∑
p=1

ρ( p)e−iω(p−1) (2.8.1)

where ρ( p) � r̂( p − N ). Equation (2.8.1) has the standard form of a DFT (see (2.3.3)). It is
evident from (2.8.1) that, in order to determine the sample covariance sequence, we need at least
(2N − 1) values of the periodogram. This is expected; the sequence {r̂(k)}N −1

k=0 contains (2N − 1)
real-valued unknowns, for the computation of which at least (2N − 1) periodogram values should
be necessary (because φ̂(ω) is real valued).

Let

ωk = 2π

2N − 1
(k − 1), k = 1, . . . , 2N − 1

Also, let the sequence {y(t)}2N −1
t=1 be obtained by padding the raw data sequence with (N − 1)

zeroes. Compute

Yk =
2N −1∑
t=1

y(t)e−iωk (t−1) (k = 1, 2, . . . , 2N − 1) (2.8.2)

by means of a (2N − 1)-point FFT algorithm. Next, evaluate

φ̃k = e−iωk (N −1) |Yk |2/N (k = 1, . . . , 2N − 1) (2.8.3)

Finally, calculate the sample covariances via the “inversion” of (2.8.1):

ρ( p) =
2N −1∑
k=1

φ̃k eiωk (p−1)/(2N − 1)

=
2N −1∑
k=1

φ̃k eiωp (p−1)/(2N − 1) (2.8.4)

The previous computation may once again be done by using a (2N − 1)-point FFT algorithm. The
bulk of the procedure just outlined consists of the FFT-based computation of (2.8.2) and (2.8.4).
That computation requires about 2N log2(2N ) flops (assuming that the radix-2 FFT algorithm is
used; the required number of operations is larger than the one previously given whenever N is
not a power of two). The direct evaluation of the sample covariance sequence via (2.2.4) requires

N + (N − 1)+ · · · + 1 � N 2/2 flops
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Hence, the FFT-based computation would be more efficient whenever

N > 4 log2(2N )

This inequality is satisfied for N ≥ 32. (Actually, N needs to be greater than 32, because we
neglected the operations needed to implement equation (2.8.3).)

The previous discussion assumes that N is a power of two. If this is not the case, then
the relative computational efficiency of the two procedures might be different. Note, also, that
there are several other issues that could affect this comparison. For instance, if only the lags
{r̂(k)}M −1

k=0 (with M � N ) are required, then the number of computations required by (2.2.4) is
drastically reduced. On the other hand, the FFT-based procedure can also be implemented in a
more efficient way in such a case, and so it would remain more efficient computationally than a
direct calculation when, for example, N ≥ 100 [Oppenheim and Schafer 1989]. We conclude
that the various implementation details could change the value of N beyond which the FFT-based
procedure is more efficient than the direct approach and hence might influence the decision as to
which of the two procedures should be used in a given application.

2.8.2 FFT-Based Computation of Windowed Blackman–Tukey Periodograms

The windowed Blackman–Tukey periodogram (2.5.1), unlike its unwindowed version, is not
amenable to a direct computation via a single FFT. In this complement, we show that three
FFTs are sufficient to evaluate (2.5.1): two FFTs for the computation of the sample covariance
sequence entering the equation (2.5.1) (as described in Complement 2.8.1), and one FFT for the
evaluation of (2.5.1). We also show that the computational formula for {r̂(k)} derived in Comple-
ment 2.8.1 can be used to obtain an FFT-based algorithm for evaluation of (2.5.1) directly in
terms of φ̂p(ω). We relate the latter way of computing (2.5.1) to the evaluation of φ̂BT (ω) from
the integral equation (2.5.3). Finally, we compare the two ways just outlined for evaluating the
windowed Blackman–Tukey periodogram.

The windowed Blackman–Tukey periodogram can be written as

φ̂BT (ω) =
N −1∑

k=−(N −1)

w(k)r̂(k)e−iω k

=
N −1∑
k=0

w(k)r̂(k)e−iω k +
N −1∑
k=0

w(k)r̂∗(k)eiω k − w(0)r̂(0)

= 2 Re

{
N −1∑
k=0

w(k)r̂(k)e−iω k

}
− w(0)r̂(0) (2.8.5)

where we made use of the facts that the window sequence is even and r̂(−k) = r̂∗(k). It is now
evident that an N -point FFT can be used to evaluate φ̂BT (ω) at ω = 2πk/N (k = 0, . . . ,N − 1).
This requires about 1

2 N log2(N ) flops that should be added to the 2N log2(2N ) flops required
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to compute {r̂(k)} (as in Complement 2.8.1), giving a total of about N [ 1
2 log2(N )+ 2 log2(2N )]

flops for this way of evaluating φ̂BT (ω).
Next, we make use of the expression (2.8.4) for {r̂(k)} that is derived in Complement 2.8.1.

We have

r̂(p − N ) = 1

2N − 1

2N −1∑
k=1

φ̂(ω̄k )e
i ω̄k ( p−N ) (p = 1, . . . , 2N − 1) (2.8.6)

where ω̄k = 2π(k − 1)/(2N − 1) for (k = 1, . . . , 2N − 1) and where φ̂(ω) is the unwindowed
periodogram. Inserting (2.8.6) into (2.5.1), we obtain

φ̂BT (ω) = 1

2N − 1

N −1∑
s=−(N −1)

w(s)e−iω s
2N −1∑
k=1

φ̂(ω̄k )e
i ω̄k s

= 1

2N − 1

2N −1∑
k=1

φ̂(ω̄k )


 N −1∑

s=−(N −1)

w(s)e−i (ω−ω̄k )s


 (2.8.7)

which gives

φ̂BT (ω) = 1

2N − 1

2N −1∑
k=1

φ̂(ω̄k ) W (ω − ω̄k ) (2.8.8)

where W (ω) is the spectral window.
It might be thought that the last step in the preceding derivation requires that {w(k)} be a

“truncated-type” window (i.e., w(k) = 0 for |k | ≥ N ). However, no such requirement on {w(k)}
is needed: By inserting the usual expression for φ̂(ω) into (2.8.6), we obtain

r̂( p − N ) = 1

2N − 1

2N −1∑
k=1


 N −1∑

s=−(N −1)

r̂(s)e−i ω̄k s


 ei ω̄k (p−N )

= 1

2N − 1

N −1∑
s=−(N −1)

r̂(s)

[
2N −1∑
k=1

ei ω̄k ( p−N −s)

]

� 1

2N − 1

N −1∑
s=−(N −1)

r̂(s)�(s, p)
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where

�(s, p) =
2N −1∑
k=1

ei ω̄p−N −s k = ei ω̄p−N −s
ei (2N −1)ω̄p−N −s − 1

ei ω̄p−N −s − 1

Now, (2N − 1)ω̄p−N −s = 2π(p − N − s), so it follows that

�(s, p) = (2N − 1)δp−N ,s

from which we immediately get

1

2N − 1

N −1∑
s=−(N −1)

r̂(s)�(s, p) =
{

r̂(p − N ) p = 1, . . . , 2N − 1

0, otherwise
(2.8.9)

First, this calculation provides a cross-checking of the derivation of equation (2.8.6) in Comple-
ment 2.8.1. Second, the result (2.8.9) implies that the values of r̂(p − N ) calculated with the
formula (2.8.6) are equal to zero for p < 1 or p > 2N − 1. It follows that the limits for the
summation over s in (2.8.7) can be extended to ±∞, which shows that (2.8.8) is valid for an
arbitrary window.

In the general case, there seems to be no way of evaluating (2.8.8) by means of an FFT
algorithm. Hence, it appears that, for a general window, it is more efficient to base the computation
of φ̂BT (ω) on (2.8.5) rather than on (2.8.8). For certain windows, however, (2.8.8) could be more
efficient than (2.8.5) computationally. For instance, in the case of the Daniell method, which
corresponds to a rectangular spectral window, (2.8.8) takes a very convenient computational
form and should be preferred to (2.8.5). It should be noted that (2.8.8) can be viewed as an
exact formula for evaluation of the integral in equation (2.5.3). In particular, (2.8.8) provides
an exact implementation formula for the Daniell periodogram (2.7.20) (whereas (2.7.16) is only
an approximation of the integral (2.7.20) that is valid for sufficiently large values of N ).

2.8.3 Data- and Frequency-Dependent Temporal Windows:
The Apodization Approach

All windows discussed so far are both data- and frequency-independent; in other words, the
window used is the same at any frequency of the spectrum and for any data sequence. Apparently,
this is a rather serious restriction. A consequence of this restriction is that, for such nonadaptive
windows (i.e., windows that do not adapt to the data under analysis) any attempt to reduce the
leakage effect (by keeping the sidelobes low) inherently leads to a reduction of the resolution
(due to the widening of the main lobe), and vice versa; see Section 2.6.1.

In this complement, we show how to design a data- and frequency-dependent temporal window
that has the following desirable properties:

• It mitigates the leakage problem of the periodogram without compromising its resolution;
and

• It does so with only a very marginal increase in the computational burden.
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Our presentation is based on the apodization approach of [Stankwitz, Dallaire, and
Fienup 1994], even though in some places we will deviate from it to some extent. Apodization is
a term borrowed from optics where it has been used to mean a reduction of the sidelobes induced
by diffraction.

We begin our presentation with a derivation of the temporally windowed periodogram,
(2.6.24), in a least-squares (LS) framework. Consider the weighted LS fitting problem

min
a

N∑
t=1

ρ(t)
∣∣y(t)− aeiωt

∣∣2 (2.8.10)

where ω is given and so are the weights ρ(t) ≥ 0. It can readily be verified that the minimizer
of (2.8.10) is given by

â =
∑N

t=1 ρ(t)y(t)e
−iωt∑N

t=1 ρ(t)
(2.8.11)

If we let

v(t) = ρ(t)∑N
t=1 ρ(t)

(2.8.12)

then we can rewrite (2.8.11) as a windowed DFT:

â =
N∑

t=1

v(t)y(t)e−iωt (2.8.13)

The squared magnitude of (2.8.13) appears in the windowed periodogram formula (2.6.24)—of
course, not accidentally, as |â|2 should indicate the power in y(t) at frequency ω (cf. (2.8.10)).

The usefulness of the LS-based derivation of (2.6.24) lies in the fact that it reveals two
constraints that must be satisfied by a temporal window, namely,

v(t) ≥ 0 (2.8.14)

which follows from ρ(t) ≥ 0, and

N∑
t=1

v(t) = 1 (2.8.15)

which follows from (2.8.12). The constraint (2.8.15) can also be obtained by inspection of (2.6.24);
indeed, if y(t) had a component with frequency ω, then that component would pass undistorted
(or unbiased) through the DFT in (2.6.24) if and only if (2.8.15) holds. For this reason, (2.8.15) is
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sometimes called the unbiasedness condition. On the other hand, the constraint (2.8.14) appears
to be more difficult to obtain directly from (2.6.24).

Next, we turn our attention to window design, which is the problem of main interest here.
To emphasize the dependence of the temporally windowed periodogram in (2.6.24) on {v(t)}, we
use the notation φ̂v(ω):

φ̂v(ω) = N

∣∣∣∣∣
N∑

t=1

v(t)y(t)e−iωt

∣∣∣∣∣
2

(2.8.16)

Note that, in (2.8.16), the squared modulus is multiplied by N, whereas, in (2.6.24), it is divided
by N ; this difference is due to the fact that the window {v(t)} in this complement is constrained
to satisfy (2.8.15), whereas in Section 2.6 it is implicitly assumed to satisfy

∑N
t=1 v(t) = N.

In the apodization approach, the window is selected such that

φ̂v(ω) = minimum (2.8.17)

for each ω and for the given data sequence. Evidently, the apodization window will in general
be both frequency and data dependent. Sometimes, such a window is said to be frequency and
data adaptive. Let C denote the class of windows over which we perform the minimization
in (2.8.17). Each window in C must satisfy the constraints (2.8.14) and (2.8.15). Usually, C is
generated by an archetype window that depends on a number of unknown or free parameters,
most commonly in a linear manner. It is important to observe that we should not use more than
two free parameters to describe the windows v(t) ∈ C. Indeed, one parameter is needed to satisfy
the constraint (2.8.15) and the remaining one(s) to minimize the function in (2.8.17) under the
inequality constraint (2.8.14); if, in the minimization operation, φ̂v(ω) depends quadratically on
more than one parameter, then in general the minimum value will be zero, φ̂v(ω) = 0 for all ω,
which is not acceptable. We postpone a more detailed discussion on the parameterization of C
until we have presented a motivation for the apodization design criterion in (2.8.17).

To understand intuitively why (2.8.17) makes sense, consider an example in which the data
consists of two noise-free sinusoids. In this example, we use a rectangular window {v1(t)} and
a Kaiser window {v2(t)}. The use of these windows leads to the windowed periodograms in
Figure 2.5. As is apparent from this figure, v1(t) is a “high-resolution” window that trades off
leakage for resolution, whereas v2(t) compromises resolution (the two sinusoids are not resolved
in the corresponding periodogram) for less leakage. By using the apodization principle in (2.8.17)
to choose between φ̂v1(ω) and φ̂v2(ω), at each frequency ω, we obtain the spectral estimate shown
in Figure 2.5, which inherits the high resolution of φ̂v1(ω) and the low leakage of φ̂v2(ω).

A more formal motivation of the apodization approach can be obtained as follows. Let

ht = v(t)e−iωt

In terms of {ht } the equality constraint (2.8.15) becomes

N∑
t=1

ht e
iωt = 1 (2.8.18)
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Figure 2.5 An apodization window design example using a rectangular window (v1(t)) and a
Kaiser window (v2(t)). Shown are the periodograms corresponding to v1(t) and v2(t), and to the
apodization window v(t) selected using (2.8.17), for a data sequence of length 16 consisting of
two noise-free sinusoids.

and hence the apodization design problem is to minimize

∣∣∣∣∣
N∑

t=1

ht y(t)

∣∣∣∣∣
2

(2.8.19)

subject to (2.8.18), (2.8.14), and any other conditions resulting from the parameterization used for
{v(t)} (and therefore for {ht }). We can interpret {ht } as an FIR filter of length N ; consequently,
(2.8.19) is the “power” of the filter output, and (2.8.18) is the (complex) gain of the filter at
frequency ω. Therefore, by making use of {ht }, we can describe the apodization principle in
words as follows: Find the (parameterized) FIR filter {ht } that passes without distortion the
sinusoid with frequency ω (see (2.8.18)) and minimizes the output power (see (2.8.19)) and thus
attenuates any other frequency components in the data as much as possible. The (normalized)
power at the output of the filter is taken as an estimate of the power in the data at frequency
ω. This interpretation clearly can serve as a motivation of the apodization approach, and it sheds
more light on the apodization principle. In effect, minimizing (2.8.19) subject to (2.8.18) (along
with the other constraints on {ht } resulting from the parameterization used for {v(t)}) is a special
case of a sound approach to spectral analysis that will be described in Section 5.4.1 (a fact noted,
apparently for the first time, in [Lee and Munson Jr. 1995]).

As already stated previously, an important aspect that remains to be discussed is the param-
eterization of {v(t)}. For the apodization principle to make sense, the class C of windows must
be chosen carefully. In particular, as just explained, we should not use more than two parameters
to describe {v(t)} (to prevent the meaningless “spectral estimate” φ̂v(ω) ≡ 0). The choice of the
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class C is also important from a computational standpoint. Indeed, the task of solving (2.8.17),
for each ω and then computing the corresponding φ̂v(ω) could be computationally demanding
unless C is chosen carefully.

In what follows, we will consider the class of temporal windows used in [Stankwitz,
Dallaire, and Fienup 1994]:

v(t) = 1

N

[
α − β cos

(
2π

N
t

)]
, t = 1, . . . ,N (2.8.20)

It can readily be checked that (2.8.20) satisfies the constraints (2.8.14) and (2.8.15) if and only if

α = 1 and |β| ≤ 1 (2.8.21)

In addition, we require that

β ≥ 0 (2.8.22)

to ensure that the peak of v(t) occurs in the middle of the interval [1,N ]; this condition
guarantees that the window in (2.8.20) (with β > 0) has lower sidelobes than the rectangular
window corresponding to β = 0. (The window (2.8.20) with β < 0 generally has higher side-
lobes than the rectangular window; hence, β < 0 cannot be a solution to the apodization design
problem.)

Remark: The temporal window (2.8.20) is of the same type as the lag Hanning and Hamming
windows in Table 2.1. For the latter windows, the interval of interest is [−N ,N ]; hence, for
the peak of these windows to occur in the middle of the interval of interest, we need β ≤ 0
(cf. Table 2.1). This observation explains the difference between (2.8.20) and the lag windows in
Table 2.1. �

Combining (2.8.20), (2.8.21), and (2.8.22) leads to the following (constrained) parameteriza-
tion of the temporal windows:

v(t) = 1

N

[
1 − β cos

(
2π

N
t

)]

= 1

N

[
1 − β

2

(
ei 2π

N t + e−i 2π
N t
)]
, β ∈ [0, 1] (2.8.23)

Assume, for simplicity, that N is a power of two (for the general case, we refer to [DeGraaf
1994]) and that a radix-2 FFT algorithm is used to compute

Y (k) =
N∑

t=1

y(t)e−i 2πk
N t , k = 1, . . . ,N (2.8.24)
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as discussed in Section 2.3. Then the windowed periodogram corresponding to (2.8.23) can conve-
niently be computed, as follows:

φ̂v(k) = 1

N

∣∣∣∣Y (k)− β

2

[
Y (k − 1)+ Y (k + 1)

]∣∣∣∣2 , k = 2, . . . ,N − 1 (2.8.25)

Furthermore, in (2.8.25), β is the solution to the following apodization design problem:

min
β∈[0,1]

∣∣∣∣Y (k)− β

2

[
Y (k − 1)+ Y (k + 1)

]∣∣∣∣2 (2.8.26)

The unconstrained minimizer of the preceding function is given by

β0 = Re

[
2Y (k)

Y (k − 1)+ Y (k + 1)

]
(2.8.27)

Because the function in (2.8.26) is quadratic in β, it follows that the constrained minimizer of
(2.8.26) is given by

β =




0, if β0 < 0

β0, if 0 ≤ β0 ≤ 1

1, if β0 > 1

(2.8.28)

Remark: It is interesting to note, from (2.8.28), that a change of the value of α in the window
expression (2.8.20) will affect the apodization (optimal) window in a more complicated way than
just a simple scaling. Indeed, if we change the value of α, for instance to α = 0.75, then the
interval for β becomes β ∈ [0, 0.75] and this modification will affect the apodization window
nonlinearly via (2.8.28). �

The apodization-based windowed periodogram is obtained simply, by using the β given by
(2.8.28) in (2.8.25). Hence, despite the fact that the apodization window is both frequency- and
data-dependent (via β in (2.8.27), (2.8.28)), the implementation of the corresponding spectral
estimate is only marginally more demanding computationally than is the implementation of an
unwindowed periodogram. Compared with the latter, however, the apodization-based windowed
periodogram has a considerably reduced leakage problem and essentially the same resolution. (See
[Stankwitz, Dallaire, and Fienup 1994; DeGraaf 1994] for numerical examples illustrating
this fact.)

2.8.4 Estimation of Cross-Spectra and Coherency Spectra

As can be seen from Complement 1.6.1, the estimation of the cross-spectrum φyu(ω) of two
stationary signals, y(t) and u(t), is a useful operation in the study of possible linear (dynamic)
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relations between y(t) and u(t). Let z (t) denote the bivariate signal

z (t) = [y(t) u(t)]T

and let

φ̂(ω) = 1

N
Z (ω)Z ∗(ω) (2.8.29)

denote the unwindowed periodogram estimate of the spectral density matrix of z (t). In equation
(2.8.29),

Z (ω) =
N∑

t=1

z (t)e−iω t

is the DTFT of {z (t)}N
t=1. Partition φ̂(ω) as

φ̂(ω) =
[
φ̂yy(ω) φ̂yu(ω)

φ̂∗
yu(ω) φ̂uu(ω)

]
(2.8.30)

As indicated by the notation previously used, estimates of φyy (ω), of φuu(ω), and of the cross-
spectrum φyu(ω) may be obtained from the corresponding elements of φ̂(ω).

We first show that the estimate of the coherence spectrum obtained from (2.8.30) is always
such that ∣∣∣Ĉyu(ω)

∣∣∣ = 1 for all ω (2.8.31)

and, hence, it is useless. To see this, note that the rank of the 2 × 2 matrix in (2.8.30) is equal to
one (see Result R22 in Appendix A), so we must have

φ̂uu(ω)φ̂yy (ω) =
∣∣∣φ̂yu(ω)

∣∣∣2
which readily leads to the conclusion that the coherency spectrum estimate obtained from the
elements of φ̂(ω) is bound to satisfy (2.8.31) and hence is meaningless. This result is yet another
indication that the unwindowed periodogram is a poor estimate of the PSD.

Consider next a windowed Blackman–Tukey periodogram estimate of the cross-spectrum:

φ̂yu(ω) =
M∑

k=−M

w(k)r̂yu(k)e
−iω k (2.8.32)

where w(k) is the lag window, and r̂yu(k) is some usual estimate of ryu(k). Unlike ryy(k) or
ruu(k), ryu(k) does not necessarily peak at k = 0; moreover, it is in general not an even function.
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The choice of the lag window for estimating cross-spectra may hence be governed by different
rules from those commonly used in the autospectrum estimation.

The main task of a lag window is to retain the “essential part” of the covariance sequence in
the defining equation for the spectral density. In this way, the bias is kept small and the variance is
also reduced as the noisy tails of the sample covariance sequence are weighted out. For simplicity
of discussion, assume that most of the area under the plot of r̂yu(k) is concentrated about k = k0,
with |k0| � N. As r̂yu(k) is a reasonably accurate estimate of ryu(k), provided |k | � N, we
can assume that {r̂yu(k)} and {ryu(k)} have similar shapes. In such a case, one can redefine
(2.8.32) as

φ̂yu(ω) =
M∑

k=−M

w(k − k0)r̂yu(k)e
−iωk

where the lag window w(s) is of the type recommended for autospectrum estimation. The choice
of an appropriate value for k0 in the preceding cross-spectral estimator is essential—if k0 is
selected poorly, the following situations can occur:

• If M is chosen small (to reduce the variance), the bias could be significant, because “essential”
lags of the cross-covariance sequence could be left out.

• If M is chosen large (to reduce the bias), the variance could be significantly inflated when
poorly estimated high-order “nonessential” lags are included in the spectral estimation formula.

Finally, let us look at the cross-spectrum estimators derived from (2.8.30) and (2.8.32),
respectively, with a view to establishing a relation between them. Partition Z (ω) as

Z (ω) =
[

Y (ω)
U (ω)

]

and observe that

1

2πN

∫ π

−π
Y (ω)U ∗(ω)eiωk dω

= 1

2πN

∫ π

−π

N∑
t=1

N∑
s=1

y(t)u∗(s)e−iω(t−s) eiωk dω

= 1

N

N∑
t=1

N∑
s=1

y(t)u∗(s)δk ,t−s

= 1

N

∑
t∈[1,N ]∩[1+k ,N +k ]

y(t)u∗(t − k) � r̂yu(k) (2.8.33)
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where r̂yu(k) can be rewritten in the following more familiar form:

r̂yu(k) =




1

N

N∑
t=k+1

y(t)u∗(t − k), k = 0, 1, 2, . . .

1

N

N +k∑
t=1

y(t)u∗(t − k), k = 0,−1,−2, . . .

Let

φ̂p
yu(ω) = 1

N
Y (ω)U ∗(ω)

denote the unwindowed cross-spectral periodogram-like estimator, given by the off-diagonal
element of φ̂(ω) in (2.8.30). With this notation, (2.8.33) can be written more compactly as

r̂yu(k) = 1

2π

∫ π

−π
φ̂ p

yu(µ)e
iµk dµ

By using the previous equation in (2.8.32), we obtain

φ̂yu(ω) = 1

2π

∫ π

−π
φ̂ p

yu(µ)

M∑
k=−M

w(k)e−i (ω−µ)k dµ

= 1

2π

∫ π

−π
W (ω − µ)φ̂ p

yu(µ) dµ (2.8.34)

where W(ω) = ∑∞
k=−∞ w(k)e−iω k is the spectral window. The previous equation should be

compared with the similar equation, (2.5.3), that holds in the case of autospectra.
For implementation purposes, one can use the discrete approximation of (2.8.34) given that

φ̂yu(ω) = 1

N

N∑
k=−N

W (ω − ωk )φ̂
p
yu(ωk )

where ωk = 2π
N k are the Fourier frequencies. The periodogram (cross-spectral) estimate that

appears in the above equation can be computed efficiently by means of an FFT algorithm.

2.8.5 More Time-Bandwidth Product Results

The time (or duration)-bandwidth product result (2.6.5) relies on the assumptions that both w(t)
and W(ω) have a dominant peak at the origin, that they both are real valued, and that they take



Section 2.8 Complements 71

on nonnegative values only. While most window-like signals (nearly) satisfy these assumptions,
many other signals do not satisfy them. In this complement, we obtain time-bandwidth product
results that apply to a much broader class of signals.

We begin by showing how the result (2.6.5) can be extended to a more general class of
signals. Let x(t) denote a general discrete-time sequence, and let X (ω) denote its DTFT. Both
x(t) and X (ω) are allowed to take negative or complex values, and neither is required to peak at
the origin. Let t0 and ω0 denote the maximum points of |x(t)| and |X (ω)|, respectively. The time
width (or duration) and bandwidth definitions in (2.6.1) and (2.6.2) are modified as follows:

N̄e =
∑∞

t=−∞ |x(t)|
|x(t0)|

and

β̄e =
1

2π

∫ π
−π |X (ω)| dω

|X (ω0)|
Because x(t) and X (ω) form a Fourier transform pair, we obtain

|X (ω0)| =
∣∣∣∣∣

∞∑
t=−∞

x(t)e−iω0t

∣∣∣∣∣ ≤
∞∑

t=−∞
|x(t)|

and

|x(t0)| =
∣∣∣∣ 1

2π

∫ π

−π
X (ω)eiωt0 d ω

∣∣∣∣ ≤ 1

2π

∫ π

−π
|X (ω)| dω

which implies that

N̄e β̄e ≥ 1 (2.8.35)

This result, similar to (2.6.5), can be used to conclude the following:

A sequence { x(t)} cannot be narrow in both time and frequency. (2.8.36)

More precisely, if x(t) is narrow in one domain, it must be wide in the other domain. However, the
inequality result (2.8.35), unlike (2.6.5), does not necessarily imply that β̄e decreases whenever N̄e

increases (or vice versa). Furthermore, the result (2.8.35)—again unlike (2.6.5)—does not exclude
the possibility that the signal is broad in both domains. In fact, in the general class of signals
to which (2.8.35) applies, there are signals that are broad both in the time and in the frequency
domain. (For such signals N̄e β̄e � 1; see, for example, [Papoulis 1977].) Evidently, the significant
consequence of (2.8.35) is (2.8.36), which is precisely what makes the duration-bandwidth result
an important one.

The duration-bandwidth product type of result (such as (2.6.5) or (2.8.35), and later (2.8.40))
has sometimes been referred to by using the generic name uncertainty principle, in an attempt
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to relate it to the Heisenberg Uncertainty Principle in quantum mechanics. (Briefly stated, the
Heisenberg Uncertainty Principle asserts that the position and velocity of a particle cannot simul-
taneously be specified to arbitrary precision.) To support the relationship, one can argue as follows:
Suppose that we are given a sequence with (equivalent) duration equal to Ne and that we are asked
to use a linear filtering device to determine the sequence’s spectral content in a certain narrow
band. Because the filter impulse response cannot be longer than Ne (in fact, it should be (much)
shorter!), it follows from the time-bandwidth product result that the filter’s bandwidth can be on
the order of 1/Ne , but not smaller. Hence, the sequence’s spectral content in fine bands on an
order smaller than 1/Ne cannot be ascertained exactly and therefore is “uncertain.” This is, in
effect, the type of limitation that applies to the nonparametric spectral methods discussed in this
chapter. However, this way of arguing is related to a specific approach to spectral estimation and
not to a fundamental limitation associated with the signal itself. (As we will see in later chapters of
this text, there are parametric methods of spectral analysis that can provide the “high resolution”
necessary to determine the spectral content in bands that are on an order less than 1/Ne .)

Next, we present another, slightly more general form of time-bandwidth product result. The
definitions of duration and bandwidth used to obtain (2.8.35) make full sense whenever |x(t)| and
|X (ω)| are single pulse-like waveforms, though these definitions might give reasonable results
in many other instances as well. There are several other possible definitions of the broadness
of a waveform in either the time or the frequency domain. The definition used next and the
corresponding time-bandwidth product result appear to be among the most general.

Let

x̃(t) = x(t)√∑∞
t=−∞ |x(t)|2

(2.8.37)

and

X̃ (ω) = X (ω)√
1

2π

∫ π
−π |X (ω)|2dω

(2.8.38)

By Parseval’s theorem (see (1.2.6)), the denominators in (2.8.37) and (2.8.38) are equal to each
other. Therefore, X̃ (ω) is the DTFT of x̃(t), as is already indicated by notation. Observe that

∞∑
t=−∞

|x̃(t)|2 = 1

2π

∫ π

−π
|X̃ (ω)|2dω = 1

Hence, both {|x̃ (t)|2} and {|X̃ (ω)|2/2π} can be interpreted as probability density functions in the
sense that they are nonnegative and that they sum or integrate to one. The means and variances
associated with these two “probability” densities are given by the following equations:

Time Domain:

µ =
∞∑

t=−∞
t |x̃(t)|2

σ 2 =
∞∑

t=−∞
(t − µ)2|x̃(t)|2
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Frequency Domain:

ν = 1

(2π)2

∫ π

−π
ω|X̃ (ω)|2dω

ρ2 = 1

(2π)3

∫ π

−π
(ω − 2πν)2|X̃ (ω)|2dω

The values of the “standard deviations” σ and ρ show whether the normalized functions {|x̃(t)|}
and {|X̃ (ω)|}, respectively, are narrow or broad. Hence, we can use σ and ρ as definitions for the
duration and bandwidth, respectively, of the original functions {x(t)} and {X (ω)}.

In what follows, we assume that

µ = 0, ν = 0 (2.8.39)

For continuous-time signals, the zero-mean assumptions can always be made to hold by translating
the origin appropriately on the time and frequency axes; see, for example, [Cohen 1995]. However,
doing the same in the case of the discrete-time sequences considered here does not appear to be
possible. Indeed, µ might not be integer valued, and the support of X (ω) is finite and, hence,
affected by translation. Consequently, in the present case, the zero-mean assumption introduces
some restriction; nevertheless, we impose it to simplify the analysis.

According to this discussion and assumption (2.8.39), we define the (equivalent) time width
and bandwidth of x(t) as follows:

Ñe =
[ ∞∑

t=−∞
t2|x̃(t)|2

]1/2

β̃e = 1

2π

[
1

2π

∫ π

−π
ω2|X̃ (ω)|2dω

]1/2

In the remainder of this complement, we prove the following time–bandwidth-product result:

Ñe β̃e ≥ 1

4π
(2.8.40)

which holds true under (2.8.39) and the weak additional assumption that

|X̃ (π)| = 0 (2.8.41)

To prove (2.8.40), first we note that

X̃ ′(ω) � dX̃ (ω)

dω
= −i

∞∑
t=−∞

t x̃(t)e−iωt
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Hence, i X̃ ′(ω) is the DTFT of {t x̃(t)}, which implies (by Parseval’s theorem) that

∞∑
t=−∞

t2|x̃(t)|2 = 1

2π

∫ π

−π
|X̃ ′(ω)|2dω (2.8.42)

Consequently, by the Cauchy–Schwartz inequality for functions (see Result R23 in Appendix A),

Ñe β̃e =
[

1

2π

∫ π

−π
|X̃ ′(ω)|2d ω

]1/2 [ 1

(2π)3

∫ π

−π
ω2|X̃ (ω)|2dω

]1/2

≥ 1

(2π)2

∣∣∣∣
∫ π

−π
ωX̃ ∗(ω)X̃ ′(ω)dω

∣∣∣∣
= 1

2(2π)2

{∣∣∣∣
∫ π

−π
ωX̃ ∗(ω)X̃ ′(ω)dω

∣∣∣∣
+
∣∣∣∣
∫ π

−π
ωX̃ (ω)X̃ ∗′(ω)dω

∣∣∣∣
}

(2.8.43)

(The first equality above follows from (2.8.42) and the last one from a simple calculation.) Hence,

Ñe β̃e ≥ 1

2(2π)2

∣∣∣∣
∫ π

−π
ω
[
X̃ ∗(ω)X̃ ′(ω)+ X̃ (ω)X̃ ∗′(ω)

]
dω

∣∣∣∣
= 1

2(2π)2

∣∣∣∣
∫ π

−π
ω
[
|X̃ (ω)|2

]′
dω

∣∣∣∣
which, after integration by parts and use of (2.8.41), yields

Ñe β̃e ≥ 1

2(2π)2

∣∣∣∣ω|X̃ (ω)|2
∣∣∣∣π
−π

−
∫ π

−π
|X̃ (ω)|2dω

∣∣∣∣ = 1

2(2π)

and the proof is concluded.

Remark: There is an alternative way to complete the proof above, starting from the inequality
in (2.8.43). In fact, as we will see, this alternative proof yields a tighter inequality than (2.8.40).
Let ϕ(ω) denote the phase of X̃ (ω):

X̃ (ω) = |X̃ (ω)|eiϕ(ω)

Then,

ωX̃ ∗(ω)X̃ ′(ω) = ω|X̃ (ω)|
[
|X̃ (ω)|

]′ + iωϕ′(ω)|X̃ (ω)|2

= 1

2

[
ω|X̃ (ω)|2

]′ − 1

2
|X̃ (ω)|2 + iωϕ′(ω)|X̃ (ω)|2 (2.8.44)
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Inserting (2.8.44) into (2.8.43) yields

Ñe β̃e ≥ 1

(2π)2

∣∣∣∣∣ω2 |X̃ (ω)|2
∣∣∣∣π−π − π + i2πγ

∣∣∣∣∣ (2.8.45)

where

γ = 1

2π

∫ π

−π
ωϕ′(ω)|X̃ (ω)|2dω

can be interpreted as the “covariance” of ω and ϕ′(ω) under the “probability density function”
given by |X̃ (ω)|2/(2π). From (2.8.45), we at once obtain

Ñe β̃e ≥ 1

4π

√
1 + 4γ 2 (2.8.46)

which is a slightly stronger result than (2.8.40). �

The results (2.8.40) and (2.8.46) are similar to (2.8.35); hence, the type of comment previously
made about (2.8.35) applies to (2.8.40) and (2.8.46) as well.

For a time-bandwidth product result more general than (2.8.46), see [Doroslovacki 1998];
the papers [Calvez and Vilbé 1992] and [Ishii and Furukawa 1986] contain results similar to
the one presented in this complement.

2.9 EXERCISES

Exercise 2.1: Covariance Estimation for Signals with Unknown Means
The sample-covariance estimators (2.2.3) and (2.2.4) are based on the assumption that the signal
mean is equal to zero. A simple calculation shows that, under the zero-mean assumption,

E {r̃(k)} = r(k) (2.9.1)

and

E
{
r̂(k)

} = N − |k |
N

r(k) (2.9.2)

where {r̃(k)} denotes the sample covariance estimate in (2.2.3). Equations (2.9.1) and (2.9.2)
show that r̃(k) is an unbiased estimate of r(k), whereas r̂(k) is a biased one. (Note, however,
that the bias in r̂(k) is small for N � |k |.) For this reason, {r̃(k)} and {r̂(k)} are often called,
respectively, the unbiased and the biased sample covariances.

Whenever the signal mean is unknown, a most natural modification of the covariance esti-
mators (2.2.3) and (2.2.4) is as follows:

r̃(k) = 1

N − k

N∑
t=k+1

[y(t)− ȳ] [y(t − k)− ȳ]∗ (2.9.3)
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and

r̂(k) = 1

N

N∑
t=k+1

[y(t)− ȳ] [y(t − k)− ȳ]∗ (2.9.4)

where ȳ is the sample mean

ȳ = 1

N

N∑
t=1

y(t) (2.9.5)

Show that, in the unknown-mean case, the usual names, “unbiased” and “biased” sample covari-
ance, associated with (2.9.3) and (2.9.4), respectively, might no longer be appropriate. Indeed, in
such a case both estimators could be biased; furthermore, r̂(k) could be less biased than r̃(k). To
simplify the calculations, assume that y(t) is white noise.

Exercise 2.2: Covariance Estimation for Signals with Unknown Means (cont’d)
Show that the sample covariance sequence {r̂(k)} in equation (2.9.4) of Exercise 2.1 satisfies the
following equality:

N −1∑
k=−(N −1)

r̂(k) = 0 (2.9.6)

This equality might seem somewhat surprising. (Why should the {r̂(k)} satisfy such a constraint,
which the true covariances do not necessarily satisfy? Note, for instance, that the latter covariance
sequence could well comprise only positive elements.) However, the equality in (2.9.6) has a
natural explanation when viewed in the context of periodogram-based spectral estimation. Derive
and explain formula (2.9.6) in the aforementioned context.

Exercise 2.3: Unbiased ACS Estimates Can Lead to Negative Spectral Estimates
We stated in Section 2.2.2 that, if unbiased ACS estimates, given by equation (2.2.3), are used
in the correlogram spectral estimate (2.2.2), then negative spectral estimates could result. Find an
example data sequence {y(t)}N

t=1 that gives such a negative spectral estimate.

Exercise 2.4: Variance of Estimated ACS
Let {y(t)}N

t=1 be real Gaussian (for simplicity), with zero mean, ACS equal to {r(k)}, and ACS
estimate (either biased or unbiased) equal to {r̂(k)} (given by equation (2.2.3) or (2.2.4); we treat
both cases simultaneously). Assume, without loss of generality, that k ≥ 0.

(a) Make use of equation (2.4.24) to show that

var{r̂(k)} = α2(k)
N −k−1∑

m=−(N −k−1)

(N − k − |m|) [r2(m)+ r(m + k)r(m − k)
]
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where

α(k) =




1

N − k
for unbiased ACS estimates

1

N
for biased ACS estimates

Hence, for large N , the standard deviation of the ACS estimate is O(1/
√

N ) under weak
conditions on the true ACS {r(k)}.

(b) For the special case that y(t) is white Gaussian noise, show that cov{r̂(k), r̂(l)} = 0 for
k �= l , and find a simple expression for var{r̂(k)}.

Exercise 2.5: Another Proof of the Equality φ̂p(ω) = φ̂c(ω)

The proof of the result (2.2.6) in the text introduces an auxiliary random sequence and treats the
original data sequence as deterministic (nonrandom). That proof relies on several results previously
derived. A more direct proof of (2.2.6) can be found using only (2.2.1), (2.2.2), and (2.2.4). Find
such a proof.

Exercise 2.6: A Compact Expression for the Sample ACS
Show that the expressions for the sample ACS given in the text (equations (2.2.3) or (2.2.4) for
k ≥ 0 and (2.2.5) for k < 0) can be rewritten by using a single formula as follows:

r̂(k) = ρ

N∑
p=1

N∑
s=1

y(p)y∗(s)δs,p−k , k = 0,±1, . . . ,±(N − 1) (2.9.7)

where ρ = 1
N for (2.2.4) and ρ = 1

N −|k | for (2.2.3).

Exercise 2.7: Yet Another Proof of the Equality φ̂p(ω) = φ̂c(ω)

Use the compact expression for the sample ACS derived in Exercise 2.6 to obtain a very simple
proof of (2.2.6).

Exercise 2.8: Linear Transformation Interpretation of the DFT
Let F be the N × N matrix whose (k , t)th element is given by W kt , where W is as defined
in (2.3.2). Then the DFT, (2.3.3), can be written as a linear transformation of the data vector
y � [y(1) . . . y(N )]T ,

Y � [Y (0) . . .Y (N − 1)]T = Fy (2.9.8)

Show that F is an orthogonal matrix that satisfies

1

N
FF ∗ = I (2.9.9)
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and, as a result, that the inverse transform is

y = 1

N
F ∗Y (2.9.10)

Deduce from these results that the DFT is nothing but a representation of the data vector y via an
orthogonal basis in Cn (the basis vectors are the columns of F ∗). Also, deduce that, if the sequence
{y(t)} is periodic with a period equal to N , then the Fourier coefficient vector, Y, determines the
whole sequence {y(t)}t=1,2,...; and that, in effect, the inverse transform (2.9.10) can be extended
to include all samples y(1), . . . , y(N ), y(N + 1), y(N + 2), . . .

Exercise 2.9: For White Noise, the Periodogram Is an Unbiased PSD Estimator
Let y(t) be a zero-mean white noise with variance σ 2 and let

Y (ωk ) = 1√
N

N −1∑
t=0

y(t)e−iωk t ; ωk = 2π

N
k (k = 0, . . . ,N − 1)

denote its (normalized) DFT evaluated at the Fourier frequencies.

(a) Derive the covariances

E
{
Y (ωk )Y

∗(ωr )
}
, k , r = 0, . . . ,N − 1

(b) Use the result of the previous calculation to conclude that the periodogram φ̂(ωk ) =
|Y (ωk )|2 is an unbiased estimator of the PSD of y(t).

(c) Explain whether the unbiasedness property holds for ω �= ωk as well. Present an intuitive
explanation for your finding.

Exercise 2.10: Shrinking the Periodogram
First, we introduce a simple general result on mean squared error (MSE) reduction by shrinking.
Let x̂ be some estimate of a true (and unknown) parameter x . Assume that x̂ is unbiased (i.e.,
E {x̂} = x ), and let σ 2

x̂ denote the MSE of x̂ :

σ 2
x̂ = E

{
(x̂ − x)2

}
(Since x̂ is unbiased, σ 2

x̂ also equals the variance of x̂ .) For a fixed (nonrandom) ρ, let

x̃ = ρx̂

be another estimate of x . The “shrinkage coefficient” ρ can be chosen so as to make the MSE
of x̃ (much) smaller than σ 2

x̂ . (Note that x̃ , for ρ �= 1, is a biased estimate of x ; hence x̃ trades
off bias for variance.) More precisely, show that the MSE of x̃ , σ 2

x̃ , achieves its minimum value
(with respect to ρ),

σ 2
x̃o

= ρo σ
2
x̂
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for

ρo = x 2

x 2 + σ 2
x̂

Next, consider the application of the previous result to the periodogram. As we explained in the
chapter, the periodogram-based spectral estimate is asymptotically unbiased and has an asymptotic
MSE equal to the squared PSD value:

E
{
φ̂p(ω)

}
→ φ(ω), E

{(
φ̂p(ω)− φ(ω)

)2
}

→ φ2(ω) as N → ∞

Show that the “optimally shrunk” periodogram estimate is

φ̃(ω) = φ̂p(ω)/2

and that the MSE of φ̃(ω) is 1/2 the MSE of φ̂p(ω).
Finally, comment on the general applicability of this extremely simple tool for MSE reduction.

Exercise 2.11: Asymptotic Maximum Likelihood Estimation of φ(ω) from φ̂p(ω)

It follows from the calculations in Section 2.4 that, asymptotically in N, φ̂p(ω) has mean φ(ω) and
variance φ2(ω). In this exercise, we assume that φ̂p(ω) is (asymptotically) Gaussian distributed
(which is not necessarily the case; however, the spectral estimator derived here under the Gaus-
sian assumption may also be used when this assumption does not hold). Hence, the asymptotic
probability density function of φ̂p(ω) is (we omit both the index p and the dependence on ω to
simplify the notation):

pφ(φ̂) = 1√
2πφ2

exp

[
− (φ̂ − φ)2

2φ2

]

Show that the maximum likelihood estimate (MLE) of φ based on φ̂, which by definition is
equal to the maximizer of pφ(φ̂) (see Appendices B and C for a short introduction of maximum
likelihood estimation), is given by

φ̃ =
√

5 − 1

2
φ̂

Compare φ̃ with the “optimally shrunk” estimate of φ derived in Exercise 2.10.

Exercise 2.12: Plotting the Spectral Estimates in dB
It has been shown in this chapter that the spectral estimate φ̂(ω), obtained via an improved
periodogram method, is asymptotically unbiased with a variance of the form µ2φ2(ω), where µ
is a constant that can be made (much) smaller than 1 by choosing the window appropriately. This
fact implies that the confidence interval φ̂(ω)± µφ(ω), constructed around the estimated PSD,
should include the true (and unknown) PSD with a large probability. Now, obtaining a confidence
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interval as just shown has a twofold drawback: First, φ(ω) is unknown; secondly, the interval
could have significantly different widths for different frequency values.

Show that plotting φ̂(ω) in decibels eliminates the previous drawbacks. More precisely, show
that, when φ̂(ω) is expressed in dB, its asymptotic variance is c2µ2 (with c = 10 log10 e) and
hence, that the confidence interval for a log-scale plot has the same width (independent of φ(ω))
for all ω.

Exercise 2.13: Finite-Sample Variance/Covariance Analysis of the Periodogram
This exercise has two aims. First, it shows that, in the Gaussian case, the variance/covariance
analysis of the periodogram can be done in an extremely simple manner (even without the assump-
tion that the data comes from a linear process, as in (2.4.26)). Secondly, the exercise asks for a
finite-sample analysis which, for some purposes, might be more useful than the asymptotic anal-
ysis presented in the text. Indeed, the asymptotic-analysis result (2.4.21) can be misleading if not
interpreted with care. For instance, (2.4.21) says that, asymptotically (for N → ∞), φ̂(ω1) and
φ̂(ω2) are uncorrelated with one another, no matter how close ω1 and ω2 are. This cannot be true
in finite samples, and so the following question naturally arises: For a given N , how close can ω1

be to ω2 such that φ̂(ω1) and φ̂(ω2) are (nearly) uncorrelated with each other? The finite-sample
analysis of this exercise can provide an answer to such questions, whereas the asymptotic analysis
cannot.

Let
a(ω) = [eiω . . . ei Nω]T

y = [y(1) . . . y(N )]T

Then the periodogram, (2.2.1), can be written as follows (omitting the subindex p of φ̂p(ω) in
this exercise):

φ̂(ω) = |a∗(ω)y |2/N (2.9.11)

Assume that {y(t)} is a zero-mean, stationary, circular Gaussian process. The “circular Gaus-
sianity” assumption (see, for example, Appendix B) allows us to write the fourth-order moments
of {y(t)} (see equation (2.4.24)) as

E
{
y(t)y∗(s)y(u)y∗(v)

} = E
{
y(t)y∗(s)

}
E
{
y(u)y∗(v)

}
+E

{
y(t)y∗(v)

}
E
{
y(u)y∗(s)

}
(2.9.12)

Make use of (2.9.11) and (2.9.12) to show that

cov{φ̂(µ), φ̂(ν)} � E
{[
φ̂(µ)− E {φ̂(µ)}

] [
φ̂(ν)− E {φ̂(ν)}

]}
= |a∗(µ)Ra(ν)|2/N 2

(2.9.13)
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where R = E {yy∗}. Deduce from (2.9.13) that

var{φ̂(µ)} = |a∗(µ)Ra(µ)|2/N 2 (2.9.14)

Use (2.9.14) to readily rederive the variance part of the asymptotic result (2.4.21). Next, use
(2.9.14) to show that the covariance between φ̂(µ) and φ̂(ν) is not significant if

|µ− ν| > 4π/N

and also that it can be significant otherwise. Hint: To show this inequality, make use of the
Carathéodory parameterization of a covariance matrix in Section 4.9.2.

Exercise 2.14: Data-Weighted ACS Estimate Interpretation of Bartlett and Welch Methods
Consider the Bartlett estimator, and assume LM = N.

(a) Show that the Bartlett spectral estimate can be written as

φ̂B (ω) =
M −1∑

k=−(M −1)

r̃(k)e−iωk

where

r̃(k) =
N∑

t=k+1

α(k , t)y(t)y∗(t − k), 0 ≤ k < M

for some α(k , t) to be derived. Note that this is nearly in the form of the Blackman–Tukey
spectral estimator, with the exception that the “standard” biased ACS estimate that is used
in the Blackman–Tukey estimator is replaced by the “generalized” ACS estimate r̃(k).

(b) Make use of the derived expression for α(k , t) to conclude that the Bartlett estimator is
inferior to the Blackman–Tukey estimator (especially for small N ) because it fails to use
all available lag products in forming ACS estimates.

(c) Find α(k , t) for the Welch method. What overlap values (K in equation (2.7.7)) give lag
product usage similar to that in the Blackman–Tukey method?

Exercise 2.15: Approximate Formula for Bandwidth Calculation
Let W (ω) denote a general spectral window that has a peak at ω = 0 and is symmetric about
that point. In addition, assume that the peak of W (ω) is narrow (as it usually should be). Under
these assumptions, make use of a Taylor series expansion to show that an approximate formula
for calculating the bandwidth B of the peak of W (ω) is the following:

B � 2
√

|W (0)/W ′′(0)| (2.9.15)
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The spectral-peak bandwidth B is defined mathematically as follows: Let ω1 and ω2 denote the
“half-power points,” defined through

W (ω1) = W (ω2) = W (0)/2, ω1 < ω2

(hence, the ratio 10 log10

(
W (0)/W (ωj )

) � 3 dB for j = 1, 2; we use 10 log10 rather than 20 log10
because the spectral window is applied to a power quantity, φ(ω)). Then, since W (ω) is symmetric,
ω2 = −ω1, and

B � ω2 − ω1 = 2ω2

As an application of (2.9.15), show that

B � 0.78 · 2π/N (in radians per sampling interval)

or, equivalently, that

B � 0.78/N (in cycles per sampling interval)

for the Bartlett window (2.4.15).
Note that this formula remains approximate even as N → ∞. Even though the half-power

bandwidth of the window gets smaller as N increases (so that one would expect the Taylor series
expansion to be more accurate), the curvature of the window at ω = 0 increases without bound
as N increases. For the Bartlett window, verify that B � 0.9 · 2π/N for N large, which differs
from the prediction in this exercise by about 16%.

Exercise 2.16: A Further Look at the Time-Bandwidth Product
We saw in Section 2.6.1 that the product between the equivalent time and frequency widths of a
regular window equals unity. Use the formula (2.9.15) derived in Exercise 2.15 to show that the
spectral-peak bandwidth B of a window w(k) that is nonzero only for |k | < N satisfies

B · N ≥ 1/π (in cycles per sampling interval) (2.9.16)

This once again illustrates the “time-bandwidth product” type of result. Note that (2.9.16) involves
the effective window time length and spectral peak width, as opposed to (2.6.5), which is concerned
with equivalent time and frequency widths.

Exercise 2.17: Bias Considerations in Blackman–Tukey Window Design
The discussion in this chapter treated the bias of a spectral estimator and its resolution as two
interrelated properties. This exercise illustrates further the strong relationship between bias and
resolution.

Consider φ̂BT (ω) as in (2.5.1), and, without loss of generality, assume that E {r̂(k)} = r(k).
(Generality is not lost because, if E {r̂(k)} = α(k)r(k), then replacing w(k) by α(k)w(k) and r̂(k)



Computer Exercises 83

by r̂(k)/α(k) results in an equivalent estimator with unbiased ACS estimates.) Find the weights
{w(k)}M −1

k=−M +1 that minimize the squared bias, as given by the error measure

ε = 1

2π

∫ π

−π

[
φ(ω)− E {φ̂BT (ω)}

]2
dω (2.9.17)

In particular, show that the weight function that minimizes ε is the rectangular window. Recall
that the rectangular window also has the narrowest main lobe and, hence, the best resolution.

Exercise 2.18: A Property of the Bartlett Window
Let the window length, M , be given. Then, in the general case, the rectangular window can
be expected to yield the windowed spectral estimate with the most favorable bias properties,
because the sample covariance lags {r̂(k)}M −1

k=−(M −1), appearing in (2.5.1), are left unchanged by
this window (as in Exercise 2.17). The rectangular window, however, has the drawback that it is
not positive definite and hence could produce negative spectral estimates. The Bartlett window,
on the other hand, is positive definite and therefore yields a spectral estimate that is positive for
all frequencies. Show that the latter window is the positive definite window that is closest to the
rectangular one, in the sense of minimizing the following criterion:

min
{w(k)}

M −1∑
k=0

|1 − w(k)| subject to:

1) w(k) ≡ 0 for |k | ≥ M
2) {w(k)}∞k=−∞ is a positive definite sequence
3) w(0) = 1

(2.9.18)

Conclude that the Bartlett window is the positive definite window that distorts the sample covari-
ances {r̂(k)}M −1

k=−(M −1) least in the windowed spectral estimate formula. Hint: Any positive definite

real window {w(k)}M −1
k=−(M −1) can be written as

w(k) =
M −1∑
i=0

bi bi+k (bi = 0 for i ≥ M ) (2.9.19)

for some real-valued parameters {bi }M −1
i=0 . Make use of the preceding parameterization of the set of

positive definite windows to transform (2.9.18) into an optimization problem without constraints.

COMPUTER EXERCISES

Tools for Periodogram Spectral Estimation:
The text website www.prenhall.com/stoica contains the following MATLAB functions for
use in computing periodogram-based spectral estimates. In each case, y is the input data vector, L
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controls the frequency-sample spacing of the output, and the output vector is phi= φ(ωk ), where
ωk = 2πk

L . MATLAB functions that generate the Correlogram, Blackman–Tukey, Windowed Peri-
odogram, Bartlett, Welch, and Daniell spectral estimates are as follows:

• phi = correlogramse(y,L)
Implements the correlogram spectral estimate in equation (2.2.2).

• phi = btse(y,w,L)
Implements the Blackman–Tukey spectral estimate in equation (2.5.1); w is the vector
[w(0), . . . ,w(M − 1)]T .

• phi = periodogramse(y,v,L)
Implements the windowed periodogram spectral estimate in equation (2.6.24); v is a vector
of window function elements [v(1), . . . , v(N )]T and should be the same size as y. If v is a
vector of ones, this function implements the unwindowed periodogram spectral estimate in
equation (2.2.1).

• phi = bartlettse(y,M,L)
Implements the Bartlett spectral estimate in equations (2.7.2) and (2.7.3); M is the size of
each subsequence, as in equation (2.7.2).

• phi = welchse(y,v,K,L)
Implements the Welch spectral estimate in equation (2.7.8); M is the size of each subsequence,
v is the window function [v(1), . . . , v(M )]T applied to each subsequence, and K is the
overlap parameter, as in equation (2.7.7).

• phi = daniellse(y,J,Ntilde)
Implements the Daniell spectral estimate in equation (2.7.16); J and Ntilde correspond to
J and Ñ there.

Exercise C2.19: Zero-Padding Effects on Periodogram Estimators
In this exercise, we study the effect that zero padding has on the periodogram.

Consider the sequence

y(t) = 10 sin(0.2 · 2π t + φ1)+ 5 sin((0.2 + 1/N )2π t + φ2)+ e(t), (2.9.20)

where t = 0, . . . ,N − 1, and e(t) is white Gaussian noise with variance 1. Let N = 64 and
φ1 = φ2 = 0.

From the results in Chapter 4, we find the spectrum of y(t) to be

φ(ω) = 50π [δ(ω − 0.2 · 2π)+ δ(ω + 0.2 · 2π)]

+12.5π
[
δ(ω − (0.2 + 1/N ) · 2π)+ δ(ω + (0.2 + 1/N ) · 2π)

]+ 1

Plot the periodogram for the sequence {y(t)} and for the sequence {y(t)} zero padded with
N, 3N, 5N, and 7N zeroes.

Explain the difference between the five periodograms. Why does the first periodogram not
give a good description of the spectral content of the signal? Note that zero padding does not
change the resolution of the estimator.
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Exercise C2.20: Resolution and Leakage Properties of the Periodogram
We have seen from Section 2.4 that the expected value of the periodogram is the convolution
of the true spectrum φy(ω) with the Fourier transform of a Bartlett window, denoted WB (ω).
(See equation (2.4.15).) The shape and size of the WB (ω) function determines the amount of
smearing and leakage in the periodogram. Similarly, in Section 2.5, we introduced a windowed
periodogram in (2.6.24) whose expected value is equal to the expected value of a corresponding
Blackman–Tukey estimate with weights w(k) given by (2.6.31). Window functions different from
the rectangular window could be used in the periodogram estimate, giving rise to correspondingly
different windows in the correlogram estimate. The choice of window affects the resolution and
leakage properties of the periodogram (correlogram) spectral estimate.

Resolution Properties: The amount of smearing of the spectral estimate is determined by the
width of the main lobe, and the amount of leakage is determined by the energy in the sidelobes.
The amount of smearing is what limits the resolving power of the periodogram; it is studied
empirically next.

We first study the resolution properties by considering a sequence made up of two sinusoids
in noise, where the two sinusoidal frequencies are “close”. Consider

y(t) = a1 sin(f0 · 2π t + φ1)+ a2 sin((f0 + α/N )2π t + φ2)+ e(t), (2.9.21)

where e(t) is real-valued Gaussian white noise having mean zero and variance σ 2. We choose
f0 = 0.2 and N = 256, but the results are nearly independent of f0 and N.

(a) Find empirically the 3 dB width of the main lobe of WB (ω) as a function of N, and verify
equation (2.4.18). Also, compute the peak sidelobe height (in dB) as a function of N. Note
that the sidelobe level of a window function generally is independent of N. Verify this by
examining plots of the magnitude of WB (ω) for several values of N ; try both linear and
dB scales in your plots.

(b) Set σ 2 = 0 (to eliminate the statistical variation in the periodogram, so that the bias proper-
ties can be isolated and studied). Set a1 = a2 = 1 and φ1 = φ2 = 0. Plot the (zero-padded)
periodogram of y(t) for various α and determine the resolution threshold (i.e., the minimum
value of α for which the two frequency components can be resolved). How does this value
of α compare with the predicted resolution in Section 2.4?

(c) Repeat part (b) for a Hamming-windowed correlogram estimate.
(d) For reasonably high signal-to-noise ratio (SNR) values and reasonably close signal ampli-

tudes, the resolution thresholds in parts (b) and (c) are not very sensitive to variations
in the signal amplitudes and frequency f0. However, these thresholds are sensitive to the
phases φ1 and φ2, especially if α is smaller than 1. Try two pairs (φ1, φ2) such that the
two sinusoids are in phase and out of phase, respectively, at the center of the observation
interval, and compare the resolution thresholds. Also, try different values of a1, a2, and
σ 2 to verify that their values have relatively little effect on the resolution threshold.

Spectral Leakage: In this part, we analyze the effects of leakage on the periodogram estimate.
Leakage properties can be seen clearly when one is trying to estimate two sinusoidal terms that
are well separated, but have greatly differing amplitudes.
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(a) Generate the sinusoidal sequence for α = 4, σ 2 = 0, and φ1 = φ2 = 0. Set a1 = 1, and
vary a2. (Choose a2 = 1, 0.1, 0.01, and 0.001, for example.) Compute the periodogram
(using a rectangular data window), and comment on the ability to identify the second
sinusoidal term from the spectral estimate.

(b) Repeat part (a) for α = 12. Does the amplitude threshold for identifiability of the second
sinusoidal term change?

(c) Explain your results in parts (a) and (b) by looking at the amplitude of the Bartlett window’s
Fourier transform at frequencies corresponding to α/N for α = 4 and α = 12.

(d) The Bartlett window has the property (as do many other windows) that the leakage level
depends on the distance between spectral components in the data, as seen in parts (a) and
(b). For many practical applications, it could be known what dynamic range the sinusoidal
components in the data may have, and it is thus desirable to use a data window with a
constant sidelobe level that can be chosen by the user. The Chebyshev window is a good
choice for these applications, because the user can select the (constant) sidelobe level in
the window design. (See the MATLAB command chebwin.)

Assume we know that the maximum dynamic range of sinusoidal components is
60 dB. Design a Chebyshev window v(t) and corresponding Blackman–Tukey window
w(k), using (2.6.31), so that the two sinusoidal components of the data can be resolved for
this dynamic range by using (i) the Blackman–Tukey spectral estimator with window w(k),
and (ii) the windowed periodogram method with window v(t). Plot the Fourier transform
of the window and determine the spectral resolution of the window.

Test your window design by computing the Blackman–Tukey and windowed peri-
odogram estimates for two sinusoids whose amplitudes differ by 50 dB in dynamic range
and whose frequency separation is the minimum value you predicted. Compare the reso-
lution results with your predictions. Explain why the smaller-amplitude sinusoid can be
detected by using one of the methods but not the other.

Exercise C2.21: Bias and Variance Properties of the Periodogram Spectral Estimate
In this exercise, we verify the theoretical predictions about bias and variance properties of the
periodogram spectral estimate. We use autoregressive moving average (ARMA) signals (see
Chapter 3) as test signals.

Bias Properties—Resolution and Leakage: We consider a random process

y(t) = H (z )e(t)

generated by filtering white noise, where e(t) is zero-mean Gaussian white noise with variance
σ 2 = 1 and the filter H (z ) is given by

H (z ) =
2∑

k=1

Ak

[
1 − zk z −1

1 − pk z −1
+ 1 − z ∗

k z −1

1 − p∗
k z −1

]
(2.9.22)

with
p1 = 0.99ei2π0.3 p2 = 0.99ei2π(0.3+α)
z1 = 0.95ei2π0.3 z2 = 0.95ei2π(0.3+α) (2.9.23)
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We first let A1 = A2 = 1 and α = 0.05.

(a) Plot the true spectrum φ(ω). Using a sufficiently fine grid for ω so that approximation
errors are small, plot the ACS, using an inverse FFT of φ(ω).

(b) For N = 64, plot the Fourier transform of the Bartlett window, and also plot the expected
value of the periodogram estimate φ̂p(ω), as given by equation (2.4.8). We see that, for
this example and data length, the main lobe width of the Bartlett window is wider than the
distance between the spectral peaks in φ(ω). Discuss how this relatively wide main lobe
width affects the resolution properties of the estimator.

(c) Generate 50 realizations of y(t), each of length N = 64 data points. You can generate
the data by passing white noise through the filter H (z ) (see the MATLAB commands
dimpulse and filter); be sure to discard a sufficient number of initial filter output
points to effectively remove the transient part of the filter output. Compute the periodogram
spectral estimates for each data sequence; plot 10 spectral estimates overlaid on a single
plot. Also, plot the average of the 50 spectral estimates. Compare the average with the
predicted expected value found in part (b).

(d) The resolution of the spectral peaks in φ(ω) will depend on their separation relative to the
width of the Bartlett-window main lobe. Generate realizations of y(t) for N = 256, and
find the minimum value of α such that the spectral peaks can be resolved in the averaged
spectral estimate. Compare your results with the predicted formula (2.4.18) for spectral
resolution.

(e) Leakage from the Bartlett window will affect the ability to identify peaks of different
amplitudes. To illustrate this, generate realizations of y(t) for N = 64, for both α = 4/N
and α = 12/N. For each value of α, set A1 = 1, and vary A2 to find the minimum amplitude
for which the lower-amplitude peak can reliably be identified from the averaged spectral
estimate. Compare this value with the Bartlett window sidelobe level for ω = 2πα and
for the two values of α. Does the window sidelobe level accurately reflect the amplitude
separation required to identify the second peak?

Variance Properties: In this part, we will verify that the variance of the periodogram is almost
independent of the data length and will compare the empirical variance with theoretical predictions.
For this part, we consider a broadband signal y(t) for which the Bartlett window smearing and
leakage effects are small.

Consider the broadband ARMA process

y(t) = B1(z )

A1(z )
e(t)

with

A1(z ) = 1 − 1.3817z −1 + 1.5632z−2 − 0.8843z −3 + 0.4096z−4

B1(z ) = 1 + 0.3544z −1 + 0.3508z−2 + 0.1736z −3 + 0.2401z−4

(a) Plot the true spectrum φ(ω).
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(b) Generate 50 Monte Carlo data realizations, using different noise sequences, and compute
the corresponding 50 periodogram spectral estimates. Plot the sample mean, the sample
mean plus one sample standard deviation, and sample mean minus one sample standard
deviation spectral estimate curves. Do this for N = 64, 256, and 1024. Note that the
variance does not decrease with N.

(c) Compare the sample variance with the variance predicted in equation (2.4.21). It may
help to plot stdev{φ̂(ω)}/φ(ω) and determine to what degree this curve is approximately
constant. Discuss your results.

Exercise C2.22: Refined Methods: Variance–Resolution Tradeoff
In this exercise, we apply the Blackman–Tukey and Welch estimators to both a narrowband and
a broadband random process. We consider the same processes in Chapters 3 and 5, to facilitate
comparison with the spectral estimation methods developed in those chapters.

Broadband ARMA Process: Generate realizations of the broadband autoregressive moving-
average (ARMA) process

y(t) = B1(z )

A1(z )
e(t)

with
A1(z ) = 1 − 1.3817z −1 + 1.5632z−2 − 0.8843z −3 + 0.4096z−4

B1(z ) = 1 + 0.3544z −1 + 0.3508z−2 + 0.1736z −3 + 0.2401z−4

Choose the number of samples as N = 256.

(a) Generate 50 Monte Carlo data realizations, using different noise sequences, and compute
the corresponding 50 spectral estimates by using the following methods:
• The Blackman–Tukey spectral estimate using the Bartlett window wB (t). Try both M =

N/4 and M = N/16.
• The Welch spectral estimate using the rectangular window wR(t), and using both M =

N/4 and M = N/16 and overlap parameter K = M/2.
Plot the sample mean, the sample mean plus one sample standard deviation, and

sample mean minus one sample standard deviation spectral estimate curves. Compare with
the periodogram results from Exercise C2.21 and with each other.

(b) Judging from the plots you have obtained, how has the variance decreased in the refined
estimates? How does this variance decrease as compared with the theoretical expectations?

(c) As discussed in the text, the value of M should be chosen to compromise between low
“smearing” and low variance. For the Blackman–Tukey estimate, experiment with different
values of M and different window functions to find a “best design” (in your judgment),
and plot the corresponding spectral estimates.

Narrowband ARMA Process: Generate realizations of the narrowband ARMA process

y(t) = B2(z )

A2(z )
e(t)
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with
A2(z ) = 1 − 1.6408z −1 + 2.2044z−2 − 1.4808z −3 + 0.8145z−4

B2(z ) = 1 + 1.5857z −1 + 0.9604z−2

and N = 256.
Repeat the experiments and comparisons in the broadband example for the narrowband

process.

Exercise C2.23: Periodogram-Based Estimators Applied to Measured Data
Consider the data sets in the files sunspotdata.mat and lynxdata.mat. These files can
be obtained from the text website www.prenhall.com/stoica. Apply periodogram-based
estimation techniques (possibly after some preprocessing as in part (b)) to estimate the spectral
content of these data. Try to answer the following questions:

(a) Are there sinusoidal components (or periodic structure) in the data? If so, how many
components, and at what frequencies?

(b) Nonlinear transformations and linear or polynomial trend removal are often applied before
spectral analysis of a time series. For the lynx data, compare your spectral analysis results
from the original data with those from the data transformed first by taking the logarithm
of each sample and then by subtracting the sample mean of this logarithmic data. Does
the logarithmic transformation make the data more sinusoidal in nature?


