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Spatial Methods

6.1 INTRODUCTION

In this chapter, we consider the problem of locating n radiating sources by using an array of
m passive sensors, as shown in Figure 6.1. The emitted energy from the sources could be,
for example, acoustic or electromagnetic, and the receiving sensors could be any transducers
that convert the received energy to electrical signals. Examples of sensors include electromag-
netic antennas, hydrophones, and seismometers. This type of problem finds applications in radar
and sonar systems, communications, astrophysics, biomedical research, seismology, underwater
surveillance (also called passive listening), and many other fields. This problem basically consists
of determining how the “energy” is distributed over space (which can be air, water, or the earth),
with the source positions representing points in space with high concentrations of energy. Hence,
it can be named a spatial spectral estimation problem. This name is also motivated by the fact
that there are close ties between the source-location problem and the problem of temporal spectral
estimation, treated in Chapters 1–5. In fact, as we will see, almost any of the methods encountered
in the previous chapters may be used to derive a solution for the source-location problem.

The emphasis in this chapter will be on developing a model for the output signal of the
receiving sensor array. Once this model has been derived, the source-location problem is turned
into a parameter-estimation problem that is quite similar to the temporal frequency-finding applica-
tion discussed in Chapter 4. Hence, as we shall see, most of the methods developed for frequency
estimation can be used to solve the spatial problem of source location.

The sources in Figure 6.1 generate a wave field that travels through space and is sampled,
in both space and time, by the sensor array. By making an analogy with temporal sampling, we
may expect that the spatial sampling done by the array provides more and more information on
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Figure 6.1 The set-up of the source-location problem.

the incoming waves as the array’s aperture increases. The array’s aperture is the space occupied
by the array, as measured in units of signal wavelength. It is then no surprise that an array of
sensors can provide significantly enhanced location performance as compared to the use of a single
antenna (which was the system used in the early applications of the source-location problem.)

The development of the array model in the next section is based on a number of simplifying
assumptions. Some of these assumptions, which have a more general character, are listed below.
The sources are assumed to be situated in the far field of the array. Furthermore, we assume
that both the sources and the sensors in the array are in the same plane and that the sources are
point emitters. In addition, it is assumed that the propagation medium is homogeneous (i.e., not
dispersive), and so the waves arriving at the array can be considered to be planar. Under these
assumptions, the only parameter that characterizes the source locations is the so-called angle of
arrival, or direction of arrival (DOA); the DOA will be formally defined later on.

The above assumptions may be relaxed, but only at the expense of significantly complicating
the array model. Note that, in the general case of a near-field source and a three-dimensional array,
three parameters are required to define the position of one source—for instance the azimuth,
elevation, and range. Nevertheless, if the assumption of planar waves is maintained, then we
can treat the case of several unknown parameters per source without complicating the model too
much. However, in order to keep the discussion as simple as possible, we will consider only the
case of one parameter per source.

In this chapter, it is also assumed that the number of sources n is known. The selection of n ,
when it is unknown, is a problem of significant importance for many applications, which is often
referred to as the detection problem. For solutions to the detection problem (which is analogous to
the problem of order selection in signal modeling), the reader is referred to [Wax and Kailath
1985; Fuchs 1988; Viberg, Ottersten, and Kailath 1991; Fuchs 1992] and Appendix C.

Finally, it is assumed that the sensors in the array can be modeled as linear (time-invariant)
systems, and that both their transfer characteristics and their locations are known. In short, we
say that the array is assumed to be calibrated.
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6.2 ARRAY MODEL

We begin by considering the case of a single source. Once we establish a model of the array for
this case, the general model for the multiple-source case is simply obtained by the superposition
principle.

Suppose that a single waveform impinges upon the array, and let x(t) denote the value of the
signal waveform as measured at some reference point, at time t . The “reference point” may be one
of the sensors in the array or any other point placed near enough to the array so that the previously
made assumption of planar wave propagation holds true. The physical signals received by the array
are continuous time waveforms ; hence, t is a continuous variable here, unless otherwise stated.

Let τk denote the time needed for the wave to travel from the reference point to sensor k
(k = 1, . . . , m). Then the output of sensor k can be written as

ȳk (t) = h̄k (t) ∗ x(t − τk ) + ēk (t) (6.2.1)

where h̄k (t) is the impulse response of the k th sensor, “∗” denotes the convolution operation,
and ēk (t) is an additive noise. The noise may enter in equation (6.2.1) either as “thermal noise”
generated by the sensor’s circuitry, as “random background radiation” impinging on the array, or in
other ways. In (6.2.1), h̄k (t) is assumed known, but both the “input” signal x(t) and the delay τk are
unknown. The parameters characterizing the source location enter into (6.2.1) through {τk }. Hence,
the source-location problem is basically one of time-delay estimation for the unknown input case.

The model equation (6.2.1) can be simplified significantly if the signals are assumed to be
narrowband. In order to show how this can be done, a number of preliminaries are required.

Let X (ω) denote the Fourier transform of the (continuous-time) signal x(t):

X (ω) =
∫ ∞

−∞
x(t)e−iωt dt (6.2.2)

(which is assumed to exist and be finite for all ω ∈ (−∞, ∞)). The inverse transform, which
expresses x(t) as a linear functional of X (ω), is given by

x(t) = 1

2π

∫ ∞

−∞
X (ω)eiωt dω (6.2.3)

Similarly, we define the transfer function H̄k (ω) of the k th sensor as the Fourier transform of
h̄k (t). In addition, let Ȳk (ω) and Ēk (ω) denote the Fourier transforms of the signal ȳk (t) and noise
ēk (t) in (6.2.1). By using this notation and the properties of the Fourier transform, Ȳk (ω) can be
written as

Ȳk (ω) = H̄k (ω)X (ω)e−iωτk + Ēk (ω) (6.2.4)

For a general class of physical signals, such as the carrier-modulated signals encountered in
communications, the energy spectral density of x(t) has the form shown in Figure 6.2. There,
ωc denotes the center (or carrier) frequency, which is usually the center of the frequency band
occupied by the signal (hence its name). A signal having an energy spectrum of the form depicted
in Figure 6.2 is called a bandpass signal (by direct analogy with the notion of bandpass filters).
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Figure 6.2 The energy spectrum of a bandpass signal.
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Figure 6.3 The baseband spectrum that gives rise to the bandpass spectrum in Figure 6.2.

For now, we assume that the received signal x(t) is bandpass. It is clear from Figure 6.2 that
the spectrum of such a signal is completely defined by the spectrum of a corresponding base-
band (or lowpass) signal. The baseband spectrum—say, |S (ω)|2 —corresponding to the one in
Figure 6.2, is displayed in Figure 6.3. Let s(t) denote the baseband signal associated with x(t).
The process of obtaining x(t) from s(t) is called modulation; the inverse process is called demod-
ulation. In what follows, we make a number of comments on the modulation and demodulation
processes, which—while not being strictly relevant to the source-location problem—could be
helpful in clarifying some claims in the text.

6.2.1 The Modulation-Transmission-Demodulation Process

The physical signal x(t) is real valued; hence, its spectrum |X (ω)|2 should be even (i.e., symmetric
about ω = 0; see, for instance, Figure 6.2). On the other hand, the spectrum of the demodulated
signal s(t) might not be even (as indicated in Figure 6.3); hence, s(t) might be complex valued.
The way in which this can happen is explained as follows. The transmitted signal is, of course,
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obtained by modulating a real-valued signal. Hence, in the spectrum of the transmitted signal, the
baseband spectrum is symmetric about ω = ωc . The characteristics of the transmission channel
(or the propagation medium), however, most often are asymmetric about ω = ωc . This results
in a received bandpass signal with an associated baseband spectrum that is not even. Hence,
the demodulated received signal is complex-valued. This observation supports a claim made in
Chapter 1 that complex-valued signals are not uncommon in spectral estimation problems.

The Modulation Process. If s(t) is multiplied by eiωc t , then the Fourier transform of s(t) is
translated in frequency to the right by ωc (assumed to be positive), as is verified by∫ ∞

−∞
s(t)eiωc t e−iωt dω =

∫ ∞

−∞
s(t)e−i (ω−ωc )t dω = S (ω − ωc) (6.2.5)

This formula describes the essence of the so-called complex modulation process. (An analogous
formula for random discrete-time signals is given by equation (1.4.11) in Chapter 1.) The output
of the complex modulation process is always complex valued (hence the name of this form of
modulation). If the modulated signal is real valued, as x(t) is, then it must have an even spectrum.
In such a case, the translation of S (ω) to the right by ωc , as in (6.2.5), must be accompanied by
a translation to the left (also by ωc) of the folded and complex-conjugated baseband spectrum.
This process results in the following expression for X (ω):

X (ω) = S (ω − ωc) + S ∗(−(ω + ωc) ) (6.2.6)

It is readily verified that, in the time domain, the real modulation process leading to (6.2.6)
corresponds to taking the real part of the complex-modulated signal s(t)eiωc t ; that is,

x(t) = 1

2π

∫ ∞

−∞
[S (ω − ωc) + S ∗(−ω − ωc)]e

iωt dω

= 1

2π

∫ ∞

−∞
S (ω − ωc)e

i (ω−ωc )t eiωc t dω

+
[

1

2π

∫ ∞

−∞
S (−ω − ωc)e

−i (ω+ωc )t eiωc t dω

]∗

= s(t)eiωc t + [s(t)eiωc t ]∗

which gives

x(t) = 2Re[s(t)eiωc t ] (6.2.7)

or

x(t) = 2α(t) cos(ωc t + ϕ(t)) (6.2.8)
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where α(t) and ϕ(t) are the amplitude and phase of s(t), respectively:

s(t) = α(t)eiϕ(t)

If we let sI (t) and sQ (t) denote the real and imaginary parts of s(t), then we can also write
(6.2.7) as

x(t) = 2[sI (t) cos(ωc t) − sQ (t) sin(ωct)] (6.2.9)

We note in passing the following terminology associated with the equivalent time-domain repre-
sentations (6.2.7)–(6.2.9) of a bandpass signal: s(t) is called the complex envelope of x(t), and
sI (t) and sQ (t) are said to be the in-phase and quadrature components of x(t).

The Demodulation Process. A calculation similar to (6.2.5) shows that the Fourier transform
of x(t)e−iωc t is given by

[S (ω) + S ∗(−ω − 2ωc)]

which is simply X (ω) translated in frequency to the left by ωc . The baseband (or lowpass)
signal s(t) can then be obtained by filtering x(t)e−iωc t with a baseband (or lowpass) filter whose
bandwidth is matched to that of S (ω). The hardware implementation of the demodulation process
in block diagram form is presented in Figure 6.4.

6.2.2 Derivation of the Model Equation

Given the background of the previous subsection, we return to equation (6.2.4) describing the
output of sensor k . Since x(t) is assumed to be a bandpass signal, X (ω) is given by (6.2.6) which,
when inserted in (6.2.4), leads to

Ȳk (ω) = H̄k (ω)[S (ω − ωc) + S ∗(−ω − ωc)]e
−iωτk + Ēk (ω) (6.2.10)

External
noise

Internal
noise
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CONVERSIONDEMODULATION

Lowpass
filter
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and
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�sin(vct) Im[yk(t)]Im[yk(t)]˜
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A/D
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Figure 6.4 A simplified block diagram of the analog processing in a receiving-array element.
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Let ỹk (t) denote the demodulated signal:

ỹk (t) = ȳk (t)e
−iωc t

It follows from (6.2.10) and the previous discussion on the demodulation process that the Fourier
transform of ỹk (t) is given by

Ỹk (ω) = H̄k (ω + ωc)[S (ω) + S ∗(−ω − 2ωc)]e
−i (ω+ωc )τk

+ Ēk (ω + ωc) (6.2.11)

When ỹk (t) is passed through a lowpass filter with bandwidth matched to S (ω), in the filter output
(say, yk (t)) the component in (6.2.11) centered at ω = −2ωc is eliminated along with all the other
frequency components that fall in the stopband of the lowpass filter. Hence, we obtain

Yk (ω) = Hk (ω + ωc)S (ω)e−i (ω+ωc )τk + Ek (ω + ωc) (6.2.12)

where Hk (ω + ωc) and Ek (ω + ωc) denote the parts of H̄k (ω + ωc) and Ēk (ω + ωc) that fall
within the lowpass filter’s passband, 
, and where the frequency ω is restricted to 
.

We now make the following key assumption:

The received signals are narrowband, so that |S (ω)| decreases rapidly with
increasing |ω|. (6.2.13)

Under this assumption, (6.2.12) reduces (in an approximate way) to the following equation:

Yk (ω) = Hk (ωc)S (ω)e−iωcτk + Ek (ω + ωc) for ω ∈ 
 (6.2.14)

Because Hk (ωc) must be different from zero, the sensor transfer function H̄k (ω) should pass
frequencies near ω = ωc (as expected, since ωc is the center frequency of the received signal).
Also, note that we do not replace Ek (ω + ωc) in (6.2.14) by Ek (ωc), as this term might not be
(nearly) constant over the signal bandwidth. (For instance, this would be the case when the noise
term in (6.2.12) contains a narrowband interference with the same center frequency as the signal.)

Remark: It is sometimes claimed that (6.2.12) can be reduced to (6.2.14) even if the signals are
broadband, but the sensors in the array are narrowband with center frequency ω = ωc . Under
such an assumption, |Hk (ω + ωc)| goes quickly to zero as |ω| increases; hence, (6.2.12) becomes

Yk (ω) = Hk (ω + ωc)S (0)e−iωcτk + Ek (ω + ωc) (6.2.15)

which apparently is different from (6.2.14). In order to obtain (6.2.14) from (6.2.12) under the
previous conditions, we need to make some additional assumptions. Hence, if we further assume
that the sensor frequency response is flat over the passband (so that Hk (ω + ωc) = Hk (ωc)) and
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that the signal spectrum varies over the sensor passband (so that S (ω) differs quite a bit from
S (0) over the passband in question), then we can still obtain (6.2.14) from (6.2.12). �

The model of the array is derived in a straightforward manner from equation (6.2.14). The
time-domain counterpart of (6.2.14) is the following:

yk (t) = Hk (ωc)e
−iωcτk s(t) + ek (t) (6.2.16)

where yk (t) and ek (t) are the inverse Fourier transforms of the corresponding terms in (6.2.14).
(By a slight abuse of notation, ek (t) is associated with Ek (ω + ωc), not Ek (ω).)

The hardware implementation required to obtain {yk (t)}, as defined above, is indicated in
Figure 6.4. Note that the scheme in Figure 6.4 generates samples of the real and imaginary
components of yk (t). These samples are paired in the digital machine following the analog scheme
of Figure 6.4 to obtain samples of the complex-valued signal yk (t). (We stress once more that
all physical analog signals are real valued.) Note that the continuous-time signal in (6.2.16) is
bandlimited: According to (6.2.14) (and the related discussion), Yk (ω) is approximately equal to
zero for ω �∈ 
. Here 
 is the support of S (ω) (recall that the filter bandwidth is matched to the
signal bandwidth); hence, it is a narrow interval. Consequently, we can sample (6.2.16) with a
rather low sampling frequency.

The sampled version of {yk (t)} is used by the “digital processing equipment” for the purpose
of DOA estimation. Of course, the digital form of {yk (t)} satisfies an equation directly analogous
to (6.2.16). In fact, to avoid a complication of notation by the introduction of a new discrete-time
variable, from here on we consider that t in equation (6.2.16) takes discrete values:

t = 1, 2, . . . , N (6.2.17)

(As usual, we choose the sampling period as the unit of the time axis.) In Figure 6.4 we sample
the baseband signal, which may be done by using sampling rates lower than those needed for the
bandpass signal. (See also [Proakis, Rader, Ling, and Nikias 1992].)

Next, we introduce the so-called array transfer vector (or direction vector):

a(θ) = [H1(ωc)e
−iωcτ1 . . . Hm(ωc)e

−iωcτm
]T (6.2.18)

Here, θ denotes the source’s direction of arrival , which is the parameter of interest in our problem.
Note that, since the transfer characteristics and positions of the sensors in the array are assumed
to be known, the vector in (6.2.18) is a function of θ only, as indicated by notation (this fact will
be illustrated shortly by means of a particular form of array). By making use of (6.2.18), we can
write equation (6.2.16) as

y(t) = a(θ)s(t) + e(t) (6.2.19)

where

y(t) = [y1(t) . . . ym(t)]T

e(t) = [e1(t) . . . em(t)]T
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denote the array’s output vector and the additive noise vector, respectively. It should be noted
that θ enters in (6.2.18) not only through {τk } but also through {Hk (ωc)}. In some cases, the
sensors may be considered to be omnidirectional over the DOA range of interest, and then the
{Hk (ωc)}m

k=1 are independent of θ . Sometimes, the sensors may also be assumed to be identical.
Then, by redefining the signal (H (ωc)s(t) is redefined as s(t)) and selecting the first sensor as
the reference point, the expression (6.2.18) can be simplified to the following form:

a(θ) = [1 e−iωcτ2 . . . e−iωcτm ]T (6.2.20)

The extension of equation (6.2.19) to the case of multiple sources is straightforward. Since the
sensors in the array were assumed to be linear elements, a direct application of the superposition
principle leads to the following model of the array:

y(t) = [a(θ1) . . . a(θn)]




s1(t)
...

sn(t)


+ e(t) � As(t) + e(t)

θk = the DOA of the k th source

sk (t) = the signal corresponding to the k th source

(6.2.21)

It is interesting to note that the previous model equation mainly relies on the narrowband
assumption (6.2.13). The planar wave assumption made in the introductory part of this chapter
has not been used so far. This assumption is to be used when deriving the explicit dependence of
{τk } as a function of θ , as is illustrated next for an array with a special geometry.

Uniform Linear Array. Consider the array of m identical sensors uniformly spaced on a line,
depicted in Figure 6.5. Such an array is commonly referred to as a uniform linear array (ULA).
Let d denote the distance between two consecutive sensors, and let θ denote the DOA of the
signal illuminating the array, as measured (counterclockwise) with respect to the normal to the
line of sensors. Then, under the planar wave hypothesis and the assumption that the first sensor
in the array is chosen as the reference point, we find that

τk = (k − 1)
d sin θ

c
for θ ∈ [−90◦, 90◦] (6.2.22)

where c is the propagation velocity of the impinging waveform (for example, the speed of light,
in the case of electromagnetic waves). Inserting (6.2.22) into (6.2.20) gives

a(θ) = [1, e−iωc d sin θ/c, . . . , e−i (m−1)ωc d sin θ/c]T (6.2.23)

The restriction of θ to lie in the interval [−90◦, 90◦] is a limitation of ULAs: two sources at
locations symmetric with respect to the array line yield identical sets of delays {τk } and hence
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Figure 6.5 The uniform linear array scenario.

cannot be distinguished from one another. In practice, this ambiguity of ULAs is eliminated by
using sensors that pass only signals whose DOAs are in [−90◦, 90◦].

Let λ denote the signal wavelength (which is the distance traveled by the waveform in one
period of the carrier):

λ = c/fc, fc = ωc/2π (6.2.24)

Define

fs = fc
d sin θ

c
= d sin θ

λ
(6.2.25)

and

ωs = 2π fs = ωc
d sin θ

c
(6.2.26)

With this notation, the transfer vector (6.2.23) can be rewritten as

a(θ) = [1 e−iωs . . . e−i (m−1)ωs
]T (6.2.27)

This is a Vandermonde vector that is completely analogous to the vector made from the uniform
samples of the sinusoidal signal {e−iωs t }. Let us explore this analogy a bit further.

First, by the previous analogy, ωs is called the spatial frequency.
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Second, if we were to sample a continuous-time sinusoidal signal with frequency ωc , then, in
order to avoid aliasing effects, the sampling frequency f0 should satisfy (by the Nyquist sampling
theorem)

f0 > 2fc (6.2.28)

or, equivalently,

T0 <
Tc

2
(6.2.29)

where T0 is the sampling period and Tc is the period of the continuous-time sinusoidal signal.
Now, in the ULA case considered in this example, we see from (6.2.27) that the vector a(θ) is
uniquely defined (i.e., there is no “spatial aliasing”) if and only if ωs is constrained as follows:

|ωs | < π (6.2.30)

However, (6.2.30) is equivalent to

|fs | <
1

2
⇐⇒ d | sin θ | <

λ

2
(6.2.31)

Note that this condition on d depends on θ . In particular, for a broadside source (i.e., a source
with θ = 0◦), (6.2.31) imposes no constraint on d . However, in general, we have no knowledge
about the DOA of the source signal. Consequently, we would like (6.2.31) to hold for any θ ,
which leads to the following condition on d :

d <
λ

2
(6.2.32)

We may think of the ULA as performing a uniform spatial sampling of the wavefield, so equation
(6.2.32) simply says that the (spatial) sampling period d should be smaller than half of the signal
wavelength. By analogy with (6.2.29), this result may be interpreted as a spatial Nyquist sampling
theorem.

Equipped with the array model (6.2.21) derived previously, we can reduce the problem of
DOA finding to that of estimating the parameters {θk } in (6.2.21). As there is a direct analogy
between (6.2.21) and the model (4.2.6) for sinusoidal signals in noise, we may expect that most
of the methods developed in Chapter 4 for (temporal) frequency estimation can also be used for
DOA estimation. This is shown to be the case in the next sections, which briefly review the most
important DOA finding methods.

6.3 NONPARAMETRIC METHODS

The methods to be described in this section do not make any assumption about the covariance
structure of the data. As such, they may be considered to be “nonparametric.” On the other hand,
they assume that the functional form of the array’s transfer vector a(θ) is known. Can we then
still categorize them as “nonparametric methods”? The array performs a spatial sampling of the
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Figure 6.6 Analogy between temporal sampling and filtering and the corresponding spatial
operations performed by an array of sensors.

incoming wavefront, which is analogous to the temporal sampling done by the tapped-delay line
implementation of a (temporal) finite impulse response (FIR) filter; see Figure 6.6. Thus, assuming
that the form of a(θ) is available is no more restrictive than making the same assumption for
a(ω) in Figure 6.6(a). In conclusion, the functional form of a(θ) characterizes the array as a
spatial sampling device and, assuming it is known, should not be considered to be parametric (or
model-based) information. As already mentioned, an array for which the functional form of a(θ)

is known is said to be calibrated.
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Figure 6.6 also makes an analogy between temporal FIR filtering and spatial filtering using
an array of sensors. In what follows, we comment briefly on this analogy, since it is of interest
for the nonparametric approach to DOA finding. In the time-series case, a FIR filter is defined by
the relation

yF (t) =
m−1∑
k=0

hk u(t − k) � h∗y(t) (6.3.1)

where {hk } are the filter weights, u(t) is the input to the filter, and

h = [h0 . . . hm−1]∗ (6.3.2)

y(t) = [u(t) . . . u(t − m + 1)]T (6.3.3)

Similarly, we can use the spatial samples {yk (t)}m
k=1 obtained with a sensor array to define a

spatial filter:

yF (t) = h∗y(t) (6.3.4)

A temporal filter can be made to enhance or attenuate some selected frequency bands by choosing
the vector h appropriately. More precisely, since the filter output for a sinusoidal input u(t) is
given by

yF (t) = [h∗a(ω)]u(t) (6.3.5)

(where a(ω) is as defined, for instance, in Figure 6.6), then, by selecting h so that h∗a(ω) is large
(small), we can enhance (attenuate) the power of yF (t) at frequency ω.

In direct analogy with (6.3.5), the (noise-free) spatially filtered output (as in (6.3.4)) of an
array illuminated by a narrowband wavefront with complex envelope s(t) and DOA equal to θ

is given by (cf. (6.2.19)):

yF (t) = [h∗a(θ)]s(t) (6.3.6)

This equation clearly shows that the spatial filter can be selected to enhance (attenuate) the signals
coming from a given direction θ , by making h∗a(θ) in (6.3.6) large (small). This observation lies
at the basis of the DOA-finding methods to be described in this section. All of these methods can
be derived by using the filter-bank approach of Chapter 5. More specifically, assume that a filter
h has been found such that

(i) it passes undistorted the signals with a given DOA θ ; and
(ii) it attenuates all the other DOAs different from θ as much as possible.

(6.3.7)
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Then the power of the spatially filtered signal in (6.3.4),

E
{|yF (t)|2} = h∗Rh, R = E

{
y(t)y∗(t)

}
(6.3.8)

should give a good indication of the energy coming from direction θ . (Note that θ enters in (6.3.8)
via h .) Hence, h∗Rh should peak at the DOAs of the sources located in the array’s viewing field
when evaluated over the DOA range of interest. This fact may be exploited for the purpose of
DOA finding. Depending on the specific way in which the (loose) design objectives in (6.3.7) are
formulated, the above approach can lead to different DOA estimation methods. In the following,
we present spatial extensions of the periodogram and Capon techniques. The RFB method of
Chapter 5 may also be extended to the spatial processing case, provided the array’s geometry is
such that the transfer vector a(θ + α) can be factored as

a(θ + α) = D(θ)a(α) (6.3.9)

where D is a unitary (possibly diagonal) matrix. Without such a property, the RFB spatial filter
should be computed, for each θ , by solving an m × m eigendecomposition problem, which would
be computationally prohibitive in most applications. It is not a priori obvious that an arbitrary array
satisfies (6.3.9), so we do not consider the RFB approach in what follows.1 Finally, we remark that
a spatial filter satisfying the design objectives in (6.3.7) can be viewed as forming a (reception)
beam in the direction θ , as pictorially indicated in Figure 6.7. Because of this interpretation, the
methods resulting from this approach to the DOA-finding problem, in particular the method of
the next subsection, are called beamforming methods [Van Veen and Buckley 1988; Johnson
and Dudgeon 1992].

6.3.1 Beamforming

In view of (6.3.6), condition (i) of the filter-design problem (6.3.7) can be formulated as

h∗a(θ) = 1 (6.3.10)

In what follows, we assume that the transfer vector a(θ) has been normalized so that

a∗(θ)a(θ) = m (6.3.11)

Note that, in the case of an array with identical sensors, the condition (6.3.11) is automatically
met (cf. (6.2.20)).

Regarding condition (ii) in (6.3.7), if y(t) in (6.3.8) were spatially white with R = I , then we
would obtain the following expression for the power of the filtered signal:

E
{|yF (t)|2} = h∗h (6.3.12)

1Referring back to Chapter 5 may prove useful for understanding these comments on RFB and for several other
discussions in this section.
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Figure 6.7 The response magnitude |h∗a(θ)|, versus θ , of a spatial filter (or beamformer). Here,
h = a(θ0), where θ0 = 25◦ is the DOA of interest; the array is a 10-element ULA with d = λ/2.

This is different from zero for every θ (note that we cannot have h = 0, because of condition
(6.3.10)), a fact which indicates that a spatially white signal in the array output can be considered
as having equal power for all directions θ (in the same manner as a temporally white signal
contains equal power in all frequency bands). We deduce from this observation that a natural
mathematical formulation of condition (ii) would be to require that h minimize the power in
(6.3.12). Hence, we are led to the following design problem:

min
h

h∗h subject to h∗a(θ) = 1 (6.3.13)

Because (6.3.13) is a special case of the optimization problem (5.4.7) in Chapter 5, we obtain the
solution to (6.3.13) from (5.4.8) as

h = a(θ)/a∗(θ)a(θ) (6.3.14)

Making use of (6.3.11) reduces (6.3.14) to

h = a(θ)/m (6.3.15)

which, when inserted in (6.3.8), gives

E
{|yF (t)|2} = a∗(θ)Ra(θ)/m2 (6.3.16)
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The theoretical covariance matrix R in (6.3.16) cannot be (exactly) determined from the available
finite sample {y(t)}N

t=1; hence, it must be replaced by some estimate, such as

R̂ = 1

N

N∑
t=1

y(t)y∗(t) (6.3.17)

By doing so and omitting the factor 1/m2 in (6.3.16), which has no influence on the DOA esti-
mates, we obtain the beamforming method, which estimates the DOAs as summarized in the
next box.

The beamforming DOA estimates are given by the locations of the n highest
peaks of the function

a∗(θ)R̂a(θ)

(6.3.18)

When the estimated spatial spectrum in (6.3.18) is compared to the expression derived in
Section 5.4 for the Blackman–Tukey periodogram, it is seen that beamforming is a direct (spatial)
extension of the periodogram. In fact, the function in (6.3.18) may be thought of as being obtained
by averaging the “spatial periodograms”

|a∗(θ)y(t)|2 (6.3.19)

over the set of available “snapshots” (t = 1, . . . , N ).
The connection established in the previous paragraph, between beamforming and the (aver-

aged) periodogram, suggests that the resolution properties of the beamforming method are analo-
gous to those of the periodogram method. In fact, by an analysis similar to that in Chapters 2 and
5, it can be shown that the beamwidth2 of the spatial filter used by beamforming is approximately
equal to the inverse of the array’s aperture (as measured in signal wavelengths). This sets a limit
on the resolution achievable with beamforming (see Exercise 6.2):

Beamforming DOA resolution limit � wavelength / array “length” (6.3.20)

Next, we note that, as N increases, the sample spatial spectrum in (6.3.18) converges (under
mild conditions) to (6.3.16), uniformly in θ . Hence, the beamforming estimates of the DOAs
converge to the n maximum points of (6.3.16), as N tends to infinity. If the array model (6.2.21)
holds (it has not been used so far!), the noise e(t) is spatially white and has the same power σ 2

in all sensors, and if there is only one source (with DOA denoted by θ0, for convenience), then R
in (6.3.16) is given by

R = a(θ0)a
∗(θ0)P + σ 2I (6.3.21)

2The beamwidth is the spatial counterpart of the temporal notion of bandwidth associated with a bandpass filter.
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where P = E
{|s(t)|2} denotes the signal power. Hence,

a∗(θ)Ra(θ) = |a∗(θ)a(θ0)|2P + a∗(θ)a(θ)σ 2

≤ |a∗(θ)a(θ)||a∗(θ0)a(θ0)|P + σ 2a∗(θ)a(θ)

= m(mP + σ 2) (6.3.22)

where the inequality follows from the Cauchy–Schwartz lemma (see Result R22 in Appendix A)
and the last equality follows from (6.3.11). The upper bound in (6.3.22) is achieved for a(θ) =
a(θ0), which, under mild conditions, implies θ = θ0. In conclusion, the beamforming DOA estimate
is consistent under the previous assumptions (n = 1, etc.). In the general case of multiple sources,
however, the DOA estimates obtained with beamforming are inconsistent. The (asymptotic) bias
of these estimates may be significant if the sources are strongly correlated or closely spaced.

As was explained before, beamforming is the spatial analog of the Blackman–Tukey peri-
odogram (with a certain covariance estimate) and of the Bartlett periodogram (if we interpret
the m-dimensional snapshots in (6.3.19) as “subsamples” of the available “sample” [yT (1), . . . ,

yT (N )]T ). Note, however, that the value of m in the periodogram methods can be chosen by the
user, whereas, in the beamforming method, m is fixed. This difference might seem small at first,
but it has a significant impact on the consistency properties of beamforming. More precisely, it
can be shown that, for instance, the Bartlett periodogram estimates of temporal frequencies are
consistent under the model (4.2.7), provided that m increases without bound as the number of
samples N tends to infinity (e.g., we can set m = N, which yields the unmodified periodogram).3

For beamforming, on the other hand, the value of m (i.e., the number of array elements) is
limited by physical considerations. This prevents beamforming from providing consistent DOA
estimates in the multiple-signal case. An additional difficulty is that, in the spatial scenario, the
signals can be correlated with one another, whereas they are always uncorrelated in the temporal
frequency estimation case. Explaining why this is so and completing a consistency analysis of the
beamforming DOA estimates is left as an exercise for the reader.

Now, if the model (6.2.21) holds, if the minimum DOA separation is larger than the array
beamwidth (which implies that m is sufficiently large), if the signals are uncorrelated, and if the
noise is spatially white, then it is readily seen that the multiple-source spectrum (6.3.16) decouples
(approximately) into n single-source spectra; this means that beamforming can provide reasonably
accurate DOA estimates in such a case. In fact, in this case, beamforming can be shown to provide
an approximation to the nonlinear LS DOA estimation method discussed in Section 6.4.1; see the
remark in that section.

6.3.2 Capon Method

The derivation of the Capon method for array signal processing is entirely analogous to the
derivation of the Capon method for time series data developed in Section 5.4 [Capon 1969; Lacoss

3The unmodified periodogram is an inconsistent estimator for continuous PSDs (as shown in Chapter 2). However,
as already asserted, the plain periodogram estimates of discrete (or line) PSDs are consistent. Showing this is left as an
exercise to the reader. (Make use of the covariance matrix model (4.2.7) with m → ∞ and of the fact that the Fourier
(or Vandermonde) vectors, at different frequencies, become orthogonal to one another as their dimension increases.)
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1971]. The Capon spatial filter design problem is the following:

min
h

h∗Rh subject to h∗a(θ) = 1 (6.3.23)

Hence, objective (i) in the general design problem (6.3.7) is ensured by constraining the filter
exactly as in the beamforming approach. (See (6.3.10).) Objective (ii) in (6.3.7) is accomplished
by requiring the filter to minimize the output power, when fed with the actual array data {y(t)}.
Hence, in the Capon approach, objective (ii) is formulated in a “data-dependent” way, whereas it
is formulated independently of the data in the beamforming method. As a consequence, the goal
of the Capon filter steered to a certain direction θ is to attenuate any other signal that actually
impinges on the array from a DOA �= θ , whereas the beamforming filter pays uniform attention
to all other DOAs �= θ , even though there might be no incoming signal for many of those DOAs.

The solution to (6.3.23), as derived in Section 5.4, is given by

h = R−1a(θ)

a∗(θ)R−1a(θ)
(6.3.24)

which, when inserted in the output power formula (6.3.8), leads to

E
{|yF (t)|2} = 1

a∗(θ)R−1a(θ)
(6.3.25)

All that remains is to replace R in (6.3.25) by a sample estimate, such as R̂ in (6.3.17), to obtain
the Capon DOA estimator.

The Capon DOA estimates are obtained as the locations of the n largest peaks
of the following function:

1

a∗(θ)R̂−1a(θ)

(6.3.26)

There is an implicit assumption in (6.3.26) that R̂−1 exists, but this can be ensured under
weak conditions (in particular, R̂−1 exists with probability 1 if N ≥ m and if the noise term
has a positive definite spatial covariance matrix). Note that the “spatial spectrum” in (6.3.26)
corresponds to the “CM-Version 1” PSD for time series. (See equation (5.4.12) in Section 5.4.)
A Capon spatial spectrum similar to the “CM-Version 2” PSD formula (see (5.4.17)) might also
be derived, but it appears to be more complicated than the time series formula if the array is not
a ULA.

Capon DOA estimation has been found empirically to possess superior performance as
compared with beamforming. The common advantage of these two nonparametric methods is
that they do not assume anything about the statistical properties of the data, and, therefore, they
can be used in situations where we lack information about these properties. On the other hand,
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in the cases where such information is available, for example in the form of a covariance model
of the data, a nonparametric approach does not give the performance that one can achieve with
a parametric (model-based) approach. The parametric approach to DOA estimation is the subject
of the next section.

6.4 PARAMETRIC METHODS

In this section, we postulate the array model (6.2.21). Furthermore, the noise e(t) is assumed to
be spatially white with components having identical variance:

E
{
e(t)e∗(t)

} = σ 2I (6.4.1)

In addition, the signal covariance matrix

P = E
{
s(t)s∗(t)

}
(6.4.2)

is assumed to be nonsingular (but not necessarily diagonal; hence, the signals may be (partially)
correlated). When the signals are fully correlated, so that P is singular, they are said to be coherent.
Finally, we assume that the signals and the noise are uncorrelated with one another.

Under the previous assumptions, the theoretical covariance matrix of the array output vector
is given by

R = E
{
y(t)y∗(t)

} = APA∗ + σ 2I (6.4.3)

There is a direct analogy between the array models (6.2.21) and (6.4.3) and the corresponding
models encountered in our discussion of the sinusoids-in-noise case in Chapter 4. More specif-
ically, the “nonlinear regression” model (6.2.21) of the array is analogous to (4.2.6), and the
array covariance model (6.4.3) is much the same as (4.2.7). The consequence of these analogies
is that all methods introduced in Chapter 4 for frequency estimation can also be used for DOA
estimation without any essential modification. In the following, we briefly review these methods,
with a view to pointing out any differences from the frequency-estimation application. When the
assumed array model is a good representation of reality, the parametric DOA estimation methods
provide highly accurate DOA estimates, even in adverse situations (such as low SNR scenarios).
Our main thrust in this text has been to understand the basic ideas behind the presented spectral
estimation methodologies, so we do not dwell on the details of the analysis required to establish the
statistical properties of the DOA estimators discussed in what follows; see, however, Appendix B
for a discussion on the Cramér–Rao bound and the best accuracy achievable in DOA estima-
tion problems. Such analysis details are available in [Stoica and Nehorai 1989a; Stoica and
Nehorai 1990; Stoica and Sharman 1990; Stoica and Nehorai 1991; Viberg and Otter-
sten 1991; Rao and Hari 1993]. For reviews of many of the recent advances in spatial-spectral
analysis, the reader can consult [Pillai 1989], [Ottersten, Viberg, Stoica, and Nehorai 1993],
and [Van Trees 2002].
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6.4.1 Nonlinear Least-Squares Method

This method finds the unknown DOAs as the minimizing elements of the following function:

f = 1

N

N∑
t=1

‖ y(t) − As(t) ‖2 (6.4.4)

Minimization with respect to {s(t)} (see Result R32 in Appendix A) gives

s(t) = (A∗A)−1A∗y(t) t = 1, . . . , N (6.4.5)

By inserting (6.4.5) into (6.4.4), we get the following concentrated nonlinear least-squares (LS)
criterion:

f = 1

N

N∑
t=1

‖ {I − A(A∗A)−1A∗}y(t) ‖2

= 1

N

N∑
t=1

y∗(t)
[
I − A(A∗A)−1A∗] y(t)

= tr{[I − A(A∗A)−1A∗]R̂} (6.4.6)

The second equality in (6.4.6) follows from the fact that the matrix I − A(A∗A)−1A∗ is idempotent
(it is the orthogonal projector onto N (A∗)) and the third equality follows from the properties of
the trace operator. (See Result R8 in Appendix A.) From (6.4.6), the nonlinear LS DOA estimates
are given by

{θ̂k } = arg max{θk }
tr
[
A(A∗A)−1A∗R̂

]
(6.4.7)

Remark: Much as in the frequency-estimation case, it can be shown that beamforming provides
an approximate solution to the previous nonlinear LS problem whenever the DOAs are known
to be well separated. To see this, let us assume that we restrict the search for the maximizers of
(6.4.7) to a set of well-separated DOAs (according to the a priori information that the true DOAs
belong to this set). In such a set, A∗A � mI under weak conditions; hence, the function in (6.4.7)
can be approximately written as

tr
[
A(A∗A)−1A∗R̂

]
� 1

m

n∑
k=1

a∗(θk )R̂a(θk )

Paralleling the discussion following equation (4.3.16) in Chapter 4, we can show that the beam-
forming DOA estimates maximize the right-hand side of the previous equation over the set under
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consideration. With this observation, the proof of the fact that the computationally efficient beam-
forming method provides an approximate solution to (6.4.7) in scenarios with well-separated
DOAs is concluded. �

One difference between (6.4.7) and the corresponding optimization problem in the frequency-
estimation application (see (4.3.8) in Section 4.3) lies in the fact that, in the frequency-estimation
application, only one “snapshot” of data is available, in contrast to the N snapshots available in
the DOA-estimation application. Another, more important difference is that, for non-ULA cases,
the matrix A in (6.4.7) does not have the Vandermonde structure of the corresponding matrix in
(4.3.8). As a consequence, several of the algorithms used to (approximately) solve the frequency-
estimation problem (such as the one in [Kumaresan, Scharf, and Shaw 1986] and [Bresler
and Macovski 1986]) are no longer applicable to solving (6.4.7) unless the array is a ULA.

6.4.2 Yule–Walker Method

The matrix �, which lies at the basis of the Yule–Walker method (see Section 4.4), can be
constructed from any block of R in (6.4.3) that does not include diagonal elements. To be more
precise, partition the array model (6.2.21) into the following two nonoverlapping parts:

y(t) =
[

ȳ(t)
ỹ(t)

]
=
[

Ā
Ã

]
s(t) +

[
ē(t)
ẽ(t)

]
(6.4.8)

Because ē(t) and ẽ(t) are uncorrelated (by assumption), we have

� � E
{
ȳ(t)ỹ∗(t)

} = ĀPÃ∗ (6.4.9)

which is assumed to be of dimension M × L (with M + L = m). For

M > n, L > n (6.4.10)

(which cannot hold unless m > 2n), the rank of � is equal to n (under weak conditions) and the
(L − n)-dimensional null space of this matrix contains complete information about the DOAs.
To see this, let G be an L × (L − n) matrix whose columns form a basis of N (�). (G can be
obtained from the SVD of �; see Result R15 in Appendix A.) Then we have �G = 0, which
implies (using the fact that rank(ĀP) = n) that

Ã∗G = 0

This observation can be used, in the manner of Sections 4.4 (YW) and 4.5 (MUSIC), to estimate
the DOAs from a sample estimate of �, such as

�̂ = 1

N

N∑
t=1

ȳ(t)ỹ∗(t) (6.4.11)
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Unlike all the other methods discussed in what follows, the Yule–Walker method does not impose
the rather stringent condition (6.4.1). The Yule–Walker method requires only that E {ē(t)ẽ∗(t)} =
0, which is a much weaker assumption. This is a distinct advantage of the Yule–Walker method
(see [Viberg, Stoica, and Ottersten 1995] for details). Its relative drawback is that it cannot be
used unless m > 2n (all the other methods require only that m > n); in general, it has been found
to provide accurate DOA estimates only in those applications involving large-aperture arrays.

Interestingly enough, whenever the condition (6.4.1) holds (i.e., the noise at the array output
is spatially white), we can use a modification of the technique above that does not require that
m > 2n [Fuchs 1996]. To see this, let

�̃ � E
{
y(t)ỹ∗(t)

} = R

[
0
IL

]
(m × L)

where ỹ(t) is as defined in (6.4.8); hence �̃ is made from the last L columns of R. By making
use of the expression (6.4.3) for R, we obtain

�̃ = APÃ∗ + σ 2
[

0
IL

]
(6.4.12)

Because the noise terms in y(t) and ỹ(t) are correlated, the noise is still present in �̃ (as can be
seen from (6.4.12)); hence, �̃ is not really a YW matrix. Nevertheless, �̃ has a property similar
to that of the YW matrix �, as we now show.

First, observe that

�̃∗�̃ = Ã(2σ 2P + PA∗AP)Ã∗ + σ 4I

The matrix 2σ 2P + PA∗AP is readily shown to be nonsingular if and only if P is nonsingular.
As �̃∗�̃ has the same form as R in (6.4.3), we conclude that (for m ≥ L > n) the L × (L − n)

matrix G̃ , whose columns are the eigenvectors of �̃∗�̃ that correspond to the multiple minimum
eigenvalue of σ 4, satisfies

Ã∗G̃ = 0 (6.4.13)

The columns of G̃ are also equal to the (L − n) right singular vectors of �̃ corresponding to the
multiple minimum singular value of σ 2. For numerical precision reasons, G̃ should be computed
from the singular vectors of �̃ rather than from the eigenvectors of �̃∗�̃ (see Section A.8.2).

Because (6.4.13) has the same form as Ã∗G = 0, we can use (6.4.13) for subspace-based
DOA estimation in exactly the same way as we used Ã∗G = 0 (see equation (4.5.6) and the
discussion following it in Chapter 4). Note that, for the method based on �̃ to be usable, we
require only that

m ≥ L > n (6.4.14)

instead of the more restrictive conditions {m − L > n, L > n} (see (6.4.10)) required in the
YW method based on �. Observe that (6.4.14) can always be satisfied if m > n , whereas
(6.4.10) requires that m > 2n . Finally, note that � is made from the first m − L rows of �̃
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and hence contains “less information” than �̃; this provides a quick intuitive explanation of
why the method based on � requires more sensors to be applicable than does the method based
on �̃.

6.4.3 Pisarenko and MUSIC Methods

The MUSIC algorithm (with Pisarenko as a special case), developed in Section 4.5 for the
frequency-estimation application, can be used without modification for DOA estimation [Bienvenu
1979; Schmidt 1979; Barabell 1983]. There are only minor differences between the DOA and
the frequency-estimation applications of MUSIC, as pointed out next.

First, in the spatial application, we can choose between the Spectral and Root MUSIC esti-
mators only in the case of a ULA. For most of the other array geometries, only Spectral MUSIC
is applicable.

Second, the standard MUSIC algorithm (4.5.15) breaks down in the case of coherent signals,
because, in that case, the rank condition (4.5.1) no longer holds. (Such a situation cannot occur
in the frequency-estimation application, because P is always (diagonal and) nonsingular there.)
However, the modified MUSIC algorithm (outlined at the end of Section 4.5) can be used when
the signals are coherent, provided that the array is uniform and linear. This is so because the
property (4.5.23), on which the modified MUSIC algorithm is based, continues to hold even if P
is singular. (See Exercise 6.14.)

6.4.4 Min–Norm Method

There is no essential difference between the use of the Min–Norm method for frequency estimation
and for DOA-finding in the noncoherent case. As for MUSIC, in the DOA-estimation application,
the Min–Norm method should not be used in scenarios with coherent signals, and the Root
Min–Norm algorithm can only be used in the ULA case [Kumaresan and Tufts 1983]. In
addition, the key property that the true DOAs are asymptotically the unique solutions of the
Min–Norm estimation problem holds in the ULA case (see Complement 6.5.1), but not necessarily
for other array geometries.

6.4.5 ESPRIT Method

In the ULA case, ESPRIT can be used for DOA estimation exactly as it is for frequency estimation.
(See Section 4.7.) In the non-ULA case, ESPRIT can be used only in certain situations. More
precisely, and unlike the other algorithms in this section, ESPRIT can be used for DOA finding
only if the array contains two identical subarrays that are displaced by a known displacement
vector [Roy and Kailath 1989; Stoica and Nehorai 1991]. Mathematically, this condition can
be formulated as follows: Let m̄ denote the number of sensors in the two twin subarrays, and let
A1 and A2 denote the submatrices of A corresponding to these subarrays. The sensors in the array
are numbered arbitrarily, so it constitutes no restriction to assume that A1 is made from the first
m̄ rows in A and A2 from the last m̄:

A1 = [Im̄ 0]A (m̄ × n) (6.4.15)

A2 = [0 Im̄ ]A (m̄ × n) (6.4.16)
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Here Im̄ denotes the m̄ × m̄ identity matrix. Note that the two subarrays overlap if m̄ > m/2;
otherwise, they might not overlap. If the array is purposely built to meet ESPRIT’s subarray
condition, then, normally, m̄ = m/2, and the two subarrays are nonoverlapping.

Mathematically, the ESPRIT requirement means that

A2 = A1D (6.4.17)

where

D =




e−iωcτ(θ1) 0
. . .

0 e−iωcτ(θn )


 (6.4.18)

and where τ (θ) denotes the time needed by a wavefront impinging upon the array from the
direction θ to travel between (the “reference points” of) the two twin subarrays. If the angle of
arrival θ is measured with respect to the perpendicular of the line between the subarrays’ center
points, then a calculation similar to the one that led to (6.2.22) shows that

τ (θ) = d sin(θ)/c (6.4.19)

where d is the distance between the two subarrays. Hence, estimates of the DOAs can readily be
derived from estimates of the diagonal elements of D in (6.4.18).

Equations (6.4.17) and (6.4.18) are basically equivalent to (4.7.3) and (4.7.4) in Section 4.7;
hence, the ESPRIT DOA estimation method is analogous to the ESPRIT frequency estimator.

The ESPRIT DOA estimation method, like the ESPRIT frequency estimator, computes the DOA
estimates by solving an n × n eigenvalue problem. There is no search involved, in contrast to the
previous methods; in addition, there is no problem of separating the “signal DOAs” from the “noise
DOAs,” once again in contrast to the Yule–Walker, MUSIC, and Min–Norm methods. However,
unlike these other methods, ESPRIT can only be used with the special array configuration described
earlier. In particular, this requirement limits the number of resolvable sources at n < m̄ (as both A1

and A2 must have full column rank). Note that the two subarrays do not need to be calibrated , although
they need to be identical, and ESPRIT can be sensitive to differences between the two subarrays
in the same way that Yule–Walker, MUSIC, and Min–Norm are sensitive to imperfections in array
calibration. Finally, note that, like the other DOA-finding algorithms presented in this section (with
the exception of the NLS method), ESPRIT is not usable in the case of coherent signals.

6.5 COMPLEMENTS

6.5.1 On the Minimum–Norm Constraint

As explained in Section 6.4.4, the Root Min–Norm (temporal) frequency estimator, introduced in
Section 4.6, can be used without modification for DOA estimation with a uniform linear array.
Using the definitions and notation in Section 4.6, let ĝ = [1 ĝ1 . . . ĝm−1]T denote the vector in
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R(Ĝ) that has the first element equal to one and minimum Euclidean norm. Then, the Root
Min–Norm DOA estimates are obtained from the roots of the polynomial

ĝ(z ) = 1 + ĝ1z −1 + · · · + ĝm−1z −(m−1) (6.5.1)

that are located nearest the unit circle. (See the description of Min–Norm in Section 4.6.) As N
increases, the polynomial in (6.5.1) approaches

g(z ) = 1 + g1z −1 + · · · + gm−1z −(m−1) (6.5.2)

where g = [1 g1 . . . gm−1]T is the minimum–norm vector in R(G). In this complement, we show
that (6.5.2) has n zeroes at {e−iωk }n

k=1 (the so-called “signal zeroes”) and (m − n − 1) extraneous
zeroes situated strictly inside the unit circle (the latter are normally called “noise zeroes”); here
{ωk }n

k=1 either are temporal frequencies or are spatial frequencies (as in (6.2.27)).
Let g = [1, g1, . . . , gm−1]T ∈ R(G). Then (4.2.4) and (4.5.6) imply that

a∗(ωk )




1
g1
...

gm−1


 = 0 ⇐⇒

1 + g1eiωk + · · · + gm−1ei (m−1)ωk = 0 (for k = 1, . . . , n) (6.5.3)

Hence, any polynomial g(z ) whose coefficient vector belongs to R(G) must have zeroes at
{e−iωk }n

k=1, and thus it can be factored as

g(z ) = gs(z )gn(z ) (6.5.4)

where

gs(z ) =
n∏

k=1

(1 − e−iωk z −1)

The (m − n − 1)-degree polynomial gn(z ) in (6.5.4) contains the noise zeroes, and at this point is
arbitrary. (As the coefficients of gn(z ) vary, the vectors made from the corresponding coefficients
of g(z ) span R(G).)

Next, assume that g satisfies the minimum–norm constraint:

m−1∑
k=0

|gk |2 = min (g0 � 1) (6.5.5)

By using Parseval’s theorem (see (1.2.6)), we can rewrite (6.5.5) as

1

2π

∫ π

−π

|g(ω)|2 dω = min ⇐⇒ 1

2π

∫ π

−π

|gn (ω)|2 |gs(ω)|2 dω = min (6.5.6)
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(where, by convention, g(ω) = g(z )
∣∣
z=eiω ). Since gs(z ) in (6.5.4) is fixed, the minimization in

(6.5.6) is over gn(z ).
To proceed, some additional notation is required. Let

gn(z ) = 1 + α1z −1 + · · · + αm−n−1z −(m−n−1)

and let y(t) be a signal whose PSD is equal to |gs(ω)|2; hence, y(t) is an nth-order MA process.
By making use of (1.3.9) and (1.4.9), along with the previous notation, we can write (6.5.6) in
the following equivalent form:

min
{αk }

E
{|y(t) + α1y(t − 1) + · · · + αm−n−1y(t − m + n + 1)|2} (6.5.7)

The minimizing coefficients {αk } are given by the solution to a Yule–Walker system of
equations similar to (3.4.6). (To show this, parallel the calculation leading to (3.4.8) and (3.4.12).)
Since the covariance matrix, of any finite dimension, associated with a moving-average signal is
positive definite, it follows that

• the coefficients {αk }, and hence {gk }, are uniquely determined by the minimum–norm constraint
• the polynomial gn(z ) whose coefficients are obtained from (6.5.7) has all its zeroes strictly

inside the unit circle (cf. Exercise 3.8)

which was to be proven.
Thus, the choice of ĝ in the Min–Norm algorithm makes it possible to separate the signal

zeroes from the noise zeroes, at least for data samples that are sufficiently long. (For small or
medium-sized samples, it might happen that noise zeroes get closer to the unit circle than signal
zeroes, which would lead to spurious frequency or DOA estimates.)

As a final remark, note, from (6.5.6), that there is little reason for gn(z ) to have zeroes in the
sectors where the signal zeroes are present (since the integrand in (6.5.6) is already quite small
for ω values close to {ωk }n

k=1). Hence, we can expect the extraneous zeroes to be more or less
uniformly distributed inside the unit circle, in sectors that do not contain signal zeroes (see, e.g.,
[Kumaresan 1983].)

For more details on the topic of this complement, see [Tufts and Kumaresan 1982;
Kumaresan 1983].

6.5.2 NLS Direction-of-Arrival Estimation for a Constant-Modulus
Signal

The NLS estimation of the DOA of a single signal impinging on an array of sensors is obtained
by minimizing the criterion (6.4.4) with n = 1,

N∑
t=1

‖y(t) − a(θ)s(t)‖2 (6.5.8)
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with respect to {s(t)}N
t=1 and θ . The result is obtained from equation (6.4.7), which for n = 1

reduces to

θ̂ = arg max
θ

a∗(θ)R̂a(θ) = arg max
θ

N∑
t=1

∣∣a∗(θ)y(t)
∣∣2 (6.5.9)

This, of course, is nothing but the beamforming DOA estimate for n = 1; see (6.3.18). Hence, as
expected (see the Remark following (6.4.7) and also (4.3.11)), the NLS estimate of the DOA of
an arbitrary signal coincides with the beamforming estimate.

In this complement, we will solve the NLS direction-of-arrival estimation problem in (6.5.8),
under the assumption that {s(t)} is a constant-modulus signal ; that is,

s(t) = αeiφ(t) (6.5.10)

where α > 0 denotes the unknown signal amplitude and {φ(t)} is its unknown phase sequence.
We assume α > 0 to avoid a phase ambiguity in {φ(t)}. Signals of this type are often encountered
in communication applications with phase-modulated waveforms.

Inserting (6.5.10) in (6.5.8) yields the following criterion that is to be minimized with respect
to {φ(t)}N

t=1, α, and θ :

N∑
t=1

∥∥y(t) − αeiφ(t)a(θ)
∥∥2

=
N∑

t=1

{‖y(t)‖2 + α2‖a(θ)‖2 − 2α Re
[
a∗(θ)y(t)e−iφ(t)]} (6.5.11)

It follows from (6.5.11) that the NLS estimate of {φ(t)}N
t=1 is given by the maximizer of the

function

Re
[
a∗(θ)y(t)e−iφ(t)] = Re

[∣∣a∗(θ)y(t)
∣∣ ei arg[a∗(θ)y(t)]e−iφ(t)

]
= ∣∣a∗(θ)y(t)

∣∣ cos
[
arg
(
a∗(θ)y(t)

)− φ(t)
]

(6.5.12)

which is easily seen to be

φ̂(t) = arg
[
a∗(θ)y(t)

]
, t = 1, . . . , N (6.5.13)

From (6.5.11)–(6.5.13), along with the assumption that ‖a(θ)‖ is constant (which is also used to
derive (6.5.9)), we can readily verify that the NLS estimate of θ for the constant modulus signal
case is given by

θ̂ = arg max
θ

N∑
t=1

∣∣a∗(θ)y(t)
∣∣ (6.5.14)
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Finally, the NLS estimate of α is obtained by minimizing (6.5.11) (with {φ(t)} and θ replaced
by (6.5.13) and (6.5.14), respectively):

α̂ = 1

N ‖a(θ̂)‖2

N∑
t=1

∣∣∣a∗(θ̂ )y(t)
∣∣∣ (6.5.15)

Remark: It follows easily from the preceding derivation that, if α is known (as could be the
case when the emitted signal has a known amplitude that is not significantly distorted during
propagation), the NLS estimates of θ and {φ(t)} are still given by (6.5.13) and (6.5.14). �

Interestingly, the only difference between the beamformer for an arbitrary signal, (6.5.9), and the
beamformer for a constant-modulus signal, (6.5.14), is that the “squaring operation” is missing in
the latter. This difference is somewhat analogous to the one pointed out in Complement 4.9.4, even
though the models considered there and in this complement are rather different from one another.

For more details on the subject of this complement, see [Stoica and Besson 2000] and its
references.

6.5.3 Capon Method: Further Insights and Derivations

The spatial filter (or beamformer) used in the beamforming method is independent of data. In
contrast, the Capon spatial filter is data dependent, or data adaptive; see equation (6.3.24). It is
this data adaptivity that confers on the Capon method better resolution and significantly reduced
leakage as compared with the beamforming method.

An interesting fact about the Capon method for temporal or spatial spectral analysis is that it
can be derived in several ways. The standard derivation is given in Section 6.3.2. This complement
presents four additional derivations of the Capon method, each not as well known as the standard
derivation. Each of the derivations presented here is based on an intuitively appealing design
criterion. Collectively, they provide further insights into the features and possible interpretations
of the Capon method.

APES-Like Derivation

Let θ denote a generic DOA, and consider equation (6.2.19),

y(t) = a(θ)s(t) + e(t) (6.5.16)

which describes the array output, y(t), as the sum of a possible signal component impinging from
the generic DOA θ and a term e(t) that includes noise and any other signals with DOAs different
from θ . Let σ 2

s denote the power of the signal s(t) in (6.5.16), which is the main parameter
we want to estimate: σ 2

s as a function of θ provides an estimate of the spatial spectrum. Let us
estimate the spatial filter vector, h , as well as the signal power, σ 2

s , by solving the following
least-squares (LS) problem:

min
h,σ 2

s

E
{|h∗y(t) − s(t)|2} (6.5.17)
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Of course, the signal s(t) in (6.5.17) is not known. However, as we show shortly, (6.5.17) does
not depend on s(t) but only on its power σ 2

s , so the fact that s(t) in (6.5.17) is unknown does
not pose a problem. Also, note that the vector h in (6.5.17) is not constrained, as it is in (6.3.24).

Assuming that s(t) in (6.5.16) is uncorrelated with the noise-plus-interference term e(t), we
obtain

E
{
y(t)s∗(t)

} = a(θ)σ 2
s (6.5.18)

which implies that

E
{|h∗y(t) − s(t)|2} = h∗Rh − h∗a(θ)σ 2

s − a∗(θ)hσ 2
s + σ 2

s

= [h − σ 2
s R−1a(θ)

]∗
R
[
h − σ 2

s R−1a(θ)
]

+ σ 2
s

[
1 − σ 2

s a∗(θ)R−1a(θ)
]

(6.5.19)

Omitting the trivial solution (h = 0, σ 2
s = 0), the minimization of (6.5.19) with respect to h and

σ 2
s yields

h = R−1a(θ)

a∗(θ)R−1a(θ)
(6.5.20)

σ 2
s = 1

a∗(θ)R−1a(θ)
(6.5.21)

which coincides with the Capon solution in (6.3.24) and (6.3.25). To obtain σ 2
s in (6.5.21), we

used the fact that the criterion in (6.5.19) should be greater than or equal to zero for any h and σ 2
s .

The LS-fitting criterion in (6.5.17) is reminiscent of the APES approach discussed in Comple-
ment 5.6.4. The use of APES for array processing is discussed in Complement 6.5.6, under the
assumption that {s(t)} is an unknown deterministic sequence. Interestingly, using the APES design
principle in the above manner, under the assumption that the signal s(t) in (6.5.16) is stochastic,
leads to the Capon method.

Inverse-Covariance-Fitting Derivation

The covariance matrix of the signal term a(θ)s(t) in (6.5.16) is given by

σ 2
s a(θ)a∗(θ) (6.5.22)

We can obtain the beamforming method (see Section 6.3.1) by fitting (6.5.22) to R in a least-
squares sense:

min
σ 2

s

‖R − σ 2
s a(θ)a∗(θ)‖2

= min
σ 2

s

{constant + σ 4
s [a∗(θ)a(θ)]2 − 2σ 2

s a∗(θ)Ra(θ)} (6.5.23)
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Because a∗(θ)a(θ) = m (by assumption; see (6.3.11)), it follows from (6.5.23) that the minimizing
σ 2

s is given by

σ 2
s = 1

m2
a∗(θ)Ra(θ) (6.5.24)

which coincides with the beamforming estimate of the power coming from DOA θ (see (6.3.16)).
To obtain the Capon method by following an idea similar to the one above, we fit the

pseudoinverse of (6.5.22) to the inverse of R:

min
σ 2

s

∥∥∥R−1 − [σ 2
s a(θ)a∗(θ)

]†∥∥∥2
(6.5.25)

It is easily verified that the Moore–Penrose pseudoinverse of σ 2
s a(θ)a∗(θ) is given by

[
σ 2

s a(θ)a∗(θ)
]† = 1

σ 2
s

a(θ)a∗(θ)

[a∗(θ)a(θ)]2 = 1

σ 2
s

a(θ)a∗(θ)

m2
(6.5.26)

This follows, for instance, from (A.8.8) and the fact that

σ 2
s a(θ)a∗(θ) = [σ 2

s ‖a(θ)‖2] [ a(θ)

‖a(θ)‖
] [

a(θ)

‖a(θ)‖
]∗

� σuv∗ (6.5.27)

is the singular-value decomposition (SVD) of σ 2
s a(θ)a∗(θ). Inserting (6.5.26) into (6.5.25) leads

to the problem

min
σ 2

s

∥∥∥∥R−1 − 1

σ 2
s

a(θ)a∗(θ)

m2

∥∥∥∥
2

(6.5.28)

whose solution, by analogy with (6.5.23)–(6.5.24), is given by the Capon estimate of the signal
power:

σ 2
s = 1

a∗(θ)R−1a(θ)
(6.5.29)

It is worth noting that in the present covariance-fitting-based derivation, the signal power σ 2
s is

estimated directly without the need to first obtain an intermediate spatial filter h . The remaining
two derivations of the Capon method are of the same type.

Weighted-Covariance-Fitting Derivation

The least-squares criterion in (6.5.23), which yields the beamforming method, does not take into
account the fact that the sample estimates of the different elements of the data covariance matrix
do not have the same accuracy. It was shown (e.g., in [Ottersten, Stoica, and Roy 1998] and
its references) that the following weighted LS covariance-fitting criterion takes the accuracies of
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the different elements of the sample covariance matrix into account in an optimal manner :

min
σ 2

s

∥∥R−1/2 [R − σ 2
s a(θ)a∗(θ)

]
R−1/2

∥∥2
(6.5.30)

Here, R−1/2 denotes the Hermitian square root of R−1. By a straightforward calculation, we can
rewrite the criterion in (6.5.30) in the following equivalent form:

∥∥I − σ 2
s R−1/2a(θ)a∗(θ)R−1/2

∥∥2

= constant − 2σ 2
s a∗(θ)R−1a(θ) + σ 4

s

[
a∗(θ)R−1a(θ)

]2
(6.5.31)

The minimization of (6.5.31) with respect to σ 2
s yields

σ 2
s = 1

a∗(θ)R−1a(θ)

which coincides with the Capon solution in (6.3.26).

Constrained-Covariance-Fitting Derivation

The final derivation of the Capon method that we will present is also based on a covariance-
fitting criterion, but in a manner quite different from those in the previous two derivations. Our
goal here is still to obtain the signal power by fitting σ 2

s a(θ)a∗(θ) to R, but now we explicitly
impose the condition that the residual covariance matrix, R − σ 2

s a(θ)a∗(θ), should be positive
semidefinite, and we “minimize” the approximation (or fitting) error by choosing the maximum
possible value of σ 2

s for which this condition holds. Mathematically, σ 2
s is the solution to the

following constrained covariance-fitting problem:

max
σ 2

s

σ 2
s subject to R − σ 2

s a(θ)a∗(θ) ≥ 0 (6.5.32)

The solution to (6.5.32) can be obtained in the following way, which is a simplified version of
the original derivation in [Marzetta 1983]: Let R−1/2 again denote the Hermitian square root of
R−1. Then the following equivalences can be readily verified:

R − σ 2
s a(θ)a∗(θ) ≥ 0

⇐⇒ I − σ 2
s R−1/2a(θ)a∗(θ)R−1/2 ≥ 0

⇐⇒ 1 − σ 2
s a∗(θ)R−1a(θ) ≥ 0

⇐⇒ σ 2
s ≤ 1

a∗(θ)R−1a(θ)
(6.5.33)
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The third line in equation (6.5.33) follows from the fact that the eigenvalues of the matrix
I − σ 2

s R−1/2a(θ)a∗(θ)R−1/2 are equal to 1 minus the eigenvalues of σ 2
s R−1/2a(θ)a∗(θ)R−1/2

(see Result R5 in Appendix A), and the latter eigenvalues are given by σ 2
s a∗(θ)R−1a(θ) (which

is the trace of the previous matrix) along with (m − 1) zeroes. From (6.5.33), we can see that the
Capon spectral estimate is the solution to the problem (6.5.32) as well.

The equivalence between the formulation of the Capon method in (6.5.32) and the standard
formulation in Section 6.3.2 can also be shown as follows: The constraint in (6.5.32) is equivalent
to the requirement that

h∗[R − σ 2
s a(θ)a∗(θ)] h ≥ 0 for any h ∈ Cm×1 (6.5.34)

which, in turn, is equivalent to

h∗[R − σ 2
s a(θ)a∗(θ)] h ≥ 0

for any h such that h∗a(θ) = 1
(6.5.35)

Clearly, (6.5.34) implies (6.5.35). To also show that (6.5.35) implies (6.5.34), let h be such that
h∗a(θ) = α �= 0; then h/α∗ satisfies (h/α∗)∗a(θ) = 1 and, hence, by the assumption that (6.5.35)
holds,

1

|α|2 h∗[R − σ 2
s a(θ)a∗(θ)]h ≥ 0

which shows that (6.5.35) implies (6.5.34) for any h satisfying h∗a(θ) �= 0. Now, if h is such
that h∗a(θ) = 0, then

h∗[R − σ 2
s a(θ)a∗(θ)]h = h∗Rh ≥ 0

because R > 0 by assumption. This observation concludes the proof that (6.5.34) is equivalent to
(6.5.35).

Using the equivalence of (6.5.34) and (6.5.35), we can rewrite (6.5.34) as follows:

h∗Rh ≥ σ 2
s for any h such that h∗a(θ) = 1 (6.5.36)

From (6.5.36), we can see that the solution to (6.5.32) is given by

σ 2
s = min

h
h∗Rh subject to h∗a(θ) = 1

which coincides with the standard formulation of the Capon method in (6.3.24).
The formulation of the Capon method in (6.5.32) will be used in Complement 6.5.4 to extend

the method to the case where the direction vector a(θ) is known only imprecisely.

6.5.4 Capon Method for Uncertain Direction Vectors

The Capon method has better resolution and much better interference rejection capability (i.e.,
much lower leakage) than the beamforming method, provided that the direction vector, a(θ), is
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known accurately. However, whenever the knowledge of a(θ) is imprecise, the performance of the
Capon method could become worse than that of the beamforming method. To see why this is so,
consider a scenario in which the problem is to estimate the power coming from a source with DOA
assumed to be equal to θ0. Let us assume that, in actuality, the true DOA of the source is θ0 + �.
For the Capon beamformer pointed toward θ0, the source of interest (located at θ0 + �) will play
the role of an interference and will be attenuated. Consequently, the power of the signal of interest
will be underestimated; the larger � is, the larger the underestimation error. Because steering-
vector errors are common in applications, it follows that a robust version of the Capon method
(i.e., one that is as insensitive to steering-vector errors as possible) would be highly desirable.

In this complement, we will present an extension of the Capon method to the case of uncertain
direction vectors. Specifically, we will assume that the only knowledge we have about a(θ) is
that it belongs to the uncertainty ellipsoid

(a − ā)∗C −1(a − ā) ≤ 1 (6.5.37)

where the vector ā and the positive definite matrix C are given. Note that both a and ā , as
well as C , usually depend on θ ; however, for the sake of notational convenience, we drop the θ

dependence of these variables.
In some applications, there will be too little available information about the errors in the

steering vector to make a competent choice of the full matrix C in (6.5.37). In such cases, we
may simply set C = εI , so that (6.5.37) becomes

‖a − ā‖2 ≤ ε (6.5.38)

where ε is a positive number. Let a0 denote the true (and unknown) direction vector, and let
ε0 = ‖a0 − ā‖2 where, as before, ā is the assumed direction vector. Ideally, we should choose
ε = ε0. However, it can be shown (see [Stoica, Wang, and Li 2003], [Li, Stoica, and Wang
2003]) that the performance of the robust Capon method remains almost unchanged when ε is
varied in a relatively large interval around ε0.

As already stated, our goal here is to obtain a robust Capon method that is insensitive to errors
in the direction (or steering) vector. We will do so by combining the covariance-fitting formulation
in (6.5.32) for the standard Capon method with the steering uncertainty set in (6.5.37). Hence, we
aim to derive estimates of both σ 2

s and a by solving the following constrained covariance-fitting
problem:

max
a,σ 2

s

σ 2
s subject to: R − σ 2

s aa∗ ≥ 0
(a − ā)∗C −1(a − ā) ≤ 1

(6.5.39)

To avoid the trivial solution (a → 0, σ 2
s → ∞), we assume that a = 0 does not belong to the

uncertainty ellipsoid in (6.5.39), or, equivalently, that

ā∗C −1ā > 1 (6.5.40)

(which is a regularity condition).
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Because both σ 2
s and a are considered to be free parameters in the previous fitting problem,

there is a scaling ambiguity in the signal covariance term in (6.5.39), in the sense that both
(σ 2

s , a) and (σ 2
s /µ, µ1/2a) for any µ > 0 give the same covariance term σ 2

s aa∗. To eliminate this
ambiguity, we can use the knowledge that the true steering vector satisfies the following condition
(see (6.3.11)):

a∗a = m (6.5.41)

However, the constraint in (6.5.41) is nonconvex and so makes the combined problem (6.5.39)
and (6.5.41) somewhat more difficult to solve than (6.5.39). On the other hand, (6.5.39) (without
(6.5.41)) can be solved quite efficiently, as we show next. To take advantage of this fact, we can
make use of (6.5.41) to eliminate the scaling ambiguity in the following pragmatic way:

• Obtain the solution (σ̃ 2
s , ã) of (6.5.39).

• Obtain an estimate of a that satisfies (6.5.41) by scaling ã ,

â =
√

m

‖ã‖ ã

and a corresponding estimate of σ 2
s by scaling σ̃ 2

s , such that the signal covariance term is
left unchanged (i.e., σ̃ 2

s ã ã∗ = σ̂ 2
s â â∗), which gives

σ̂ 2
s = σ̃ 2

s
‖ã‖2

m
(6.5.42)

To derive the solution (σ̃ 2
s , ã) of (6.5.39), we first note that, for any fixed a , the maximizing σ 2

s
is given by

σ̃ 2
s = 1

a∗R−1a
(6.5.43)

(See equation (6.5.33) in Complement 6.5.3.) This simple observation allows us to eliminate σ 2
s

from (6.5.39) and hence reduce (6.5.39) to the following problem:

min
a

a∗R−1a subject to: (a − ā)∗C −1(a − ā) ≤ 1 (6.5.44)

Under the regularity condition in (6.5.40), the solution ã to (6.5.44) will occur on the boundary
of the constraint set; therefore, we can reformulate (6.5.44) as the following quadratic problem
with a quadratic equality constraint:

min
a

a∗R−1a subject to: (a − ā)∗C −1(a − ā) = 1 (6.5.45)

This problem can be solved efficiently by using the Lagrange multiplier approach—see [Li,
Stoica, and Wang 2003]. In the remaining part of this complement, we derive the Lagrange-
multiplier solver in [Li, Stoica, and Wang 2003], but in a more self-contained way.



Section 6.5 Complements 309

To simplify the notation, consider (6.5.45) with C = εI as in (6.5.38):

min
a

a∗R−1a subject to: ‖a − ā‖2 = ε (6.5.46)

(The case of C �= εI can be treated similarly.) Define

x = a − ā (6.5.47)

and rewrite (6.5.46), using x in lieu of a:

min
x

[
x∗R−1x + x∗R−1ā + ā∗R−1x

]
subject to: ‖x‖2 = ε (6.5.48)

The constraint in (6.5.48) makes the x that solves (6.5.48) also a solution to the problem

min
x

[
x∗(R−1 + λI )x + x∗R−1ā + ā∗R−1x

]
subject to: ‖x‖2 = ε (6.5.49)

where λ is an arbitrary constant. Let us consider a particular choice of λ that is a solution of the
equation

ā∗(I + λR)−2ā = ε (6.5.50)

and is also such that

R−1 + λI > 0 (6.5.51)

Then, the unconstrained minimizer of the function in (6.5.49) is given by

x = − (R−1 + λI
)−1

R−1ā = − (I + λR)−1 ā (6.5.52)

and it satisfies the constraint in (6.5.49) (cf. (6.5.50)). It follows that x in (6.5.52) with λ given
by (6.5.50) and (6.5.51) is the solution to (6.5.49) (and, hence, to (6.5.48)). Hence, what is left
to explain is how to solve (6.5.50) under the condition (6.5.51) in an efficient manner; we will
do that next.

Let

R = U �U ∗ (6.5.53)

denote the eigenvalue decomposition (EVD) of R, where U ∗U = UU ∗ = I and

� =




λ1 0
. . .

0 λm


 ; λ1 ≥ λ2 ≥ · · · ≥ λm (6.5.54)

Also, let

b = U ∗ā (6.5.55)
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Using (6.5.53)–(6.5.55), we can rewrite the left-hand side of equation (6.5.50) as

g(λ) � ā∗ [I + λR]−2 ā = ā∗ [U (I + λ�)U ∗]−2
ā

= b∗(I + λ�)−2b =
m∑

k=1

|bk |2
(1 + λλk )2

(6.5.56)

where bk is the k th element of the vector b. Note that

m∑
k=1

|bk |2 = ‖b‖2 = ‖ā‖2 > ε (6.5.57)

(See (6.5.55) and (6.5.40).) It follows from (6.5.56) and (6.5.57) that λ can be a solution of the
equation g(λ) = ε only if

(1 + λλk )
2 > 1 (6.5.58)

for some value of k . At the same time, λ should (see (6.5.51)) be such that

R−1 + λI > 0 ⇐⇒ I + λR > 0

⇐⇒ 1 + λλk > 0 for k = 1, . . . , m (6.5.59)

It follows from (6.5.58) and (6.5.59) that 1 + λλk > 1 for at least one value of k , which implies that

λ > 0 (6.5.60)

This inequality sets a lower bound on the solution to (6.5.50). To refine this lower bound, and
also to obtain an upper bound, first observe that g(λ) is a monotonically decreasing function of λ

for λ > 0. Furthermore, for

λL = ‖ā‖ − √
ε

λ1
√

ε
(6.5.61)

we have that

g(λL) ≥ 1

(1 + λLλ1)2
‖b‖2 = ε

‖ā‖2
‖ā‖2 = ε (6.5.62)

Similarly, for

λU = ‖ā‖ − √
ε

λm
√

ε
≥ λL (6.5.63)

we can verify that

g(λU ) ≤ 1

(1 + λU λm)2
‖b‖2 = ε (6.5.64)
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Summarizing the previous facts, it follows that equation (6.5.50) has a unique solution for λ

that satisfies (6.5.51), which belongs to the interval [λL, λU ] ⊂ (0, ∞). With this observation, the
derivation of the robust version of the Capon method is complete. The following is a step-by-step
summary of the Robust Capon algorithm.

The Robust Capon Algorithm

Step 1. Compute the eigendecomposition R = U �U ∗, and set b = U ∗ā.
Step 2. Solve the equation g(λ) = ε for λ (using, e.g., a Newton method, along with the

fact that there is a unique solution in the interval [λL, λU ]).
Step 3. Compute (cf. (6.5.47), (6.5.52), (6.5.53))

ã = ā − U (I + λ�)−1b (6.5.65)

and, finally, compute the power estimate (see (6.5.42) and (6.5.43))

σ̂ 2
s = ã∗ã

m ã∗U �−1U ∗ã
(6.5.66)

where, from (6.5.65), U ∗ã = b − (I + λ�)−1b.

The bulk of the computation in the algorithm involves computing the EVD of R, which
requires O(m3) arithmetic operations. Hence, the computational complexity of the Robust Capon
method is comparable to that of the standard Capon method. We refer the reader to [Li, Stoica,
and Wang 2003] and also to [Stoica, Wang, and Li 2003] for further computational consid-
erations and insights, and for many numerical examples illustrating the good performance of
the Robust Capon method, including its insensitivity to the choice of ε in (6.5.38) or C in
(6.5.37).

6.5.5 Capon Method with Noise-Gain Constraint

As was explained in Complement 6.5.4, the Capon method performs poorly as a power estimator
in the presence of steering-vector errors. (Yet, it could perform fairly well as a DOA estimator,
provided that the SNR is reasonably large; see [Cox 1973; Li, Stoica, and Wang 2003] and
references therein.) The same happens when the number of snapshots, N, is relatively small, such
as when N is equal to or only slightly larger than the number of sensors, m . In fact, there is a close
relationship between the cases of steering-vector errors and those of small-sample errors—see,
for example, [Feldman and Griffiths 1994]. More precisely, the sampling estimation errors
of the covariance matrix can be viewed as steering-vector errors in a corresponding theoretical
covariance matrix, and vice versa. For example, consider a uniform linear array, and assume that
the source signals are uncorrelated with one another. In this case, the theoretical covariance matrix
R of the array output is Toeplitz. Assume that the sample covariance matrix R̂ is also Toeplitz.
According to the Carathéodory parameterization of Toeplitz matrices (see Complement 4.9.2), we
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can view R̂ as being the theoretical covariance matrix associated with a fictitious ULA on which
uncorrelated signals impinge, but the powers and DOAs of the latter signals are different from
those of the actual signals. Hence, the small sample estimation errors in R̂ can be viewed as being
due to steering-vector errors in a corresponding theoretical covariance matrix.

The robust Capon method (RCM) presented in Complement 6.5.4 significantly outperforms
the standard Capon method (CM) in power-estimation applications in which the sample length is
insufficient for accurate estimation of R or in which the steering vector is known imprecisely. The
RCM was introduced in [Stoica, Wang, and Li 2003; Li, Stoica, and Wang 2003]. An earlier
approach, whose goal is also to enhance the performance of CM in the presence of sampling-
estimation errors or steering-vector mismatch, is the so-called diagonal-loading approach (see,
e.g., [Hudson 1981; Van Trees 2002] and references therein). The main idea of diagonal loading
is to replace R in the Capon formula for the spatial filter h , (6.3.24), by the matrix

R + λI (6.5.67)

where the diagonal-loading factor λ > 0 is a user-selected parameter. The filter vector h so
obtained is given by

h = (R + λI )−1a

a∗(R + λI )−1a
(6.5.68)

The use of the diagonally loaded matrix in (6.5.67) instead of R is the reason for the name of
the approach based on (6.5.68). The symbol R in this complement refers either to a theoretical
covariance matrix or to a sample covariance matrix.

There have been several rules proposed in the literature for choosing the parameter λ in
(6.5.68). Most of these rules choose λ in a rather ad hoc and data-independent manner. As
illustrated in [Li, Stoica, and Wang 2003] and its references, a data-independent selection of
the diagonal-loading factor cannot improve the performance for a reasonably large range of SNR
values. Hence, a data-dependent choice of λ is desired.

One commonly used data-dependent rule selects the diagonal-loading factor λ > 0 that satisfies

‖h‖2 = a∗(R + λI )−2a[
a∗(R + λI )−1a

]2 = c (6.5.69)

where the constant c must be chosen by the user. Let us explain briefly why choosing λ via
(6.5.69) makes sense intuitively. Assume that the array output vector contains a spatially white
noise component whose covariance matrix is proportional to I (see (6.4.1)). Then the power
at the output of the spatial filter h due to the noise component is ‖h‖2; for this reason, ‖h‖2 is
sometimes called the (white) noise gain of h . In scenarios with a large number of (possibly closely
spaced) source signals, the Capon spatial filter h in (6.3.24) could run out of “degrees of freedom”
and hence not pay enough attention to the noise in the data (unless the SNR is very low). The
result is a relatively high noise gain, ‖h‖2, which may well degrade the accuracy of signal power
estimation. To prevent this from happening, it makes sense to limit ‖h‖2 as in (6.5.69). By doing
so, we are left with the problem of choosing c. The choice of c might be easier than the direct
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choice of λ in (6.5.68), yet it is far from trivial, and, in fact, clear-cut rules for selecting c are
hardly available. In particular, a “too small” value of c could limit the noise gain unnecessarily
and result in decreased resolution and increased leakage.

In this complement, we will show that the spatial filter of the diagonally loaded Capon method
in (6.5.68), (6.5.69) is the solution to the following design problem:

min
h

h∗Rh subject to: h∗a = 1 and ‖h‖2 ≤ c (6.5.70)

Because (6.5.70) is obtained by adding the noise-gain constraint ‖h‖2 ≤ c to the standard Capon
problem in (6.3.23), we will call the method that follows from (6.5.70) the constrained Capon
method (CCM). The fact that (6.5.68), (6.5.69) is the solution to (6.5.70) is well known from the
previous literature (see, e.g., [Hudson 1981]). However, we present a rigorous and more thorough
analysis of this solution. As a by-product, the analysis that follows also suggests some guidelines
for choosing the user parameter c in (6.5.69). Note that, in general, a , c, and h in (6.5.70) depend
on the DOA θ ; to simplify notation, we will omit the functional dependence on θ here.

It is interesting to observe that the RCM, described in Complement 6.5.4, can also be cast
into a diagonal-loading framework. To see this, first note from (6.5.47) and (6.5.52) that the
steering-vector estimate used in the RCM is given by

a = ā − (I + λR)−1ā = (I + λR)−1 [(I + λR) − I ] ā

=
(

1

λ
R−1 + I

)−1

ā (6.5.71)

The RCM estimates the signal power by

1

a∗R−1a
(6.5.72)

with a as given in (6.5.71); hence, RCM does not directly use any spatial filter. However, the
power estimate in (6.5.72) is equal to h∗Rh , where

h = R−1a

a∗R−1a
(6.5.73)

hence, (6.5.72) can be viewed as being obtained by the (implicit) use of the spatial filter in
(6.5.71), (6.5.73). Inserting (6.5.71) into (6.5.73), we obtain

h =

(
R + 1

λ
I

)−1

a

a∗
[(

R + 1

λ
I

)
R−1

(
R + 1

λ
I

)]−1

a

(6.5.74)

which, except for the scalar in the denominator, has the form in (6.5.68) of the spatial filter used
by the diagonal-loading approach. Note that the diagonal-loading factor, 1/λ, in (6.5.74) is data
dependent. Furthermore, the selection of λ in the RCM (see Complement 6.5.4 for details on this
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aspect) relies entirely on information about the uncertainty set of the steering vector, as defined,
for instance, by the sphere with radius ε1/2 in (6.5.38). Such information is more readily available
in applications than is information that would help the user select the noise-gain constraint c in the
CCM. Indeed, in many applications, we should be able to make a more competent guess about ε

than about c (for all DOAs of interest in the analysis). This appears to be a significant advantage
of RCM over CCM, despite the fact that both methods can be interpreted as data-dependent
diagonal-loading approaches.

Remark: The reader might have noted by now that the CCM problem in (6.5.70) is similar to the
combined RCM problem in (6.5.44), (6.5.41) discussed in Complement 6.5.4. This observation has
two consequences. First, it follows that the combined RCM design problem in (6.5.44), (6.5.41)
could be solved by an algorithm similar to the one presented below for solving the CCM problem;
indeed, this is the case, as is shown in [Li, Stoica, and Wang 2004]. Second, the CCM problem
(6.5.70) and the combined RCM problem (6.5.44), (6.5.41) both have two constraints and are
more complicated than the RCM problem (6.5.44), which has only one constraint. Hence, the
CCM algorithm described below will be (slightly) more involved computationally than the RCM
algorithm outlined in Complement 6.5.4. �

We begin the analysis of the CCM problem in (6.5.70) by deriving a feasible range for the
user parameter c. Let S denote the set of vectors h that satisfy both constraints in (6.5.70):

S = {h ∣∣ h∗a = 1 and ‖h‖2 ≤ c} (6.5.75)

By the Cauchy–Schwartz inequality (see Result R12 in Appendix A), we have that

1 = ∣∣h∗a
∣∣2 ≤ ‖h‖2‖a‖2 ≤ cm �⇒ c ≥ 1

m
(6.5.76)

where we also used the fact that (by assumption; see (6.3.11)),

‖a‖2 = m (6.5.77)

The inequality in (6.5.76) sets a lower bound on c; otherwise, S is empty. To obtain an upper
bound, we can argue as follows: The vector h used in the CM has the norm

‖hCM‖2 = a∗R−2a(
a∗R−1a

)2 (6.5.78)

Because the noise gain of the CM is typically too high, we should like to choose c so that

c <
a∗R−2a(
a∗R−1a

)2 (6.5.79)

Note that, if c does not satisfy (6.5.79), then the CM spatial filter h satisfies both constraints in
(6.5.70) and, hence, is the solution to the CCM problem. Combining (6.5.76) and (6.5.79) yields
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the following interval for c:

c ∈
[

1

m
,

a∗R−2a(
a∗R−1a

)2
]

(6.5.80)

As with (6.5.53), let

R = U �U ∗ (6.5.81)

be the eigenvalue decomposition (EVD) of R, where U ∗U = UU ∗ = I and

� =




λ1 0
. . .

0 λm


 ; λ1 ≥ λ2 ≥ · · · ≥ λm (6.5.82)

Now,

a∗R−2a[
a∗R−1a

]2 ≤ ‖a‖2/λ2
m[‖a‖2/λ1
]2 = λ2

1

mλ2
m

(6.5.83)

so it follows from (6.5.79) that c also satisfies

mc <
λ2

1

λ2
m

(6.5.84)

The above inequality will be useful later on.
Next, let us define the function

g(h, λ, µ) = h∗Rh + λ(‖h‖2 − c) + µ(−h∗a − a∗h + 2) (6.5.85)

where µ ∈ R is arbitrary and where

λ > 0 (6.5.86)

Remark: We note, in passing, that λ and µ are the so-called Lagrange multipliers and that
g(h, λ, µ) is the so-called Lagrangian function associated with the CCM problem in (6.5.70);
however, to make the following derivation as self-contained as possible, we will not explicitly
use any result from Lagrange-multiplier theory. �

Evidently, by the definition of g(h, λ, µ), we have that

g(h, λ, µ) ≤ h∗Rh for any h ∈ S (6.5.87)
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and for any µ ∈ R and λ > 0. The part of (6.5.85) that depends on h can be written as

h∗(R + λI )h − µh∗a − µa∗h

= [h − µ(R + λI )−1a
]∗

(R + λI )
[
h − µ(R + λI )−1a

]
− µ2a∗(R + λI )−1a (6.5.88)

Hence, for fixed λ and µ, the unconstrained minimizer of g(h, λ, µ) with respect to h is given by

ĥ(λ, µ) = µ(R + λI )−1a (6.5.89)

Let us choose µ such that (6.5.89) satisfies the first constraint in (6.5.70):

ĥ∗(λ, µ̂)a = 1 ⇐⇒ µ̂ = 1

a∗(R + λI )−1a
(6.5.90)

(which is always possible, for λ > 0). Also, let us choose λ so that (6.5.89) also satisfies the
second constraint in (6.5.70) with equality —that is,

‖ĥ(λ̂, µ̂)‖2 = c ⇐⇒ a∗(R + λ̂I )−2a

[a∗(R + λ̂I )−1a]2
= c (6.5.91)

We will show shortly that this equation has a unique solution λ̂ > 0 for any c satisfying (6.5.80).
Before doing so, we remark on the following important fact: Inserting (6.5.90) into (6.5.89), we
get the diagonally loaded version of the Capon method (see (6.5.68))—that is,

ĥ(λ̂, µ̂) = (R + λ̂I )−1a

a∗(R + λ̂I )−1a
(6.5.92)

Because λ̂ satisfies (6.5.91), the vector ĥ(λ̂, µ̂) lies on the boundary of S ; hence (see also (6.5.87)),

g
(

ĥ(λ̂, µ̂), λ̂, µ̂
)

= ĥ∗(λ̂, µ̂)Rĥ(λ̂, µ̂) ≤ h∗Rh for any h ∈ S (6.5.93)

From (6.5.93), we conclude that (6.5.92) is the (unique) solution to the CCM problem.
It remains to show that, indeed, equation (6.5.91) has a unique solution λ̂ > 0 under (6.5.80)

and also to provide a computationally convenient way of finding λ̂. Towards that end, we use the
EVD of R in (6.5.91) (with the hat on λ̂ omitted, for notational simplicity) to rewrite (6.5.91) as
follows:

f (λ) = c (6.5.94)
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where

f (λ) = a∗(R + λI )−2a[
a∗(R + λI )−1a

]2 =

[
m∑

k=1

|bk |2
(λk + λ)2

]
[

m∑
k=1

|bk |2
(λk + λ)

]2 (6.5.95)

and where bk is the k th element of the vector

b = U ∗a (6.5.96)

Differentiation of (6.5.95) with respect to λ yields

f ′(λ) =

−2

[
m∑

k=1

|bk |2
(λk + λ)3

][
m∑

k=1

|bk |2
(λk + λ)

]2

+2

[
m∑

k=1

|bk |2
(λk + λ)2

][
m∑

k=1

|bk |2
(λk + λ)

][
m∑

k=1

|bk |2
(λk + λ)2

]


· 1[
m∑

k=1

|bk |2
(λk + λ)

]4

= −2



[

m∑
k=1

|bk |2
(λk + λ)3

][
m∑

k=1

|bk |2
(λk + λ)

]
−
[

m∑
k=1

|bk |2
(λk + λ)2

]2



·

[
m∑

k=1

|bk |2
(λk + λ)

]
[

m∑
k=1

|bk |2
(λk + λ)

]4 (6.5.97)

Making use of the Cauchy–Schwartz inequality once again, we can show that

[
m∑

k=1

|bk |2
(λk + λ)2

]2

=
[

m∑
k=1

|bk |
(λk + λ)3/2

|bk |
(λk + λ)1/2

]2

<

[
m∑

k=1

|bk |2
(λk + λ)3

][
m∑

k=1

|bk |2
(λk + λ)

]
(6.5.98)
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Hence,

f ′(λ) < 0 for any λ > 0
(and λk �= λp for at least one pair k �= p)

(6.5.99)

which means that f (λ) is a monotonically strictly decreasing function for λ > 0. Combining this
observation with the fact that f (0) > c (see (6.5.79)) shows that, indeed, the equation f (λ) = c
in (6.5.91) has a unique solution for λ > 0.

For efficiently solving the equation f (λ) = c, an upper bound on λ would also be useful.
Such a bound can be obtained from (6.5.95) as follows: A simple calculation shows that

c = f (λ) <

‖b‖2

(λm + λ)2

‖b‖4

(λ1 + λ)2

= (λ1 + λ)2

m(λm + λ)2

�⇒ mc(λm + λ)2 < (λ1 + λ)2 (6.5.100)

where we used the fact that ‖b‖2 = ‖a‖2 = m . From (6.5.100), we see that λ must satisfy the
inequality

λ <
λ1 − √

mcλm√
mc − 1

� λU (6.5.101)

Note that both the numerator and the denominator in (6.5.101) are positive; see (6.5.76) and
(6.5.84).

The derivation of the constrained Capon method is now complete. The following is a step-
by-step summary of the CCM.

The Constrained Capon Algorithm

Step 1. Compute the eigendecomposition R = U �U ∗, and set b = U ∗a .
Step 2. Solve the equation f (λ) = c for λ (using, e.g., a Newton method, along with the

fact that there is a unique solution that lies in the interval (0, λU )).
Step 3. Compute the (diagonally loaded) spatial filter vector

h = (R + λI )−1a

a∗(R + λI )−1a
= U (� + λI )−1b

b∗(� + λI )−1b

where λ is found in Step 2, and estimate the signal power as h∗Rh .

To conclude this complement, we note that the CCM algorithm is quite similar to the
RCM algorithm presented in Complement 6.5.4. The only differences are that the equation for λ
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associated with the CCM is slightly more complicated and, more importantly, that it is harder to
select the c needed in the CCM (for any DOA of interest) than it is to select ε in the RCM. As
we have shown, for CCM one should choose c in the interval (6.5.80). Note that for c = 1/m we
get λ → ∞ and h = a/m , which is the beamforming method. For c = a∗R−2a/(a∗R−1a)2, we
obtain λ = 0 and h = hCM, which is the standard Capon method. Values of c between these two
extremes should be chosen in an application-dependent manner.

6.5.6 Spatial Amplitude and Phase Estimation (APES)

As was explained in Section 6.3.2, the Capon method estimates the spatial spectrum by using
a spatial filter that passes the signal impinging on the array from direction θ in a distortion-
less manner and at the same time attenuates signals with DOAs different from θ as much
as possible. The Capon method for temporal spectral analysis is based on exactly the same
idea (see Section 5.4), as is the temporal APES method described in Complement 5.6.4. In
this complement, we will present an extension of APES that can be used for spatial spectral
analysis.

Let θ denote a generic DOA, and consider the equation (6.2.19),

y(t) = a(θ)s(t) + e(t), t = 1, . . . , N (6.5.102)

that describes the array output, y(t), as a function of a signal, s(t), possibly impinging on the
array from a DOA equal to θ , and a term, e(t), that includes noise along with any other signals
whose DOAs are different from θ . We assume that the array is uniform and linear, in which case
a(θ) is given by

a(θ) = [1, e−iωs , . . . , e−i (m−1)ωs
]T

(6.5.103)

where m denotes the number of sensors in the array, and ωs = (ωcd sin θ)/c is the spatial
frequency (see (6.2.26) and (6.2.27)). As we will explain later, the spatial extension of APES
presented in this complement appears to perform well only in the case of ULAs. This is a limi-
tation, but it is not a serious one, because there are techniques that can be used to approximately
transform the direction vector of a general array into the direction vector of a fictitious ULA
(see, for example, [Doron, Doron, and Weiss 1993]). Such a technique performs a relatively
simple DOA-independent linear transformation of the array output snapshots; these linearly trans-
formed snapshots can then be used as the input to the spatial APES method presented here.
(See [Abrahamsson, Jakobsson, and Stoica 2004] for details on how to use the spatial APES
approach of this complement for arrays that are not uniform and linear.)

Let σ 2
s denote the power of the signal s(t) in (6.5.102), which is the main parameter we want

to estimate; note that the estimated signal power σ̂ 2
s , as a function of θ , provides an estimate of

the spatial spectrum. In this complement, we assume that {s(t)}N
t=1 is an unknown deterministic

sequence; hence, we define σ 2
s as

σ 2
s = lim

N →∞
1

N

N∑
t=1

|s(t)|2 (6.5.104)
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An important difference between equation (6.5.102) and its temporal counterpart (see, e.g.,
equation (5.6.80) in Complement 5.6.6) is that, in (6.5.102), the signal s(t) is completely unknown,
whereas, in the temporal case, we have s(t) = βeiωt and only the amplitude is unknown. Because
of this difference, the use of the APES principle for spatial spectral estimation is somewhat
different from its use for temporal spectral estimation.

Remark: We remind the reader that {s(t)}N
t=1 is assumed to be an unknown deterministic sequence

here. The case in which {s(t)} is assumed to be stochastic is considered in Complement 6.5.3.
Interestingly, application of the APES principle in the stochastic signal case leads to the (standard)
Capon method! �

Let m̄ < m be an integer, and define the following two vectors:

āk =
[
e−i (k−1)ωs , e−ikωs , . . . , e−i (k+m̄−2)ωs

]T
(m̄ × 1) (6.5.105)

ȳk (t) = [yk (t), yk+1(t), . . . , yk+m̄−1(t)
]T

(m̄ × 1) (6.5.106)

for k = 1, . . . , L, with

L = m − m̄ + 1 (6.5.107)

In (6.5.106), yk (t) denotes the k th element of y(t); also, we omit the dependence of āk on θ to
simplify notation. The choice of the user parameter m̄ will be discussed later.

The assumed ULA structure means that the direction subvectors {āk } satisfy the following
relations:

āk = e−i (k−1)ωs ā1, k = 2, . . . , L (6.5.108)

Consequently, ȳk (t) can be written (see (6.5.102)) as

ȳk (t) = āk s(t) + ēk (t) = e−i (k−1)ωs ā1s(t) + ēk (t) (6.5.109)

where ēk (t) is a noise vector defined similarly to ȳk (t). Let h denote the (m̄ × 1) coefficient
vector of a spatial filter that is applied to {ei (k−1)ωs ȳk (t)}L

k=1. Then it follows from (6.5.109) that
h passes the signal s(t) in each of these data sets in a distortionless manner if and only if

h∗ā1 = 1 (6.5.110)

Using the preceding observations along with the APES principle presented in Complement 5.6.4,
we can determine both the spatial filter h and an estimate of the complex-valued sequence {s(t)}N

t=1
(we estimate both amplitude and phase—recall that APES stands for Amplitude and Phase ESti-
mation) by solving the following linearly constrained least-squares (LS) problem:

min
h;{s(t)}

N∑
t=1

L∑
k=1

∣∣∣h∗ȳk (t)e
i (k−1)ωs − s(t)

∣∣∣2 subject to: h∗ā1 = 1 (6.5.111)
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The quadratic criterion in (6.5.111) expresses our desire to make the outputs of the spatial filter,
{h∗ȳk (t)ei (k−1)ωs }L

k=1, resemble a signal s(t) (that is independent of k ) as much as possible,
in a least-squares sense. Said another way, this LS criterion expresses our goal to make the
filter h attenuate any signal in {ȳk (t)ei (k−1)ωs }L

k=1, whose DOA is different from θ , as much
as possible. The linear constraint in (6.5.111) forces the spatial filter h to pass the signal s(t)
undistorted.

To derive a solution to (6.5.111), let

g(t) = 1

L

L∑
k=1

ȳk (t)e
i (k−1)ωs (6.5.112)

and observe that

1

L

L∑
k=1

∣∣∣h∗ȳk (t)e
i (k−1)ωs − s(t)

∣∣∣2

= |s(t)|2 + h∗
[

1

L

L∑
k=1

ȳk (t)ȳ
∗
k (t)

]
h − h∗g(t)s∗(t) − g∗(t)hs(t)

= h∗
[

1

L

L∑
k=1

ȳk (t)ȳ
∗
k (t)

]
h − h∗g(t)g∗(t)h + ∣∣s(t) − h∗g(t)

∣∣2 (6.5.113)

Hence, the sequence {s(t)} that minimizes (6.5.111), for fixed h , is given by

ŝ(t) = h∗g(t) (6.5.114)

Inserting (6.5.114) into (6.5.111) (see also (6.5.113)), we obtain the reduced problem

min
h

h∗Q̂h subject to: h∗ā1 = 1 (6.5.115)

where

Q̂ = R̂ − Ĝ

R̂ = 1

N

N∑
t=1

1

L

L∑
k=1

ȳk (t)ȳ
∗
k (t)

Ĝ = 1

N

N∑
t=1

g(t)g∗(t)

(6.5.116)
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The solution to the quadratic problem with linear constraints in (6.5.115) can be obtained by using
Result R35 in Appendix A:

ĥ = Q̂−1ā1

ā∗
1 Q̂−1ā1

(6.5.117)

Using (6.5.117) in (6.5.114), we can obtain both an estimate of the signal sequence, which
may be of interest in some applications, and an estimate of the signal power:

σ̂ 2
s = 1

N

N∑
t=1

∣∣ŝ(t)∣∣2 = ĥ∗Ĝĥ (6.5.118)

This equation, as a function of DOA θ , provides an estimate of the spatial spectrum.
The matrix Q̂ in (6.5.116) can be rewritten in the following form:

Q̂ = 1

N

N∑
t=1

1

L

L∑
k=1

[
ei (k−1)ωs ȳk (t) − g(t)

] [
ei (k−1)ωs ȳk (t) − g(t)

]∗
(6.5.119)

It follows from (6.5.119) that Q̂ is always positive semidefinite. For L = 1 (or, equivalently,
m̄ = m), we have Q̂ = 0 because g(t) = ȳ1(t) for t = 1, . . . , N. Thus, for L = 1, (6.5.117) is
not valid. This is expected: indeed, for L = 1 we can make (6.5.111) equal to zero, for any h ,
by choosing ŝ(t) = h∗ȳ1(t); consequently, the problem of minimizing (6.5.111) with respect to
(h; {s(t)}N

t=1) is underdetermined for L = 1, and, hence, an infinite number of solutions exist. To
prevent this from happening, we should choose L ≥ 2 (or, equivalently, m̄ ≤ m − 1). For L ≥ 2,
the (m̄ × m̄) matrix Q̂ is a sum of NL outer products; if NL ≥ m̄ , which is a weak condition, Q̂
is almost surely strictly positive definite and hence nonsingular.

From a performance point of view, it turns out that a good choice of m̄ is its maximum
possible value:

m̄ = m − 1 ⇐⇒ L = 2 (6.5.120)

A numerical study of performance, reported in [Gini and Lombardini 2002], supports this choice
of m̄ and also suggests that the spatial APES method can outperform the Capon method both
in spatial-spectrum estimation and in DOA-estimation applications. The APES spatial filter is,
however, more difficult to compute than is the Capon spatial filter, as a result of the dependence
of Q̂ in (6.5.117) on the DOA.

In the remainder of this complement, we will explain why the APES method may be expected
to outperform the Capon method. In doing so, we assume that m̄ = m − 1 (and thus L = 2), as
in (6.5.120). Intuitively, this choice of m̄ provides the APES filter with the maximum possible
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number of degrees of freedom; hence, it makes sense that it should lead to better resolution and
interference-rejection capability than would smaller values of m̄. For L = 2, we have

g(t) = 1

2
[ȳ1(t) + eiωs ȳ2(t)] (6.5.121)

and, hence,

Q̂ = 1

2N

N∑
t=1

{
1

4
[ȳ1(t) − eiωs ȳ2(t)][ȳ1(t) − eiωs ȳ2(t)]

∗

+1

4
[eiωs ȳ2(t) − ȳ1(t)][e

iωs ȳ2(t) − ȳ1(t)]
∗
}

= 1

4N

N∑
t=1

[ȳ1(t) − eiωs ȳ2(t)][ȳ1(t) − eiωs ȳ2(t)]
∗ (6.5.122)

It follows that the APES spatial filter is the solution to the problem (see (6.5.115))

min
h

N∑
t=1

∣∣∣h∗ [ȳ1(t) − eiωs ȳ2(t)
]∣∣∣2 subject to: h∗ā1 = 1 (6.5.123)

and that the APES signal estimate is given (see (6.5.114)) by

ŝ(t) = 1

2
h∗ [ȳ1(t) + eiωs ȳ2(t)

]
(6.5.124)

On the other hand, the Capon spatial filter is obtained as the solution to the problem

min
h

N∑
t=1

∣∣h∗y(t)
∣∣2 subject to: h∗a = 1 (6.5.125)

and the Capon signal estimate is given by

ŝ(t) = h∗y(t) (6.5.126)

To explain the main differences between the APES and Capon approaches, let us assume that,
in addition to the signal of interest (SOI) s(t) impinging on the array from the DOA under
consideration θ , there is an interference signal i (t) that impinges on the array from another DOA,
denoted θi . We consider the situation in which only one interference signal is present, to simplify
the discussion, but the case of multiple interference signals can be treated similarly. The array
output vector in (6.5.102) and the subvectors in (6.5.109) become

y(t) = a(θ)s(t) + b(θi )i (t) + e(t) (6.5.127)

ȳ1(t) = ā1(θ)s(t) + b̄1(θi )i (t) + ē1(t) (6.5.128)

ȳ2(t) = ā2(θ)s(t) + b̄2(θi )i (t) + ē2(t) (6.5.129)
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where the quantities b, b̄1, and b̄2 are defined similarly to a , ā1, and ā2. We have shown the
dependence of the various quantities on θ and θi in equations (6.5.127)–(6.5.129), but we will
drop the DOA dependence in the remainder of the derivation, to simplify notation.

For the previous scenario, the Capon method is known to have poor performance in either
of the following two situations:

(i) The SOI steering vector is known imprecisely—for example, as a result of pointing or
calibration errors;

(ii) The SOI is highly correlated or coherent with the interference, which happens in multipath-
propagation or smart-jamming scenarios.

To explain the difficulty of the Capon method in case (i), let us assume that the true steering vector
of the SOI is a0 �= a . Then, by design, the Capon filter will be such that |h∗a0| � 0 (where � 0
denotes a “small” value). Therefore, the SOI, whose steering vector is different from the assumed
vector a , is treated as an interference signal and is attenuated or cancelled. As a consequence, the
power of the SOI will be significantly underestimated, unless special measures are taken to make
the Capon method robust against steering-vector errors (see Complements 6.5.4 and 6.5.5.)

The performance degradation of the Capon method in case (ii) is also easy to understand.
Assume that the interference is coherent with the SOI and, hence, that i (t) = ρs(t) for some
nonzero constant ρ. Then (6.5.127) can be rewritten as

y(t) = (a + ρb)s(t) + e(t) (6.5.130)

which shows that the SOI steering vector is given by (a + ρb) in lieu of the assumed vector a .
Consequently, the Capon filter will by design be such that |h∗(a + ρb)| � 0, and therefore the
SOI will be attenuated or cancelled in the filter output h∗y(t), as in case (i). In fact, case (ii) can
be considered as an extreme example of case (i), in which the SOI steering vector errors can be
significant. Modifying the Capon method to work well in the case of coherent multipath signals
is thus a more difficult problem than modifying it to be robust to small steering-vector errors.

Next, let us consider the APES method in case (ii). From (6.5.128) and (6.5.129), along with
(6.5.108), we get[

ȳ1(t) − eiωs ȳ2(t)
]

= (ā1 − eiωs ā2
)

s(t) + (b̄1 − eiωs b̄2
)

i (t) + [ē1(t) − eiωs ē2(t)
]

= [1 − ei (ωs−ωi )
]

b̄1i (t) + [ē1(t) − eiωs ē2(t)
]

(6.5.131)

and

1

2

[
ȳ1(t) + eiωs ȳ2(t)

]
= 1

2

(
ā1 + eiωs ā2

)
s(t) + 1

2

(
b̄1 + eiωs b̄2

)
i (t) + 1

2

[
ē1(t) + eiωs ē2(t)

]
= ā1s(t) + 1

2

[
1 + ei (ωs−ωi )

]
b̄1i (t) + 1

2

[
ē1(t) + eiωs ē2(t)

]
(6.5.132)
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where ωi = (ωcd sin θi )/c denotes the spatial frequency of the interference. It follows from
(6.5.131) and the design criterion in (6.5.123) that the APES spatial filter will be such that∣∣1 − ei (ωs−ωi )

∣∣ · ∣∣h∗b̄1
∣∣ � 0 (6.5.133)

Hence, because the SOI is absent from the data vector in (6.5.131), the APES filter is able to
cancel the interference only, despite the fact that the interference and the SOI are coherent. This
interference-rejection property of the APES filter (i.e., |h∗b̄1| � 0) is precisely what is needed
when estimating the SOI from the data in (6.5.132).

To summarize, the APES method circumvents the problem in case (ii) by implicitly elimi-
nating the signal from the data that is used to derive the spatial filter. However, if there is more
than one coherent interference in the observed data, then APES also breaks down, in much the
way that the Capon method does. The reason is that the vector multiplying i (t) in (6.5.131)
is no longer proportional to the vector multiplying i (t) in (6.5.132); hence, a filter h that, by
design, cancels the interference i (t) in (6.5.131) is not guaranteed to have the desirable effect of
cancelling i (t) in (6.5.132); the details are left to the interested reader.

Remark: An argument similar to the one above explains why APES will not work well for
non-ULA array geometries, in spite of the fact that it can be extended to such geometries in a
relatively straightforward manner. Specifically, for non-ULA geometries, the steering vectors of
the interference terms in the data sets used to obtain h and to estimate s(t), respectively, are not
proportional to one another. As a consequence, the design objective does not provide the APES
filter with the desired capability of attenuating the interference terms in the data that is used to
estimate {s(t)}. �

Next consider the APES method in case (i). To simplify the discussion, let us assume that
there are no calibration errors, but only a pointing error, so that the true spatial frequency of the
SOI is ω0

s �= ωs . Then equation (6.5.131) becomes

ȳ1(t) − eiωs ȳ2(t) =
[
1 − ei (ωs−ω0

s )
]

ā0
1 s(t) + [1 − ei (ωs−ωi )

]
b̄1i (t)

+ [ē1(t) − eiωs ē2(t)
] (6.5.134)

It follows that, in case (i), the APES spatial filter tends to cancel the SOI, in addition to cancelling
the interference. However, the pointing errors are usually quite small; therefore, the residual term
of s(t) in (6.5.134) is small as well. Hence, the SOI might well pass through the APES filter
(i.e., |h∗ā0

1 | may be reasonably close to |h∗ā1| = 1), because the filter uses most of its degrees of
freedom to cancel the much stronger interference term in (6.5.134). As a consequence, APES is
less sensitive to steering-vector errors than is the Capon method.

The previous discussion also explains why APES can provide better power estimates than
the Capon method, even in “ideal” cases in which there are no multipath signals that are coherent
with the SOI and no steering-vector errors, but the number of snapshots N is not very large.
Indeed, as argued in Complement 6.5.5, the finite-sample effects associated with practical values
of N can be viewed as inducing both correlation among the signals and steering-vector errors, to
which the APES method is less sensitive than the Capon method, as has been explained.
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We also note that the power of the elements of the noise vector in the data in (6.5.131) that is
used to derive the APES filter is larger than the power of the noise elements in the raw data y(t)
that is used to compute the Capon filter. Somewhat counterintuitively, this is another potential
advantage of the APES method over the Capon method. Indeed, the increased noise power in the
data used by APES has a regularizing effect on the APES filter, which keeps the filter noise gain
down, whereas the Capon filter is known to have a relatively large noise gain that can have a
detrimental effect on signal-power estimation. (See Complement 6.5.5.)

On the downside, APES has been found to have a slightly lower resolution than the Capon
method. (See, e.g., [Jakobsson and Stoica 2000].) Our previous discussion also provides a
simple explanation of this result: when the interference and the SOI are closely spaced (i.e., when
ωs � ωi ), the first factor in (6.5.133) becomes rather small and so might allow the second factor
to increase somewhat. This explains how the beamwidth of the APES spatial filter could be larger
than that of the Capon filter and, hence, why APES might have a slightly lower resolution.

6.5.7 The CLEAN Algorithm

The CLEAN algorithm is a semiparametric method that can be used for spatial spectral estimation.
As we will see, this algorithm can be introduced in a nonparametric fashion (see [Högbom 1974]),
yet its performance depends heavily on an implicit parametric assumption about the structure of the
spatial covariance matrix; thus, CLEAN lies in between the class of nonparametric and parametric
approaches, and it can be called a semiparametric approach.

There is a significant literature about CLEAN and its many applications in diverse areas,
including array signal processing, image processing, and astronomy (see, for example, [Cornwell
and Bridle 1996] and its references.) Our discussion of CLEAN will focus on its application to
spatial spectral analysis and DOA estimation.

First, we present an intuitive motivation of CLEAN. Consider the beamforming spatial spectral
estimate in (6.3.18), namely,

φ̂1(θ) = a∗(θ)R̂a(θ) (6.5.135)

where a(θ) and R̂ are defined as in Section 6.3.1. Let

θ̂1 = arg max
θ

φ̂1(θ) (6.5.136)

σ̂ 2
1 = 1

m2
φ̂1(θ̂1) (6.5.137)

In words, σ̂ 2
1 is the scaled height of the highest peak of φ̂1(θ), and θ̂1 is its corresponding DOA

(see (6.3.16) and (6.3.18)). As we know, the beamforming method suffers from resolution and
leakage problems. However, the dominant peak of the beamforming spectrum, φ̂1(θ), is likely to
indicate that there is a source, or possibly several closely-spaced sources, at or in the vicinity of
θ̂1. The covariance matrix of the part of the array output due to a source signal with DOA equal
to θ̂1 and power equal to σ̂ 2

1 is given (see, e.g., (6.2.19)) by

σ̂ 2
1 a(θ̂1)a

∗(θ̂1) (6.5.138)
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Consequently, the expected term in φ̂1(θ) due to (6.5.138) is

σ̂ 2
1

∣∣∣a∗(θ)a(θ̂1)

∣∣∣2 (6.5.139)

We partly eliminate the term (6.5.139) from φ̂1(θ) and thereby define a new spectrum

φ̂2(θ) = φ̂1(θ) − ρσ̂ 2
1

∣∣∣a∗(θ)a(θ̂1)

∣∣∣2 (6.5.140)

where ρ is a user parameter that satisfies

ρ ∈ (0, 1] (6.5.141)

The reason for using a value of ρ < 1 in (6.5.140) can be explained as follows:

(a) The assumption that there is a source with parameters (σ̂ 2
1 , θ̂1) corresponding to the

maximum peak of the beamforming spectrum, which led to (6.5.140), is not necessarily
true. For example, there could be several sources clustered around θ̂1 that were not resolved
by the beamforming method. Subtracting only a (small) part of the beamforming response
to a source signal with parameters (σ̂ 2

1 , θ̂1) leaves “some power” at and around θ̂1. Hence,
the algorithm will likely return to this DOA region of the beamforming spectrum in future
iterations, when it could have a better chance to resolve the power around θ̂1 into its true
constituent components.

(b) Even if there is indeed a single source at or close to θ̂1, the estimation of its parameters could
be affected by leakage from other sources; this leakage will be particularly strong when the
source signal in question is correlated with other source signals. In such a case, (6.5.139) is
a poor estimate of the contribution of the source in question to the beamforming spectrum.
By subtracting only a part of (6.5.139) from φ̂1(θ), we give the algorithm a chance to
improve the parameter estimates of the source at or close to θ̂1 in future iterations.

(c) In both situations (a) and (b), and possibly in other cases as well, in which (6.5.139) is a
poor approximation of the part of the beamforming spectrum that is due to the source(s)
at or around θ̂1, subtracting (6.5.139) from φ̂1(θ) fully (i.e., using ρ = 1) might yield a
spatial spectrum that takes on negative values at some DOAs (as it never should). Using
ρ < 1 in (6.5.140) reduces the likelihood that this undesirable event will happen too early
in the iterative process of the CLEAN algorithm (as we discuss later).

The calculation of φ̂2(θ), as in (6.5.140), completes the first iteration of CLEAN. In the second
iteration, we proceed similarly, but using φ̂2(θ) instead of φ̂1(θ). Hence, we let

θ̂2 = arg max
θ

φ̂2(θ) (6.5.142)

σ̂ 2
2 = 1

m2
φ̂2(θ̂2) (6.5.143)
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and

φ̂3(θ) = φ̂2(θ) − ρσ̂ 2
2

∣∣∣a∗(θ)a(θ̂2)

∣∣∣2 (6.5.144)

Continuing the iterations in the same manner yields the CLEAN algorithm, a compact description
of which is as follows:

The CLEAN Algorithm

Initialization: φ̂1(θ) = a∗(θ)R̂a(θ)

For k = 1, 2, . . . do:
θ̂k = arg max

θ
φ̂k (θ)

σ̂ 2
k = 1

m2
φ̂k (θ̂k )

φ̂k+1(θ) = φ̂k (θ) − ρσ̂ 2
k

∣∣∣a∗(θ)a(θ̂k )

∣∣∣2

We continue the iterative process in the CLEAN algorithm until either we complete a prespec-
ified number of iterations or φ̂k (θ), for some k , has become (too) negative at some DOAs (see,
for example, [Högbom 1974; Cornwell and Bridle 1996]).

Regarding the choice of ρ in the CLEAN algorithm, there are no clear guidelines about how this
choice should be made to enhance the performance of the CLEAN algorithm in a given application;
ρ ∈ [0.1, 0.25] is usually recommended. (See, e.g., [Högbom 1974; Cornwell and Bridle 1996;
Schwarz 1978b].) We will make further comments on the choice of ρ later in this complement.

In the CLEAN literature, the beamforming spectral estimate φ̂1(θ) that forms the starting
point of CLEAN is called the “dirty” spectrum, in reference to its mainlobe smearing and sidelobe
leakage problems. The discrete spatial spectral estimate {ρσ̂ 2

k , θ̂k }k=1,2,... provided by the algorithm
(or a suitably smoothed version of it) is called the “clean” spectrum. The iterative process that
yields the “clean” spectrum is, then, called the CLEAN algorithm.

It is interesting to observe that the foregoing derivation of CLEAN is not based on a parametric
model of the array output or of its covariance matrix, of the type considered in (6.2.21) or (6.4.3).
More precisely, we have not made any assumption that there is a finite number of point-source
signals impinging on the array, nor that the noise is spatially white. However, we have used the
assumption that the covariance matrix due to a source signal has the form in (6.5.138), which
cannot be true unless the signals impinging on the array are uncorrelated with one another. CLEAN
is known to have poor performance if this parametric assumption does not hold. Hence, CLEAN
is a combined nonparametric-parametric approach, which we call semiparametric for short.

Next, we present a more formal derivation of the CLEAN algorithm. Consider the following
semiparametric model of the array output covariance matrix:

R = σ 2
1 a(θ1)a

∗(θ1) + σ 2
2 a(θ2)a

∗(θ2) + · · · (6.5.145)
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As implied by the previous discussion, this is the covariance model assumed by CLEAN. Let us
fit (6.5.145) to the sample covariance matrix R̂ in a least-squares sense:

min
{σ 2

k ,θk }

∥∥∥R̂ − σ 2
1 a(θ1)a

∗(θ1) − σ 2
2 a(θ2)a

∗(θ2) − · · ·
∥∥∥2

(6.5.146)

We will show that CLEAN is a sequential algorithm for approximately minimizing the preceding
LS covariance-fitting criterion.

We begin by assuming that the initial estimates of σ 2
2 , σ 2

3 , . . . are equal to zero (in which case
θ2, θ3, . . . are immaterial). Consequently, we obtain an estimate of the pair (σ 2

1 , θ1) by minimizing
(6.5.146) with σ 2

2 = σ 2
3 = · · · = 0:

min
σ 2

1 ,θ1

∥∥∥R̂ − σ 2
1 a(θ1)a

∗(θ1)

∥∥∥2
(6.5.147)

As shown in Complement 6.5.3, the solution to (6.5.147) is given by

θ̂1 = arg max
θ

φ̂1(θ); σ̂ 2
1 = 1

m2
φ̂1(θ̂1) (6.5.148)

where φ̂1(θ) is as defined previously. We reduce this power estimate by using ρσ̂ 2
1 in lieu of σ̂ 2

1 .
The reasons for this reduction are discussed in points (a)–(c); in particular, we would like the
residual covariance matrix R̂ − ρσ̂ 2

1 a(θ̂1)a∗(θ̂1) to be positive definite. We will discuss this aspect
in more detail after completing the derivation of CLEAN.

Next, we obtain an estimate of the pair (σ 2
2 , θ2) by minimizing (6.5.146) with σ 2

1 = ρσ̂ 2
1 ,

θ1 = θ̂1 and σ 2
3 = σ 2

4 = · · · = 0:

min
σ 2

2 ,θ2

∥∥∥R̂ − ρσ̂ 2
1 a(θ̂1)a

∗(θ̂1) − σ 2
2 a(θ2)a

∗(θ2)

∥∥∥2
(6.5.149)

The solution to (6.5.149) can be shown to be (as in solving (6.5.147))

θ̂2 = arg max
θ

φ̂2(θ); σ̂ 2
2 = 1

m2
φ̂2(θ̂2) (6.5.150)

where

φ̂2(θ) = a∗(θ)
[
R̂ − ρσ̂ 2

1 a(θ̂1)a
∗(θ̂1)

]
a(θ)

= φ̂1(θ) − ρσ̂ 2
1

∣∣∣a∗(θ)a(θ̂1)

∣∣∣2 (6.5.151)

Observe that (6.5.148) and (6.5.150) coincide with (6.5.136)–(6.5.137) and (6.5.142)–(6.5.143).
Evidently, continuing the previous iterative process, for which (6.5.148) and (6.5.150) are the first
two steps, leads to the CLEAN algorithm on page 328.
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The foregoing derivation of CLEAN sheds some light on the properties of this algorithm.
First, note that the LS covariance-fitting criterion in (6.5.146) is decreased at each iteration of
CLEAN. For instance, consider the first iteration. A straightforward calculation shows that

∥∥∥R̂ − ρσ̂ 2
1 a(θ̂1)a

∗(θ̂1)

∥∥∥2

= ‖R̂‖2 − 2ρσ̂ 2
1 a∗(θ̂1)R̂a(θ̂1) + m2ρ2σ̂ 4

1

= ‖R̂‖2 − ρ(2 − ρ)m2σ̂ 4
1 (6.5.152)

Clearly, (6.5.152) is less than ‖R̂‖2 for any ρ ∈ (0, 2), and the maximum decrease occurs for
ρ = 1 (as expected). A similar calculation shows that the criterion in (6.5.146) monotonically
decreases as we continue the iterative process, for any ρ ∈ (0, 2), and that at each iteration the
maximum decrease occurs for ρ = 1. As a consequence, we might think of choosing ρ = 1, but
this is not advisable. The reason is that our goal is not only to decrease the fitting criterion
(6.5.146) as much and as fast as possible, but also to ensure that the residual covariance matrices

R̂k+1 = R̂k − ρσ̂ 2
k a(θ̂k )a

∗(θ̂k ); R̂1 = R̂ (6.5.153)

remain positive definite for k = 1, 2, . . .; otherwise, fitting σ 2
k+1a(θk+1)a∗(θk+1) to R̂k+1 would

make little statistical sense. By a calculation similar to that in equation (6.5.33) of Comple-
ment 6.5.3, it can be shown that the condition R̂k+1 > 0 is equivalent to

ρ <
1

σ̂ 2
k a∗(θ̂k )R̂

−1
k a(θ̂k )

(6.5.154)

Note that the right-hand side of (6.5.154) is bounded above by 1, because, by the Cauchy–
Schwartz inequality,

σ̂ 2
k a∗(θ̂k )R̂

−1
k a(θ̂k ) = 1

m2

[
a∗(θ̂k )R̂k a(θ̂k )

] [
a∗(θ̂k )R̂

−1
k a(θ̂k )

]

= 1

m2

∥∥∥R̂1/2
k a(θ̂k )

∥∥∥2 ∥∥∥R̂−1/2
k a(θ̂k )

∥∥∥2

≥ 1

m2

∣∣∣a∗(θ̂k )R̂
1/2
k R̂−1/2

k a(θ̂k )

∣∣∣2
= 1

m2

∣∣∣a∗(θ̂k )a(θ̂k )

∣∣∣2 = 1

Also note that, depending on the scenario under consideration, satisfaction of the inequality in
(6.5.154) for k = 1, 2, . . . could require choosing a value for ρ much less than 1. To summarize,
the preceding discussion has provided a a precise argument for choosing ρ < 1 (or even ρ � 1)
in the CLEAN algorithm.
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The LS covariance-fitting derivation of CLEAN also makes the semiparametric nature of
CLEAN more transparent. Specifically, the discussion has shown that CLEAN fits the semipara-
metric covariance model in (6.5.145) to the sample covariance matrix R̂.

Finally, note that, although there is a significant literature on CLEAN, its statistical properties
are not well understood; in fact, other than the preliminary study of CLEAN reported in [Schwarz
1978b], there appear to be very few statistical studies in the literature. The derivation of CLEAN
based on the LS covariance-fitting criterion in (6.5.146) could also be useful in understanding the
statistical properties of CLEAN. However, we will not attempt to provide a statistical analysis of
CLEAN in this complement.

6.5.8 Unstructured and Persymmetric ML Estimates of the Covariance
Matrix

Let {y(t)}t=1,2,... be a sequence of independent and identically distributed (i.i.d.) m × 1
random vectors with mean zero and covariance matrix R. The array output given by equation
(6.2.21) is an example of such a sequence, under the assumption that the signal s(t) and
the noise e(t) in (6.2.21) are temporally white. Furthermore, let y(t) be circularly Gaussian
distributed (see Section B.3 in Appendix B), in which case its probability density function
is given by

p
(
y(t)

) = 1

πm |R|e−y∗(t)R−1y(t) (6.5.155)

Assume that N observations of {y(t)} are available:

{y(1), . . . , y(N )} (6.5.156)

Owing to the i.i.d. assumption made on the sequence {y(t)}t=1,2,..., the probability density function
of the sample in (6.5.156) is given by

p
(
y(1), . . . , y(N )

) =
N∏

t=1

p
(
y(t)

)

= 1

πmN |R|N e−∑N
t=1 y∗(t)R−1y(t) (6.5.157)

The maximum likelihood (ML) estimate of the covariance matrix R, based on the sample in
(6.5.156), is given by the maximizer of the likelihood function in (6.5.157) (see Section B.1 in
Appendix B) or, equivalently, by the minimizer of the negative log-likelihood function:

− ln p
(
y(1), . . . , y(N )

) = mN ln(π) + N ln |R| +
N∑

t=1

y∗(t)R−1y(t) (6.5.158)
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The part of (6.5.158) that depends on R is given (after multiplication by 1
N ) by

ln |R| + 1

N

N∑
t=1

y∗(t)R−1y(t) = ln |R| + tr
(

R−1R̂
)

(6.5.159)

where

R̂ = 1

N

N∑
t=1

y(t)y∗(t) (m × m) (6.5.160)

In this complement, we discuss the minimization of (6.5.159) with respect to R, which yields the
ML estimate of R, under either of the following two assumptions:

A: R has no assumed structure

or

B: R is persymmetric.

As explained in Section 4.8, R is persymmetric (or centrosymmetric) if and only if

JRTJ = R ⇐⇒ R = 1

2

(
R + JRTJ

)
(6.5.161)

where J is the so-called reversal matrix defined in (4.8.4).

Remark: If y(t) is the output of an array that is uniform and linear and the source signals are
uncorrelated with one another, then the covariance matrix R is Toeplitz, and, hence, persymmetric.

�

We will show that the unstructured ML estimate of R, denoted R̂U ,ML, is given by the standard
sample covariance matrix in (6.5.160),

R̂U ,ML = R̂ (6.5.162)

whereas the persymmetric ML estimate of R, denoted R̂P ,ML, is given by

R̂P ,ML = 1

2

(
R̂ + J R̂T J

)
(6.5.163)

To prove (6.5.162), we need to show (see (6.5.159)) that

ln |R| + tr
(

R−1R̂
)

≥ ln |R̂| + m for any R > 0 (6.5.164)
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Let Ĉ be a square root of R̂ (see Definition D12 in Appendix A) and note that

tr
(

R−1R̂
)

= tr
(

R−1Ĉ Ĉ ∗
)

= tr
(

Ĉ ∗R−1Ĉ
)

(6.5.165)

Using (6.5.165) in (6.5.164), we obtain the series of equivalences

(6.5.164) ⇐⇒ tr
(

Ĉ ∗R−1Ĉ
)

− ln
∣∣∣R−1R̂

∣∣∣ ≥ m

⇐⇒ tr
(

Ĉ ∗R−1Ĉ
)

− ln
∣∣∣Ĉ ∗R−1Ĉ

∣∣∣ ≥ m

⇐⇒
m∑

k=1

(λk − ln λk − 1) ≥ 0 (6.5.166)

where {λk } are the eigenvalues of the matrix Ĉ ∗R−1Ĉ .
Next, with reference to (6.5.166), we show that

f (λ) � λ − ln λ − 1 ≥ 0 for any λ > 0 (6.5.167)

To verify (6.5.167), observe that

f ′(λ) = 1 − 1

λ
; f ′′(λ) = 1

λ2

Hence, the function f (λ) in (6.5.167) has a unique minimum at λ = 1, and f (1) = 0; this proves
(6.5.167). With this observation, the proof of (6.5.166), and therefore of (6.5.162), is complete.

The proof of (6.5.163) is even simpler. In view of (6.5.161), we have that

tr
(

R−1R̂
)

= tr
[(

JRT J
)−1

R̂
]

= tr
(

R−T J R̂J
)

= tr
(

R−1J R̂T J
)

(6.5.168)

Hence, the function to be minimized with respect to R (under the constraint (6.5.161)) can be
written as

ln |R| + tr
[
R−1 · 1

2

(
R̂ + J R̂T J

)]
(6.5.169)

As was shown earlier in this complement, the unstructured minimizer of (6.5.169) is given by

R = 1

2

(
R̂ + J R̂T J

)
(6.5.170)

Because (6.5.170) satisfies the persymmetry constraint, by construction, it also gives the constrained
minimizer of the negative log-likelihood function; hence, the proof of (6.5.163) is concluded as well.

The reader interested in more details on the topic of this complement, including a comparison
of the statistical estimation errors associated with R̂U ,ML and R̂P ,ML, can consult [Jansson and
Stoica 1999].
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6.6 EXERCISES

Exercise 6.1: Source Localization by Using a Sensor in Motion
This exercise illustrates how the directions of arrival of planar waves can be found by using a
single moving sensor. Conceptually, this problem is related to that of DOA estimation by sensor-
array methods. Indeed, we can think of a sensor in motion as creating a synthetic aperture similar
to the one corresponding to a physical array of spatially distributed sensors.

Assume that the sensor has a linear motion with constant speed equal to v. Also, assume that
the sources are far-field point emitters at fixed locations in the same plane as the sensor. Let θk

denote the k th DOA parameter (defined as the angle between the direction of wave propagation
and the normal to the sensor trajectory). Finally, assume that the sources emit sinusoidal signals
{αk eiωt }n

k=1 with the same (center) frequency ω. (These signals could be reflections of a probing
sinusoidal signal from different point scatterers of a target, in which case it is not restrictive to
assume that they all have the same frequency.)

Show that, under the previous assumptions and after elimination of the high-frequency compo-
nent corresponding to the frequency ω, the sensor output signal can be written as

s(t) =
n∑

k=1

αk eiωD
k t + e(t) (6.6.1)

where e(t) is measurement noise and ωD
k is the k th Doppler frequency, defined by

ωD
k = −v · ω

c
sin θk

with c denoting the velocity of signal propagation. Conclude from (6.6.1) that the DOA-estimation
problem associated with the scenario under consideration can be solved by using the estimation
methods discussed in this chapter and in Chapter 4 (provided that the sensor speed v can be
accurately determined).

Exercise 6.2: Beamforming Resolution for Uniform Linear Arrays
Consider a ULA comprising m sensors, with interelement spacing equal to d . Let λ denote the
wavelength of the signals impinging on the array. According to the discussion in Chapter 2, the
spatial-frequency resolution of the beamforming used with this ULA is given by

�ωs = 2π

m
⇐⇒ �fs = 1

m
(6.6.2)

Make use of the previous observation to show that the DOA resolution of beamforming for signals
coming from broadside is

�θ � sin−1(1/L) (6.6.3)
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where L is the array’s length measured in wavelengths:

L = (m − 1)d

λ
(6.6.4)

Explain how (6.6.3) approximately reduces to (6.3.20), for sufficiently large L.
Next, show that, for signals impinging from an arbitrary direction angle θ , the DOA resolution

of beamforming is approximately

�θ � 1

L| cos θ | (6.6.5)

Hence, for signals coming from nearly end-fire directions, the DOA resolution is much worse
than what is suggested in (6.3.20).

Exercise 6.3: Beamforming Resolution for Arbitrary Arrays
The beampattern

W (θ) = |a∗(θ)a(θ0)|2, (some θ0)

has the same shape as a spectral window: It has a peak at θ = θ0, is symmetric about that point,
and the peak is narrow (for large enough values of m). Consequently, the beamwidth of the array
with direction vector a(θ) can approximately be derived by using the window bandwidth formula
proven in Exercise 2.15:

�θ � 2
√

|W (θ0)/W ′′(θ0)| (6.6.6)

Now, the array’s beamwidth and the resolution of beamforming are closely related. To see this,
consider the case where the array output covariance matrix is given by (6.4.3). Let n = 2, and
assume that P = I (for simplicity of explanation). The average beamforming spectral function is
then given by

a∗(θ)Ra(θ) = |a∗(θ)a(θ1)|2 + |a∗(θ)a(θ2)|2 + mσ 2

which clearly shows that the sources with DOAs θ1 and θ2 are resolvable by beamforming if
and only if |θ1 − θ2| is larger than the array’s beamwidth. Consequently, we can approximately
determine the beamforming resolution by using (6.6.6). Specialize equation (6.6.6) to a ULA, and
compare with the results obtained in Exercise 6.2.

Exercise 6.4: Beamforming Resolution for L-Shaped Arrays
Consider an m-element array, with m odd, shaped as an “L” with element spacing d . Thus, the
array elements are located at points (0, 0), (0, d), . . . , (0, d(m − 1)/2) and (d , 0), . . . , (d(m −
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1)/2, 0). Using the results in Exercise 6.3, find the DOA resolution of beamforming for signals
coming from an angle θ . What are the minimum and maximum resolution, and for what angles
are these extremal resolutions realized? Compare your results with the m-element ULA case in
Exercise 6.2.

Exercise 6.5: Relationship between Beamwidth and Array-Element Locations
Consider an m-element planar array with elements located at rk = [xk , yk ]T for k = 1, . . . , m .
Assume that the array is centered at the origin, so

∑m
k=1 rk = 0. Use equation (6.6.6) to show

that the array beamwidth at direction θ0 is given by

�θ �
√

2
λ

2π

1

D(θ0)
(6.6.7)

where D(θ0) is the root-mean-square distance of the array elements to the origin in the direction
orthogonal to θ0 (see Figure 6.8):

D(θ0) =
√√√√ 1

m

m∑
k=1

d2
k (θ0), dk (θ0) = xk sin θ0 − yk cos θ0

As in Exercise 2.15, the beamwidth approximation in equation (6.6.7) slightly underestimates the
true beamwidth; a better approximation is given by

�θ � 1.15
√

2
λ

2π

1

D(θ0)
(6.6.8)

Exercise 6.6: Isotropic Arrays
An array whose beamwidth is the same for all directions is said to be isotropic. Consider an
m-element planar array with elements located at rk = [xk , yk ]T for k = 1, . . . , m and centered at

DOA

rk

d
k x

y

r1

r2
u0

Figure 6.8 Array-element projected distances from the origin for DOA angle θ0 (see
Exercise 6.5).
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the origin (
∑m

k=1 rk = 0), as in Exercise 6.5. Show that the array beamwidth (as given by (6.6.7))
is the same for all DOAs if and only if

RT R = cI2 (6.6.9)

where

R =




x1 y1

x2 y2
...

...

xm ym




and where c is a positive constant. (See [Baysal and Moses 2003] for additional details and
properties of isotropic arrays.)

Exercise 6.7: Grating Lobes
The results of Exercise 6.2 might suggest that an m-element ULA can have very high resolution
simply by using a large array element spacing d . However, there is an ambiguity associated with
choosing d > λ/2; this drawback is sometimes referred to as the problem of grating lobes. Identify
this drawback, and discuss what ambiguities exist as a function of d . (Refer to the discussion on
ULAs in Section 6.2.2.)

One potential remedy to this drawback is to use two ULAs: one with m1 elements and element
spacing d1 = λ/2, and another with m2 elements and element spacing d2. Discuss how to choose
m1, m2, and d2 to both avoid ambiguities and increase resolution over a conventional ULA with
element spacing d = λ/2 and m1 + m2 elements. Consider as an example using a 10-element
ULA with d2 = 3λ/2 for the second ULA; find m1 to resolve ambiguities in this array. Finally,
discuss any potential drawbacks of the two-array approach.

Exercise 6.8: Beamspace Processing
Consider an array comprising many sensors (m � 1). Such an array should be able to resolve
sources that are quite closely spaced (cf. (6.3.20) and the discussion in Exercise 6.3). There is,
however, a price to be paid for the high-resolution performance achieved by using many sensors:
the computational burden associated with the elementspace processing (ESP) (i.e., the direct
processing of the output of all sensors) may be prohibitively high, and the involved circuitry
(A–D converters, etc.) could be quite expensive.

Let B∗ be an m̄ × m matrix with m̄ < m , and consider the transformed output vector B∗y(t).
The latter vector satisfies the following equation (cf. (6.2.21)):

B∗y(t) = B∗As(t) + B∗e(t) (6.6.10)

The transformation matrix B∗ can be interpreted as a beamformer or spatial filter acting on y(t).
Estimation of the DOAs of the signals impinging on the array using B∗y(t) is called beamspace
processing (BSP). Since m̄ < m , BSP should have a lower computational burden than ESP. The
critical question is then how to choose the beamformer B so as not to significantly degrade the
performance achievable by ESP.
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Assume that a certain DOA sector is known to contain the source(s) of interest (whose DOAs
are designated by the generic variable θ0). Using this information, design a matrix B∗ that passes
the signals from direction θ0 approximately undistorted. Choose B in such a way that the noise in
beamspace, B∗e(t), is still spatially white. For a given sector size, discuss the tradeoff between
the computational burden associated with BSP and the distorting effect of the beamformer on the
desired signals. Finally, use the results of Exercise 6.3 to show that the resolution of beamforming
in elementspace and beamspace are nearly the same, under the previous conditions.

Exercise 6.9: Beamspace Processing (cont’d)
In this exercise, for simplicity, we consider the beamspace processing (BSP) equation (6.6.10) for
the case of a single source (n = 1):

B∗y(t) = B∗a(θ)s(t) + B∗e(t) (6.6.11)

The elementspace processing (ESP) counterpart of (6.6.11) (cf. (6.2.19)) is

y(t) = a(θ)s(t) + e(t) (6.6.12)

Assume that ‖a(θ)‖2 = m (see (6.3.11)) and that the m̄ × m matrix B∗ is unitary (i.e., B∗B = I ).
Furthermore, assume that

a(θ) ∈ R(B) (6.6.13)

To satisfy (6.6.13), we need knowledge about a DOA sector that contains θ , which is usually
assumed to be available in BSP applications; note that the narrower this sector, the smaller the
value we can choose for m̄. As m̄ decreases, the implementation advantages of BSP compared
with ESP become more significant. However, the DOA estimation performance achievable by
BSP might be expected to decrease as m̄ decreases. As indicated in Exercise 6.8, this is not
necessarily the case. In the present exercise, we lend further support to the fact that the estimation
performances of ESP and BSP can be quite similar to one another, provided that condition (6.6.13)
is satisfied. To be specific, define the array SNR for (6.6.12) as

E
{‖a(θ)s(t)‖2

}
E‖e(t)‖2

= mP

mσ 2
= P

σ 2
(6.6.14)

where P denotes the power of s(t). Show that the “array SNR” for the BSP equation, (6.6.11),
is m/m̄ times that in (6.6.14). Conclude that this increase in the array SNR associated with BSP
might counterbalance the presumably negative impact on DOA performance due to the decrease
from m to m̄ in the number of observed output signals.

Exercise 6.10: Beamforming and MUSIC under the Same Umbrella
Define the scalars

Y ∗
t (θ) = a∗(θ)y(t), t = 1, . . . , N.
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By using previous notation, we can write the beamforming spatial spectrum in (6.3.18) as

Y ∗(θ)WY (θ) (6.6.15)

where

W = (1/N )I (for beamforming)

and

Y (θ) = [Y1(θ) . . . YN (θ)]T

Show that the MUSIC spatial pseudospectrum

a∗(θ)Ŝ Ŝ ∗a(θ) (6.6.16)

(see Sections 4.5 and 6.4.3) can also be put in the form (6.6.15), for a certain “weighting matrix”
W. The columns of the matrix Ŝ in (6.6.16) are the n principal eigenvectors of the sample
covariance matrix R̂ in (6.3.17).

Exercise 6.11: Subspace Fitting Interpretation of MUSIC
In words, the result (4.5.9) (on which MUSIC for both frequency and DOA estimation is based)
says that the direction vectors {a(θk )} belong to the subspace spanned by the columns of S .
Therefore, we can think of estimating the DOAs by choosing θ (a generic DOA variable) so that
the distance between a(θ) and the closest vector in the span of Ŝ is minimized—that is,

min
β,θ

‖a(θ) − Ŝβ‖2 (6.6.17)

where ‖ · ‖ denotes the Euclidean vector norm. Note that the dummy vector variable β in (6.6.17)
is defined in such a way that Ŝβ is closest to a(θ) in Euclidean norm.

Show that the DOA estimation method derived from the subspace-fitting criterion (6.6.17) is
the same as MUSIC.

Exercise 6.12: Subspace Fitting Interpretation of MUSIC (cont’d)
The result (4.5.9) can also be invoked to arrive at the following subspace fitting criterion:

min
B ,θ

‖A(θ) − Ŝ B‖2
F (6.6.18)

where ‖ · ‖F stands for the Frobenius matrix norm and θ is now the vector of all DOA parameters.
This criterion seems to be a more general version of equation (6.6.17) in Exercise 6.11. Show
that the minimization of the multidimensional subspace fitting criterion in (6.6.18), with respect
to the DOA vector θ , still leads to the one-dimensional MUSIC method. Hint: It will be useful
to refer to the type of result proven in equations (4.3.12)–(4.3.16) in Section 4.3.
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Exercise 6.13: Subspace Fitting Interpretation of MUSIC (cont’d)
The subspace fitting interpretations of the previous two exercises provide some insights into the
properties of the MUSIC estimator. Assume, for instance, that two or more source signals are coherent.
Make use of the subspace fitting interpretation in Exercise 6.12 to show that MUSIC cannot be
expected to yield meaningful results in such a case. Follow the line of your argument, explaining
why MUSIC fails in the case of coherent signals, to suggest a subspace fitting criterion that works in
such a case. Discuss the computational complexity of the method based on the latter criterion.

Exercise 6.14: Modified MUSIC for Coherent Signals
Consider an m-element ULA. Assume that n signals impinge on the array at angles {θk }n

k=1 and,
also, that some signals are coherent (so that the signal covariance matrix P is singular). Derive
a modified MUSIC DOA estimator for this case, analogous to the modified MUSIC frequency
estimator in Section 4.5, and show that this method is capable of estimating the n DOAs even in
the coherent-signal case.

COMPUTER EXERCISES

Tools for Array Signal Processing:
The text website www.prenhall.com/stoica contains the following MATLAB functions
for use in DOA estimation:

• Y=uladata(theta,P,N,sig2,m,d)
Generates an m × N data matrix Y = [y(1), . . . , y(N )] for a ULA with n sources arriving
at angles (in degrees from −90◦ to 90◦) given by the elements of the n × 1 vector theta.
The source signals are zero-mean Gaussian with covariance matrix P = E {s(t)s∗(t)}. The
noise component is spatially white Gaussian with covariance σ 2I , where σ 2 =sig2. The
element spacing is equal to d in wavelengths.

• phi=beamform(Y,L,d)
Implements the beamforming spatial spectral estimate in equation (6.3.18) for an m-element
ULA with sensor spacing d in wavelengths. The m × N matrix Y is as defined above. The
parameter L controls the DOA sampling, and phi is the spatial spectral estimate phi=
[φ̂(θ1), . . . , φ̂(θL)], where θk = −π

2 + πk
L .

• phi=capon_sp(Y,L,d)
Implements the Capon spatial spectral estimator in equation (6.3.26); the input and output
parameters are defined as those in beamform.

• theta=root_music_doa(Y,n,d)
Implements the Root MUSIC method in Section 4.5, adapted for spatial spectral estimation
using a ULA. The parameters Y and d are as in beamform, and theta is the vector
containing the n DOA estimates [θ̂1, . . . , θ̂n ]T .

• theta=esprit_doa(Y,n,d)
Implements the ESPRIT method for a ULA. The parameters Y and d are as in beamform,
and theta is the vector containing the n DOA estimates [θ̂1, . . . , θ̂n ]T . The two subarrays
for ESPRIT are made from the first m − 1 and last m − 1 elements of the array.
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Exercise C6.15: Comparison of Spatial Spectral Estimators
Simulate the following scenario: Two signals with wavelength λ impinge on an array of sensors
from DOAs θ1 = 0◦ and a θ2 that will be varied. The signals are mutually uncorrelated complex
Gaussian with unit power, so that P = E {s(t)s∗(t)} = I . The array is a 10-element ULA with
element spacing d = λ/2. The measurements are corrupted by additive complex Gaussian white
noise with unit power. N = 100 snapshots are collected.

(a) Let θ2 = 15◦. Compare the results of the beamforming, Capon, Root MUSIC, and ESPRIT
methods for this example. The results can be shown by plotting the spatial spectrum
estimates from beamforming and Capon for 50 Monte Carlo experiments; for Root MUSIC
and ESPRIT, plot vertical lines of equal height located at the DOA estimates from the 50
Monte Carlo experiments. How do the methods compare? Are the properties of the various
estimators analogous to the time-series case for two sinusoids in noise?

(b) Repeat for θ2 = 7.5◦.

Exercise C6.16: Performance of Spatial Spectral Estimators for Coherent Source Signals
In this exercise, we will see what happens when the source signals are fully correlated (or
coherent). Use the same parameters and estimation methods as in Exercise C6.15 with θ2 = 15◦,
but with

P =
(

1 1
1 1

)

Note that the sources are coherent as rank(P) = 1.
Compare the results of the four methods for this case, again by plotting the spatial spectrum

and “DOA line spectrum” estimates (as in Exercise C6.15) for 50 Monte Carlo experiments from
each estimator. Which method appears to be the best in this case?

Exercise C6.17: Spatial Spectral Estimators Applied to Measured Data
Apply the four DOA estimators from Exercise C6.15 to the real data in the file submarine.mat,
which can be found at the text website www.prenhall.com/stoica. These data are under-
water measurements collected by the Swedish Defense Agency in the Baltic Sea. The 6-element
array of hydrophones used in the experiment can be assumed to be a ULA with inter-element
spacing equal to 0.9 m. The wavelength of the signal is approximately 5.32 m. Can you find the
“submarine(s)?”


