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Abstract. Amongst Wang’s contributions to real-time computing are
those in which he and his collaborators have pushed the boundaries of
pseudo-polynomial time schedulability analysis: developing expressive
task models for which schedulability analysis can be done using algorithms
that have pseudo-polynomial running time. In this note we revisit these
contributions in the light of more recent work that provides additional
context within which to view Wang’s results, and investigate further
directions in which his contributions can be extended.

1 Wang’s contributions to real-time schedulability analysis

Wang and his research collaborators have played a major role in obtaining
solutions to the schedulability analysis problem, one of the foundational
problems studied in real-time scheduling theory. The schedulability analysis
problem may be described as follows:

given (i) the specifications of the computational demands of, and the timing
constraints upon, a workload; (ii) the platform upon which this workload is
to be executed; and (iii) the run-time scheduling algorithm that will be used,
determine (prior to run-time) whether the workload is guaranteed to always
meet all its timing constraints in all runtime scenarios permissible by the
specification.

The workload is often modeled as a collection (called a task system) of independent
recurrent tasks executing upon a shared computing platform. In the widely-studied
sporadic task model, for instance, each task τi is characterized by a worst-case
execution time (WCET) parameter Ci, a relative deadline Di, and a period Ti

(each ∈ N). Each such τi releases a potentially unbounded sequence of jobs, with
successive job releases separated by a duration no smaller than Ti units, during
any particular execution of the system; each job released by τi may need to
execute for up to Ci time units and must complete execution within a duration
Di following its release time. The shared platform upon which the system is to be
implemented may be a uniprocessor one or it may comprise multiple processors
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that may be identical or heterogeneous; furthermore, processors are said to be
preemptive if an executing job can be interrupted and have its execution resumed
later at no cost or penalty, or non-preemptive otherwise. A variety of scheduling
algorithms have been studied, amongst the most common of which are the Fixed-
Priority (FP) [26,27,31] and Earliest-Deadline First (EDF) [17,31] algorithms.
(FP and EDF scheduling are discussed further in Sections 4.1 and 4.2.)

In earlier times the limited availability of computation meant that schedulability
analysis algorithms were restricted to have worst-case running times that are low-
degree polynomials in the size of their inputs in order to be considered “efficient.”
A famous early example of such an efficient algorithm is the utilization-based
FP schedulability test [31] for implicit-deadline sporadic task systems3 upon
preemptive uniprocessors. This utilization-based test is approximate rather than
exact in the sense that it is sufficient but not necessary; indeed, polynomial-time
exact schedulability-analysis algorithms are scarce (one exception is the utilization-
based EDF schedulability test for implicit-deadline sporadic task systems upon
preemptive uniprocessors). This is not surprising: most schedulability-analysis
problems, including FP and EDF schedulability analysis of sporadic task systems
upon preemptive or non-preemptive uniprocessor or multiprocessors, have been
shown to be NP- or coNP-hard and hence unlikely to admit to exact polynomial-
time schedulability tests (e.g., [5, 7, 18,19,21,23,29,30]).

As computing capabilities increased over time, schedulability analysis algorithms
with pseudo-polynomial running times came to be considered efficient. Early
examples of efficient algorithms of this kind include Response-Time Analysis
(RTA) [3,16,26,27,42,43], an exact FP-schedulability test for constrained-deadline
sporadic task systems upon preemptive uniprocessors, Processor-Demand Analysis
(PDA) [6, 7, 29], an EDF-schedulability test for sporadic task systems, also upon
preemptive uniprocessors, that is pseudo-polynomial time for bounded-utilization
systems.

The emergence of this consensus within the safety-critical real-time computing
community that pseudo-polynomial running time equates to efficiency spurred
the real-time scheduling theory community to ask: what is the most general
workload model for which preemptive uniprocessor schedulability analysis remains
doable in pseudo-polynomial running time? Wang and his team made very
significant contributions in this area, proposing a variety of increasingly expressive
models – see Fig. 1 – that demarcate a precise boundary between efficiency and
intractability by identifying the most expressive models for which schedulability-
analysis can be done in pseudo-polynomial time and the least expressive models

3 Some terminology: an implicit-deadline sporadic task system is a sporadic task system
in which each task τi satisfies the additional constraint that Di = Ti, while each task
in a constrained-deadline sporadic task system satisfies Di ≤ Ti. The ratio (Ci/Ti)
of task τi is called its utilization; a bounded-utilization system is one for which the
cumulative utilization is a priori bounded by some constant that is strictly smaller
than 1. A utilization-based schedulability test determines schedulability by comparing
the cumulative utilization of all the tasks in the system to some limit.
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for which it cannot (assuming P ̸= NP). In particular, they established that
EDF schedulability analysis of bounded-utilization task systems upon preemptive
uniprocessors can be done in pseudo-polynomial time for task systems represented
using all of the models depicted in Fig. 1 with the exception of the two most general
ones (EDRT [39] and Timed Automata with Tasks [24]). For FP-schedulability
upon preemptive uniprocessors, pseudo-polynomial time algorithms are known
to exist only for the Liu & Layland [31] and constrained-deadline sporadic [32]
task models. The existence of pseudo-polynomial time FP-schedulability tests is
still open for the non-cyclic GMF model [34], while all other models in Fig. 1
were shown to be strongly coNP-hard by Stigge [37], and so do not have such
tests unless P = NP.

Our perception of what constitutes an efficient algorithm for schedulability anal-
ysis continues to evolve [1], and some recent research in the real-time scheduling
community is exploring ways of moving beyond the pseudo-polynomial time
barrier. Many such investigations (see, e.g., [4, 11,12,15,46]) seek to transform
a schedulability-analysis problem to some other form such as an integer linear
program (ILP), which can then be solved by an ILP solver. Although solving an
integer linear program is itself computationally intractable (it is strongly NP-
complete to decide if any feasible solution exists), excellent off-the-shelf solvers
exist that, by incorporating a combination of expert techniques, special-purpose
heuristics, and highly optimized implementation, are able to handle surprisingly
large problem instances in reasonable amounts of time.

Does this emerging acceptance of ILP representations as adequately efficiently
solvable imply that all schedulability-analysis problems can now be considered
to be efficiently solvable? By no means: while it is known that solving an ILP
(specifically, determining whether a feasible solution exists), is an NP-complete
problem as mentioned above, computational complexity theory defines various
additional complexity classes that are widely presumed to encompass problems
beyond NP or coNP (akin to NP being believed to contain problems beyond P –
i.e., unsolvable by polynomial-time algorithms). Demonstrating the hardness of a
schedulability analysis problem for one of these complexity classes would strongly
suggest that it cannot be efficiently solved, even with a highly optimized ILP
solver. The complexity class NPNP (commonly denoted as ΣP

2 ) is an example: it
is widely conjectured that NP ⊊ ΣP

2 and coNP ⊊ ΣP
2 . Woeginger [45] explains

the implications: “If you hit a ΣP
2 -complete problem, then there is no way of

formulating it (in polynomial time) as an integer program (of polynomial size)”
and goes on to state that “ΣP

2 -complete problems are much, much, much, much,
much harder than any problem [. . . ] that can be attacked via ILP solvers.”

Summarizing the discussion above, until quite recently notions of efficiency in
schedulability analysis appear to have been centered around these three beliefs:

1. Schedulability-analysis algorithms that have pseudo-polynomial running times
are accepted as being efficient; Wang and his colleagues have made significant
contributions in developing very general task models for which such efficient
algorithms exist for preemptive uniprocessor EDF schedulability-analysis.
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Liu & Layland [31]

Multiframe [33] Sporadic [32]

Generalized multiframe [13]

Non-cyclic GMF [34]

recurring branching [8]

non-cyclic RRT [10]

RRT [9]

DRT [38]

k-EDRT [39]

EDRT [39]

Timed Automata with Tasks [24]

Fig. 1. Models for recurrent real-time tasks (the highlighted models have been proposed
by Wang and his collaborators). Arrows point from less expressive models to more
expressive ones; models not connected by a path have incomparable expressiveness.
Wang and his collaborators proved that the k-EDRT model is the most general one
for which preemptive uniprocessor EDF-schedulability analysis can be done in pseudo-
polynomial time, and the sporadic model the most general one for which preemptive
uniprocessor FP-schedulability analysis can be done in pseudo-polynomial time. This
figure is adapted from [41].
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2. More recently, “polynomial-time + ILP-solver” algorithms – algorithms that
have polynomial running time and are additionally allowed to make calls to
an ILP solver – are also coming to be considered efficient (although less so
than algorithms with pseudo–polynomial running times without needing an
ILP solver).

3. Showing a problem to be hard for a complexity class believed to contain
problems not in NP or coNP shows it to be truly intractable (as stated above,
it is considered to be “much, much, much, much, much harder” [44] than any
problem in NP or coNP).

However, recent research [1, page 4] somewhat blurs the third of these beliefs:

Observation 1 (From [1]) If C is a complexity class contained in EXP and C
is closed under polynomial-time reductions, then there exist C-complete problems
with pseudo-polynomial time solutions. ⊓⊔

(Here EXP is the exponential-time analog of complexity class P: it is the complexity
class of all decision problems that are solvable using exponential-time algorithms.
A complexity class C is said to be closed under polynomial-time reductions if
whenever problem X is in C and problem Y can be reduced to problem X in
polynomial time, then problem Y is also in C.)

It immediately follows from Observation 1 that showing a problem to be ΣP
2 -hard

does not necessarily rule out the possibility of there being a pseudo-polynomial-
time algorithm for solving it – pseudo-polynomial time algorithms may exist for
solving problems that belong to any complexity class ⊆ EXP. This fact motivates
us to also take a closer look at the first of these three beliefs: we make a case
that not all pseudo-polynomial algorithms should be considered equally tractable,
and, in Section 2 below, propose a finer-grained classification within the class of
pseudo-polynomial time algorithms.

2 A finer-grained notion of pseudo-polynomial time

The fundamental reason for why pseudo-polynomial time algorithms are consid-
ered efficient for scheduling problems is that the numerical parameters in such
problems tend to have a direct physical interpretation, often as a measure of
time, and therefore do not grow without bound in meaningful instances. Even so,
numerical values found in input instances can quickly grow much larger than the
instance size as measured in bits. In real-time scheduling problems, time may be
measured in milliseconds, microseconds, or even CPU clock cycles, and numerical
values can easily range into the thousands or millions even for “small” instances.
If we expect to see instances where the largest numerical value N is much larger
than the total input size n, then clearly the efficiency of a pseudo-polynomial
time algorithm is often dominated by its scaling with respect to N rather than
to n. Still, in the real-time scheduling theory literature at least, we seldom see
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much attention paid to which polynomial scaling applies with respect to N .4

Motivated by the above observations we define the following more fine-grained
notion of pseudo-polynomial time, where the particular dependence (e.g., linear
or quadratic) on the largest numerical parameter is made explicit.5

Definition 1 (Pseudo-f). An algorithm’s running time is pseudo-f if it is
O(nk × f(N)), where n is the size of the representation of the problem instance,
N is its largest numerical parameter value, k is a constant, and f is some
function. ⊓⊔

It follows from this definition that an algorithm’s running time is pseudo-
polynomial if and only if it is pseudo-f for some polynomial f . We will say
that an algorithm with pseudo-f running time is pseudo-linear if f(N) ∈ O(N),
pseudo-quadratic if f(N) ∈ O(N2), etc.

A simple observation to make is that the notion of pseudo-f is unaffected by any
logarithmic factors in f :

Theorem 2. If f(N) = loga(N) × N b and g(N) = N b for constants a and b,
then an algorithm’s running time that is pseudo-f is also pseudo-g.

Proof. With any standard representation of numbers we have log(N) ∈ O(n),
where N is the largest numerical parameter and n is the size of the input. If the
running time is pseudo-f , then for some k it is

O(nk × f(N)) = O(nk × loga(N)×N b) ⊆ O(nk+a ×N b) = O(nk+a × g(N))

and is therefore also pseudo-g. ⊓⊔

Despite being insensitive to logarithmic factors, Definition 1 provides meaningful
distinctions not just between algorithm running times, but also between the
complexity of problems. We see below that any difference in polynomial degree
between f and g differentiates pseudo-f from pseudo-g, and the problems that
can be solved correspondingly.

Theorem 3. For all a > b > 0, there are problems that can be solved in time
O(poly(n) × Na), but not in time O(poly(n) × N b), where n is the size of the
input and N is the value of its largest numerical parameter.

Proof. Let c = (a+b)/2 and let S be a problem that can be solved in time O(2an),
but not in time O(2cn). (We know that such S exist by the Time Hierarchy
Theorem [25].) Let

S′ def
=

{
(x, y) | x ∈ S ∧ y = 2|x|

}
4 The authors of this paper are most certainly guilty of having, in multiple previous
works, declared success as soon as a pseudo-polynomial time algorithm has been
found for the problem under study.

5 This definition is a generalization of one that appeared in [1].
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and we will see that S′ is the problem we are looking for. It is evident that y is
the largest number in any instance (x, y) ∈ S′.

First, we can solve S′ in time O(poly(n)×Na) as follows. Given (x, y) we check
that y = 2|x| and if so we use the O(2an) algorithm for S to check that x ∈ S in
time O(2a|x|) = O(ya).

Second, we cannot solve S′ in time O(poly(n)×N b). Suppose for the purpose of
contradiction that we could, then we could solve S as follows. Given an instance
x of S we reduce to instance (x, 2|x|) of S′ in polynomial time. Then we use the
algorithm for S′ to determine if (x, 2|x|) ∈ S′ (and hence x ∈ S) in time

O
(
poly(|x|+ |y|)× yb

)
= O

(
poly(|x|)× 2b|x|

)
⊊ O

(
2c|x|

)
,

thereby contradicting the assumption that S cannot be solved in time O(2cn). ⊓⊔

Corollary 1. More problems can be solved in pseudo-quadratic time than in
pseudo-linear time, and in pseudo-cubic time than in pseudo-quadratic time,
etc. ⊓⊔

3 A notion of scaling invariance of pseudo-polynomial time

In addition to being able to differentiate pseudo-polynomial time algorithms
based on their polynomial dependence on the numerical values found in inputs
(as in Definition 1), we would also like to differentiate pseudo-polynomial time
algorithms based on whether their running time is invariant to simple scaling of
such values.

Preferably, a pseudo-polynomial time algorithm should take longer time to
run only when there are more complicated relationships between the values of
numerical parameters in the input, and not when those numerical parameters
grow without their internal relationships changing. This is a natural property of
many problems with pseudo-polynomial time algorithms. For example, it is not
inherently harder to evenly partition boxes of sizes 1000, 2000, and 3000, than to
partition boxes of sizes 1, 2, and 3.

In the context of scheduling problems, if numerical parameters represent time,
this translates into whether a pseudo-polynomial time algorithm is sensitive
to the unit used for specifying timing parameters. For example, we would like
such an algorithm to have the same running time for a particular input instance
regardless of whether time is given in units of milliseconds, microseconds or
1/17’ths of a second, assuming that everything else remains unchanged and that
numerical values are still integer.

The following definition attempts to capture this notion of invariance of a pseudo-
polynomial time algorithm.6

6 This definition (though not the analysis following it), appeared in [1]. There it was
called robust pseudo-polynomial time, but we prefer the term used here as “robust”
is an overloaded word.
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Definition 2 (Scale-invariant pseudo-polynomial time). An algorithm is
scale-invariant pseudo-polynomial if it runs in time that is polynomial in n and
in N/G, where n is the size of the input, N is its largest numerical parameter,
and G is the greatest common divisor of all its numerical parameters. ⊓⊔

By combining this definition with Definition 1 we will also refer to algorithms as
being scale-invariant pseudo-linear if the dependence on N/G is linear, etc.

We note that it seems useful to retain some flexibility regarding which numerical
parameters to include in the computation of the greatest common divisor G
in Definition 2. For instance, in a multiprocessor scheduling problem with a
multitude of numerical parameters denoting time (deadlines, periods, execution
times) and a single numerical parameter denoting the number of processors,
it may make sense to include only the parameters that share a unit (i.e., the
parameters representing time), but not the processor count, when calculating G.

Not all pseudo-polynomial time algorithms are scale invariant, and in the following
we see that this differentiates computational problems as well.

Theorem 4. There are problems that can be solved in pseudo-polynomial time,
but not in scale-invariant pseudo-polynomial time.

Proof. This follows from a simple padding argument. Let S be an EXP-complete
problem that is naturally encoded without using numbers, say Generalized Go,
which was proven to be EXP-complete by Robson [35].7 Say that S can be solved
in time

O
(
2n

k)
. (1)

Then let

S′ def
=

{
(x, y) | x ∈ S ∧ y = 2|x|

k
}

be another problem created by padding instances x of S by exponentially large
numbers y, where k is the constant from Eq. 1. A reduction from S to S′ is clearly
in polynomial time, so S′ is EXP-hard. We can also solve S′ in pseudo-polynomial

time by first checking that y = 2|x|
k

and then use the algorithm for S to check

x ∈ S in time O(2|x|
k

) = O(y).

However, since we consider instances of S to have no numbers in them, the only
number in an instance (x, y) of S′ is y. Therefore y/G, where G is the GCD of
numbers in (x, y) is simply y/y = 1. A scale-invariant pseudo-polynomial time
algorithm for S′ must therefore run in time poly(n,N/G) = poly(|x|+ |y|, y/y) =
poly(|x|+ |y|), which is impossible by the Time Hierarchy Theorem since S′ is
EXP-hard. ⊓⊔
7 Sorry, Wang, that’s with traditional Japanese rules. Generalized Go with Chinese
rules is not known to be EXP-complete. [36]
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In real-time scheduling problems, a lack of scale invariance of a schedulability
test could stem from a reliance on discrete schedules (e.g., that jobs can only be
released at integer time points or executed for an integer number of time units
at a time)8, or from scheduling decision based on things such as absolute time
points or number of time units executed. In other cases, however, there seems
to be little reason for why a pseudo-polynomial time schedulability test could
not in principle be made scale invariant. The following natural property seems
self-evident.

Proposition 1. Let J be a sequence of independent jobs, each specified by release
time, deadline and execution time, in a setting where scheduling does not have
to be discrete. Let J be scheduled by a scheduler that, if it bases any scheduling
decisions on the jobs’ parameters or remaining execution times, only does so
on the relative ordering of those values (e.g., as with EDF, which considers the
relative ordering of deadlines). If J′ is another sequence of jobs that differs from
J only in that its jobs have their parameters uniformly scaled by some factor,
then the scheduler would meet all deadlines of J if and only if it would meet all
deadlines of J′.

Most common scheduling algorithms fit the above description and would simply
generate scaled, but otherwise identical, schedules from job sequences J and J′.
This is easily seen to include schedulers such as EDF, FP and FIFO.

The above proposition immediately generalizes to task systems where, if task
system Γ ′ is a uniformly scaled version of task system Γ , then any job sequence
released by Γ ′ is a uniformly scaled version of a job sequence released by Γ . This
includes basic periodic and sporadic task systems.

Corollary 2. Let Γ be a task system of periodic or sporadic tasks not limited to
discrete behaviors, and let Γ ′ be an identical task system, but with uniformly scaled
task parameters. Then schedulers such as EDF, FP and FIFO would correctly
schedule Γ if and only if they correctly schedule Γ ′.

We note that if a scheduling algorithm has the above properties of producing
identical, but scaled, schedules on scaled inputs for a given setting, then a
schedulability test for it could be made scale invariant by simply dividing every
task parameter by the GCD before applying the test.

4 A (very) brief survey of some schedulability algorithms

In this section we take a quick look at three schedulability problems and cor-
responding schedulability tests from the real-time scheduling literature. These

8 In some settings this is a very important distinction. For example, in the popular
mixed-criticality scheduling model some task systems are schedulable if job releases
are restricted to integer time points, but become impossible to schedule correctly if
they are not (see [22, Claim 2]).
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tests are pseudo-polynomial time algorithms; we classify them further on the
basis of Definitions 1 and 2.

4.1 Response-time analysis

Response-time analysis (RTA) [3,16,26,27,42,43] is the classical schedulability
test for Fixed-Priority (FP) scheduling, which computes the worst-case response
time of each task and compares it with the deadline. In the basic setting of
independent sporadic or synchronous periodic tasks with constrained deadlines
scheduled on a preemptive uniprocessor, if the smallest positive fixed point Ri to

Ri = Ci +
∑

τj∈hp(i)

⌈
Ri

Tj

⌉
× Cj

is such that Ri ≤ Ti, where hp(i) is the set of tasks with higher priority than τi,
then Ri is the worst-case response time of task τi. The fixed-point iteration

Rn+1
i = Ci +

∑
τj∈hp(i)

⌈
Rn

i

Tj

⌉
× Cj (2)

is known to find the smallest positive fixed point Ri if started with an initial value
that is at most Ri. Since for schedulability we are interested only in knowing
if Ri ≤ Di for each task, we can immediately stop the fixed-point iteration if
we encounter a Rn

i > Di. Assuming integer task parameters, the number of
iterations of Eq. 2 before converging or reaching Rn

i > Di is therefore bounded by
Di. From this follows the well-known result that determining whether Ri ≤ Di

can be done in time O(|hp(i)| × Di) using RTA, and the entire task system’s
schedulability can then certainly be determined in time O(n2 × N), where n
is the size of the task system and N the largest task parameter value. From
Definition 1 we have then that RTA is not only pseudo-polynomial in this setting,
but is in fact pseudo-linear.

Just a little closer inspection of Eq. 2 reveals that the number of iterations is also
bounded by

∑
τj∈hp(i)⌈Di/Tj⌉, which is O(n × N/G), where G is the greatest

common divisor of all numerical task parameters. From Definition 2, we have
then that RTA is also scale-invariant pseudo-linear.

We note that RTA in the form above does not work for task systems with arbitrary
deadlines (where we may have Di > Ti). It has been extended by Lehoczky [28]
to work in such settings, but that variant of RTA takes exponential time and it
is not known if the schedulability problem with arbitrary deadlines can be solved
in pseudo-polynomial time at all in the general setting.

4.2 Processor-demand analysis

Processor-demand analysis (PDA) [6, 7] is a schedulability test for Earliest
Deadline First (EDF) scheduling of independent synchronous periodic or sporadic
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tasks on a preemptive uniprocessor. EDF-schedulability in this setting can be
solved in linear time for task systems with implicit deadlines using a simple
utilization test [31], but with constrained or arbitrary deadlines PDA is the
canonical test. According to PDA, a task system Γ is EDF-schedulable if and
only if ∑

τi∈Γ

(
max

(⌊
t−Di

Ti

⌋
+ 1, 0

))
× Ci ≤ t (3)

for all time-window sizes t ∈ T(Γ ), where T(Γ ) is the so-called test set for Γ .

The EDF-schedulability problem is strongly coNP-complete [20], and so the size
of the test set is not pseudo-polynomial in general. However, if the task system’s
utilization,

∑
τi∈Γ Ci/Ti, is bounded by some constant c, where c < 1, then a

valid test set is

T(Γ ) =

{
0, 1, . . . ,

c

1− c
×max

τi∈Γ
{Ti −Di}

}
.

In this case we have that |T(Γ )| is of pseudo-polynomial size, and indeed it is
easy to see that PDA in this case meets the requirements of Definition 1 to be
pseudo-linear. Bounding the utilization to something less than 100% (using, say,
c = 0.99) is not particularly limiting, and good engineering practice is anyway to
not utilize the processor to its limits at 100%.

We can note that the above pseudo-polynomial version of PDA is not scale
invariant, as per Definition 2, as scaling all task parameters by some integer
factor would cause the test set to grow by the same factor. A common optimization
applied to PDA is to include only the points t where t ≡ Di (mod Ti) for some
τi ∈ Γ in the test set (those are exactly the points at which the left-hand side
of Eq. 3 is discontinuous). By applying this optimization, the size of the test
set remains the same if a uniform scaling is applied to the task parameters, and
PDA becomes scale-invariant pseudo-linear as per Definition 2.

The fact that both PDA and RTA (as seen in Section 4.1) are scale-invariant
pseudo-linear in common settings may go some way to explain their practical
efficiency.

4.3 Semi-clairvoyant scheduling of mixed-criticality tasks

We will now take a look at a more recent schedulability test for what is called semi-
clairvoyant scheduling [2] of mixed-criticality tasks with graceful degradation [14].
In this scheduling problem we have a set of regular sporadic tasks, but each task
is marked as having either high or low criticality. The tasks with high criticality
come with alternative implementations that may have longer execution times (for
handling extraordinary or critical situations), while the tasks with low criticality
come with alternative implementations that may have lower execution times (as
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lower-quality backup implementations that consume less resources in critical
scenarios). The arrival of any job from a high-criticality task may trigger a critical
scenario and result in the use of, from that time point onwards, the alternative
implementations of all new jobs from all tasks.

In [14], an exact EDF-schedulability test was described for this scheduling problem,
which builds on PDA as described in Section 4.2 and also assumes bounded
utilization. Instead of quantifying over a single pseudo-polynomially sized test
set, as in PDA, this test requires two universal quantifiers and has the following
general form (we skip the details of the expressions here, they are available
in [14, Theorem 7]):

∀t ∈ A,∀s ∈ B : dbf(t, s) ≤ t,

where A and B are pseudo-linearly sized sets, and dbf(t, s) is a simple function
that can be evaluated in linear time (essentially a generalization of the left-hand
side of Eq. 3).

The extra quantification, compared to PDA, serves the purpose of testing all
the possibilities as to which job triggers critical behavior, and there seems to
be no obvious way to get rid of it. The effect is that this schedulability test is
not pseudo-linear, though it can be seen to be pseudo-quadratic.9 Some sort
of additional quantification over time points in a time interval, as seen here, is
not an uncommon pattern of schedulability tests and seems a likely cause of a
number of slower-than-pseudo-linear pseudo-polynomial time schedulability tests
in the literature.

The test described above is also not scale invariant, as in Definition 2, because
one of the sets that is quantified over grows with an increased uniform scaling
of task parameters. It is not trivial to see in the proofs presented in [14] that
it does not have to be so, and it may seem as if the test strategy employed
inherently lacks scale invariance. However, a higher-level reasoning similar to
that of Corollary 2 shows that EDF-schedulability must be unaffected if all task
parameters were uniformly scaled in this setting, and so the test can in fact easily
be made scale invariant by first dividing all parameters by the GCD.

5 Concluding remarks

The real-time scheduling community has long considered the availability of
pseudo-polynomial time algorithms as one of the important delimiters between

9 A pseudo-quadratic test is certainly much better than a full-blown exponential-time
test, but we should also expect that this test can be much slower than the pseudo-
linear PDA that it builds upon. The authors of [14] did however not dwell on this
fact, and instead happily reported the success of finding a pseudo-polynomial time
test for the problem without further discussion. The authors of [14] are also the
authors of the current paper. Nostra culpa.
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tractable and intractable problems. This largely holds true because numerical
parameters in such problems tend to represent physical time, and therefore do
not grow without bound. Wang has been part of several important works that
have pushed the boundary of what can be analyzed in pseudo-polynomial time,
and via complexity analysis found where that boundary lies exactly (for example
in [20,38–40]).

Recent research [1] has investigated some ways in which the pseudo-polynomial
time boundary can be blurred. In this note we have looked closer at some of those
ways, in particular by further classifying pseudo-polynomial time algorithms based
on their particular polynomial dependency on the numerical variables, and based
on whether their running time is invariant to scaling of those parameters. We
anticipate that the findings reported here may spur additional research building
upon Wang’s works by extending his ideas and approaches to our finer-grained
classification and by incorporating scale-invariance.
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