
A CloseR LooK at Pseudo-Polynomial Time and
its Use in Real-Time Scheduling TheoRy

Sanjoy BaRuah
Washington University in Saint Louis

Pontus EKbeRg
Uppsala University

Dedicated to Wang Yi to Celebrate his Scientific Career



Come again?

An algorithm is pseudo-polynomial if its running time is
polynomial in the size n of the input instance (in bits) and
in the instance’s largest numerical parameter N.

Pseudo-polynomial time

In scheduling, N would typically denote some measure of time and
would not grow without bound.

Say, N = 2100 is not meaningful at human timescales.

Pseudo-polynomial time has traditionally been considered
tractable in real-time scheduling.

2



Come again?

An algorithm is pseudo-polynomial if its running time is
polynomial in the size n of the input instance (in bits) and
in the instance’s largest numerical parameter N.

Pseudo-polynomial time

In scheduling, N would typically denote some measure of time and
would not grow without bound.

Say, N = 2100 is not meaningful at human timescales.

Pseudo-polynomial time has traditionally been considered
tractable in real-time scheduling.

2



Come again?

An algorithm is pseudo-polynomial if its running time is
polynomial in the size n of the input instance (in bits) and
in the instance’s largest numerical parameter N.

Pseudo-polynomial time

In scheduling, N would typically denote some measure of time and
would not grow without bound.

Say, N = 2100 is not meaningful at human timescales.

Pseudo-polynomial time has traditionally been considered
tractable in real-time scheduling.

2



Come again?

An algorithm is pseudo-polynomial if its running time is
polynomial in the size n of the input instance (in bits) and
in the instance’s largest numerical parameter N.

Pseudo-polynomial time

In scheduling, N would typically denote some measure of time and
would not grow without bound.

Say, N = 2100 is not meaningful at human timescales.

Pseudo-polynomial time has traditionally been considered
tractable in real-time scheduling.

2



Pushing the boundaRy of pseudo-polynomial time

Ex
pr

es
siv

en
es
s Efficiency

(Single processor Earliest Deadline First scheduling)

Ps
eu

do
-p
ol
yn

om
ial

tim
e

Po
lyn

om
ial ti

me

co
N
P

implicit-deadline
sporadic

constrained-deadline
sporadic

arbitrary-deadline
sporadic

MF

GMF

RB

RRT

ncGMF

ncRRT

DRT

k-EDRT

EDRT

Task Automata

3



Pushing the boundaRy of pseudo-polynomial time

Ex
pr

es
siv

en
es
s Efficiency

(Single processor Earliest Deadline First scheduling)

Ps
eu

do
-p
ol
yn

om
ial

tim
e

Po
lyn

om
ial ti

me

co
N
P

implicit-deadline
sporadic

constrained-deadline
sporadic

arbitrary-deadline
sporadic

MF

GMF

RB

RRT

ncGMF

ncRRT

DRT

k-EDRT

EDRT

Task Automata

3



Pushing the boundaRy of pseudo-polynomial time

Ex
pr

es
siv

en
es
s

Efficiency

(Single processor Earliest Deadline First scheduling)

Ps
eu

do
-p
ol
yn

om
ial

tim
e

Po
lyn

om
ial ti

me

co
N
P

implicit-deadline
sporadic

constrained-deadline
sporadic

arbitrary-deadline
sporadic

MF

GMF

RB

RRT

ncGMF

ncRRT

DRT

k-EDRT

EDRT

Task Automata

3



Pushing the boundaRy of pseudo-polynomial time

Ex
pr

es
siv

en
es
s Efficiency

(Single processor Earliest Deadline First scheduling)

Ps
eu

do
-p
ol
yn

om
ial

tim
e

Po
lyn

om
ial ti

me

co
N
P

implicit-deadline
sporadic

constrained-deadline
sporadic

arbitrary-deadline
sporadic

MF

GMF

RB

RRT

ncGMF

ncRRT

DRT

k-EDRT

EDRT

Task Automata

3



Pushing the boundaRy of pseudo-polynomial time

Ex
pr

es
siv

en
es
s Efficiency

(Single processor Earliest Deadline First scheduling)

Ps
eu

do
-p
ol
yn

om
ial

tim
e

Po
lyn

om
ial ti

me

co
N
P

implicit-deadline
sporadic

constrained-deadline
sporadic

arbitrary-deadline
sporadic

MF

GMF

RB

RRT

ncGMF

ncRRT

DRT

k-EDRT

EDRT

Task Automata

3



Pushing the boundaRy of pseudo-polynomial time

Ex
pr

es
siv

en
es
s Efficiency

(Single processor Earliest Deadline First scheduling)

Ps
eu

do
-p
ol
yn

om
ial

tim
e

Po
lyn

om
ial ti

me

co
N
P

implicit-deadline
sporadic

constrained-deadline
sporadic

arbitrary-deadline
sporadic

MF

GMF

RB

RRT

ncGMF

ncRRT

DRT

k-EDRT

EDRT

Task Automata

3



Pushing the boundaRy of pseudo-polynomial time

Ex
pr

es
siv

en
es
s Efficiency

(Single processor Earliest Deadline First scheduling)

Ps
eu

do
-p
ol
yn

om
ial

tim
e

Po
lyn

om
ial ti

me

co
N
P

implicit-deadline
sporadic

constrained-deadline
sporadic

arbitrary-deadline
sporadic

MF

GMF

RB

RRT

ncGMF

ncRRT

DRT

k-EDRT

EDRT

Task Automata

3



WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

Every C-complete class has pseudo-polynomial problems if C ⊆ EXP
and C is closed under polynomial-time reductions.

4



WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

Every C-complete class has pseudo-polynomial problems if C ⊆ EXP
and C is closed under polynomial-time reductions.

4



WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

Every C-complete class has pseudo-polynomial problems if C ⊆ EXP
and C is closed under polynomial-time reductions.

4



WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

Every C-complete class has pseudo-polynomial problems if C ⊆ EXP
and C is closed under polynomial-time reductions.

4



A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N )

But even for “nice” problems, we expect N ≫ n.

• An algorithm is pseudo-linear if it is O(nk × N ).
• An algorithm is pseudo-quadratic if it is O(nk × N 2).

· · ·
• An algorithm is pseudo-f if it is O(nk × f (N )).

Definition

TIME(poly(n)× N a) ⊂ TIME(poly(n)× N b), if 0 < a < b

If f(N ) = g(N )× logk(N ), then pseudo-f = pseudo-g

5



A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N )

But even for “nice” problems, we expect N ≫ n.

• An algorithm is pseudo-linear if it is O(nk × N ).
• An algorithm is pseudo-quadratic if it is O(nk × N 2).

· · ·
• An algorithm is pseudo-f if it is O(nk × f (N )).

Definition

TIME(poly(n)× N a) ⊂ TIME(poly(n)× N b), if 0 < a < b

If f(N ) = g(N )× logk(N ), then pseudo-f = pseudo-g

5



A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N )

But even for “nice” problems, we expect N ≫ n.

• An algorithm is pseudo-linear if it is O(nk × N ).
• An algorithm is pseudo-quadratic if it is O(nk × N 2).

· · ·
• An algorithm is pseudo-f if it is O(nk × f (N )).

Definition

TIME(poly(n)× N a) ⊂ TIME(poly(n)× N b), if 0 < a < b

If f(N ) = g(N )× logk(N ), then pseudo-f = pseudo-g

5



A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N )

But even for “nice” problems, we expect N ≫ n.

• An algorithm is pseudo-linear if it is O(nk × N ).
• An algorithm is pseudo-quadratic if it is O(nk × N 2).

· · ·
• An algorithm is pseudo-f if it is O(nk × f (N )).

Definition

TIME(poly(n)× N a) ⊂ TIME(poly(n)× N b), if 0 < a < b

If f(N ) = g(N )× logk(N ), then pseudo-f = pseudo-g

5



A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N )

But even for “nice” problems, we expect N ≫ n.

• An algorithm is pseudo-linear if it is O(nk × N ).
• An algorithm is pseudo-quadratic if it is O(nk × N 2).

· · ·
• An algorithm is pseudo-f if it is O(nk × f (N )).

Definition

TIME(poly(n)× N a) ⊂ TIME(poly(n)× N b), if 0 < a < b

If f(N ) = g(N )× logk(N ), then pseudo-f = pseudo-g

5



A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N )

But even for “nice” problems, we expect N ≫ n.

• An algorithm is pseudo-linear if it is O(nk × N ).
• An algorithm is pseudo-quadratic if it is O(nk × N 2).

· · ·
• An algorithm is pseudo-f if it is O(nk × f (N )).

Definition

TIME(poly(n)× N a) ⊂ TIME(poly(n)× N b), if 0 < a < b

If f(N ) = g(N )× logk(N ), then pseudo-f = pseudo-g

5



A few examples

!! !

Response time analysis (RTA) Processor demand analysis (PDA)
pseudo-linear pseudo-linear

EDF DRT analysis EDF DRT analysis (arbitrary deadlines)
pseudo-quadraticpseudo-quadratic
pseudo-linear

(with optimization trick)

pseudo-cubicpseudo-cubic
pseudo-quadratic

(with optimization trick)

6



A few examples

!! !

Response time analysis (RTA) Processor demand analysis (PDA)

pseudo-linear pseudo-linear

EDF DRT analysis EDF DRT analysis (arbitrary deadlines)
pseudo-quadraticpseudo-quadratic
pseudo-linear

(with optimization trick)

pseudo-cubicpseudo-cubic
pseudo-quadratic

(with optimization trick)

6



A few examples

!! !

Response time analysis (RTA) Processor demand analysis (PDA)
pseudo-linear pseudo-linear

EDF DRT analysis EDF DRT analysis (arbitrary deadlines)
pseudo-quadraticpseudo-quadratic
pseudo-linear

(with optimization trick)

pseudo-cubicpseudo-cubic
pseudo-quadratic

(with optimization trick)

6



A few examples

!! !

Response time analysis (RTA) Processor demand analysis (PDA)
pseudo-linear pseudo-linear

EDF DRT analysis EDF DRT analysis (arbitrary deadlines)

pseudo-quadraticpseudo-quadratic
pseudo-linear

(with optimization trick)

pseudo-cubicpseudo-cubic
pseudo-quadratic

(with optimization trick)

6



A few examples

!! !

Response time analysis (RTA) Processor demand analysis (PDA)
pseudo-linear pseudo-linear

EDF DRT analysis EDF DRT analysis (arbitrary deadlines)

pseudo-quadraticpseudo-quadratic
pseudo-linear

(with optimization trick)

pseudo-cubicpseudo-cubic
pseudo-quadratic

(with optimization trick)

6



A few examples

!

! !

Response time analysis (RTA) Processor demand analysis (PDA)
pseudo-linear pseudo-linear

EDF DRT analysis EDF DRT analysis (arbitrary deadlines)
pseudo-quadratic

pseudo-quadratic
pseudo-linear

(with optimization trick)

pseudo-cubicpseudo-cubic
pseudo-quadratic

(with optimization trick)

6



A few examples

!! !

Response time analysis (RTA) Processor demand analysis (PDA)
pseudo-linear pseudo-linear

EDF DRT analysis EDF DRT analysis (arbitrary deadlines)
pseudo-quadratic

pseudo-quadratic
pseudo-linear

(with optimization trick)

pseudo-cubic

pseudo-cubic
pseudo-quadratic

(with optimization trick)

6



A few examples

!! !

Response time analysis (RTA) Processor demand analysis (PDA)
pseudo-linear pseudo-linear

EDF DRT analysis EDF DRT analysis (arbitrary deadlines)

pseudo-quadratic

pseudo-quadratic
pseudo-linear

(with optimization trick)

pseudo-cubic

pseudo-cubic
pseudo-quadratic

(with optimization trick)

6



A few examples

!! !

Response time analysis (RTA) Processor demand analysis (PDA)
pseudo-linear pseudo-linear

EDF DRT analysis EDF DRT analysis (arbitrary deadlines)

pseudo-quadratic

pseudo-quadratic
pseudo-linear

(with optimization trick)

pseudo-cubic

pseudo-cubic
pseudo-quadratic

(with optimization trick)

6



A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is scale invariant.

Definition

Not all pseudo-polynomial time problems are scale-invariant.

7



A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is scale invariant.

Definition

Not all pseudo-polynomial time problems are scale-invariant.

7



A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is scale invariant.

Definition

Not all pseudo-polynomial time problems are scale-invariant.

7



A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is scale invariant.

Definition

Not all pseudo-polynomial time problems are scale-invariant.

7



A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is scale invariant.

Definition

Not all pseudo-polynomial time problems are scale-invariant.

7



A few examples again

Response time analysis (RTA) Processor demand analysis (PDA)
scale invariant not scale invariantnot scale invariant

scale invariant
(with optimization trick)

EDF DRT analysis
⁇?⁇?

scale invariant
(with generic trick)

But several others seem to be
not scale invariant

8



A few examples again

Response time analysis (RTA) Processor demand analysis (PDA)

scale invariant not scale invariantnot scale invariant
scale invariant

(with optimization trick)

EDF DRT analysis
⁇?⁇?

scale invariant
(with generic trick)

But several others seem to be
not scale invariant

8



A few examples again

Response time analysis (RTA) Processor demand analysis (PDA)
scale invariant

not scale invariantnot scale invariant
scale invariant

(with optimization trick)

EDF DRT analysis
⁇?⁇?

scale invariant
(with generic trick)

But several others seem to be
not scale invariant

8



A few examples again

Response time analysis (RTA) Processor demand analysis (PDA)
scale invariant not scale invariant

not scale invariant
scale invariant

(with optimization trick)

EDF DRT analysis
⁇?⁇?

scale invariant
(with generic trick)

But several others seem to be
not scale invariant

8



A few examples again

Response time analysis (RTA) Processor demand analysis (PDA)
scale invariant

not scale invariant

not scale invariant
scale invariant

(with optimization trick)

EDF DRT analysis
⁇?⁇?

scale invariant
(with generic trick)

But several others seem to be
not scale invariant

8



A few examples again

Response time analysis (RTA) Processor demand analysis (PDA)
scale invariant

not scale invariant

not scale invariant
scale invariant

(with optimization trick)

EDF DRT analysis

⁇?⁇?
scale invariant

(with generic trick)

But several others seem to be
not scale invariant

8



A few examples again

Response time analysis (RTA) Processor demand analysis (PDA)
scale invariant

not scale invariant

not scale invariant
scale invariant

(with optimization trick)

EDF DRT analysis
⁇?

⁇?
scale invariant

(with generic trick)

But several others seem to be
not scale invariant

8



A few examples again

Response time analysis (RTA) Processor demand analysis (PDA)
scale invariant

not scale invariant

not scale invariant
scale invariant

(with optimization trick)

EDF DRT analysis

⁇?

⁇?
scale invariant

(with generic trick)

But several others seem to be
not scale invariant

8



A few examples again

Response time analysis (RTA) Processor demand analysis (PDA)
scale invariant

not scale invariant

not scale invariant
scale invariant

(with optimization trick)

EDF DRT analysis

⁇?

⁇?
scale invariant

(with generic trick)

But several others seem to be
not scale invariant

8



Some taKeaways

1 Pseudo-polynomial problems can be found in unexpected places.

2 There is plenty of structure inside pseudo-polynomial time.

• Significant practical consequences that should not be ignored.
• New and interesting classification tasks!

9



Some taKeaways

1 Pseudo-polynomial problems can be found in unexpected places.

2 There is plenty of structure inside pseudo-polynomial time.

• Significant practical consequences that should not be ignored.
• New and interesting classification tasks!

9



Some taKeaways

1 Pseudo-polynomial problems can be found in unexpected places.

2 There is plenty of structure inside pseudo-polynomial time.

• Significant practical consequences that should not be ignored.
• New and interesting classification tasks!

9



Some taKeaways

1 Pseudo-polynomial problems can be found in unexpected places.

2 There is plenty of structure inside pseudo-polynomial time.
• Significant practical consequences that should not be ignored.

• New and interesting classification tasks!

9



Some taKeaways

1 Pseudo-polynomial problems can be found in unexpected places.

2 There is plenty of structure inside pseudo-polynomial time.
• Significant practical consequences that should not be ignored.
• New and interesting classification tasks!

9



What was this Really about?

10



∀Thank you!
⋄

∃Questions?


