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Abstract
We present the first (to our knowledge) Deep-Learning based framework for real-
time schedulability-analysis that guarantees to never incorrectly mis-classify an 
unschedulable system as being schedulable, and is hence suitable for use in safety-
critical scenarios. We relate applicability of this framework to well-understood 
concepts in computational complexity theory: membership in the complexity class 
NP. We apply the framework upon the widely-studied schedulability analysis prob-
lems of determining whether a given constrained-deadline sporadic task system 
is schedulable on a preemptive uniprocessor under both Deadline-Monotonic and 
EDF scheduling. As a proof-of-concept, we implement our framework for Deadline-
Monotonic scheduling, and demonstrate that it has a predictive accuracy exceeding 
70% for systems of as many as 20 tasks without making any unsafe predictions. Fur-
thermore, the implementation has very small ( < 1 ms on two widely-used embedded 
platforms; < 4 μ s on an embedded FPGA) and highly predictable running times.
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1  Introduction

With Deep Learning (DL) already widely used in autonomous Cyber–Physical Sys-
tems (CPS’s) for purposes of perception, research efforts are underway to also use it 
to speed up computation—this is particularly meaningful for autonomous CPS’s that 
are not tethered to the power grid and hence must make do with relatively simple com-
puting platforms on board. In this work we investigate the use of DL to speed up a 
form of computation that is commonly and repeatedly performed in real-time CPS’s: 
schedulability analysis, which is the process of validating the correctness of timing 
properties. Many basic and fundamental forms of schedulability analysis are known to 
be computationally intractable and hence applying DL to speed it up seems a reason-
able goal. However, schedulability is frequently a safety-critical property: incorrectly 
mis-classifying an unschedulable system as being schedulable could have potentially 
catastrophic consequences. There is, to our knowledge, no prior DL-based schedula-
bility analysis that guarantees to never return ‘false positives’—to incorrectly declare 
some unschedulable system to be schedulable. In this paper, we are proposing the first 
conceptual framework for using Deep Learning for schedulability analysis that guaran-
tees to return no false positives, and is hence suitable for use in safety-critical systems.

Envisioned use-cases.
Safety-critical systems were traditionally relatively simple and closed, and were 

intended to operate under tightly controlled conditions. This is rapidly changing: mod-
ern CPS’s can be enormously complex and are required to operate safely and effec-
tively in open environments that are characterized by a good deal of uncertainty. With 
such systems becoming increasingly more dynamic as a means of being adaptive to 
changing conditions in their operating environments, schedulability analysis algorithms 
need frequent re-execution during run-time (often as part of admission control pro-
cedures) as the workload and/ or platform changes in ways that were not anticipated 
during pre-runtime analysis. Pseudo-polynomial running times are often far too large 
for such algorithms to be suitable for runtime use. This directly leads to a need for 
extremely efficient schedulability-analysis algorithms, often upon computationally very 
limited platforms, which motivates the question that is explored in this manuscript: 
can we train Learning-Enabled Components (LECs) to classify system specifications 
as either satisfying a given schedulability property, or failing to do so?—See Fig. 1. 
Doing so enables the safety-critical computing community to leverage off the tremen-
dous advances in DL and related AI technologies that have occurred over the past two 
decades or so. However, although DL has proved very effective in solving a wide range 
of problems, it has also been observed (Kawaguchi 2016) that DL does not necessarily 
perform very well upon all problems: given the increasing need for rapid schedulability 

Fig. 1   LEC-based schedulability 
analysis



334	 Real-Time Systems (2025) 61:332–358

analysis, we believe it merits investigation whether the approach of Fig. 1 is (or can be 
rendered) effective for schedulability analysis.

This work.
In this manuscript we report on our findings from a conceptual and experimen-

tal evaluation of DL-based schedulability analysis, that we have conducted with the 
goal of understanding its scope and limitations. The main conclusion that we are 
able to draw is this:

Deep Learning (DL) is applicable for solving some, but not all, schedulability-
analysis problems of interest. There is a systematic approach for determining 
whether DL is applicable for solving a given schedulability-analysis problem. 
A framework can be defined for applying DL upon those schedulability-analy-
sis problems for which it is determined to be applicable.

This conclusion suggests a two-step approach to applying DL for schedulability 
analysis: (i)  identifying schedulability-analysis problems that can be delegated to 
DL and determining how such delegation is to be done; and (ii) actually developing 
DL systems for solving these problems. This paper primarily focuses on the first 
step: figuring out how to identify schedulability-analysis problems that are ame-
nable to solution using DL-based techniques, and defining a DL-based framework 
for solving these problems. We believe that developing the ‘best’ DL systems for 
those problems that are identified as being suitable requires close collaboration with 
experts in Machine Learning with the requisite knowledge and skills to choose and 
train the appropriate NN architectures. That is in itself an entire research project, 
which, while critically important in order to make best use of the results we derive 
here, does not fall within the scope of the ideas that we seek to present in this paper. 
We therefore defer detailed investigation on this second step to future work; here, we 
focus on the first step, and use simple proof-of-concept implementations for well-
studied schedulability-analysis problems to demonstrate the relevance and applica-
bility of our proposed approach and the accompanying framework.1

Contributions.
The main contribution of this paper is the development of a conceptual frame-

work for using Deep Learning for schedulability analysis that guarantees to never 
incorrectly classify an unschedulable system as being schedulable; this is, to our 
knowledge, the first work on DL-based schedulability analysis that can make such a 
guarantee. In greater detail:

•	 We derive an exact (necessary and sufficient) condition for our framework to be 
applicable. That is, we identify a precise condition [stated as Proposition (1) in 
Sect. 3] for determining whether any particular schedulability-analysis problem 
is suitable for solving via our framework.

1  In other words, we are not claiming that our DL implementations are the best possible: while we real-
ize that they may perhaps be improved by making use of more advanced results from Deep Learning, we 
consider doing so to be beyond the scope of this paper.
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•	 We illustrate the applicability of Proposition  (1) by identifying schedulability-
analysis problems that are amenable to DL-based solution, as well as ones that 
are not. We develop simple proof-of-principle implementations of DNN-based 
schedulability tests for some of the schedulability-analysis problems that are 
shown to be amenable to DL-based solution, and experimentally evaluate these 
DNNs along various dimensions (their effectiveness; run-time overheads; FPGA 
implementation) upon synthetically generated workloads.

Organization. The remainder of this manuscript is organized in the following man-
ner. In Sect.  2 we formally describe the specific schedulability-analysis problems 
that we will be studying from a DL perspective. We present our proposed framework 
for DL-based schedulability analysis in Sect. 3. We have implemented and evaluated 
this framework on the problems that are described in Sect. 2; our evaluation experi-
ments are detailed in Sect.  4. We conclude in Sect.  5 by discussing some related 
work and placing our results within the larger context of real-time scheduling theory.

2 � Background: schedulability analysis

In this section we briefly describe (and provide the needed background informa-
tion on) the schedulability-analysis problems that we will, in the following sections, 
examine from the perspective of developing DL-based solutions. Since our empha-
sis in this paper is primarily on Deep Learning, we have chosen to focus upon very 
simple and particularly well-studied schedulability-analysis problems with which 
most members of the real-time computing community are already familiar. In Sect. 5 
(paragraph titled ‘Other schedulability-analysis problems’) we will briefly discuss 
how the ideas contained in this paper may be generalized and extended to additional 
schedulability-analysis problems, and list some such problems.

The sporadic tasks model (Baruah et al. 1990b).
The scheduling of collections of independent sporadic tasks Γ = {�1, �2,… , �n} 

upon a shared preemptive processor is one of the most widely-studied problems in 
real-time scheduling theory. Each sporadic task �i = (Ci,Di, Ti) is characterized by 
three non-negative integer parameters: its worst-case execution time (or WCET) 
Ci , its relative deadline Di , and its inter-arrival separation parameter (or period) Ti . 
Sporadic task systems with Di ≤ Ti for all tasks are called constrained-deadline sys-
tems. We consider the following two schedulability-analysis problems: is a given 
constrained-deadline sporadic task system guaranteed to always meet all deadlines 
upon a preemptive uniprocessor platform, when scheduled using the (i) Fixed-Prior-
ity (FP) and (ii) Earliest-Deadline First (EDF) scheduling algorithms?

Fixed-Priority (FP).
In FP scheduling, each task is statically assigned a priority prior to run-time and 

at each instant during run-time the currently active job that has been generated by 
the highest-priority task is scheduled for execution.2 Determining whether a given 

2  It is known (Leung and Whitehead 1982,  Theorem  2.4) that the deadline monotonic (DM) priority 
assignment, in which tasks with smaller D

i
 parameters are assigned greater priority, is optimal for con-
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task system is FP-schedulable is known to be NP-complete (Eisenbrand and Roth-
voss 2008; Ekberg and Yi 2017); hence, it makes sense to explore the use of deep 
learning to speed up FP-schedulability analysis.

It has been shown (Joseph and Pandya 1986; Lehoczky et al. 1989; Wellings et al. 
1993) that a necessary and sufficient FP-schedulability condition for task system Γ is 
that for each �i ∈ Γ , the recurrence:

should have a positive solution for Ri that is no larger than �i ’s relative deadline Di 
[here, hp(�i) denotes the tasks with greater priority than �i ]. Response-Time Analysis 
(RTA) deploys straightforward techniques for solving such recurrences to determine 
the smallest value of Ri satisfying this recurrence for each �i , and declares the sys-
tem to be FP-schedulable if and only if Ri ≤ Di holds for all �i ∈ Γ.

Earliest-Deadline First (EDF).
In EDF scheduling, jobs are prioritized according to their deadlines: at each 

instant during run-time the currently active job whose deadline (arrival time + rel-
ative-deadline parameter of the task that generated it) is the closest in the future 
is scheduled for execution. EDF-schedulability analysis is known to be coNP-
complete (Eisenbrand and Rothvoß 2010), and it is therefore again meaningful to 
explore whether deep learning can help speed things up. Processor Demand Analy-
sis (PDA) is an exact technique for schedulability analysis of constrained-deadline 
sporadic task systems that are scheduled by EDF upon a preemptive uniprocessor. 
This technique is centered upon the concept of the demand bound function (dbf): 
for any sporadic task �i = (Ci,Di, Ti) and any interval-duration t ≥ 0 , dbfi(t) denotes 
the maximum possible cumulative execution requirement by jobs of task �i that both 
arrive in, and have their deadlines within, any contiguous interval of duration t. The 
following formula for computing dbfi(t) was derived in Baruah et al. (1990b):

and it was shown that a necessary and sufficient condition for Γ = {�1, �2,… , �n} to 
be EDF-schedulable upon a preemptive unit-speed processor is that the following 
condition hold for all t ≥ 0:

It was also proved in Baruah et al. (1990b) that Condition (3) need only be checked 
for values of t that are of the form t ≡

(
k × Ti + Di

)
 for some non-negative integer 

(1)Ri ≥ Ci +
∑

�j∈hp(�i)

⌈
Ri

Tj

⌉
⋅ Cj

(2)dbfi(t) = max

(⌊
t − Di

Ti

⌋
+ 1, 0

)
⋅ Ci

(3)
∑
�i∈Γ

dbfi(t) ≤ t.

strained-deadline sporadic task systems. Hence, we focus our attention in this paper on FP-schedulability 
analysis of systems for which priorities are assigned in DM-order.

Footnote 2 (continued)
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k and some i, 1 ≤ i ≤ n ; furthermore, only such values that are no larger than the 
least common multiple of the Ti parameters of all the tasks need be tested. The set 
of all such values of t for which it needs to be checked that Condition (3) is satisfied 
in order to verify EDF-schedulability is called the testing set for task system Γ and 
often denoted T(Γ) . It is known (Baruah et al. 1990b) that the cardinality |T(Γ)| of 
the testing set T(Γ) may in general be exponential in the representation of Γ ; how-
ever, it has been shown [Baruah et al. 1990a, Theorem (3.1)] that a smaller testing 
set, of cardinality pseudo-polynomial in the representation of Γ , can be identified for 
bounded-utilization task systems—systems Γ satisfying the additional condition that ∑

�i∈Γ
Ui ≤ c for some constant c strictly smaller than 1.

3 � A framework for learning‑enabled schedulability analysis

In this section we motivate and describe our proposed framework for enabling 
the safe and effective use of DL for doing schedulability analysis. We start out 
(Sect. 3.1) briefly describing DL-based implementations that we have built, accord-
ing to the framework provided in Fig. 1, for our two schedulability-analysis prob-
lems of interest (preemptive uniprocessor FP- and EDF-schedulability analysis of 
constrained-deadline sporadic task systems). In Sect. 3.2 we point out some prob-
lems that arise in such implementations. We propose a solution to these problems in 
Sect. 3.3 by defining an enhancement, in Fig. 3, to the earlier framework of Fig. 1, 
and derive, in Sect. 3.4, a precise condition for determining which schedulability-
analysis problems are amenable to solution using this enhanced framework.

3.1 � LECs for schedulability analysis

As stated in Sect.  1, the goal of this research is to develop LECs based on deep 
learning for doing schedulability analysis. As a first step towards achieving this goal, 
we trained simple multilayer perceptrons (MLPs) to perform FP and EDF schedu-
lability-analysis for small task systems in accordance with the framework of Fig. 1. 
In particular, we trained a pair of networks, each with two 15-node fully-connected 
hidden layers, to perform binary classification for predicting FP and EDF schedula-
bility respectively for sporadic task systems of 4 tasks3—the observed performance 
of these networks are presented in Fig. 2. Two important observations emerged: 

(1)	 DL appears to be very effective in classifying systems as schedulable or not: 
we see from Fig. 2 that for 4-task systems, predictive accuracy exceeds 95% for 
both FP and EDF schedulability analysis. (Additional experiments, reported 
in Sect. 4, indicate that prediction accuracy does not degrade too steeply with 
system size: it still exceeds 92% for FP schedulability of 20-task systems.)

3  A detailed description of the training process and experiments conducted is provided in Sect. 4.
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(2)	 DL makes occasional mistakes: classification accuracy is not 100% for either FP 
or EDF schedulability analysis.

The first of these observations is grounds for optimism: it shows the promise of DL 
for identifying schedulable systems. The second observation, however, gives us 
pause since it emphasizes the well-known fact that Deep Learning will occasion-
ally make mistakes: erroneously classify a schedulable system as unschedulable, or 
vice versa. We must understand the consequences of such errors, and take mitigative 
steps to ensure they do not compromise system safety, before we can use LEC-based 
schedulability analysis in safety-critical systems. We point out that classification 
errors are of two kinds: 

(1)	 A false negative, with a schedulable system incorrectly classified as being 
unschedulable; or

(2)	 A false positive, whereby an unschedulable system is classified as being schedu-
lable.

Below we discuss the implications of each kind of error.

3.2 � The problem with false positives

We saw above that LECs for schedulability analysis are, while effective, liable to 
making occasional mis-classifications—both false negatives and false positives. A 
false negative may result in a schedulable system being needlessly rejected as being 
unschedulable, but this is a necessary consequence of using Deep Learning: DL, by 
its very nature, solves problems approximately rather than exactly. However, false 

Fig. 2   Performance of DNN schedulability classifiers for systems of 4 tasks, plotted as a function of 
system utilization—see Sect. 3.1. The ‘Overall Accuracy’ curve denotes the fraction of generated task 
systems that are correctly classified by the DNN as being schedulable or not. The ‘True Positive Rate’ 
(‘True Negative Rate,’ respectively) curve denotes the fraction of schedulable (not schedulable, resp.) 
task systems that are correctly identified as such. The ‘False Positives’ curve denotes the fraction of gen-
erated task systems that are incorrectly classified by the DNN as being schedulable
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positives present a safety hazard since a potentially unschedulable system is misi-
dentified as being schedulable. Though the number of false positives for our binary 
classifiers were low (of the systems of 4 tasks that we generated, 1.8% were incor-
rectly deemed DM schedulable and 2.1% EDF schedulable), the only acceptable rate 
for safety-critical systems is zero and so we must be able to eliminate all false posi-
tives if we are to use DL for schedulability-analysis for safety-critical systems.

To eliminate the possibility of false positives, we propose that when DL-based 
components are used for schedulability-analysis and declare a system to be schedu-
lable, they be additionally required to generate a justification for this decision in the 
form of a certificate. Note that the certificate itself may serve as both a declaration, 
and a justification, of schedulability—it should not be necessary to execute separate 
networks to produce a classification and a certificate. We require that this certificate 
must be efficiently verifiable by a (different) algorithm that is based on ‘traditional’ 
algorithmic techniques in that it does not make use of Deep Learning and related AI 
techniques; it is only if this verification algorithm agrees that the certificate validates 
schedulability do we deem the system specifications to have passed the schedulabil-
ity-analysis test.

This proposed enhanced framework for DL-based schedulability analysis is 
depicted in Fig. 3.

3.3 � Choosing suitable certificates

Our proposed framework for DL-based schedulability analysis (depicted in Fig. 3) 
requires that the LEC generate a certificate for systems it classifies as schedulable. 
But what should this certificate look like? To understand this, let us separately con-
sider each of the two schedulability-analysis problems for which we have developed 
LECs as discussed in Sect. 3.1.

FP schedulability. Recall, from Sect. 2, that task system Γ is FP-schedulable if 
and only if there is a value of Ri no larger than Di satisfying Recurrence (1) for each 
�i ∈ Γ . A certificate for the FP-schedulability of task system Γ could simply be such 
values for Ri , one per task in Γ ; given such a certificate, the module labeled verifica-
tion algorithm in Fig. 3 can clearly efficiently verify that for each �i ∈ Γ , the pro-
vided value of Ri does indeed satisfy Recurrence (1) and is ≤ Di.

To investigate whether we could get LECs to generate such certificates, we 
trained an alternative set of MLPs to predict the Ri values via regression, 
rather than simply (as in our initial strawman approach) providing a binary 

Fig. 3   A framework for LEC-based safety verification. The LEC must additionally generate a certificate 
for any system determined to be schedulable; this certificate should be efficiently verifiable by the verifi-
cation algorithm
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classification. The network for doing so contains 4 fully-connected hidden lay-
ers, each with 30 neurons (more details are provided in Sect. 4). A task system 
is deemed to be FP-schedulable if these predicted Ri values are each ≤ the corre-
sponding Di values; we again plot the predictive accuracy in Fig. 4a. Note that the 
predictive accuracy in this plot is generally lower than in the corresponding plot 
for the binary (schedulable/unschedulable) classifier (Fig. 2a); it is, however, not 
unacceptably low in light of the fact (also stated earlier) that we are reconciled 
to approximate, rather than exact, solutions from DL. Furthermore in this case, 
we can validate claims of schedulability by having a verification algorithm check 
that the certificates generated by the MLP do indeed satisfy the corresponding 
response-time equations [Recurrence  (1)]—we plot the accuracy post-validation 
in Fig. 4b. Note that, although accuracy overall decreases slightly with verifica-
tion (from 85.1 to 82.7% ), unsafe false positives are eliminated entirely.

EDF schedulability. Let us now turn our attention to EDF schedulability: 
what should the certificates to be generated by the LEC be? An examination of 
the EDF schedulability-analysis condition reveals that Expression  (3) �∑

�i∈Γ
dbfi(t) ≤ t

�
 is required to hold for all values of t in the testing set T(Γ) . 

And since T(Γ) may contain exponentially many distinct values of t, a certificate 
enumerating all elements of T(Γ) would require that the module labeled verifica-
tion algorithm in Fig. 3 take exponential time to verify the veracity of this cer-
tificate, thereby negating the very purpose of using LEC’s to speed up schedula-
bility-analysis. Thus the idea that worked above for FP-schedulability, of having 
the LEC generate a certificate that can be used by the verification algorithm for 
validating the associated schedulability condition [Recurrence (1)] appears to not 
be applicable for EDF-schedulability. Indeed, we were unable to instantiate the 
framework of Fig. 3 to become applicable for EDF-schedulability; in Sect. 3.4 we 
show that it follows from computational complexity theory (Papadimitriou 1994; 
Arora and Barak 2009) that we are unlikely to be able to do so.

Fig. 4   FP schedulability with certificates for sets of 4 tasks. Note the different scale of the right-side 
y-axes for false positives. Overall (i.e., summing across all utilizations), 74.1% of schedulable systems 
were verifiably identified as being such
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3.4 � The applicability of the proposed framework

Let us examine the framework of Fig. 3 a bit more closely. Recall that our goal 
in using DL for schedulability analysis is to obtain greater run-time efficiency: 
we want to be able to make schedulability-analysis decisions faster than could 
be done using traditional schedulability-analysis algorithms. Now, there is a lot 
of excellent research on how one should implement LECs (particularly DNN-
based ones) to have efficient (and predictable) running times (see, e.g., Kang and 
Chung 2019; Huang et al. 2019; Sun et al. 2022—this list is by no means exhaus-
tive); we expect that one can use the results of this research to obtain very effi-
cient implementations of the LEC in Fig. 3 (indeed, we demonstrate examples of 
this in Sect. 4). That leaves the verifier of Fig. 3: we want this, too, to be imple-
mented in an efficient manner. We argue that it is reasonable to require that this 
verifier should have running time no worse than a (low-order) polynomial in the 
size of the task system whose schedulability is being determined. This require-
ment immediately relates the applicability of the framework of Fig.  3 to well-
studied concepts in computational complexity theory (Papadimitriou 1994; Arora 
and Barak 2009), in particular, the complexity class NP—‘ NP  is the class of 
[problems] that can be verified by a polynomial-time algorithm’ (Cormen et al. 
2022, p. 1058). Hence the requirement that the certificate be verifiable in poly-
nomial time implies that the framework is applicable to schedulability-analysis 
problems that are in NP; this is formally stated in the following proposition:

Proposition 1  Restricting that the module labeled ‘verification algorithm’ in Fig. 3 
have no worse than polynomial running time, it is necessary and sufficient for a 
schedulability condition to belong to the complexity class NP in order for it to be 
checkable using the framework of Fig. 3. 	�  ◻

Hence, in order to determine whether a schedulability-analysis problem can 
be verified using DL through the framework presented in Fig. 3 or not, it is nec-
essary to demonstrate its membership (or non-membership, respectively) in the 
complexity class NP. To prove that a schedulability-analysis problem belongs 
to NP, one must furnish a polynomial-time verification algorithm for the prob-
lem. However, how can one demonstrate its non-membership in NP? In this case, 
established results from computational complexity theory come into play. There 
exist various complexity classes (a few are depicted in Fig. 5) that are very widely 
believed to be distinct from NP, meaning they contain problems ∉ NP . Recall 
from computational complexity theory that a problem is considered hard for a 
complexity class if it is, in an intuitive sense, at least as computationally difficult 
to solve as every other problem within that class (or more precisely, every prob-
lem in the complexity class can be polynomial-time reduced to this hard prob-
lem). Thus, showing a schedulability-analysis problem to be hard (or complete) 
for any complexity class believed to be distinct from NP  (such as coNP) provides 
substantial evidence that it is not a member of NP .
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The conclusions we had drawn from first principles in Sect. 3.3, that FP-schedula-
bility analysis fits the framework of Fig. 3 whereas EDF-schedulability analysis does 
not, follow directly from Proposition 1: as stated in Sect. 2, FP-schedulability analy-
sis is NP-complete (Ekberg and Yi 2017) and therefore in NP; EDF-schedulability 
analysis, however, is coNP-complete (Eisenbrand and Rothvoß 2010) and therefore 
not in NP (assuming the widely-believed conjecture that NP ≠ CONP—see Fig. 5).

4 � Evaluation

In this section we describe and discuss the experiments that we have conducted for 
evaluating, from various perspectives (including predictive accuracy and run-time 
implementation overhead, as well as the possibility of FPGA implementation), the 
effectiveness of DL-based solutions for preemptive uniprocessor FP-schedulabil-
ity analysis. Our choice of uniprocessor FP schedulability-analysis as the problem 
upon which to illustrate our approach merits some explanation: despite the inherent 
intractability (NP-hardness) of the problem, superbly engineered implementations 
of RTA do exist that are very efficient in practice upon most problem instances and 
hence this is perhaps not the problem that first comes to mind as needing faster algo-
rithms. We have nevertheless chosen FP-schedulability analysis as the problem upon 
which to illustrate our approach for primarily pedantic reasons—this is a problem 
that is very well known by most of the real-time computing community and hence 
our target reader can focus on the conceptual framework without needing to con-
stantly remind themselves of minutiae about the problem being solved. Additionally, 
focusing on FP-schedulability allows us to draw a contrast with EDF-schedulability, 
another commonly-studied schedulability-analysis problem that is often compared 
and contrasted with FP-schedulability analysis—see, e.g., Buttazzo (2005), and 
which, by Proposition (1), cannot be solved using our DL-based framework (since 
it is coNP-hard).

Fig. 5   Some common complex-
ity classes. It is widely believed 
that no region in this diagram is 
empty—each is populated with 
problems



343Real-Time Systems (2025) 61:332–358	

4.1 � Generating synthetic workloads

We build individual DNN models for FP-schedulability analysis of systems of 2 to 
20 tasks. As training data, we generate one million synthetic task sets for each sys-
tem size considered, as follows. We consider utilizations from 0.1 to 1.0 in steps 
of 0.1; for each utilization, we generate 105 sets of tasks. For each set, the utiliza-
tion Ui of each task �i is assigned according to the UUniSort algorithm (Bini and 
Buttazzo 2005). Task periods Ti are then assigned uniformly4 in the range 1–1000, 
and workloads Ci are characterized according to Ci = Ui ⋅ Ti . As we are consider-
ing schedulability of constrained-deadline tasks, we assign deadlines uniformly in 
the range [Ci, Ti] ; tasks are then sorted in ascending order of deadline to reflect DM 
prioritization.

For each task system, we use RTA (Joseph and Pandya 1986; Lehoczky et  al. 
1989; Wellings et  al. 1993) to find the smallest value of Ri that satisfies Recur-
rence (1) for each task. This response time is then checked against the deadline; if 
Ri ≤ Di for every task, the task set is deemed FP schedulable.

To support a proof of concept for EDF schedulability, we also perform processor 
demand analysis for sets of 4 tasks. Those for which Condition (3) is satisfied for all 
points in the testing set are deemed EDF schedulable.

To test how well our models generalize to similar synthetic tasksets, we generate 
as test data an additional million synthetic task sets using the same methodology 
(but a different random seed) for each task system size considered (2 to 20 tasks).

4.2 � Evaluating binary classification

We begin with an evaluation of LEC-based schedulability analysis according to the 
framework in Fig. 1.5 To do so, we train a collection of simple multilayer perceptron 
(MLP) models to classify task systems as FP-schedulable or unschedulable. Each 
model accepts as its input the parameters of a constant number of tasks; we train 
models for systems of 2–20 tasks.

Training Methodology.
For each task set size considered, we construct an MLP using PyTorch (Paszke 

et al. 2019) with the architectural template depicted in Fig. 6. As inputs, the model 
takes the execution time Ci , period Ti , and deadline Di of each task �i , with tasks 
sorted in ascending priority order. We observe that the demand bound function used 
in processor demand analysis [Eq. (2)], as well as the recurrence expression used for 
response-time analysis [Eq. (1)], both have the task period in the denominator of a 
term. We therefore also include 1∕Ti as an input to the model. The network consists 
of 2 fully-connected hidden layers of 15 neurons that use rectified linear (ReLU) 

4  Although Emberson et al. (2010) recommend a log-uniform distribution to reflect realistic task sets, we 
have opted for a uniform distribution to provide even coverage of the input space for training purposes.
5  Recall that this framework does not guarantee an absence of false positives, and is therefore not recom-
mended for use for safety-critical purposes. We evaluated this framework initially primarily to investigate 
whether it is even possible to use DL to recognize schedulable systems.
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activation functions. The output layer has a single node using a sigmoid activation 
function. If the output value is > 0.5 , the set of tasks is classified as Schedulable; 
otherwise it is Unschedulable.

Each model is trained using the corresponding million sets of tasks generated as 
training data, using an 80%/20% training/validation split. Input data is shuffled, then 
fed in batches of size 1000. Training is performed over 100 epochs, stopping early if 
no improvement in the validation data is observed for 10 epochs. We use the Adam 
optimizer (Kingma and Ba 2014) with a learning rate of 0.001 and a weight decay 
of 0.0001.

Observations.
We have previously presented the results for 4-task systems (Fig.2a); results for 

other system sizes are summarized in Fig. 7 in the form of a plot of the overall accu-
racy as a function of system size. We observe that, while accuracy degrades slightly 
as the number of tasks increases, it remains above 92% even for 20-task systems. 
A 95% confidence interval obtained via nonparametric bootstrapping by resampling 
1000 times remains within 0.06% of the accuracy, and is therefore too narrow to 
visualize in the plot.

4.3 � Evaluating the framework of Fig. 3

We now describe our exploration of verifiable LEC-based schedulability analysis 
according to the framework in Fig. 3.

Training Methodology.
For each taskset size considered, we construct an MLP with the model architec-

ture shown in Fig. 8. This model differs from the binary classifier (Fig. 6) in some 
crucial ways. The model for predicting schedulability of n tasks (again sorted in pri-
ority order) outputs a set of predicted response times R′

i
 for 2 ≤ i ≤ n ( R1 is not pre-

dicted by the model, as it can be trivially computed as R1 = C1 ). The task system 
is then classified Schedulable if for each task �i , R′

i
≤ Di ; the result is then veri-

fied by checking whether every predicted value R′
i
 satisfies Recurrence (1). Four key 

insights guide the training methodology: 

Fig. 6   MLP for binary classification of schedulability



345Real-Time Systems (2025) 61:332–358	

(1)	 This model extracts more information. Because we are asking our model to 
estimate response times, rather than simply perform a binary classification, the 
network needs to be more complex. In this case, we use 4 fully-connected hid-
den layers of 30 neurons each (each hidden neuron, as well as the outputs, use a 
ReLU activation function).

(2)	 Response times are independent of deadlines. The recurrence relation used to 
calculate the response time of a task does not depend on the deadline of that 
task. Therefore, deadlines Di are not provided as inputs to the model.

(3)	 Predicted response times should not be too large. This is obvious; a prediction 
that is too large might exceed the deadline for an otherwise schedulable task. 
We want the response times to be as small as possible, but

(4)	 Predicted response times should not be less than the true value. A predicted 
response time that is too large might still satisfy the recurrence, and might still 
be less than the constrained deadline of the task. However, a prediction that is 
too small will never satisfy the recurrence.

With these last two insights in mind, we devise a training strategy using a custom 
loss function:

This function computes the normalized mean squared error, but applies an addi-
tional weighting term w to negative error values (where a weight w=1 makes this 
equivalent to the normalized mean squared error). This has the desired effect of 
rewarding predictions that are close to the true value, while more heavily penalizing 

(4)L =

⎧
⎪⎨⎪⎩

�
R�
i
−Ri

Ri

�2

if R�
i
≥ Ri,�

w ⋅

R�
i
−Ri

Ri

�2

if R�
i
< Ri.

Fig. 7   Accuracy of binary classification for FP-schedulability
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predictions that undershoot the true value. Training batch loss is computed as the 
mean over individual input losses.

Our training methodology is the same as that of the binary classifier described 
in Sect. 4.2. To decide what value to assign to our penalty term w, we first train 
10 networks, each for sets of 3 tasks, using values of w distributed in log-uniform 
fashion from 1 to 1000.

Once trained, we evaluate the accuracy of each model—a prediction is consid-
ered accurate if (i) each predicted value of R′

i
 satisfies Recurrence (1), and (ii) the 

model correctly classifies the task set as Schedulable or Unschedulable. We plot 
the accuracy of each model over the 106 task sets that comprise our test data in 
Fig. 9, observing that w = 100 performs the best. We then scale this approach, train-
ing models for systems comprising 2–20 tasks with w fixed at 100.

Metrics for evaluation.
We evaluate our framework according to three different metrics: 

1.	 Predictive accuracy, i.e., the rate at which classification of a set of tasks as Sched-
ulable or Unschedulable is both correct and verifiable (i.e., the predicted values 
R′
i
 satisfy the recurrence); or

2.	 Acceptance rate, i.e., the percentage of Schedulable tasks that are classified as 
such. This is equivalent to the sensitivity of the test, or its true positive rate.

3.	 False positives, i.e., the number of task systems that are incorrectly classified as 
Schedulable.

While predictive accuracy is the metric by which many Machine Learning models 
are judged, real-time systems developers are likely more interested in finding sched-
ulable systems as often as possible—correct identification of Unschedulable task 
sets may not be as meaningful. However, as we have stressed, incorrectly identifying 
unschedulable task sets as Schedulable presents a safety hazard.

Fig. 8   MLP for computing R
i
 ’s (response times)
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Observations.
We evaluate the models that were trained using a fixed penalty weight w = 100 . 

For each, we compare the above-listed evaluation metrics (predictive accuracy, 
acceptance rate, and number of false positives) when the predicted values R′

i
 are 

used to classify schedulability, and when these predictions are additionally verified. 
We have previously plotted unverified and verified schedulability as a function of 
system utilization for 4-task systems (Fig. 4); these metrics for task systems of 2–20 
tasks are summarized in Fig. 10. Figure 10a, b plot unverified and verified schedu-
lability as a function of system size. As expected, predictive accuracy degrades with 
verification (though it remains above 72.1% for systems of up to 20 tasks); however 
false positives that may compromise safety are eliminated. Moreover, although accu-
racy degrades slightly as new tasks are added,6 this approach nonetheless identifies 
and verifies well over half of the Schedulable task systems even for systems of as 
many as 20 tasks. As before, we obtain 95% confidence intervals via nonparametric 
bootstrapping by resampling 1000 times; these are shown as a shaded region around 
each series, although they are too narrow to easily visualize for overall accuracy and 
acceptance rate.

4.4 � Generalizing to different task parameters

We have shown so far that our MLP (Fig. 8) performs well at correctly and verifi-
ably identifying schedulable task sets when provided with test data generated using 

Fig. 9   Determining the appropriate value of w (see Sect. 4.3)

6  This makes sense, as the number of input features and values predicted increases, despite the number 
and size of the hidden layers remaining constant. We defer to future work the question of how much to 
grow the network, either by adding layers or adding nodes to existing layers, to maintain accuracy as 
tasks are added.
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the same parameters as the training data. However, growing evidence suggests that 
many Machine Learning models do not generalize well to real-world scenarios that 
differ from their training (Risi and Togelius 2020). Generality is of particular con-
cern for our framework, especially because sets of tasks in real-world applications 
do not often display the uniform properties displayed in our training data (Emberson 
et al. 2010; Kramer et al. 2015).

To evaluate our model’s ability to generalize when transferred to new scenarios, 
we generated alternative sets of tasks using different parameters. This time, to avoid 
having each task set’s total utilization reflected in our training data, we used utiliza-
tions from 0.05 to 0.95 in steps of 0.1, generating 105 task sets for each value. For 
added realism, we selected periods from a log-uniform distribution per (Emberson 
et al. 2010), instead of the uniform distribution in the training data.

We evaluated our LEC on sets of 4 tasks thus generated; results are illustrated 
in Fig. 11. Overall accuracy after verification was 66.1%. This is 0.80× the verified 
accuracy when applied to test data generated with the same parameters as the train-
ing data, demonstrating that our model generalizes reasonably well.

4.5 � Execution time performance

Since many of our target applications are embedded systems, we have implemented 
our framework on select commonly-used embedded computing platforms and meas-
ured the execution duration to check whether these are acceptable for online use; we 
now report on these experiments.

Experimental Setup.
We generate task systems using the parameters described in Sect.  3.1, but this 

time we produce 1000 sets of tasks at each utilization for each number of tasks con-
sidered (3–20, for a total of 180,000 task sets).

Fig. 10   Evaluation metrics, plotted as a function of system size, of MLPs for computing response times. 
Note the different scale of the right-side y-axes for false positives
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We serialize our trained NN models to load them into a C++ program that is 
linked against PyTorch’s compiled libtorch library module. Our program per-
forms inference on a single set of tasks at a time, after which the predicted response 
times are verified and checked against task deadlines to determine schedulability. 
Prior to running inference over each group of 1000 task sets, we allow the corre-
sponding model 20 ‘warm-up’ iterations. To compare our LEC framework against 
an exact analysis, in the same program we also implement the algorithm of Audsley 
et al. (1991) to solve the recurrence expression for response-time analysis in Eq. (2). 
Our program is compiled with GCC using optimization level −O3.

We measure execution times on two platforms (both with CPU throttling 
disabled): 

1.	 Atom is a WinSystems EBC-C413 industrial single-board computer with an Intel 
Atom E3845 (x86_64) 4-core CPU and 8 GB of RAM, running at 1.92 GHz with 
Linux 5.15.0;

2.	 RPi4 is a Raspberry Pi 4 Model B, which has a Broadcom BCM2711 64-bit SoC 
with a Cortex-A72 (ARM v8) 4-core CPU and 4 GB of RAM, running at 1.80 
GHz with Linux 5.15.16.

Results and Discussion.
We calculate the mean and maximum execution times across the 10,000 sets 

of tasks tested for each taskset size. Results for the LEC framework are plotted in 
Fig. 12, and for exact response time analysis are plotted in Fig. 13, from which sev-
eral observations about our DL-based approach arise: 

(1)	 It is efficient. On the Atom, inference runs in under 620 μ s and verification in 
under 11 μ s, on average. The Rpi4 is even more efficient, running inference and 
verification respectively in under 345 μ s and 4.2 μ s on average.

Fig. 11   FP schedulability with certificates, when generalizing to sets of 4 tasks generated per Sect. 4.4
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(2)	 It is predictable. The maximum observed execution times for the LEC framework 
remained under 986 μ s on the Atom and under 629 μ s on the RPi4. For each 
number of tasks considered, the maximum across the 10,000 tested task sets did 
not exceed 1.8× the mean on either platform. In contrast, exact response-time 
analysis was observed to take nearly 70 ms on the Atom and 25 ms on the RPi4 
in the worst-case, which is over 1000× slower than the mean. This predictability 
makes a verifiable DL-based approach more suitable for online task admission, 
where overheads must remain bounded to maintain timeliness.

(3)	 It scales well with system size. As the number of tasks increases, the execution 
time trends upwards only slightly. As Fig. 8 illustrates, the number of inputs to 
and outputs from each model increase with the number of tasks, but these extra 
calculations are dominated by the number of neurons (120 total) in the fully-
connected hidden layers.

While PyTorch provides an elegant framework for training models, and libtorch 
is a convenient way to wrap model inference into efficient C++ programs, it incurs 
significant overhead (Georgiou et  al. 2022). We therefore investigate whether we 
can achieve faster performance when deploying our MLP to an FPGA hardware 
accelerator.

Fig. 12   Execution time statistics for LEC framework
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4.6 � FPGA implementation

The rapid recent increase in size and complexity of NNs has spurred interest in 
performing DNN inference on specially-deployed FPGA kernels (Guo et al. 2019), 
often achieving highly-predictable execution times (Huang et al. 2019; Khoda et al. 
2023). This motivates us to evaluate the performance of our verifiable MLP for pre-
dicting response times when synthesized for execution on an FPGA.

Experimental Setup.
In this work, we select the AMD Xilinx XC7K325T FPGA which is deployed 

in real-world embedded applications, such as high-altitude balloon instruments for 
gamma ray detection (Sudvarg et al. 2023, 2024). Its low power requirements make 
it suitable for the sorts of embedded environments where predictable schedulability 
analysis is likely to be most useful.

We implement our MLP illustrated in Fig.  8 using high-level synthesis (HLS) 
in Vitis version 2024.1. We use hand-written and optimized matrix-multiply func-
tions to implement the multiply-accumulate logic representing the linear layers, 
and a function to synthesize the comparators that represent each ReLU. Weights 
and biases are expressed as 32-bit floating-point values. The HLS code is written 

Fig. 13   Execution time statistics for response time analysis
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in C++ and uses preprocessor directives to provide a template for different model 
sizes based on the number of tasks. Dataflow pipelining enables multiple circuits to 
execute portions of the computation in parallel, reducing end-to-end latency.

Results and Discussion
We synthesize the kernel for task sets of size 3–20 and use the Vitis HLS emula-

tion tools to profile its latency and area usage. Results are plotted in Fig. 14, from 
which several observations arise: 

(1)	 It is efficient. In Fig. 14a, we plot the execution times associated with each num-
ber of tasks. The total inference time, including transferring data from the host 
to the FPGA (task parameters) and back to the host (response times), remains 
below 4 μ s for up to 20 tasks, two orders of magnitude faster than for the Atom 
and RPi4. It is also more than 5× faster than even the average-case execution time 
of exact response time analysis on the RPi4, and nearly three orders of magnitude 
faster than the worst-case.

(2)	 Execution times scale linearly. As Fig. 8 illustrates, the size of the MLP’s input 
and output layers scale linearly with the number of tasks; the execution times 
of associated matrix–vector multiplies therefore scale quadratically. However, 
as shown in Fig. 14a, the parallelism achieved by our synthesized FPGA logic 

Fig. 14   FPGA speed and area statistics



353Real-Time Systems (2025) 61:332–358	

enables roughly linear scaling of execution times. The piecewise linear trend 
exhibited by the relationship between inference latency and problem size is 
explained by the pipelined nature of the FPGA logic. Inference can begin as 
data is still transferring onto the chip, meaning that growth in different parts of 
the circuit dominate the change in latency as the number of tasks increases.

(3)	 Area scales linearly. An FPGA provides a set amount of utilizable resources, 
which defines the area over which logic can be synthesized. To implement the 
parallelism necessary to achieve execution times linear in the number of tasks, 
we have to also increase the area of the synthesized logic as the number of tasks 
grow. Figure 14b–d show counts and overall percentage of block RAM (BRAM), 
flip flop (FF), and lookup table (LUT) resources used. Note that although BRAM 
cells utilized are expected to scale roughly linearly with the number of tasks, 
the synthesis tools group these into blocks which are often allocated in sets of 
2; hence, the jump from 4 to 6 BRAM blocks. Not shown is the percentage of 
multiply-accumulate digital signal processor (DSP) slices used, which remained 
a constant 750 (89%).

These results indicate that the straightforward and predictable logic of our MLP 
model makes it amenable to deployment on an embedded FPGA. Utilization of 
BRAM and FF resources remains low, though LUT utilization exceeds 50% for sets 
of 20 tasks, and DSP utilization is a constant 89% . To allow simultaneous deploy-
ment of other logic—an embedded platform that includes an FPGA accelerator 
might need it for other applications as well—might therefore require reducing the 
LUT and DSP area required. Techniques exist to tune and optimize based on speed 
and area tradeoffs (Makrani et al. 2019; Zhao et al. 2023; Sudvarg et al. 2024), but 
these are outside the scope of our proof-of-concept.

5 � Context and conclusions

Schedulability analysis is often computationally very expensive; in this manuscript, 
we have reported on our efforts at using deep learning to speed it up. We have found 
that it seems feasible to train even simple DL network architectures such as multi-
layer perceptrons (MLPs) to accurately classify system specifications as being either 
schedulable or unschedulable: despite not being experts in DL and without inordi-
nate effort, we were able to train MLPs to do preemptive uniprocessor EDF and FP 
schedulability classification at accuracy rates above 92% for task systems with as 
many as 20 tasks.

Since misclassifying an unschedulable system as schedulable represents a safety 
hazard, we have proposed a framework (Fig. 3) for DL-based schedulability analy-
sis that detects all such classification errors. We have formally established that this 
framework is applicable for speeding up exactly those schedulability analysis prob-
lems that lie within the complexity class NP; we have demonstrated this applica-
bility for the NP-complete FP-schedulability analysis problem and have concluded 
that the framework cannot be instantiated directly for EDF since EDF schedulability 
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analysis is coNP-complete (Eisenbrand and Rothvoß 2010) and therefore likely 
∉ NP . We have extensively evaluated our FP-schedulability analysis implementa-
tions on synthetically generated workloads; the results are very encouraging and 
point to the potential and promise of using DL for doing schedulability analysis.

Other schedulability-analysis problems.
As mentioned at the start of Sect. 4, our choice to use the relatively simple prob-

lem of uniprocessor FP schedulability-analysis as our running example is driven by 
our intent to make it easier for our target audience to follow along with minimal 
effort. The computational complexity of very many other schedulability-analysis 
problems are known7; those that are in NP can be implemented in our framework, 
whereas those that are hard for classes unlikely to be contained in NP cannot. For 
instance, we see from Ekberg and Baruah (2021, Fig. 2) that partitioned FP sched-
ulability-analysis of constrained-deadline sporadic task systems is in NP and hence 
implementable within our framework, whereas partitioned FP schedulability-anal-
ysis of constrained-deadline periodic task systems is unlikely to fit our framework 
since it lies at or above the second level of the Polynomial Hierarchy (Stockmeyer 
1976) (and hence unlikely to be in NP under the widely-held assumption that the 
Polynomial Hierarchy has > 2 levels). It is similarly known that many multipro-
cessor DAG-scheduling problems are in NP, and hence implementable within our 
framework (the associated certificates of schedulability could be processor assign-
ments and/ or preemption instants).

Incorporating improved DL techniques.
In closing, we reiterate a point we had made in Sect.  1 and reëmphasize the 

proof-of-principle nature of our study: we seek to establish a framework for apply-
ing DL to solve schedulability-analysis problems. Accordingly, we have devoted 
much of our efforts at formulating, and rigorously characterizing the applicabil-
ity of, this framework. Although prior work has applied DL to such problems—a 
survey of such work is available in Bian et  al. (2022)—ours is the first, to our 
knowledge, that uses complexity theory to formalize the set of problems that can 
be solved by DL while guaranteeing efficient elimination of unsafe false posi-
tives. We believe that developing the ‘best’ DL systems for any particular schedu-
lability analysis problem for which our framework is applicable requires collabo-
ration with experts in DL and does not fall within the scope of the ideas that we 
are presenting in this paper, and leave as future work a detailed incorporation 
of the latest findings in DL into our framework. As an illustration of such pos-
sible incorporation in the future, we point out that we have also instantiated our 
framework for partitioned FP scheduling of constrained-deadline sporadic task 
systems upon multiprocessor platforms (as mentioned above, shown Ekberg and 
Baruah (2021, Fig. 2) to be NP-complete)—some preliminary results are plotted 
in Fig. 15. A very recent work (Lee and Lee 2024) reported success in training 
Graph Attention Networks to partition implicit-deadline sporadic task systems 

7  For example, Ekberg and Baruah (2021, p. 366) provides, in tabular form, a comprehensive summary 
of the computational complexity of schedulability-analysis for partitioned EDF and FP scheduling of 
various variants of periodic and sporadic task systems upon multiprocessor platforms of different kinds.



355Real-Time Systems (2025) 61:332–358	

(task systems in which Di = Ti for all tasks �i ) for FP-scheduling upon multipro-
cessors. We plan to explore the feasibility of extending (Lee and Lee 2024) to the 
partitioning of constrained-deadline task systems; if successful we could, in prin-
ciple, easily replace our multilayer perceptron (MLP) with such a Graph Atten-
tion Network and thereby seamlessly incorporate this advance in Deep Learning 
into our framework, and thereby obtain a partitioned FP-schedulability analysis 
algorithm that offers superior performance to what is depicted in Fig. 15, whilst 
continuing to guarantee the absence of false positives.
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