
Vol:.(1234567890)

Real-Time Systems (2025) 61:332–358
https://doi.org/10.1007/s11241-025-09450-y

Learning‑assisted schedulability analysis: opportunities
and limitations

Sanjoy Baruah1 · Pontus Ekberg2 · Marion Sudvarg1

Accepted: 26 May 2025 / Published online: 2 July 2025
© The Author(s) 2025

Abstract
We present the first (to our knowledge) Deep-Learning based framework for real-
time schedulability-analysis that guarantees to never incorrectly mis-classify an
unschedulable system as being schedulable, and is hence suitable for use in safety-
critical scenarios. We relate applicability of this framework to well-understood
concepts in computational complexity theory: membership in the complexity class
NP. We apply the framework upon the widely-studied schedulability analysis prob-
lems of determining whether a given constrained-deadline sporadic task system
is schedulable on a preemptive uniprocessor under both Deadline-Monotonic and
EDF scheduling. As a proof-of-concept, we implement our framework for Deadline-
Monotonic scheduling, and demonstrate that it has a predictive accuracy exceeding
70% for systems of as many as 20 tasks without making any unsafe predictions. Fur-
thermore, the implementation has very small ( < 1 ms on two widely-used embedded
platforms; < 4 μ s on an embedded FPGA) and highly predictable running times.

Keywords  Schedulability analysis · Computational complexity: NP-completeness ·
Learning-enabled components (LECs) · Deep learning

 *	 Sanjoy Baruah
	 baruah@wustl.edu

 *	 Pontus Ekberg
	 pontus.ekberg@it.uu.se

 *	 Marion Sudvarg
	 msudvarg@wustl.edu

1	 Washington University in St. Louis, St Louis, MO, USA
2	 Uppsala University, Uppsala, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-025-09450-y&domain=pdf

333Real-Time Systems (2025) 61:332–358	

1  Introduction

With Deep Learning (DL) already widely used in autonomous Cyber–Physical Sys-
tems (CPS’s) for purposes of perception, research efforts are underway to also use it
to speed up computation—this is particularly meaningful for autonomous CPS’s that
are not tethered to the power grid and hence must make do with relatively simple com-
puting platforms on board. In this work we investigate the use of DL to speed up a
form of computation that is commonly and repeatedly performed in real-time CPS’s:
schedulability analysis, which is the process of validating the correctness of timing
properties. Many basic and fundamental forms of schedulability analysis are known to
be computationally intractable and hence applying DL to speed it up seems a reason-
able goal. However, schedulability is frequently a safety-critical property: incorrectly
mis-classifying an unschedulable system as being schedulable could have potentially
catastrophic consequences. There is, to our knowledge, no prior DL-based schedula-
bility analysis that guarantees to never return ‘false positives’—to incorrectly declare
some unschedulable system to be schedulable. In this paper, we are proposing the first
conceptual framework for using Deep Learning for schedulability analysis that guaran-
tees to return no false positives, and is hence suitable for use in safety-critical systems.

Envisioned use-cases.
Safety-critical systems were traditionally relatively simple and closed, and were

intended to operate under tightly controlled conditions. This is rapidly changing: mod-
ern CPS’s can be enormously complex and are required to operate safely and effec-
tively in open environments that are characterized by a good deal of uncertainty. With
such systems becoming increasingly more dynamic as a means of being adaptive to
changing conditions in their operating environments, schedulability analysis algorithms
need frequent re-execution during run-time (often as part of admission control pro-
cedures) as the workload and/ or platform changes in ways that were not anticipated
during pre-runtime analysis. Pseudo-polynomial running times are often far too large
for such algorithms to be suitable for runtime use. This directly leads to a need for
extremely efficient schedulability-analysis algorithms, often upon computationally very
limited platforms, which motivates the question that is explored in this manuscript:
can we train Learning-Enabled Components (LECs) to classify system specifications
as either satisfying a given schedulability property, or failing to do so?—See Fig. 1.
Doing so enables the safety-critical computing community to leverage off the tremen-
dous advances in DL and related AI technologies that have occurred over the past two
decades or so. However, although DL has proved very effective in solving a wide range
of problems, it has also been observed (Kawaguchi 2016) that DL does not necessarily
perform very well upon all problems: given the increasing need for rapid schedulability

Fig. 1   LEC-based schedulability
analysis

334	 Real-Time Systems (2025) 61:332–358

analysis, we believe it merits investigation whether the approach of Fig. 1 is (or can be
rendered) effective for schedulability analysis.

This work.
In this manuscript we report on our findings from a conceptual and experimen-

tal evaluation of DL-based schedulability analysis, that we have conducted with the
goal of understanding its scope and limitations. The main conclusion that we are
able to draw is this:

Deep Learning (DL) is applicable for solving some, but not all, schedulability-
analysis problems of interest. There is a systematic approach for determining
whether DL is applicable for solving a given schedulability-analysis problem.
A framework can be defined for applying DL upon those schedulability-analy-
sis problems for which it is determined to be applicable.

This conclusion suggests a two-step approach to applying DL for schedulability
analysis: (i) identifying schedulability-analysis problems that can be delegated to
DL and determining how such delegation is to be done; and (ii) actually developing
DL systems for solving these problems. This paper primarily focuses on the first
step: figuring out how to identify schedulability-analysis problems that are ame-
nable to solution using DL-based techniques, and defining a DL-based framework
for solving these problems. We believe that developing the ‘best’ DL systems for
those problems that are identified as being suitable requires close collaboration with
experts in Machine Learning with the requisite knowledge and skills to choose and
train the appropriate NN architectures. That is in itself an entire research project,
which, while critically important in order to make best use of the results we derive
here, does not fall within the scope of the ideas that we seek to present in this paper.
We therefore defer detailed investigation on this second step to future work; here, we
focus on the first step, and use simple proof-of-concept implementations for well-
studied schedulability-analysis problems to demonstrate the relevance and applica-
bility of our proposed approach and the accompanying framework.1

Contributions.
The main contribution of this paper is the development of a conceptual frame-

work for using Deep Learning for schedulability analysis that guarantees to never
incorrectly classify an unschedulable system as being schedulable; this is, to our
knowledge, the first work on DL-based schedulability analysis that can make such a
guarantee. In greater detail:

•	 We derive an exact (necessary and sufficient) condition for our framework to be
applicable. That is, we identify a precise condition [stated as Proposition (1) in
Sect. 3] for determining whether any particular schedulability-analysis problem
is suitable for solving via our framework.

1  In other words, we are not claiming that our DL implementations are the best possible: while we real-
ize that they may perhaps be improved by making use of more advanced results from Deep Learning, we
consider doing so to be beyond the scope of this paper.

335Real-Time Systems (2025) 61:332–358	

•	 We illustrate the applicability of Proposition (1) by identifying schedulability-
analysis problems that are amenable to DL-based solution, as well as ones that
are not. We develop simple proof-of-principle implementations of DNN-based
schedulability tests for some of the schedulability-analysis problems that are
shown to be amenable to DL-based solution, and experimentally evaluate these
DNNs along various dimensions (their effectiveness; run-time overheads; FPGA
implementation) upon synthetically generated workloads.

Organization. The remainder of this manuscript is organized in the following man-
ner. In Sect. 2 we formally describe the specific schedulability-analysis problems
that we will be studying from a DL perspective. We present our proposed framework
for DL-based schedulability analysis in Sect. 3. We have implemented and evaluated
this framework on the problems that are described in Sect. 2; our evaluation experi-
ments are detailed in Sect. 4. We conclude in Sect. 5 by discussing some related
work and placing our results within the larger context of real-time scheduling theory.

2 � Background: schedulability analysis

In this section we briefly describe (and provide the needed background informa-
tion on) the schedulability-analysis problems that we will, in the following sections,
examine from the perspective of developing DL-based solutions. Since our empha-
sis in this paper is primarily on Deep Learning, we have chosen to focus upon very
simple and particularly well-studied schedulability-analysis problems with which
most members of the real-time computing community are already familiar. In Sect. 5
(paragraph titled ‘Other schedulability-analysis problems’) we will briefly discuss
how the ideas contained in this paper may be generalized and extended to additional
schedulability-analysis problems, and list some such problems.

The sporadic tasks model (Baruah et al. 1990b).
The scheduling of collections of independent sporadic tasks Γ = {�1, �2,… , �n}

upon a shared preemptive processor is one of the most widely-studied problems in
real-time scheduling theory. Each sporadic task �i = (Ci,Di, Ti) is characterized by
three non-negative integer parameters: its worst-case execution time (or WCET)
Ci , its relative deadline Di , and its inter-arrival separation parameter (or period) Ti .
Sporadic task systems with Di ≤ Ti for all tasks are called constrained-deadline sys-
tems. We consider the following two schedulability-analysis problems: is a given
constrained-deadline sporadic task system guaranteed to always meet all deadlines
upon a preemptive uniprocessor platform, when scheduled using the (i) Fixed-Prior-
ity (FP) and (ii) Earliest-Deadline First (EDF) scheduling algorithms?

Fixed-Priority (FP).
In FP scheduling, each task is statically assigned a priority prior to run-time and

at each instant during run-time the currently active job that has been generated by
the highest-priority task is scheduled for execution.2 Determining whether a given

2  It is known (Leung and Whitehead 1982, Theorem 2.4) that the deadline monotonic (DM) priority
assignment, in which tasks with smaller D

i
 parameters are assigned greater priority, is optimal for con-

336	 Real-Time Systems (2025) 61:332–358

task system is FP-schedulable is known to be NP-complete (Eisenbrand and Roth-
voss 2008; Ekberg and Yi 2017); hence, it makes sense to explore the use of deep
learning to speed up FP-schedulability analysis.

It has been shown (Joseph and Pandya 1986; Lehoczky et al. 1989; Wellings et al.
1993) that a necessary and sufficient FP-schedulability condition for task system Γ is
that for each �i ∈ Γ , the recurrence:

should have a positive solution for Ri that is no larger than �i ’s relative deadline Di
[here, hp(�i) denotes the tasks with greater priority than �i ]. Response-Time Analysis
(RTA) deploys straightforward techniques for solving such recurrences to determine
the smallest value of Ri satisfying this recurrence for each �i , and declares the sys-
tem to be FP-schedulable if and only if Ri ≤ Di holds for all �i ∈ Γ.

Earliest-Deadline First (EDF).
In EDF scheduling, jobs are prioritized according to their deadlines: at each

instant during run-time the currently active job whose deadline (arrival time + rel-
ative-deadline parameter of the task that generated it) is the closest in the future
is scheduled for execution. EDF-schedulability analysis is known to be coNP-
complete (Eisenbrand and Rothvoß 2010), and it is therefore again meaningful to
explore whether deep learning can help speed things up. Processor Demand Analy-
sis (PDA) is an exact technique for schedulability analysis of constrained-deadline
sporadic task systems that are scheduled by EDF upon a preemptive uniprocessor.
This technique is centered upon the concept of the demand bound function (dbf):
for any sporadic task �i = (Ci,Di, Ti) and any interval-duration t ≥ 0 , dbfi(t) denotes
the maximum possible cumulative execution requirement by jobs of task �i that both
arrive in, and have their deadlines within, any contiguous interval of duration t. The
following formula for computing dbfi(t) was derived in Baruah et al. (1990b):

and it was shown that a necessary and sufficient condition for Γ = {�1, �2,… , �n} to
be EDF-schedulable upon a preemptive unit-speed processor is that the following
condition hold for all t ≥ 0:

It was also proved in Baruah et al. (1990b) that Condition (3) need only be checked
for values of t that are of the form t ≡

(
k × Ti + Di

)
 for some non-negative integer

(1)Ri ≥ Ci +
∑

�j∈hp(�i)

⌈
Ri

Tj

⌉
⋅ Cj

(2)dbfi(t) = max

(⌊
t − Di

Ti

⌋
+ 1, 0

)
⋅ Ci

(3)
∑
�i∈Γ

dbfi(t) ≤ t.

strained-deadline sporadic task systems. Hence, we focus our attention in this paper on FP-schedulability
analysis of systems for which priorities are assigned in DM-order.

Footnote 2 (continued)

337Real-Time Systems (2025) 61:332–358	

k and some i, 1 ≤ i ≤ n ; furthermore, only such values that are no larger than the
least common multiple of the Ti parameters of all the tasks need be tested. The set
of all such values of t for which it needs to be checked that Condition (3) is satisfied
in order to verify EDF-schedulability is called the testing set for task system Γ and
often denoted T(Γ) . It is known (Baruah et al. 1990b) that the cardinality |T(Γ)| of
the testing set T(Γ) may in general be exponential in the representation of Γ ; how-
ever, it has been shown [Baruah et al. 1990a, Theorem (3.1)] that a smaller testing
set, of cardinality pseudo-polynomial in the representation of Γ , can be identified for
bounded-utilization task systems—systems Γ satisfying the additional condition that ∑

�i∈Γ
Ui ≤ c for some constant c strictly smaller than 1.

3 � A framework for learning‑enabled schedulability analysis

In this section we motivate and describe our proposed framework for enabling
the safe and effective use of DL for doing schedulability analysis. We start out
(Sect. 3.1) briefly describing DL-based implementations that we have built, accord-
ing to the framework provided in Fig. 1, for our two schedulability-analysis prob-
lems of interest (preemptive uniprocessor FP- and EDF-schedulability analysis of
constrained-deadline sporadic task systems). In Sect. 3.2 we point out some prob-
lems that arise in such implementations. We propose a solution to these problems in
Sect. 3.3 by defining an enhancement, in Fig. 3, to the earlier framework of Fig. 1,
and derive, in Sect. 3.4, a precise condition for determining which schedulability-
analysis problems are amenable to solution using this enhanced framework.

3.1 � LECs for schedulability analysis

As stated in Sect. 1, the goal of this research is to develop LECs based on deep
learning for doing schedulability analysis. As a first step towards achieving this goal,
we trained simple multilayer perceptrons (MLPs) to perform FP and EDF schedu-
lability-analysis for small task systems in accordance with the framework of Fig. 1.
In particular, we trained a pair of networks, each with two 15-node fully-connected
hidden layers, to perform binary classification for predicting FP and EDF schedula-
bility respectively for sporadic task systems of 4 tasks3—the observed performance
of these networks are presented in Fig. 2. Two important observations emerged:

(1)	 DL appears to be very effective in classifying systems as schedulable or not:
we see from Fig. 2 that for 4-task systems, predictive accuracy exceeds 95% for
both FP and EDF schedulability analysis. (Additional experiments, reported
in Sect. 4, indicate that prediction accuracy does not degrade too steeply with
system size: it still exceeds 92% for FP schedulability of 20-task systems.)

3  A detailed description of the training process and experiments conducted is provided in Sect. 4.

338	 Real-Time Systems (2025) 61:332–358

(2)	 DL makes occasional mistakes: classification accuracy is not 100% for either FP
or EDF schedulability analysis.

The first of these observations is grounds for optimism: it shows the promise of DL
for identifying schedulable systems. The second observation, however, gives us
pause since it emphasizes the well-known fact that Deep Learning will occasion-
ally make mistakes: erroneously classify a schedulable system as unschedulable, or
vice versa. We must understand the consequences of such errors, and take mitigative
steps to ensure they do not compromise system safety, before we can use LEC-based
schedulability analysis in safety-critical systems. We point out that classification
errors are of two kinds:

(1)	 A false negative, with a schedulable system incorrectly classified as being
unschedulable; or

(2)	 A false positive, whereby an unschedulable system is classified as being schedu-
lable.

Below we discuss the implications of each kind of error.

3.2 � The problem with false positives

We saw above that LECs for schedulability analysis are, while effective, liable to
making occasional mis-classifications—both false negatives and false positives. A
false negative may result in a schedulable system being needlessly rejected as being
unschedulable, but this is a necessary consequence of using Deep Learning: DL, by
its very nature, solves problems approximately rather than exactly. However, false

Fig. 2   Performance of DNN schedulability classifiers for systems of 4 tasks, plotted as a function of
system utilization—see Sect. 3.1. The ‘Overall Accuracy’ curve denotes the fraction of generated task
systems that are correctly classified by the DNN as being schedulable or not. The ‘True Positive Rate’
(‘True Negative Rate,’ respectively) curve denotes the fraction of schedulable (not schedulable, resp.)
task systems that are correctly identified as such. The ‘False Positives’ curve denotes the fraction of gen-
erated task systems that are incorrectly classified by the DNN as being schedulable

339Real-Time Systems (2025) 61:332–358	

positives present a safety hazard since a potentially unschedulable system is misi-
dentified as being schedulable. Though the number of false positives for our binary
classifiers were low (of the systems of 4 tasks that we generated, 1.8% were incor-
rectly deemed DM schedulable and 2.1% EDF schedulable), the only acceptable rate
for safety-critical systems is zero and so we must be able to eliminate all false posi-
tives if we are to use DL for schedulability-analysis for safety-critical systems.

To eliminate the possibility of false positives, we propose that when DL-based
components are used for schedulability-analysis and declare a system to be schedu-
lable, they be additionally required to generate a justification for this decision in the
form of a certificate. Note that the certificate itself may serve as both a declaration,
and a justification, of schedulability—it should not be necessary to execute separate
networks to produce a classification and a certificate. We require that this certificate
must be efficiently verifiable by a (different) algorithm that is based on ‘traditional’
algorithmic techniques in that it does not make use of Deep Learning and related AI
techniques; it is only if this verification algorithm agrees that the certificate validates
schedulability do we deem the system specifications to have passed the schedulabil-
ity-analysis test.

This proposed enhanced framework for DL-based schedulability analysis is
depicted in Fig. 3.

3.3 � Choosing suitable certificates

Our proposed framework for DL-based schedulability analysis (depicted in Fig. 3)
requires that the LEC generate a certificate for systems it classifies as schedulable.
But what should this certificate look like? To understand this, let us separately con-
sider each of the two schedulability-analysis problems for which we have developed
LECs as discussed in Sect. 3.1.

FP schedulability. Recall, from Sect. 2, that task system Γ is FP-schedulable if
and only if there is a value of Ri no larger than Di satisfying Recurrence (1) for each
�i ∈ Γ . A certificate for the FP-schedulability of task system Γ could simply be such
values for Ri , one per task in Γ ; given such a certificate, the module labeled verifica-
tion algorithm in Fig. 3 can clearly efficiently verify that for each �i ∈ Γ , the pro-
vided value of Ri does indeed satisfy Recurrence (1) and is ≤ Di.

To investigate whether we could get LECs to generate such certificates, we
trained an alternative set of MLPs to predict the Ri values via regression,
rather than simply (as in our initial strawman approach) providing a binary

Fig. 3   A framework for LEC-based safety verification. The LEC must additionally generate a certificate
for any system determined to be schedulable; this certificate should be efficiently verifiable by the verifi-
cation algorithm

340	 Real-Time Systems (2025) 61:332–358

classification. The network for doing so contains 4 fully-connected hidden lay-
ers, each with 30 neurons (more details are provided in Sect. 4). A task system
is deemed to be FP-schedulable if these predicted Ri values are each ≤ the corre-
sponding Di values; we again plot the predictive accuracy in Fig. 4a. Note that the
predictive accuracy in this plot is generally lower than in the corresponding plot
for the binary (schedulable/unschedulable) classifier (Fig. 2a); it is, however, not
unacceptably low in light of the fact (also stated earlier) that we are reconciled
to approximate, rather than exact, solutions from DL. Furthermore in this case,
we can validate claims of schedulability by having a verification algorithm check
that the certificates generated by the MLP do indeed satisfy the corresponding
response-time equations [Recurrence (1)]—we plot the accuracy post-validation
in Fig. 4b. Note that, although accuracy overall decreases slightly with verifica-
tion (from 85.1 to 82.7% ), unsafe false positives are eliminated entirely.

EDF schedulability. Let us now turn our attention to EDF schedulability:
what should the certificates to be generated by the LEC be? An examination of
the EDF schedulability-analysis condition reveals that Expression (3) �∑

�i∈Γ
dbfi(t) ≤ t

�
 is required to hold for all values of t in the testing set T(Γ) .

And since T(Γ) may contain exponentially many distinct values of t, a certificate
enumerating all elements of T(Γ) would require that the module labeled verifica-
tion algorithm in Fig. 3 take exponential time to verify the veracity of this cer-
tificate, thereby negating the very purpose of using LEC’s to speed up schedula-
bility-analysis. Thus the idea that worked above for FP-schedulability, of having
the LEC generate a certificate that can be used by the verification algorithm for
validating the associated schedulability condition [Recurrence (1)] appears to not
be applicable for EDF-schedulability. Indeed, we were unable to instantiate the
framework of Fig. 3 to become applicable for EDF-schedulability; in Sect. 3.4 we
show that it follows from computational complexity theory (Papadimitriou 1994;
Arora and Barak 2009) that we are unlikely to be able to do so.

Fig. 4   FP schedulability with certificates for sets of 4 tasks. Note the different scale of the right-side
y-axes for false positives. Overall (i.e., summing across all utilizations), 74.1% of schedulable systems
were verifiably identified as being such

341Real-Time Systems (2025) 61:332–358	

3.4 � The applicability of the proposed framework

Let us examine the framework of Fig. 3 a bit more closely. Recall that our goal
in using DL for schedulability analysis is to obtain greater run-time efficiency:
we want to be able to make schedulability-analysis decisions faster than could
be done using traditional schedulability-analysis algorithms. Now, there is a lot
of excellent research on how one should implement LECs (particularly DNN-
based ones) to have efficient (and predictable) running times (see, e.g., Kang and
Chung 2019; Huang et al. 2019; Sun et al. 2022—this list is by no means exhaus-
tive); we expect that one can use the results of this research to obtain very effi-
cient implementations of the LEC in Fig. 3 (indeed, we demonstrate examples of
this in Sect. 4). That leaves the verifier of Fig. 3: we want this, too, to be imple-
mented in an efficient manner. We argue that it is reasonable to require that this
verifier should have running time no worse than a (low-order) polynomial in the
size of the task system whose schedulability is being determined. This require-
ment immediately relates the applicability of the framework of Fig. 3 to well-
studied concepts in computational complexity theory (Papadimitriou 1994; Arora
and Barak 2009), in particular, the complexity class NP—‘ NP is the class of
[problems] that can be verified by a polynomial-time algorithm’ (Cormen et al.
2022, p. 1058). Hence the requirement that the certificate be verifiable in poly-
nomial time implies that the framework is applicable to schedulability-analysis
problems that are in NP; this is formally stated in the following proposition:

Proposition 1  Restricting that the module labeled ‘verification algorithm’ in Fig. 3
have no worse than polynomial running time, it is necessary and sufficient for a
schedulability condition to belong to the complexity class NP in order for it to be
checkable using the framework of Fig. 3. 	� ◻

Hence, in order to determine whether a schedulability-analysis problem can
be verified using DL through the framework presented in Fig. 3 or not, it is nec-
essary to demonstrate its membership (or non-membership, respectively) in the
complexity class NP. To prove that a schedulability-analysis problem belongs
to NP, one must furnish a polynomial-time verification algorithm for the prob-
lem. However, how can one demonstrate its non-membership in NP? In this case,
established results from computational complexity theory come into play. There
exist various complexity classes (a few are depicted in Fig. 5) that are very widely
believed to be distinct from NP, meaning they contain problems ∉ NP . Recall
from computational complexity theory that a problem is considered hard for a
complexity class if it is, in an intuitive sense, at least as computationally difficult
to solve as every other problem within that class (or more precisely, every prob-
lem in the complexity class can be polynomial-time reduced to this hard prob-
lem). Thus, showing a schedulability-analysis problem to be hard (or complete)
for any complexity class believed to be distinct from NP (such as coNP) provides
substantial evidence that it is not a member of NP .

342	 Real-Time Systems (2025) 61:332–358

The conclusions we had drawn from first principles in Sect. 3.3, that FP-schedula-
bility analysis fits the framework of Fig. 3 whereas EDF-schedulability analysis does
not, follow directly from Proposition 1: as stated in Sect. 2, FP-schedulability analy-
sis is NP-complete (Ekberg and Yi 2017) and therefore in NP; EDF-schedulability
analysis, however, is coNP-complete (Eisenbrand and Rothvoß 2010) and therefore
not in NP (assuming the widely-believed conjecture that NP ≠ CONP—see Fig. 5).

4 � Evaluation

In this section we describe and discuss the experiments that we have conducted for
evaluating, from various perspectives (including predictive accuracy and run-time
implementation overhead, as well as the possibility of FPGA implementation), the
effectiveness of DL-based solutions for preemptive uniprocessor FP-schedulabil-
ity analysis. Our choice of uniprocessor FP schedulability-analysis as the problem
upon which to illustrate our approach merits some explanation: despite the inherent
intractability (NP-hardness) of the problem, superbly engineered implementations
of RTA do exist that are very efficient in practice upon most problem instances and
hence this is perhaps not the problem that first comes to mind as needing faster algo-
rithms. We have nevertheless chosen FP-schedulability analysis as the problem upon
which to illustrate our approach for primarily pedantic reasons—this is a problem
that is very well known by most of the real-time computing community and hence
our target reader can focus on the conceptual framework without needing to con-
stantly remind themselves of minutiae about the problem being solved. Additionally,
focusing on FP-schedulability allows us to draw a contrast with EDF-schedulability,
another commonly-studied schedulability-analysis problem that is often compared
and contrasted with FP-schedulability analysis—see, e.g., Buttazzo (2005), and
which, by Proposition (1), cannot be solved using our DL-based framework (since
it is coNP-hard).

Fig. 5   Some common complex-
ity classes. It is widely believed
that no region in this diagram is
empty—each is populated with
problems

343Real-Time Systems (2025) 61:332–358	

4.1 � Generating synthetic workloads

We build individual DNN models for FP-schedulability analysis of systems of 2 to
20 tasks. As training data, we generate one million synthetic task sets for each sys-
tem size considered, as follows. We consider utilizations from 0.1 to 1.0 in steps
of 0.1; for each utilization, we generate 105 sets of tasks. For each set, the utiliza-
tion Ui of each task �i is assigned according to the UUniSort algorithm (Bini and
Buttazzo 2005). Task periods Ti are then assigned uniformly4 in the range 1–1000,
and workloads Ci are characterized according to Ci = Ui ⋅ Ti . As we are consider-
ing schedulability of constrained-deadline tasks, we assign deadlines uniformly in
the range [Ci, Ti] ; tasks are then sorted in ascending order of deadline to reflect DM
prioritization.

For each task system, we use RTA (Joseph and Pandya 1986; Lehoczky et al.
1989; Wellings et al. 1993) to find the smallest value of Ri that satisfies Recur-
rence (1) for each task. This response time is then checked against the deadline; if
Ri ≤ Di for every task, the task set is deemed FP schedulable.

To support a proof of concept for EDF schedulability, we also perform processor
demand analysis for sets of 4 tasks. Those for which Condition (3) is satisfied for all
points in the testing set are deemed EDF schedulable.

To test how well our models generalize to similar synthetic tasksets, we generate
as test data an additional million synthetic task sets using the same methodology
(but a different random seed) for each task system size considered (2 to 20 tasks).

4.2 � Evaluating binary classification

We begin with an evaluation of LEC-based schedulability analysis according to the
framework in Fig. 1.5 To do so, we train a collection of simple multilayer perceptron
(MLP) models to classify task systems as FP-schedulable or unschedulable. Each
model accepts as its input the parameters of a constant number of tasks; we train
models for systems of 2–20 tasks.

Training Methodology.
For each task set size considered, we construct an MLP using PyTorch (Paszke

et al. 2019) with the architectural template depicted in Fig. 6. As inputs, the model
takes the execution time Ci , period Ti , and deadline Di of each task �i , with tasks
sorted in ascending priority order. We observe that the demand bound function used
in processor demand analysis [Eq. (2)], as well as the recurrence expression used for
response-time analysis [Eq. (1)], both have the task period in the denominator of a
term. We therefore also include 1∕Ti as an input to the model. The network consists
of 2 fully-connected hidden layers of 15 neurons that use rectified linear (ReLU)

4  Although Emberson et al. (2010) recommend a log-uniform distribution to reflect realistic task sets, we
have opted for a uniform distribution to provide even coverage of the input space for training purposes.
5  Recall that this framework does not guarantee an absence of false positives, and is therefore not recom-
mended for use for safety-critical purposes. We evaluated this framework initially primarily to investigate
whether it is even possible to use DL to recognize schedulable systems.

344	 Real-Time Systems (2025) 61:332–358

activation functions. The output layer has a single node using a sigmoid activation
function. If the output value is > 0.5 , the set of tasks is classified as Schedulable;
otherwise it is Unschedulable.

Each model is trained using the corresponding million sets of tasks generated as
training data, using an 80%/20% training/validation split. Input data is shuffled, then
fed in batches of size 1000. Training is performed over 100 epochs, stopping early if
no improvement in the validation data is observed for 10 epochs. We use the Adam
optimizer (Kingma and Ba 2014) with a learning rate of 0.001 and a weight decay
of 0.0001.

Observations.
We have previously presented the results for 4-task systems (Fig.2a); results for

other system sizes are summarized in Fig. 7 in the form of a plot of the overall accu-
racy as a function of system size. We observe that, while accuracy degrades slightly
as the number of tasks increases, it remains above 92% even for 20-task systems.
A 95% confidence interval obtained via nonparametric bootstrapping by resampling
1000 times remains within 0.06% of the accuracy, and is therefore too narrow to
visualize in the plot.

4.3 � Evaluating the framework of Fig. 3

We now describe our exploration of verifiable LEC-based schedulability analysis
according to the framework in Fig. 3.

Training Methodology.
For each taskset size considered, we construct an MLP with the model architec-

ture shown in Fig. 8. This model differs from the binary classifier (Fig. 6) in some
crucial ways. The model for predicting schedulability of n tasks (again sorted in pri-
ority order) outputs a set of predicted response times R′

i
 for 2 ≤ i ≤ n ( R1 is not pre-

dicted by the model, as it can be trivially computed as R1 = C1 ). The task system
is then classified Schedulable if for each task �i , R′

i
≤ Di ; the result is then veri-

fied by checking whether every predicted value R′
i
 satisfies Recurrence (1). Four key

insights guide the training methodology:

Fig. 6   MLP for binary classification of schedulability

345Real-Time Systems (2025) 61:332–358	

(1)	 This model extracts more information. Because we are asking our model to
estimate response times, rather than simply perform a binary classification, the
network needs to be more complex. In this case, we use 4 fully-connected hid-
den layers of 30 neurons each (each hidden neuron, as well as the outputs, use a
ReLU activation function).

(2)	 Response times are independent of deadlines. The recurrence relation used to
calculate the response time of a task does not depend on the deadline of that
task. Therefore, deadlines Di are not provided as inputs to the model.

(3)	 Predicted response times should not be too large. This is obvious; a prediction
that is too large might exceed the deadline for an otherwise schedulable task.
We want the response times to be as small as possible, but

(4)	 Predicted response times should not be less than the true value. A predicted
response time that is too large might still satisfy the recurrence, and might still
be less than the constrained deadline of the task. However, a prediction that is
too small will never satisfy the recurrence.

With these last two insights in mind, we devise a training strategy using a custom
loss function:

This function computes the normalized mean squared error, but applies an addi-
tional weighting term w to negative error values (where a weight w=1 makes this
equivalent to the normalized mean squared error). This has the desired effect of
rewarding predictions that are close to the true value, while more heavily penalizing

(4)L =

⎧
⎪⎨⎪⎩

�
R�
i
−Ri

Ri

�2

if R�
i
≥ Ri,�

w ⋅

R�
i
−Ri

Ri

�2

if R�
i
< Ri.

Fig. 7   Accuracy of binary classification for FP-schedulability

346	 Real-Time Systems (2025) 61:332–358

predictions that undershoot the true value. Training batch loss is computed as the
mean over individual input losses.

Our training methodology is the same as that of the binary classifier described
in Sect. 4.2. To decide what value to assign to our penalty term w, we first train
10 networks, each for sets of 3 tasks, using values of w distributed in log-uniform
fashion from 1 to 1000.

Once trained, we evaluate the accuracy of each model—a prediction is consid-
ered accurate if (i) each predicted value of R′

i
 satisfies Recurrence (1), and (ii) the

model correctly classifies the task set as Schedulable or Unschedulable. We plot
the accuracy of each model over the 106 task sets that comprise our test data in
Fig. 9, observing that w = 100 performs the best. We then scale this approach, train-
ing models for systems comprising 2–20 tasks with w fixed at 100.

Metrics for evaluation.
We evaluate our framework according to three different metrics:

1.	 Predictive accuracy, i.e., the rate at which classification of a set of tasks as Sched-
ulable or Unschedulable is both correct and verifiable (i.e., the predicted values
R′
i
 satisfy the recurrence); or

2.	 Acceptance rate, i.e., the percentage of Schedulable tasks that are classified as
such. This is equivalent to the sensitivity of the test, or its true positive rate.

3.	 False positives, i.e., the number of task systems that are incorrectly classified as
Schedulable.

While predictive accuracy is the metric by which many Machine Learning models
are judged, real-time systems developers are likely more interested in finding sched-
ulable systems as often as possible—correct identification of Unschedulable task
sets may not be as meaningful. However, as we have stressed, incorrectly identifying
unschedulable task sets as Schedulable presents a safety hazard.

Fig. 8   MLP for computing R
i
 ’s (response times)

347Real-Time Systems (2025) 61:332–358	

Observations.
We evaluate the models that were trained using a fixed penalty weight w = 100 .

For each, we compare the above-listed evaluation metrics (predictive accuracy,
acceptance rate, and number of false positives) when the predicted values R′

i
 are

used to classify schedulability, and when these predictions are additionally verified.
We have previously plotted unverified and verified schedulability as a function of
system utilization for 4-task systems (Fig. 4); these metrics for task systems of 2–20
tasks are summarized in Fig. 10. Figure 10a, b plot unverified and verified schedu-
lability as a function of system size. As expected, predictive accuracy degrades with
verification (though it remains above 72.1% for systems of up to 20 tasks); however
false positives that may compromise safety are eliminated. Moreover, although accu-
racy degrades slightly as new tasks are added,6 this approach nonetheless identifies
and verifies well over half of the Schedulable task systems even for systems of as
many as 20 tasks. As before, we obtain 95% confidence intervals via nonparametric
bootstrapping by resampling 1000 times; these are shown as a shaded region around
each series, although they are too narrow to easily visualize for overall accuracy and
acceptance rate.

4.4 � Generalizing to different task parameters

We have shown so far that our MLP (Fig. 8) performs well at correctly and verifi-
ably identifying schedulable task sets when provided with test data generated using

Fig. 9   Determining the appropriate value of w (see Sect. 4.3)

6  This makes sense, as the number of input features and values predicted increases, despite the number
and size of the hidden layers remaining constant. We defer to future work the question of how much to
grow the network, either by adding layers or adding nodes to existing layers, to maintain accuracy as
tasks are added.

348	 Real-Time Systems (2025) 61:332–358

the same parameters as the training data. However, growing evidence suggests that
many Machine Learning models do not generalize well to real-world scenarios that
differ from their training (Risi and Togelius 2020). Generality is of particular con-
cern for our framework, especially because sets of tasks in real-world applications
do not often display the uniform properties displayed in our training data (Emberson
et al. 2010; Kramer et al. 2015).

To evaluate our model’s ability to generalize when transferred to new scenarios,
we generated alternative sets of tasks using different parameters. This time, to avoid
having each task set’s total utilization reflected in our training data, we used utiliza-
tions from 0.05 to 0.95 in steps of 0.1, generating 105 task sets for each value. For
added realism, we selected periods from a log-uniform distribution per (Emberson
et al. 2010), instead of the uniform distribution in the training data.

We evaluated our LEC on sets of 4 tasks thus generated; results are illustrated
in Fig. 11. Overall accuracy after verification was 66.1%. This is 0.80× the verified
accuracy when applied to test data generated with the same parameters as the train-
ing data, demonstrating that our model generalizes reasonably well.

4.5 � Execution time performance

Since many of our target applications are embedded systems, we have implemented
our framework on select commonly-used embedded computing platforms and meas-
ured the execution duration to check whether these are acceptable for online use; we
now report on these experiments.

Experimental Setup.
We generate task systems using the parameters described in Sect. 3.1, but this

time we produce 1000 sets of tasks at each utilization for each number of tasks con-
sidered (3–20, for a total of 180,000 task sets).

Fig. 10   Evaluation metrics, plotted as a function of system size, of MLPs for computing response times.
Note the different scale of the right-side y-axes for false positives

349Real-Time Systems (2025) 61:332–358	

We serialize our trained NN models to load them into a C++ program that is
linked against PyTorch’s compiled libtorch library module. Our program per-
forms inference on a single set of tasks at a time, after which the predicted response
times are verified and checked against task deadlines to determine schedulability.
Prior to running inference over each group of 1000 task sets, we allow the corre-
sponding model 20 ‘warm-up’ iterations. To compare our LEC framework against
an exact analysis, in the same program we also implement the algorithm of Audsley
et al. (1991) to solve the recurrence expression for response-time analysis in Eq. (2).
Our program is compiled with GCC using optimization level −O3.

We measure execution times on two platforms (both with CPU throttling
disabled):

1.	 Atom is a WinSystems EBC-C413 industrial single-board computer with an Intel
Atom E3845 (x86_64) 4-core CPU and 8 GB of RAM, running at 1.92 GHz with
Linux 5.15.0;

2.	 RPi4 is a Raspberry Pi 4 Model B, which has a Broadcom BCM2711 64-bit SoC
with a Cortex-A72 (ARM v8) 4-core CPU and 4 GB of RAM, running at 1.80
GHz with Linux 5.15.16.

Results and Discussion.
We calculate the mean and maximum execution times across the 10,000 sets

of tasks tested for each taskset size. Results for the LEC framework are plotted in
Fig. 12, and for exact response time analysis are plotted in Fig. 13, from which sev-
eral observations about our DL-based approach arise:

(1)	 It is efficient. On the Atom, inference runs in under 620 μ s and verification in
under 11 μ s, on average. The Rpi4 is even more efficient, running inference and
verification respectively in under 345 μ s and 4.2 μ s on average.

Fig. 11   FP schedulability with certificates, when generalizing to sets of 4 tasks generated per Sect. 4.4

350	 Real-Time Systems (2025) 61:332–358

(2)	 It is predictable. The maximum observed execution times for the LEC framework
remained under 986 μ s on the Atom and under 629 μ s on the RPi4. For each
number of tasks considered, the maximum across the 10,000 tested task sets did
not exceed 1.8× the mean on either platform. In contrast, exact response-time
analysis was observed to take nearly 70 ms on the Atom and 25 ms on the RPi4
in the worst-case, which is over 1000× slower than the mean. This predictability
makes a verifiable DL-based approach more suitable for online task admission,
where overheads must remain bounded to maintain timeliness.

(3)	 It scales well with system size. As the number of tasks increases, the execution
time trends upwards only slightly. As Fig. 8 illustrates, the number of inputs to
and outputs from each model increase with the number of tasks, but these extra
calculations are dominated by the number of neurons (120 total) in the fully-
connected hidden layers.

While PyTorch provides an elegant framework for training models, and libtorch
is a convenient way to wrap model inference into efficient C++ programs, it incurs
significant overhead (Georgiou et al. 2022). We therefore investigate whether we
can achieve faster performance when deploying our MLP to an FPGA hardware
accelerator.

Fig. 12   Execution time statistics for LEC framework

351Real-Time Systems (2025) 61:332–358	

4.6 � FPGA implementation

The rapid recent increase in size and complexity of NNs has spurred interest in
performing DNN inference on specially-deployed FPGA kernels (Guo et al. 2019),
often achieving highly-predictable execution times (Huang et al. 2019; Khoda et al.
2023). This motivates us to evaluate the performance of our verifiable MLP for pre-
dicting response times when synthesized for execution on an FPGA.

Experimental Setup.
In this work, we select the AMD Xilinx XC7K325T FPGA which is deployed

in real-world embedded applications, such as high-altitude balloon instruments for
gamma ray detection (Sudvarg et al. 2023, 2024). Its low power requirements make
it suitable for the sorts of embedded environments where predictable schedulability
analysis is likely to be most useful.

We implement our MLP illustrated in Fig. 8 using high-level synthesis (HLS)
in Vitis version 2024.1. We use hand-written and optimized matrix-multiply func-
tions to implement the multiply-accumulate logic representing the linear layers,
and a function to synthesize the comparators that represent each ReLU. Weights
and biases are expressed as 32-bit floating-point values. The HLS code is written

Fig. 13   Execution time statistics for response time analysis

352	 Real-Time Systems (2025) 61:332–358

in C++ and uses preprocessor directives to provide a template for different model
sizes based on the number of tasks. Dataflow pipelining enables multiple circuits to
execute portions of the computation in parallel, reducing end-to-end latency.

Results and Discussion
We synthesize the kernel for task sets of size 3–20 and use the Vitis HLS emula-

tion tools to profile its latency and area usage. Results are plotted in Fig. 14, from
which several observations arise:

(1)	 It is efficient. In Fig. 14a, we plot the execution times associated with each num-
ber of tasks. The total inference time, including transferring data from the host
to the FPGA (task parameters) and back to the host (response times), remains
below 4 μ s for up to 20 tasks, two orders of magnitude faster than for the Atom
and RPi4. It is also more than 5× faster than even the average-case execution time
of exact response time analysis on the RPi4, and nearly three orders of magnitude
faster than the worst-case.

(2)	 Execution times scale linearly. As Fig. 8 illustrates, the size of the MLP’s input
and output layers scale linearly with the number of tasks; the execution times
of associated matrix–vector multiplies therefore scale quadratically. However,
as shown in Fig. 14a, the parallelism achieved by our synthesized FPGA logic

Fig. 14   FPGA speed and area statistics

353Real-Time Systems (2025) 61:332–358	

enables roughly linear scaling of execution times. The piecewise linear trend
exhibited by the relationship between inference latency and problem size is
explained by the pipelined nature of the FPGA logic. Inference can begin as
data is still transferring onto the chip, meaning that growth in different parts of
the circuit dominate the change in latency as the number of tasks increases.

(3)	 Area scales linearly. An FPGA provides a set amount of utilizable resources,
which defines the area over which logic can be synthesized. To implement the
parallelism necessary to achieve execution times linear in the number of tasks,
we have to also increase the area of the synthesized logic as the number of tasks
grow. Figure 14b–d show counts and overall percentage of block RAM (BRAM),
flip flop (FF), and lookup table (LUT) resources used. Note that although BRAM
cells utilized are expected to scale roughly linearly with the number of tasks,
the synthesis tools group these into blocks which are often allocated in sets of
2; hence, the jump from 4 to 6 BRAM blocks. Not shown is the percentage of
multiply-accumulate digital signal processor (DSP) slices used, which remained
a constant 750 (89%).

These results indicate that the straightforward and predictable logic of our MLP
model makes it amenable to deployment on an embedded FPGA. Utilization of
BRAM and FF resources remains low, though LUT utilization exceeds 50% for sets
of 20 tasks, and DSP utilization is a constant 89% . To allow simultaneous deploy-
ment of other logic—an embedded platform that includes an FPGA accelerator
might need it for other applications as well—might therefore require reducing the
LUT and DSP area required. Techniques exist to tune and optimize based on speed
and area tradeoffs (Makrani et al. 2019; Zhao et al. 2023; Sudvarg et al. 2024), but
these are outside the scope of our proof-of-concept.

5 � Context and conclusions

Schedulability analysis is often computationally very expensive; in this manuscript,
we have reported on our efforts at using deep learning to speed it up. We have found
that it seems feasible to train even simple DL network architectures such as multi-
layer perceptrons (MLPs) to accurately classify system specifications as being either
schedulable or unschedulable: despite not being experts in DL and without inordi-
nate effort, we were able to train MLPs to do preemptive uniprocessor EDF and FP
schedulability classification at accuracy rates above 92% for task systems with as
many as 20 tasks.

Since misclassifying an unschedulable system as schedulable represents a safety
hazard, we have proposed a framework (Fig. 3) for DL-based schedulability analy-
sis that detects all such classification errors. We have formally established that this
framework is applicable for speeding up exactly those schedulability analysis prob-
lems that lie within the complexity class NP; we have demonstrated this applica-
bility for the NP-complete FP-schedulability analysis problem and have concluded
that the framework cannot be instantiated directly for EDF since EDF schedulability

354	 Real-Time Systems (2025) 61:332–358

analysis is coNP-complete (Eisenbrand and Rothvoß 2010) and therefore likely
∉ NP . We have extensively evaluated our FP-schedulability analysis implementa-
tions on synthetically generated workloads; the results are very encouraging and
point to the potential and promise of using DL for doing schedulability analysis.

Other schedulability-analysis problems.
As mentioned at the start of Sect. 4, our choice to use the relatively simple prob-

lem of uniprocessor FP schedulability-analysis as our running example is driven by
our intent to make it easier for our target audience to follow along with minimal
effort. The computational complexity of very many other schedulability-analysis
problems are known7; those that are in NP can be implemented in our framework,
whereas those that are hard for classes unlikely to be contained in NP cannot. For
instance, we see from Ekberg and Baruah (2021, Fig. 2) that partitioned FP sched-
ulability-analysis of constrained-deadline sporadic task systems is in NP and hence
implementable within our framework, whereas partitioned FP schedulability-anal-
ysis of constrained-deadline periodic task systems is unlikely to fit our framework
since it lies at or above the second level of the Polynomial Hierarchy (Stockmeyer
1976) (and hence unlikely to be in NP under the widely-held assumption that the
Polynomial Hierarchy has > 2 levels). It is similarly known that many multipro-
cessor DAG-scheduling problems are in NP, and hence implementable within our
framework (the associated certificates of schedulability could be processor assign-
ments and/ or preemption instants).

Incorporating improved DL techniques.
In closing, we reiterate a point we had made in Sect. 1 and reëmphasize the

proof-of-principle nature of our study: we seek to establish a framework for apply-
ing DL to solve schedulability-analysis problems. Accordingly, we have devoted
much of our efforts at formulating, and rigorously characterizing the applicabil-
ity of, this framework. Although prior work has applied DL to such problems—a
survey of such work is available in Bian et al. (2022)—ours is the first, to our
knowledge, that uses complexity theory to formalize the set of problems that can
be solved by DL while guaranteeing efficient elimination of unsafe false posi-
tives. We believe that developing the ‘best’ DL systems for any particular schedu-
lability analysis problem for which our framework is applicable requires collabo-
ration with experts in DL and does not fall within the scope of the ideas that we
are presenting in this paper, and leave as future work a detailed incorporation
of the latest findings in DL into our framework. As an illustration of such pos-
sible incorporation in the future, we point out that we have also instantiated our
framework for partitioned FP scheduling of constrained-deadline sporadic task
systems upon multiprocessor platforms (as mentioned above, shown Ekberg and
Baruah (2021, Fig. 2) to be NP-complete)—some preliminary results are plotted
in Fig. 15. A very recent work (Lee and Lee 2024) reported success in training
Graph Attention Networks to partition implicit-deadline sporadic task systems

7  For example, Ekberg and Baruah (2021, p. 366) provides, in tabular form, a comprehensive summary
of the computational complexity of schedulability-analysis for partitioned EDF and FP scheduling of
various variants of periodic and sporadic task systems upon multiprocessor platforms of different kinds.

355Real-Time Systems (2025) 61:332–358	

(task systems in which Di = Ti for all tasks �i ) for FP-scheduling upon multipro-
cessors. We plan to explore the feasibility of extending (Lee and Lee 2024) to the
partitioning of constrained-deadline task systems; if successful we could, in prin-
ciple, easily replace our multilayer perceptron (MLP) with such a Graph Atten-
tion Network and thereby seamlessly incorporate this advance in Deep Learning
into our framework, and thereby obtain a partitioned FP-schedulability analysis
algorithm that offers superior performance to what is depicted in Fig. 15, whilst
continuing to guarantee the absence of false positives.

Author contributions  All authors contributed equally, and participated equally in all stages of the
research. All authors reviewed the manuscript.

Funding  Open access funding provided by Uppsala University.

Data availability  No datasets were generated or analysed during the current study.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Fig. 15   Preliminary results for multiprocessor partitioned DM schedulability on sets of 3–10 tasks. We
train an MLP with three hidden layers of 50 nodes that takes the task parameters as inputs and partitions
the tasks amongst two processors, using our MLPs for uniprocessor FP-schedulability analysis (that are
described in Sect. 4.3) to verify the FP-schedulability of each partition. Verified accuracy remains above
64% while the acceptance rate (i.e., the proportion of schedulable task sets verifiably identified) remains
above 49%

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

356	 Real-Time Systems (2025) 61:332–358

References

Arora S, Barak B (2009) Computational complexity—a modern approach. Cambridge University
Press. http://​www.​cambr​idge.​org/​catal​ogue/​catal​ogue.​asp?​isbn=​97805​21424​264

Audsley NC, Burns A, Richardson MF, Wellings AJ (1991) Hard real-time scheduling: the deadline-
monotonic approach. IFAC Proc Vol 24(2):127–132

Baruah S, Howell R, Rosier L (1990a) Algorithms and complexity concerning the preemptive sched-
uling of periodic, real-time tasks on one processor. Real-Time Syst Int J Time Crit Comput
2:301–324

Baruah S, Mok A, Rosier L (1990b) Preemptively scheduling hard-real-time sporadic tasks on one pro-
cessor. In: Proceedings of the 11th real-time systems symposium, 1990. IEEE Computer Society
Press, Orlando, pp 182–190

Bian J, Arafat AA, Xiong H, Li J, Li L, Chen H, Wang J, Dou D, Guo Z (2022) Machine learning in real-
time Internet of Things (IoT) systems: a survey. IEEE Internet Things J 9(11):8364–8386. https://​
doi.​org/​10.​1109/​JIOT.​2022.​31610​50

Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-Time Syst 30(1–
2):129–154. https://​doi.​org/​10.​1007/​s11241-​005-​0507-9

Buttazzo GC (2005) Hard real-time computing systems: predictable scheduling algorithms and applica-
tions, 2nd edn. Springer, Berlin

Cormen TH, Leiserson CE, Rivest RL, Stein C (2022) Introduction to algorithms, 4th edn. MIT Press,
Cambridge

Eisenbrand F, Rothvoß T (2010) EDF-schedulability of synchronous periodic task systems is coNP-hard.
In: Proceedings of the annual ACM–SIAM symposium on discrete algorithms, 2010

Eisenbrand F, Rothvoss T (2008) Static-priority real-time scheduling: response time computation is NP-
hard. In: Proceedings of the real-time systems symposium, 2008. IEEE Computer Society Press,
Barcelona

Ekberg P, Baruah S (2021) Partitioned scheduling of recurrent real-time tasks. In: 2021 IEEE real-time
systems symposium (RTSS), 2021, pp 356–367. https://​doi.​org/​10.​1109/​RTSS5​2674.​2021.​00040

Ekberg P, Yi W (2017) Fixed-priority schedulability of sporadic tasks on uniprocessors is NP-hard. In:
2017 IEEE real-time systems symposium, RTSS 2017, Paris, France, 5–8 December 2017. IEEE
Computer Society, pp 139–146. https://​doi.​org/​10.​1109/​RTSS.​2017.​00020

Emberson P, Stafford R, Davis RI (2010) Techniques for the synthesis of multiprocessor tasksets. In:
WATERS workshop at the Euromicro conference on real-time systems. 1st International workshop
on analysis tools and methodologies for embedded and real-time systems, 6 July 2010, pp 6–11

Georgiou S, Kechagia M, Sharma T, Sarro F, Zou Y (2022) Green AI: do deep learning frameworks have
different costs? In: 2022 IEEE/ACM 44th international conference on software engineering (ICSE),
2022, pp 1082–1094. https://​doi.​org/​10.​1145/​35100​03.​35102​21

Guo K, Zeng S, Yu J, Wang Y, Yang H (2019) [DL] a survey of FPGA-based neural network inference
accelerators. ACM Trans Reconfigurable Technol Syst 12(1):1–26. https://​doi.​org/​10.​1145/​32891​85

Huang S, Pearson C, Nagi R, Xiong J, Chen D, Hwu W-M (2019) Accelerating sparse deep neural net-
works on FPGAs. In: 2019 IEEE high performance extreme computing conference (HPEC), 2019,
pp 1–7. https://​doi.​org/​10.​1109/​HPEC.​2019.​89164​19

Joseph M, Pandya P (1986) Finding response times in a real-time system. Comput J 29(5):390–395
Kang W, Chung J (2019) DeepRT: predictable deep learning inference for cyber–physical systems. Real-

Time Syst 55(1):106–135. https://​doi.​org/​10.​1007/​s11241-​018-​9314-y
Kawaguchi K (2016) Deep learning without poor local minima. In: Lee D, Sugiyama M, Luxburg U,

Guyon I, Garnett R (eds) Advances in neural information processing systems, 2016, vol 29. Curran
Associates, Inc. https://​proce​edings.​neuri​ps.​cc/​paper_​files/​paper/​2016/​file/​f2fc9​90265​c712c​49d51​
a18a3​2b39f​0c-​Paper.​pdf

Khoda EE, Rankin D, Lima RT, Harris P, Hauck S, Hsu S-C, Kagan M, Loncar V, Paikara C, Rao R,
Summers S, Vernieri C, Wang A (2023) Ultra-low latency recurrent neural network inference on
FPGAs for physics applications with hls4ml. Mach Learn Sci Technol 4(2):025004. https://​doi.​org/​
10.​1088/​2632-​2153/​acc0d7

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint. arXiv:​1412.​6980
Kramer S, Ziegenbein D, Hamann A (2015) Real world automotive benchmarks for free. In: 6th Inter-

national workshop on analysis tools and methodologies for embedded and real-time systems
(WATERS), 2015, vol 130

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1109/JIOT.2022.3161050
https://doi.org/10.1109/JIOT.2022.3161050
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/RTSS52674.2021.00040
https://doi.org/10.1109/RTSS.2017.00020
https://doi.org/10.1145/3510003.3510221
https://doi.org/10.1145/3289185
https://doi.org/10.1109/HPEC.2019.8916419
https://doi.org/10.1007/s11241-018-9314-y
https://proceedings.neurips.cc/paper_files/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://doi.org/10.1088/2632-2153/acc0d7
https://doi.org/10.1088/2632-2153/acc0d7
http://arxiv.org/abs/1412.6980

357Real-Time Systems (2025) 61:332–358	

Lee S, Lee J (2024) A graph attention network approach to partitioned scheduling in real-time systems.
IEEE Embed Syst Lett. https://​doi.​org/​10.​1109/​LES.​2024.​33768​01

Lehoczky J, Sha L, Ding Y (1989) The rate monotonic scheduling algorithm: exact characterization and
average case behavior. In: Proceedings of the real-time systems symposium, 1989. IEEE Computer
Society Press, Santa Monica, pp 166–171

Leung JY-T, Whitehead J (1982) On the complexity of fixed-priority scheduling of periodic, real-time
tasks. Perform Eval 2:237–250

Makrani HM, Farahmand F, Sayadi H, Bondi S, Dinakarrao SP, Homayoun H, Rafatirad S (2019) Pyra-
mid: machine learning framework to estimate the optimal timing and resource usage of a high-level
synthesis design. In: 2019 29th International conference on field programmable logic and appli-
cations (FPL), 2019. IEEE Computer Society, Los Alamitos, pp 397–403. https://​doi.​org/​10.​1109/​
FPL.​2019.​00069

Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Boston
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,

Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L,
Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance deep learning library. Adv
Neural Inf Process Syst 32:8024–8035

Risi S, Togelius J (2020) Increasing generality in machine learning through procedural content genera-
tion. Nat Mach Intell 2(8):428–436

Stockmeyer L (1976) The polynomial-time hierarchy. Theor Comput Sci 3:1–22
Sudvarg M et al (2023) Front-end computational modeling and design for the Antarctic demonstrator for

the advanced particle-astrophysics telescope. In: Proceedings of 38th international cosmic ray con-
ference, 2023, vol 444. Sissa Medialab, pp 764–769. https://​doi.​org/​10.​22323/1.​444.​0764

Sudvarg M, Zhao C, Htet Y, Konst M, Lang T, Song N, Chamberlain RD, Buhler J, Buckley JH (2024)
Hls taking flight: toward using high-level synthesis techniques in a space-borne instrument. In: Pro-
ceedings of 21st international conference on computing frontiers, 2024. ACM. https://​doi.​org/​10.​
1145/​36491​53.​36492​09

Sun Y, Zheng L, Wang Q, Ye X, Huang Y, Yao P, Liao X, Jin H (2022) Accelerating sparse deep neural
network inference using GPU tensor cores. In: 2022 IEEE high performance extreme computing
conference (HPEC), 2022, pp 1–7. https://​doi.​org/​10.​1109/​HPEC5​5821.​2022.​99263​00

Wellings A, Richardson M, Burns A, Audsley N, Tindell K (1993) Applying new scheduling theory to
static priority pre-emptive scheduling. Softw Eng J 8:284–292

Zhao C, Dong Z, Chen Y, Zhang X, Chamberlain RD (2023) GNNHLS: evaluating graph neural network
inference via high-level synthesis. In: 2023 IEEE 41st international conference on computer design
(ICCD), 2023. IEEE, pp 574–577

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Sanjoy Baruah  is the Hugo F. & Ina Champ Urbauer Professor of
Computer Science & Engineering at Washington University in St.
Louis. His research interests and activities are in real-time and
safety-critical system design, scheduling theory, and resource allo-
cation and sharing in distributed computing environments.

https://doi.org/10.1109/LES.2024.3376801
https://doi.org/10.1109/FPL.2019.00069
https://doi.org/10.1109/FPL.2019.00069
https://doi.org/10.22323/1.444.0764
https://doi.org/10.1145/3649153.3649209
https://doi.org/10.1145/3649153.3649209
https://doi.org/10.1109/HPEC55821.2022.9926300

358	 Real-Time Systems (2025) 61:332–358

Pontus Ekberg  is an Associate Professor at Uppsala University,
Sweden. His research interests are in the design and analysis of
algorithms and in computational complexity, especially when
related to real-time scheduling theory.

Marion Sudvarg  is a Postdoctoral Research Associate in the
Department of Physics at Washington University, having recently
completed his PhD in Computer Science, also at WashU. His
research interests are in developing robust, adaptable, and secure
real-time computing systems. He is the software and firmware lead
for the ADAPT collaboration, developing real-time algorithms and
systems to enable prompt localization and multi-messenger follow-
up observations of astrophysics transients.

	Learning-assisted schedulability analysis: opportunities and limitations
	Abstract
	1 Introduction
	2 Background: schedulability analysis
	3 A framework for learning-enabled schedulability analysis
	3.1 LECs for schedulability analysis
	3.2 The problem with false positives
	3.3 Choosing suitable certificates
	3.4 The applicability of the proposed framework

	4 Evaluation
	4.1 Generating synthetic workloads
	4.2 Evaluating binary classification
	4.3 Evaluating the framework of Fig. 3
	4.4 Generalizing to different task parameters
	4.5 Execution time performance
	4.6 FPGA implementation

	5 Context and conclusions
	References

