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Abstract. Given a periodic task system that is guaranteed to be schedu-
lable upon a preemptive uniprocessor, this paper addresses the problem
of determining whether schedulability is preserved upon the addition of a
set of sporadic tasks. The precise computational complexity of the prob-
lem is established, and exact tests are designed, formally proven correct,
and evaluated experimentally to assess their practicality for runtime de-
ployment.
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1 Introduction and Problem Statement

This paper investigates the following real-time schedulability analysis problem:

Given a task system comprising a collection of asynchronous periodic
tasks that is known to be schedulable upon a preemptive uniprocessor
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platform, is schedulability preserved upon adding a collection of sporadic
tasks to the task system?

Below we first explain the reasons that have motivated us to study this particular
problem, and then define the problem more formally.
Motivation. One of the earliest (and still one of the most common) use-cases
for periodic tasks [1,2] is in implementing control loops upon a common comput-
ing platform5. The Time-Triggered Architecture (TTA) [3–6] offers a disciplined
approach for scheduling such periodic tasks in safety-critical distributed systems
ensuring reliability and predictability. It is particularly well-suited for applica-
tions with complex timing constraints, e.g., precedence, mutual exclusion, and
distributed end-to-end deadlines, as reflected in the successful commercialization
of TTA by the company TTTech.
The strict adherence of conventional time-triggered (TT) implementations to
offline defined schedules prevents runtime flexibility: workloads and scheduling
decisions are completely determined offline. At runtime, scheduling reduces to
a straightforward dispatching process guided by these pre-computed schedules.
This inherent rigidity hinders the direct application of the TT approach for
implementing applications exhibiting a certain degree of runtime uncertainty.
Introducing flexibility into TT systems requires careful analysis to avoid compro-
mising system properties [7]. Several methods have been proposed in [8–12] to
mitigate the rigidity of conventional TT scheduling. These methods dynamically
adjust the offline schedules to enable the efficient integration of event-triggered
tasks while maintaining timing guarantees and preserving TT properties.
Our goal is to further extend prior work and enable incorporating even greater
flexibility into the TT approach, by allowing for the admission, during runtime,
of an entire collection of sporadic tasks if it is possible to do so without missing
any deadlines. Further, we do not restrict adding sporadic tasks to a predeter-
mined time, i.e., they can be added at their initial arrival time, as long as feasi-
bility is maintained. Since such admission control is being done during runtime,
it is imperative that it be performed efficiently. This capability is essential for
emerging domains such as real-time cloud computing and autonomous safety-
critical systems. In these environments, services are provisioned dynamically,
and applications and their timing requirements may vary in response to chang-
ing conditions. Predefining operational modes for every conceivable scenario is
both resource-inefficient and, in many cases, infeasible, particularly when not all
system variations can be anticipated at design time.
The problem considered. We now provide a formal definition of the schedul-
ing problem that is studied in this paper. We assume that we have a set ΓP

of periodic tasks, that is a priori known to be schedulable upon a preemptive
uniprocessor. We seek to determine whether, if we were to now add a set ΓS of

5 E.g., the widely-cited Liu and Layland paper [1] opens with the words “The use of
computers for control and monitoring of industrial processes has expanded greatly in
recent years [. . . ] Often, the computer used in such an application is shared between
a certain number of time-critical control and monitor functions. . . ”
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sporadic tasks to the processor, all deadlines of all the tasks in both ΓP and ΓS

will continue to always be met; i.e., is the set of tasks Γ def
= ΓP ∪ΓS schedulable?

In greater detail,

1. ΓP is a set of four-parameter periodic tasks [2, 13]; each task τi ∈ ΓP is a
4-tuple (ϕi, Ci, Di, Ti) where
• ϕi is the initial offset of τi: the first job of τi arrives at time-instant ϕi;
• Ci is the worst-case execution time (wcet) of τi: each job of τi needs to

execute for no more than Ci time units;
• Di is the relative deadline of τi: each job must complete execution within

a duration Di of its arrival; and
• Ti is the period of τi: successive jobs arrive exactly Ti time units apart.

We assume constrained deadlines, i.e., that Di ≤ Ti.
2. ΓS is a set of three-parameter sporadic tasks [14]: each task τi ∈ ΓS is a

3-tuple (Ci, Di, Ti) where
• Ci and Di are the wcet and relative deadline respectively of τi, with the

same interpretations as above for periodic tasks; and
• Ti is the period of τi, with the interpretation (different from above) that

successive jobs arrive at least Ti time units apart. We assume Di ≤ Ti.
3. We are considering the scheduling of Γ def

= ΓP∪ΓS upon a preemptive unipro-
cessor platform. Given the optimality of the Earliest Deadline First schedul-
ing algorithm (EDF) upon preemptive uniprocessors [1, 15], we will, for the
most part, assume that EDF is the runtime scheduling that is used.

Known complexity results. Schedulability verification is known to be strongly
coNP-complete both for task systems comprising four-parameter periodic tasks [13]
and for task systems comprising three-parameter sporadic tasks [16] – this im-
plies that polynomial or pseudo-polynomial time algorithms for verifying the
schedulability of either of these task set systems are not likely to exist.
Additional results are known for bounded-utilization systems — task systems for
which the total utilization U(Γ), defined as the sum of each task’s utilization
Ui

def
= Ci/Ti, is a constant fraction strictly smaller than one, i.e., U(Γ) < 1.

Under bounded-utilization conditions, the schedulability verification problem for
three-parameter sporadic task systems is weakly coNP-complete [17]. This fol-
lows from the fact that the length of the analysis interval - the critical window
within which all potential deadline violations must be checked - is bounded by a
value that grows only pseudo-polynomially with respect to the numerical magni-
tudes of the task parameters. Consequently, pseudo-polynomial time algorithms
are applicable in this setting [14]. In contrast, for four-parameter periodic task
systems with unequal offsets, the length of the analysis interval grows exponen-
tially with the size of task set parameters. As a result, these systems remain
coNP-complete even under bounded-utilization conditions.
Implications to our problem. The strong coNP-hardness result for general
three-parameter sporadic task systems [16] implies that we are unlikely to be
able to solve our problem in polynomial or pseudo-polynomial time (to see this,
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suppose that the periodic task system ΓP is empty, determining whether Γ
def
=

ΓP ∪ ΓS is schedulable is equivalent to determining whether ΓS is schedulable).
However, the above argument does not apply for bounded-utilization systems
— since the sporadic task system ΓS also necessarily has bounded utilization,
an empty periodic task system ΓP would allow our problem to be solved in
pseudo-polynomial time using the processor-demand analysis [14]. While deter-
mining whether Γ

def
= ΓP ∪ ΓS is schedulable is strongly coNP-hard even for

bounded-utilization systems (since determining whether ΓP is schedulable is
strongly coNP-complete [13, Corollary 3.1]), notice that our problem only re-
quires us to determine Γ’s schedulability given that ΓP is schedulable. That is,
our problem is stated as a promise problem [18]: determine the schedulability
of Γ def

= ΓP ∪ ΓS under the “promise” that ΓP is schedulable.
Our Results. Our first major result is a negative one: we prove that determin-
ing whether ΓP∪ΓS is schedulable under any work-conserving scheduler remains
strongly coNP-hard for bounded-utilization systems despite the promise that
ΓP is schedulable (Theorem 1). This hardness result persists even when ΓS com-
prises a single implicit-deadline sporadic task (Di = Ti) and the total utilization
of ΓP ∪ ΓS is bounded by an arbitrarily small constant. In essence, verifying
whether a schedulable ΓP remains feasible after adding a single sporadic task is
computationally as hard as establishing the schedulability of ΓP from scratch.
On the brighter side, we observe that since the problem for EDF is in coNP, it
follows from prior results in [13] that it can be represented in polynomial time as
the feasibility problem for an Integer Linear Program (ILP)6, and thereby solved
by using an ILP-solver. We do, however, have a negative result to accompany this
positive one: we show (Lemma 3) that if we were to use Fixed-Priority schedul-
ing [2] rather than EDF, then it is unlikely that we can reduce schedulability
verification to the feasibility problem for an ILP in polynomial time.
We have also developed some feasibility tests for the problem under consid-
eration. First, we propose an exact feasibility test based on processor demand
analysis (PDA) [14], that exploits some properties identified in Theorem 2 to
significantly reduce the number of test cases that are typically used for such
PDA analysis when asynchronous periodic tasks are involved.
Recognizing PDA’s exponential time and polynomial space complexity, we intro-
duce PDA*, a novel approach that shifts a substantial portion of the computa-
tion to the pre-runtime phase. This is achieved by pre-computing the processor
demand of periodic tasks, which reduces the runtime complexity to pseudo-
polynomial at the cost of pseudo-polynomial space. We further optimize runtime
with QPDA* by incorporating the quick convergence technique of [19]. QPDA*
achieves average-case speedups of 2-3× over PDA* while maintaining the same
memory footprint. In contrast, our ILP formulation of the problem exhibits com-
plexity comparable to the original PDA. Empirical evaluation on synthetic task
sets and automotive benchmarks, including a comparison with Slot-Shifting’s

6 Technically, EDF-schedulability can be represented as the in-feasibility problem of
an ILP.
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offline test, demonstrates the efficiency of the QPDA* for runtime deployment.
Under the constraints of contemporary real-time systems, QPDA* achieves a 2-3
order of magnitude improvement in runtime performance over the original PDA,
while requiring less than a few hundred kilobytes to store preprocessed demand.
Organization. The remainder of this manuscript is organized in the following
manner. Section 2 reviews related work that addresses similar instances of the
problem under both fixed and dynamic priority scheduling. Section 3 presents
our computational complexity results; Section 4, our proposed feasibility tests,
PDA and its optimized variant PDA*, followed by the formulation of the problem
as an ILP model in Section 5. Section 6 reports the results of our experimental
evaluation of the feasibility tests. Finally, Section 7 summarizes our contributions
and outlines directions for future research.

2 Related Work

Existing closely related works assume TT activation, where the scheduler is
invoked at the start of predefined time slots in a scheduling table. This section
categorizes these works based on the timing of TT schedule modifications into:
Offline schedule modification. In [20], a hierarchical approach for handling
sporadic tasks in a TT schedule is proposed. A periodic server abstraction, e.g.,
one or multiple time slots in the TT schedule, is reserved for handling sporadic
tasks based on a second-level fixed-priority-based scheduler. The advantage of
this method is that it decouples the schedulability of sporadic tasks from the
TT schedule generation problem. The system designer, however, has to solve the
non-trivial server design problem, i.e., the problem of deriving suitable server pa-
rameters under which the sporadic tasks are schedulable. The authors propose
two methods for implementing this hierarchical approach: simple and advanced
polling. Simple polling assigns each sporadic task to its own periodic server,
which, while simple, it can cause over-utilization when deadlines and periods di-
verge, resulting in suboptimal schedulability performance. In contrast, advanced
polling involves assigning multiple sporadic tasks to the same periodic server,
where schedulability verification is based on the response time of sporadic tasks.
The method Burst Limiting Least Laxity First (B3LF) [21] has shown the best
scheduling results under this category considering both sporadic and periodic
tasks. It assumes that periodic tasks have the highest priority and are scheduled
offline, whereas sporadic tasks are assigned fixed unique priorities and serviced
dynamically in the free time slots of the offline-generated TT schedule. Since
B3LF assumes periodic tasks have zero offsets, the worst-case arrival time for
sporadic tasks is unambiguous: it occurs at the start of the longest synchronous
busy period of periodic tasks, i.e., at t = 0. However, since such a long in-
terference can lead to low schedulability, the method derives a Burst Limiting
Constraint (BLC) based on real-time calculus. The BLC constrains how big and
where busy periods from TT tasks can be in order to reposition idle slots in be-
tween them, s.t. the sporadic task set can be guaranteed. However, even optimal
dynamic priority algorithms s.a. EDF or LLF lead to suboptimal schedulability
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when used with the BLC to generate the TT schedule. This is because these
algorithms make decisions based on the current set of ready task, and with no
view on future released tasks. To alleviate the issue, the authors added a virtual
task with dynamic laxity to the Least Laxity First (LLF) algorithm, which when
chosen, an idle slot is inserted in the schedule, effectively delaying the execution
of periodic tasks.
Online schedule modification methods. This category includes methods
that adjusts the allocation of time slots to tasks at runtime based on dynamic
priority rules, with the end goal of servicing event-triggered tasks more efficiently.
Slot-Shifting [11] is a well-known method within this category and operates in
two distinct phases. In the offline phase, Slot-Shifting supplants the fixed time
slot allocation in the scheduling table with less rigid target execution windows,
defined for each task on each node. It divides each scheduling table into disjoint
capacity intervals created from the deadlines of the target execution windows of
tasks. Each interval is annotated with the available spare processing capacity,
computed based on the assumption of as-late-as-possible execution of TT tasks,
while still preserving their timing constraints. In the online phase, the local
dispatcher on each node uses and continuously updates spare capacities to safely
accommodate aperiodic tasks. This is done on a slot-by-slot basis following EDF.
In [10], Slot-Shifting was extended from guaranteeing individual aperiodic tasks
to sporadic task sets. The extension includes an offline guarantee test and online
scheduling algorithm. The offline test pessimistically assumes that TT tasks are
always executed as late as possible, which can adversely impact its schedulability
results. In contrast, the feasibility tests proposed in this paper are exact and can
be easily integrated into Slot-Shifting and the more recent Dynamic Task Set
Scheduler (DTSS) [12] with minimal effort.

3 Computational Complexity Results

We will prove that determining if ΓP ∪ ΓS is schedulable is generally a hard
problem (strongly coNP-hard), even if we a priori know that ΓP is schedulable in
isolation (the promise) and when ΓS contains a single implicit-deadline sporadic
task and the utilization of ΓP ∪ ΓS is bounded by an arbitrarily small constant.
Then we will show that the decision version of this problem is in coNP for EDF
scheduling, also without any of the restrictions mentioned above, and can there-
fore be reduced to (the complement of) Integer Linear Programming (ILP) and
solved with an ILP solver. In contrast, for FP scheduling we show that it is im-
possible to reduce in polynomial time to ILP under commonly held complexity-
theoretic conjectures.
First we prove hardness of a restricted version of Simultaneous Congruences
Problem (SCP) that will be useful in our later reduction. SCP was introduced
by Leung and Whitehead [2] and was shown to be strongly NP-complete by
Baruah et al. [13].



Extending Periodic Task Sets with Sporadic Tasks 7

Definition 1 (The Simultaneous Congruences Problem [2]). An instance
(A, k) of SCP is a set A = {(a1, b1), . . . , (an, bn)} of n pairs of integers and an
integer k, such that 2 ≤ k ≤ n and ai < bi for all (ai, bi) ∈ A.
The simultaneous congruences problem asks whether there exists a subset A′ ⊆ A,
where |A′| ≥ k, and an x ∈ N, such that x ≡ ai (mod bi) for all (ai, bi) ∈ A′.

In other words, SCP asks if at least k of the congruence classes (ai mod bi)
overlap at any single value. Note that given any set A of pairs of integers as
above, it is easy to determine if all the corresponding congruence classes overlap
at some value using the Generalized Chinese Remainder Theorem (see, e.g.,
Knuth [22]).

Proposition 1 (Generalized Chinese Remainder Theorem). Given nat-
ural numbers a1, . . . , an and b1, . . . , bn, where ai < bi, there exists an x such that
x ≡ ai (mod bi) for all 1 ≤ i ≤ n if and only if ai ≡ aj (mod gcd(bi, bj)) for
all 1 ≤ i < j ≤ n.

Since recognizing overlapping congruence classes is easy (the condition in the
Generalized Remainder Theorem can be checked in polynomial time) an impor-
tant aspect of why SCP is hard is the fact that k can be significantly different
from |A|, so that there can be exponentially many choices for the combination
of k congruence classes to consider. Indeed, an instance (A, k) of SCP with
k = |A| is easily solved in polynomial time by a single application of the Gener-
alized Chinese Remainder Theorem, and any instance where |A| − k is bounded
by some constant can be solved with a polynomial number of applications of
the theorem. However, we show below that if we restrict k to be at least some
constant fraction of |A|, then SCP remains strongly NP-complete.

Lemma 1 (λ-restricted SCP). SCP is strongly NP-complete even when re-
stricted to instances (A, k) with k ≥ λ|A|, for any constant λ where λ < 1.

Proof. Let the constant λ be given. We will reduce from unrestricted SCP (Def-
inition 1) to the λ-restricted variant by means of a pseudo-polynomial transfor-
mation (as defined by Garey and Johnson [23]).
Given an instance (A, k) of unrestricted SCP, where A = {(a1, b1), . . . , (an, bn)},
we construct an instance (Aλ, kλ) of λ-restricted SCP as follows. First, let

m
def
=

⌈
λn− k

1− λ

⌉
, kλ

def
= k +m.

We then create Aλ by adding m extra pairs of numbers to A,

Aλ
def
= A ∪ {(0, bn+1), . . . , (0, bn+m)},

where bmax = max1≤i≤n bi and bn+j denotes the jth smallest prime number
larger than bmax.
First we note that the value of m is polynomially bounded in the size of instance
(A, k). Then we need to show that values bn+j , for 1 ≤ j ≤ m, are bounded by
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a two-variable polynomial in the size of instance (A, k) and its largest numerical
value. Let pr denote the r’th prime, and note that pr = O(r log r) by the Prime
Number Theorem. Clearly we have bn+j < pbmax+j for all 1 ≤ j ≤ m, but
then we also have bn+j = O((bmax + j) log(bmax + j)), and the value of bn+j is
indeed bounded by a polynomial in the size and largest numerical value of (A, k).
Note that we can easily generate all the bn+j in time bounded by a two-variable
polynomial in the size of instance (A, k) and its largest numerical value, for
example by simply considering consecutive values larger than bmax and testing
each for primality. Then we observe that

kλ = k +m = k + (1− λ)m+ λm ≥ k + (1− λ)
λn− k

1− λ
+ λm = λ|Aλ|,

and so (Aλ, kλ) fulfills the requirement of λ-restricted SCP.
Finally we have to show that the reduction preserves the answer: that (Aλ, kλ) is
a positive instance of λ-restricted SCP if and only if (A, k) is a positive instance
of SCP. By construction, the bn+j , for 1 ≤ j ≤ m, are all coprime to each
other and to all bi for 1 ≤ i ≤ n. A congruence class (0 mod bn+j) will therefore
overlap with any set of other overlapping congruence classes taken from Aλ

by the Generalized Chinese Remainder Theorem. More specifically, if A′ is a
maximal subset of A such that there exists an x where x ≡ ai (mod bi) for all
(ai, bi) ∈ A′, then A′

λ = A′ ∪ {(0, bn+1), . . . (0, bn+m)} is a maximal subset of Aλ

such that there exists an x where x ≡ ai (mod bi) for all (ai, bi) ∈ A′
λ. Since

|A′
λ| = |A′| +m, it follows that |A′

λ| ≥ k +m = kλ if and only if |A′| ≥ k, and
therefore (Aλ, kλ) is a positive instance of λ-restricted SCP if and only if (A, k)
is a positive instance of SCP. ⊓⊔

We can now show strong coNP-hardness of the considered scheduling problem
with any work-conserving scheduler by reducing from (the complement of) λ-
restricted SCP.

Theorem 1. The promise problem of determining if ΓP ∪ ΓS is schedulable by
work-conserving scheduler A on a single preemptive processor is strongly coNP-
hard, where ΓP is a set of asynchronous periodic constrained-deadline tasks, ΓS

is a set of sporadic constrained-deadline tasks, and the promise is that ΓP is
A-schedulable if executed without ΓS.
The strong coNP-hardness holds even when |ΓS| = 1, the (single) sporadic task
has an implicit deadline, and U(ΓP ∪ ΓS) ≤ c for any constant c such that
0 < c < 1.

Proof. We will reduce from λ-restricted SCP with λ = 1− c
3 . Given an instance

(A, k) of λ-restricted SCP we create an instance (ΓP, ΓS) of (the complement of
the) scheduling problem as follows. Let

ΓP
def
= {(ϕi, Ci, Di, Ti) | (ai, bi) ∈ A},

where

ϕi
def
= σ2ai, Ci

def
= σ, Di

def
= σn, Ti

def
= σ2bi, σ

def
=

⌈
3n

c

⌉



Extending Periodic Task Sets with Sporadic Tasks 9

Let

ΓS
def
= {(CS, DS, TS)},

where

CS
def
= σ(n− k) + 1, DS

def
= σn, TS

def
= σn.

First, we note that tasks in ΓP only can release jobs at time points t that are
multiples of σ2 and they all have relative deadline Di = σn < σ2, so jobs from
tasks in ΓP have overlapping scheduling windows with other jobs from ΓP only
if they are released at the same time t. But the number of jobs from ΓP that
can be released at any time point t is clearly no more than n, and all those jobs
therefore fit into the interval [t, t+σn). Since all such jobs have the same absolute
deadline, it does not matter which order they are executed in, and the promise
that ΓP is schedulable by itself by work-conserving scheduler A is fulfilled.
Next we show that if the sporadic task (CS, DS, TS) is added, the combined task
set ΓP ∪ ΓS is A-schedulable if and only if (A, k) is a negative instance of λ-
restricted SCP. Consider first the case where (A, k) is a positive instance. Then
there exists a subset A′ ⊆ A such that |A′| ≥ k and there exists an x ∈ N, such
that x ≡ ai (mod bi) for all (ai, bi) ∈ A′, and therefore at least k tasks from ΓP

release a job at time σ2x. If also the sporadic task releases a job at the same
time, then the total execution time demand in time interval [σ2x, σ2x + σn) is
at least σk +CS = σk + σ(n− k) + 1 > σn, and a deadline miss is unavoidable.
Consider instead the case where (A, k) is a negative instance. In this case, at any
time point t = σ2x for some x ∈ N when tasks in ΓP can release jobs, there are
less than k jobs from ΓP, with a total execution time of at most σ(k−1). Even if
A chooses to execute all jobs from ΓP before jobs from the sporadic task, there
is not enough interference from jobs in ΓP to cause the sporadic task to miss
its deadline, since the slack of the sporadic task is DS − CS = σk − 1, which is
greater than σ(k − 1). Similarly, even if A chooses to always execute jobs from
the sporadic task first, it does not offer enough interference for any job from ΓP

to miss its deadline. At most two jobs from the sporadic task can overlap the
scheduling window [σ2x, σ2x+σn) of a job from ΓP, but since scheduling windows
of jobs from the periodic tasks are far apart and since A is work-conserving the
total amount of execution of the sporadic task inside [σ2x, σ2x + σn) is never
more than CS. This leaves σn − CS = σk − 1 time units free for the jobs from
ΓP inside their scheduling window, which is enough no matter which order they
are executed in since their total execution time is at most σ(k − 1).
Finally, we have

U(ΓP) =
∑

τi∈ΓP

Ci

Ti
=

∑
τi∈ΓP

σ

σ2bi
≤ σn

σ2
≤ c

3
,

U(ΓS) =
CS

TS
=

σ(n− k) + 1

σn
≤ σ(n− λn) + 1

σn
= 1− λ+

1

σn
≤ 2c

3
,

and therefore total utilization is bounded by c. ⊓⊔
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From Theorem 1 we see that the promise of the schedulability of the asyn-
chronous periodic tasks in ΓP does not help from a complexity-theoretic per-
spective: re-determining schedulability of a known-to-be schedulable ΓP after
adding just a single implicit-deadline task is of similar hardness as determining
if ΓP is schedulable in the first place. This is true even if utilization is bounded
by an arbitrarily small constant and with any work-conserving scheduler.
On the positive side, with EDF the problem is in coNP.7

Lemma 2. The decision problem of determining if ΓP ∪ ΓS is EDF-schedulable
on a single preemptive processor is in coNP, where ΓP is a set of asynchronous
periodic constrained-deadline tasks, ΓS is a set of sporadic constrained-deadline
tasks.

Proof. A counterexample to the EDF-schedulability of ΓP ∪ΓS is a pair of num-
bers t1 and t2 for which the inequality in Eq. 1 does not hold. This counterex-
ample is of polynomial size (since t1 and t2 are bounded by Eq. 4) and can be
verified in polynomial time. ⊓⊔

With EDF scheduling we can therefore reduce the schedulability problem to (the
complement of) ILP in polynomial time and use an ILP solver to answer it. This
works for the decision problem and therefore trivially for the promise problem
as well.
However, for Fixed-Priority (FP) scheduling this is unlikely to be possible even
for the promise problem.

Lemma 3. The promise problem of determining if ΓP ∪ ΓS is FP-schedulable
on a single preemptive processor is NP-hard, where ΓP is a set of asynchronous
periodic constrained-deadline tasks, ΓS is a set of sporadic constrained-deadline
tasks, and the promise is that ΓP is FP-schedulable if executed without ΓS.

Proof. A trivial reduction from the ordinary FP-schedulability problem for spo-
radic tasks simply sets ΓP = ∅ and copies the input instance to ΓS. Since FP-
schedulability for sporadic tasks is NP-complete [24], our promise problem is
NP-hard. ⊓⊔

Since the promise problem with FP scheduling is both coNP-hard (Theorem 1)
and NP-hard (Lemma 3) it cannot be reduced to ILP (or to the complement
of ILP) in polynomial time unless NP = coNP and the polynomial hierarchy
collapses.

7 Technically, since coNP is a class of decision problems, it is the decision version of
the problem (where we have no promise) that is in coNP. If the decision version is
in coNP, the promise problem is trivially in the corresponding class promise-coNP.
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4 Exact Feasibility Tests Based on PDA

It follows from [13, 14] that we can decide EDF-schedulability of Γ = ΓP ∪ ΓS

using the processor demand analysis (PDA) by verifying that the inequality

∑
τi∈ΓP

dbfP(τi, t1, t2) +
∑
τi∈ΓS

dbfS(τi, t2 − t1) ≤ t2 − t1 (1)

holds for all t1 < t2, where

dbfP(τi, t1, t2)
def
= Ci ·max

(
0,

⌊
t2 − ϕi −Di

Ti

⌋
−max

(
0,

⌈
t1 − ϕi

Ti

⌉)
+ 1

)
, (2)

dbfS(τi, t)
def
= Ci ·max

(
0,

⌊
t−Di

Ti

⌋
+ 1

)
(3)

are the standard demand bound functions for periodic and sporadic tasks, re-
spectively.
As shown in [13], the values of t1 and t2 can be confined to release times and
absolute deadlines of tasks, respectively. However, since the synchronous arrival
time of sporadic tasks is not known a priori, Eq.1 accumulates their maximum re-
quested demand within the interval [t1, t2] by assuming they arrive synchronously
at t1. Consequently, t1 is restricted to the release times of periodic tasks only,
whereas t2 can be the absolute deadline of any task in the combined task set
where for the sporadic tasks their absolute deadlines are those resulting from
their synchronous arrival sequence starting at t1.
For plain periodic tasks sets (i.e., not mixed with sporadic tasks), it was also
shown in [13] that the ranges on the values of t1 and t2 to consider for the PDA
test can be constrained as

0 ≤ t1 < t2 ≤ max
τi∈ΓP

(ϕi) + 2HP(ΓP), (4)

which is commonly repeated in the literature (see, e.g., [13,25–27]) – here HP(ΓP)
denotes the hyper-period of the periodic taskset ΓP. However, as the following
theorem shows, it is in fact possible to reduce those ranges significantly, if total
utilization is below 1, even for our more general problem with mixed task sets.

Theorem 2. A combined constrained-deadline task set Γ = ΓP∪ΓS of N tasks,
where ΓP is a set of asynchronous periodic tasks, ΓS is a set of sporadic tasks
and U(Γ) < 1, is EDF-schedulable on a single preemptive processor if and only
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if the inequality in Eq. 1 holds for all t1 < t2, where8

max
τi∈ΓP

(ϕi) ≤ t1 < max
τi∈ΓP

(ϕi) + HP(ΓP) (5)

t2 < t1 +B(Γ) (6)

B(Γ)
def
=

∑
τi∈Γ(Ti −Di)Ui

1−U(Γ)
(7)

Proof. Again, it follows from [13, 14] that Γ is EDF-schedulable if and only if
Eq. 1 holds for all t1 < t2. We will show that the reduced ranges for t1 and t2
given in Eqs. 5 and 6 are sufficient to consider.
First, we note that the range for t1 in Eq. 5 is the length of one hyper-period of
the periodic tasks, HP(ΓP), and that by starting at the largest offset maxτi∈ΓP(ϕi)
the interval for t1 will include all possible patterns of job releases from the pe-
riodic tasks, which are then repeated in the same way in the next interval of
length HP(ΓP) and so on. It follows that for any t′1, δ ∈ N, there exists t1 ∈
[maxτi∈ΓP

(ϕi),maxτi∈ΓP
(ϕi) + HP(ΓP)) such that

∑
τi∈ΓP

dbfP(τi, t
′
1, t

′
1 + δ) =∑

τi∈ΓP
dbfP(τi, t1, t1 + δ). Trivially, we also have

∑
τi∈ΓS

dbfS(τi, t
′
1 + δ − t′1) =∑

τi∈ΓS
dbfS(τi, t1 + δ− t1) for the sporadic tasks. Hence, if there are any values

of t′1 and t′2, where t′1 does not fall within the constraints of Eq. 5 and for which
the inequality in Eq. 1 does not hold, then the inequality in Eq. 1 also does not
hold for some other values of t1 and t2 where t1 is constrained as in Eq. 5.
Second, it follows directly from Eqs. 2 and 3 that dbfP(τi, t1, t2) ≤ dbfS(τi, t2−t1)
for any periodic task τi and any t1 < t2. (Note that we are here applying dbfS to
a periodic task. While dbfS is not an exact demand bound function for a periodic
task, it is still a well-defined function over three of the task’s parameters.) From
this it follows that for our combined task set Γ = ΓP ∪ ΓS and for any t1 < t2
we have∑

τi∈ΓP

dbfP(τi, t1, t2) +
∑
τi∈ΓS

dbfS(τi, t2 − t1) ≤
∑
τi∈Γ

dbfS(τi, t2 − t1) (8)

It was shown in [14,28] that for any Γ ′, where U(Γ ′) < 1, if
∑

τi∈Γ ′ dbfS(τi, t) >

t, then we must also have t < B(Γ ′). Combining this with Eq. 8, it follows that
if
∑

τi∈ΓP
dbfP(τi, t1, t2)+

∑
τi∈ΓS

dbfS(τi, t2− t1) > t2− t1, then t2− t1 < B(Γ).
This matches the bound on t2 in Eq. 6 and completes the proof. ⊓⊔

The commonly-used ranges in Eq. 4 give Θ(HP(Γ)2) combinations of t1 and t2,
while the ranges in Eqs. 5 and 6 give only Θ(HP(ΓP) B(Γ)) combinations. The
latter would typically be much smaller, which could improve the running time
of checking schedulablity greatly.
Theorem 2 is also applicable when ΓS = ∅, and so as a corollary the reduced
ranges of t1 and t2 can be used instead of the ranges in Eq. 4 when checking
schedulability of plain asynchronous periodic task sets as well.
8 In the corner case where ΓP = ∅, and Eq. 5 would be undefined, simply let t1 = 0

instead. We note that in this corner case the proposed test simply reduces to the
standard PDA test for sporadic tasks described in [14].
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4.1 Pre-Processing for a Runtime-Tailored Feasibility Test

Despite reducing the values of t1 and t2 to consider, the runtime complexity
for the test in Theorem 2 is still dominated by the periodic task set for which
separate combinations of t1 and t2 matter, and not just their difference.
However, in the setting considered in this paper, where ΓP is fixed and we want
to efficiently determine if adding a given ΓS will make the system unschedulable,
it is possible to shift much of this complexity to pre-runtime by pre-processing
the sum

∑
τi∈ΓP

dbfP(τi, t1, t2) in Eq. 1 as follows.
For each t ∈ {0, 1, . . . ,B(Γ)− 1}, pre-compute values dbfΓP(t) as

dbfΓP(t) ← max
t1∈R

( ∑
τi∈ΓP

dbfP(τi, t1, t1 + t)

)
, (9)

where R = [maxτi∈ΓP
(ϕi),maxτi∈ΓP

(ϕi) + HP(ΓP)) is the range of values for
t1 from Eq. 5. Then, Theorem 3 describes our runtime-tailored feasibility test
(referred to as PDA* in Section 6).

Theorem 3. A combined constrained-deadline task set Γ = ΓP∪ΓS, where ΓP is
a set of asynchronous periodic tasks, ΓS is a set of sporadic tasks and U(Γ) < 1,
is EDF-schedulable on a single preemptive processor if and only if the inequality

dbfΓP
(t) +

∑
τi∈ΓS

dbfS(τi, t) ≤ t (10)

holds for all 0 < t < B(Γ), where B(Γ) is calculated as per Eq. 7

Proof. Let t1 be any release time of a periodic task, and consider any interval
[t1, t2] of length t = t2 − t1, with 0 < t < B(Γ). Since sporadic tasks’ demand
is maximized in [t1, t2] if they all arrive synchronously at t1, their total demand
depends only on t and equals

∑
τi∈ΓS

dbfS(τi, t). In contrast, periodic tasks’
demand dbfP(τi, t1, t2) varies with the interval alignment, i.e., two intervals of
the same length t but with different starting points t1 can yield different demand.
However, dbfΓP(t) is exactly the maximum of periodic tasks’ demand over all
intervals [t1, t2] of length t, and so if the inequality in Eq. 1 fails for some values
t1 and t2, then the inequality in Eq. 10 will also fail considering t = t2 − t1 and
vice versa. ⊓⊔

Theorem 3 allows us to check EDF-schedulability of ΓP ∪ ΓS for arbitrary ΓS,
having pre-computed the more costly analysis for ΓP. The issue with this is
that bound B(Γ) depends on the particular ΓS, which we by assumption do
not know at the time of pre-computing dbfΓP

. But if we reasonably assume
upper bounds on allowed values of U(Γ) and of maxτi∈Γ(Ti −Di), then we can
directly calculate an upper bound on B(Γ) to be used for the pre-processing.
When evaluating Eq. 10 at runtime the exact B(Γ) is used instead.
Indeed, with a predefined constant upper bound on allowed U(Γ), say U(Γ) ≤
0.99, evaluating the schedulability with Eq. 10 takes only pseudo-polynomial
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time (not counting pre-computing dbfΓP
). Storing the values of dbfΓP

takes
pseudo-polynomial space though. In contrast, evaluating the test in Theorem 2
is not in pseudo-polynomial time, but it requires only polynomial space.
Note that it suffices to check only those values of t at which the left-hand side of
Eq. 10 is discontinuous. The discontinuity points for dbfΓP

are computed during
pre-processing9. For dbfS, the discontinuities occur at the absolute deadlines of
sporadic tasks from a synchronous arrival sequence in the interval [0,B(Γ)].
To further optimize runtime performance, we apply the quick convergence pro-
cessor demand analysis (QPA) technique [19], which enables the safe skipping of
certain values of t using a simple backward iterative procedure. We adapt QPA
to our problem by setting the h(t) function from Theorem 5 in [19] to be equal
to the left-hand side of Eq. 10, and substituting the list of absolute deadlines
with the list of discontinuity points. We refer to this adapted test, which com-
bines QPA with preprocessed values of dbfΓP

, as QPDA*. The corresponding
pseudocode is provided in Algorithm 1.

Algorithm 1 Pseudocode for QPDA*
1: Define h(t) = dbfΓP(t) +

∑
τi∈ΓS

dbfS(τi, t) (left-hand side of Eq. 10)
2: Define T∫ = ordered list of unique discontinuity points of h(t)
3: tmin = min{ti | ti ∈ T∫}
4: t = max{ti | ti ∈ T∫ ∧ ti < B(Γ)}
5: while h(t) ≤ t and h(t) > tmin do

6: t =

{
h(t), if h(t) < t

max{ti ∈ T∫ | ti < t}, otherwise
7: end while
8: Output: Task set is schedulable if h(t) ≤ tmin; otherwise, not schedulable

5 Exact Feasibility Test Based on ILP

From Section 4, the EDF-schedulability of the task set Γ = ΓP ∪ ΓS can be
determined using Eqs 1–3. In this section, we show how to reformulate these
inequalities into an Integer Linear Programming (ILP) model by expressing them
as linear constraints with integer variables.
Reformulating dbfP . The demand-bound function for periodic tasks in Eq. 2
includes floor, ceiling, and max functions, which must be reformulated using
integer variables and linear constraints to ensure compatibility with the ILP

9 In our evaluation in Section 6, we simply store the pre-processed values as pairs
(t,dbfΓP(t)) for only the points t where dbfΓP(t) is discontinuous.
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framework. First we encode the floor and ceiling parts of Eq. 2 as

t2 − ϕi −Di

Ti
≥ Xi,1 ≥

t2 − ϕi −Di

Ti
− 1 + ϵ

t1 − ϕi

Ti
≤ Xi,2 ≤

t1 − ϕi

Ti
+ 1− ϵ (Xi,1, Xi,2 ∈ N),

where ϵ < 1/maxτi∈Γ(Ti) is some sufficiently small constant.
By substituting the new variables, Xi,1 and Xi,2, we have

dbfP(τi, t1, t2) = Ci ·max(0, Xi,1 −max(0, Xi,2) + 1)

Now we consider the max functions. The inner max function max(0, Xi,2) can
be ignored assuming t1 ≥ 0, and ϕi < Ti for all τi ∈ ΓP. To reformulate the
outer max function, we use an auxiliary variable Xi,3

Xi,3 = max(0, Xi,1 −Xi,2 + 1)

We further need a binary variable to handle the two cases of the max function
and a large positive constant Mi, which we give the value: Mi =

Ci

Ti
·M where

M = maxτi∈ΓP(ϕi) + 2HP(Γ). The constraints for Xi,3 are as follows:

Xi,3 ≥ 0

Xi,3 ≥ Xi,1 −Xi,2 + 1

Xi,3 ≤ Xi,1 −Xi,2 + 1 +Mi · (1−Bi)

Xi,3 ≤ Mi ·Bi (Bi ∈ {0, 1}),

Reformulating dbfS . The standard demand-bound function for sporadic tasks
in Eq. 3 can be similarly reformulated. We start by expressing the floor function
using linear constraints with integer variables:

t−Di

Ti
≥ Xi,1 ≥

t−Di

Ti
− 1 + ϵ (Xi,1 ∈ N),

By substituting the new variable, Xi,1, we have

dbfS(τi, t) = Ci ·max(0, Xi,1 + 1)

The max function can be ignored assuming t = t2−t1 > 0 and Di ≤ Ti ∀τi ∈ ΓS.
Now that all constraints for the demand bound functions are encoded, the fol-
lowing captures the condition of Theorem 2.∑

τi∈ΓP

Ci ·Xi,3 +
∑
τi∈ΓS

Ci · (Xi,1 + 1) ≥ t2 − t1 + 1

max
τi∈ΓP

(ϕi) ≤ t1 ≤ max
τi∈ΓP

(ϕi) + HP(ΓP)− 1,

t2 ≤ t1 +B(Γ)− 1, (t1, t2 ∈ N),
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Note that a feasibility formulation is unsuitable here, since the solver only seeks
one satisfying assignment rather than proving that the constraint hold for all
time points. In contrast, the in-feasibility formulation allow the ILP solver to
terminate as soon as it finds a single solution, which serves as a concrete proof of
unschedulability. If the ILP solver returns Yes, it means there exist time points
t1 and t2 for which Eq. 1 does not hold, and the task set is not EDF-schedulable.
Conversely, if the solver returns No, then Eq. 1 holds for all such time points,
confirming that the task set is EDF-schedulable.

6 Experimental Evaluation

We structure our evaluation into two distinct experiments with the main objec-
tive of identifying the most efficient feasibility tests for runtime deployment. The
first experiment focuses solely on comparing exact feasibility tests based on their
runtime performance, as they produce equivalent results in terms of feasibility.
The tests included in this comparison are:

PDA: the processor demand analysis described in Theorem 2,
PDA* : the PDA variant with the pre-processing step in Theorem 3 and stored

array of pairs (t,dbfΓP
(t)) for t where dbfΓP

in Eq. 10 is discontinuous,10

QPDA* : the PDA* variant with the QPA technique from [19].
ILP : the ILP model from Section 5 implemented in the Gurobi [29] solver.11

The second experiment evaluates our exact feasibility tests, PDA, PDA* and
QPDA*, in comparison to the currently available EDF-based feasibility tests,
focusing on both schedulability and runtime performance. A comparison with
the offline schedule modification methods in Section 2 is left for future work. In
particular, we consider Slot-Shifting’s offline admission test for sporadic tasks in
time-triggered systems [10], which we refer to here as OTSS. We assume that
the parameters of the generated periodic tasks align with the target execution
windows determined during the offline phase of Slot-Shifting. The available spare
capacity is then computed based on ALAP execution of periodic tasks following
EDF, and using a fixed time slot size, as outlined in [10].
All feasibility tests were implemented in Python. While the Gurobi solver lever-
age Python as an interface, its core functionalities are highly optimized and
written in C. Implementing all tests in C or some other optimized compiled lan-
guage would arguably provide a more balanced comparison, potentially yielding
performance improvements of up to 25 to 30 times for the other tests, as in-
dicated by previous studies on compiled language efficiency [31, 32]. However,
to prioritize rapid development, we chose to forgo a native C implementation,
10 The reported running times for PDA* and QPDA* do not include the time for pre-

processing phase, whose runtime performance is comparable to that of the original
PDA.

11 We have also experimented with the SCIP solver [30], but found that Gurobi con-
sistently outperforms it for the experiments in this paper.
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and instead mitigate the runtime overhead by running the tests implemented in
Python using PyPy’s Just-in-Time (JiT) compiler [33]12.
We conducted all experiments on an Intel Core™ i7-9700 CPU @ 3.00GHz ma-
chine with 24 GB RAM, running Ubuntu 24.04.2 LTS. We confined the execution
of the tests to a single CPU core and ran them using PyPy version 7.3.19, with
the exception of the Gurobi ILP solver (version 12.0.2), which we ran with the
CPython interpreter due to its current incompatibility with PyPy.
For all experiments, we restrict task parameters to natural numbers. Moreover,
for any task τk, its deadline Dk is uniformly drawn from the upper half of the
interval [Ck, Tk], whereas its offset, if periodic, is uniformly drawn from the
interval [0, Tk).

6.1 Experiment 1: Synthetic Task Sets

For this experiment, we generated synthetic task sets using Roger Stafford’s
randfixedsum algorithm [34]. For that, we extended the task generator from [35]
to create mixed asynchronous periodic and synchronous sporadic task sets with
specific hyper-periods. The randfixedsum algorithm produces rational wcet val-
ues for tasks in order to meet a predefined target utilization. Hence, to constrain
wcet values to natural numbers and to prevent the occurrence of zero-valued
wcet due to rounding, we begin by assigning each task an initial wcet of 1. We
then generate rational wcet values using randfixedsum, round them to the near-
est integer, and add them to the initial values. This process is repeated until the
resulting total utilization matches the target within a 2% tolerance threshold.
Since input size directly affects the runtime cost of feasibility tests, we created
multiple one-parameter-at-a-time test suites. In each test suite, we vary one
input parameter and fix the rest.
Test Suite 1: Runtime vs. Task Set Size. In this test suite, we vary the
number of tasks per task set, from 5 to 100 in increments of 5. For each configu-
ration, we generate 100 task sets, resulting in a total of 2000 task sets. Each task
set consists of 60% periodic tasks and 40% sporadic tasks. For all task sets, we
set the target utilization to 85% and the hyper-period to 1000. To preserve the
generality of the results, the task set generation deliberately avoids configuring
all periods as pseudo-harmonic. Therefore, we uniformly select periods from the
set: {4, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250}.
Figure 1 shows the runtime (logarithmic y-axis) for all feasibility tests as func-
tion of task set size (x-axis). The runtime performance of both PDA and ILP is
comparable and grows considerably with task set size. However, thanks to the
pre-processing step, PDA* achieves a two to three orders of magnitude improve-
ment over ILP despite its pure Python implementation. Furthermore, QPDA*
is around 2.3 times faster than PDA* on average. However, in a few outlier cases
within the test suite, QPDA* exhibits lower performance compared to PDA*.

12 We observed an average runtime improvement of approximately 6x relative to exe-
cuting PDA using the CPython interpreter.
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Fig. 1: Mean runtime of exact feasibility tests as a function of task set size;
hatched areas show min-max observed values.

Test Suite 2: Runtime vs. Hyper-period Length. In this test suite, we vary
the length of the combined task set hyper-period across multiple configurations.
For each value in the sets {0.5× 103, 103, 5× 103, 104, 2.5× 104} and {5× 104,
105, 5× 105}, we generate 100 and 10 task sets, respectively (530 sets in total).
Each task set contains 30 tasks, composed of 60% periodic and 40% sporadic
tasks, with a combined utilization of 85%.
Figure 2 shows the runtime (logarithmic y-axis) for all feasibility tests as a func-
tion of hyper-period length (logarithmic x-axis). The runtime of PDA grows
fastest with the hyper-period, whereas ILP maintains relatively stable runtime
across different hyper-period lengths. This is expected, as PDA scales with the
number of release times and deadlines within HP(ΓP)× B(Γ) (see Theorem 2),
whereas the ILP solver identifies solutions that satisfy the imposed model con-
straints without direct dependency on hyper-period length. Thanks to the pre-
processing step, PDA* and QPDA* no longer rely on the length of HP(ΓP).
Hence, they are expected to be at least HP(ΓP) times faster than PDA. Both
PDA* and QPDA* outperform ILP by approximately one to two orders of
magnitude. Notably, QPDA* performs comparably to PDA* at shorter hyper-
periods and exceeds its performance at longer hyper-periods, thanks to its dead-
line skipping optimization.
Memory footprint for (Q)PDA*. As demonstrated in the previous test
suites, the pre-processing step employed by PDA* and QPDA* significantly
improves runtime performance. However, as noted in Section 4, storing the de-
mand from periodic tasks increases the memory footprint of the PDA test from
polynomial to pseudo-polynomial complexity. Therefore, to further assess its
suitability for runtime deployment, we calculate the memory requirement for
storing the demand from periodic tasks considering the previous test suites and
assuming that this demand is encoded in an array of integer pairs. Each pair
(t,dbfΓP

(t)) holds the value of dbfΓP
(see Eq. 10) at a discontinuity time point

t, i.e., when dbfΓP
changes value.



Extending Periodic Task Sets with Sporadic Tasks 19

Fig. 2: Mean runtime of exact feasibility tests as a function of hyper-period
length; hatched areas show min-max observed values.

Note that the results shown here are based on the a priori knowledge of the
bound B(Γ). However, as discussed in Sec. 4, when the sporadic task set is not
known offline, then this bound must be overestimated, which may lead to a larger
memory footprint.
In Test Suite 1, the memory requirement ranged from just a few bytes to ap-
proximately 1.5KB. By contrast, in Test Suite 2 the memory requirement exhib-
ited more substantial increases as the hyper-period grew. Starting at less than
1KB for HP(Γ) = 500, the maximum observed memory requirement increased
by roughly 2.5KB per 1000 units of hyper-period. This trend continued up to
HP(Γ) = 500,000, where the maximum observed memory requirement dropped,
with a maximum observed value of 600KB. Note that when feasible, opting
for smaller integer types can reduce memory usage, e.g., using unsigned 16-bit
integers may cut the memory footprint in half.
We did not observe a clear correlation between the maximum memory require-
ment and the task set size. Although hyper-period length appears to have a
stronger influence, the relationship is not straightforward. The memory required
for storing the pre-processed demand is primarily driven by the length of the
interval [0, B(Γ)] and the number of discontinuities in dbfΓP

(t) within that in-
terval. These factors tend to grow with longer hyper-periods, influenced by task
utilization and the difference between task periods and deadlines (see Eq. 7).
It is worth noting that many real-time systems operate with hyper-periods rang-
ing from a few hundred to a few thousand time units. These systems typically
have sufficient memory resources to accommodate the overhead, positioning
PDA* and QPDA* as a viable feasibility test for runtime deployment.

6.2 Experiment 2: Real-World Automotive Benchmarks

For this experiment, we compare EDF-based feasibility tests based on task
sets generated according to the Real-World Automotive Benchmarks in [36].
For that, we developed a task-set generator that selects periods from the set
{1, 2, 5, 10, 20, 50, 100, 200, 1000}ms using the distribution in Table III of [36],



20 M. I. Alkoudsi et al.

excluding angle-synchronous activation and re-normalizing the remaining prob-
abilities. For each chosen period, the generator samples runnables that satisfy
the constraints in Tables IV and V of [36], then sums their execution times to
form a single task.
Furthermore, since OTSS is based on a time-triggered scheduler, we evaluate it
considering a slot-size of 100 µs and scale the task set parameters accordingly
(referred to as OTSS100). To illustrate the trade-off between runtime efficiency
and schedulability, we also present results for OTSS under a 1 µs slot-size con-
figuration (OTSS), although such fine granularity is generally impractical in
time-triggered systems due to the substantial scheduling overhead [37].
For all generated task sets, we fixed the utilization of periodic tasks at 30% and
varied the utilization of sporadic tasks from 20% to 70% in 10% increments.
We generate for each configuration 100 feasible task sets (600 in total), each
consisting of 15 periodic and 15 sporadic tasks. Note that since all tests in
this experiment are purely implemented in Python, the runtime performance
comparison is more accurate compared to the first experiment.
Figures 3 and 4 illustrate the runtime performance (logarithmic y-axis) and
schedulability success rates, respectively, for the feasibility tests across varying
task set utilization values. As utilization increases, the schedulability of OTSS
declines sharply. On average, OTSS100 achieves a schedulability rate of only
12.76%, approximately 4% lower than that of OTSS1. Increasing the slot size
from 1 to 100µs results in a runtime reduction of one to two orders of mag-
nitude, with higher utilization values leading to earlier violations of OTSS ’s
feasibility checks. Compared to the exact tests, OTSS100 performs better than
PDA in terms of runtime, but is consistently outperformed by our tests with pre-
processing PDA* and QPDA*, which achieve two to three order of magnitude
better performance.

Fig. 3: Mean runtime of feasibility tests as a function of task set utilization;
hatched areas show min-max observed values. The utilization of periodic tasks
is fixed at 30%.
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Fig. 4: Schedulability success percentage of feasibility tests as a function of task
set utilization. The utilization of periodic tasks is fixed at 30%

Note that even if OTSS were deployed for runtime use, it would have comparable
memory requirements to QPDA*, as it needs to store Slot-Shifting’s capacity
intervals throughout the entire TT schedule. Consequently, QPDA* emerges
as the most suitable option for runtime deployment, offering superior overall
performance in terms of both runtime efficiency and schedulability.
It is worth noting that PDA can be readily applied as an offline test for Slot-
Shifting and other flexible time-triggered schedulers with dynamic slot assign-
ment techniques [12], provided that task parameters are adjusted to be multiple
of the time slot size.13

7 Context and Conclusions

In this paper, we have reported on our investigations of a scheduling problem
that emerged within a long-term ongoing effort to enhance the applicability
of the time-triggered scheduling framework by incorporating runtime flexibil-
ity. Given a system of asynchronous periodic tasks that is known to be feasible
upon a single preemptive processor, this scheduling problem asks whether fea-
sibility is preserved if a collection of sporadic tasks is added. We showed that
this feasibility problem is computationally intractable (strongly coNP-hard) for
any work-conserving scheduler, even when the sporadic task set contains only a
single implicit-deadline task and the cumulative utilization of the entire task set
(periodic and sporadic) is arbitrarily low. We provided, via a polynomial-time
reduction, an ILP formulation of the (complement) scheduling problem under
EDF, but showed that it is unlikely to be possible to make any such a formulation
in polynomial time under fixed-priority scheduling.
13 Note that we also explored a modified variant of OTSS, based on the notion of

simulation interval [38], that eliminates its pessimism (effectively making the test
exact) by assuming as soon as possible execution of periodic tasks and choosing
the release times of periodic tasks as global offsets for the synchronous arrivals
of sporadic tasks. Despite this refinement, the test consistently underperformed in
terms of runtime compared to the original OTSS. As a result, and due to space
limitations, we chose not to include it.
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To support runtime deployment, we introduced PDA*, an exact feasibility test
that precomputes and summarizes the computational demand of the periodic
tasks in a pre-runtime phase, thereby improving runtime efficiency (at the cost of
increased memory usage). We further enhanced PDA* ’s runtime performance by
employing the quick convergence processor demand analysis technique, obtaining
a new test QPDA*. Our experiments with synthetic task sets and automotive
benchmarks demonstrate that QPDA* has the best performance in terms of
runtime and schedulability with manageable memory footprint.
Future work includes extending QPDA* to support more task models and gen-
eralizing the analysis to resource-sharing platforms, and to multicore and many-
core architectures.
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