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Abstract

Parameters characterizing safety critical systems are generally as-

signed very conservative values for reasons of safety assurance. Pro-

visioning computing resources on the basis of such conservatively

assigned parameter values can lead to system implementations that

make inefficient use of platform resources during run time. We

address the problem of achieving more efficient implementations

of sporadic task systems where, in addition to a conservatively

assigned value for the period parameter of each task, we also have

a more optimistic (i.e., larger), but perhaps incorrect, prediction
of this value. We devise an algorithm that executes the system

more efficiently during runtime if the prediction is correct, without

compromising safety if it turns out to be incorrect.

CCS Concepts

• Computer systems organization → Real-time systems; •
Software and its engineering→ Real-time schedulability.
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1 Introduction

A sporadic task [10, 20, 23] typically models the timing aspects of

code execution triggered by external events. The task, denoted as 𝜏𝑖 ,

is defined by two parameters: the worst-case execution time (WCET)

𝐶𝑖 and the period 𝑇𝑖 . WCET represents the maximum duration for

code completion, while the period is the minimum time between

successive triggerings of task 𝜏𝑖 .

Estimating the minimum duration between triggering events in an

accurate manner can be challenging. Safety-critical systems address

this challenge by assigning a small, safe lower bound value to the

period parameter𝑇𝑖 . This conservative approach, aimed at ensuring

safety, often leads to platform resource under-utilization during

runtime when jobs are released much further apart than 𝑇𝑖 . The

algorithms community has recently begun studying how to make

use of lower-assurance information in a safe and effective manner.

Such lower-assurance information, called predictions, may be ob-

tained from a variety of sources including measurements, human

intuition, or machine learning. The Algorithms using Predictions
framework [17, 21, 22] (also known as learning-augmented algo-
rithms) outlines a systematic approach to safely and effectively use

predictions, increasing efficiency when correct, without compromis-

ing correctness or causing excessive degradation when predictions

are incorrect. (see [1] for an introduction to this topic that is tar-

geted to the real-time computing community).

In this work we assume access to a prediction 𝑃𝑖 for each task 𝜏𝑖 ’s

period parameter. While 𝑃𝑖 is a more realistic estimate than𝑇𝑖 , there

is no complete assurance that successive jobs of 𝜏𝑖 won’t be released

sooner than 𝑃𝑖 time units apart. In other words, consecutive jobs

being released less than𝑇𝑖 time units apart represent a runtime fault
that would likely trigger fault-tolerance mechanisms. However,

successive jobs being released less than 𝑃𝑖 time units apart, although

believed to be unlikely, do not constitute a system fault and all

deadlines must still be guaranteed.

§. The problem considered here. We assume that we are given a

real-time system comprising a collection of several independent spo-

radic tasks, with each task 𝜏𝑖 characterized by the 3-tuple (𝐶𝑖 ,𝑇𝑖 , 𝑃𝑖 )
as discussed above, that are to execute upon a shared processor that

has a specified maximum speed or computing capacity. We propose
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to schedule this system using a run-time scheduling algorithm
that

(1) starts out with the processor running at some speed 𝑠 that is

smaller than the maximum processor speed (i.e., 𝑠 < 1);

(2) monitors job-release time in order to determine whether suc-

cessive jobs of any task 𝜏𝑖 have been released sooner than 𝑃𝑖
time units apart; if so

(3) increases the processor speed up to its maximum (i.e., to speed

1), and remains at this maximum speed until an idle instant

occurs in the schedule at which point in time the processor

speed is again returned to 𝑠 (and we are back in Step (1) above

of the run-time scheduling algorithm).

The Algorithms using Predictions framework assumes that the pre-

diction is highly likely to be accurate (although as stated above,

there is no absolute guarantee). Consequently, we aim to assign

a small value to 𝑠 so as to achieve energy efficiency, a reduction

in heat-dissipation costs, etc., during runtime. Simultaneously, we

must ensure that deadlines are consistently met even if the predic-

tions happen to be inaccurate. In essence, we seek to answer the

question:What is the minimum value of 𝑠 that ensures the runtime
algorithm always meets all job deadlines? Our main contribution
in this paper is an algorithm that computes this minimum speed

near-optimally (with the “nearness" to optimality characterized pre-

cisely – Lemma 4) in time pseudo-polynomial in the representation

of the provided task system.

§. Organization. The remainder of this paper is organized in the

following manner. In Section 2 we provide some background infor-

mation that is needed in the remainder of this paper. We formally

state the problem that we will be solving in Section 3, and develop

an algorithm for doing so in Section 4. In Section 5 we analyze

the performance of this algorithm in terms of both its asymptotic

runtime complexity and its distance from optimality. We conclude

in Section 6 with a summary of our findings, and brief mention of

some straightforward generalizations.

2 Background and Related Work

We start out providing the necessary background on algorithms

using predictions in Section 2.1, by briefly and non-exhaustively

reviewing prior work on this subject. In Section 2.2 we review some

well-known results from real-time scheduling theory, concerning

the exact and approximate schedulability analysis of sporadic task

systems that are EDF-scheduled upon preemptive uniprocessor

platforms. In Section 2.3 we discuss some prior work that is related

to the research we are presenting here.

2.1 Algorithms Using Predictions

Safety-critical systems should have their correctness properties

verified prior to deployment; such verification is currently typically

done via some form of worst-case analysis. Worst-case analysis

tends to lead to very conservative system designs that make in-

efficient use of computing resources almost all of the time. One

approach to overcoming such conservatism is to go “Beyond Worst-

Case Analysis" [25] by using predictions to guide an algorithm. Such

predictions may be drawn from a variety of sources, such as via

measurements based upon empirical observations (that, despite

perhaps being quite extensive and thorough, would not qualify as

high-assurance); being assigned by human experts based on their

expertise and intuition; or through the use of machine-learning

techniques. Since such predictions are often of uncertain prove-

nance, system design and analysis algorithms should not trust them

entirely. Informally speaking, an algorithm that uses predictions

to make decisions should be designed in such a manner that it

achieves the best of both worlds: providing improved performance

when the prediction is accurate, without suffering too much of a

performance degradation, in comparison with algorithms that are

developed using traditional worst-case methods, when the predic-

tion is inaccurate. The algorithmic framework of algorithms using
predictions (see [21] for a comprehensive introduction) offers a sys-

tematic approach to doing so. Algorithms designed according to this

framework are characterized according to the following properties:

(1) Consistency: When the predictions are accurate, the perfor-

mance of the algorithm is excellent, often near-optimal.

(2) Robustness: When the predictions are inaccurate, the perfor-

mance of the algorithm is not much worse than that of an

algorithm that does not use predictions.

(3) Smoothness: The performance of the algorithm does not fall

off drastically when the predictions have small errors: “the algo-

rithm interpolates gracefully between the robust and consistent

settings" [21].

(4) Learnability: Good values of the predicted quantity can be

learnt over time.

In other words, the consistency of an algorithm that uses predic-

tions characterizes its performance when the predictor is perfectly

accurate, while robustness characterizes its performance guarantee

regardless of the quality of the predictions. (In this paper we focus

exclusively on obtaining algorithms that are capable of achieving

consistency and robustness, leaving consideration of smoothness

and learnability for future work.)

Predictions have proven to be a powerful tool for breaking pes-

simistic bounds in various scheduling problems with non-periodic

jobs. While the majority of research addresses uncertainties related

to unknown processing requirements or runtime behavior [5, 6, 8,

14, 16, 18, 24, 30], few works investigate predictions regarding the

online job arrival or deadlines [4, 15] or the processor speed [7, 19].

Only recently, the concept has been introduced to the real-time

systems community [1].

Notably, to our knowledge, there is no prior work exploring predic-

tions on task periods.

This paper aims implicitly at energy minimization via speed scaling

which has been considered for other prediction models and simple

jobs in [4, 8].

2.2 Three-Parameter Sporadic Task Systems

We now briefly review some well-known prior results on real-time

scheduling (without period predictions – i.e., on task models that
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only assumed guaranteed bounds on both theWCET and the period

parameter), that we will be using in the remainder of this paper.

We have thus far talked of sporadic task systems in which each task

𝜏𝑖 is characterized by a WCET 𝐶𝑖 and a period parameter 𝑇𝑖 , with

the constraint that each job released by 𝜏𝑖 must complete execution

prior to the release of the next job. Such task systems are called

implicit-deadline sporadic task systems; in 3-parameter sporadic
task systems, task 𝜏𝑖 is additionally characterized by a relative-
deadline parameter 𝐷𝑖 , and the constraint is that each job released

by 𝜏𝑖 must complete execution within 𝐷𝑖 time units of its release

time. In this section we restrict attention to constrained-deadline
3-parameter sporadic systems Γ, which satisfy the additional re-

striction that 𝐷𝑖 ≤ 𝑇𝑖 for all tasks 𝜏𝑖 ∈ Γ. We further assume that∑
𝜏𝑖 ∈Γ (𝐶𝑖/𝑇𝑖 ) ≤ 1, and examine the EDF-schedulability of Γ upon

a unit-speed preemptive processor. It has been shown [10] that a

necessary and sufficient condition for Γ to be EDF-schedulable is

that no deadline is missed in the (simulated) EDF scheduling of the

behavior of Γ in which each 𝜏𝑖 ∈ Γ generates a job at time-instant

0, and subsequent jobs as soon as legally permitted to do so (i.e., at

time-instants 𝑘 ·𝑇𝑖 for all 𝑘 ∈ N) — such a behavior is commonly

referred to as the synchronous arrival sequence (SAS) for Γ. It was
further shown that this simulation may be terminated at the hyper-
period (the least common multiple of the period parameters of the

tasks in Γ) — if no deadlines are missed by then, it is not possible

that a deadline miss will occur.

In practice, the idea contained in the paragraph above is usually im-

plemented via an abstraction called the demand bound function (dbf):
for any sporadic task 𝜏𝑖 = (𝐶𝑖 , 𝐷𝑖 ,𝑇𝑖 ) and any interval-duration

𝑡 ≥ 0, dbf𝑖 (𝑡) denotes the maximum possible cumulative execu-

tion requirement by jobs of task 𝜏𝑖 that both arrive in, and have

their deadlines within, any contiguous interval of duration 𝑡 . The

following formula for computing dbf𝑖 (𝑡) was derived in [10]:

dbf𝑖 (𝑡) = max

(⌊
𝑡 − 𝐷𝑖

𝑇𝑖

⌋
+ 1, 0

)
×𝐶𝑖 (1)

and it was shown that a necessary and sufficient condition for

a constrained-deadline 3-parameter sporadic task system Γ to be

EDF-schedulable upon a preemptive unit-speed processor is that

the following condition should hold for all 𝑡 that correspond to

deadlines of jobs in the SAS that are no larger than the hyper-

period: ∑︁
𝜏𝑖 ∈Γ

dbf𝑖 (𝑡) ≤ 𝑡 . (2)

For bounded-utilization sporadic task systems —systems Γ satis-

fying the additional condition that

(∑
𝜏𝑖 ∈Γ (𝐶𝑖/𝑇𝑖 )

)
≤ 𝑐 for some

pre-defined constant 𝑐 strictly smaller than 1— that are not EDF-

schedulable upon a preemptive unit-speed processor, however, it is

known [9, Theorem (3.1))] that Condition 2 is violated for some 𝑡

that lies within the first busy interval of the EDF schedule of the
SAS, and that the duration of this busy interval is upper-bounded

by ( 𝑐

1 − 𝑐

)
×max

𝜏𝑖 ∈Γ
{𝑇𝑖 − 𝐷𝑖 }. (3)

(We point out that this upper bound is pseudo-polynomial in the

representation of Γ.)

2.2.1 The Albers-Slomka Approximation.

Since EDF schedulability verification is known to be coNP-hard [13],

we should not expect to be able to develop polynomial-time algo-

rithms for doing EDF schedulability-verification exactly — Condi-

tion 2 must in general be checked for exponentially many distinct

values of 𝑡 . However, polynomial-time sufficient (rather than exact)

EDF schedulability verification algorithms are known; many of the

best ones are based upon an approximation proposed by Albers and

Slomka [3] to the demand bound function. In this approximation,

one fixes an integer value for a parameter 𝜅 ∈ N and defines the

approximation, dbf
⟨𝜅 ⟩
𝑖

, as follows:

dbf
⟨𝜅 ⟩
𝑖
(𝑡) =

{
dbf𝑖 (𝑡), if 𝑡 ≤ 𝜅 ×𝑇𝑖 + 𝐷𝑖

𝐶𝑖 +
(
𝐶𝑖

𝑇𝑖

)
· (𝑡 − 𝐷𝑖 ), otherwise

(4)

(A quick glance at Figure 3 (a) may be helpful to the reader unfa-

miliar with this approximation.)

A testing set T (Γ) is defined, comprising the deadlines of the

first (𝜅 + 1) jobs in the SAS that are released by each task. It was

shown [3] that task system Γ is EDF schedulable upon a unit-speed

processor if the following analog of Condition 2:∑︁
𝜏𝑖 ∈Γ

dbf
⟨𝜅 ⟩
𝑖
(𝑡) ≤ 𝑡 (5)

is satisfied for all 𝑡 ∈ T (Γ); since |T (Γ) | ≤ (𝜅 + 1) × |Γ |, this
immediately yields a polynomial-time sufficient EDF-schedulability

test.

It has been shown [3] that

dbf𝑖 (𝑡) ≤ dbf
⟨𝜅 ⟩
𝑖
(𝑡) < dbf𝑖 (𝑡) +𝐶𝑖 . (6)

It follows from the definition of dbf
⟨𝜅 ⟩
𝑖

in Eq. 4 and the second

inequality in Eq. 6 above that

dbf
⟨𝜅 ⟩
𝑖
(𝑡) <

(
1 + 1

𝜅

)
× dbf𝑖 (𝑡) .

Combined with the exact test in Eq. 2 it is easily concluded that any
sporadic task system that is deemed to not be EDF schedulable using
the polynomial-time schedulability test in Eq. 5 is not EDF schedulable
upon a speed-

(
𝜅

𝜅+1
)
-processor.

Choosing a value for 𝜅. Since the running time of the schedula-

bility test depends on the size of the testing set, it is evident that

the smaller the value assigned to 𝜅, the more efficient this test is.

On the other hand, the larger the value of 𝜅, the more accurate

the test in the following sense: if the test deems a task system to

not be schedulable on unit-speed processors, it is guaranteed to

actually not be so on processors that are closer in speed to one

for larger values of 𝜅. Albers and Slomka [3] point out that the

sufficient test described above can in fact be turned into an FPTAS

for approximating the required processor speed.

2.3 Mixed-Criticality Scheduling

In this paper, we are assuming that each periodic task’s period

parameter is given two values: a conservative one that is guaranteed

to be safe, and amore optimistic one that is very likely to be safe (but

is not guaranteed to be so). This is similar in spirit to much work
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on mixed-criticality scheduling [29] (see, e.g., [12] for a review) in

which tasks are characterized by multiple WCET parameter values

that are guaranteed to be accurate at different assurance levels.

Much of mixed-criticality scheduling theory deals with a decision

problem (is a given system schedulable upon a particular processing

platform?) rather than an optimization problem such as the one we

are addressing (what is the minimum initial processor speed that

guarantees to never miss any deadlines?) in this paper. The standard

model of mixed-criticality scheduling is also to react to incorrect

assumptions (or mispredictions, in the terminology of this paper) by

reducing service, usually entirely, to some tasks that are considered

less critical. This is different from the model considered here where

all tasks are considered equally important and all deadlines must

always be met.

An exception is the work on the mixed-criticality precise scheduling
model [11, 26–28]; in this work, the same question is asked as

the one we are posing here (i.e., determining the minimum initial

speed that guarantees that all jobs of all tasks will always meet

their deadlines in all low-criticality and high-criticality behaviors),

but for the standard mixed-criticality task model with each task

characterized by two WCET values.

3 System Model

We assume that we are given a sporadic task system

Γ =

𝑛⋃
𝑖=1

{𝜏𝑖 = (𝐶𝑖 ,𝑇𝑖 , 𝑃𝑖 )}

where𝐶𝑖 and𝑇𝑖 are the WCET and (guaranteed safe) period respec-

tively of task 𝜏𝑖 , and 𝑃𝑖 ≥ 𝑇𝑖 is a prediction of its period. Each task

𝜏𝑖 ∈ Γ releases a sequence of jobs which must be executed; it is

required that a job of 𝜏𝑖 must have completed execution before the

next job of 𝜏𝑖 is released. Observe that Γ may generate different

sets of jobs each time it is executed; we refer to each execution

as a behavior of the system. In consistent behaviors, successive
jobs of each task 𝜏𝑖 arrive ≥ 𝑃𝑖 time units apart. Any behavior in

which a pair of successive jobs of any 𝜏𝑖 ∈ Γ arrive sooner than

𝑃𝑖 (but ≥ 𝑇𝑖 ) time units apart is not consistent, whereas behaviors

in which successive jobs of any 𝜏𝑖 ∈ Γ arrive sooner than 𝑇𝑖 time

units apart are said to be faulty. We do not discuss faulty behaviors

any further in this paper, but assume that they are handled by a

separate fault-recovery mechanism that is invoked whenever a fault

is detected at run-time.

We seek to schedule Γ upon a single preemptive processor with

maximum speed or computing capacity one: the processor can

complete one unit of execution in one time-unit.

Run-Time Algorithm. As discussed in Section 1, we will start out

running the processor with its speed set to 𝑠 < 1. Since all that can

be guaranteed is that successive jobs of 𝜏𝑖 will be released no sooner

than 𝑇𝑖 time-units apart (in non-faulty behaviors), we must ensure

that each job of 𝜏𝑖 completes its execution within𝑇𝑖 time units of its

release. Hence the systemmust initially be modeled as a constrained-
deadline sporadic task system comprising |Γ | tasks, in which the

𝑖’th task has WCET 𝐶𝑖 , relative deadline 𝑇𝑖 , and period 𝑃𝑖 . If any

prediction violation is detected during run-time (i.e., successive

jobs of some task 𝜏𝑖 are released sooner than 𝑃𝑖 time-units apart),

we immediately increase the processor speed to 1.

Optimization criterion: As stated in Section 1, the implicit as-

sumption in the Algorithms using Predictions framework is that

predictions are very likely to be correct, in which case prediction

violations will never occur and the processor will always run at its

initially-set speed of 𝑠 . Our objective is therefore to optimize for

consistency and find the smallest value of 𝑠 for which the robust-

ness guarantee holds that no deadline misses will occur (regardless

of whether predictions hold or not).

Some additional terminology: we define the scheduling window of

a job to denote the interval within which it must be scheduled in

order to guarantee that its deadline will be met under all possible

circumstances. Suppose that a job is released by 𝜏𝑖 at some time-

instant 𝑡𝑎 ; since all we know for certain is that its next job will not

be released prior to time-instant 𝑡𝑎 +𝑇𝑖 , its scheduling window is

equal to the time interval [𝑡𝑎, 𝑡𝑎 +𝑇𝑖 ).

4 An Algorithm for Determining the Initial
Processor Speed

Recall our task model from Section 3: we have an implicit-deadline

sporadic task system with guaranteed and predicted period esti-

mates

Γ =

𝑛⋃
𝑖=1

{𝜏𝑖 = (𝐶𝑖 ,𝑇𝑖 , 𝑃𝑖 )}

where𝐶𝑖 and𝑇𝑖 are the WCET and (guaranteed safe) period respec-

tively of 𝜏𝑖 , and 𝑃𝑖 ≥ 𝑇𝑖 is a prediction of its period, that we propose

to schedule using the following run-time scheduling algorithm
using EDF.

• We will start out running the processor at some speed that is

smaller than the maximum processor speed.

• We will monitor job-release times, in order to determine whether

successive jobs of any task 𝜏𝑖 have been released sooner than

𝑃𝑖 time units apart. If this happens, we say that a prediction
failure has occurred; we will occasionally refer to this task as the

triggering task, and the instant at which the sooner-than-expected
job of the triggering task arrives as the triggering instant.
• At the triggering instant, we immediately begin running the

processor at its maximum speed, and remain at this maximum

speed until an idle instant occurs in the schedule. When this

happens the processor speed is again returned to the initial slower

speed.

(We point out that a nice feature of this run-time algorithm is its

simplicity, which allows for very efficient implementation with

minimal run-time overhead. Notice that the scheduling deadlines

assigned to already-arrived jobs do not change at the triggering

instant, and hence no re-ordering of the run-time queue is needed

upon detection of a prediction failure.)

In the remainder of this section we will describe how to determine,

prior to run-time, the speed at which the processor is to initially

be run. We start out with a high-level overview: we will first

derive a necessary condition for a deadline miss for a given initial
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Algorithm 1: Computing the initial processor speed

1 Input: Task system Γ, with each 𝜏𝑖 ∈ Γ characterized by a three-tuple: 𝜏𝑖 = (𝐶𝑖 ,𝑇𝑖 , 𝑃𝑖 )
2 Output: The speed 𝑠𝑜 , 𝑠𝑜 < 1, at which the processor should initially be run

3 𝑠𝑜 ← an initial value for the speed that ensures that fully-consistent behaviors are schedulable (see Section 5.2)

4 𝐻 ← a pseudo-polynomial upper bound on the triggering instants that must be considered to discover a deadline miss (see Section 5.2)

5 for each 𝑡𝑓 ∈ {1, 2, . . . , 𝐻 } do // (Assumption: integer job arrivals)
6 Suppose that 𝑡𝑓 is the triggering instant

7 for each 𝜏ℓ ∈ Γ do
8 Suppose that 𝜏ℓ is the triggering task

9 Compute a safe set 𝐾 of possible values for 𝑡𝑑 , such that a deadline miss must occur for one of these values of 𝑡𝑑 if any

deadline miss is to occur at all

10 for each 𝑡𝑑 ∈ 𝐾 do
11 Update 𝑠𝑜 to be the larger of its current value, and the value determined according to Equation 7:

𝑠𝑜 ← max

©«𝑠𝑜 ,
(∑

𝜏𝑖 ∈Γ 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 )
)
− (𝑡𝑑 − 𝑡𝑓 )

𝑡𝑓

ª®®¬
12 end
13 end
14 end
15 return 𝑠𝑜

processor speed 𝑠𝑜 . By then negating this condition, we will obtain

a formula for assigning 𝑠𝑜 a value that guarantees no deadline miss.

(Later in Section 5, we will evaluate the effectiveness of this means

of assigning the initial processor speed by quantifying how far

removed it is from the lowest possible value.)

To derive a necessary condition for a deadline miss, let us suppose

that we start out at speed 𝑠𝑜 , and let 𝑡𝑑 denote the earliest time-

instant at which a deadline miss can possibly occur when Γ is

executed using the run-time algorithm described above. Consider

some collection of jobs J of Γ upon which this deadline miss at

𝑡𝑑 occurs. Let 𝑡𝑓 < 𝑡𝑑 denote the triggering instant – the (earliest)

time-instant at which a prediction failure occurred.
1
Let 𝜏ℓ ∈ Γ

denote the triggering task: a job of 𝜏ℓ was released at time-instant

𝑡𝑓 despite less than 𝑃ℓ time having passed since the prior release of

a job of 𝜏ℓ .

We point out that there are no idle instants in the EDF schedule

of J when executed upon a processor of speed 𝑠𝑜 over [0, 𝑡𝑓 ) and
speed 1 over [𝑡𝑓 , 𝑡𝑑 ); else it is easily shown that the jobs arriving

after the idle instant would constitute a collection of jobs on which

an earlier deadline miss occurs.

Let 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) denote a (tight) upper bound on the cumulative exe-

cution requirement by jobs that are in J that were generated by

task 𝜏𝑖 —we will describe how 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) is computed in Section 4.1,

and how it may be approximated in Section 4.2. Since the processor

runs at speed 𝑠𝑜 over [0, 𝑡𝑓 ) and speed 1 over [𝑡𝑓 , 𝑡𝑑 ), it must be

the case that ∑︁
𝜏𝑖 ∈Γ

𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) > 𝑠𝑜 × 𝑡𝑓 + 1 × (𝑡𝑑 − 𝑡𝑓 )

1
It is also possible that some behavior of Γ misses a deadline upon a speed-𝑠𝑜 processor

even without a prediction failure occurring; we explain how we account for this

possibility a bit later in this section.

in order for the deadline miss to occur. Hence, assigning 𝑠𝑜 a value

satisfying

𝑠𝑜 ≥

(∑
𝜏𝑖 ∈Γ 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 )

)
− (𝑡𝑑 − 𝑡𝑓 )

𝑡𝑓
(7)

for all 𝑡𝑓 , 𝑡𝑑 values is sufficient to ensure that no deadline miss

can occur. Additionally, the smallest such value of 𝑠𝑜 is a lower

bound on the speed at which the processor must initially be run

in order to ensure that no deadline will be missed in the event of a

prediction failure. Algorithm 1 depicts, in pseudocode form, how

we compute a value for 𝑠𝑜 satisfying Expression 7 for all possible

choices of triggering task 𝜏ℓ and all relevant pairs of 𝑡𝑓 , 𝑡𝑑 values.

Line 3 of this pseudocode is discussed below. In Section 4.1 we show

that 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) can be computed in constant time for given 𝜏𝑖 , 𝑡𝑓 ,

and 𝑡𝑑 . In Section 5.2 we will see that the value assigned to 𝐻 in

Line 4 is pseudo-polynomial in the representation of Γ, and the

testing set 𝐾 computed in Line 9 contains at most polynomially

many distinct values, and that these facts together imply that our

overall algorithm has pseudo-polynomial running time.

Initializing 𝑠𝑜 . The value of 𝑠𝑜 we will have computed as described

above ensures no deadline miss in the event of a prediction failure.

We must also consider the possibility that a deadline miss may

occur even without a prediction failure – some consistent behavior

of Γ may be unschedulable. To rule this possibility out, we initialize

𝑠𝑜 (Line 3 of Algorithm 1) such that the 3-parameter constrained

deadline sporadic task system that models all possible consistent

behaviors of Γ is EDF-schedulable upon a speed-𝑠𝑜 processor; prior

algorithms, e.g., [3, 10], are known that can accomplish this ex-

actly or approximately to any desired degree of accuracy. (This is

discussed briefly in Section 5.2).
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Figure 1: For Lemma 1. Jobs of 𝜏𝑖 are initially released 𝑃𝑖 time
units apart. If 𝑡𝑓 lies outside the scheduling window of any
such job, then a job is released at 𝑡𝑓 (top); else, a job is released
immediately upon the end of the scheduling window within
which it lies (bottom).

4.1 Computing 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 )
As outlined above, our overall strategy is centered on identifying

conditions that must hold for a deadline miss to occur at some time-

instant 𝑡𝑑 due to some triggering task 𝜏ℓ experiencing a prediction

failure at some earlier triggering instant 𝑡𝑓 , and then negating

these conditions to ensure that a deadline miss can never occur.

This strategy requires us to repeatedly compute 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) values,
in order to repeatedly evaluate Eqn 7; we now discuss how to do

so, in constant time for given 𝜏𝑖 , 𝑡𝑓 , and 𝑡𝑑 .

Lemmas 1 and 2 below characterize the system behaviors from

which we can compute the desired upper bounds on 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) for
given 𝑡𝑓 , 𝑡𝑑 .

Lemma 1. For each task 𝜏𝑖 ∈ Γ other than the triggering task (i.e.,
for all 𝜏𝑖 ≠ 𝜏ℓ ), the value of 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) is maximized when each job of
𝜏𝑖 is released as soon as legally permitted to do so. I.e.,

• the first job is released at time-instant 0;

• subsequently jobs are released 𝑃𝑖 time-units apart over [0, 𝑡𝑓 );
• the first job released after time-instant 𝑡𝑓 is released at the later
of 𝑡𝑓 and 𝑇𝑖 plus the release time of the preceding job of 𝜏𝑖 ; and

• subsequent jobs are released 𝑇𝑖 time-units apart over [𝑡𝑓 , 𝑡𝑑 ).

(This is illustrated in Fig 1.)

proof sketch. Consider the collection of jobs J discussed in the

overview of our strategy above, for which a triggering instant at 𝑡𝑓
causes a deadline miss at 𝑡𝑑 . It is evident that moving the release

of each job earlier cannot reduce the total amount of execution

that needs to be completed; hence, the total amount of execution

that must be completed by time-instant 𝑡𝑑 cannot decrease. And

since 𝜏𝑖 is, by assumption, not the triggering task, changing the

instants at which its jobs are released cannot increase the amount

of available computing capacity (by speeding up the processor at

an earlier instant in time). □

Lemma 2. The triggering task 𝜏ℓ must release a job at time-instant
𝑡𝑓 , and 𝛿ℓ (𝑡𝑓 , 𝑡𝑑 ) is maximized when

• its first job is released at time-instant 0;

Figure 2: For Lemma 2. No job is released by the triggering
job 𝜏ℓ within the interval [𝑡𝑓 −𝑇ℓ , 𝑡𝑓 ) (i.e., the dotted blue job
does not get released despite 𝑃ℓ time having elapsed since
the prior release).

• subsequent jobs are released each 𝑃ℓ time-units apart, over the
time-interval [0, 𝑡𝑓 −𝑇ℓ );
• a job is released at time-instant 𝑡𝑓 ; and

• subsequent jobs are released 𝑇ℓ time-units apart over [𝑡𝑓 , 𝑡𝑑 ).

(This scenario is illustrated in Fig 2.)

proof sketch. This is essentially the same proof as the one for

Lemma 1, with the added restriction that since 𝜏ℓ is the triggering

task, it must release a job at the triggering instant 𝑡𝑓 . □

How many jobs are released? Let cnt𝑖 (𝑡𝑓 , 𝑡𝑑 ) denote the largest
number of jobs of 𝜏𝑖 that can have deadlines ≤ 𝑡𝑑 for given 3-

tuple (𝜏𝑖 , 𝑡𝑓 , 𝑡𝑑 ). Lemmas 1 and 2 enable us to efficiently determine

cnt𝑖 (𝑡𝑓 , 𝑡𝑑 ) as follows.
Let 𝜂𝑖 (𝑡𝑓 ) denote the number of jobs of 𝜏𝑖 that have their entire

scheduling windows prior to 𝑡𝑓 . The following formula for comput-

ing 𝜂𝑖 was derived in [10]:

𝜂𝑖 (𝑡𝑓 ) = max

(
0,

⌊
𝑡𝑓 −𝑇𝑖
𝑃𝑖

+ 1
⌋)
. (8)

Note that the (𝜂𝑖 (𝑡𝑓 )+1)’th job is released at time-instant𝜂𝑖 (𝑡𝑓 )×𝑃𝑖
(and its scheduling window extends to (𝜂𝑖 (𝑡𝑓 ) × 𝑃𝑖 +𝑇𝑖 ), which is

> 𝑡𝑓 ).

If
𝜂𝑖 (𝑡𝑓 ) × 𝑃𝑖 < 𝑡𝑓 (9)

Then 𝑡𝑓 lies within the scheduling window of this job of 𝜏𝑖 . In

this case, the number of additional jobs of 𝜏𝑖 with deadline ≤ 𝑡𝑑
equals

max

©«0,

𝑡𝑑 −

(
𝜂𝑖 (𝑡𝑓 ) × 𝑃𝑖

)
𝑇𝑖


ª®®¬ (10)

since the first such job is released at time

(
𝜂𝑖 (𝑡𝑓 ) × 𝑃𝑖

)
and

subsequent job releases are 𝑇𝑖 time units apart, and each job

release is the deadline of the previously-released job.

Else (i.e., Condition 9 does not hold) 𝑡𝑓 does not lie within the

scheduling window of a job of 𝜏𝑖 , in which case a job is released

at 𝑡𝑓 and hence the number of additional jobs of 𝜏𝑖 equals

max

(
0,

⌊
𝑡𝑑 − 𝑡𝑓
𝑇𝑖

⌋)
. (11)
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Summarizing for tasks other than the triggering task,

cnt𝑖 (𝑡𝑓 , 𝑡𝑑 ) = 𝜂𝑖 (𝑡𝑓 ) +
{
𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 10 if Condition 9 holds

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 11 otherwise

(12)

For the triggering task, we have seen (Figure 2) that no jobs are

released over the interval [𝑡𝑓 −𝑇ℓ , 𝑡𝑓 ). The number of jobs released

prior to time-instant (𝑡𝑓 −𝑇ℓ ) is equal to
( ⌊
(𝑡𝑓 −𝑇ℓ )/𝑃ℓ

⌋
+ 1

)
; hence,

the total number of jobs is given by

cntℓ (𝑡𝑓 , 𝑡𝑑 ) =
(⌊
𝑡𝑓 −𝑇ℓ
𝑃ℓ

⌋
+ 1

)
+max

(
0,

⌊
𝑡𝑑 − 𝑡𝑓
𝑇ℓ

⌋)
. (13)

Since Expressions 12 and 13 can clearly be evaluated in constant

time and 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) = 𝐶𝑖 × cnt𝑖 (𝑡𝑓 , 𝑡𝑑 ), it follows that 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) can
be determined in constant time for given 𝜏𝑖 , 𝑡𝑓 , and 𝑡𝑑 .

4.2 Approximating 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 )
In this section we will, in the spirit of the Albers-Slomka approxi-

mation [3] (see Section 2.2.1), derive an upper bound 𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ) on

𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ). It helps to take a closer look at the Albers-Slomka approxi-

mation in order to better understand our new approximation. Recall

the Albers-Slomka approximation (Expression 4, reproduced below)

to the demand bound function dbf𝑖 of a constrained-deadline spo-

radic task that is characterized by a WCET parameter 𝐶𝑖 , a relative

deadline 𝐷𝑖 , and a period 𝑇𝑖 :

dbf
⟨𝜅 ⟩
𝑖
(𝑡) =

{
dbf𝑖 (𝑡), if 𝑡 ≤ 𝜅 ×𝑇𝑖 + 𝐷𝑖

𝐶𝑖 +
(
𝐶𝑖

𝑇𝑖

)
× (𝑡 − 𝐷𝑖 ), otherwise.

Figure 3 (a) provides a visual representation of dbf
⟨𝜅 ⟩
𝑖
(𝑡) as a func-

tion of 𝑡 . The blue step function denotes the exact demand bound

function dbf𝑖 (𝑡). The red line tracks the demand bound function

over [0, 𝐷𝑖 ); after that, it is a straight line with slope 𝐶𝑖/𝑇𝑖 . For a
given value of 𝜅 , dbf

⟨𝜅 ⟩
𝑖
(𝑡) traces the blue step function for the first

(𝜅 + 1) steps (i.e., for 𝑡 ≤ (𝜅 ×𝑇𝑖 + 𝐷𝑖 )), and the red line for larger

values of 𝑡 .

Figures 3 (b) and (c) mimic the spirit of [3] (and hence the graph

in Figure 3 (a)) upon the 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) function for a given value of 𝑡𝑓 .

Figure 3 (b) corresponds to the situation when all jobs are released

as soon as possible. Recall that the triggering task 𝜏ℓ is required

to release a job at time-instant 𝑡𝑓 and may therefore postpone the

release of a job that is eligible to be released during the time interval

(𝑡𝑓 −𝑇ℓ , 𝑡𝑓 ); Figure 3 (c) represents this possibility.

• The blue line denotes the maximum cumulative execution re-

quirement by jobs of 𝜏𝑖 that have their deadline ≤ 𝑡 .
• The red line is piece-wise linear with slope𝐶𝑖/𝑃𝑖 for 𝑡 ∈ [0, 𝑡𝑓 ),
and slope 𝐶𝑖/𝑇𝑖 thereafter.

For a given value of𝜅 , our approximation𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ) to the𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 )

function traces the blue line for the first 𝜅 steps, and the red line

thereafter. Since we can easily compute (see Equation 8) how many

jobs have deadline before 𝑡𝑓 , and hence how many steps of the

blue line occur ≤ (𝑡𝑓 − 𝑇𝑖 ), we can easily compute 𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ).

Algorithm 2 provides the details in pseudo-code form.

5 Analysis

Recall that in Algorithm 1, we repeatedly compute 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) for
different combinations of (𝜏𝑖 , 𝑡𝑓 , 𝑡𝑑 ) values. Rather than using exact

values here, let us instead replace 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) in Line 11 of Algorithm 1

with the 𝜅-approximations 𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ). In Section 5.1 below, we

examine the implications of using this approximation, rather than

the exact 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) values, on the accuracy of our algorithm. Then

in Section 5.2 we show that the worst-case running time of Al-

gorithm 1 (using the approximation rather than exact values for

𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) in Line 11) can be bounded by a pseudo-polynomial in

the representation of the task system Γ that is being scheduled.

5.1 A speedup bound

We now quantify, via the speedup factor metric, the consequence of

approximating 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) in Algorithm 1 with the 𝜅-approximation

𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ). Lemma 3 below shows that 𝛿

⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ) is always an

over-approximation of 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ), and bounds from above the maxi-

mum amount by which it can exceed the value of 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ).

Lemma 3. For all 𝜏𝑖 , 𝑡𝑓 , and 𝑡𝑑 ,

𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) ≤ 𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ) (14)

𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑)

{
= 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) if 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) ≤ 𝜅 𝐶𝑖
< 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) + 2𝐶𝑖 otherwise. (15)

proof sketch. Let us first examine Inequality 14. Observe that

the slope of the red line in Figure 3 (b) increases from (𝐶𝑖/𝑃𝑖 ) to
(𝐶𝑖/𝑇𝑖 ) at time-instant 𝑡𝑓 . Hence the red line is an upper bound

on the cumulative demand of jobs of 𝜏𝑖 in all scenarios in which

a job of 𝜏𝑖 arrives at time-instant 𝑡𝑓 — this covers both the top

scenario in Figure 1 and the sole scenario in Figure 2. It is evident

that the cumulative demand in the remaining scenario – the bottom

Algorithm 2: The 𝜅-approximation (Assume: 𝑡 ≥ 𝑡𝑓 )

1 Input: 𝜏𝑖 , 𝑡𝑓 , 𝜅, and 𝑡

2 Output: The approximation 𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡)

3 Compute 𝜂𝑖 , the number of jobs with deadlines ≤ 𝑡𝑓 , as per
Equation 8:

4 𝜂𝑖 = max

(
0,

⌊
𝑡𝑓 −𝑇𝑖
𝑃𝑖
+ 1

⌋ )
5 if (𝜅 ≤ 𝜂𝑖 ) then // switch to the red line before 𝑡𝑓

6 return
(
𝐶𝑖 + (𝑡𝑓 −𝑇𝑖 ) × 𝐶𝑖

𝑃𝑖
+ (𝑡 − 𝑡𝑓 ) × 𝐶𝑖

𝑇𝑖

)
7 end
8 else // (𝜅 > 𝜂𝑖: switch to the red line after 𝑡𝑓
9 if cnt𝑖 (𝑡𝑓 , 𝑡) ≤ 𝜅 then // Exact: the blue line

10 return
(
𝐶𝑖 × cnt𝑖 (𝑡𝑓 , 𝑡)

)
11 end
12 else // Approximate: the red line

13 return
(
𝐶𝑖 × 𝜂𝑖 + (𝑡 − 𝑡𝑓 ) · 𝐶𝑖

𝑇𝑖

)
14 end
15 end
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Figure 3: Depicting the approximations from (a):– Albers and Slomka [3]; (b) and (c):– this paper.

scenario in Figure 1 – cannot exceed the cumulative demand of the

the top scenario in Figure 1, since the jobs that are released more

frequently (i.e., 𝑇𝑖 , rather than 𝑃𝑖 , time units apart) begin arriving

later.

We now turn our attention to Inequality 15. The proof for this upper

bound essentially mirrors the proof in [3] for the second inequality

in Expression 6 (“dbf
⟨𝜅 ⟩
𝑖
(𝑡) < dbf𝑖 (𝑡) + 𝐶𝑖 "), with an additional

“+𝐶𝑖 ", which is only needed for the scenario depicted in Figure 3 (c),

to account for the job release that may have been postponed during

the time interval [𝑡𝑓 −𝑇ℓ , 𝑡𝑓 ). □

The speedup bound of Lemma 4 below follows from Lemma 3.

Lemma 4. If Algorithm 1 determines that the initial speed of the
processor is 𝑠𝑜 , then ( 𝜅

𝜅 + 2

)
× 𝑠𝑜 (16)

is a lower bound on the initial minimum speed at which the processor
can be run and still guarantee to always meet all deadlines.

proof sketch.We first observe that

( 𝜅

𝜅 + 2

)
× 𝛿 ⟨𝜅 ⟩

𝑖
(𝑡𝑓 , 𝑡𝑑 ) < 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) (17)

for all 𝜏𝑖 , 𝑡𝑓 , and 𝑡𝑑 . This follows from Lemma 3, since 𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ) =

𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) for all 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) ≤ 𝜅 𝐶𝑖 , while for
(
𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) > 𝜅 𝐶𝑖

)
we

have

𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ) < 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) + 2𝐶𝑖 (by Eq. 15)

≡
𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 )

𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 )
< 1 + 2 ×

(
𝐶𝑖

𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 )

)
⇒

𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 )

𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 )
< 1 + 2 × 1

𝜅

≡ 𝛿
⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ) <

(
1 + 2

𝜅

)
× 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 )

≡
( 𝜅

𝜅 + 2

)
· 𝛿 ⟨𝜅 ⟩

𝑖
(𝑡𝑓 , 𝑡𝑑 ) < 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) (18)

as stated in Inequality 17.

Now, it may be verified that Algorithm 1 essentially returns the

smallest 𝑠𝑜 for which Expression 7, with each 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) replaced
by 𝛿

⟨𝜅 ⟩
𝑖
(𝑡𝑓 , 𝑡𝑑 ), is satisfied, for all combinations of 𝑡𝑓 , 𝑡𝑑 values. If

𝑠𝑜 is the value returned by Algorithm 1, it therefore follows from

Inequality 17 above that

(
𝜅

𝜅+2
)
· 𝑠𝑜 is a lower bound on the value of 𝑠𝑜

for which the original Expression 7 is satisfied, for all combinations

of 𝑡𝑓 , 𝑡𝑑 values. And as argued in Section 4, this is the smallest value

at which the processor must initially be run in order to not miss

any deadlines even in the event of prediction failures. Lemma 4

follows. □

5.2 Runtime Complexity

We will show below that Algorithm 1, Line 4, can safely assign the

variable 𝐻 a value that is pseudo-polynomial in the representation

of the task system Γ under analysis, and that each set 𝐾 that is

computed in Algorithm 1, Line 9 comprises no more than 𝜅 × |Γ |
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elements. The overall worst-case running time of Algorithm 1 can

then be written as

1○︷︸︸︷
𝐻 ×

2○︷︸︸︷
|Γ | ×

3○︷    ︸︸    ︷
(𝜅 × |Γ |) ×

4○︷︸︸︷
|Γ | (19)

where

1○ accounts for the choice of triggering instant 𝑡𝑓 ;

2○ counts the choice of triggering task 𝜏ℓ ;

3○ bounds the number of deadlines that must be considered ex-

plicitly; and

4○ denotes the cost of updating speed (Equation 7)

Since the terms 2○, 3○, 4○ are each polynomial, this is clearly

pseudo-polynomial in the representation of the task system Γ under

analysis.

It remains to explain why the values of 𝐻 and |𝐾 | may be upper-

bounded as claimed above. We will also show how the initial value

of 𝑠𝑜 on Line 3 of Algorithm 1 can be calculated.

Calculating the initial value of 𝑠𝑜 and 𝐻 . First, we see from

Lemma 4 that we are, in effect, willing to run the processor with an

initial speed 𝑠𝑜 that is up to (1 + 2/𝜅) times as large as the lowest

possible speed with which deadline misses can be avoided. From

this perspective, therefore, there is no downside in having 𝑠𝑜 be

assigned (in Line 3 of Algorithm 1) a starting value as large as

𝑠min

def

=

(
1 + 2

𝜅

)
×

∑︁
𝜏𝑖 ∈Γ

(
𝐶𝑖

𝑃𝑖

)
since

∑
𝜏𝑖 ∈Γ

(
𝐶𝑖

𝑃𝑖

)
is clearly a lower bound on 𝑠𝑜 .

Furthermore, the approximation algorithm of Albers and Slomka [3]

(see Expression 5) can easily be applied to determine, in polynomial

time and to within an approximation factor of (1 + 2/𝜅), the min-

imum speed of a processor upon which the constrained-deadline

sporadic task system ⋃
𝜏𝑖 ∈Γ

{
(𝐶𝑖 ,𝑇𝑖 , 𝑃𝑖 )

}
,

representing all possible consistent behaviors of Γ, is guaranteed
to meet all deadlines. We will therefore initialize 𝑠𝑜 in Line 3 of

Algorithm 1 to be the larger of this speed and 𝑠min. The value of

𝑠𝑜 is subsequently only ever increased by Algorithm 1 (Line 11).

From this we get two desirable properties: (1) no deadlines can be

missed in consistent behaviors or in inconsistent behaviors prior

to a misprediction, in line with our previous assumptions; and (2)

each consistent behavior of Γ is that of a sporadic task system

with a utilization that is ≤ (𝜅/(𝜅 + 2)) relative to the speed of the

processor, effectively making consistent behaviors (or inconsistent

behaviors up to a mis-prediction) that of a bounded-utilization

task system. Recall from Section 2.2 that the duration of the initial

busy interval for a bounded-utilization sporadic task system is

bounded by a pseudo-polynomial; hence the value of 𝐻 is pseudo-

polynomial
2
in the representation of Γ.

2
In fact, the value of𝐻 is pseudo-linear [2, Def. 2] in the representation of Γ—it depends
in a linear fashion upon the magnitude of the largest integer in the representation of

Γ— making the complexity of Algorithm 1 as a whole pseudo-linear as well. On the

Bounding |𝐾 |: Since we are only approximating each 𝛿𝑖 (𝑡𝑓 , 𝑡𝑑 ) to
be exact for the first 𝜅 steps, it follows, using arguments virtually

identical to the ones that explain the Albers-Slomka approxima-

tion [3], that 𝐾 need only include the first (𝜅 + 1) deadlines of each
task, and hence |𝐾 | is no larger than

|Γ | × (𝜅 + 1) . (20)

In fact, since 𝑡𝑑 > 𝑡𝑓 only those of these first (𝜅 + 1) deadlines of
each task that are > 𝑡𝑓 need to be in 𝐾

6 Conclusions

We have studied the problem of achieving more efficient imple-

mentations of systems of implicit-deadline sporadic tasks upon

preemptive unit-speed processors, where each task 𝜏𝑖 = (𝐶𝑖 ,𝑇𝑖 )
is additionally characterized by a prediction 𝑃𝑖 of its period pa-

rameter that is more optimistic (i.e., larger) than the value that

is conservatively assigned to 𝑇𝑖 and guaranteed to always be cor-

rect. We have proposed a formalization of this problem within the

Algorithms using Predictions framework. We have developed a

pseudo-polynomial time algorithm that determines an initial speed

𝑠𝑜 < 1 at which the processor should be run such that all dead-

lines will always be met by (i) running the processor at speed 𝑠𝑜
so long as the predictions hold; and (ii) immediately increasing the

processor speed to 1 upon detecting a prediction failure. We have

shown that this speed that is determined by our algorithm is within

a (1 + 2/𝜅) factor of the minimum possible value, where 𝜅 is a tun-

ing parameter: the larger the value of 𝜅, the closer the computed

speed is to the optimal one (at the cost of greater, although still

pseudo-polynomially bounded, worst-case running time for the

algorithm that determines this initial speed).

Although we have restricted consideration to implicit-deadline

sporadic task systems, we point out that all our results extend in a

straightforward manner to constrained-deadline task systems in

which each task 𝜏𝑖 is characterized by the three-tuple (𝐶𝑖 , 𝐷𝑖 ,𝑇𝑖 )
(as discussed in Section 2.2), plus a prediction 𝑃𝑖 on the value of 𝑇𝑖 .

In closing, we point out that our goal here has been to develop a

pseudo-polynomial time algorithm for computing an initial proces-

sor speed 𝑠𝑜 that can, by an appropriate choice of the tuning parame-

ter 𝜅 be made arbitrarily close to the minimum such speed. We have

not attempted to obtain the most efficient pseudo-polynomial time

algorithm, occasionally avoiding discussion of possible optimiza-

tions that may further speed up the algorithm (although it would re-

main pseudo-polynomial) for ease of presentation/comprehension.

Similarly, our proofs have not been aimed at identifying the tightest

speedup bound in Lemma 4 – it is possible that the

(
𝜅

𝜅+2
)
term in

Expression 16 could be made larger with more careful analysis.

We also point out that this work has not considered smoothness or
learnability, important concepts for algorithms with predictions (as

described in Section 2.1).

other hand, we note that Algorithm 1 is not robust [2, Def. 3] due to the for-loop on

Line 5.
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