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Deep Learning is already widely used in autonomous Cyber-Physical Systems (CPS’s)
such as self-driving cars, unmanned aerial vehicles, humanoid robots, etc., for purposes
of perception – to enable the autonomous CPS to estimate its position, build a map of
obstacles in its surroundings, and detect and track external objects such as pedestrians.
Currently, research efforts are underway to also apply Deep Learning (DL) to speed up
computation in CPS’s: this is particularly meaningful for autonomous CPS’s that are
not tethered to the power grid and hence must make do with relatively simple computing
platforms on board.

The sporadic task model [1] is widely used for modeling the timing behavior of CPS’s
that primarily comprise collections of independent recurrent processes executing upon
a shared computing platform. Such systems are commonly scheduled during run-time
using the Earliest-Deadline First (EDF) or some Fixed-Priority (FP) scheduling disci-
pline.

We have been investigating the use of Deep Neural Networks (DNNs) to classify
EDF- and FP-scheduled sporadic task systems as either schedulable –guaranteed to
meet all deadlines– or not. These problems are known to be intractable even upon
single-processor platforms: NP-hard for FP [2] and coNP-hard for EDF [3]. And while
we were able to train DNN-based classifiers to be fairly accurate (> 90%) in classifying
task systems as schedulable or not, even for very small task systems (comprising just
2–3 tasks) we were unable to train DNNs that made no classification errors whatsoever.
Classification errors are of two kinds: a false negative error classifies a schedulable system
as being unschedulable, whereas a false positive error classifies an unschedulable system
as being schedulable. While false negative errors have the unfortunate effect of causing
schedulable systems to be to be needlessly rejected as unschedulable, false positive errors
constitute a safety hazard since a potentially unschedulable system is misidentified as
being schedulable. We must be able to eliminate all false positive errors if we are to use
DL for schedulability-analysis for safety-critical systems.

Proposed Approach. To eliminate the possibility of false positive errors, we propose
that when DNNs are used for schedulability-analysis and classify a system as being
schedulable, they be additionally required to generate a justification for this decision
in the form of a certificate – see Figure 1. We require that this certificate must be
verifiable by a (different) algorithm that is based on ‘traditional’ algorithmic techniques
in that it does not make use of Deep Learning and related AI techniques; it is only if
this verification algorithm agrees that the certificate validates schedulability do we deem
the system specifications to have passed the schedulability-analysis test.

∗baruah@wustl.edu. Washington University in St. Louis, USA.
†pontus.ekberg@it.uu.se. Uppsala University, Sweden.

1



System Specs. Schedulable
according to

DNN?

Yes + justification

No

Verification
algorithm

Yes

Can validate justification

No

Cannot validate justification

Figure 1: A Framework for DNN-based Schedulability Verification

Proposition 1 immediately follows from the definition of the complexity class NP:

Proposition 1. Restricting that the module labeled “Verification algorithm” in Fig-
ure 1 have no worse than polynomial running time, it is necessary and sufficient for
a schedulability condition to belong to the complexity class NP in order for it to be
verifiable using the framework of Figure 1.

Hence, in order to determine whether a schedulability-analysis problem can be veri-
fied or not using DL via the framework presented in Figure 1, it is necessary to demon-
strate its membership or non-membership in the complexity class NP. To prove that a
schedulability-analysis problem belongs to NP, one must furnish a polynomial-time ver-
ification algorithm for the problem. To demonstrate non-membership in NP (and hence
unsuitability for solution using the framework of Figure 1), we must show the problem
to be hard for some complexity class that is believed to be distinct from NP (i.e., they
contain problems ̸∈ NP). Thus, showing a schedulability-analysis problem to be hard for
any complexity class believed to be distinct from NP provides substantial evidence that
it is not amenable to solution using the framework of Figure 1. It turns out that upon
preemptive uniprocessors, FP schedulability ∈ NP whereas EDF schedulability is coNP-
complete (and hence unlikely to be in NP), and indeed we have been able to instantiate
the framework of Figure 1 to do FP schedulability analysis, but not EDF schedulability
analysis.

Dealing with problems ̸∈ NP. Real-time scheduling theory research has tradition-
ally sought to obtain efficient algorithms for determining schedulability; if a particular
schedulability analysis problem is shown to be computationally hard, one approach has
been to try to identify sub-problems that are solvable in polynomial time1. If some
schedulability analysis problem that arises frequently in practice is ̸∈ NP and therefore
not amenable to solution using the framework of Figure 1, one could, by analogy, seek
to identify sub-problems of this problem that are in NP. We have investigated this ap-
proach for the coNP-hard problem of EDF schedulability analysis [6], and have identified
a variety of different (partially overlapping) subsets of the space of all EDF-schedulable
sporadic task systems, that are each ∈ NP and hence each subset can be verified using
the framework of Figure 1. One could therefore instantiate a copy of the framework
of Figure 1 for each of these subsets, by training different DNNs to generate verifiable
justifications (certificates) for each of these subset, and consider a task system to be
verified schedulable if any of these DNNs is able to generate a verifiable certificate.

1For instance, FP and EDF schedulability analysis are intractable in general [2, 3] as stated, but
exact polynomial-time schedulability tests are known [4, 5] for harmonic task systems.
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